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BRUNEL UNIVERSITY LONDON 

Abstract 

College of Engineering, Design and Physical Sciences 

Engineering Doctorate 

by Francisco Anes-Arteche 

This thesis describes research relating to data analysis for improved risk assessment in 

buried pipelines. The kind of pipelines being considered includes onshore underground 

pipelines. External corrosion in buried pipelines is often complex to understand due to the 

diversity of factors affecting the corrosion process and in many cases, these pipelines 

operate in hostile environments. They may be less susceptible to failure and their failure 

may have different consequences in relation to aboveground pipelines. However, there is a 

limitation with respect what inspection techniques are efficient and therefore the 

assessment process is more difficult to be carried out. 

One of the major integrity risks to aging pipelines is the degradation and failure of the 

protective coating, leading to external corrosion. A commonly used approach for the 

assessment of external corrosion risk of buried pipelines is based on measurements from 

indirect inspections which are used to assess the likelihood of external corrosion. The 

underlying assumption is that indirect measurements can provide data to reliably identify 

corrosion defects on the pipeline, and prioritise defects according to their risk to pipeline 

integrity. 

One established method to determine the condition of the pipeline coating is to use an 

above-ground technique, such as DCVG, to locate the severity of the any coating defects, 

that may be present on a pipeline. Whilst the location aspect of this technique is very 

accurate and reliable, the severity may not correlate very well with the actual size of the 



 

 
 

coating defect when examined after excavation. Therefore, there is a need to refine the 

coating defect sizing model to provide a better indication of the severity of coating defects. 

However, there is little available research carried out to investigate this in a systematic 

manner. A further area of uncertainty relates to the correlation between the indirect 

inspection measurements, and the severity of the corrosion found following excavation. 

The development and refinement of regression models to address this link is required to 

ensure better corrosion predictions and improved inspection plans. 

The aim of the research described in this thesis is to analyse the external corrosion 

phenomenon in underground pipelines through the analysis of data from inspection 

reports and soil surveys. This aim has been achieved through specific studies at TWI, two of 

which are described in this thesis.  

The contribution to knowledge of the research included in this thesis is the improvement 

on the understanding of pipeline coating condition and external corrosion phenomenon in 

underground pipelines through the analysis of data from inspection reports and soil survey. 

Also, the identification of key factors affecting external corrosion along the probability 

distribution function, including factors that affect the initiation of corrosion and factors 

which have more importance in cases of severe corrosion. 

The novelty of the research herein presented relies in the application of quantile regression 

to pipeline data combined with soil properties which has never been applied before. The 

results improve the understanding of pipeline coating condition and external corrosion in 

underground pipelines. Also, it proposes suggestions for improving the interpretation of 

the NACE ECDA SP-0502 standard which may lead to significant savings in the pipeline 

industry. 

Keywords: Quantile Regression, ECDA, DCVG, Pipeline Corrosion, Underground Pipeline, 

Data Analysis. 
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Introduction 

 

 

 

 

1.1 Theme 

This thesis describes research relating to data analysis for improved risk assessment in 

buried pipelines. The type of pipelines being considered are onshore underground pipelines. 

The efficient interpretation of the data obtained during pipeline inspection is an important 

duty for pipeline owners and operators. 
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External corrosion in buried pipelines is often complex to understand due to the diversity of 

factors affecting the corrosion process and, in many cases, these pipelines operate in 

hostile environments. They may be less susceptible to failure and their failure may have 

different consequences in relation to aboveground pipelines. However, there is a limitation 

with respect to what inspection techniques are effective and therefore the assessment 

process is more difficult to be carried out. 

Current inspection techniques provide useful data to predict external corrosion in a 

systematic manner. However, interpretation of this data is often a challenge for pipeline 

owners and operators. Moreover, the effects of soil parameters make this process even 

more difficult. 

At times, data from inspection surveys has substantial uncertainty that needs to be 

quantified for its use. Sometimes the data provides a measurement of the underlying 

factors that influence external corrosion thus giving only an indirect estimate of the 

condition of the pipeline; this may be because direct measurements are not feasible, thus 

requiring the assessor to look for optimum ways to use whatever information is available. 

Also, the assumptions made in the original predictions need to be updated in light of actual 

experience so that more precise predictions can be made in future. 

Analysis of data from pipeline inspection and soil surveys is described in this thesis and 

innovative approaches for data analyses and its interpretation to improve support decision-

making in asset integrity management in the types of situations mentioned above. The 

approaches have been validated by using real industry data available. 

1.2 Aim and objectives 

The aim of the research described in this thesis is to improve the understanding of the 

external corrosion phenomenon in underground pipelines through the analysis of data 

from inspection reports and soil surveys. 
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This aim has been achieved through specific studies at TWI, two of which are described in 

this thesis. These two studies and their objectives are as below. 

• The first study applies innovative regression approaches to data from non-piggable 

pipelines which apply External Corrosion Direct Assessment (ECDA), in particular 

indirect inspections such as Direct Corrosion Direct Assessment (DCVG) and direct 

inspections gathering data from pipeline coating degradation and external 

corrosion. Here, the objective is to understand the relationship between corrosion 

depth, coating defect area and the voltage drop %IR from DCVG survey. 

• The second study applies innovative regression approaches to data from piggable 

pipelines with data from Magnetic Flux Leakage inspection and soil surveys. Here, 

the objective is to find correlation between pipeline external corrosion and other 

environmental factors such as soil properties. 

1.3 Layout of the Thesis 

The layout of the Thesis, Chapter 2 onwards, is illustrated in Figure 1-1. 

Chapter 2 sets out the common corrosion and statistics theory attributes of the 

methodologies described in the sections that follow. It starts with introducing the terms 

and concepts used in this Thesis. There is a description of the importance and uses of 

underground pipelines; this is followed by a description of corrosion theory and its 

presence in buried pipelines.  

It then discusses control and mitigation of external corrosion commonly used systems, and 

it is followed by a description of the current Pipeline Integrity Management (PIM) 

approaches and practices used in industry. To end up, a description of the statistical tools 

applied to PIM programs is addressed. 

Chapters 3 and 4 describe two studies that are important to the research described in this 

Thesis. 
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• Chapter 3 describes parts of a study on corrosion in underground non-piggable 

pipelines. This study models the relationships between pipeline coating defect 

area, corrosion depth, direct current-voltage gradient (DCVG) measurements and 

factors capturing diverse environmental conditions through the novel application 

of regression models. This study sheds light on the challenges in drawing 

conclusions in the assessment of corrosion from DCVG inspection data and other 

types of data that form key inputs to ECDA.  There are three papers referred to in 

Chapter 3. 

o “Challenges in the application of DCVG-survey to predict coating defect size 

on pipelines.”  is a paper on this study published in the journal of Materials 

and Corrosion in 2016. 

o “Correlation of pipeline corrosion and coating condition with ECDA survey 

results.” is a paper on this study presented at the EUROCORR 2016 

Conference,  Montpellier,  France. 

o “Correlation of pipeline corrosion and coating condition with ECDA survey 

results.” is a paper on this study presented at the 2016 National Structural 

Integrity Research Centre (NSIRC) Conference, Cambridge, UK. 

• Chapter 4 describe a study on corrosion in underground piggable pipelines. This 

study models the relationships between pipeline corrosion depth and factors 

capturing environmental conditions through application of regression models. This 

study also describes the impact of welds and defect orientation on corrosion. 

There are two papers referred to in Chapter 4. 

o “An analysis of factors influencing external corrosion based of soil, weld 

location and defect orientation data.” Is a paper on this study submitted to 

the journal of Materials and Corrosion in 2017. 

o “Influence of soil properties on corrosion pitting in underground pipelines.” 

Is a paper on this study presented at the 2016 National Structural Integrity 

Research Centre (NSIRC) Conference, Cambridge, UK. 
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Chapter 5 discusses the findings in the application of regression models to underground 

pipeline corrosion, inspection survey data and environmental conditions. The limitations of 

this research and the possibilities for further work are also discussed. 

Chapter 6 describes the concluding remarks from Chapters 3, 4 and 5. 

 

Figure 1-1 Structure of the Thesis 

1.4 Contribution to new knowledge and novelty 

The contribution to knowledge of the research included in this thesis is the improvement 

on the understanding of pipeline coating condition and external corrosion phenomenon in 

underground pipelines through the analysis of data from inspection reports and soil survey. 

Also, the identification of key factors affecting external corrosion along the probability 
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distribution function, including factors that affect the initiation of corrosion and factors 

which have more importance in cases of severe corrosion. 

The novelty of the research herein presented relies in the application of quantile regression 

to pipeline data combined with soil properties which has never been applied before. The 

results improve the understanding of pipeline coating condition and external corrosion in 

underground pipelines. Also, it proposes suggestions for improving the interpretation of 

the NACE ECDA SP-0502 standard which may lead to significant savings in the pipeline 

industry. 

1.5 Other relevant studies 

The research presented here is directly or indirectly influenced by 

• Courses undertaken: 

o Probabilistic analysis – uncertainty modelling – statistics, probability and 

stochastic variables at TWI Ltd, Cambridge, August 2014. 

o Risk-Based Inspection (RBI) Course in accordance with API 580 

recommended practice. CSWP Plant Inspector Levels 2/3 Module 3 at TWI 

Ltd, Cambridge, September 2014 

o Damage Mechanism Assessment Course for RBI and FFS based on API RP 

571. CSWP Plant Inspector Levels 2/3 Module 2 at TWI Ltd, Cambridge, 

September 2014. 

o Applied Bayesian Methods, at London Taught Course Centre, London, 

January-February 2015. 

• Conferences attended/presented at: 

o Seminar presentation at ‘Reliability Training Seminar’, 19 June 2014 at TWI 

Ltd, Cambridge. Presentation titled ‘Data analysis and its interpretation in 

remaining life assessments’. 

o Symposium presentation at ‘Departmental Postgraduate Student Research 

Symposium’, 22 April 2015 at Brunel University London, London. 
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Presentation titled ‘Correlation of underground corrosion and coating 

condition with ECDA survey results’. 

o Conference presentation at ‘Condition Monitoring’ conference, 16 June 

2015 at Salford University, Manchester. Presentation titled ‘Correlation of 

underground corrosion and coating condition with ECDA survey results’. 

o Conference presentation at ‘NSIRC Annual Conference’, 23 June 2015 at 

TWI Ltd, Cambridge. Presentation titled ‘Correlation of underground 

corrosion and coating condition with ECDA survey results’. 

o Seminar presentation at the ‘Young Members Committee (YMC)’, 16 

February 2016 at TWI Ltd, Cambridge. Presentation titled ‘Challenges in the 

Application of DCVG Survey to Predict Corrosion in Pipelines’.  

o Conference presentation at ‘NSIRC Annual Conference’, 27 – 28 June 2016 

at TWI Ltd, Cambridge. Presentation titled ‘Influence of soil properties on 

corrosion pitting in underground pipelines’. 

o Conference presentation at the ‘European Corrosion Congress (EUROCORR)’ 

conference, 11 – 15 September 2016 at Montpellier, France. Presentation 

titled ‘Correlation of Pipeline Corrosion and Coating Condition with ECDA 

Survey Results’. 

• Awards and prizes: 

o Winner of the Best Speaker Presentation Award at ‘NSIRC Annual 

Conference’, 27 – 28 June 2016 at TWI Ltd, Cambridge. Presentation titled 

‘Influence of soil properties on corrosion pitting in underground pipelines’. 

o Winner of the Armourers and Brasiers TWI Award, 2016. Research title 

‘Correlation of Pipeline Corrosion and Coating Condition with ECDA Survey 

Results’. 

• Supervision: 

o Doctor Keming Yu (Brunel University London), Doctor Ujjwal Bharadwaj 

(TWI Ltd), Doctor Chi Lee (TWI Ltd) and Doctor Bin Wang (Brunel University 

London). 
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1.6 Industrial hosts: NSIRC and TWI 

TWI Ltd is the industrial host of this doctorate. TWI Ltd is an independent, membership-

based, research, technology and consultancy organisation. TWI services include research 

and investigation for industrial member companies and public funding bodies. It also offers 

training and examination services in NDT, welding and inspection cross the world. 

This research includes some of my work done within the Asset & Fracture Integrity 

Management section of the Integrity Management Group (IMG) at TWI Ltd, Cambridge, 

where I have been based. The Asset & Fracture Integrity Management section provides a 

variety of services which include: providing consultancy in the field of risk-based inspection 

(RBI), fitness for service (FFS), software development and system analysis using standard 

tools such as FMEA, FMECA, FTA and ETA. 

The National Structural Integrity Research Centre (NSIRC) is a state-of-the-art postgraduate 

engineering facility established and managed by structural integrity specialist TWI Ltd. 

NSIRC unites academia and industry, working closely with lead academic partner Brunel 

University London and more than 20 other respected universities. The collaborating 

partners provide academic excellence to address the need for fundamental research, as 

well as high-quality, industry-relevant training for the next generation of structural integrity 

engineers. 

  



 

9 
 

 

 

 

 

 

Chapter 2 Chapter 2 

 

 

External corrosion in 

underground pipelines 

 

 

2.1 Underground Pipelines 

Pipelines are commonly used to transport hazardous liquids and gases. Comparing to 

competing modes such as road and rail, they are often seen as the most economical, safe 

and reliable model of transporting fluids [1]. Companies who are responsible for operating 

pipelines aim to ensure that pipelines are working under safe conditions within an 

acceptable risk of failure. 
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Nevertheless, companies often struggle to use integrity/reliability data in a meaningful way 

in order to determine the predicted remaining life of their underground pipelines: 

sometimes because inspections are not carried out or are deferred so up-to-date 

information is not always available, other times because expertise to analyse this data in 

order to take decisions based may not be available. 

The history of the pipeline industry started about 200 years ago, and it has been notable 

important during the industrial revolution. The first use of iron pipes dates back to the 

1830s; however, they were used for different purposes rather than the oil and gas industry. 

With the creation of the first commercial oil well in Pennsylvania (1859) by Edwin Drake 

and the first wooden pipeline (1862) [2], there was a rapid development in the field of 

transport of oil and gas. The pipeline business expanded, as well as the quality of the metal 

used for pipes which changed from wrought iron to steel. But it is not until 1865 when 

William Snow defined the first specifications for laying underground pipelines. 

However, it was in 1879 when the first crude oil pipeline was laid in Pennsylvania [3] with a 

length of 175 km and 6 inches of diameter. Between 1880 and 1905 many refineries were 

created near oil fields and the need of transporting crude oil increased. 

In 1920, the total pipeline mileage grew to over 185,000 km in the USA and, in 1930 the 

first cross-country pipeline was commissioned connecting some important cities. The first 

production pipelines were built in the 1930s and with the World War II (1945), the 

construction and commissioning of these grew significantly. 

New oil exploitations were found in South America, Canada, the Caspian Sea and the 

Middle East during the 1950s and 1960s, and since the oil production in the USA decreased 

compared with the demand, the pipeline industry developed [2]. Large diameter pipelines 

with diameters above 30 inches were made in the 1960s. 

In 1968, the Alaskan Prudhoe Bay oil field was discovered, and two years later it started the 

construction of one of the largest pipelines in the world, the Trans-Alaska Pipeline. The 
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construction period was 7 years, and once finished in 1977 it was able to transport 2 million 

barrels per day along 1280 kilometers of distance in an environment with temperatures 

below 0 °C. 

Since the 1980s, the pipeline industry has been growing continuously, not only with the 

commission of new pipelines but also in the design aspects related to quality and reliability. 

Metals used in the manufacture of pipelines have undergone a constant development 

during the last two centuries.  

But it is not until 1871 when Bessemer steel begins to displace wrought iron thanks to the 

creation of the steel manufacturing processes. Steel was acquiring more importance and 

was used to develop dresser couplings to join pieces of pipe end-to-end mechanically (1891) 

and steel welding processes (1900). 

Since the 1920s, most of the oil and gas pipelines have been made of steel [4]. With the 

appearance of the first API Standard 5L in 1928, the design of pipelines was standardised 

[5][6][7]. Twenty years later the API Standard 5LX was introduced (1948), and some time 

after, in 1953, pipes grades X46 and X52 were introduced.  The evolution of steel for 

pipeline uses was associated to the volume of oil and gas extracted during this period of 

time. 

In 1959, The American Standard Association (ASA) issued the ASA B31.4 as a separate code 

for Oil Transportation Piping Systems [8]. 

The combination of API 5L and 5LX in the same standard (1983) could be applied to all 

grades of steel and led to a big change on pipeline design. All the design and manufacturing 

requirements were gathered in the same document. A new steel grade, API 5L X80, was 

introduced in 1985 and its main purpose was to be used for onshore pipelines. 

Most modern underground steel pipelines are constructed from carbon steel. The most 

common materials specifications are: API 5L A25, A, B, X42, X46, X52, X56, X60, X65, X70, 
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X80 and ASTM A 53, 106, 134, 135, 139, 333, 381, 671, 672 as dictated in ASME B31.8 and 

B31.4 [9], [10]. 

2.1.1 Pipeline failures 

The use of pipelines for the transport of large quantities of natural gas, oil, and water to 

industry and to commercial and domestic consumers represent a reliable mode of 

transport of energy [11]. However, since the commissioning of the first pipeline, accidents 

have occurred. Pipeline ruptures and leaks can cause injuries and fatalities from explosions 

and fires, and can also cause  high environmental impact [12]. 

In the USA 360 fatalities, 1368 injuries, and 10845 accidents have been recorded in the last 

20 years (Figure 2-1) as reported by the Pipeline and Hazardous Materials Safety 

Administration (PHMSA), from which 8.8% were due to external corrosion (Figure 2-2) 

 

Figure 2-1. Number of fatalities in USA in the last 20 years. 
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Figure 2-2. Distribution of pipeline accidents in the USA by cause. 

The Columbia Gas Transmission Corporation pipeline rupture is an example. On December 

2011, a buried 20-inch diameter interstate natural gas transmission pipeline, owned and 

operated by Columbia Gas Transmission Corporation, ruptured in a sparsely populated area, 

in Sissonville, West Virginia in the USA. About 20 feet of pipeline was separated and ejected 

from the underground pipeline and landed more than 40 feet from its original location 

(Figure 2-3). 

