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The influence of surface contamination upon the mass transfer rate of a low diffusivity gas
across a flat surface is studied using direct numerical simulations. The interfacial mass
transfer is driven by isotropic turbulence diffusing from below. Similar to Shen et al. (J.
Fluid Mech. 506, 2004, pp. 79-115) the surface contamination is modelled by relating
the normal gradient of the horizontal velocities at the top to the horizontal gradients
of the surfactant concentrations. A broad range of contamination levels is considered,
including clean to severely contaminated conditions. The time-averaged results show a
strong correlation between the gas transfer velocity and the clean surface fraction of
the surface area. In the presence of surface contamination the mass transfer velocity
KL is found to scale as a power of the Schmidt number, i.e. Sc−q, where q smoothly
transitions from q = 1/2 for clean surfaces to q = 2/3 for very dirty interfaces. A
power law KL ∝ Sc−q is proposed in which both the exponent q and the constant of
proportionality become functions of the clean surface fraction.
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1. Introduction

The direct numerical simulations (DNS) presented in this paper are carried out in order
to obtain a detailed understanding of the effect of various levels of contamination on gas
transfer across the air-water interface driven by isotropic turbulence diffusing from below.
Because of their low mass diffusivity (high Schmidt number) in water, the gas transfer
process for low to moderate soluble gases (e.g. oxygen, carbon dioxide, carbon monoxide,
methane) is controlled by the hydrodynamics at the liquid side (e.g. Jähne & Haussecker
1998) which significantly depend on the surface condition. In nature, a truly clean sur-
face is almost impossible to maintain. Hence, it is of key importance to understand in
detail the effects of surface contamination on the interfacial mass transfer. In the natural
environment, several types of surface contamination can be found. In the present paper
we assume the surfactant to be insoluble, such as oleyl alcohol. However, the dynamics
of low-soluble monolayer type surfactants with a significantly higher concentration at
the surface than in the bulk can be approximately simulated using the aforementioned
assumption. Examples of such monolayer films due to organic matter can be found in
e.g. Espedal et al. (1996). Other types of contamination, such as the presence of a thick
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layer of crude oil on the water surface, fall outside the scope of this paper. Because of
the different mechanisms of scalar transfer, to simulate this type of contamination a two
layer structure with different molecular diffusivities needs to be resolved.

Contamination by e.g. surfactants changes the near surface hydrodynamic conditions
by the generation of tangential stresses due to variations in surface elasticity, which
under clean conditions is constant. These stresses damp the turbulent eddies near the
surface (see Davies 1972). For example, Handler et al. (2003) and Shen et al. (2004)
studied the effect of surfactants on free-surface turbulent flow and showed that the surface
divergence and associated upwellings and downwellings can be significantly reduced by
the presence of even small amounts of surfactants. For large amounts of surfactants Shen
et al. (2004) showed that the surface divergence becomes negligibly small and, hence,
these up and downwellings almost completely disappear. Consequently, this damping
of vertical turbulent motion close to the surface will lead to a decrease in the transfer
velocity, KL, of atmospheric gases across the air-water interface. For instance, in the
experiments of Asher & Pankow (1986) and McKenna & McGillis (2004), compared to
clean conditions, surface contamination was found to result in a reduction in KL of up
to 80%. This is in agreement with the DNS results of Herlina & Wissink (2016) who
studied the limit case of severe contamination (i.e. a no-slip condition) at a Schmidt
number of Sc = 500, which is typical for oxygen. In the hybrid DNS/LES study of
Hasegawa & Kasagi (2008) the effect of surface contamination on surface shear driven
interfacial mass transfer was studied for Sc = 1 and 100. For the higher value of Sc a
reduction in KL of about 65% compared to clean conditions was obtained.

The transfer of atmospheric gases into water is dominated by molecular diffusion re-
sulting in a concentration boundary layer adjacent to the surface. The thickness of this
boundary layer (typically 10− 1000µm for Sc ≈ 500− 700) is usually controlled by tur-
bulence generated by e.g. wind-shear, buoyancy, or bottom-shear. Near the surface this
turbulent motion periodically brings up unsaturated fluid from the bulk. During a cer-
tain time-interval ∆t (the renewal time) this fluid is subsequently transported along the
surface, where it becomes saturated with atmospheric gases due to diffusion, before it is
returned to the bulk. The surface renewal model of Danckwerts (1951) uses an exponen-
tial distribution of the renewal time to obtain the relationship KL ∼

√
Dr, where D is

the diffusion coefficient and r = 1/∆t is the surface renewal rate. In this surface renewal
model r implicitly describes the hydrodynamical effects and needs to be determined ex-
perimentally. Using DNS results of open-channel flow, Kermani et al. (2011) showed that
Danckwerts’ assumption of a constant surface renewal rate is only approximately valid
for larger (older) surface ages.

Fortescue & Pearson (1967) assumed that the largest eddies in the flow determine the
surface renewal rate so that r is estimated by u∞/Λ , where u∞ is the root-mean-square
(rms) of the turbulent fluctuations and Λ is the characteristic length scale of the largest
eddies. Hence, the transfer velocity predicted by using this ”large-eddy model” is defined
by KL ∝

√
Du∞/Λ. Alternatively, by assuming that small rather than large eddies

determine the surface renewal rate, Banerjee et al. (1968) and Lamont & Scott (1970)
derived the ”small-eddy model”, where r is approximated by (ε/ν)1/2, in which ε is the
turbulent dissipation rate near the surface and ν is the kinematic viscosity. The transfer
velocity is subsequently estimated by KL ∝

√
D(ε/ν)1/2. By non-dimensionalising the

large and small eddy models using u∞ and Λ, we obtain

KL

u∞
= c1 Sc

−1/2R
−1/2
T (1.1)



3

and
KL

u∞
= c2 Sc

−1/2R
−1/4
T , (1.2)

respectively, where Sc = ν/D, RT = u∞Λ/ν is the turbulent Reynolds number and c1,
c2 are constants of proportionality. Note that in (1.2) ε is estimated by ε = u3∞/Λ. In this
form, the only difference between the two models lies in the exponent of RT . Theofanous
et al. (1976) recognised the existence of two regimes, where the large and small eddy
models are valid for low and high RT , respectively, with a critical turbulent Reynolds
number of RT,crit ≈ 500.

An important variant of the surface renewal model is the surface divergence model of
McCready et al. (1986),

KL = cβ
√
Dβrms, (1.3)

where the rms of the surface divergence, βrms, is used as a measure for the renewal rate.
They showed the importance of surface divergence in interfacial mass transfer. This result
was subsequently confirmed in various experimental and numerical studies (e.g. McKenna
& McGillis 2004; Turney 2016; Magnaudet & Calmet 2006; Kermani et al. 2011; Herlina
& Wissink 2014; Wissink & Herlina 2016) showing that surface divergence can provide
a good quality prediction of the transfer velocity, though the constant of proportionality
cβ was found to vary significantly from case to case. To circumvent uncertainties in the
definition of a renewal event, some researchers proposed mixed models of surface renewal
and divergence (e.g. Peirson & Banner 2003).

