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Abstract 

In the oil and gas industry, statistical methods have been used for corrosion analysis 

for various asset systems such as pipelines, storage tanks, and so on. However, few 

industrial standards and guidelines provide comprehensive stepwise procedures for 

the usage of statistical approaches for corrosion analysis. For example, the UK HSE 

(2002) report “Guidelines for the use of statistics for analysis of sample inspection of 

corrosion” demonstrates how statistical methods can be used to evaluate corrosion 

samples, but the methods explained in the document are very basic and do not 

consider risk factors such as pressure, temperature, design, external factors and other 

factors for the analyses. Furthermore, often the industrial practice that uses linear 

approximation on localised corrosion such as pitting is considered inappropriate as 

pitting growth is not uniform. 

The aim of this research is to develop an approach that models the stochastic 

behaviour of localised corrosion and demonstrate how the influencing factors can be 

linked to the corrosion analyses, for predicting the remaining useful life of components 

in oil and gas plants. 

This research addresses a challenge in industry practice. Non-destructive testing (NDT) 

and inspection techniques have improved in recent years making more and more data 

available to asset operators. However, this means that these data need to be 

processed to extract meaningful information. Increasing computer power has enabled 

the use of statistics for such data processing. Statistical software such as R and 

OpenBUGS is available to users to explore new and pragmatic statistical methods (e.g. 

regression models and stochastic models) and fully use the available data in the field. 

In this thesis, we carry out extreme value analysis to determine maximum defect depth 

of an offshore conductor pipe and simulate the defect depth using geometric Brownian 

motion in Chapter 2. In Chapter 3, we introduce a Weibull density regression that is 

based on a gamma transformation proportional hazards model to analyse the 

corrosion data of piping deadlegs. The density regression model takes multiple 

influencing factors into account; this model can be used to extrapolate the corrosion 
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density of inaccessible deadlegs with data available from other piping systems. In 

Chapter 4, we demonstrate how the corrosion prediction models in Chapters 2 and 3 

could be used to predict the remaining useful life of these components. Chapter 1 sets 

the background to the techniques used, and Chapter 5 presents concluding remarks 

based on the application of the techniques. 
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Chapter 1. General Introduction 

1.1 Background 

Corrosion is one of the main factors that causes failures in a variety of industrial 

assets. Data on general and localised corrosion under commonly encountered 

conditions such as steel exposed to the atmosphere, marine environments, soils, and 

internal fluids can be used for predicting the life of the structure subject to corrosion. 

With developments in monitoring and inspection technology, such data are 

increasingly available. However, often there is a lot of data that requires processing 

to extract meaningful information that can be used in integrity assessments. Also, at 

times, due to cost and technical factors such as the inaccessibility of certain areas for 

inspection, hundred percent coverage of the asset for inspection and monitoring may 

not be possible. This requires the use of techniques to extrapolate information from 

data that are available.  Although there have been developments, aided by better 

computing power, in the use of statistical methods to address such issues, challenges 

remain in determining the best way forward in such situations.  

1.2 Aim 

This study aims to support analyses of data in order to determine the damage caused 

by corrosion by: 

 Analysing inspection data from offshore conductor pipes using extreme value 

analysis techniques. 

 Analysing inspection data from piping deadlegs in oil and gas wellhead towers 

using Weibull density regression based on gamma transformation 

proportional hazard models. 

 Demonstrating how the analyses of corrosion data using the techniques 

shown can be employed for predicting remaining life for integrity assessments. 
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Although the techniques mentioned above have been applied to specific types of 

assets where data have been available for the purpose of this research, the 

techniques will find wider application. 

1.2.1 Analysing inspection data from offshore conductor pipes using extreme 

value analysis techniques 

In the oil and gas industries, offshore conductor pipe is a large diameter pipe that is 

set in the seabed to provide structural foundation for the offshore wellhead. A 

conductor prevents the sea water from going into the inner layer of the structure that 

consists of several casings of drill pipe. As it is installed offshore, it is subjected to 

marine environmental forces such as current and waves that can cause the corrosion 

and fatigue damage to the conductor. The number of ageing offshore well conductor 

assets which are being operated beyond their original design life is increasing 

worldwide. These ageing conductors require periodic maintenance in order to 

continue operating. The increased frequency of maintenance works that incur high 

cost such as inspection and repair have now become a major challenge to the oil and 

gas operators. This problem is further accentuated by the incomplete well 

construction records, unknown operational conditions and inadequate past 

maintenance records. Thus there is an urgent need for an approach to prioritise the 

inspections or repairs of conductors in order to reduce the cost of maintenance. This 

can be done by analysing the thickness measurements taken from the inspection to 

make inference of maximum defect depth, growth of corrosion and remaining useful 

life of these assets. Research done here shows the use of extreme value theory on 

inspection data to find the maximum defect of conductors, and stochastic process to 

predict the growth of corrosion. 