 

Figure 2-3. Columbia Gas Transmission Corporation pipeline rupture consequences [13] 
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The escaping high-pressure natural gas ignited immediately. The area of the fire damage 

was about 820 feet wide and extended nearly 1,000 feet along the pipeline right  of way. 

Three houses were destroyed by the fire and several other houses were damaged. There 

were no fatalities or serious injuries. About 76 million standard cubic feet of natural gas 

was released and burned. The total cost of the pipeline repair was $2.9 million, the cost of 

the system upgrades to accommodate in-line inspection was $5.5 million, and the cost of 

gas loss was $285,000. 

The National Transportation Safety Board determined that the probable cause of the 

pipeline rupture was (1) external corrosion of the pipeline wall due to a degradation of the 

coating and an ineffective cathodic protection and (2) the failure to detect corrosion 

because the pipeline was not inspected or tested after 1988 [13]. 

Therefore, preventing pipeline accidents is an important task. In order to reduce the 

number of accidents, the implementation of the correct pipeline integrity management 

system to new and already installed pipelines is required. 

2.2 Corrosion Theory / Fundaments of Corrosion 

Corrosion can be defined as a natural process in which a material is degraded due to a 

reaction with its environment. Metals corrode in presence of an environment where they 

are unstable, for example, steel is thermodynamically unstable in wet/moist oxygenated 

environments. However, the corrosion rate of some metals and alloys is considered to be 

slow enough that it can be considered as materials used in metallic structures [14]. 

Corrosion is an electrochemical process [15]. It follows the physical laws of 

thermodynamics and therefore can be measured and predicted. However, corrosion 

processes can be produced at specific and isolated areas due to the nature of the reactions 

at atomic levels, complicating the predictability of corrosion. 

The effect of corrosion on a metallic  surface can take many forms [14]. There are several 

morphological forms of corrosion. In the context of this study, it is useful to categorise 
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them into two groups: corrosion affecting underground metallic structures and corrosion 

not affecting underground structures: 

- Corrosion affecting underground metallic structures: 

o General (uniform) corrosion.  It is characterised by the uniform material 

loss. The exposed metal surface area is entirely corroded. Atmospheric 

corrosion, galvanic corrosion, high-temperature corrosion, liquid-metal 

corrosion, molten-salt corrosion, biological corrosion and stray current 

corrosion are some types of general corrosion [14][16]. 

o Pitting (localized) corrosion. It is characterised by localised loss of material. 

In extreme cases, it appears as a deep, small hole [17][18]. 

o Crevice corrosion. It is a form of localised attack occurring at shielded areas 

on metal surfaces exposed to certain environments [17] [19][20][21] [22]. 

o Stress Corrosion Cracking (SCC). It is characterised by one or more crack 

fronts which have developed due to a combination of corrosion and tensile 

stresses [23][24][25]. 

- Corrosion not affecting underground metallic structures externally: 

o Intergranular corrosion. It is characterised by attacking those sites where 

individual grains within a metallic material are in contact with each other 

[16][26][27]. 

o Erosion corrosion. It is a degradation of the metal surface due to the 

movement of a corrodent over a surface. The mechanism is generally 

identified by localised corrosion, in particular, pitting [28][29][30][31]. 

For a corrosion event to occur, it is necessary the presence of four components: anode, 

cathode, electrolyte and a metallic connection between the anode and the cathode [32]. 
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Figure 2-4. Diagram explaining the corrosion mechanism in presence of an anodic and 

cathodic reaction [32]. 

 An electrolyte is homologous to a conductive solution, which contains cations and anions. 

The corrosion mechanism needs the presence of an anodic and cathodic reaction (Figure 2-

4). Thus, metal oxidation appears through an anodic reaction and reduction is through a 

cathodic reaction [33]. 

2.3 Pipeline external corrosion (underground corrosion) 

2.3.1 Electrochemical/Galvanic corrosion 

The most common corrosion mechanism for metals in underground environments at 

moderate temperature is electrochemical corrosion [32]. 

Electrochemical corrosion appears when two points with a potential difference are 

electrically connected in a presence of an electrolyte. The electric current 𝐼 flows from the 

anode through the electrolyte to the cathode, and then, through the metal from the 

cathode to the anode to complete de circuit [Figures 2-5 and 2-6]. 
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Figure 2-5. Diagram explain how the electric current flows from the anode to the cathode 

through the electrolyte (soil). 

The anodic area is corroded by loss of metal ions to the electrolyte (Figure 2-5).  

 

Figure 2-6. Diagram explaining how the electric current flows from the cathode to the 

anode through the metal to complete the circuit. 

A differential corrosion cell is created by differences in soil properties. The arrows indicate 

the direction of the ionic and electronic current flows (Figure 2-6). 

These reactions are known as anodic and cathodic reaction and are defined below for iron 

metal (𝐹𝑒) immersed in water (𝐻2𝑂) solution as an example [33]. 

𝐹𝑒 →  𝐹𝑒2+ +  2𝑒−   (Anodic ≡ Oxidation)  (2.1) 

METALLIC PIPELINE
ANODECATHODE

Sandy Soil Clay Soil

The current flows from the anode 
through the electrolyte to the cathode

And then through the metal from the 
cathode to the anode to complete the circuit

METALLIC PIPELINE

Sandy Soil Clay Soil

Protected Corroded

ANODECATHODE

Fe2+
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𝐻2𝑂 +
1

2
𝑂2 + 2𝑒−  →  2𝑂𝐻−  (Cathodic ≡ Reduction) (2.2) 

𝐹𝑒2+ +  2𝑂𝐻−  →  𝐹𝑒(𝑂𝐻)2  (Overall ≡ Redox)  (2.3) 

where  𝐹𝑒 = Iron metal    𝐹𝑒2+ = Iron metal cation 

  𝐻2𝑂 = Water    𝑂𝐻− = Hydroxide anion 

  𝐹𝑒(𝑂𝐻)2 = Ferrous hydroxide 

The anodic reaction (oxidation) loses 2𝑒− iron electrons and the cathodic protection gains 

2𝑒− electrons and hence, both anodic and cathodic reactions are coupled in a corrosion 

process. Thus, the equation (2.3) represents the overall reaction at equilibrium where the 

anodic and cathodic reaction rates are equal [33]. 

Since the anodic area has a more negative potential than the cathodic area, is the one that 

corrodes losing metal ions, whereas the cathodic area is protected from corrosion. 

2.3.2 Factors affecting underground corrosion 

The theory of the corrosion mechanisms is simple: corrosion appears when the metal loses 

ions at anodic areas. Nonetheless, the correlation between corrosion and potential 

difference of underground metals is complicated as a result of the many factors that affect 

(either singly or combined) the electrochemical reaction [32]. 

The amount of corrosion (or corrosion rate) and the nature of corrosion are determined by 

these factors. The importance and significance of factors and the correlation between 

themselves have been discussed in many papers and books cited in the list of references, in 

particular [34][35][36][37]. 

These corrosion studies have allowed a better understanding of the influence of individual 

factors but they do not often discuss the effect of a combined number of factors. 

Romanoff [32] has grouped factors on four classes: (1) aeriation, (2) electrolyte, (3) 

electrical factors, and (4) miscellaneous which are addresses in depth below. 
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2.3.2.1 Aeriation factors 

Aeriation factors are defined as the elements that influence the access of oxygen and 

moisture to the metal and therefore influence the corrosion mechanism. Oxides and 

hydroxides are formed by associating oxygen (from atmospheric sources or from oxidizing 

salts) and metal ions, enhancing corrosion. 

Aeriation factors are dependent upon physical characteristics of the soil. Some examples 

are the particle size, particle size distribution, and apparent specific gravity [32]. Particle 

size and particle size distribution affect the continuity of the pore space and may create 

oxygen concentration cells. In the case of developing oxygen concentration cells, the area 

with the least oxygen concentration is anodic (where corrosion might meterialise).  

Volume shrinkage is a phenomenon common in soils. Shrinkage appears when the soil dries 

out. It increases its volume when it is humid again [38][39]. Volume shrinkage is present 

particularly in clay soils rich in organic matter, and also in extreme weathers. This 

phenomenon is not only dangerous from a corrosion point of view (creation of oxygen cells) 

but as well because of the mechanical effects, the shrinking soil contributes to pulling the 

coating off the pipeline. During the soil expansion, the coating is deformed by compression. 

2.3.2.2 Electrolyte factors 

Electrolyte corrosion factors are those variables that influence the electrolyte, the flow of 

current along the electrolyte and the chemical reactions present within the 

aforementioned electrolyte. 

In this section, the electrolyte factors are addressed and defined, as well as how they affect 

corrosion. 

- Soil resistivity is the process of measuring how much the soil resists the flow of an 

electric current , which affects directly to the state of corrosion [40]. Due to the 

nature of soils, soil resistivity is a heterogeneous factor which is difficult to predict. 

Therefore, changes in soil resistivity are a problem which requires monitoring [41]. 

Since the resistivity is inversely proportional to the flow of electric current (Ohms 
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Law), the higher the soil resistivity, the lower the electron exchange and therefore 

the likelihood of finding corrosion. 

- Chloride ions accelerate corrosion in metals. Their presence in soils results in a 

reduction of the resistivity. Additionally, Vijh [42] demonstrated that the corrosion 

potentials of Cu, Ni, Sn, Pb, Fe, Al and Zn in chloride solutions can form corrosion 

films which affect negatively the integrity of pipelines [18]. 

- Oxidation reduction potential (redox potential) is the activity of the oxidizers and 

reducers in comparison to their concentration. During a redox reaction, the 

reducers lose electrons, while oxidizers accept electrons. Oxidizing conditions 

appear in the presence of high redox potentials which tend to increase the oxygen 

concentration. 

- Sulphides are present in most of the soils, but it is only significant in conjunction 

with relevant redox potentials (<+100mV) [43]. However, sulphate levels are more 

critical where concrete structures are present. Iron is corroded by electrolytes that 

contain sulphates from the soil because the corrosion products formed at the 

anode and the cathode are both soluble [32]. 

- The soil acidity is indicated by the pH value, ranging from a pH of between 2.5 and 

10. When the pH level is 5 or below, the corrosion rate is high and pitting is very 

likely to occur on steel structures. Whereas, a pH near neutral is favorable because 

it minimises the likelihood of damage due to corrosion [44]. In the range of 4 to 8.5, 

the corrosion rate of iron is relatively independent of the pH of the solution and it 

is governed by the rate at which oxygen reacts [43]. 

- The moisture content of soils is considered to be one of the most important factors 

affecting soil corrosivity. Water is one of the dominant elements needed for the 

process of electrochemical corrosion, including other components such as metal 

and oxygen. Typically, corrosion will not appear in the absence of water (if the soil 

entirely dry) [45]. Murray and Moran demonstrated that the corrosion rates in two 

different soil types were approximately equivalent at the same moisture levels [46]. 

It is important to be aware that moisture content directly affects the soil resistivity.  
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- The heterogeneity of the soil affects the formation of electrochemical cells. Big 

changes in soil composition help the formation of electrochemical cells in the 

electrolyte, thus, increasing the likelihood of corrosion. 

- Temperature influences many parameters that are critical to pipeline corrosion 

such as biological activity, physical properties of the solution, thermodynamic and 

physical properties of corrosion scale, and chemical rates [47]. A reduction in 

temperature typically will reduce the microbiological activity, thus decreasing the 

probability of corrosion, but it could trigger other damage mechanisms such as 

stress corrosion cracking. 

2.3.2.3 Electrical factors 

Electrical factors specify the geometry of anodic areas including size, number, location and 

intensity of the current that circulates from the pipe to the soil. The dominant electrical 

factor in underground corrosion of metals is the variation in the potential between two 

different points on the pipeline metal surface [32]. Potential differences may appear 

because of the heterogeneity of the soil and the presence of microorganisms and may be 

boosted by low resistivity soils. 

The relative size of the anode and cathode areas is a factor in determining the amount of 

corrosion damage. If the anode area is large and the cathode area is small, the current 

density may be negligible [16][32]. Whereas, if the anode area is small compared to the 

cathode area, the corrosion activity is localised (high current density) and severe local 

damage may occur. 

Potential differences may be occur due to the presence of nearby adjacent underground 

pipelines. Sometimes new pipelines are laid in parallel to the old ones with both connected 

at pump stations. In this situation, typically the new pipeline remains anodic to the old one. 

Usually the currents are not intense enough to damage the new pipeline; however, it can 

prolong the life of the old one. 
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Stray current corrosion refers to corrosion damage resulting from current flow other than 

which is intended in the pipeline. Grounded electric power sources or equipment, electric 

railways not well insulated and nearby underground pipelines are good examples of stray 

currents. The principle of this sort of corrosion is based on large potential differences and 

the small size of the anodic area (where the current leaves the pipeline) [48]. 

2.3.2.4 Other factors 

Soil biological activity has a big influence on pipeline corrosion. Microbes can modify the 

rate of oxygen reduction and the redox conditions [49], cause pH gradients and produce 

corrosive metabolites [47]. The role of microorganisms is either to assist in the formation of 

the electrolyte cell or to activate the anodic or cathodic reaction [50]. Soils rich in organic 

matter are more susceptible to microbiologically influenced corrosion (MIC) [51]; however, 

MIC is rarely linked to a single mechanism. 

2.4 Control and mitigation of external corrosion 

The occurrence of corrosion is inevitable. However, it is possible to control the rate at 

which pipelines corrode. Important maintenance costs for operation of pipelines are 

related to corrosion control and mitigation. The purpose of a good integrity management 

systems is to preserve the asset of the pipeline and to ensure safe operation without 

failures that threaten public safety [3]. 

The selection of materials for pipeline construction is limited when all the aspects of safety, 

structural integrity, operating life, and economic considerations are taken into account [52]. 

Carbon steel is the almost exclusive choice of pipeline designers. 

The most effective methods to prevent and mitigate external corrosion in buried pipelines 

are to use a combination of a coating system together with a cathodic protection system 

[4]. Mitigation systems are defined and explained in detail in the following sections. 

2.4.1. Coatings 

Coatings are one of the corrosion control systems used for underground pipelines. They are 

used to isolate the pipeline from the soil thereby decreasing the corrosion activity. Coatings 
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control corrosion by providing a barrier against oxygen and water and also by insulating the 

metal surface [53]. Another purpose of coatings is to isolate the anode and cathode area of 

the corrosion cells from each other. 

In order to be effective, a coating must meet certain requirements: 

- Corrosion resistance (chemical and water resistance). 

- Broad range of service temperatures. 

- Strong adhesion. 

- Resistance to electricity (high dielectric strength). 

- Resistance to cathodic disbondment. 

- Resistance to bacteria and fungi. 

- Impact and abrasion resistance. 

- Easy application and repair. 

The minimum requirement is that a coating should prevent corrosion for the design life of 

the pipeline; however, a more realistic objective is that the coating should prevent 

corrosion as long as the pipeline remains in service [54]. Most pipelines are operated well 

beyond their original design life. 

The first pipelines were coated by coal tar or asphalt coatings on field, but since then, many 

improvements have been taken place. There are a wide number of coatings which are 

being used for underground pipelines for corrosion protection[54]. They can be classified as 

follows: 

2.4.1.1 Coal tar based coatings 

Coal tar based coatings have been applied since the 19th century, however, its first 

application to a pipeline was in 1914 [55]. Coal tar enamel (CTE) coatings have been used 

extensively. 
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CTE coatings possess high resistance to soil chemicals and bacteria. They don’t suffer from 

cathodic shielding and cathodic disbondment is almost inexistent. Coal tar based coatings 

are insoluble in hydrocarbons. Furthermore, they are easy to repair. 

However, CTE coatings have a series of limitation which makes them unsuitable for new 

pipelines. These coatings have comparatively poor mechanical strength and therefore, 

protected pipelines require higher cathodic protection current, increasing the cost of the 

cathodic protection. CTE coatings require early rehabilitation and are no longer 

environmentally desirable due to air-pollution fumes during application. 

2.4.1.2 Polyethylene/PVC based tape coatings 

Polyethylene coatings are thermoplastic polymers with an excellent chemical resistance; 

however, they can be dissolved at elevated temperatures in presence of hydrocarbons. 

They were first introduced into the pipeline oil and gas industry in the early  1950s [56] and 

they are applied to large diameter pipelines. 

Cold applied tape systems, which nowadays are one of the most used coating systems in 

the USA, are used on pipelines carrying oil, gas and water. Their function is to prevent 

electrochemical corrosion from the underground soil, as well as a mechanical protection 

[57]. 

Polyethylene/PVC based coatings are cheap and easy to apply, either on site or in 

production sites, but they present a number of limitations: poor shear stress resistance 

which can induce to cathodic protection shielding and also, the adhesive part is subjected 

to biodegradation. Depending on the application and the predicted time in service they can 

be the appropriate coating choice. 

2.4.1.3 Fusion bonded epoxy (FBE) powder coatings 

FBE are versatile and high-performance organic coatings [58]. They are thermoset polymer 

coatings. Fusion bonded epoxy coatings have excellent corrosion resistance, adhesion to 

the metal and they are extremely resistant to soil stress, making them suitable for using 

near roads and train rails. 
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Often, FBE coatings are the best option to protect pipelines, however, it is important to 

mention that they are expensive during installation and during service time due to its 

nature as an hygroscopic material, leading to an increase in cathodic protection demand as 

pipeline ages. 

There are two commonly used FBE coatings: single-layer and dual-layer. 

2.4.1.3.1 Single-layer FBE coatings 

Single-layer FBE coatings are easy to apply. They offer resistance to soil bacteria, marine 

organisms, and cathodic disbondment. Single-layer coatings have excellent electrical 

resistance, hence insulating electrically the pipeline from stray currents. 

Nonetheless, single-layer FBE coatings have some limitations compared with other coatings. 

At high temperatures, they absorb moisture allowing permeation. When they are stored, 

before installation, there is a risk of damage due to UV radiation. 

2.4.1.3.2 Dual-layer FBE coatings 

Dual-layer fusion bonded epoxy coatings have some advantages over single-layer coatings. 