In the numerical investigations of Shen et al. (2004), Hasegawa & Kasagi (2008) and
Khakpour et al. (2011) a drastic reduction in βrms was observed with increasing contam-
ination levels. Based on this it was concluded that using a no-slip interfacial boundary
condition would be a good approximation of a severely contaminated air-water interface.
Based on the findings of Ledwell (1984) and Coantic (1986), it is now generally accepted
that for a free-slip surface (clean conditions) the transfer velocity KL scales with Sc−1/2,
while for a no-slip surface (severely contaminated conditions) KL scales with Sc−2/3.
This is in agreement with e.g. Hasegawa & Kasagi (2008) who observed that for higher
levels of contamination the interfacial mass transfer scaling as a power of the Schmidt
number ”switches” from Sc−0.5 to Sc−0.7 for clean and severely contaminated surfaces,
respectively .

For such a no-slip boundary condition Herlina & Wissink (2016) proposed a modified
version of the dual-regime model of Theofanous et al. (1976) given by

KL

u∞
∝ Sc−2/3R−1/2T for RT < RT,crit, (1.4)

and
KL

u∞
∝ Sc−2/3R−1/4T for RT > RT,crit. (1.5)

For isotropic turbulence driven mass transfer, the validity of both the large (1.4) and
small (1.5) eddy variant for the no-slip boundary condition was subsequently verified
by Herlina & Wissink (2016) using DNS data for both low RT (up to Sc = 500) and
high RT (up to Sc = 32). For a free-slip boundary condition (clean surface condition),
on the other hand, the validity of the scaling of KL in (1.1) was verified in Herlina &
Wissink (2014) for Sc up to 500 and turbulent Reynolds numbers up to RT ≈ 500. Also,
for buoyancy driven mass transfer Wissink & Herlina (2016) obtained the correct scaling
behaviour of KL with Sc for RT 6 50 and Sc up to 500.

It remains to be determined what scaling would apply (if any) for small to moderate
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levels of contamination. To investigate this let us assume that for any surface condition
KL can be approximated by

KL

u∞
= cSc−qR−rT , (1.6)

where r = 1/2 and 1/4 for the low and high RT regimes, respectively. In this expression
the power q is related to the level of contamination at the surface. Note that for other
flow regimes the scalings in (1.1), (1.2), (1.4) and (1.5) might not be valid, as evidenced
by the large spread of parameters obtained in previous works (e.g. Notter & Sleicher
1971; Na & Hanratty 2000; Jähne & Haussecker 1998). Therefore, we decided to avoid
any bias due to mean shear and use isotropic turbulence when studying the effect of
various levels of surface contamination on interfacial gas transfer.

As in our previous DNS calculations, surface waves are assumed to be very shallow
so that the interface can be modelled using a rigid lid assumption. The contamination
level is characterised by Ma/CaT , where Ma is the Marangoni number and CaT is the
turbulent capillary number (details in § 2.3). In the results presented below, it will be
shown that for small levels of contamination, parts of the surface area become virtually
surfactant-free. A model is subsequently proposed and verified that predicts KL using
the surfactant-free fraction of the surface area.

2. Numerical aspects

2.1. Governing equations

The problem that is simulated concerns the reduction in interfacial gas transfer due to
surface contaminations in a turbulent water environment driven by isotropic turbulence
diffusing from below. The dimensionless incompressible Navier-Stokes equations are de-
fined by the continuity equation

∂ui
∂xi

= 0, (2.1)

and the momentum equations

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(i = 1, 2, 3) , (2.2)

where x1 = x, x2 = y are the horizontal (surface-parallel) directions and x3 = z is the
vertical (surface-normal) direction, u1 = u, u2 = v and u3 = w are the velocities in the
x, y, and z directions, respectively, p is the pressure, Re is the Reynolds number and t
denotes time.

The dimensionless scalar concentration c∗ is governed by the following advection dif-
fusion equation

∂c∗

∂t
+
∂ujc

∗

∂xj
=

1

ReSc

∂2c∗

∂xj∂xj
(j = 1, 2, 3), (2.3)

where

c∗ =
c− cb,0
cs − cb,0

, (2.4)

in which cb,0 is the initial concentration in the bulk and cs is the concentration at the
surface, which is assumed to be fully saturated (cs = 1) at all times. At the bottom of
the domain a Neumann boundary condition of zero scalar flux (∂c/∂z = 0) is imposed.

At the surface the following two-dimensional transport equation for the surfactant
concentration is solved

∂γ∗

∂t
+
∂ujγ

∗

∂xj
=

1

ReScs

∂2γ∗

∂xj∂xj
(j = 1, 2), (2.5)
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where γ∗ is defined as the surfactant concentration, γ, non-dimensionalised by the equilib-
rium concentration γ0. Note that a rigid lid assumption was employed and the surfactant
concentration at the surface was assumed to be conserved at all times. The latter im-
plies that the surfactant is insoluble, whereby absorption and desorption processes as
well as chemical kinetics that may affect the surfactant concentration are ignored. An
example of such a surfactant often used in experiments is oleyl alcohol (e.g. McKenna &
McGillis 2004; Salter et al. 2011). Typical concentrations of this surfactant that would
correspond to the levels of contamination investigated in this paper range from 0 to about
0.1 µg/cm2.

Similar to γ∗, the surface tension σ is also made dimensionless using its equilibrium
value σ0. At the water surface σ∗ = σ/σ0 is assumed to linearly depend on γ∗ - which is a
significant idealisation of the real-world behaviour of surfactants - so that the Marangoni
number, defined by

Ma = −dσ
∗

dγ∗

∣∣∣∣
γ∗=1

, (2.6)

is constant. Note that it is assumed that the surface tension only depends on the surfac-
tant concentration, other factors (such as temperature variations and interfacial viscosity)
are assumed to be negligible. Also, in the remainder of this paper c and γ rather than c∗

and γ∗, respectively, will be used to refer to the non-dimensional concentrations.
Based on the model presented in Shen et al. (2004) the effect of the surface contamina-

tion on the near surface velocity fluctuations is modeled by relating the normal gradient
of the horizontal velocities at the surface (z = Lz) to the horizontal gradients of the
surfactant concentration

∂u

∂z

∣∣∣∣
z=Lz

= −Ma

Ca

∂γ

∂x
(2.7)

∂v

∂z

∣∣∣∣
z=Lz

= −Ma

Ca

∂γ

∂y
, (2.8)

where Ca = µU/σ is the capillary number and µ is the dynamic viscosity. In the presence
of mean shear, the parameter Ma/Ca is typically presented using the equivalent expres-
sion ReMa/We, where We is the Weber number. Because in our case the mean shear is
zero, we prefer to use the capillary number. Note that when slight vertical deformations
of the interface are simulated, a more sophisticated model is required (e.g. Tsai 1996).