1.2.2 Application of Weibull density regression analyses on piping deadlegs 

Deadleg are segments in the piping systems that are continuously exposed to the 

process stream but with relatively different flow velocity where the process is stagnant. 
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These inactive pipes are normally connected to active pipes that carry the main 

stream. Deadlegs are prone to internal corrosion as a result of water separation from 

the primary product due to the low flow velocity. Non-destructive testing techniques 

are the commonly used inspection methods to evaluate the properties of a material 

and health of a pipe, however, these stagnant pipe segments are usuallly found at 

the dead end of piping systems, so they are difficult for inspectors to access to for 

inspection. The inaccessibility of some of the deadlegs poses some challenges to the 

plant integrity engineers as the healths of these segments are unknown, and their 

thickness measurements cannot be obtained for integrity assessment. Failure of 

these stagnant pipes can result in the failure of the piping systems that can cost 

millions of pounds in repair and business interruption costs. In extreme cases, such 

failures could also result in fatalities. For these reasons, a mathematical predictive 

method for degradation is needed for those inaccessible deadlegs, to allow plant 

operator to know whether the deadlegs are safe to be left unremoved, or with an 

optimised cost to eliminate those deadlegs by prioritising each deadleg removal; 

removing deadlegs requires shutting down the piping system and causes some 

business costs. 

1.2.3 The use of corrosion data analyses for predicting remaining life for 

integrity assessments 

The main interest of plant inspectors in analysing the inspection data of an asset is to 

know the remaining useful life (RUL) of the asset. The remaining useful life of an asset 

is defined as the length from the present time to the end of the useful life. 

Determinining RUL is a challenge in many situations as it is directly related to the 

degradation which has many uncertainties and is not easily measured. The idea of 

the RUL has been broadly  applied as a part of operational research, reliability, and 

statistics literature with important applications in many fields such as material science, 

biostatistics and econometrics. RUL estimation is one of the key factors in oil and gas 

asset integrity and maintenance management. The RUL estimation helps the integrity 

engineers to make decision on the next inspection and the time to repair or replace 

the components of an asset. By using the RUL estimation, plant operators can 
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maximise the operation time of an asset and prioritise the inspection and maintenance 

of the assets to minimise the maintenance and potential business interruption cost 

due to failure of these assets. In this research, we show how the analyses of raw 

inspection and monitoring data feed into integrity assessments, prediction of 

remaining useful life of conductors and deadleg piping. 

1.3 Thesis organisation 

This thesis consists of five chapters. Chapter 1 introduces the background and the 

aim of the research. Chapter 2 develops methods to estimate the maximum defect 

depth and defect growth of an offshore conductor pipe. Chapter 3 uses a regression 

model to extrapolate the corrosion density of piping deadlegs in various designs and 

operating conditions. Chapter 4 studies the remaining useful life of piping and offshore 

conductor pipe by using a prognosis model that utilises the corrosion rate and defect 

growth model determined in Chapters 2 and 3. Chapter 5 is the general conclusion 

that presents concluding remarks based on the application of these techniques. 
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Chapter 2. Application of Extreme Value Theory for the 

Analysis of the Maximum Defect Depth 

Abstract 

The offshore conductor pipe is a large diameter pipe that is set into the ground or 

seabed. It provides a stable structural foundation for a subsea oil well. The increase 

in ageing offshore well conductor pipes is beginning to be a major challenge faced by 

operators worldwide. The structural integrity of these offshore conductor assets is 

required to be maintained in order to prevent the structural collapse of the well and 

extend the life further to allow for safe and planned retirement. Two different extreme 

value approaches are used to analyse the inspection data of the conductor pipes, 

namely a block maxima (BM) method and a peak-over-threshold method (POT). By 

using these methods, maximum defect depths are estimated for inspected areas of 

the conductors and then information is extrapolated for uninspected areas. 

Geometrical Brownian motion is used to predict the future growth of the defect depth. 

Keywords: conductor; extreme value; block maxima; peak-over-threshold; DBSCAN 

clustering; geometric Brownian motion. 

2.1 Introduction 

One of the main factors that cause failures in a variety of industrial assets is corrosion. 

Various types of corrosion have been defined and categorised as uniform, galvanic, 

crevice, pitting, intergranular, de-alloying, erosion-corrosion, and environmentally-

assisted cracking. Other forms of corrosion such as microbiological-induced corrosion, 

filiform corrosion, and liquid-metal embrittlement are typically covered as sub-

categories of these types [1]. Data on general and localised corrosion under 

commonly encountered conditions such as steel exposed to the atmosphere, marine 

environments, soils and internal fluids can be used for corrosion rate estimation and 
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predict the life of the structure subject to corrosion. Data on localised corrosion, 

however, are limited and corrosion rate cannot be used to predict the lifetime of assets. 

For systems that undergo localised corrosion, the concept of corrosion probability has 

been introduced for lifetime prediction [2-3]. With developments in monitoring and 

inspection technology, such data is increasingly available. However, often there is a 

lot of data that requires processing to extract meaningful information that can be used 

in integrity assessments. In addition, at times, due to cost and technical factors such 

as the inaccessibility of certain areas for inspection, hundred percent coverage of the 

asset for inspection and monitoring is not possible. This requires the use of 

techniques to extrapolate information from data that is available.  Although there have 

been developments, aided by better computing power, in the use of statistical 

methods to address such issues, challenges remain in determining the best way 

forward in such situations. 