They can operate at higher temperatures, up to 110°C. Additionally, they present an 

excellent abrasion and impact resistance, which combined with their UV resistance, make 

them easy to handle. 

These coatings are excellent for most of the situations, however, they are expensive and, in 

some cases, when the coating is very thick, they manifest poor flexibility compared with 

single-layer coatings. 

Although many coatings are excellent barriers, all organic coatings are semipermeable to 

oxygen and water [53]. 

However, even if the pipeline is coated, constructed and laid according to best practice, 

coating defects, especially at field joints where the welds are coated in-situ during 

construction, will inevitably be present. 



 

26 
 

2.4.2 Cathodic Protection 

Coating defects can result from soil activity or pipeline movement during service or during 

installation. 

Cathodic protection (CP) systems ensure that any exposed uncoated region of the pipeline, 

which is in contact with the potentially corrosive soil environment, is protected from 

corrosion. They control the corrosion of the pipeline by forcing it to be the cathode of an 

electrochemical cell [58]. 

2.4.2.1 Sacrificial anode CP 

Sacrificial anodes are active metals used to prevent a less active metal surface (pipeline) 

from corroding. They are manufactured of metal alloys with a more negative 

electrochemical potential (rest potential) than the metal to be protected. The sacrificial 

anode in consumed instead of the metal that is protecting [59][60]. 

The rest potential of the anode material must be sufficiently more negatively than the 

metal of the object to be protected , so that an adequate driving voltage can be maintained. 

Sacrificial anodes are generally made of Iron, Zinc, Aluminium or Magnesium, however, 

other metals and alloys are used as well. The cathodic protection of a steel pipeline  with 

sacrificial anodes is illustrated in Figure 2-7 [61]. 

 

Figure 2-7. Cathodic protection of a steel pipeline using sacrificial anodes [61]. 
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Several studies have allowed the improvement and optimizations in the use of sacrificial 

anodes for cathodic protection [62]. Boundary element methods (BEM) have been used to 

determine the potential and current density distributions along the electrodes without 

discretizing the electrolyte domain [63] allowing a better design of the overall system. 

Cathodic protection using galvanic anodes is generally not very expensive and the 

maintenance, once installed, is very low. It doesn’t need an alternating current (AC) electric 

supply and it does not interfere with neighbor structures [58]. However, in poorly 

conducting soils, the low driving voltage can limit the use of galvanic anodes. Increasing the 

current is only possible with the help of an additional external voltage. 

2.4.2.2 Impressed-Current Cathodic Protection (ICCP) 

Impressed-Current cathodic protection [64] has been used since the 1970s and it is a 

proven technique which is able to reduce ongoing corrosion and induce steel passivity [65]. 

The principle of ICCP is to apply and impressed current such as to induce negative steel 

polarization [66], driving the steel potential more cathodically than -850 mV, where the 

corrosion process is thermodynamically unlikely to occur and therefore making the pipeline 

immune to corrosion. 

The configuration for protecting a buried pipeline is illustrated in Figure 2-8 [61]. 

 

Figure 2-8.  Cathodic protection of a steel pipeline using impressed-current CP [61]. 
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The current needed for impressed-current cathodic protection is usually supplied from 

transformer-rectifier units. The buried pipeline receives current from a direct current (DC) 

power source via an auxiliary inert electrode buried in the ground. The pipeline becomes 

the cathode and the auxiliary electrode the anode. 

There are many studies about cathodic protection modeling. Numerical methods and the 

application of the boundary element method have allowed optimising the impressed 

current performance [67][68]. However, many assumptions such as homogeneous 

resistivity, axisymmetric current density or flat earth have been made [48] and more 

accurate design model need to be developed. 

2.5 Pipeline Integrity Management (PIM) 

Pipeline Integrity Management systems are methodologies which apply the same process 

to all pipelines, enabling consistent decision making. They ensure that pipeline networks 

are safe, reliable, sustainable and optimised. 

2.5.1 In-Line Inspection 

In order to establish an effective management program, In-Line Inspection (ILI) is 

commonly used to assess the integrity of pipelines. In-Line Inspection is an inspection tool 

which applies various Non-Destructive Testing (NDT) methods for examining the condition 

of the pipeline walls. Depending on the pipeline, service and anticipated damage, different 

sensor technologies are applied, as for example, Magnetic Flux Leakage (MLFL), Eddy 

Current Testing (ECT), Ultrasonic Testing (UT), Electromagnetic Acoustic Transducer (EMAT) 

and Acoustic Emission (AE) [69]. All of these sensor technologies have in common that they 

need associated hardware devices that records information about the internal conditions 

of the pipeline, together they are called In-line inspection tool or smart pigs. 

Often, pipelines are unpiggable, in particular, pipelines with small diameters, a high 

number of bends and connections and old pipelines. Therefore, it is not feasible to inspect 

them internally with conventional In-Line inspection tools. 
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Hossam et al [1] conducted a literature review and analysis of pipeline integrity 

management practices. Design practices were described and inspection techniques were 

studied in order to describe the integrity assessment techniques. Internal in-line inspection 

tools are often applied in industry to determine the state of underground pipelines, but 

since many pipeline facilities are not suited for in-line inspection tools, indirect practices 

such as “Direct Assessment” has been used as an alternative to pressure testing and 

internal inspection tools. 

2.5.1 Standards and best practices 

In order to mitigate and prevent failures and accidents, pipeline integrity management 

standards have been developed in the last decades with the aim of improving management 

practices. These standards provide requirements, specifications, guidelines or 

characteristics that can be used consistently to ensure the integrity of pipelines. 

Many practices have been developed for the design and assessment of buried pipelines; 

some of the most commonly referred practices by industry include ANSI/ASME B31.4 [10], 

B31.8 [9], B31.8S [70], DNV-RP-F101 [71] and BS ISO15589 [66]. 

ANSI/ASME B31.4 and B31.8 prescribe requirements for the design, materials, construction, 

assembly, inspection and testing of piping transporting liquids, such as crude oil, between 

facilities. 

ANSI/ASME B31.8S covers onshore pipeline (buried and not buried) systems constructed 

with ferrous materials and transporting gas. It provides the information needed for the 

pipeline operator to develop and implement an effective integrity management program 

utilizing proven industry practices and processes. 

DNV-RP-F101 provides recommended practice for assessing pipelines with corrosion. It 

provides guidance to evaluate and calculate the remaining strength at locations where 

corrosion defects are found. 
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Cathodic protection is generally used in combination with a protective coating system to 

protect the external surfaces of steel pipelines from corrosion. BS ISO 15589 specifies 

requirements and gives recommendations for the pre-installation surveys, design, 

materials, equipment, installation, commissioning, operation, inspection, and maintenance 

of cathodic protection systems for buried on-land pipelines. This standard states “DCVG 

surveys can be used to locate and establish the relative size of defects in protective 

coatings on buried pipelines”. There is an acceptance by the pipeline industry that DCVG 

provides an estimate of coating defect area. 

2.5.3 Direct Assessment 

When ILI is not applicable, all of the ANSI/ASME standards mentioned above have one 

thing in common, that they all point to the use of the Direct Assessment (DA) methodology. 

Direct Assessment is one of the first methodologies acknowledged globally as an approved 

pipeline integrity inspection protocol. It consists of a four step process incorporating; pre-

assessment, indirect inspection, direct examination and post-assessment using a 

combination of non-intrusive inspection techniques. This methodology provides both a 

quantitative and qualitative status of the general condition of the pipelines. 

Direct Assessment is an approach for assessing corrosion in buried pipelines and has been 

applied widely by pipeline operators since its implementation. ASME B31.8S defines Direct 

Assessment as “an integrity assessment method utilizing structured process through which 

the operator is able to integrate knowledge of the physical characteristics and operation 

history of a pipeline system or segment with the result of the inspection, examination, and 

evaluation, in order to determine the integrity” [70]. 

Direct Assessment considers three damage mechanisms or threats to the integrity of the 

pipelines in order to ensure the integrity of the pipeline and applies three different 

methodologies addressed below: 

- External Corrosion Direct Assessment (ECDA) [72] for external corrosion threat. It is 

used for determining external corrosion threats on pipeline segments using 
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facilities data, and current and historical field inspections and tests, with the 

physical characteristics of the pipeline. The focus of the ECDA approach is to 

identify locations where external corrosion defects may be formed. 

- Internal Corrosion Direct Assessment (ICDA) [73] for internal corrosion threat. It is 

used for determining internal corrosion threats on pipelines segments that 

normally carry dry gas but may suffer from short-term upsets of wet gas or free 

water. 

- Stress Corrosion Cracking Direct Assessment (SCCDA) [74] for stress corrosion 

cracking threat. It is used for determining the likely presence or absence of SCC on 

pipeline segments by evaluating the SCC threat integrating facilities data, current 

and historical field inspections, and tests with the physical characteristics of the 

pipeline. The focus of the SCCDA approach is to identify locations where SCC may 

exist. 

In this PhD, part of the research will focus on External Corrosion Direct Assessment. 

2.5.3.1 External Corrosion Direct Assessment (ECDA) 

ECDA is a structured process with the objective of increasing the safety of pipelines. The 

aim of ECDA is to assess and mitigate the threat of external corrosion in buried pipelines 

constructed from ferrous metals. Although various aspects of this process have been 

applied by industry, it was only formalised as a standard practice by the National 

Association of Corrosion Engineers (NACE) in 2004. 

The ECDA process is used during the whole pipeline life cycle, having particular importance 

its application for ageing pipelines. However, it is also used during the first years of service 

and in some cases just after commissioning.  

The ECDA methodology uses a meticulous evaluation of data such as design, environmental, 

and operating conditions, previous corrosion and cathodic protection history. This data 

needs to be collected, prepared, aligned, segmented and classified prior to applying the 

ECDA process. 
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The combination of cathodic protection data with other environmental and inspection data 

provides a better knowledge of CP performance and external corrosion risk. It is 

recommended that the ECDA methodology should be carried out by qualified and 

experienced personnel. 

The primary purpose of the ECDA methodology is preventing future external corrosion 

damage and its implementation is a four steps process: 

- Pre-Assessment; which includes data collection, feasibility assessment, indirect 

inspection tool selection, and identification of ECDA regions. 

- Indirect Inspection. “The objective is to identify and define the severity of coating 

faults, other anomalies, and areas at which corrosion activity may have occurred or 

may be occurring” [72]. 

- Direct Examination. “The objectives of Direct Examination Step are to determine 

which indications from the indirect inspections are most severe and collect data to 

assess corrosion activity” [72]. The direct examinations require prioritization b 

selecting priority categories in order to assess the highest risk areas. These 

categories are: 

o Immediate action required. 

o Schedules action required. 

o Suitable for monitoring. 

- Post-Assessment. “The objectives of the Post-Assessment step are to define the 

reassessment intervals and assess the overall effectiveness of the ECDA process” 

[72]. 

The advantages of ECDA are that it is possible to identify areas where defects could appear 

in the future (other methodologies only detect areas where defects have already been 

formed). 

However, not all pipelines can be assessed with the ECDA methodology, and it is especially 

challenging to apply to poorly coated or bare pipelines. The first time ECDA is applied, the 
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results have a certain degree of accuracy which is correlated to the accuracy of the 

gathered data. Repeated application of the ECDA methodology on the same pipelines will 

improve the accuracy of the predictions. ECDA is best applied as a continuous improvement 

process (Figure 2-9). 

 

Figure 2-9. External Corrosion Direct Assessment procedure. 

The ECDA methodology requires a large amount of data (which are not always available), 

multiple complex decisions based on criteria, a record of anomalies and changes in the 

system, multifarious calculations, and monitoring assessment intervals. In order to perform 

these activities, considerable human, financial and time resources are required. 

2.5.3.2 Indirect Inspections (Survey Techniques) 

As specified in NACE SP0502, a minimum of 2 indirect techniques are needed in order to 

assess the integrity of a pipeline. Direct Current Voltage Gradient (DCVG) and Close Interval 

Potential Survey (CIPS) are the most common techniques used in ECDA assessments. 

2.5.3.2.1 Direct Current Voltage Gradient 

Direct Current Gradient Survey is an indirect inspection tool discovered by John Mulvany in 

the early 80s. It is used to assess the effectiveness of corrosion protection (coating) on 

buried steel pipelines by using the pipeline CP system (impressed current) operating at its 
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normal output. “DCVG surveys are used to delineate and determine the relative severity of 

indications” [75]. Since there is no direct continuous electrical connection to the pipeline, a 

severity classification of indications is determined by calculating the %IR (voltage drop) at 

each indication. 

DCVG survey procedure can be divided into two steps, detection of the location of 

indications and determination of the indication severity. During the first step, the surveyor 

walks along the pipeline with two probes in contact with the soil. If a pulse is detected on 

the meter net scale, the direction of the meter needle points towards the electrode that is 

closest to the indication. As the indication is approached, the pulse magnitude increases, 

and when the indication is passed, the direction of the needle reverses (Figure 2-10) 

 

Figure 2-10. Direct Current Gradient Voltage survey measurement procedure. 

During the second step, the voltage gradient is measured from the epicenter of the 

indication to remote earth. Before performing DCVG, the DCVG magnitude needs to be 

measured at each test post and recorded (pipe to remote earth P/RE). In order to calculate 

the pipeline DCVG magnitude, a straight line attenuation formula is used [75] (Figure 2-11). 
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Figure 2-11. Pipe to remote earth P/RE calculated during DCVG inspection. 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑢𝑙𝑡 𝑃/𝑅𝐸 =  𝑆1 +
𝑑𝑥(𝑆2−𝑆1)

(𝑑2−𝑑1)
      (2.4) 

Where: 

𝑃/𝑅𝐸 = Pipe to remote earth DCVG signal magnitude (mV). 

𝑆1 = DCVG signal amplitude to remote earth at Test Post 1 (mV). 

𝑆2 = DCVG signal amplitude to remote earth at Test Post 2 (mV). 

𝑑1 = Distance measurement of Test Post 1 (m). 

𝑑2 = Distance measurement of Test Post 2 (m). 

𝑑𝑥 = Distance measurement of indication from Test Post 1 (m). 

Once the epicenter of the indication has been detected, a series of perpendicular stepped 

readings are measured moving towards remote earth (Figure 2-12). The summation of the 

reading is the voltage gradient from indication epicenter to remote earth (OL/RE). 
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Figure 2-12. Perpendicular stepped readings measured as part of DCVG survey. 

The coating indication severity (%IR) is estimated as a difference between the potential 

difference from indication epicenter to remote earth (OL/RE) and the total calculated 

potential shift on the pipeline ar the indication location. It is expressed as a percentage. 

%𝐼𝑅 =
𝑂𝐿/𝑅𝐸×100

𝑃/𝑅𝐸
        (2.5) 

The indications %IR severity value are used to classify the indications [72] based on the 

operator criteria. 

2.5.3.2.2 Close Interval Potential Survey 

Close Interval Potential Survey (CIPS) is a pipe to soil gradient survey. It is performed in 

order assess the effectiveness of the cathodic protection system used on underground 

pipelines [76]. It is often used in the ECDA methodology. 

CIPS measures the voltage difference between a buried pipeline and the surrounding soil. 

The operator establishes an electrical connection to the pipeline by means of a wire. The 

pipeline potentials are measured by an operator walking along the length of the pipeline at 

intervals of about 1 meter. 

2.5.3.2.3 Soil resistivity measurement 

Soil resistivity measurements quantify the electrical properties of the soil. It provides an 

indication of the ability of the soil to conduct electricity. 
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It is difficult to standardize how the soil resistivity affects aboveground techniques. The 

voltage gradient is a product of the resistance of the soil and the electrical current moving 

between the pipe surface and the soil. As a consequence, films formed from corrosion 

products and the cathodic protection can affect the resistivity. 

To use  the correct value of soil resistivity in the standardization of the voltage gradient, it 

is necessary to measure the resistance between the pipe surface and the soil. This is the 

reason why often, expert judgment is required in order to prioritize anomalies based on 

soil resistivity. 

Generally, it is measured using the Four-Pin method (Wenner) [77], the Soil Box method or 

the Single-Probe method detailed in NACE SP0502. 

2.5.3.3 Prioritization 

Prioritization is the process of estimating the need to perform a direct examination at each 

indirect inspection indication based on current corrosion activity plus the extent and 

severity of prior corrosion [72]. During the ECDA methodology, the operator establishes the 

criteria for prioritizing the need to carry out direct examinations. NACE SP0502 does not 

establish time requirements for scheduling remediation and other actions. However, it 

defines three priority categories as follows: 

- Immediate action required: includes indications that the pipeline operator 

considers as likely to have ongoing corrosion activity and that when coupled with 

prior corrosion pose an immediate threat to the pipeline under normal operating 

conditions. 

- Scheduled action required: includes indications that the pipeline operator 

considers may have ongoing corrosion activity but that when coupled with prior 

corrosion do not pose an immediate threat to the pipeline under normal operating 

conditions. 

- Suitable for monitoring: includes indications that the pipeline operator considers  

inactive or as having the lowest likelihood of ongoing or prior corrosion activity. 
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The pipeline operator shall consider the physical characteristics of each ECDA region under 

year-round conditions, the region’s history of prior corrosion, the direct inspection tool 

used, and the criteria used for identification and classification of indications. 

When ECDA is applied for the first time, the pipeline operator should endeavor to make 

prioritization criteria as stringent as practicable. 

Numerous studies have addressed the prioritization process [78][79][80]. Criteria to 

prioritize ECDA indications have been improved by taking environmental and construction-

related factors [81], however, all of the prioritization criteria used before rely on the DCVG 

indication as an important critical factor. In this research, environmental factors are 

integrated into corrosion prediction models. 

2.6 Statistical tools applied to pipeline integrity management 

Pipeline operators place significant emphasis on assuring the integrity of pipelines by 

applying pipeline integrity management programs. In order to apply an effective pipeline 

integrity management program, an understanding of the current and likely future condition 

of pipelines is required. Statistical analysis has been and it is widely used in PIM programs 

in order to gain an understanding about the corrosion phenomenon. The most common 

and applied statistical tools are addressed in the following sections.  

2.6.1 Regression analysis 

Regression analysis is a statistical process for estimating the affinity between variables 

[82][83][84]. It is used to ascertain the causal effect of one variable upon another. 