2.2. Numerical method

The incompressible Navier-Stokes equations were discretised using fourth-order-accurate
central discretisations of advection and diffusion (see Wissink 2004) combined with the
second-order Adams-Bashforth method for the time integration. The scalar transport
equations (2.3) and (2.5) were solved using the fifth-order accurate WENO scheme of
Liu et al. (1994) for the convective terms combined with a fourth-order accurate central
discretisation for the diffusion. For the time-integration of the scalar equations a three-
stage Runge-Kutta method was used. To deal with low scalar diffusivities some of the
scalars were solved on a finer mesh than the flow-field (cf. §2.3). Parallelisation was
achieved by dividing the computational domain into blocks of equal size. Each block was
assigned to its own processing core in order to obtain a near-optimal load-balancing. The
standard message passing interface (MPI) protocol was employed for communication
between blocks. See Kubrak et al. (2013) and Herlina & Wissink (2014) for a more
detailed description of the numerical method.
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Interface : varying Ma/CaT
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Figure 1. Schematic of the computational configuration (left pane). The configuration was
selected in accordance with the grid-stirred turbulence driven gas transfer experiments (right
pane) of Herlina & Jirka (2008), where only a small part adjacent to the surface is modelled.

2.3. Overview of simulations

As in our previous simulations (Herlina & Wissink 2014, 2016) the choice of the com-
putational domain was based on the experiments performed by Herlina & Jirka (2008)
where turbulence was induced by an oscillating grid near the bottom of a water tank (cf.
figure 1). In the present direct numerical simulations (DNS) a computational domain of
size Lx×Ly×Lz = 5L×5L×3L is employed, where the reference length scale L is chosen
arbitrarily to be 1 cm. In all simulations, a Reynolds number of Re = UL/ν = 600 is
selected, where - for a kinematic viscosity of ν = 10−2 cm2/s - the reference velocity is
U = 6 cm/s. Note that not Re but a turbulent Reynolds number RT - which is deter-
mined from the results - will be used to present and analyse the data below. Also, in the
remainder of this paper - unless stated otherwise - all velocity, time, and length scales
have been non-dimensionalised using U and L. The flow is resolved using a 128×128×212
base-mesh that is stretched in the z-direction to concentrate grid points near the inter-
face (i.e. near z = Lz). The mass transfer calculation is performed for Sc = 2, 4, 8, 16, 32.
The first two scalars are resolved using the base-mesh, while the latter three scalars are
solved on a finer mesh with refinement factor 2. Exactly the same mesh was employed
in our previous simulation GS200 in Herlina & Wissink (2014), where an extensive grid
refinement study was carried out to show the adequacy of the chosen resolution for both
flow and scalar fields. Note that in the following analysis ζ = Lz − z will be addition-
ally used to denote the distance from the free surface. To account for the much larger
size of the experimental water tank, periodic boundary conditions are employed in the
horizontal directions.

The input-turbulence at z = 0 of the computational domain originated from a con-
currently running large-eddy simulation (LES) of fully developed isotropic turbulence. A
643 mesh is used to discretize the (Lx)3 periodic box. Note that in Herlina & Wissink
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Run S0 S1 S2 S3 S4 S5 SN

Ma/Ca 0 0.12 0.6 1.2 6 30 no-slip
u∞ 0.1130 0.1119 0.1169 0.1085 0.1104 0.1114 0.1073
L∞ 1.0333 0.9579 0.9935 0.9835 0.9273 1.0209 0.8984
RT 141 128 139 131 125 138 117
Ma/CaT 0 1 5 11 54 269 no-slip

Table 1. Overview of the simulations.

(2014), for a similar simulation, it was shown that the missing small scales in the energy
spectrum of the LES quickly re-establish and a complete spectrum was obtained within a
distance of one-L from the bottom of the DNS which is well below the surface influenced
layer. The turbulent flow-field introduced into the DNS domain is the same in all simu-
lations. The turbulence level is set to

√
2〈k〉/3 = 0.4, where k = u′iu

′
i/2 is the turbulent

kinetic energy, the prime denotes the fluctuating velocity, while 〈·〉 and · correspond to
averaging in the homogeneous directions and time, respectively. Note that in our DNS
u′i = ui.

In total seven simulations with varying Ma/Ca numbers ranging from 0 (free-slip)
to 30 as well as a no-slip case are performed (cf. table 1). Note that although in a
hydrodynamics sense the contaminated surface will not converge to a no-slip surface, the
scaling of mass transfer with Sc for the no-slip case agrees well with the scaling found
for severely contaminated surface conditions where Ma/Ca approaches ∞ (see §4.2).
The boundary condition at the top depends on Ma/Ca and affects the near surface
turbulence, resulting in variations in the turbulent fluctuations

urms(ζ) =

√
〈u′u′〉

and the longitudinal integral length scale

L11(ζ) =

Lx/2∫
0

R11(r, ζ)dr,

where the longitudinal two-point correlation R11 of the horizontal velocity is defined by

R11(r, ζ) =

Lx/2∫
x=0

Ly∫
y=0

u′(x, y, ζ)u′(x+ r, y, ζ)dydx

Lx/2∫
x=0

Ly∫
y=0

u′2(x, y, ζ)dydx

,

where Lx × Ly is the size of the horizontal plane. To allow a direct comparison between
the different simulations, the characteristic turbulent velocity and length scales are all
evaluated at the same location ζ = L, which approximately corresponds to a distance
equal to L∞ from the surface (cf. table 1), so that

u∞ = urms |ζ=L

and
L∞ = L11 |ζ=L .

The appropriateness of the location where u∞ and L∞ are evaluated is further explained
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in §4.1. Following the convention typically used for grid-stirred turbulence (e.g. Brumley
& Jirka 1987; Hopfinger & Toly 1976), we use Λ = 2L∞ as the characteristic turbulent
length scale. Using these scales, the turbulent Reynolds number reads

RT =
u∞2L∞

ν
(2.9)

and the turbulent capillary number is given by

CaT =
µu∞
σ

. (2.10)

Note that the latter does not depend on the integral length scale. In the following analysis,
the level of surface contamination will be characterised by the parameter Ma/CaT and
time averaging is performed from t = 150 to t = 300, corresponding to approximately
seven eddy turnover times (2L∞/u∞).

Khakpour et al. (2011) showed that the actual Schmidt number of the surfactant is
not important for an accurate calculation of the surfactant concentration. Hence, it is
decided to perform all simulations using a surfactant Schmidt number of Scs = 2.

3. Proposed estimation of mean KL based on clean surface fraction α

As mentioned above, it is likely that the exponent q in (1.6) will depend on the level
of surface contamination. Based on this idea, we propose an estimation for both q and c
by using the average clean surface fraction α (suitably defined by means of a threshold,
cf. § 4.2.4), which is likely to be a relatively ”easy observable” parameter. Our proposed
model for cSc−q in (1.6) reads

cSc−q = αcfSc
−qf + (1− α)cnSc

−qn (3.1)

with qf 6 q 6 qn, where qf , cf and qn, cn correspond to the exponents of Sc and the
constants of proportionality for the free-slip and no-slip cases, respectively. To obtain
expressions for c and q based on α we substitute the following Taylor expansions

Sc−qf = Sc−(q−h1) ≈ Sc−q + h1(lnSc)Sc−q +O(h21) (3.2)

Sc−qn = Sc−(q+h2) ≈ Sc−q − h2(lnSc)Sc−q +O(h22) (3.3)

into (3.1) and after ignoring the second and higher order terms, we obtain :

cSc−q = [αcf (1 + h1 lnSc) + (1− α)cn(1− h2 lnSc)]Sc−q (3.4)

Assuming c is independent of Sc, it is necessary to eliminate lnSc from this expression,
which is achieved when

αcfh1 − (1− α)cnh2 = 0.