The offshore wellhead conductor pipe is a large diameter pipe that is set into the 

seabed to provide an oil well with a structural foundation. These well conductors are 

ageing and have been in service for more than 30 years; the ageing conductors have 

begun to be one of the challenges worldwide that cannot be ignored by the operators. 

The lack of well construction records, unknown operational conditions and inadequate 

maintenance further aggravate the problem. Offshore conductors are subjected to the 

impact of seawater spray, especially the pipe section which is situated at mean sea 

level or commonly known at sea splash zone, causing the area of pipe in this zone to 

become uttermost corroded. The loss of cement in the internal annular space 

between the conductor and surface casing also allows the exposure of surface casing 

to sea spray and eventual wall loss due to corrosion. Figure 2.1 shows a simple 

example of wellhead conductor and casings system. A certain level of remaining wall 

thickness of conductor has to be maintained for it to be strong enough to support the 

entire wellhead and casings system. 

Extreme value analyses have been applied to offshore conductor pipes inspection 

data. We are given inspection data that  result from the Magnetic Eddy Current (MEC) 

method performed on 84 conductors, and these data are analysed using statistical 

methods. Two different extreme value approaches are presented in the research, 
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which are Block Maxima (BM) method using generalised extreme value distribution 

(GEVD), and Peak-over-Threshold (POT) method together with generalised-Pareto 

distribution (GPD). These methods are used to estimate the maximum defect depth 

distribution and extrapolate the defect depth from inspected area to the uninspected 

area of conductors. For BM method, inspection data is partitioned into the equally-

sized blocks, and maximum defect depth is taken from each block and then fitted with 

GEVD. The maximum defect depth is calculated using return period concept which is 

by using the quantile function of GEVD. For POT method, inspection data is firstly 

partitioned into clusters maximum exceedance within each cluster is taken to fit with 

the GPD. Maximum defect depth is estimated using return period method and the 

uninspected area is extrapolated. Corrosion growth of these maxima and 

exceedances are estimated using geometrical Brownian motion simulation, with the 

fact that localised corrosion is in stochastic behaviour hence the linear corrosion rate 

is not appropriate to predict the future wall losses of these conductors. 

 

Figure 2.1. Wellhead conductor and casings system 
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2.1.1 Motivation and purposes 

The offshore conductor pipes in oil and gas wellhead tower provide a stable structural 

foundation for the oil well, and their structural integrities have to be maintained for the 

plant to continue operating. These conductors are ageing, and corrosion is one of the 

main damage mechanisms especially the sections of the conductor pipes which are 

situated at the mean sea splash zone are found to be severely corroded. The lack of 

design documents and operational information makes the problems further 

aggravated. A non-destructive technique using Magnetic Eddy Current (MEC) was 

conducted to measure the remaining wall thicknesses of these conductors. These 

data have to be analysed to make useful inferences for the operators to understand 

the fitness of conductors for service, and estimate the future corrosion level for short 

and long-term actions whether to repair and replace the conductors. 

This research shows how extreme value theory can be used to analyse such 

inspection data. In corrosion engineering field, the inspection data is usually analysed 

by using simple fitting of corrosion samples with commonly used statistical 

distributions such as normal and lognormal distributions, and maximum defect depth 

is estimated by using the upper bound in the confidence interval. However, setting 

the confidence interval is arbitrary, and only few industrial standards provide 

comprehensive guidelines for the usage of statistical approaches for corrosion 

analysis. Extreme value theory allows the integrity assessor to select the extrema 

from the corrosion samples in a more systematic way. Particularly for localised 

corrosion analysis, these extrema are what integrity assessor concerned about. 

Once the distribution of maximum defect depths is obtained, future growths of these 

defects are simulated using geometric Brownian motion simulation. The simulation 

provides a predictive growth model of defects and allows oil and gas operators to 

estimate the remaining useful life and fitness for service of the conductors. 
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2.1.2 Previous works on extreme value analysis for sample corrosion 

Kowaka et al. [2] use extreme value statistical methods to investigate corrosion 

phenomena. Shibata reviewed the application of extreme value theory to statistics 

and emphasised that concept of probability is important for corrosion failure 

evaluation and prediction by using the concept of the return period, where the return 

period is defined by dividing the larger surface of the component by sample corrosion 

which is used for extreme value analysis. Shibata [3] gave an example of the 

application of EVA on calculations of the most likely maximum pit depth in an oil tank. 

Scarf and Laycock [4] demonstrated the use of different extreme value statistical 

methods on pitting corrosion data from industry and laboratory experiments. Block 

minima with generalised extreme value distribution and peak-over-threshold method 

using generalised-Pareto distribution were demonstrated. 

Vajo et al. [5] applied extreme value theory to the crevice corrosion front that 

advances under elastomeric seals to aluminium surfaces. They discussed that 

extreme value analysis could be applied to seals of small test samples to estimate 

the most probable maximum corroded depths of larger structures and used empirical 

power law function to model the maximum depth of corrosion under seals versus test 

time. Glegola [6] presented the block maxima and peak-over-threshold inference 

methods applied to extreme defect depths. Glegola conducted the statistical test for 

multiple sets of different block maxima sizes, and the best quality of the fit was used 

to fit with GEVD. Hierarchical clustering analysis was used to de-cluster the local 

dependence of the underlying observations and results showed that data de-

clustering improves the consistency of the results given by both extreme value and 

generalised-Pareto distributions. 

