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A B S T R A C T

For accurately predicting the local stresses around the loading points, a stress function in the form of trigono-
metric series (TS) was applied to obtain the displacements and stresses for simply supported thin beams under
concentrated multiloads. The convergences of TS solutions were testified for both displacements and stresses,
where the convergence criteria were established and the proper iteration numbers were given. Besides, the
accuracy of TS solutions was verified by finite element analysis, where the stress concentration effect is obvious
for the shear stresses around the loading sections, not following the parabolic distribution proposed in litera-
tures. Finally, taking thin beams under multi-wheels loads as an example, parameter studies were then per-
formed to examine the effects of wheels' numbers, distances and locations on the flexural response of beams.
Numerical results were summarized into a series of curves indicating the distribution of displacements and
stresses for various parameters.

1. Introduction

Simply supported thin beams subjected to concentrated loads are a
class of mechanic problems generally encountered in practical en-
gineering, such as the web of I-shaped girders or off-track box girders
under wheel loads, as shown in Fig. 1. Unlike the uniform load, the
stress concentration around the loading point is generally obvious,
which possibly induces the local buckling before overall yielding, so
that more attentions need to be paid in design.

Due to the practical importance, the concentrated loading case has
been focused by many researchers since the 1903's. The stress of an
infinite long beam under two equal and opposite concentrated loads
was initially analyzed by Filon using Fourier series [1], and he found
that the stresses around the loading point were remarkable and di-
minished rapidly with the increment of the distance from the loading
point. However, the convergence property around the loading point is
not clear and the proper iteration numbers are not clearly specified for
stresses and displacements. Afterwards, Seewald [2] solved the pro-
blems on the infinite long beam loaded by a concentrated force based
on the semi-infinite-plane theory, and found out that the vertical stress
(normal to the axis) has a good agreement with the exact solution from
the Fourier series solution [1], but the warping one (along the neutral

axis) at the bottom edge of the beam has a large deviation up to 90.9%.
Similarly, Wang [3] solved the warping stress of the deep beam sub-
jected to a concentrated load by using the semi-infinite-plane theory
and the superposition principle, however, the error for the warping
stress at the top edge reaches to 26.3% in comparison with the finite
element analysis (FEA) result. In FE analysis, gradually refined grid will
lead to the large increment of local stress at the loading point, which
well corresponds to the infinite stress at the loading point obtained
from the Fourier series method [1] and the semi-infinite-plane theory
[2,3].

According to the simplification of the deformation, many beam
theories have been established, including the classical beam theory
(CBT), the first-order beam theory (FBT), and the high-order beam
theory (HBT). The CBT known as the Euler-Bernoulli beam [4] is only
applicable to slender beams. While for thick or deep beams, the CBT
underestimates deflection and overestimate natural frequency and
buckling load due to the ignorance of the transverse shear deformation
effect [5]. The FBT known as the Timoshenko beam theory [6,7] is
proposed to overcome the drawback of CBT by accounting for the
transverse shear deformation effect for deep beams. In FBT, a shear
correction factor (SCF) is needed to compensate the discrepancy be-
tween the actual stress state and the assumed constant stress state since
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the FBT violates the zero shear stress boundary conditions on beam
edges [8]. The SCF depends on various parameters, such as geometry
configurations, material properties, boundary conditions [9]; and,
therefore, it needs a further research [10].

Besides, in order to avoid the use of SCF and get a better estimation
of behavior of deep beams, the HBT, represented by various shape
functions for the shear stress, has been developed, including the third-
order theory [11], the trigonometric theory [12], the hyperbolic theory
[13], the exponential theory [14,15], the mixed theory [16–19]. Al-
though these HBTs were initially proposed for plates and shells, ap-
plication of the shape functions to beams is immediate. Based on the
assumption of a high-order variation of axial displacement and a con-
stant transverse displacement, most of HBTs comply with the zero shear
stress boundary conditions and produce a non-linear (generally para-
bolic-shaped) distribution for the transverse shear stress through the
beam height. Applying a high-order variation to both axial and trans-
versal displacements [17,18], Carrera [20–24] proposed the Carrera
Unified Formulation (CUF). Then, Demasi [25] provides a hierarchical
formulation leading to very accurate FE models for beams, plates and
shells, in which the stretching effect is automatically taken into ac-
count.