If we replace h1 by ∆nf − h2, where ∆nf = qn − qf we obtain

h2 =
∆nfαcf

(1− α) cn + αcf
(3.5)

q = qn − h2 (3.6)

c = αcf + (1− α) cn (3.7)

In accordance to the literature, the exponents qf and qn are fixed to 1/2 and 2/3,
respectively. The parameters cf and cn will be determined from results of the free-slip
and no-slip cases. Subsequently, KL/(u∞R

−r
T ) can be predicted as a function of α alone

using (3.5), (3.7) and (1.6). The quality of the proposed prediction will be investigated
in §4.4.
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4. Results

4.1. Turbulent flow statistics

Before discussing the effect of surface contamination levels on interfacial mass transfer,
we will briefly discuss its influence on turbulent flow statistics. As mentioned in §2.3,
in all seven simulations the same turbulent flow-field is introduced at z = 0, whilst at
the surface (z = Lz) different levels of contamination are imposed by varying Ma/CaT .
Figures 2a, b illustrate the decay of the turbulence as it diffuses upwards. For all simula-
tions, the levels of horizontal (surface–parallel) and vertical (surface–normal) fluctuations
in the lower part of the computational domain (up to z ≈ 1.5L) were found to be almost
identical, while up to z = 2L the flow was still found to be largely isotropic. Closer to the
surface (i.e. in the surface influenced layer) differences become noticeable. Responsible
for this are the different boundary conditions at the surface, where the vertical velocity
is always zero, while the horizontal velocities depend on Ma/CaT . As a consequence,
the variation in the level of vertical fluctuations is much smaller than in the horizon-
tal fluctuations. In agreement with previous numerical results (e.g. Perot & Moin 1995;
Walker et al. 1996; Calmet & Magnaudet 2003), for the free-slip case (S0) wrms is found
to suddenly decrease towards the surface while urms simultaneously increases (a more
detailed discussion can be found in Herlina and Wissink 2014).

Figure 2c shows a more detailed view of the urms profiles near the surface. With the
exception of the no-slip simulation (SN), the horizontal fluctuation levels were observed
to coincide reasonably well up to z ≈ 2.8L (or ζ ≈ 0.2L). The different result obtained
for SN is due to the application of a no-slip boundary condition at the surface, while in
the other simulations the surface velocity field is merely forced to become more and more
divergence free with increasing Ma/CaT . From z ≈ 2.8L to the surface the horizontal
fluctuations in S0 and S1 were found to increase, while in all other simulations urms
decreases. In general, it is observed that urms in S0 to S5 tends to slightly decrease with
increasing Ma/CaT , whereby the results from S0 and S1 as well as S4 and S5 almost
coincide. This decrease in urms illustrates that rising levels of surface contamination tend
to increase near-surface turbulence damping. The increase in urms observed in S0 and S1
is caused by the redistribution of turbulent kinetic energy: close to the surface the vertical
velocity fluctuations decline and as a result the horizontal fluctuations are enlarged (see
also Perot & Moin 1995). The aforementioned rising levels of surface contamination result
in increased instantaneous shear and, hence, in increased damping of urms as can be seen
in figure 2c for S2 - S5.

Figure 2d shows that the wrms profiles exhibit a similar decreasing trend with Ma/CaT
as observed for urms above. This decrease in wrms is expected to affect the interfacial
mass transfer, which is further investigated in § 4.2.2 below. Note that the wrms profiles
from both S0 and S1 as well as S5 and SN almost coincide. It can be easily seen from
Taylor series expansions that close to the surface wrms is proportional to ζ2 in the no-
slip case, while in the free-slip case wrms ∝ ζ. Both trends are consistently reproduced
by our simulations SN and S0, respectively. The near surface wrms in simulations S1
to S4 (0 < Ma/CaT 6 54) is found to behave similarly to the free-slip simulation with
wrms ∝ ζ. Only in S5 where Ma/CaT = 269 an intermediate behaviour between free-slip
and no-slip is found with wrms ∝ ζ1.36.

With the exception of the no-slip simulation SN, all cases have a nonzero 2D velocity
field at the surface. While in the free-slip simulation the velocity field quickly becomes
3D with increasing depth (as w ∝ ζ), in cases with large Ma/CaT this takes much longer
as w ∝ ζ2. The latter is a result of the Marangoni effect - caused by horizontal gradients
in the surfactant concentration - inducing a force counteracting the aforementioned sur-
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Figure 2. Effect of Ma/CaT on the near-surface turbulent flow statistics : (a) urms, (b) wrms.
(c-d) the same as (a-b) plotted in logarithmic scale and using the inverse coordinate ζ = Lz− z.
Shown are time-averaged (t = 150 to 300) results.
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Figure 3. Vertical variation of (a) turbulent integral length scale L11 (time-averaged from
t = 150 to 300), and (b) Kolmogorov length scale η at t = 300.

factant gradients thereby effectively forcing the 2D flow at the surface to become almost
divergence free (∂u/∂x+ ∂v/∂y ≈ 0).

For all simulations, the turbulent integral length scale L11 shown in figure 3a is first
found to increase with distance from the turbulent source until a local maximum is
reached at ζ ≈ 0.5L. Above this location L11 reduces to zero at the surface in the no-
slip case, while in the free-slip simulation and in the low Ma/CaT case (S1) it reduces
to approximately 0.87 and 0.8, respectively. In S2 to S5 (moderate to large Ma/CaT )
the integral length scale is found to increase again when approaching the surface. An
explanation of this behaviour is given in the discussion of figure 4 below. It is attributed
to the presence of instantaneous shear which becomes stronger with increasing Ma/CaT
such that for S2 to S5 an increased horizontal integral length scale is obtained.

Figure 3b shows the variation of the Kolmogorov scale η = (ν3/ε)1/4 with distance
from the surface for t = 300. Note that ε is calculated by

ε = 2νsijsij ,

where sij = 1
2

(
∂u′i/∂xj + ∂u′j/∂xi

)
. Apart from S0, it can be seen that η increases
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monotonically from the lower bulk upwards until it reaches a maximum at ζ between
0.1L and 0.2L. For ζ approaching zero two trends can be observed: (i) in S0 η becomes
constant, and (ii) in all other cases η decreases, indicating vortex stretching which is
most likely caused by instantaneous shear forces. In SN this shear is caused by the no-
slip boundary condition, while in S1 to S5 it is induced by the Marangoni forces.