Rivas et al. [7] presented both block maxima and peak-over-threshold methods on 

analyses of pitting corrosion data from laboratory-simulated buried line pipe steel. 

They proved that the threshold approach is more robust to maximum depth reduction, 

which results from the dependency between pit depths provided the necessary data 

be available. Stone [8] discussed that extreme value analyses applied to the wall loss 

distribution that is other than exponential are not that representative. Schneider [9] 



10 
 

illustrated the extreme value approach on data collected from a pipeline system in an 

oil platform using an ultrasonic corrosion mapping technique; the 2D auto-correlation 

function is used to determine the size of block minima to ensure the minimum cluster 

among the blocks.  

Melchers [10] suggested that the Fréchet distribution is more appropriate and 

plausible than Gumbel to represent the maximum pit depth for long-term marine 

pitting corrosion of steel, considering the modern pitting theory that pit populations 

consist of stable pitting and meta-stable pitting, as the longer-term exposures 

sulphate-reducing bacterial activity is the main corrosive agent in a marine 

environment. Valor et al. [11] improved the existing Markov chains stochastic model 

for assessing extreme pitting corrosion in the light of new experimental evidence. Pit 

initiation was modelled using a non-homogenous Poisson process. The distribution 

of pit nucleation times was simulated using a Weibull process. On the other hand, the 

time evolution of pit depth was modelled using a non-homogenous Markov process. 

Valor et al. have shown that the model is able to provide a better physical 

understanding of the pitting process. Benstock and Cegla [12] introduced a framework 

for building extreme value models of inspections data to choose a proper set of 

minima for substantially correlated exponential and Gaussian surfaces. Naoya et al. 

[13] used a combination of extreme value analysis and Bayesian inference methods 

to predict the maximum depths of corrosion on oil storage tank, and more accurate 

prediction is obtained by using the proposed method. 

2.1.3 Offshore conductor pipe data 

A conductor pipe is a large diameter pipe that is set into the seabed to provide the 

stable structural foundation for an oil well. It is typically set on oil wells before any 

drilling operations. An offshore conductor pipe is set in the seabed and is a key 

structural foundation for the subsea wellhead. 

We are provided with 84 conductors’ inspection data. The name of the company that 

provided the data and the location of the conductors will not be disclosed to protect 
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the sensitive information. These ageing conductors have been in service for more 

than 30 years, and structural integrity assessments are needed to ensure that they 

are still fit for service. One of the methods is to measure the remaining wall thickness 

of the conductor. Offshore structures are often exposed to sea spray where the 

members of the structures are located near the mean sea level; they are vulnerable 

in the sea splash zone, and higher external corrosion is expected in this area. There 

are also reported observations on the loss of cement in the internal annular space 

between the conductor and surface casing, leaving the surface casing exposed to 

seawater spray and eventual wall loss due to corrosion. 

Magnetic Eddy Current (MEC) inspection was performed on each of these conductors. 

MEC can detect the corrosion on either side of the wall inspected, and is fast in 

corrosion screening. This method is practical to inspect the conductor pipes from the 

external surface, while they are still in service and at operating temperatures. The 

eddy current sensor covers a circumferential width of 200 mm. The conductors were 

marked circumferentially into 14 tracks which mean it gives approximately 10 mm 

spacing from one measurement to the next measurement circumferentially. The MEC 

scans were taken over one vertical track at a time until 360 degree coverage of the 

general conductor pipe sections was achieved. All accessible areas of the condutor 

pipes were targeted for inspection with the exception of specific dead zones, which 

could not be inspected due to the design of the scanner. This gives in total more than 

1 million thickness measurements for each conductor.  

Localised pitting corrosion was found on the external surface at the splash zone. The 

wall loss on external surface at the splash zone is usually found to be between 20% 

and 40% of nominal thickness, and the wall loss which falls into this range is 

considered severe. Extreme value theory is used to find the current maximum wall 

loss for the inspected and uninspected area of the conductors, then the remaining 

useful life is predicted using the geometric Brownian motion simulation. Predicted 

remaining useful life allows the integrity engineers to make decision on the 

maintenance of these conductors. 
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2.2 Generalised Extreme Value distribution 

Given independent and identically distributed (iid) random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with 

a cumulative distribution function  𝐹 , the distribution of the maximum 𝑀𝑛 =

𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛} can be derived exactly for all values of 𝑛 [15]: 

 𝑃𝑟{𝑀𝑛 ≤ 𝑧} = 𝑃𝑟{𝑋1 ≤ 𝑧, 𝑋2 ≤ 𝑧, … 𝑋𝑛 ≤ 𝑧} 

= 𝑃𝑟{𝑋1 ≤ 𝑧} × 𝑃𝑟{𝑋2 ≤ 𝑧} × … × 𝑃𝑟{𝑋𝑛 ≤ 𝑧} 

= {𝐹(𝑧)}𝑛. 