Regression analysis assembles data on the underlying variables of interest and employs 

regression to estimate the quantitative effect of the causal variables upon the variable that 

they influence [85]. It evaluates the statistical significance of the estimated relationships, or 

in order words, the degree of confidence that the true relationship is close to the estimated 

one. 

Regression analysis has been widely applied by the pipeline industry to develop predictive 

models [86][87]. Least square regressions (OLS) has been used for decades to find 
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correlations between soil and pipeline variables, however, soil modeling contains many 

underlying factors and due to its heterogeneity, it is in general difficult in obtaining good 

estimates. 

Quantile regression is a statistical technique used to estimate and draw inference on 

conditional quantile functions [88][89]. It can provide a complete statistical analysis of the 

stochastic relationships among random variables. Quantile regression has been applied 

successfully in economics and medicine to predict behaviors and trends; however, it has 

not been implemented yet to pipeline integrity management. 

In this research, quantile regression will be used to find correlations between variables in 

order to provide useful relationships for external corrosion prediction. 

2.6.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models inspired by the structure of 

biological neural networks [90]. They obtain information out of given sets of data. Artificial 

Neural Networks can approximate any continuous function with a desired accuracy and are 

especially useful for classification problems and for function approximation. 

ANNs have been extensively used in PIM programs to solve a wide variety of problems such 

as leaks detection [91][92], modeling [93] and external corrosion detection amongst others. 

Castañeda and Urdiqui [94] built an experimental prototype, comprising a buried pipeline, 

with the purpose of calibrating a transmission line model and an ANN algorithm for locating 

and assessing the severity of external corrosion damage. The factors considered were soil 

resistivity, defect (holiday) location and different levels of CP. This methodology accurately 

assesses the level of CP and locates the position of holidays, however, it is a laboratory 

physical model and it has not been proved in real scenarios. In the field, the soil properties 

are heterogeneous and the presence of stray currents is inevitable, and therefore 

laboratory models are not able to reproduce all the behavior of real pipelines. 

Artificial Neural Networks training requires a huge amount of data (which often is not 

available) in order to make sure that the results are statistically precise [95]. This makes it 
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difficult to apply ANNs to field data due to the lack of resources that most operators face 

every day, but they are useful to apply for laboratory models in order to understand better 

the behavior of factors under ideal conditions. 

2.6.3 Bayesian inference 

Bayesian inference is the process of updating probabilities for a hypothesis of events based 

on evidence known about the situation at hand [96][97]. Bayesian inference has been 

applied to Pipeline Integrity Management programs [98][99]. Bayesian analysis provides a 

way of combining prior information with available data by incorporating past information 

about a parameter and forming a prior distribution. When new observations are gathered, 

the posterior distribution becomes the new prior following Bayes’ theorem. 

Bayesian analysis has allowed the estimation of the statistical distributions of the density 

and size of external corrosion defects from corrosion data samples taken at excavation 

sites along the inspected pipeline [100]. 

There exists some general guidance for selecting priors [101]. However, there is no 

corrosion guideline in the literature for the selection of Bayesian priors and if it is 

determined wrongly, it can produce inaccurate results [102]. It requires a deep knowledge 

in pipeline corrosion to determine the prior distribution. 

For this research, Bayesian inference methods are deemed unsuitable due to the lack of 

knowledge about external corrosion under the present specific environmental conditions. 

In future, assessments and once a new investigation is gathered, it may be possible to apply 

Bayesian inference methods using the findings of this research as the prior distribution. 

2.6.4 Bayesian belief network 

Bayesian belief network (BBN) models are graphical models of a probabilistic dependency 

model [103] that connects cause (independent variables) and consequence (dependent 

variables) through directed arrows pointing from the cause to the consequence. The 

arrows represent causal relationships between the variables. These causal relationships are 
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usually probability distributions that are also called priors. An overly simplistic example of 

the Bayesian network is shown in Figure 2-13. 

 

Figure 2-13.  A simplistic example of a Bayesian belief network. 

Where, A is the cause node and B is the consequence node. A can be in several possible 

states or assume different values (a1, a2,… an) and B can be in several possible states or 

assume different numeric values (b1, b2,… bn). The causal relationship or the arrow 

represents the conditional probabilities for B to be in a given state (b1, b2… or bn) where A is 

in a fixed state. 

This Bayesian network model can be used to determine the probability distributions on the 

forward and the backwards directions, i.e. given the state of A, one can compute the 

probability of B in a certain state and vice versa using Equation 2.6. 

𝑃(𝐴 = 𝑎𝑖|𝐵 = 𝑏𝑗) =
𝑃(𝐵 = 𝑏𝑗|𝐴 = 𝑎𝑖)∙𝑃(𝐴=𝑎𝑖)

𝑃(𝐵=𝑏𝑗)
     (2.6) 

Where: 

 𝑃(𝐴 = 𝑎𝑖|𝐵 = 𝑏𝑗) = Probability of observing A given that B is true. 

 𝑃(𝐵 = 𝑏𝑗|𝐴 = 𝑎𝑖) = Probability of observing B given that A is true. 

 𝑃(𝐴 = 𝑎𝑖) = Probability of observing A 

 𝑃(𝐵 = 𝑏𝑗) = Probability of observing B 

Once the mechanism or cause-consequence relationship for a process is known, a Bayesian 

network can be developed. The conditional probability distributions or priors can be 

obtained through analysis of the literature data, field data, or through discussions with 

experts in the subject matter. 
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Bayesian belief networks have been used recently in PIM for addressing and preventing 

threats such as internal corrosion [104], external corrosion [105][106] and stress corrosion 

cracking [107]. These models have been used to develop recommendations for further 

pipeline inspections. 

An advantage of Bayesian belief network models is that, if initially the probability density 

functions are not known or the confidence in the prior is low, the distributions can be 

updated from the observed data by using Bayesian inference. The observed data can be 

given as a weightage depending on the confidence on the priors. 

A Bayesian network is as useful as its prior belief is reliable. This, added to the need of large 

amounts of data, makes BBN a good statistical tool to implement when the required 

resources are available.  

Furthermore, using Bayesian learning is computationally expensive. Because of these 

reasons, whilst acknowledging that Bayesian belief networks show promise in certain 

situations, given the data that is available, this research implements other techniques that 

are more appropriate. 

2.7 Gaps in the assessment of external corrosion 

This thesis will support the need for the effective management of the integrity of aging 

pipelines. This will be accomplished by investigating the accuracy and validity of the results 

of a commonly used above-ground pipeline integrity management methodology, External 

Corrosion Direct Assessment, for identifying and addressing the risk of pipeline corrosion. 

One of the major integrity risks to aging pipelines is the degradation and failure of the 

protective coating, leading to external corrosion. A commonly used approach for the 

assessment of external corrosion risk of buried, land pipelines is based on the NACE RP502 

standard [72]. This approach initially assesses the likelihood of external corrosion occurring 

on a pipeline from indirect measurements which may include, amongst others; the 

conditions of the pipeline coating, effectiveness of the cathodic protection and 

corrosiveness of the soil. Since the initial assessment is based on indirect measurements, a 
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further validation process is required, involving excavations and inspection of the pipeline 

and coating at selected locations. Based on the correlations of the actual observations on 

the condition of the pipeline and coatings at these locations, refinement may be made to 

the risk assessment model. The accuracy of the approach is therefore very dependent on 

the quality and accuracy of these indirect measurements and the number of excavations 

carried out to verify the measurements. The underlying assumption is that indirect 

measurements can provide data to reliably identify corrosion defects on the pipeline, and 

prioritise defects according to their risk to pipeline integrity. 

One established method to determine the condition of the pipeline coating is to use an 

above-ground technique, such as DCVG, to locate and estimate the severity of the any 

coating defects, expressed as a percentage drop in the IR value, %IR, that may be present 

on a pipeline. Whilst the location aspect of this technique is very accurate and reliable, the 

severity, which is inferred from the %IR value, may not correlate very well with the actual 

size of the coating defect when examined after excavation. Therefore, there is a need to 

refine the coating defect sizing model to provide a better indication of the severity (and/or 

size) of coating defects. 

The inconsistencies in the correlation may be due to a number of factors, but there is little 

research carried out to investigate this in a systematic manner. This may be due to the fact 

that excavations on a pipeline are often very expensive to carry out and/or relevant data 

was not collected when the pipe and pipe coating were examined.  

A further area of uncertainty relates to the correlation between the indirect inspection 

measurements, and the severity of the corrosion found following excavation. The 

development and refinement of risk models to address this link is required in order to 

ensure the ECDA methodology can be safely applied. 
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Chapter 3 Chapter 3 

 

 

Application of DCVG to predict 

coating defects on pipelines 

 

 

3.1 Introduction 

Corrosion is frequently the cause of pipeline failure which can result in disasters causing 

damage and fatalities. In order to maintain the integrity of non-piggable lines, NACE’s 

external corrosion direct assessment (ECDA) methodology is widely applied to assess 

external corrosion that can occur at coating defects on underground pipelines [108]. 
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Research presented in this chapter is from a validation exercise carried out on the results of 

ECDA assessment using subsequent excavation data.  

3.2 Background 

All underground pipelines are affected by corrosion when the levels of cathodic protection 

(CP) are inadequate and the protective coating is damaged, in particular in ageing pipelines. 

A commonly used approach for the assessment of eternal corrosion risk of buried, land 

pipelines is based on the NACE SP0502 standard [108], often referred to as external 

corrosion direct assessment (ECDA). 

Work reported in this chapter builds on an integrity assessment carried out by TWI on 

pipelines. This chapter presents the results from the application of this assessment that 

included ECDA. In this approach, which has been described in more detail in Section3.4, 

initially, an assessment of the likelihood of external corrosion occurring on a pipeline was 

made from indirect measurements to prioritise further action. This formed the basis for a 

more comprehensive inspection that involved excavation at selected sites. 

Based on the correlation between actual observations (from pipeline excavations) 

regarding the condition of the pipeline and coating with prior data (indirect inspections), 

this chapter improves the understanding and interpretation of data used in ECDA in order 

to make more reliable predictions [108][75][109]. 

Existing approaches often assume that indirect measurements can provide data to reliably 

identify corrosion defects on the pipeline, so that excavation location can be prioritised. 

One established indirect method to determine the condition of the pipeline coating is to 

use an above-ground technique, such as Direct Current Voltage Gradient (DCVG), to locate 

and estimate the severity of any coating defects that may be present on the pipeline [75]. 

Whilst the location aspect of this technique is very accurate and reliable, the severity , 

which is inferred from the %IR value, may not correlate very well with the actual size of the 

coating defect when is examined after excavations [109]. Therefore, there is a need to 
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exercise caution using %IR value to provide an indication of the severity (and/or size) of 

coating defects. 

3.3 Scope 

Correlate data from the pre-assessment and indirect inspections with data from direct 

examination in order to improve prediction of corrosion on buried pipelines. 

3.4 Description of the data 

For the purposes of this chapter, data from Pre-Assessment, Indirect Inspection and Direct 

Examination (the first three steps of ECDA as specified by NACE) was gathered and 

analysed. The type of data gathered is described in the sub-sections below and the analyses 

carried out are shown in the sections that follow. 

3.4.1 Pre-Assessment data 

Pre-Assessment data available included pipeline design specifications, operational data and 

time in service. These data were gathered from design and installation reports. 

There was a total of nine pipelines, covering 300km, with diameters ranging from 26” to 

42”. The material used was API 5L-X60 and X52. Operational pressures varied from 8 to 17 

bar. The operational temperatures ranged from 40 to 60 °C. The flow rates varied from 400 

to 1520 m3/h. The pipelines inspected in this research were commissioned between 1972 

and 1992. The time in service was calculated from the time since commissioning of the line. 

The coating applied to protect them was either cold wrap tape or coal tar. 

3.4.2 Indirect Inspection data 

During the Indirect Inspection phase of the integrity management project, DCVG was 

performed along the entire length of the pipelines using the pipeline CP system (impressed 

current) operating at its normal output. For each coating defect identified, the OL/RE (over-

the-line to remote earth voltage) was measured. Then, as per NACE TM0109 [75], the P/RE 

(calculated pipe to remote earth potential at indication) was calculated using a linear 

interpolation between the pipe to remote earth voltage at the two closest test stations. 
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In this way, IR drop was calculated for each location at which coating damage had been 

detected with DCVG. Voltage drop (or %IR) is an indicative value of the amount of current 

travelling through the soil to protect the coating defect and takes values from 0 to 100%. 

3.4.3 Direct Examination data 

In the third phase of the ECDA methodology, a series of measurements were taken and 

coating defects were examined after excavation, this was done not only at defect locations 

where DCVG data showed high severity, but also at some locations where the severity was 

not indicated as high. This was done with a view to test the predictions using indirect 

against actual excavated (direct) data. 

Two kinds of data were gathered: environmental and pipe related data. Table 3-1 shows 

the nature of this data. It must be noted that for the regression analyses carried out, both 

quantitative data and categorical data (qualitative measurement or descriptive data) were 

used. 

Soil resistivity data was measured using the four pins method detailed in NACE SP0502 [108] 

at representative soil depths of 0.75, 1.5 and 3 meters. The values used for the analyses are 

the closest measurements to the depth of the pipeline. 

Backfill properties were not easy to quantify. They were classified as three different groups: 

sandy, clay and clay with a mix of gravel/rock/stones due to the different properties. The 

geometry of the backfill refers to the shape that the soil particles have. They were divided 

into round and angular geometries: round where soil particles have rounded edges and 

angular where the soil particles have sharp edges. 

For each excavation location, the presence or absence of water was noted; however, in 

some excavation reports, this data was missing. When water was present, the pH value was 

also measured. 

Coating defect areas were calculated from the excavation reports in which only length and 

width were annotated. However, photographs of each individual defect were taken. Using 

these, it was possible to estimate the real defect area. Only sections of the pipeline without 
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coating were considered; disbonded defects were not considered in the analysis. The 

corrosion depth measurements were carried out using ultrasonic testing equipment. 

The amount of deposits under coating was also measured. It is assigned a value from 0 to 

100% and it was calculated by dividing the coating defect area with deposits by the total 

coating defect area. 

Factor Type of data Range of values 

Soil resistivity 

(Environmental) 

Quantitative Values from 75 to 43,332 Ωcm 

Backfill type 

(Environmental) 

Categorical See Table 3-4 

Backfill geometry 

(Environmental) 

Categorical See Table 3-4 

Presence of water 

(Environmental) 

Categorical See Table 3-4 

pH of water 

(Environmental) 

Quantitative Values from 6 to 14 when applicable 

Coating defect area 

(Pipe related) 

Quantitative Values from 0 to 21,550 cm2 

Corrosion depth 

(Pipe related) 

Quantitative Values from 0 to 6.6mm 
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Deposits under coating 

(Pipe related) 

Quantitative Values from 0 to 100% 

Table 3-1. Types of data used in regression analyses. 

3.4.4 Exploratory analysis 

An exploratory analysis has been performed using data gathered in sections 3.4.1 to 3.4.3 

to get a better understanding of the data (Table 3-2). The sample size is 200. 

Variable Range Type Mean Variance 
Standard 
deviation 

Coating defect 
area (cm2) 

0 - 21,550 Quantitative 15,470 6.67⋅108 25,824 

Corrosion depth 
(mm) 

0 – 6.60 Quantitative 1.26 2.07 1.44 

Time in service 
(years) (w) 

24 - 44 Quantitative 35.20 52.35 7.23 

Soil Resistivity 
(Ω-cm) (x) 

75 - 43,332 Quantitative 2,775 2.34⋅107 4,845 

Voltage drop 
(%IR) (y) 

2.29 - 100 Quantitative 38.21 614.94 24.80 

Deposits under 
coating (cm2) (z) 

0 - 100 Quantitative 40.97 1020.41 31.94 

Water pH - Categorical - - - 

Presence of 
water 

- Categorical - - - 

Backfill type - Categorical - - - 
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Backfill 
geometry 

- Categorical - - - 

Coating type - Categorical - - - 

Table 3-2. Exploratory analysis using data from sections 3.4.1 to 3.4.3. 

The correlation between response variable (coating defect area) and each of the 

independent variables is presented in Table 3-3. Correlation analysis is used as a 

preliminary analysis to explore the relationships between the dependent variables and 

each of the independent variables. 
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-0.12 -0.24 -0.03 0.36 -0.04 -0.24 -0.03 0.34 0.02 -0.03 0.26 -0.06 0.04 0.09 0.15 

Table 3-3. Correlation between coating defect area and quantitative independent variables. 

The results show that, %IR is the variable with the highest correlation with coating defect 

area. 

A prior analysis on the correlation between independent variables indicates that there is no 

multi-collinearity issue on the independent variables. 

3.5 Correlation between DCVG (%IR) and corrosion depth 

During the Indirect Inspection phase of the ECDA methodology, DCVG was carried out and 

during the Direct Examination, external corrosion depth of the pipe wall was measured. 

Linear regression has been applied to the data in order to observe the existence or absence 

if correlation between the data.  



 

51 
 

It was found that there is no straightforward relation between corrosion depth (wall 

thickness lost) and the voltage drop (%IR) calculated during DCVG (Figure3-1). A total of 43% 

of the points corresponded to regions where there was no corrosion activity and therefore 

the corrosion depth was zero. 

 

Figure 3-1. Corrosion depth and %IR diagram. 

3.6 Correlation between DCVG (%IR) and coating defect size 

Relationship between %IR and coating defect area is important. BS ISO 15589 states “DCVG 

surveys can be used to locate and establish the relative size of defects in protective 

coatings on buried pipelines” [66] so there is an acceptance by the pipeline industry 

that %IR provides an estimate of the size of coating defects. By “relative” it is understood 

that, voltage drop is proportional to the coating defect area, however, this has not been 

quantified. 

With a good understanding of how the voltage drop measured during DCVG is related with 

the coating defect area, it is possible to improve the accuracy in the prediction  of coating 

defect area and consequently identify the high risk areas. This relationship has been 



 

52 
 

investigated using the data described in Section 3.4.3; the analyses are described in the 

following sections. 