Using representative snapshots the effect of shearing on the interfacial integral length
scale L11 is illustrated by visualizing the vortical structures close to the surface (cf.
figure 4) using the λ2 criterion of Jeong & Hussain (1995). Compared to S4 and S5, in
S0 significantly fewer vortical structures managed to reach the surface whereby the axes
of these structures were found to be orthogonal to the surface. In S4 and S5 both the
diameter and the orientation of a significant proportion of the vortex tubes that reach
the surface differ from the ones observed in S0. In S0 the vortex tubes have a constant
diameter and are orientated perpendicular to the surface. The former is in agreement
with the constant η between ζ = 0.1 to 0 as observed in figure 3b. Contrary, in S4 and
S5 many vortex tubes are non-orthogonal to the surface such that their horizontal cross-
sectional area widens towards the surface, which may contribute to a larger L11 at the
surface. This non-orthogonality can be explained by the instantaneous shear induced by
the Marangoni forces at the surface. Note that the apparent widening of the horizontal
cross-sectional area of vortex tubes towards the interface in S4 and S5 does not imply that
the actual diameter of the vortex tubes increases. Instead the diameter of the tubes is
known to scale with the Kolmogorov length scale which was observed to decrease towards
the surface as shown in figure 3b. In contrast to the no-slip simulation SN - where it is
impossible for vortices to reach the surface as the velocity field is zero - the vortex
structures in S4 and S5 do reach the surface indicating that the case Ma/CaT → ∞ is
hydrodynamically different from the no-slip case.

Figure 5 shows the turbulent Reynolds number profiles of S0, S2, S4, SN. In agreement
with earlier studies of grid-stirred generated turbulence diffusing upwards, eventually
the horizontal turbulent fluctuations urms are observed to scale with z−1, while the
integral length scale L11 increases with z (e.g. Brumley & Jirka 1987). Consequently,
their product - and hence RT - becomes constant, which in our simulations is achieved
between z = 1.5L and 2.25L, illustrating the appropriateness of our choice to evaluate
L∞ and u∞ at z = 2L. Note that this location corresponds to the edge of the surface
influenced layer (cf. figure 2).

4.2. Influence of Ma/CaT

4.2.1. Qualitative observations

In figure 6 the instantaneous concentration isosurfaces for cSc=4 = 0.5 from simulations
S1, S2 and S4 are shown. The isosurfaces are coloured by the corresponding surfactant
concentration at the surface γ(x, y) which is normalised using the maximum instanta-
neous concentration γmax (see also (4.4) below). The plots illustrate the dynamic vari-
ation in concentration boundary layer thickness induced by the turbulence from below
as discussed previously for clean surfaces by e.g. Magnaudet & Calmet (2006); Nagaosa
& Handler (2003) and for clean and severely contaminated surfaces by e.g. Khakpour
et al. (2011). Generally, at the locations where the boundary layer is thin, surfactants
are pushed to the side by strong upwelling motions (splats) and subsequently accumu-
late in the downwelling (antisplats) regions identified by boundary layer thickening. In
agreement with the enhanced turbulence damping for increased levels of contamination
observed in figure 2, the downwelling is observed to be strongest in S1 as can be seen by
the deep penetration of the antisplats into the bulk. Furthermore, in this low Ma/CaT
simulation strong upwelling motions result in a large virtually surfactant-free surface frac-
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(a)

(b)

(c)

Figure 4. Vortical structures identified using the isosurface of λ2 = −0.001 from simulations
(a) S0, (b) S4, (c) S5. The isosurfaces are coloured by the distance ζ from the surface.
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Figure 5. Effect of Ma/CaT on RT . Shown are time-averaged (t = 150 to 300) results.

tion (figure 6a). For increasing Ma/CaT this surface fraction becomes rapidly smaller
and is found to completely disappear in S4. The connection between Ma/CaT and the
surfactant-free area will be further investigated below (cf. § 4.2.4).

Figure 7 contrasts the correlation between the instantaneous concentration (colour
contours) and the surface divergence β (isolines), defined by

β =

(
∂u

∂x
+
∂v

∂y

)∣∣∣∣
z=Lz

, (4.1)

in the grid-plane adjacent to the surface in simulations S1 and S5. In S1 areas of low
concentration are observed to coincide with strong positive surface divergence indicating
upwelling, while in areas of high concentration the surface divergence is found to be neg-
ative. In S5, on the other hand, the above correlation becomes less clear and areas with
strong positive surface divergence are found not to always coincide with low concentra-
tion levels and vice versa. In general, when upwelling first occurs the correlation between
low concentration and strong positive surface divergence is found to be very good. At
large Ma/CaT (e.g. S5), surface divergence tends to induce strong Marangoni forces that
in turn act to reduce surface divergence. As a result, in time the correlation between low
concentration regions and strong positive surface divergence is largely lost and instanta-
neous shear is generated near the surface, as also observed in figure 4 (see also Khakpour
et al. 2011; Handler et al. 2003). Note that in this respect the high Ma/CaT simulations
S4 and S5 behave like the no-slip case SN.

4.2.2. Vertical mass flux

Figure 8 shows the effect of Ma/CaT on the mean vertical concentration, the rms of
the concentration fluctuations, and the diffusive and turbulent mass flux profiles from
simulations S0, S1, S2, S3 and SN. Note that the profiles from simulations S4 and S5 (not
shown here) were found to be almost identical with the SN profiles. Figure 8a depicts
the normalised mean concentration profiles

〈c〉 − 〈cb〉
cs − 〈cb〉

, (4.2)

where cb is evaluated in the bulk at z = zb, chosen such that

crms(zb) = 0.5 max (crms) .
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(a) (b)

(c)

Figure 6. Instantaneous isosurfaces of concentration at cSc=4 = 0.5 from (a) S1, (b) S2 and
(c) S4 at t = 300 L/U . The colours represent the normalised surfactant concentration at the
corresponding interfacial (x,y) coordinates.

It can be seen that an increase in the contamination level leads to a thickening of the
mean concentration boundary layer. The thickness δ of this layer can be identified by
the depth where crms reaches its maximum. In agreement with the above observation,
in figure 8b the peak in crms is seen to move farther from the surface with increasing
Ma/CaT . This thickness δ was found to gradually increase from 0.0239, 0.0273, 0.0345,
0.0424, 0.0487 for S0, S1, S2, S3, and SN, respectively. Also, with the exception of S0,
the peaks in crms are found to decrease with increasing surface contamination level. The
relatively large peak observed in S1 compared to S0 is associated with the stronger up
and downwellings caused by an increase in the surface divergence fluctuations (βrms) in
S1 which is explained in more detail in §4.2.3, cf. discussion of figure 8b.

The total vertical mass flux is determined by the sum of the vertical diffusive 〈−D∂c/∂z〉
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(a) (b)

Figure 7. Effect of increasing Ma/CaT on the correlation between the dissolved gas concentra-
tion (colour contours) and surface divergence (isolines). The solid and dotted lines correspond
to positive and negative surface divergence, respectively. Snapshots are from (a) S1 and (b) S5.

and turbulent 〈c′w′〉 mass fluxes. At the surface the mass flux is entirely due to diffu-
sion. Above it was observed that the boundary layer thickness decreases with decreasing
Ma/CaT , as a result the gradients ∂c/∂z become steeper leading to an increase of the in-
terfacial mass flux (figure 8c). Note that for the present no-slip simulation with RT = 117
this gradient remains constant up to ζ/δ ≈ 0.2. As a consequence, diffusion fully domi-
nates mass flux not only at the surface but also immediately beneath. This is in agreement
with figure 8d where the normal gradient of the scalar flux 〈c′w′〉 vanishes at the surface.
The latter immediately follows from the fact that at the surface (i) w′ = 0 and (ii) the
conservation of mass requirement for the no-slip simulation implies that ∂w′/∂z = 0. For
larger RT the distance from the surface for which the above applies reduces, as can be
seen in figure 11c of Herlina & Wissink (2016), where for RT = 865 the gradient is only
approximately constant up to ζ/δ ≈ 0.08.