A detailed observation on the literature reveals that the transverse
shear strain generally varies in the form of parabolic function in most of
HBTs. However, this parabolic variation may not be applicable to the
shear strain around the loading sections for beams under concentrated
loads, due to the stress concentration. Therefore, this paper deals with
the flexural behavior of thin beams under concentrated multiloads by
using the trigonometric series (TS) method. The emphasis is placed on
the convergence property of TS solutions for both stresses and dis-
placements, especially for those around the loading points, where two
convergence criteria were established depending on the iteration type,
and the proper iteration numbers were given. Also, the accuracy of TS
solutions is verified by FEA for both displacements and stresses, espe-
cially for the transverse shear stresses around the loading sections,
where the stress concentration is obvious, not following the parabolic-
shaped distribution proposed in literatures. Finally, taking thin beams
under multi-wheels loads in parameter study, the effects of wheels'
numbers, distances and locations on the displacements and stresses are
investigated respectively.

2. Trigonometric series method

A thin beam with rectangular cross section subjected to a con-
centrated load is investigated firstly in Fig. 2a. Due to the small
variability of stresses within the beam thickness, the original 3D beam
model can be simplified into a 2D one with a unit thickness, as shown in
Fig. 2, and the load is correspondingly transferred to P/t. For analysis,
the coordinate system O-yz is established in Fig. 2b with its original
point O set on left top of the beam. The beam is made of a homo-
geneous, isotropic and linearly elastic material with Young's and shear
moduli E and G, respectively. The span is l and the height is h. The

concentrated load P/t is applied at zP on the upper edge. The y-/z-axial
displacements are v and w, respectively.

Considering the discontinuity for concentrated load, the stress
function φ needs to be expanded in the form of trigonometric series
(TS), given by
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∞
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where i is the iteration number. αi=iπ/l. Ai and Bi are the constant
coefficients to be determined by boundary conditions.

Substituting Eq. (1) into the compatibility equation,
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a four-order differentiate equation is obtained,
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where the subscripts (2) and (4) indicate the second- and four-order
differentiates over variable y, respectively. The solution then is
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where cki (k=1, 2, 3, 4) are constant coefficients.
Consequently, the stress function φ is
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Based on the relations between the stress function φ and the
stresses, we have
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In order to obtain the coefficients cki, the concentrated load P/t is
also expanded in the form of TS. To do this, we assume that the load P/t
is acted within a infinitesimal domain [zP –ε/2, zP+ε/2], given by

∑= =
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∞P
t t

P
ε

P
lt

α z α z1 lim 2 sin sin ,
ε i

i P i
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where ε is the size of domain. Substitute the Eqs. (6)–(8) into the stress
boundary conditions,

Fig. 1. Examples of thin beams (webs) under concentrated wheel loads.

Fig. 2. Thin beam under single concentrated load.
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Substituting the Eq. (11) into Eqs. (6)–(8), the stresses then are
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Furthermore, based on the constitutive equations,
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the z-/y-axial displacements w and v can be obtained by integrals, given
by
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where functions f(z) and g(y) are to be determined by Eq. (17).
Substituting Eqs. (12)–(14) into Eqs. (18)–(19), then to Eq. (17), we

then have
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It's evident that both f(y) and g(z) are linear functions, given by
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where M, M1 and M2 are constants to be determined by boundary
conditions.

Therefore, the displacements w and v can be obtained by sub-
stituting Eqs. (12), (13), (21) and (22) into Eqs. (18) and (19), given by
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where G=E/2(1+υ), Fi=1–2Ei /(1+υ). υ is the Poisson's ratio.
For the simple supported boundary, with one end of the beam being

hinged and the other being allowed to slide freely on a frictionless
support, the restraints on displacements are
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Substitute Eqs. (23) and (24) into restraints Eq. (25), the constants
M, M1 and M2 then are
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Therefore, the z/y-axial displacements are
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It is obvious the y-axial displacements v at both ending sections
(z=0 and z=l) keep zero. Therefore, the restraints Eq. (25) on dis-
placement v at points are expanded to the whole ending sections, which
corresponds to the restraints in the finite element model in Section 4.