3.6.1 Linear regression model 

Linear regression is first used to model the relationship between %IR and coating defect 

area with the aim of finding the relation between %IR and coating defect area. The 

advantage of applying linear regression are its simplicity and interpretability. Also, it 

provides a good initial understanding of the behaviour between these two parameters. 

A linear regression model employs the least squares estimator to fit a single explanatory 

variable 𝑥 to the dependent variable 𝑦. The target is to find the equation (Equation 3.1) of 

the straight line that would give the best fit for the data points. 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀        (3.1) 

In our case, 𝑦 is coating defect area in cm2, 𝑥 is %IR, 𝛽1 is the slope or regressor coefficient, 

𝛽0 is the intercept and 𝜀 is the model error. 

The linear regression attempts to illustrate the correlation between voltage drop (%IR) and 

coating defect area (Figure 3-2). Although a strong trend has not been observed, increase 

of the coating defect area (exposed pipe area) generally correlated to an increase in 

the %IR drop, especially at values above 30%. 
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Figure 3-2. Coating defect area and %IR diagram. 

The equation modelled in Figure 3-2 corresponds with the following expression: 

𝑦 = 238.92𝑥 + 3088,     𝑖𝑓     𝐼𝑅 ≤ 30% 𝑅² = 0.0183   (3.2) 

𝑦 = 504.59𝑥 − 5000,     𝑖𝑓     𝐼𝑅 > 30% 𝑅² = 0.0235   (3.3) 

The low 𝑅² value indicates that the regression model does not fit well with the data. Some 

of the possible reasons are explained in Section 3.8. 

Only defects where the exposed pipeline is in direct contact with the soil (bare sections of 

the pipeline) have been taken into consideration. Regions with disbonded coating have 

been omitted due to the poor correlation with the voltage drop caused by CP shielding. 

The simple linear model is unsuitable for multiple independent variables requiring a more 

complex regression method such as multiple linear regression. 

3.6.2 Multiple linear regression model 

Multiple linear regression (MLR) can be used to fit a predictive model to an observed data 

set in order to quantify the strength of the relationship between the dependent variable 



 

54 
 

and the independent variables. The assumptions considered in order to apply MLR are as 

follows: 

- Variables have weak exogeneity , meaning they are free of error. 

- Linearity. 

- There is no correlation between the predictor variables. 

For the analysis, it is therefore assumed that the variables are free of error, the 

relationships are linear and there is no correlation between themselves. 

In order to model the coating defect area, MLR has been implemented using R Studio 

software, taking in consideration variables described in Table 3-2 by using Equation (3.1). 

y = β0 + β1x1 + β2x2 + ⋯ + βnxn + ε       (3.4) 

Because some of these factors are categorical (qualitative), dummy variables are included 

to be used in the regression model. Table 3-4 illustrates the factors included in the 

regression model with dummy variables. 

When using dummy variables, at least one category needs to be omitted, which becomes 

the reference category against which the effects of other categories are assessed. 

Nine independent variables were introduced in the mathematical model, including %IR. The 

eight new variables, representing other factors (shown in Table 3-2) not considered in the 

simple regression model, were introduced to obtain their individual influence on the 

coating defect area. 

Factors with dummy variables States 

pH of water from excavation 

>7.5 

<7.5 

Unknown 
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Presence of water 

Yes 

No 

Type of backfill 

Sand 

Clay 

Clay with mix of gravel/rock/stone 

Geometry of backfill 

Round 

Angular 

Type of coating 

Cold wrap 

Coal tar 

Table 3-4. Factors with dummy variables and their states. 

MLR provides better predictive capability than simple linear regression, and provides an 

estimate of the relative importance of each variable. However, MLR is very sensitive to 

outliers. Thus, to understand better the relationship between variables a more robust 

mathematical model, described below, is considered. 

Multiple linear regression has been performed in order to estimate the average of coating 

defect area. The following expression predicts the area of coating defect for the nine given 

parameter addressed in Section 3.4. 

Average Coating Defect Area (cm2) = 4.60 ∙ 104 − 1.18 ∙ 103α + 4.68 ∙ 103A1 − 2.58 ∙

103A2 + 1.91 ∙ 10−1β +  3.35 ∙ 102γ + 4.42 ∙ 103B1 + 9.16 ∙ 103C1 − 1.35 ∙ 10−3C2 −

7.58 ∙ 103D1 − 1.52 ∙ 103E1 + 1.56 ∙ 102δ    (3.5) 

where α is the time in service, β is soil resistivity at site location, γ is %IR drop, δ is the 

amount of deposits under coating (%).A1 → If 1, pH>7.5; A2 → If 1, pH<7.5; B1 → If 1 , 

there is  presence of water at site location; C1 → If 1, sand backfill at site location; C2 → If 
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1, clay backfill at site location; D1 → If 1, backfill have round geometry; E1 → If 1, coating is 

cold wrap. 

Each of the coefficients in Equation 3.5 has a “p-value” associated (Table 3-5). The “p-value” 

is the probability of finding the observed results when the null hypothesis is true. If the “p-

value” is less than 0.05, then, given variable has significantly different results from zero 

meaning that the statistic is reliable and therefore this factor has a strong correlation with 

the dependent variable. The “p-value” < 0.05 implies that a 5% significance level is used. 

Variable Estimate Std. error t-Value p-value Interpretation 

Intercept 4.60∙104 2.78∙104 1.651 0.10071 Near significant differences 

α -1.18∙103 6.67∙102 -1.769 0.07876 Near significant differences 

β 1.91∙10-1 3.83∙10-1 0.500 0.61767 No significant differences 

γ 3.35∙102 7.86∙101 4.263 3.4∙10-5 Significant Differences 

δ 1.56∙102 6.85∙101 2.280 0.02392 Significant Differences 

A1 4.68∙103 1.03∙104 0.455 0.64993 No significant differences 

A2 -2.58 ∙103 9.56∙103 -0.270 0.78735 No significant differences 

B1 4.42∙103 6.09∙103 0.726 0.46873 No significant differences 

C1 9.16∙103 1.13∙104 0.811 0.41883 No significant differences 

C2 -1.35∙10-3 5.06∙102 -2.671 0.00833 Significant Differences 

D1 -7.58∙103 8.39∙103 -0.904 0.36740 No significant differences 

E1 -1.52∙103 1.14∙104 -0.134 0.89386 No significant differences 
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Table 3-5. Multiple linear regression coefficients. 

Equation 3.5 and Table 3-5 indicate a significant positive association between voltage drop 

(%IR) and coating defect area. An increase of one unit in %IR, the predicted coating area 

increases 335 cm2. Voltage drop is limited to 100%, therefore the maximum coating defect 

for the predictive model is 33,500 cm2. 

A coating defect size of 33,500 cm2, means that the pipeline does not have any coating 

(bare pipe) and therefore, even if the coating defect size takes higher values, the 

interpretation would be the same. 

Based on the assumption that p = 0.05, some of the factors have been addresses as having 

“near significant differences”. The independent variable α (time in service) is not significant 

for p = 0.05, but becomes significant if the p-value is increased to 0.1. This means that α 

has some degree of correlation with the dependent variable, however, not as strong as 

variables with p < 0.05. 

Also, from this regression model it can be determined that only 21.53% of the variation is 

explained by the regression and the rest is due to error (R-square = 21.53%). 

3.6.3 Multiple non-linear regression model 

Multiple non-linear regression model can be used to fit a predictive model to an observed 

data set in order to quantify the strength of the relationship between the dependent 

variable and the independent variable. To perform multiple non-linear regression, the data 

used fulfils the following criteria: 

- Variables have weak exogeneity, therefore the explanatory variables are not 

correlated with the error. 

- There is no correlation between the predictor variables. 

In order to model the coating defect area, quadratic polynomial regression was 

implemented using R Studio (R Core Team, 2013) taking in consideration the variables 

described in Table 3-1 by using Equation 3.6. 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑓𝑒𝑐𝑡 𝐴𝑟𝑒𝑎 (𝑐𝑚2) = 𝑎 + 𝛽1𝑤 + 𝛽2𝑥 + 𝛽3𝑦 + 𝛽4𝑧 + 𝛽5𝑤2 + 𝛽6𝑥2 +

𝛽7𝑦2 + 𝛽8𝑧2 + 𝛽9𝑤𝑥 + 𝛽10𝑤𝑦 + 𝛽11𝑤𝑧 + 𝛽12𝑥𝑦 + 𝛽13𝑥𝑧 + 𝛽14𝑦𝑧 + 𝛽15𝐴1 + 𝛽16𝐴2 +

𝛽17𝐵1 + 𝛽18𝐶1 + 𝛽19𝐶2 + 𝛽20𝐷1 + 𝛽21𝐸1 + 𝜀    (3.6) 

Some variables (𝐴1, 𝐴2, 𝐵1, 𝐶1, 𝐶2, 𝐷1, 𝐸1) have not been used in quadratic terms because 

they are dummy variables (take either 0 or 1 as value) and squaring these variables is not 

meaningful.  

The value 𝑎 is the intercept and ε is the model error. Where factor were categorical 

(qualitative), these were substituted by dummy variables in the regression model. Table 3-6 

illustrates the factors included in the regression model with dummy variables. 

Factors with dummy variables States 
Dummy 

Variables 

pH of water from excavation 

>7.5 

<7.5 

Unknown 

A1 

A2 

Not applicable 

Presence of water 

Yes 

No 

B1 

Not applicable 

Type of backfill 

Sand 

Clay 

Clay with mix of gravel/rock/stone 

C1 

C2 

Not applicable 

Geometry of backfill 

Round 

Angular 

D1 

Not applicable 

Type of coating Cold wrap E1 



 

59 
 

Coal tar Not applicable 

Table 3-6. States of factors with dummy variables. 

When using dummy variables, at least one category needs to be omitted, which becomes 

the reference category against which the effects of other categories are assessed. 

Nine independent variables were introduced in the mathematical model including %IR. 

They were introduced to obtain their individual strength of correlation with the coating 

defect area. 

Multiple non-linear regression has been performed in order to estimate the average of 

coating defect area. The following expression predicts the area of coating defect for the 

nine given parameters addressed in Section3.4. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝐷𝑒𝑓𝑒𝑐𝑡 𝐴𝑟𝑒𝑎 (𝑐𝑚2) = −8.47 ∙ 104 + 7.15 ∙ 103𝑤 − 2.11 ∙ 100𝑥 +

1.21 ∙ 103𝑦 − 3.67 ∙ 102𝑧 − 1.18 ∙ 102𝑤2 + 2.92 ∙ 10−5 ∙ 𝑥2 − 1.70 ∙ 10−1 ∙ 𝑦2 + 3.29 ∙

100 ∙ 𝑧2 + 1.68 ∙ 10−2𝑤𝑥 − 2.62 ∙ 101𝑤𝑦 − 4.23 ∙ 10−1𝑤𝑧 − 7.35 ∙ 10−3𝑥𝑦 + 3.76 ∙

10−2𝑥𝑧 + 2.30 ∙ 100𝑦𝑧 − 8.93 ∙ 102𝐴1 − 1.65 ∙ 103𝐴2 + 3.78 ∙ 103𝐵1 + 1.31 ∙ 104𝐶1 −

1.37 ∙ 104𝐶2 − 5.88 ∙ 103𝐷1 − 1.85 ∙ 103𝐸1     (3.7) 

where 𝑤 is the time in service, 𝑥 is soil resistivity at site location, 𝑦 is %IR drop, 𝑧 is the 

amount of deposits under coating (%).𝐴1 → If 1, pH>7.5; 𝐴2 → If 1, pH<7.5; 𝐵1 → If 1 , 

there is  presence of water at site location; 𝐶1 → If 1, sand backfill at site location; 𝐶2 → If 

1, clay backfill at site location; 𝐷1 → If 1, backfill have round geometry; 𝐸1 → If 1, coating 

is cold wrap. 

Each of the coefficients in Equation 3.7 has a “p-value” associated (Table 3-7). If the “p-

value” is less than 0.05, then, given variable has significantly different results from zero 

meaning that the statistic is reliable and therefore this factor has a str`ong correlation with 

the dependent variable. The “p-value” < 0.05 implies that a 5% significance level is used. 
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Variable Estimate Std. Error t value p value Interpretation 

Intercept −8.47 ∙ 104 9.76 ∙ 104 −0.868 0.38669 No significant differences 

𝑤 7.15 ∙ 103 6.26 ∙ 103 1.142 0.25532 No significant differences 

𝑥 −2.11 ∙ 100 5.07 ∙ 100 −0.416 0.67775 No significant differences 

𝑦 1.21 ∙ 103 5.66 ∙ 102 2.131 0.03466 Significant differences 

𝑧 −3.67 ∙ 102 6.15 ∙ 102 −0.597 0.55134 No significant differences 

𝑤2 −1.18 ∙ 102 9.98 ∙ 101 −1.182 0.23903 No significant differences 

𝑥2 2.93 ∙ 10−5 4.59 ∙ 10−5 0.638 0.5245 No significant differences 

𝑦2 −1.70 ∙ 10−1 3.11 ∙ 100 −0.055 0.95643 No significant differences 

𝑧2 3.29 ∙ 100 2.65 ∙ 100 1.24 0.21701 No significant differences 

𝑤𝑥 1.68 ∙ 10−2 1.09 ∙ 10−1 0.153 0.87831 No significant differences 

𝑤𝑦 −2.62 ∙ 101 1.27 ∙ 101 −2.06 0.04109 Significant differences 

𝑤𝑧 −4.23 ∙ 10−1 1.74 ∙ 101 −0.024 0.98063 No significant differences 

𝑥𝑦 −7.35 ∙ 10−3 3.52 ∙ 10−2 −0.209 0.83492 No significant differences 

𝑥𝑧 3.76 ∙ 10−2 1.70 ∙ 10−2 2.214 0.02828 Significant differences 

𝑦𝑧 2.30 ∙ 100 2.76 ∙ 100 0.835 0.40487 No significant differences 

A1 −8.93 ∙ 102 1.12 ∙ 104 −0.08 0.93634 No significant differences 
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A2 −1.65 ∙ 103 9.66 ∙ 103 −0.17 0.86497 No significant differences 

B1 3.78 ∙ 103 6.15 ∙ 103 0.615 0.53943 No significant differences 

C1 1.31 ∙ 104 1.16 ∙ 104 1.129 0.26064 No significant differences 

C2 −1.37 ∙ 104 5.23 ∙ 103 −2.613 0.00986 Significant differences 

D1 −5.88 ∙ 103 8.76 ∙ 103 −0.671 0.50323 No significant differences 

E1 −1.85 ∙ 103 1.33 ∙ 104 −0.139 0.88978 No significant differences 

Table 3-7. Multiple non-linear regression coefficients and parameters. 

Equation 3.7 and Table 3-7 indicate a significant positive association between voltage drops 

(%IR) and coating defect area. 

This model can be used to predict the average coating defect area under the presence of 

environmental factors. However, it is important to be aware that it will only be accurate for 

sets of pipelines with similar conditions. 

Figure 3-3 shows the predicted coating defect area, calculated using equation3.7, plotted 

against the real coating defect area, obtained from the real measurements. 
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Figure 3-3. Predicted coating defect area and measured coating defect area. 

The diagonal line represents the ideal case and it has a slope equal to 1. If a defect falls 

near this line, it means that the predicted coating defect area is close to the measured 

coating defect area. The results of this model improve the prediction compared to the 

multiple linear regression model from Section 3.6.3. 

From this regression model, it can be determined that only 29.79% of the variation is 

explained by the regression and the rest is due to error (R-square = 29.79%). 

3.6.4 Quantile regression model 

The probability density function of the coating defect area is not symmetric; it has a 

positive skewness (Figure 3-4), leading us to use more complex models such as quantile 

regression, because we aim to assess how a factor or factors could cause larger or smaller 

coating defects. In such situation, mean-based regression models such as described above 

are not effective in finding solutions. Instead, the use of quantile regression may be more 

appropriate to identify the effect of key factors (%IR) for large and small coating defects. 
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Figure 3-4. Probability density function for coating defect area variable. 

Quantiles describe the distribution of the dependent variable in terms of quantile [110]. 

While the median is a special quantile to measure the middle location, extreme quantiles 

describe the tails of the distribution. MLR models the relationship between one or more 

independent variables and the conditional quantiles of the dependent variable rather than 

the conditional mean of aforementioned variable [89][111]. 

From basics statistics, it is known that any real valued random variable, 𝑌, is characterized 

by its distribution function, 

𝐹(𝑦) = 𝑃𝑟𝑜𝑏(𝑌 ≤ 𝑦)        (3.8) 

The 𝜏 -quantile of 𝐹(𝑦)  is usually defined as the inverse of 𝐹(𝑦) , i.e., 𝐹−1(𝜏) . 

Correspondingly, the 𝜏-empirical quantile of the sample {𝑌1, … , 𝑌𝑁} can be computed by 

the following minimization problem  [112]: 

�̂�𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧 ∑ [𝜏 ∙ 𝐼(𝑌𝑖 > 𝑧) + (1 − 𝜏) ∙ 𝐼(𝑌𝑖 < 𝑧)]𝑛
𝑖=1 ∙ |𝑌𝑖 − 𝑧|  (3.9) 
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where 𝐼 is an indicator function. While a conditional distribution of 𝑌 given independent 

variables 𝑋𝑠 is concerned and replaced, quantile regression is defined correspondingly. The 

parameter 𝑧 is the value which minimizes the function. 

Quantile regression was computed using R Studio software. The variables included were 

the same as described in Section 3.4. This quantile regression gives a more comprehensive 

view of the effect of the independent variables on the dependent variable (coating defect 

area) and will help to determine the factor combinations affecting to high or low coating 

defects. 

With quantile regression, we can study the effects of the %IR drop on coating defect area 

for low and high %IR drop. Although it is possible to do this with a normal distribution, it 

will not differentiate between those locations with low %IR drop and those with high %IR 

drop. 

The advantages of applying quantile regression are the flexibility for modelling data with 

heterogeneous conditional distributions and more robustness relative to the use of linear 

regression. Also, quantile regression has richer characterisation and the description of the 

data can show different effects of the independent variables on the dependent variable 

across the spectrum of the independent variable. 