Figures 8c,d also show that with increasing distance from the surface the diffusive
mass flux rapidly reduces, while simultaneously the turbulent mass flux increases so
that the total vertical mass flux is kept constant. Already at a depth of three times the
boundary layer thickness the turbulent mass flux almost completely dominates the total
mass flux. In agreement with the reduction in the diffusive mass flux at the surface, figure
8d shows that the turbulent mass flux in the bulk also reduces with increasing level of
contamination.

Figure 9 illustrates the influence of the surface contamination level on the mean transfer
velocity KL = kL, where the instantaneous kL is defined by

kL(t) =
〈−D ∂c

∂z

∣∣
z=Lz

〉
cs − 〈cb〉

, (4.3)

with D = 1
ReSc . It can be seen that the average transfer velocity KL reduces drastically

within a narrow range of Ma/CaT = 0 to 11. For Ma/CaT > 54 the time averaged
transfer velocity is found to be similar to the no-slip case. Note that because the resulting
RT in the simulations varies between 114 and 141 - which is well within the region where
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Figure 8. Effect of Ma/CaT on the horizontally and time averaged profiles of (a) normalised
concentration, (b) normalised concentration fluctuations, (c) vertical scalar diffusion, (d) vertical
turbulent scalar flux, In (c) and (d) the depth ζ is normalised using the boundary layer thickness.
Note that the molecular diffusion coefficient D is defined by D = 1

ReSc
.

the large-eddy model is valid (Theofanous et al. 1976; Herlina & Wissink 2016) - KL is

normalised by R
−1/2
T in order to allow for a direct comparison of the results, as discussed

in the introduction.

In figure 10 the variation of KL with Schmidt number is shown. It can be seen that
for each individual Ma/CaT case there is a power law dependency KL ∝ Sc−q. When
Ma/CaT increases from 0 to 54, the exponent q is found to gradually increase from 1/2
to 2/3. Beyond Ma/CaT = 54, q is observed to remain constant at 2/3. In Herlina &
Wissink (2014) and Herlina & Wissink (2016) the above scaling of the transfer velocity
with Sc−1/2 and Sc−2/3 for the free-slip (Ma/CaT = 0) and no-slip cases, respectively,
was confirmed for Sc up to 500. Therefore, it is expected that also for cases Ma/CaT > 0
the obtained exponent q in KL ∝ Sc−q remains valid up to at least Sc = 500.
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Figure 10. KL vs Sc for a range of Ma/CaT (see table 1), HW14 and HW16 are taken from
Herlina & Wissink (2014) and Herlina & Wissink (2016), respectively

4.2.3. Surface divergence

Figure 11a shows contours of the instantaneous surface divergence β - defined in (4.1)
- for the cases S0,S2,S4. It can be seen that the size of the area with virtually nonzero
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Figure 11. Effect of increasing Ma/CaT on: a) snapshots of surface divergence, b) βrms, c)
correlation coefficient of KL and

√
Dβrms and d) cβ .
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divergence decreases with increasing Ma/CaT and, hence, it is to be expected that βrms
also decreases. The variation of βrms with Ma/CaT is shown in figure 11b. As also
observed previously by Shen et al. (2004), in general βrms is indeed found to reduce
sharply, approaching zero within a very small Ma/CaT range. This abrupt reduction in
βrms towards zero implies that the surface divergence model would only work for a very
small range of Ma/CaT , as the model will break down when βrms approaches zero, as
illustrated by the steep decline in the correlation coefficient between KL and

√
Dβrms

for large Ma/CaT (cf. figure 11c).
Also, it can be seen in figure 11b that βrms in S1 is larger than in S0. This rather

unexpected result is caused by over/undershoots in the surface divergence β associ-
ated with Marangoni forces counteracting strong up and downwellings. In S1 these
over/undershoots result in large local |β| which significantly contributes to the over-
all βrms. If the surface divergence model would be applicable in the above situation, we
would expect to find a larger transfer velocity in S1 than in S0. In reality, however, this
is not the case (cf. figure 9). A possible explanation for this could be the presence of high
intensity small scale structures in the β distribution of S1. These small spatial structures
have small time scales for which the surface divergence model no longer provides accurate
results as has been shown in Turney & Banerjee (2013).

The validity of the surface divergence model for a shear-free surface boundary condition
was shown by e.g. Magnaudet & Calmet (2006); Herlina & Wissink (2014); Wissink
& Herlina (2016). Attempts were also made to use the surface divergence model to
determine the transfer velocity for cases with surface shear (e.g. Law & Khoo 2002;
Banerjee & MacIntyre 2004; Turney 2016). Note that in the latter cases the effect of Sc
was not evaluated. Figure 11d shows the variation of cβ with Ma/CaT . For the cases
approaching free-slip, and the free-slip case itself, cβ is found to be about 0.5 to 0.58.
The latter range of values is in good agreement with the LES results of Magnaudet &
Calmet (2006) and the clean surface experimental results of McKenna & McGillis (2004).
For Ma/CaT ≈ 5 (S2), cβ at Sc = 32 reduces to 0.35. The results presented in figure
11d suggest that the constant of proportionality in (1.3) needs to be reduced in order to
deal with the inhibiting effects of surface contamination on the transfer velocity. A close
examination of the results presented in figure 6 of McKenna & McGillis (2004) indeed
shows that each surface condition basically requires its own constant of proportionality.
Values of cβ < 0.5, such as in the experiments of Herlina & Jirka (2008), might indicate
a certain level of contamination or shear at the interface. Note that in the literature it
is usually assumed that kL ∝ Sc−1/2. Later on in this paper evidence will be provided
that this scaling is no longer valid in the presence of (instantaneous) surface shear as for
instance induced by the presence of surfactants. Perhaps the usage of a different exponent
for Sc could mitigate the need to adjust cβ in (1.3), in which D = 1/(ReSc).

In agreement with figure 10, figure 11d also shows that the data points obtained for
different Sc only collapse for very small values of Ma/CaT , indicating again that the
surface divergence model as given in (1.3) is only valid (in the absence of small time
scales) for very low levels of contamination.

4.2.4. Clean surface area

The flow near the contaminated surface is affected by horizontal gradients in the surfac-
tant concentration as can be seen in (2.7) and (2.8). These gradients generate Marangoni
forces, of which the strength depends on Ma/CaT . The regions where the surfactant
concentration is small are observed to reduce in size with increasing Marangoni forces as
can be seen in the instantaneous visualisations of γ shown in figure 12.