For the multi-loads beam shown in Fig. 3, the loads Pj /t are located
at zPj (j=1, 2, …, n). The stresses and displacements can be obtained by
superposition.
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Fig. 3. Thin beam under concentrated multiloads.
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3. Convergence test

A simply supported deep beam, subjected to two concentrated
loads, is investigated to testify the convergence property of TS solu-
tions. As shown in Fig. 4, the span l is 10 m, the height h is 2.5 m and
the thickness t is 2 cm. The Young's modulus E is 210 GPa and Poisson's
ratio υ is 0.3. Two loads P1 and P2 are 20 kN and 30 kN, acted at 4 m
and 6 m, respectively. The tested points include K1~K3 at mid span and
J1~J3 and L1~L3 at loading sections, for three heights, respectively at
the upper and lower edges and on the neutral axis.

The convergence results from TS method are comprehensively
shown in Fig. 5 to Fig. 9 for the z/y-axial displacements w and v, stresses
σz and σy and the in-plane shear stress τzy, at the tested points from the
upper edge to the lower one, respectively.

Some findings are drawn below

(1) All displacements and stresses converge to one certain limit at in-
finity, except for the y-axial displacements v and stresses σz and σy at
the upper edge. For the displacement v at the points J1 and L1, as
shown in Fig. 6a, the curves increase with a gradual descending
slope ratio and cannot converge to a certain limit within 200
iterations. While for the z/y-axial stresses at the point K1, as shown
in Fig. 7a and Fig. 8a, the curves vary periodically in the form of
trigonometric function and have no convergence, and those at the
points J1 and L1 generally increase linearly to infinity along with
the iteration numbers.

(2) The shear stresses at the upper edge, as shown in Fig. 9a, constantly
keep zero with the increment of iteration numbers, which obeys the
stress restraints in Eq. (10). While for the y-axial stresses and shear
stresses at the lower edge, as shown in Fig. 8c and Fig. 9c, they
converge to small values, closed to zero, compared with those on
the neutral axis.

For practical purpose, convergence criteria should be established to
find the proper iteration numbers (PINs) in TS solutions for the dis-
placements and stresses, which largely depends on the type of iteration
results.

(1) For the z-axial displacement w, due to the progressive descending
increment, it is stipulated that the summation of two adjacent
iteration errors (IEs) should be less than the given error bound (EB),
where the IE is defined as the relative error between two adjacent
iteration results.

(2) For the y-axial displacement, z/y-axial stresses and the shear stress,
the calculation stability number (CSN), defined as the time for
which the summation of two adjacent IEs is successively less than
the given EB, is involved besides the former stipulation on IEs. This
is due to the appearance of short platform (horizontal line) before
the real convergence. For instance, there exists a short platform
within 20 iterations for y-axial stresses at the lower edge in Fig. 8c
and shear stresses in Fig. 9c, possibly resulting in a fake con-
vergence before the real one coming. Considering the calculation
accuracy and efficiency, the CSN is uniformly taken by 10.

Accordingly, the comparisons of PINs from different EBs or CSNs are
tabulated in Table 1 for the displacements and stresses at the tested
points on the neutral axis and at the lower edge, where the relative
errors (REs) between the TS solutions corresponding to two PINs are
calculated. The EBs for displacement w are set to 0.01 and 0.001 re-
spectively, and the results with and without considering the CSNs under
the same EB (EB=0.001) are compared for others.

Some findings are drawn from Table 1

(1) For the displacement w, the PINs increase largely from 3 to 14 for
the point J3 and from 4 to 24 for others when the EB reduces from
0.01 to 0.001, but all REs are less than 0.5%. This implies the z-
axial displacement has a fast convergence speed, so that it can be
obtained from the former 3 or 4 items by manual computation.

(2) For the displacement v, the PIN is 33 for the point K3 under
EB=0.001 and CSN=10, which means that the summation of two
adjacent IEs is successively less than 0.001 for 10 times from the

Fig. 4. Thin beam under two asymmetrical loads.

Fig. 5. Iteration results for the z-axial displacements w at the tested points.
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Fig. 6. Iteration results for the y-axial displacements v at the tested points.