The calculated quantile regression estimates multiple rates of change (slopes) from the 

minimum to the maximum response, providing a more complete picture of the 

relationships between variables, which is an improvement over the regression models 

shown earlier. 

Equations for some of the most relevant quantiles are presented in Equations 3.10 to 3.12. 

The 0.5 quantile is important because it is the median of the distribution. 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑐𝑡 𝑎𝑟𝑒𝑎(0.5 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 4.77 ∙ 104 − 1.19 ∙ 103𝛼 + 3.00 ∙ 10−2𝛽 + 1.08 ∙

102𝛾 + 7.89 ∙ 101𝛿 + 1.49 ∙ 103𝐴1 − 1.39 ∙ 103𝐴2 + 4.42 ∙ 103𝐵1 + 1.26 ∙ 104𝐶1 −

5.43 ∙ 103𝐶2 − 4.31 ∙ 103𝐷1 − 1.70 ∙ 102𝐸1     (3.10) 
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The 0.05 quantile (5th quantile) represents the coating defect area for the 5% of the defects 

on the left of the probability density function (small coating defects). 

C𝑜𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑐𝑡 𝑎𝑟𝑒𝑎(0.05 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 2.09 ∙ 103 − 5.26 ∙ 101𝛼 + 7.41 ∙ 10−3𝛽 +

4.10 ∙ 100𝛾 + 1.11 ∙ 10−1𝛿 − 3.73 ∙ 101𝐴1 + 2.71 ∙ 103𝐴2 + 1.52 ∙ 102𝐵1 + 2.72 ∙

103𝐶1 − 1.57 ∙ 102𝐶2 − 2.10 ∙ 102𝐷1 − 9.36 ∙ 102𝐸1    (3.11) 

The 0.95 quantile (95th quantile) represents the coating defect area for the 95% of the 

defects on the left of the probability density function (large coating defects). 

𝐶𝑜𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑓𝑒𝑐𝑡 𝑎𝑟𝑒𝑎(0.95 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 4.96 ∙ 104 − 1.23 ∙ 103𝛼 + 6.69 ∙ 10−1𝛽 +

8.61 ∙ 102𝛾 + 3.35 ∙ 102𝛿 − 2.07 ∙ 104𝐴1 − 2.71 ∙ 104𝐴2 + 1.94 ∙ 104𝐵1 + 2.45 ∙

103𝐶1 − 1.85 ∙ 104𝐶2 − 3.29 ∙ 103𝐷1 − 1.32 ∙ 102𝐸1    (3.12) 

In Figure 3-5, the quantiles of the dependent variable are on the horizontal axis and the 

coefficient magnitudes on the vertical axis. The MLR coefficient is plotted as a horizontal 

red line with the confidence intervals as two horizontal lines around the coefficient line 

(red dotted line). The MLR coefficients do not vary by quantiles. 

 

Figure 3-5. Representation of the quantile coefficients for the %IR on coating defect size. 

The quantile regression coefficients are plotted as lines varying across the quantiles (black 

dots) with confidence intervals above and below them (grey lines). If the quantile 
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coefficient is outside the MLR confidence interval, then we have significant differences 

between the quantile and MLR coefficients. 

The quantile coefficients for the %IR (independent variables) on coating defect size 

(dependent variable) are significantly different from the MLR coefficients. Moreover the 

effect of %IR drop increases for locations with higher coating defect size (higher quantiles). 

For the 5th quantile, which represents the small coating defects, an increase of one unit in 

the %IR value, increases 4.10 cm2 the coating defect area (Figure 3-6). Whereas for the 95th 

quantile, which represents the large coating defects, an increase of one unit in the %IR 

value, increases 861 cm2 the coating defect area (around 200 times more than for the 5th 

quantile). The MLR coefficients cross with the quantile coefficients at the 75th quantile. 

 

Figure 3-6. Representation of the 5th and 95th quantile coefficients for the %IR drop on 

coating defect size. 

The analyses show that DCVG readings are more sensitive to large coating defect areas 

than small to medium coating defect areas. 
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3.7 Correlation between coating defect area and corrosion depth 

When performing ECDA, the %IR value plays an important role in determining the severity 

classification of an indication. The pipeline operator defines and applies criteria for 

classifying the severity of each indication. Small indications (%IR) were classified as minor 

severity, while large indications were classified as severe (Table 3 of NACE SP0502 [113]). 

The severity indication allows an estimation of the extent of the coating defect area. When 

a section of a pipeline is exposed after coating breakdown, corrosion activity might occur 

with certain areas having high corrosion depths that may compromise the integrity of the 

pipeline. It is not a straightforward process to predict the corrosion depth using indirect 

inspections. For this case, 200 locations were examined directly and corrosion depth was 

measured as detailed in Section 3.4.3. Results as discussed below. 

There is no straightforward relation between corrosion depth and voltage drop (%IR). This 

is illustrated in Figure 3-1, which shows the correlation between voltage drop (IR%) and 

corrosion depth for the case study considered. A significant portion of the points 

correspond to regions where there was no corrosion activity and therefore the corrosion 

depth is zero. 

Figure 3-1 shows that %IR is not a good parameter in order to quantify corrosion depth. 

External corrosion is strongly dependent on environmental factors and therefore they 

should be taken in consideration. That is the reason why it is not possible to rely on %IR as 

a factor to determine the extent of corrosion damage. 

Figure 3-7 models the relationship between coating defect area and corrosion depth (peak 

depth). The cumulative corrosion feature line shows the corrosion feature count starting 

from the biggest and progressing to the smallest in terms of calculated area. As studied 

before by Argent el al. [114] and demonstrated here, the changing slope of this line shows 

that most of the coating defects are relatively small in area, and this number is decreasing 

with the increment of exposed area. 
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Figure 3-7. Relationship between coating defect area and corrosion depth. 

Regression models have been applied in order to determine the strength of correlation for 

the cited variables including zero inflated models (binomial and Poison) in order to draw 

conclusions. The reason of using binomial and Poison models is due to the large amount of 

points with a corrosion depth equal to zero. However, the regressors obtained with zero 

inflated models did not show any direct relation between the coating defect area and the 

corrosion depth. 

3.8 Causes of anomalies in DCVG readings 

Analysing the outliers of the Figure 3-2 (points far from the trend line) by using individual 

inspection reports corresponding to such data, it was found that the DCVG readings have 

been potentially influenced by features such as: 

- Sections of the pipeline with scales correspond with lower voltage drops (Figure 3-

7). Scale deposits in the pipeline surface effectively isolate the pipeline electrically 

reducing the measured coating defect area. This is a problem because DCVG will 

give a smaller measure for sections of the pipeline with a severe coating damage, 

thus invalidating the damage prediction. 
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Figure 3-8. Example of scale covering exposed and corroded area of a pipeline. 

- Reliability of the DCVG reading may be compromised in locations where old cable 

connections (cad welds) are present (Figure 3-9) 

 

Figure 3-9. Example of an uncoated cad/thermite weld sacrificial anode connection. 
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- Accurate measurements are not always possible at crossings with roads and 

watercourses due to local changes in the soil/ground conditions (Figures 3-10 and 

3-11). 

 

Figure 3-10. Example of a pipeline crossing a watercourse. 

 

Figure 3-11. Example of a pipeline crossing a road. 
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- The presence of nearby underground pipelines, in particular those with coating 

defects, reduce the accuracy of DCVG. The voltage signal is often interfered by the 

cathodic protection system of the nearby pipelines (Figure 3-12). 

 

Figure 3-12. Example of pipelines crossing very close to each other. 

- The soil resistivity affects the %IR value for non-homogeneous soils along the 

pipeline. When performing DCVG, the pipe to remote earth potential at the 

indication (P/RE) is calculated by using a linear function of the voltage between the 

two nearest test stations [75] (Figure 3-13). 
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Figure 3-13. Assumption of linearity for the calculation of the earth potential at the 

indication (P/RE). 

It is therefore assumed to be an homogeneous soil between the two test stations. 

However, soils are heterogeneous and the soil resistivity affects the %IR value. For 

the same coating defect area, %IR can be higher when soil resistivity has high 

values, whereas %IR can be lower when the local soil resistivity has low values. This 

is consistent with other work showing that a high resistivity could cause small 

defect to yield a large %IR, for example as in Ref. [115]. The electrochemical 

process of cathodic protection causes the environment around the pipeline to 

become alkaline, in particular at the surface of the defect being protected [116]. 

The increase in the pH value can result in a change in the soil resistivity near the 

defect and therefore increases the heterogeneity of the soil. 

- Influence of AC-high voltage lines nearby buried pipelines releasing stray currents 

to the ground: stray currents have important influence in long distance pipelines, in 

particular for those running in parallel or across high voltage AC lines (Figure 3-14). 

During DCVG measurements, currents from AC-high voltage lines affect the voltage 

gradient from defect indication epicentre to remote earth (OL/RE) [75]. This effect 

could lead to inaccurate DCVG measurements with the level of influence depending 

on the intensity and direction of the AC current released. The presence of stray 

currents makes a DCVG survey difficult to interpret as there may be AC current 

flowing on or off the pipeline. 
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Figure 3-14. Example of pipeline close to AC power lines. 

- Orientation of the coating defect indication: when a coating anomaly is located in 

the bottom part of the pipeline the voltage signal is attenuated. This factor has not 

been included in the analysis due to limited availability of such data; it has been 

included a study in defect orientation in Chapter 4. 

- If there is physical contact between pipeline and metallic support of an 

aboveground pipeline, the voltage gradient measurements are affected (Figure 3-

15). 
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Figure 3-15. Example of pipeline close to pipe supports. 

- Depth of cover affects DCVG signal (Figure 3-16). DCVG indications decrease as 

depth of cover increases [115][116][78]. 

 

Figure 3-16. Example of pipeline exposed due to soil erosion. 

Some errors in the data could be attributed to excavation and direct examinations: 
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- During Direct Examination, coating defect area is measured. In many cases, the 

coating is just disbonded and during the excavation activity it breaks off (Figure 3-

17). Therefore, the measured defect area is larger than the area in contact with the 

soil before excavating. This is very common, especially for the bottom part of 

pipelines with coal tar coatings. 

 

Figure 3-17. Example of disbonded coating next to damaged coating. 

This study has identified some factors that can potentially cause poor linear correlation 

between DCVG data and defect area. There could be other factors at play, and, indeed, the 

factors could be different if the same pipeline system is in a different operating 

environment. 
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Chapter 4 Chapter 4 

 

 

Analysis of factors influencing 

external corrosion 

 

 

4.1 Introduction 

External corrosion is a common problem in underground pipelines, in particular in ageing 

pipelines. To prevent and control external corrosion, pipeline operators use mitigation 

systems, such as coatings and cathodic protection. When the protective coating is failing 

and the cathodic protection levels are low, in conjunction with a corrosive environment, 

corrosion appears.  
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4.2 Background 

Pipeline coating degradation is inevitable and it is affected by the surrounding 

environmental conditions. Furthermore, cathodic protection levels can experience a 

reduction between inspection intervals. Therefore, in order to prioritise inspection and 

repair activities, and understanding of how environmental and other factors affect external 

corrosion is required. 

Previous research in this area has included soil corrosivity rankings which are used to 

determine the risk of corrosion in different sections of pipelines. However, not much work 

has been carried out to provide a better understanding of the relationships between soil 

parameters and the corrosion defects, in particular at early, medium and late stages of 

corrosion. 

This chapter studies the external corrosion phenomenon by analysing data from a case 

study. The type of data available is in the form of in-line inspection data (more than 60,000 

corrosion defect readings), soil data and weld locations. Advanced statistical techniques 

were used to assess how different environmental variables and weld location affect the 

corrosion process during different stages of corrosion. 

This chapter shows how useful information as to whether corrosion is occurring due to 

systematic factors causing more corrosion at weld locations or whether the corrosion is 

happening due to environmental factors or there is a combination of such factors. 

Additionally, this chapter draws some inferences from data related to the orientation of 

defects. 

4.3 Scope 

Correlate data from in-line inspection and soil surveys by using regression analysis in order 

to improve the understanding of external corrosion in underground pipelines. Particularly 

interest is placed on the use of the advanced Quantile Regression model to study the effect 
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of diverse environmental (soil) factors on the external corrosion depth for low and high soil 

factor values. 

4.4 Description of the data 

Data used in this study belonged to three different bodies: in-line inspection (ILI) pipeline 

data obtained from a pipeline company, Centre for Ecology & Hydrology and British 

Geological Survey. 

4.4.1 Pipeline data 

Pipeline external corrosion data has been obtained from in-line inspection using the 

Magnetic Flux Leakage (MFL) technique. MFL is a magnetic method of non-destructive 

testing which has been widely used in in-line inspection tools for surveys of underground 

pipeline [117]. 

The Magnetic Flux Leakage in-line inspection tool can differentiate between internal and 

external metal loss by using two types of sensors. The first type measures the overall flux 

leakage from the whole cross section of the steel, and the second measures the leakage 

from just the first half millimetre of the internal steel surface closest to the sensor. So if 

both sensors pick up a reading, then it is internal metal loss, but if only the first sensor 

registers, then it must be external. 

Whilst more types of data are typically available from an MFL inspection, this study 

focusses only on data on external corrosion depth at GPS location, defect orientation and 

distance to upstream weld (Table 4-1). 

Factor Type of data Range of values 

Corrosion depth 

(Pipeline data) 

Quantitative Values from 0.07 to 6.39 mm 
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Defect orientation 

(Pipeline data) 

Qualitative Values from 0:00 to 11:59 

Distance to upstream weld 

(Pipeline data) 

Quantitative Values from 0 to 12m 

Table 4-1. Pipeline data. 

Corrosion depth as reported by the ILI has a specification accuracy of ±10% with 80% 

confidence. Reported ILI depth data has not been validated through field measurements. 

The pipelines included in the study are coated with a factory-applied coal tar or asphalt-

enamel coating. 

The majority of the pipelines included in this case study have been in service for more than 

30 years. Precise commissioning dates have been difficult to define with certainty. 

4.4.2 Centre for Ecology and Hydrology data 

The Centre for Ecology and Hydrology (CEH) is the UK’s Centre of Excellence for integrated 

research in hydrology and terrestrial ecosystems. A series of soil data of 1km x 1km squares 

covering the UK were collected and analysed in 2007 by the CEH. See [118] and [119] for 

more details about how the data was collected and analysed. 

Data from the CEH which was used in the analysis is summarised in Table 4-2. A total of 4 

parameters were extracted from the respective soil databases and soil maps: carbon 

concentration, soil pH, moisture and bulk density. 

Factor Type of data Range of values 

Carbon concentration 

(CEH) 

Quantitative Values from 19 to 513g/kg 
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Soil pH 

(CEH) 

Quantitative Values from 4.4 to 8.2 

Moisture 

(CEH) 

Quantitative Values from 22 to 80% 

Bulk density 

(CEH) 

Quantitative Values from 0.17 to 1.21g/cm3 

Table 4-2. Centre for Ecology and Hydrology data 

The carbon concentration was determined with a loss-on-ignition technique in which the 

soil sample was dried at 105°C for 16 hours and then combusted at 375°C for another 16 

hours. To obtain the pH, 10g of field moist soil was used with 25ml de-ionised water giving 

a ratio of soil to water of 1:2.5 by weight [118][119]. 

Soil moisture was measured by performing weight readings throughout the soil. The 

moisture loss on each of the steps of the carbon concentration calculation was also used to 

calculate the moisture. Bulk density refers to the dry weight of soil per unit of volume of 

soil. 

Samples for soil carbon concentration, soil pH, moisture and bulk density measurements 

were collected using a 15cm by 5cm plastic core following the filed protocol described in 

more detail in [119]. 

Carbon concentration was estimated by multiplying loss on ignition by a factor of 0.55 and 

it is assumed to be organic carbon. 

4.4.3 British Geological Survey data 

The British Geological Survey (BGS) collects data from the UK landmass in order to advance 

geoscientific knowledge. Data from BGS used in this research was extracted from a map 
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which covers England and Wales showing interpolated values of topsoil sulphur and 

chlorine concentrations (mg/kg) at a 1km grid resolution. 

The data from the BGS used in this chapter is summarised in Table 4-3. In the data, the 

concentration of both sulphur and chlorine were determined using wavelength disperse X-

ray fluorescence spectrometry [120].  

Factor Type of data Range of values 

Sulphur concentration 

(BGS) 

Quantitative Values from 59 to 1,978mg/kg 

Chlorine concentration 

(BGS) 

Quantitative Values from 504 to 1,736mg/kg 

Table 4-3. British Geological Survey data. 

Even though the sulphur and chlorine concentrations may not directly be related to the 

corrosion mechanism, they have been considered in this study as they reflect the ion 

concentration. Thus, in this study the assumption is that sulphur and chlorine 

concentrations are proportional to sulphide and chloride ion concentrations. 

4.4.4 Data processing and management 

The data from Sections 4.4.1 to 4.4.3 have been processed from their original databases.  

- Pipeline data was originally in a comma separated value (csv) format. Each of the 

corrosion defect was associated to a GPS coordinate. These GPS coordinates were 

used to map each to the corrosion defects with soil properties. 

- Centre for Ecology and Hydrology data was originally in a grid format. A series of 

soil data of 1km x 1km squares covering the UK which were also associated to GPS 

coordinates. Each of the squares in the grid were having different soil properties. 
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- British Geological Survey data was originally point data at a 1km grid resolution.  

Each of these values was associated to GPS coordinates. 

The first step was to map each of the corrosion defects from the pipeline data to the data 

in the grid format. QGIS software was used to map these two types of data. The result was 

a csv format file with all the defects GPS coordinates and their associated soil properties 

(from the Centre for Ecology and Hydrology). 

The second step was to interpolate the point data at a 1km grid resolution to each of the 

corrosion defect GPS coordinates. The result of this tedious activity was a csv format file 

with all the defects GPS coordinates and their associated soil properties (from the British 

Geological Survey). 

The third and last step was to integrate the two previous steps into a single database by 

linking them using the common GPS coordinates. This data processing and management 

has allowed the data to be in a suitable format for further analysis. 