In order to properly quantify the ”surfactant-free” region we defined a threshold for the
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(a) (b) (c)

Figure 12. Effect of increasing Ma/CaT on the ”surfactant-free” fraction of the total surface
area. a) S1, b) S2, c) S3. The solid black lines identify γ/γmax = 0.45.
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Figure 13. Variation of clean surface fraction α with Ma/CaT

surfactant concentration, below which the local area is deemed to be clean. For this we
normalised the surfactant concentration using the maximum instantaneous concentration
γmax. The clean surface fraction 0 6 α 6 1 is subsequently defined by the fraction of the
total area where

γ/γmax < γth. (4.4)

Figure 12 also shows isolines of the threshold γth = 0.45. It will be shown below that this
threshold serves as a very good measure for the time-averaged transfer velocity (cf. §4.4).
In S1 almost the entire surface is either virtually clean or very dirty. The clean and dirty
parts are separated by a steep gradient in the surfactant concentration. Contrasting the
results from S1, S2 and S3, it can be seen that this gradient becomes more diffuse with
increasing Ma/CaT , while simultaneously the clean surface fraction α gradually reduces
in size.

Figure 13 shows the variation of the time-averaged clean surface fraction α with
Ma/CaT when using thresholds γth = 0.1, 0.3, 0.45 and 0.7 . For Ma/CaT < 11 a
slight increase in contamination level is found to lead to a sharp reduction in α. Values of
Ma/CaT > 54 are observed to correspond to severely contaminated surface conditions,
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Run Ma/CaT ρ(kL, αγth)

γ0.1 γ0.2 γ0.3 γ0.4 γ0.5 γ0.6

S1 1 0.7543 0.7391 0.6802 0.6060 0.5030 0.4151
S2 5 0.8466 0.7795 0.6864 0.5808 0.4707 0.4089
S3 11 0.9568 0.9497 0.9045 0.7738 0.4182 0.0696

Table 2. Correlation coefficients at Sc = 32 for various thresholds.

where α ≈ 0. Furthermore, the variation of α with Ma/CaT can be reasonably well
represented by an exponential relationship. Denoting the clean surface fraction obtained
using γth by αγth , the best fit for γth = 0.45 is found to be

αγth = α0.45 = e−0.163Ma/CaT . (4.5)

Note that the parameter Ma/CaT = RTMa/WeT , which determines the strength of the
Marangoni forces, is expected to be universal for this type of flow, where mass transfer
is induced by isotropic turbulence diffusing from below. Hence, though not explicitly
confirmed here, the above results are likely to be valid also for other values of RT than
the ones considered here.

4.3. Correlation between instantaneous α and instantaneous kL

Because of the free-slip and no-slip boundary conditions the instantaneous α is identical
to unity in S0 and zero in SN, respectively. For γth 6 0.5, α is found to be virtually
always zero in runs S4 (Ma/CaT = 54) and S5 (Ma/CaT = 269), indicating a severe
contamination level. Hence, as in the no-slip case SN, the instantaneous transfer velocity
in S4 and S5 is likely to scale with Sc−2/3, which is in agreement with the scaling of the
time averaged KL shown in figure 10. For cases S1, S2 and S3 the nonzero instantaneous
clean surface fraction α is likely to affect kL significantly, such that increases in kL would
be associated with increases in α. This is confirmed for S2 in figure 14, which shows the
evolution of kL and αγth for γth = 0.1, 0.3, 0.5 using Sc = 32. It can be seen that kL is
strongly correlated with αγth for γth = 0.1 and that this correlation degrades when γth
increases. This observation is quantified in table 2, showing the correlation coefficient
ρ(kL, αγth) for γth = 0.1, . . . , 0.6 at Sc = 32. The table shows that (i) with increasing
γth the degradation in correlation mentioned above increases significantly with increased
level of contamination, and (ii) for γth < 0.4 the correlation improves with increasing
Ma/CaT , while for larger γth it decreases.
Note that for the cases with 0 < Ma/CaT 6 11 a maximum correlation is expected for
a threshold 0 < γth 6 1 because

γth = 0
γth = 1 + ε

⇒ α ≡ 0
⇒ α ≡ 1

}
⇒ ρ(kL, α) = 0, (4.6)

(where ε > 0 is small). Further investigations have shown that for all cases in table 2
this maximum indeed exists and is reached for a threshold 0 < γth < 0.2. For such small
γth the surfactant concentration within the identified clean area fraction αγth will be
very low so that its local contribution to kL will be almost identical to the free-slip case
(Ma/CaT=0). As can be seen in figure 9, assuming a fifty-fifty split between perfectly
clean and extremely dirty areas, the clean area’s contribution to the overall KL at Sc = 32
will be 2.75 times larger than the dirty area’s contribution.

Additionally to the time evolution of α and kL - obtained using (4.3) - figure 14
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Figure 14. Time series of clean surface fraction α (upper pane), the corresponding kL (middle
pane) and −q (lower pane) evaluated using the horizontally-averaged instantaneous concentra-
tion profile from run S2.

(lower pane) also shows the evolution of the exponent −q in the instantaneous power
law dependency kL ∝ Sc−q. In each Ma/CaT case, transport equations for five different
Sc were solved simultaneously - i.e. with exactly the same turbulent flow-field - allowing
an unbiased determination of the instantaneous exponent −q using the least squares
method. By comparing the temporal evolution of −q and α, it can be seen that when
α reduces q becomes larger and moves in the direction of 2/3, which is valid for severe
contamination levels. Also, when α increases, q decreases and moves towards 1/2, which
is valid for clean surface conditions.

The above observations support the idea presented in §3 of estimating the mean KL

using the average clean surface fraction α.
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4.4. Comparison between observed mean q, c and KL with their predictions based on α

In §4.3 a good temporal correlation between α0.1 and kL for S1, S2, S3 was obtained.
This does not necessarily imply that by using γth = 0.1 to determine α, the prediction
of the magnitude of the normalised transfer velocity

KL

u∞R
−1/2
T

(α) = c(α)Sc−q(α), (4.7)

where c = c(α) and q = q(α) are determined as in (3.5) to (3.7), is correct. This will be
further investigated below.

From our results it is possible to directly determine q and c for each Ma/CaT case
using the least squares method. In figure 10 it is observed that q - corresponding to
the gradients of the lines in the log-log plot - varies with Ma/CaT . This relation is
investigated further in figure 15a, which shows an overall smooth variation of −q from
−1/2 to −2/3 with increasing Ma/CaT . Similarly, as seen in figure 15b, the constant
of proportionality c is also found to smoothly vary between its free-slip value cf and its
no-slip value cn.