Fig. 7. Iteration results for the z-axial stresses σz at the tested points.

Fig. 8. Iteration results for the y-axial stresses σy at the tested points.
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33th iteration for the displacement v at the point K3. Obviously, the
REs are smaller than 0.5% at all chosen tested points for the dis-
placement v, therefore, whether or not considering the CSNs, almost
makes no difference for the displacement v. This infers that the
former 7 items are adequate for the y-axial displacements at the
points J2 and L2, even 4 items for those at K2 and K3, which needs
no additional stipulation on the calculation stability.

(3) For the z/y-axial stresses on the neutral axis, there exists a large
deviation between the results with and without considering CSNs at
the point K2, where RE=150.3% for the stress σz and RE=44.65%
for σy, both of which are marked by pink highlights. This demon-
strates that there occurs a short platform for the fake convergence

Fig. 9. Iteration results for the in-plane shear force τzy at the tested points.

Table 1
PINs in TS solutions for displacements and stresses at the tested points.

w v σz σy τzy

EB 0.01 0.001 RE (%) 0.001 0.001 0.001 0.001

CSN - - - 10 RE (%) - 10 RE (%) - 10 RE (%) - 10 RE (%)

J2 4 24 0.12 7 77 0.100 24 47 0.130 23 47 0.008 21 47 0.063
K2 4 24 0.15 4 77 0.230 5 47 150.3 5 47 44.65 19 46 0.168
L2 4 24 0.17 7 77 0.130 24 47 0.130 23 47 0.051 23 47 0.022
J3 3 14 0.37 6 36 0.032 11 27 0.002 12 27 100 5 27 100
K3 4 24 0.13 4 33 0.047 4 27 0.820 12 26 100 5 27 100
L3 4 24 0.17 6 36 0.036 11 27 0.010 12 27 100 5 27 100

Fig. 10. Scenario for stress estimation for points on the upper edge of the beam.

Fig. 11. Convergence results of TS solutions for the y-axial stress around the points J1, K1 and L1.
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Fig. 12. Convergence results of TS solutions for the z-axial stress around the points J1, K1 and L1.

Fig. 13. Contours for displacements and stresses of thin beams under two concentrated loads.

Table 2
Comparisons between TS method and FEA for y-axial displacements at y=h/2 (PIN=7, unit: mm).

Location 0.1 l 0.2 l 0.3 l 0.4 l 0.5 l 0.6 l 0.7 l 0.8 l 0.9 l

TS method 0.0599 0.1154 0.1623 0.1946 0.2072 0.1981 0.1668 0.1188 0.0619
FEA 0.0599 0.1154 0.1621 0.1946 0.2068 0.1982 0.1664 0.1189 0.0618
RE (%) 0.121 0.007 0.152 0.019 0.180 0.030 0.193 0.054 0.182
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before the real one coming for the z/y-axial stresses at point K2, as
shown in the zoomed pictures in Fig. 7b and Fig. 8b. So the cal-
culation stability should be mandatorily involved when calculating
the stresses on the neutral axis, and the IPNs are recommended as
47. While for the y-axial stresses and shear stresses at the lower
edge, similar large deviations happen between the results with and
without considering CSNs, and the IPNs are at least 26.

Additionally, a scenario is plotted in Fig. 10, where the points J11,
J12 and J13, at a distance of h/100, h/50 and h/10 respectively, beneath
the point J1, are selected to analyze the convergence of TS solutions for
the z/y-axial stresses around the point J1, so are the points K1 and L1.

The convergence results of TS solutions are shown in Figs. 11 and 12
for the y/z-axial stresses around the points J1, K1 and L1, respectively.

Some findings are drawn as follows

(1) Obviously, the convergence speed for the y-axial stress becomes
more and more slower when approaching to the points J1 and L1.

Simultaneously, the y-axial compressive stresses at i=1000 increase
significantly from 2.54 MPa to 25.42 MPa for the point J1 and from
3.81 to 38.12 MPa for L1, as shown in Fig. 11a and c. This infers
that the y-axial stress tends to get infinity at the loading points, due
to the stress concentration effect.