4.5 Trends in corrosion defect orientation stablished from 

measurements 

In buried pipelines, the pipeline coatings are subjected to stresses from the surrounding 

soil as a consequence of the weight of the top soil. Also, soil movements and changes in the 

operating pressure cause pipeline movement. Vibrations coming from nearby roads, train 

lines and cycles of expansion/contraction caused from changes in temperature and soil 

moisture content can all affect the soil stress distribution [121]. 

Soil stresses distribution around buried pipelines has been studied by many researchers 

and it has been found that normal and tangential soil stresses are present around 

underground pipelines [122]. Normal stresses are present in the top and bottom part of the 

pipeline, whereas tangential stresses have more importance at 3 and 9 o’clock positions. 

This explains why it is common to find coating breakdown near 6 and 12 o’clock positions 

and coating wrinkling near 3 and 9 o’clock. 
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In this study, the orientation of corrosion defects has been defined by selecting the centre 

point of the corrosion defect. It is assumed that the corrosion defect has been initiated in 

the centre point of the identified defect and that the corrosion propagation has extended 

equally from this point.  

4.6 Corrosion at weld joints 

In the case study analysed in this chapter (data from section 4.4), the pipelines were 

constructed from standard, double random lengths, with a nominal distance of 12 meters 

between weld joints. 

Weld joints are areas of the pipeline where two metallic parts are joined together. They are 

not manufactured in the factory, but in the field. The coating installed over this area (field 

joint coating) is also installed in the field and therefore, it tends not to be as consistent as 

the coatings applied for the rest of the pipeline.  

Analysis of corrosion at weld joints, where susceptibility to corrosion due to this factor is 

expected more, is necessary to establish whether there is a systematic failure caused by 

factors such as quality of coating that applies to all weld joints. Susceptibility to corrosion 

at welds is expected due to diverse factors such as high residual stresses, improper choice 

of filled metal, final surface finish, moisture contamination and the possible creation of 

oxide films and scales. 

To take remedial action, pipeline operators would like to know if corrosion is occurring due 

to systematic factors or due to environmental factors such as those discussed later. Thus, 

the information as to whether there has been a systematic failure at weld joint positions or 

not is of value to the pipeline operators. 

4.7 Correlation between corrosion depth and environmental (soil) 

factors 

The relationship between maximum corrosion depth and soil factors is important. It is well 

known that parameters such as pH and moisture content have a significant effect in 
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external corrosion. However, it is still not clear the level of importance of each of these 

environmental factors. Multiple regression and quantile regression models were used for 

the analysis of the available data and results of this analysis are reported in Section 4.8. 

4.7.1 Multiple regression 

The relationship between corrosion depth and environmental factors was analysed by 

using multiple regression. Multiple regression is used to study the relationship between 

one dependent variable (corrosion depth) and several independent or predictor variables 

(soil factors).  

Multiple regression was implemented using R software by using factors from Table 4-2 and 

Table 4-3 as independent factors by using equation 4.1. 

y = α + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + ε   (4.1) 

Six variables were introduced in the mathematical model. 

Multiple regression provides an estimate of the relative importance of each variable. 

However, it is very sensitive to outliers and therefore, in order to understand better the 

relationship between these soil factors and corrosion depth, a more consistent statistical 

model, described in Section 4.7.2, was applied. 

4.7.2 Generalised extreme values and quantile regression 

The histogram of all the corrosion depth defects is shown in Figure 4-1. Corrosion depth 

data has been fitted to a generalised extreme values (GEV) density function which has been 

proven to be one of the best fitted models for corrosion defects, and has been also applied 

by other researchers such as Velazquez et al. for statistical modelling of pitting [123]. 



 

85 
 

 

Figure 4-1. Corrosion depth probability density function using data from Table 4-1 (line 1). 

The GEV distribution is defined in equation 4.2: 

GEV(x; μ, σ, ξ) = exp {− [1 + ξ (
x−μ

σ
)]

−1
ξ⁄
}     (4.2) 

where ξ, μ and σ are the shape, location and scale parameters of the GEV distribution, 

respectively. 

The probability density function of the maximum corrosion depth is not symmetrical; it has 

a positive skewness (Figure 4-1). In this situation, mean-based regression models such as 

multiple regression are not effective since they average results for the overall density 

function. This indicates that multiple regression may not the most appropriate model to 

investigate the relationships between corrosion depth and soil factors.  

To understand the effect of soil parameters on corrosion depth, it is more appropriate to 

analyse the evolution of the corrosion along the whole spectrum of the density function. 

This means to understand the effect of each soil parameters at different stages of corrosion, 
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or in other words, how a factor or factors could have a stronger influence on defects with 

larger or smaller corrosion depths. The characteristic positive skewness observed for 

maximum corrosion depth leads us to use more complex models such as quantile 

regression. Quantile regression was used to identify the effect of key factors (soil factors) 

on the defects with the range of corrosion depths. 

Quantile regression was computed using R software by following the procedure detailed in 

[124] to study the effects of soil factors on corrosion depth for low and high amounts of 

each independent variable (for example, pH). The independent variables included are 

shown in Table 4-2 and Table 4-3; the dependent variable was corrosion depth. This 

analysis gave a more complete view of the effect of each independent variable on the 

maximum corrosion depth and indicated which factors had a greater influence on the 

whole range of corrosion depths. The results of this analysis are discussed in Section 4.8.3.2. 

4.8 Analysis 

The analysis of the dataset carried out in this paper focused on the following main 

relationships between (i) number of defects and their orientation along the circumference 

of the pipeline; (ii) defect depth and the location of such defects from weld locations; and 

(iii) defect depth and certain environmental factors shown in Table 4-2 and Table 4-3. 

4.8.1 Relationship between number of defects and their orientation 

The orientation of defects on a pipeline has been the topic of many studies [125]. It has 

been demonstrated that the bottom of pipelines often suffers a higher density of defects 

compared with the top part of pipelines. This is explained by an increased risk of exposure 

to moisture/water especially during wet weather seasons where the ground water levels 

may be higher. 

Variations in the oxygen content and chemical composition of the soil from top to bottom 

of the pipe can act as concentration cells that promote corrosion [125]. 

A total of more than 60,000 reported corrosion defects were included in the analysis for 

this study. The locations of the defects were divided into intervals of 15° around the 
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pipelines, in a clock-like manner, in order to study the effect of orientation on pipeline 

corrosion. This provided a distribution of the defects in 24 regions around pipeline’s 

circumference, as shown in Figure 4-2. 

 

Figure 4-2. Distribution of defects in 24 regions around pipeline’s circumference. 

The results show that the density of defects was largely symmetrical with respect to the 

vertical axis. Since the results were symmetrical, in order to simplify reporting results, 

corrosion defects were reported for half of the pipe, ie for only 12 regions, which was 

equivalent to analysing half of the pipeline but considering all the available data. 

Figure 4-3 shows a plot of the number of defects around the 12 regions of the pipeline. This 

shows clearly a greater density of defect at the top and bottom of the pipelines (centred 

around the 12 and 6 o’clock positions). It also shows a gradual increase of corrosion defects 

from 00:30 to 6:00 and from 11:30 to 6:00 positions. 
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Figure 4-3. Number of defects around the 12 regions of the pipeline. 

4.8.2 Corrosion at weld joints 

Results reported in this section show the effect of the distance between corrosion defects 

and upstream welds (Figure 4-4). For pipelines suffering from corrosion at welded areas, it 

is expected that there are a higher number of corrosion defects closer to the welds than far 

from them. Moreover, these defects will be expected to be more critical, in terms of depth, 

than other defects far from welds. 

An independence chi-square test has been performed for distance to upstream weld and 

defect depth. Chi-square tests whether one variable is independent from another one.  In 

other words, it tests whether or not a statistically significant relationship exists between 

distance to upstream weld and defect depth. 

By performing chi-square test a value of p = 0.00003 is obtained, which is lower than 0.05.  

Since, the result of the chi-square test is less than 0.05, it means that there is enough 



 

89 
 

evidence to conclude that distance to upstream weld and defect depth are in fact different, 

therefore it proves their independence. 

 

Figure 4-4. Depth of corrosion defects and distance to upstream weld. 

In Figure 4-4, each point represents the depth of a corrosion defects plotted against the 

distance to the upstream weld. The red line represents the accumulated probability density 

function for the number of defects which is nearly a straight line. This means that the 

likelihood of finding a corrosion defect is independent on the distance to welds, and 

therefore, distance to upstream weld does not have any effect to external corrosion for this 

case study. In other words, we can confirm that in the welded areas where there is a field 

joint coating, the probability of finding a defect is roughly the same as for the rest of the 

pipe. 



 

90 
 

4.8.3 Environmental (soil) factors 

4.8.3.1 Correlation between external corrosion (defect depth) and environmental 

factors: multiple regression and validation 

Multiple Regression was performed in order to estimate the average of corrosion defect 

depth. The results from Multiple Regression are expressed in equation 4.3. This equation 

predicts the corrosion depth for the six given parameters addressed in Sections 4.4.2 and 

4.4.3. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝐷𝑒𝑓𝑒𝑐𝑡 𝐷𝑒𝑝𝑡ℎ (𝑚𝑚)   = 3.12 ∙ 10−1 − 5.63 ∙ 10−4𝑥1 − 3.29 ∙

10−2𝑥2 + 1.42 ∙ 10−2𝑥3 + 2.32 ∙ 10−1𝑥4 + 4.01 ∙ 10−4𝑥5 − 4.53 ∙ 10−4𝑥6 (4.3) 

Where: 

 𝑥1 = Carbon Concentration (g/kg). 

 𝑥2 = Soil pH. 

 𝑥3 = Moisture (%). 

 𝑥4 = Bulk density (g/cm3). 

 𝑥5 = Sulphur concentration (mg/kg). 

 𝑥6 = Chlorine concentration (mg/kg). 

Each of the coefficients in Equation 4.3 has a “p-value” associated (Table 4-4). The “p-value” 

is the probability of finding the observed results when the null hypothesis is true. If the “p-

value” is less than 0.05, then, given variable has significantly different results from zero 

meaning that the statistic is reliable and therefore this factor has a strong correlation with 

the dependent variable. The “p-value” < 0.05 implies that a 5% significance level is used. 

Variable Estimate Std. error t-Value p-value Interpretation 

Intercept 3.12∙10-1 9.28∙10-2 3.356 0.000792 Significant Differences 
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𝑥1 -5.63∙10-4 1.69∙10-4 -3.317 0.000911 Significant Differences 

𝑥2 -3.29∙10-2 7.70∙10-3 -4.271 1.95∙10-5 Significant Differences 

𝑥3 1.42∙10-2 1.60∙10-3 8.817 <2∙10-16 Significant Differences 

𝑥4 2.32∙10-1 3.549∙10-2 6.541 6.19∙10-11 Significant Differences 

𝑥5 4.01∙10-4 1.621∙10-5 24.728 <2∙10-16 Significant Differences 

𝑥6 -4.53 ∙10-4 3.171∙10-5 -14.291 <2∙10-16 Significant Differences 

Table 4-4. Multiple linear regression coefficients. 

In order to evaluate the accuracy of equation 4.3, a validation exercise was carried out. The 

calculated and the predicted corrosion depths (using equation 4.3) were plotted against the 

real measurements for all defects considered in this study.  

Figure 4-5 shows the predicted corrosion depth, calculated using equation 4.3, plotted 

against the real corrosion depth, obtained from the real measurements (explained in 

Section 4.4.1). 
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Figure 4-5. Predicted corrosion depth and measured corrosion depth. 

The diagonal line represents the ideal case and it has a slope equal to 1. If a defect falls 

near this line, it means that the predicted corrosion is close to the measured corrosion. 

However, for this validation exercise, most of the defects do not fall consistently in regions 

close to this line, meaning that the prediction model is inaccurate and cannot be used as a 

baseline to predict corrosion in pipelines.  

This is also confirmed by the statistical value of R2=0.03 obtained from the regression 

model. Therefore, we can conclude that only 3% of the variation is explained by the 

regression and the rest is due to error. 

4.8.3.2 Correlation between external corrosion and environmental factors: 

application of quantile regression 

Quantile regression may be easily understood as an extension of the least square 

estimation of conditional mean models [89]. It estimates multiple rates of changes from 

the minimum to the maximum response [124]. Quantile regression provides a more 
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thorough description of the relationships between variables, missed by multiple regression 

models. 

Equations for some of the most relevant quantiles are represented in Equations 4.4 to 4.6. 

The 0.5 quantile is important because it is the median of the distribution. 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ (0.05 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 1.35 ∙ 100 + 7.80 ∙ 10−4𝑥1 + 3.77 ∙ 10−2𝑥2 − 1.95 ∙

10−2𝑥3 − 4.64 ∙ 10−1𝑥4 − 1.70 ∙ 10−4𝑥5 + 3.50 ∙ 10−4𝑥6   (4.4) 

The 0.05 quantile (5th quantile) represents the corrosion depth for the 5% of the defects on 

the left of the probability density function (small corrosion depth). 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ (0.5 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = −1.93 ∙ 10−1 − 1.00 ∙ 10−4𝑥1 + 1.63 ∙ 10−2𝑥2 +

1.59 ∙ 10−2𝑥3 + 1.22 ∙ 10−1𝑥4 + 4.40 ∙ 10−4𝑥5 − 4.40 ∙ 10−4𝑥6   (4.5) 

The 0.95 quantile (95th quantile) represents the corrosion depth for the 95% of the defects 

on the left of the probability density function (large corrosion depth). 

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ (0.95 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒) = 3.38 ∙ 10−1 + 7.55 ∙ 10−3𝑥1 − 3.56 ∙ 10−1𝑥2 +

4.18 ∙ 10−3𝑥3 + 1.99 ∙ 100𝑥4 + 2.00 ∙ 10−3𝑥5 − 1.20 ∙ 10−3𝑥6   (4.6) 

Where 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 and 𝑥6 are defined in Section 4.8.3.1. 

The 0.05 quantile shows how corrosion depth is being affected by environmental factors 

for small corrosion defects (left part of the probability distribution), whereas the 0.95 

quantile shows how corrosion depth is being affected by environmental factors for deeper 

corrosion defects (right part of the probability distribution). 

The 0.5 quantile is the median of the probability distribution and it shows how corrosion 

depth is being affected by environmental factors for medium corrosion defects (middle 

part of the probability distribution). 

Figure 4-6 shows the graphical interpretation from equations 4.4 to 4.6. The quantiles of 

dependent variable are on the horizontal axis and the coefficient magnitudes on the 
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vertical axis. The horizontal lines are the Multiple Regression coefficients and the horizontal 

doted lines above and below are the 95% confidence intervals. The Multiple Regression 

coefficients do not vary with quantiles because they calculate the average value for the 

dependent variable. 

The quantile regression coefficients are plotted as points joined by straight lines varying 

across the quantiles. The 95% confidence intervals are plotted lines displayed above and 

below the quantile regression coefficients. 

From a statistical point of view, if the quantile coefficients are outside the Multiple 

Regression confidence interval, then, there are significant differences between the quantile 

and Multiple Regression coefficients. 

The quantile coefficients for the soil factors (independent variables) studied on corrosion 

depth (dependent variable) are significantly different from the Multiple Regression 

coefficients. The following main points can be concluded from Figure 4-6. 
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Figure 4-6. Quantile regression coefficients for different soil factors. 

The effect of bulk density, pH, carbon and sulphur concentrations on corrosion depth is 

lower at lower levels of corrosion depth and higher as corrosion depth increases (starts 

near zero and increases along the quantiles). Lower quantiles (below 0.2) correspond to 

lower values in the y axis (values near the zero line), whereas higher quantiles (above 0.8) 

correspond with higher values in the y axis. 

Corrosion depth increases with soil bulk density, carbon and sulphur concentration (values 

above zero, black horizontal line).  

However, corrosion depth decreases with the pH (values below zero). Corrosion depth 

increases with acidity. 
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Moisture content has in general a positive influence in corrosion pitting (values more than 

zero). Once corrosion has initiated (after 10th quantile) and before the pipeline has been 

corroded to a larger extent (before 85th quantile), moisture is shown to cause corrosion  

The results for chlorine seem to be very irregular, with no clear relationship between this 

parameter and corrosion depth was evident from the regression analysis. 
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Chapter 5 Chapter 5 

 

 

Practical implications and 

discussion 

 

 

5.1 The use of DCVG data in ECDA to predict corrosion depth 

DCVG data is used in ECDA to identify the pipeline locations to be excavated for direct 

examination; this is consistent with studies that have shown DCVG data to be reliable in 
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knowing the location of coating breakdown. However, the correlation between %IR and 

corrosion depth is not strong and this case study confirms this aspect (Section 3.5). 

Corrosion depth is dependent on environmental factors and cathodic protection 

performance. This can be confirmed in further research in which a more comprehensive 

dataset that includes CP levels is analysed in multiple regression model, thus improving 

corrosion depth prediction. 

5.2 The use of DCVG data in ECDA to predict coating defect area 

A substantial improvement in the reliability of prediction can be made by considering not 

just DCVG data, but also other such as those relating to environment some of which are 

shown in Table 3-1. Factors such as prior corrosion and repair history that have been 

included in other studies may help make better predictions [126][127]. In the case study 

shown here multiple factors (to the extent possible, given the data available) have been 

taken into account in the regression analyses resulting in more reliable prediction (Section 

3.6.3). This is supported by Masilela and Pereira [128] whose study states that DCVG 

enables comparison of located defects with other defects found in the same area. The %IR 

is used to reflect size/importance of a defect. 

When ECDA is performed, at first instance, pipeline operators usually rely on DCVG values 

in order to provide an initial assessment of the line. This is a good practice to detect coating 

anomalies, typically used for new pipelines where the coatings are more likely to be 

damaged during pipe construction [128]. 

5.3 Correlation between coating defect area and corrosion depth 

For corrosion to be present, two conditions must be active, a damaged coating and 

inadequate levels of cathodic protection [129]. However, pipeline corrosion depth cannot 

be predicted by the only use of coating defect area data. 

Corrosion might appear in small coating areas (Figure 3-7). Deep pits materialise in small 

coating defect areas, meaning in locations that, following the severity classification given 

by NACE RP0502 [9], should be considered as minor severity. The relative size of the anode 
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and cathode areas could be a critical factor in determining the amount of corrosion 

damage at these locations. 