Comparing the results shown in figures 9a, 13 and 15, a strong correlation can be
observed between α and each of the time-averaged values q, c and KL. This indicates
that in our simulations (where RT and u∞ are approximately the same) KL = cSc−q

can be modelled as a function of α alone.
To determine the surfactant-free fraction α in (3.5) and (3.7) from the numerical

results, we need to determine the optimum threshold γth in (4.4) so that the sum of the
squared errors

SSE(αγth) =

SN∑
S0

[
KL −KL(αγth)

]2
(4.8)

is minimum, where KL is the reference value directly obtained from the numerical results
and KL(αγth) is the predicted transfer velocity calculated using (3.5), (3.7) and (1.6).
The parameters cf = 1.55 (1.6 in Herlina & Wissink 2014) and cn = 0.94 (0.95 in
Herlina & Wissink 2016) are determined from the results of runs S0 (free-slip) and SN
(no-slip), respectively. Note that cf and cn may vary depending on the location where u∞
and L∞ are evaluated (see also §4.1). Since our simulations fall into the low to moderate
turbulence intensity regime, we assume that r = 1/2 in (1.6).

As shown in figure 16 the SSE obtained using γth = 0.1, . . . , 0.5 reaches a minimum
between γth = 0.4 and 0.5. Despite the good temporal correlations between α and kL
obtained for smaller γth, figure 16 shows that by using such small γth to determine α the
actual magnitude of KL = kL is significantly underestimated. Unless specified differently,
a threshold of γth = 0.45 was used for the determination of α below.

To test the quality of our prediction of q and c using α0.45, in figure 15 the predicted
data points are shown alongside the numerical results, showing a reasonable agreement.
In addition, the dashed line, which was produced using the exponential relationship (4.5)
between Ma/CaT and α0.45, can be seen to provide a nice interpolation between the
data points.

Finally, based on the reasonably good prediction achieved above for q and c, it is
expected that the proposed model based on the clean surface fraction also provides a
prediction of at least similar quality for the transfer velocity. This is indeed confirmed in
figure 17, illustrating that the calculation of the normalised transfer velocity from (4.7)
both (i) directly by employing the observed α0.45

KL

u∞R
−1/2
T

(α0.45)
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Figure 15. Variation of a) exponent −q and b) constant c with Ma/CaT . Note results are
averaged from t = 150 − 300 and the least-squares method was used to extract −q and c from
the numerical results.

and (ii) indirectly by using (4.5) where α0.45 is estimated as a function of Ma/CaT

KL

u∞R
−1/2
T

(Ma/CaT ) =
KL

u∞R
−1/2
T

(α0.45(Ma/CaT )) .

agree well with the normalised transfer velocity KL that was directly obtained from the
numerical data. Especially, the initially steep decline in KL for small Ma/CaT is well
captured with a maximum error of 8%. Also, for larger Ma/CaT a smooth transition to
severely contaminated conditions is predicted.

5. Conclusions

In order to study the influence of surfactants on interfacial mass transfer, direct nu-
merical simulations (DNS) with various levels of contamination have been performed. At
the surface of the computational domain the waves are assumed to be very shallow so
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Figure 16. Sum of squared errors defined in (4.8).

that a rigid lid assumption can be employed. In all simulations, mass transfer - promoted
by introducing isotropic turbulence at the bottom of the computational domain - is cal-
culated simultaneously for five different Schmidt numbers, Sc = 2, 4, 8, 16, 32. At the
bottom of all simulations the same turbulent flow field is introduced. Consequently, both
the turbulent Reynolds numbers and integral length scales are kept within a small range
of RT = 129±12 and L∞ = 0.96±0.08, which allows for the first time an unbiased study
of the effect of Ma/CaT on Sc. In the surface plane, an advection-diffusion equation
is solved for the surfactant concentration. The model described in Shen et al. (2004) is
adopted to account for the influence of gradients in the surfactant concentration on the
near surface turbulent flow field, which in turn affects the interfacial mass transfer. The
ratio of the Marangoni number and the turbulent capillary number, Ma/CaT , is used as
a measure of contamination.

In our previous simulations we investigated interfacial mass transfer for a range of RT
and Sc up to 500 using either a free-slip boundary condition at the surface (Herlina &
Wissink 2014) or a no-slip boundary condition (Herlina & Wissink 2016). The power
dependency of KL on RT was found to be independent on the surface boundary condi-

tions. For the range of RT considered, it was shown that KL ∝ R
−1/2
T for RT < RT,crit

and KL ∝ R
−1/4
T for RT > RT,crit, where RT,crit ≈ 500. This suggests that the same

power dependency of KL on RT is also likely to be valid for any level of contamination.
Hence, as in the present simulations RT < RT,crit, the transfer velocity is normalised

using R
−1/2
T u∞. On the other hand, for the entire range of Sc investigated in our previous

simulations it was confirmed that the transfer velocity scales with Sc−1/2 and Sc−2/3 for
the free-slip and no-slip cases, respectively.

In the present DNS, it is found that even small levels of contamination significantly
affect the near surface turbulence so that KL no longer scales with Sc−1/2. In the no-slip
case the surface divergence is strictly zero, which significantly reduces the interchange of
saturated and unsaturated fluid. Because of the nearly zero surface divergence, a similar
reduction in gas exchange can also be expected in cases with large Ma/CaT . So even
though the near surface hydrodynamics of highly contaminated surfaces (Ma/CaT →∞)
does not entirely converge to the no-slip case, the scaling of the transfer velocity becomes
similar, i.e. KL ∝ Sc−2/3. For intermediate levels of contamination, KL is found to
approximately scale with Sc−q, where q is shown to gradually increase from 1/2 to
2/3 with increasing levels of contamination. Consequently, the surface divergence model,
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Figure 17. Comparison of the predicted KL with present numerical results as a function of
Ma/CaT . a) Results obtained for Sc = 2, 8, 32, b) Close-up of Sc = 32 results for low to
moderate Ma/CaT .

which assumes that KL ∝ Sc−1/2, is no longer accurate in the presence of even slight
contamination.

It is shown that Marangoni forces generate instantaneous shear at the surface which
for small to moderate Ma/CaT tends to increase with contamination level. For large
Ma/CaT the surface flow-field becomes virtually divergence-free, even though, compared
to the no-slip boundary condition, a non-zero 2D flow-field persists.

For smallMa/CaT , regions with very low surfactant concentration are found to appear,
which are observed to gradually reduce in size with increasing Ma/CaT . The fraction of
the surface that these clean regions occupy is represented by the parameter 0 6 α 6 1.
For constant Sc and RT the transfer velocity is found to correlate very well with the clean
surface fraction, suggesting that KL can be regarded as a function of RT , Sc and α. By
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assuming that the ”clean” regions behave as a free-slip boundary, while the remaining
”dirty” regions behave as a no-slip boundary, a model for the transfer velocity that
accounts for the presence of surfactants is obtained:

KL = cu∞Sc
−qR−rT ,

with

c = αcf + (1− α)cn ,

q =
2

3
− αcf

6c
,

where cf and cn are the constants of proportionality for the free-slip and no-slip cases,
respectively, and r = 1/2 or 1/4 depending on the turbulence intensity. A reasonably good
prediction of the average transfer velocity, with a maximum error of 8%, is obtained by
identifying α with the average surface fraction where γ/γmax < 0.45.

The present results confirm that to predict mass transfer accurately, surface contam-
ination effects need to be taken into account. Hence, information is needed of both the
turbulent flow characteristics and the concentration distribution of the surfactant. The
latter may become possible with further advances in remote sensing technology, which
will allow a quantification of the mean clean surface fraction α.
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