(2.1) 

However, this is not immediately helpful in practice since the distribution function F is 

unknown and inferences on the maximum imply extrapolation into the upper tail of 

the distribution. We accept the fact that 𝐹 is unknown and by the Extreme Value 

Theorem, the limiting distribution of properly standardised maxima extreme values  is 

a generalised extreme value distribution (GEVD). The GEVD includes three classes 

of extreme value distributions as special cases, and these are called the Gumbel, 

Fréchet, and Weibull distributions respectively. 

The three classes of extreme value distributions are embedded in the maximum 

generalised extreme value distribution with cumulative distribution function (CDF) 

 
𝐺(𝑧) = 𝑒𝑥𝑝 {− [1 + 𝜉 (

𝑧 − 𝜇

𝜎
)]

−
1
𝜉

} (2.2) 

where 1 + 𝜉(𝑧 − 𝜇) 𝜎⁄ > 0 , −∞ < 𝜇 < ∞ , 𝜎 > 0 , and  −∞ < 𝜉 < ∞ . It has three 

parameters: a location parameter 𝜇; a scale parameter 𝜎; a shape parameter 𝜉. The 

GEVD with 𝜉 = 0 is interpreted as the limit of (2.2) as 𝜉 → 0, leading to the Gumbel 

family with distribution function 

 𝐺(𝑧) = 𝑒𝑥𝑝 [−𝑒𝑥𝑝 {− (
𝑧 − 𝜇

𝜎
)}] , −∞ < 𝑧 < ∞. (2.3) 

Estimates of extreme quantiles of the maximum distribution are obtained by solving 

𝐺(𝑧𝑝) = 1 − 𝑝 for 𝑧𝑝 giving: 
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𝑧𝑝 = {
𝜇 −

𝜎

𝜉
[1 − {−𝑙𝑜𝑔(1 − 𝑝)}−𝜉], 𝜉 ≠ 0

𝜇 − 𝜎𝑙𝑜𝑔{−𝑙𝑜𝑔(1 − 𝑝)}, 𝜉 = 0.
 (2.4) 

If the parent distribution 𝐹 has a maximum limiting distribution 𝐺, then 𝐹 is said to be 

in the maxima domain of attraction of 𝐺. Castillo et al. summarise the maxima and 

minima domain of attraction of parametric limiting distributions in [16]. 

2.2.1 The Block Maxima method 

To estimate the distribution of maxima using the extreme value distributions, we need 

to obtain data from a maximum process. The block maxima method described by 

Coles [15] provides an alternative method for estimating the distribution of maxima 

by grouping the data into blocks of equal or approximately equal size and taking as 

data the maximum in each block. For 𝑛 iid observations 𝑋1, 𝑋2, … , 𝑋𝑛, let 𝑚 denote the 

number of blocks, so there are B = 𝑛 𝑚⁄  observations in each block. Let 𝑋𝑚𝑎𝑥𝑖
=

𝑚𝑎𝑥{𝑋𝑖1, … , 𝑋𝑖𝐵}, 𝑖 = 1, … , 𝑚 be the maximum value in block 𝑖. Then the block maxima 

𝑋𝑚𝑎𝑥𝑖
, … , 𝑋𝑚𝑎𝑥𝑚

 are independent observations that will follow, approximately, a 

maximum extreme value distribution. 

In corrosion applications, inspection data (defect depths) are usually populated in a 

𝑚 × 𝑛 matrix. The matrix will be partitioned into several smaller matrices (blocks), a 

maximum value is taken from every block and these maximum values are then fitted 

with the GEVD. Figure 2.2 shows as an example a 16 × 16 corrosion matrix that is 

divided into 64 blocks. 
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Figure 2.2. Partitioned block maxima for sample defect depth in mm.   

2.2.2 Parameter estimation 

One of the methods which is commonly used to estimate the unknown parameters of 

GEVD is the maximum likelihood estimation (MLE) method. Under the assumption 

that 𝑍1, … , 𝑍𝑚 are independent variables having the GEVD, the log-likelihood of the 

unknown parameters when ξ ≠ 0 is: 

 
𝑙(µ, 𝜎, 𝜉) = −𝑚 log 𝜎 − (1 + 1

𝜉⁄ ) ∑ 𝑙𝑜𝑔 [1 + 𝜉 (
𝑧𝑖 − µ

𝜎
)]

𝑚

𝑖=1

− ∑ [1 + 𝜉 (
𝑧𝑖 − µ

𝜎
)]

−1 𝜉⁄
𝑚

𝑖=1

, 

(2.5) 

provided that 1 + 𝜉 (
𝑧𝑖−µ

𝜎
) > 0, for 𝑖 = 1, … , 𝑚. 

The case ξ = 0 requires separate treatment using the Gumbel limit of the GEVD. The 

log-likelihood function is given by: 

 
𝑙(µ, 𝜎) = −𝑚 𝑙𝑜𝑔 𝜎 − ∑ (

𝑧𝑖 − µ

𝜎
)

𝑚

𝑖=1

− ∑ 𝑒𝑥𝑝 {− (
𝑧𝑖 − µ

𝜎
)} .

𝑚

𝑖=1

 (2.6) 
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For any given dataset the maximisation is performed using standard numerical 

optimisation algorithms. 