For a given potential difference, if the anode is large compared with the cathode area , the 

anode current density will be low and the corrosion is widely distributed, resulting in a 

more general corrosion loss in the absence of any interference effects.  Whereas, if the 

anode area is small (high anode current density) with respect to the cathode area, the 

corrosive action is localised and severe local damage may result [32]. Anodic interference 

from stray currents such as grounded electric power sources, equipment or electric 

railways, causes corrosion. This type of corrosion is a combined effect of a relatively large 

potential difference or current plus the fact that the anode area, where the current leaves 

the pipe, is small. 

AC corrosion, due to its own characteristics, usually happens at small/very small coating 

faults [130]. When a defect is small, the AC required to induce pitting corrosion is low. 

However, current density decreases because of the blocking effect of corrosion product 

which may accumulate at the defect [131]. 

5.4 Potential causes of anomalies in DCVG readings 

DCVG is a good estimator for locating coating defect; however, DCVG readings are 

potentially affected by factors discussed in Section 3.8. 

By analysing the outliers of the linear regression model and supported by literature review, 

it is likely that the presence of the following events will affect the performance of this 

technique: 

- Surface scales. 

- Presence of connetion to old sacrificial anode protection systems (cad welds). 

- Presence of nearby underground pipelines. 

- Presence of high voltage AC lines. 

- Physical contact between pipeline and metallic support of an aboveground pipeline. 
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Corrosion activity is hard to model using indirect inspection techniques. It is subjected to 

uncertainty given the underlying factors which are especially difficult to model with the 

available data. 

Some studies [94] assume homogeneous soil resistivity for the DCVG survey interpretation, 

nonetheless in this chapter it is used the on-site soil resistivity for each of the defect 

locations, resulting in better results as proposed by McKinney et al. [81] whose research 

dictates “soil resistivity plays a larger role in determining DCVG signals than coating flaw 

size.” 

5.5 Suggestions for improving the ECDA approach 

In an ECDA assessment, the determination of the likelihood of corrosion occurring should 

place more emphasis on other factors such as the level of CP protection and environmental 

(soil) conditions rather than the estimated coating defect size. 

It is suggested that Close Interval Potential Surveys (CIPS) should be carried out before 

DCVG in order to establish sections of the pipeline with poor protection. DCVG 

measurements should focus on these sections to ensure that all coating defects, whatever 

their size, are recorded for the assessment (Figure 5-1). 
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Figure 5-1. Suggested approach for carrying out ECDA indirect inspections. 

The suggested approach is being discussed with stakeholders from industry and the initial 

response is positive. Further research is planned to compare the application of the two 

approaches and validate the level of improvement to be gained by the suggested change. 

5.6 The orientation of defect 

Corrosion defects tend to initiate in two main areas of the pipeline: the bottom and top of 

the pipeline. This is discussed in more detail in the following sections. 

5.6.1 Corrosion defects at the bottom of the pipeline 

The water level is the level below which the soil is completely saturated with water, also 

known as water table or phreatic surface (Figure 5-2). The water level is constantly 

changing and it is dependent on seasonal weather changes.  
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Figure 5-2. Soil water level in underground pipelines. 

Three different scenarios might occur when this interacts with a buried pipeline: 

1. The water level is above the top of the pipeline and the whole surface is 

surrounded by water. 

2. The water level is below the bottom of the pipeline and the whole surface is free of 

water. 

3. The water level is at some point between the top and bottom of the pipeline and 

the pipeline is only partially exposed to water. 

The bottom of the pipeline will be exposed to water for the cases 1 and 3, whereas the top 

of the pipeline will be exposed to water for the case 1. Therefore, the presence of water is 

more likely to appear at the bottom of pipelines, and hence, corrosion is also more likely to 

occur near the 6 o’clock position. 

Furthermore, not taking account of the concentration of defect at the very top of the pipe, 

which are generally considered to be caused by other reasons (see next section), the 

likelihood of finding water near a corrosion defect decreases when we are moving from the 

bottom to the top of the pipeline, and consequently, the likelihood of finding a corrosion 

defect. This has been supported by results from Section 4.8.1. 
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5.6.2 Corrosion defects near the 12 o’clock position 

Figure 5-3 illustrates a simplified model of soil stress acting on pipelines. During the first 

few months of a coating life, when the pipeline is either commissioned or recoated, the soil 

around the pipe settles, as it expands and contracts, and that is the period when it will 

experience the most severe soil stress. 

 

Figure 5-3. Compressional stresses due to external forces and weight of the soil. 

Compressional stresses resulting from external forces applied to the soil, and the weight of 

the soil itself will act on the pipeline coating perpendicular to the soil surface. These forces, 

applied mainly at the top of the pipeline, are translated into a reaction from the bottom of 

the pipeline, also resulting in compressional stresses from the soil acting on the coating in 

this location (Figure 5-3). 

It is common to find coating breakdown (metal exposed) at the 12 o’clock position. As a 

consequence of soil stresses, the coating at the 12 o’clock position is subjected to tensile 

stresses, thus, accelerating its breakdown (Figure 5-4). 
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Figure 5-4. Coating surface stresses. 

Results reported in Section 4.8.1 indicate a high density of corrosion defects at the top of 

the pipelines. A total of 7,843 corrosion defects were located at the 12 o’clock position. The 

two adjacent areas (1 and 11 o’clock) reported much less number of defects. A possible 

reason to explain this anomaly is the effect of soil stresses, enhancing coating breakdown 

at the 12 o’clock position, thus exposing the metal to the soil environment. 

Furthermore, during seasonal changes and in particular in the presence of rain, when the 

water filtrates through the soil, small drops of water might stay on the top of the pipeline 

where the metal is exposed. This, of course, will increase the likelihood of corrosion to take 

place. 

The coating will also transmit the compressional soil stresses along itself from the 12 and 6 

o’clock positions to the 3 and 9 o’clock positions. Finally, compressive stresses will appear 

at the 3 and 9 o’clock positions. Therefore, it is common to find wrinkling and coating 

disbondment at the 3 and 9 o’clock positions. 
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5.7 Corrosion at weld joints 

Weld joints are well known to be areas of high risk of corrosion. Corrosion failures of welds 

might occur due to a diversity of factors such as weldment design, oxide films and scales, 

moisture contamination and presence of high residual stresses, documented in [132]. 

Since the density of defects and corrosion depth is nearly the same along the pipeline 

(Figure 4-4), it was confirmed that weld regions, for this case study, does not have an 

increased risk of corrosion as compared to the rest of the pipeline. 

Installation of field joint coatings at weld joints is a difficult task. If this is not carried out 

correctly, it is common to find coating failures at weld joints which may lead to corrosion.  

However, in the pipelines studied, the results indicate that the weld regions and the rest of 

the pipe are both equally well coated.  

This case study shows that the likelihood of finding external corrosion is totally 

independent of the proximity to welded joints. The inference that can be drawn from this 

result is that in this case study, there are no systematic factors causing additional 

susceptibility to corrosion in areas close to welds. 

5.8 Influence of soil properties in external corrosion 

The analysis carried out showed that the soil factors have a varying influence at different 

degrees of corrosion depth. It also showed that multiple linear regression models do not fit 

well in predicting the behaviour of corrosion using the soil factors. This is either due to the 

nature of the kinetics of corrosion or because of the lack of other environmental 

parameters. More intelligence on soil factors influencing external corrosion was gained 

from the quantile regression results. 

5.8.1 Bulk density, carbon and sulphur concentration 

The effect of bulk density, carbon and sulphur concentrations on corrosion depth was 

lower at low levels of corrosion depth and higher as corrosion depth increases. Once 

corrosion has initiated and evolved into a severe defect (after the 60th quantile) bulk 
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density and carbon concentration were shown to enhance corrosion. One possible reason 

for this could be due to direct and indirect factors related to soil volume changes. 

Most soils decrease in volume when they dry out and increase in volume when they are 

wet again; this is known as volume shrinkage [32]. In soils rich in organic matter (high in 

carbon concentration), shrinkage caused by drying produces cracks could provide a path for 

oxygen in the atmosphere to reach the exposed metal. Oxygen stimulates corrosion by 

combining with metal ions to form oxides, hydroxides, or salts of metals [32]. 

The effect of sulphur concentration on corrosion increases along the spectrum of the 

quantiles is almost linear. After the 10th quantile (corrosion defect is initiated), it was 

found that the deeper is the defect, the stronger the effect of sulphur on corrosion. It has 

been discussed in previous studies the effect of sulphate concentration in underground 

corrosion. It has been found that for concentrations below 200 ppm, the soil corrosivity is 

considered to be mildly corrosive [133]. However, the quantile regression model gives a 

more comprehensive understanding of the corrosion process for different levels of 

corrosion. 

These 3 factors have little or no effect on corrosion of pipelines at low levels of corrosion 

damage; this means that they may not have a large influence in the initiation of corrosion. 

However, once corrosion is initiated and began to progress, they will have a catalytic effect 

on corrosion and they will accelerate the corrosion mechanism. 

5.8.2 Soil pH 

It has been found that corrosion depth is inversely proportional to the value of soil pH, 

represented by values below zero in Figure 4-9. Therefore, corrosion depth decreases with 

alkalinity (higher values of pH). When the pH increases (OH ions concentration increase), 

passivation occurs on the pipeline surface [134], which will protect the pipeline from 

further corrosion. Once corrosion has initiated and evolved into larger defects (after 70th 

quantile), soil pH is shown to decrease corrosion. The effect of soil pH on corrosion depth is 

lower at low levels of corrosion and higher as corrosion depth increases.  
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Previous studies have determined that the corrosion rate decreases with increasing pH, 

being highest at pH 4 and lowest at pH 9 [135]. The study carried out in this paper proves 

that the pH is inversely proportional to corrosion, however, a better understanding of the 

effect of soil pH on underground corrosion has been obtained from results of the quantile 

regression. 

5.8.3 Moisture and chlorine concentration 

From the results it is found that moisture content, in general, has a positive influence on 

corrosion depth (values more than zero along the quantile spectrum in Figure 4-10), as also 

demonstrated in [136]. Once corrosion has initiated (after the 10th quantile) and before 

the pipeline has been corroded to a larger extent (before the 85th quantile), moisture is 

shown to cause an increase in corrosion. It is plausible that, once the defects reach a 

certain size the effect diminished because other factors become more important and have 

a more dominate effect. 

There was little or no correlation between chlorine concentration and corrosion depth. One 

reason for this could to due to the fact that it has been assumed in this study that chlorine 

concentration is proportional to chloride ion concentration.  This relationship may not be 

straightforward or there may not be any correlation between the two parameters in the 

form the data was extracted from the soil databases. 

Chlorine by itself does not have a negative effect on pipeline corrosion; it is only when 

chloride ions are present that the pipeline corrode is accelerated [137]. Therefore, a more 

complete soil database, which includes chloride concentration, is required in order to 

evaluate pipeline corrosion on a more accurate manner. 
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6.1 Concluding remarks 

Underground pipelines are extensively used in transportation of liquids and gases around 

the world and its reliability is key aspect of many industrial applications. One of the most 

common damage mechanisms associated with underground pipelines is external corrosion. 

The topic of this research and the background related to this thesis is described in Chapter 

1. This chapter also describes the aim of this research as well as the main contributions to 

the knowledge. 

Chapter 2 presents a literature review of external corrosion in underground pipelines, its 

control and mitigation, Pipeline Integrity Management programs. This chapter also 

describes the statistical tools previously applied to Pipeline Integrity Management 

programs. 

Chapter 3 describes a novel regression model (quantile regression) applied for first time to 

data from an External Corrosion Direct Assessment. A mathematical formulation describing 

the regression model is presented in this chapter. Research presented in Chapter 3 is 

related to non-piggable pipelines and concludes that: 

1. The DCVG %IR value from the indirect inspection step correlates well with the 

measured coating defect size when soil properties and pipeline design parameters 

are introduced in the regression model. 

2. It has been found that quantile regression is a useful tool in order to understand 

the effect of %IR for small and large coating defects in comparison with the 

simplicity of multiple regression models. 

3. The correlation between the %IR value and the measured coating defect size is 

non-linear with sensitivity as the %IR increases. Larger %IR values are linked, 

proportionally, to larger coating defect areas. 

4. Measured corrosion depth does not correlate with the DCVG %IR value from the 

indirect inspection step. 
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5. The measured coating defect size does not correlate with the measured corrosion 

depth. The likelihood of corrosion taking place at small defects and also at large 

defects are similar.  

Therefore, small indications detected during pipeline survey need to be treated with 

caution. It is required to consider both small and large coating anomalies for cathodically 

unprotected pipelines, otherwise high corrosion rated might occur in small defects in the 

presence of adverse environmental conditions. On the other hand, large coating defects 

are easy to detect as demonstrated with the application of the quantile regression model. 

High values of %IR will be generally linked to large coating defect. 

Chapter 4 presents the application of quantile regression to data from In-Line Inspection 

and environmental (soil) factors. Research presented in Chapter 4 is related to piggable 

pipelines and concludes that: 

1. Corrosion defects are more likely to appear at the top and bottom of the pipeline 

and near the 12 and 6 o’clock positions. 

2. Corrosion at the bottom of the pipelines is likely to be dependent on the water 

level which is constantly changing and in itself dependent to seasonal weather 

changes. 

3. Soil stresses contribute to the coating breakdown at the top of the pipeline, thus, 

exposing the pipeline to the soil environment. 

4. For pipelines equally well coated throughout at coating field joints, the likelihood 

of finding external corrosion is independent to the proximity to weld joints. 

5. Bulk density carbon and sulphur concentration have little effect on corrosion for 

pipelines in early stages of corrosion damage; they are unlikely to be major 

contributing factors in the initiation of corrosion. However, once corrosion is 

initiated and the corrosion of the pipelines progresses, they will have a catalytic 

effect and will accelerate the corrosion mechanism. 

6. Corrosion depth is directly proportional to the alkalinity of the soil. 



 

111 
 

7. Moisture content is directly proportional to the corrosion depth. Moisture causes 

an increase in corrosion once corrosion has initiated and before the pipeline defect 

reaches larger sizes. 

6.2 Future work and ongoing research 

As discussed in Chapter 5, to rely only on DCVG data to assess damage (from both, coating 

breakdown and reduction in the thickness of the pipeline as measured in depth of 

corrosion) is potentially misleading. A multiple regression such as shown in section 3.6.2 

that takes account of environmental and other factors is more accurate in predicting 

coating defect area. However, it requires specific data to be available. To be able to make 

more accurate predictions, updating techniques are being used so that new information 

can be used in the analyses as and when it is available. Also, there are techniques that 

enable the combination of data from difference sources using Bayesian methods  [138]. 

The regression techniques for prediction of corrosion damage must be viewed as 

complementary to other techniques such as Bayesian Belief Networks [139][104][107]. A 

pipeline integrity management approach may have inputs from elements of an ECDA 

approach, physics based corrosion models, structural reliability models such as in [140], 

and risk based decision support models that include the impact of consequential failure 

such as shown in [141]. 

The choice of approach and the techniques used often depends on the sort of data that is 

available. There is a strong case for sharing corrosion data among stakeholders and the use 

of data mining techniques to analyse such data for common benefit [142]. Getting data 

from a wider sample may be particularly useful when situation/location specific data is not 

easily available; such data could then be calibrated with specific inspection data when it 

becomes available. 

The following research issues are proposed to follow this PhD thesis: 

- Application of the developed regression models to different pipeline datasets in 

different environment. This will help to improve the accuracy of the models. 
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- Develop a software tool by implementing a corrosivity risk ranking map considering 

soil properties. 

- Analysis of Close Interval Potential Survey inspection by introducing it into the 

correlation model developed in Chapter 3. This will increase the accuracy of the 

external corrosion regression model. 

Quantile regression has been shown to perform effectively when applied to data from 

underground pipeline inspection. However, the effectiveness of the proposed method has 

not been validated in other types of pipeline or pipelines under different environmental 

(soil) conditions. In addition, quantile regression has been validated for non-piggable 

pipelines in desert conditions and for piggable pipelines for soils in the UK. Thus, the 

application of this novel method in other types of soil should be further investigated. 
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Appendix A. Quantile Regression 
Quantile regression is a type of regression analysis used in statistics and econometrics. It 

estimates either the conditional median or other quantiles of the response variable. It is a 

statistical technique used to estimate and draw inference on conditional quantile functions 

[88][89]. It can provide a complete statistical analysis of the stochastic relationships among 

random variables.  

Quantile regression is desired if conditional quantile functions are of interest. One 

advantage of quantile regression, relative to the ordinary least squares regression, is that 

the quantile regression estimates are more robust against outliers in the response 

measurements. 

To understand quantile regression, first it’s required to explain what quantiles are. 

Let 𝑌 be a real valued random variable with cumulative distribution function 𝐹𝑌(𝑦) =

𝑃(𝑌 ≤ 𝑦). The τth quantile of Y is given by: 

𝑄𝑌(τ) = 𝐹𝑌
−1(τ) = inf{𝑦: 𝐹𝑌(𝑦) ≥ τ} 

Where τ ∈ [0,1] 

Define the loss function as 𝜌τ = 𝑦(τ − 𝐼(𝑦<0)), where 𝐼 is an indicator function. A specific 

quantile can be found by minimizing the expected loss of 𝑌 − 𝑢 with respect to 𝑢. This can 

be shown by setting the derivative of the expected loss function to 0 and letting 𝑞τ be the 

solution of: 

0 = (1 − τ) ∫ 𝑑𝐹𝑌(𝑦) − τ ∫ 𝑑𝐹𝑌(𝑦)
∞

𝑞τ

𝑞τ

−∞

 

This equation reduces to: 

𝐹𝑌(𝑞τ) = τ 

Therefore, 𝑞τ is τth quantile of the random variable Y. 
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For the calculation of the conditional quantile and quantile regression, suppose the τth 

conditional quantile function 𝑄𝑌|𝑋(τ) = X𝛽τ . Given the distribution of 𝑌, 𝛽τ  can be 

obtained by solving: 

𝛽τ = argmin𝐸(𝜌τ(𝑌 − 𝑋𝛽)) 

Solving the sample analog gives the estimator of 𝛽.  
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