(2) For the z-axial compressive stresses in Fig. 12a and c, gradually
slowness for convergence speed is obvious near the loading points
J1 and L1. The values at i=1000 increase slightly from 3.20 to
3.98 MPa for the point J1 and from 3.3 Mpa to 4.12 MPa for L1, and
tend to converge when approaching to the loading points. This
means that the z-axial stresses at the loading points can be ap-
proximately estimated by the adjacent points. Therefore, the z-axial
stresses are about −3.98 MPa for the point J3 and −4.12 MPa for
L3.

(3) For the stresses at the point K1, as shown in Fig. 11b and Fig. 12b,
they show a damped trigonometric-function variability, and those
at i=1000 tend to converge when getting closed to the loading
points. Similarly, the stresses at the point K1 can be estimated by the

Table 3
Comparisons between TS method and FEA for z-axial displacements at z=zP1 (PIN=24, unit: μm).

Location 0 0.1 h 0.2 h 0.3 h 0.4 h 0.5 h 0.6 h 0.7 h 0.8 h 0.9 h h

TS method −43.44 −48.94 −53.95 −58.69 −63.24 −67.67 −72.07 −76.54 −81.18 −86.10 −91.41
FEA −43.53 −48.88 −53.92 −58.67 −63.22 −67.66 −72.06 −76.53 −81.17 −86.10 −91.38
RE (%) 0.215 0.115 0.055 0.034 0.032 0.022 0.019 0.022 0.018 0.008 0.036

Table 4
Comparisons between TS method and FEA for z-axial displacements at z=l/2 (PIN=24, unit: μm).

Location 0 0.1 h 0.2 h 0.3 h 0.4 h 0.5 h 0.6 h 0.7 h 0.8 h 0.9 h h

TS method −65.57 −66.13 −66.58 −66.90 −67.13 −67.30 −67.46 −67.63 −67.84 −68.10 −68.47
FEA −65.55 −66.12 −66.57 −66.89 −67.11 −67.29 −67.44 −67.61 −67.82 −68.09 −68.44
RE (%) 0.031 0.027 0.022 0.018 0.020 0.020 0.022 0.025 0.025 0.024 0.034

Table 5
Comparisons between TS method and FEA for z-axial displacements at z=zP2 (PIN=24, unit: μm).

Location 0 0.1 h 0.2 h 0.3 h 0.4 h 0.5 h 0.6 h 0.7 h 0.8 h 0.9 h h

TS method −88.87 −83.93 −79.34 −74.96 −70.74 −66.61 −62.50 −58.33 −54.02 −49.50 −44.67
FEA −88.79 −83.94 −79.33 −74.95 −70.73 −66.59 −62.48 −58.31 −54.00 −49.47 −44.66
RE (%) 0.097 0.011 0.011 0.020 0.019 0.027 0.030 0.029 0.033 0.049 0.008

Fig. 14. Comparison results for the z-axial stress (PIN=47).
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adjacent points. Therefore, the y/z-axial stresses at K1 are ap-
proximately 0 MPa and −4.34 MPa, respectively.

4. Accuracy test

Finite element analysis (FEA) is applied to verify the accuracy of TS
solutions by software package ANSYS using the element of Solid45. The
meshing grid is shown in Fig. 13a, where the meshing size is 0.2 m and
a total of 1400 elements are adequate. Fig. 13b to f show the contours of
displacements and stresses for the simple supported thin beam under
two concentrated loads, respectively, where the measurements and
loads are referred to those in the Section 3 and the boundary restraints
to Eq. (25).

Comparison results between TS method and FEA are shown in
Table 2 for y-axial displacement at the height z=l/2 and in Tables 3–5
for z-axial displacement for three cross sections (z=zP1, l/2, zP2), re-
spectively, where the PIN is referred to Table 1. It is seen that relative
errors (RE) between the TS method and FEA are very small. So the TS
method has a very high accuracy in calculating the y-axial (vertical)
and z-axial (warping) displacements.

For stresses, the comparison results are plotted in Figs. 14–16. In
order to guarantee the accuracy of stresses around the loading points,

the PIN is uniformly enhanced to 100 for the y-axial stresses and shear
ones, not the recommended 27 or 47 iterations in Table 1. It is seen that
the TS method has a very high accuracy in calculating axial and shear
stresses. Unlike the Euler beam theory or Timoshenko beam theory, the
TS method is also capable of estimating the y/z-axial stresses around
the loading points, known as the stress concentration effect, as shown in
Figs. 14 and 15.