2.3 Generalised Pareto distribution 

Let 𝑋1, 𝑋2, …  be a sequence of independent and identically distributed random 

variables, having marginal distribution function 𝐹. It is natural to regard as extreme 

events those of the 𝑋𝑖 that exceed some high threshold 𝑢. Denoting an arbitrary term 

in the 𝑋𝑖  sequence by 𝑋,  the conditional probability that describes the stochastic 

behaviour of extreme events is given by: 

 
𝑃𝑟{𝑋 > 𝑢 + 𝑦 | 𝑋 > 𝑢} =

1 − 𝐹(𝑢 + 𝑦)

1 − 𝐹(𝑢)
, 𝑦 > 0. (2.7) 

Since we accept that parent distribution 𝐹  is unknown, approximations that are 

broadly applicable for high values of the threshold are sought. 

Let  𝑀𝑛 denotes the distribution of block maxima where 𝑀𝑛 = 𝑚𝑎𝑥{𝑋1, 𝑋2, … , 𝑋𝑛}. For 

large enough 𝑛, the GEVD gives 

𝑃𝑟{𝑀𝑛 ≤ 𝑧} = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑧 − 𝜇

𝜎
)]

−
1
𝜉

} 

for some 𝜇, 𝜎 > 0 and 𝜉. 

It is shown by Coles [15] that under appropriate conditions, for large enough values 

of 𝑢, the distribution function 𝑋 − 𝑢 conditioned on 𝑋 > 𝑢 is approximately within the 

Generalised Pareto family of distributions. A random variable Y is said to have the 

Generalised-Pareto distribution (GPD) with shape parameter 𝜉  and scale 

parameter �̃�, if its cumulative distribution function is given by: 
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𝐻(𝑦) = 1 − (1 +

𝜉𝑦

�̃�
)

−1 𝜉⁄

 (2.8) 

where 𝑦 > 0, 𝜉 ≠ 0, (1 + 𝜉𝑦 �̃�⁄ ) > 0, and 

 �̃� = 𝜎 + 𝜉(𝑢 − 𝜇). (2.9) 

The GPD with parameter 𝜉 = 0 is interpreted by taking the limit 𝜉 → 0 in (2.8), leading 

to 

 𝐻(𝑦) = 1 − 𝑒𝑥𝑝 (−
𝑦

�̃�
) , 𝑦 > 0 (2.10) 

corresponding to an exponential distribution with parameter 1 �̃�⁄ . 

The return-level associated return period 1 𝑝⁄ , for probability 0 < 𝑝 ≤ 1, is given by: 

 

𝑦𝑝 = {

�̃�

𝜉
[𝑝−𝜉 − 1], 𝜉 ≠ 0

−�̃�𝑙𝑜𝑔(𝑝), 𝜉 = 0.

 (2.11) 

The level 𝑦𝑝  is expected to be exceeded on average once every 𝑁 = 1 𝑝⁄  

exceedances. It corresponds to some extreme excess and for the wall loss should be 

rewritten as 𝑢 + 𝑦𝑝. 

2.3.1 The Peak-Over-Threshold (POT) method 

The Peak-over-Threshold (POT) method uses a more natural way of determining 

whether an observation is extreme. The data consist of a sequence of iid 

measurements  𝑥1, … , 𝑥𝑛 , and extreme events are identified by defining a high 

threshold 𝑢, for which the exceedances are {𝑥𝑖: 𝑥𝑖 > 𝑢}. Denoting these exceedances 

by  𝑥(1), … , 𝑥(𝑘) , and defining threshold excesses by  𝑦𝑗 = 𝑥(𝑗) − 𝑢, for 𝑗 = 1, … , 𝑘 , 𝑦𝑗 

may be regarded as independent realisations of a random variable whose distribution 

can be approximated by a member of the generalised Pareto family. If the GPD is a 

valid model for excesses over the threshold 𝑢0, then it is valid for excesses over all 
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thresholds 𝑢 > 𝑢0 [15]. Denoting by 𝜎𝑢0
 the GPD scale parameter for excesses over 

threshold 𝑢0, the expected value of the excesses, conditional on being greater than 

the threshold, is 

 
𝐸(𝑋 − 𝑢 | 𝑋 > 𝑢) =

𝜎𝑢0
+ 𝜉𝑢

1 − 𝜉
. (2.12) 

Thus, for all  𝑢 > 𝑢0 ,  𝐸(𝑋 − 𝑢 | 𝑋 > 𝑢)  is a linear function of  𝑢 . Furthermore, 

𝐸(𝑋 − 𝑢 | 𝑋 > 𝑢) is simply the mean of the excesses of the threshold 𝑢, for which the 

sample mean of the threshold excesses of 𝑢 provided an empirical estimate. This 

leads to the mean residual life plot, a graphical procedure for identifying a suitably 

high threshold for modelling extremes via the GPD. The mean residual life plotting 

procedure is as follows: 

 

{(𝑢,
1

𝑛𝑢
∑(𝑥(𝑖) − 𝑢)

𝑛𝑢

𝑖=1

) ∶ 𝑢 < 𝑥𝑚𝑎𝑥} (2.13) 

where 𝑥(1), … , 𝑥(𝑛𝑢)  consist of the 𝑛𝑢  observations that exceed 𝑢 , and 𝑥𝑚𝑎𝑥  is the 

largest of the 𝑋𝑖 [15]. 