Besides, the shear stress distributions at sections z=zP1 and z=zP2
are approximately parabolic as shown in Fig. 16a, which satisfies the
zero shear stress boundary condition on the upper and lower edge of the
beam (Eq. (10)). However, as shown in Fig. 13f, the shear stresses
around the loading sections may not follow the general parabolic dis-
tribution determined by the shape function, proposed by Levinson [11],
Touratier [12], Soldatos [13], Karama [14], respectively.

In order to investigate the shear stresses around the loading sections
z=zP1 and z=zP2, the meshing size in FEA model is further diminished
to 0.0125 m and the PINs in TS solutions are uniformly enhanced to
200. The comparison results are shown in Fig. 17, where the zc is the
distance from the loading points. It is seen that the shear stresses ob-
tained from TS method have a great agreement with the FEA ones, even
for those around the loading points J1 and L1. Obviously, the shear
stresses increase significantly when gradually approaching to the

Fig. 15. Comparison results for the y-axial stress (PIN=100).

Fig. 16. Comparison results for the shear stress (PIN=100).
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Fig. 17. Shear stresses τzy around the loading sec-
tions z=zP1 and z=zP2 (PIN=200).

Fig. 18. Cases for thin beams under concentrated
multi-wheels loads.
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loading points J1 and L1, due to the stress concentration, which no
longer follows the former parabolic-shaped transverse distribution. So
for the concentrated loading case, the TS method is capable of esti-
mating the shear stresses around the loading points, which cannot be
done by the existing parabolic- shaped functions.

5. Parametric study

Based on the TS method, three thin beams subjected to two/four/
eight-wheels loads respectively, as shown in Fig. 18, are applied to
investigate the effects of the wheels' numbers, distances and locations
on the displacements and stresses. The total force P is 160 kN. The hook
is symmetrical with respect to the trolley, resulting in the uniform
distribution of wheel loads in each cases. For beams, the span l=30 m,
the height h=3 m, the thickness t=0.04 m, the elastic module
E=210 GPa and the Poisson's ratio υ=0.3. For the trolley, the distances
b=6 m, r=3 m and s=1 m, respectively.

5.1. Number of wheels

The influence of wheel numbers on the stresses and displacements
are shown in Fig. 19.

Some findings are drawn as follows

(1) In Fig. 19a, the z-axial tensile stresses on the lower edge (y=h)
almost vary in the form of parabolic function, and get their max-
imum at mid span for the four- and eight-wheels cases or around the
mid span for the two-wheels case. The differences between the
three cases are very small for the z-axial stresses, so are the y-axial
displacements v on the neutral axis in Fig. 19c and the shear stresses
at the cross section z=(l–b)/2 in Fig. 19d.

(2) Fig. 19b gives the distribution of y-axial compressive stresses at the
height of y=h/4. It is seen that the maximum reduces from 1.5MPa
to 0.42 MPa when the wheel number increases from 2 to 8. This
infers that more wheels will reduce the maximum of y-axial stresses
under the same total force P, but increase the fabrication cost on the
trolley. Plus, the reduction on the maximum y-axial stress is ap-
proximately proportional to that on one single wheel load.

5.2. Distance between wheels

Taking the two-wheels case as an example, relations between the y-
axial stresses and the calculation heights are analyzed in Fig. 20 in
terms of the distance b between wheels.

Fig. 19. Stresses and displacements for the thin beams under
multi-wheels loads.
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Some findings are drawn as follows

(1) The y-axial stress increases significantly when the calculation
height y approaches to the upper edge from h/2 to h/10, due to the
stress concentration, which well demonstrates the well- known
Saint-Venant principle.

(2) For the cases in Fig. 20c and d, the distance between wheels is so
close that the two valleys have superposed with each other at mid

span, resulting in the local increase of the peak value. For instance,
the peak values for y=h/2 increase from 0.61 to 1.14 MPa when
the distance b decreases from 5 m to 0.5 m, and those for y=h/4
from 1.6 to 2.6 MPa and those for y=h/10 from 4.17 to 4.48 MPa.

(3) In Fig. 20d, the two valleys have totally superposed to just one for
the stresses at y=h/4 and y=h/2, but it still has two valleys for
those at y=h/10. This implies that the superposition of two valleys
is related to not only the distance between two wheels, but also the

Fig. 20. Y-axial stresses at different calculation heights for var-
ious distance b for the thin beams under two-wheels loads.

Fig. 21. Illustration on the distance z0 and its variability versus y.
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minimum distance z0 between zero stresses on both sides of the
symmetrical axis, as illustrated in the zoomed picture in Fig. 21a.

The distance z0 is probably related to both the calculation height
and the ratio of height to span of the beam. Fig. 21b gives the relations
between the normalized distance z0 and the calculation height y in
terms of the height-to-span ratio. It is seen that both curves get their
maximums around the height y=0.6 h, and those with larger ratio h/l
are much higher. This implies that the y-axial stresses of deep beams
have larger distance z0 between zero stresses and are more inclined to
superpose than those of slender beams for the same calculation height.

5.3. Location of wheels

Based on TS method, Fig. 22 gives the displacements and stresses at
some specific points varying with the trolley hook's location zt, known
as the influence line, for the trolley moving from the left to right for the
simply supported thin beams under multi-wheels loads.

Some findings are drawn as follows

(1) For the y-axial displacement at y=h/2 in Fig. 22a, it almost makes
no difference between influence lines in the two- and four- wheels
cases. The maximum is 4.6 mm for z=l/2 at mid span, and 3.25 mm
for z=l/4 and 1.41 mm for z=l/10. Similarly, the z-axial stress at
y=h in Fig. 22b shows its reduction on the maximum when the
calculation section changes from 'z=l/2′ to 'z=l/10'. So attentions
should be paid primarily to the mid span in design.

(2) The influence lines of shear stresses at central point (h/2, l/2) are
plotted in Fig. 22c for three cases. A group of anti-symmetrical
distributions, with respect to the central point, are obvious for all
three cases. It is seen that the up-and-down fluctuation damps with
the increment of wheel numbers.

(3) The influence lines of the y-axial stresses at the point (h/10, l/2) are
depicted in Fig. 22d for three cases, where all lines are symmetrical
about the mid span. For the two-wheels case, the distance between
the valley bottom A1 and mid span is 3 m (=b/2), which equals to
that between the wheels and the hook, so is the bottom A2. This

implies that when the trolley hook is located at the valley bottoms,
one of the wheels is just at the mid span, and the y-axial stress at
mid span gets the most. Similar situations can be observed for the
bottoms B1 and B2 for the four-wheels case and the C1, C2, C3 and
C4 for the eight-wheels one. Furthermore, the influence lines for
other points at the height y=h/10 can be obtained by figure
translation, and similar conclusions can be drawn.

6. Conclusions

In this paper, the flexural behavior of a simple supported thin beam
subjected to concentrated multiloads is investigated using the trigono-
metric series (TS) method, where the axial displacements, stresses and
shear stress were all obtained in the form of TS according to the
boundary conditions. The main conclusions are drawn as follows

(1) The TS method has a good convergence property for the displace-
ments and stresses for points away from the loading points.
However, the convergence speed for the y/z- axial stresses are
getting more and more slower when approaching to the loading
points, and cannot converge at the loading points due to the stress
concentration.

(2) The TS method has a very high accuracy in calculating the axial
displacements and stresses, even for those around the loading
points, which has been well verified by FEA. Besides, the TS method
is capable of estimating the shear stresses around the loading sec-
tions, where the stress concentration effect is obvious, not following
the existing parabolic-shaped distribution in literatures.

(3) Taking a multi-wheels loading thin beam as an example, parametric
studies show that the increment of wheel numbers will effectively
reduce the maximum of y-axial stresses under the same total force.
Also, the superposition between y-axial stresses is related to not
only the wheels' distance, but also the minimum distance between
zero stresses on both sides of the symmetrical axis. Additionally, for
the y-axial stress at mid span, the influence lines for all cases will
get the most when one of the wheels is just located at mid span.

Fig. 22. Curves for displacements and stresses at specific points
under moving wheel load.
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