Mean residual life plots are commonly used as aids for threshold value selection. 

Another method based on the estimation of the model at a range of thresholds is also 

widely used to decide the proper threshold for the peak-over-threshold model. If a 

GPD is a reasonable model for excesses of a threshold 𝑢0, then excesses of a higher 

threshold 𝑢 should also follow a GPD. The shape parameters of the two distributions 

are identical. However, denoting by �̃�𝑢 the values of the generalised Pareto scale 

parameter for a threshold of 𝑢 > 𝑢0, it follows from (2.9) that 

 �̃�𝑢 = �̃�𝑢0
− 𝜉𝑢0 + 𝜉𝑢. (2.14) 

Let us reparametrize �̃� according to: 
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 𝜎∗ = �̃�𝑢 − 𝜉𝑢 (2.15) 

then 𝜎∗ should be approximately constant for all 𝑢 > 𝑢0. This makes the threshold 

selection easier. We plot the estimated 𝜎∗ and 𝜉 as a function of threshold 𝑢 and look 

for such a threshold value 𝑢0 for which both estimated parameters are approximately 

constant whenever 𝑢 > 𝑢0. By the delta method, the confidence bounds to the plot 

can be added. 

Figure 2.3 and Figure 2.4 show the values above threshold 𝑢 , where these 

exceedances are of interest that we want to model. 

 

Figure 2.3. Defect depth distribution, the readings that exceed the threshold 𝒖 are of interest. 
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Figure 2.4. Exceedances over threshold 𝒖 

2.3.2 Parameter estimation 

Once the threshold has been determined, the parameters of the GPD can be 

estimated by using maximum likelihood estimation. Suppose that the values 𝑦1, … , 𝑦𝑘 

are the 𝑘 excesses of a threshold 𝑢. For ξ ≠ 0 the log-likelihood is derived from (2.8) 

as 

 

𝑙(𝜎, 𝜉) = −𝑘 log 𝜎 − (1 + 1 𝜉⁄ ) ∑ 𝑙𝑜𝑔(1 + 𝜉𝑦𝑖 𝜎⁄ )

𝑘

𝑖=1

, (2.16) 

provided (1 + 𝜉𝑦𝑖 𝜎⁄ ) > 0 for 𝑖 = 1, … , 𝑘; otherwise, 𝑙(𝜎, 𝜉) = −∞. In the case ξ = 0 

the log-likelihood is obtained from (2.10) as 

 

𝑙(𝜎) = −𝑘 𝑙𝑜𝑔 𝜎 −
1

𝜎
∑ 𝑦𝑖

𝑘

𝑖=1

. (2.17) 

Numerical optimisation techniques are required to obtain the maximisation of the log-

likelihood function. 
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2.3.3 Extremes of locally-dependent defect depth 

The assumption of independence of underlying observations is usually unrealistic for 

the types of data to which extreme value models are commonly applied. For corrosion 

data, it is very likely the growth of one defect can influence the growth of the 

neighbouring defects. These defects are said to be locally dependent. It is shown by 

Leadbetter et Al. [40] and Coles [15] that for the stationary and locally dependent 

observations, the statistical behaviour of extreme events can be modelled by extreme 

value distributions (Appendix A). The dependence condition requires that the extent 

of long-range dependence at extreme levels be limited. It implies that as long as the 

extreme events are far enough apart, they can be considered as approximately 

independent. In the application to corrosion, this means that if the distance of two 

extreme depth defects is long enough, they can be considered as nearly independent. 

The assumption is reasonable on corrosion and motivates the usage of extreme value 

distributions to model corrosion data. 

2.3.3.1 Modelling block maxima 

According to Coles [15], modelling block maxima of stationary and locally dependent 

data does not differ from modelling block maxima of stationary but independent data. 

This is because if the long-range dependence at extreme levels is weak, observations 

can be considered as approximately independent for block maxima. The corrosion 

data can be assumed to be characterised by a limited extent of long-range 

dependence. Hence, the GEV method introduced in 2.2 can still be applied to the 

corrosion data. 

2.3.3.2 Modelling threshold exceedances 

The generalised Pareto distribution can still be used to model the statistical behaviour 

of excesses over the threshold of stationary data that satisfy the assumptions about 

the long-range dependence. However, since neighbouring exceedances may be 

dependent on each other, we cannot use maximum likelihood estimation for this data 
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directly. Data de-clustering is the widely used method to solve this dependency 

problem by eliminating dependent observations such that the remaining exceedances 

are nearly independent. The following is the framework to model excesses over the 

threshold of stationary data with the generalised Pareto distribution: 

 Identify clusters of exceedances; 

 Identify the maximum excess within each cluster; 

 Fit the generalised Pareto distribution to cluster maxima. 

The key issue of data declustering is cluster identification. Many algorithms can be 

used to find a given number of clusters in data. Wrongly specifying this number can 

cause the algorithms to group data into artificial clusters. This can lead to the creation 

of a different data structure than the actual one. Therefore the estimation of the 

number of clusters is of great importance. 

2.3.3.3 Density-based Spatial Clustering of Applications with Noise (DBSCAN) 

cluster analysis 

Many methods can be used to identify clusters in data such as K-means, hierarchical 

clustering, fuzzy clustering, canopy clustering, autocorrelation function, and other 

methods. Some of these methods are used in corrosion applications to remove or 

reduce the temporal dependence of localised defects. Schneider [9] computed a two-

dimensional autocorrelation function to select a block size ensuring the minima from 

each block were independent. Glegola [6] used an agglomerative hierarchical 

clustering method to identify clusters of exceedances and the maximum value within 

each cluster is selected before fitting with generalised-Pareto distribution for inference. 

Saleh et al. [17] applied K-means clustering and expectation-maximization methods 

to classify pulsed eddy current inspection data and automatically determine corrosion 

distribution of multiple layers in aluminium structures. Ayako [18] performed model-

based clustering analysis via Gaussian mixture models to categorise soil corrosion 

and prioritise areas to be inspected regarding underground conditions. Bi et al. [19] 

used a K-means clustering algorithm to classify pitting corrosion characteristics of low 
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carbon steel generated by acoustic emission signals. There are other examples of 

the application of clustering methods on corrosion data analyses [20-23]. 

We proposed density-based spatial clustering of application with noise (DBSCAN) for 

cluster analyses of corrosion data. We selected this clustering method because of its 

ability in discovering clusters with an arbitrary shape such as linear, concave, oval, 

and so on. Furthermore, compared to some of the clustering methods,  

predetermination of the number of clusters is not required in DBSCAN algorithms. 

Also, it has been proven in its ability to process enormous databases [24]. DBSCAN 

is robust to outliers as it has a notion of noise. Although DBSCAN has trouble with 

high-dimensional data because density is harder to define for such data, the corrosion 

data are two-dimensional, so it can still be used for such data without problems. 

DBSCAN is a density-based clustering algorithm that produces a partitional clustering, 

in which the number of clusters is automatically determined by the algorithm [25]. 

DBSCAN is based on a centre-based approach where the density is estimated at a 

particular point in the data set by counting the number of points within a specified 

radius, Eps, of that point. This includes the point itself. The technique is graphically 

illustrated in Figure 2.5. The number of points within a radius of Eps of point A is 6, 

including A itself. 

 

Figure 2.5. Centre-based 
density in DBSCAN clustering. 

 

Figure 2.6. Core, border, and noise points in DBSCAN 
clustering. 

  

The centre-based approach to density allows classification of points: 
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 Core points: These points are in the interior of a density-based cluster. A 

point is a core point if the number of points within a given neighbourhood 

around the point which is determined by the distance function and a user-

specified parameter of distance, Eps, exceeds a certain threshold, MinPts. 

MinPts is also a user-specified parameter. In Figure 2.6, point A is a core point, 

for the indicated radius (Eps) if MinPts ≤ 6 

 Border points: A border point falls inside the area of a core point, yet it is not 

a core point. In Figure 2.6, point B is a border point. A border point can fall 

within the neighbourhoods of multiple core points. 

 Noise points: A noise point is any point that is neither a core point nor a 

border point. In Figure 2.6, point C is a noise point. 

The DBSCAN algorithm has the following procedures [25]: 

1. Identify all points as core, border, or noise points. 

2. Get rid of noise points. 

3. Put a border between all core points that are inside Eps of each other. 

4. Create a separate cluster for each group of connected core points. 

5. For each border point, assign them to one of the clusters of their associated 

core points. 

We used Euclidean distance (2.3.3.4) for the distance calculation for the cluster 

analysis. 

2.3.3.3.1 Selection of DBSCAN parameters 

DBSCAN algorithm requires the parameters Eps and MinPts to be determined. The 

basic approach is to look at the behaviour of the distance from a point to its kth nearest 

neighbour, which we will call the k-dist. For points that belong to some cluster, the 

value of k-dist will be small if k is not larger than the cluster size. Note that there will 

be some variation, depending on the density of the cluster and the random distributio 

n of points but, on average, the range of variation will not be huge if the cluster 

densities are not radically different. However, for points that are not in a cluster, such 
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as noise points, the k-dist will be relatively large. Therefore, if k-dist is computed for 

all the data points for some k and we sort them in increasing order, a sharp change 

is expected in the value of k-dist that corresponds to a suitable value of Eps when 

these sorted values are plotted. If we select this distance as the Eps parameter and 

take the value of k as the MinPts parameter, then the points for which k-dist is less 

than Eps will be labelled as core points, and other points will be labelled as either 

noise or border points. 

Figure 2.7 shows a sample data set, while the k-dist graph for the data is given in 

Figure 2.8. The estimation of Eps that is resolved along these lines relies on upon 𝑘, 

yet does not change significantly as 𝑘 changes. If the value of 𝑘 is too small, then 

even a small number of closely spaced points that are noise or outliers will be 

incorrectly labelled as clusters. If the value of 𝑘 is too large, then small clusters are 

likely to be labelled as noise. The value 𝑘 = 4  is commonly used for DBSCAN 

algorithm, which is a reasonable value for most two-dimensional data sets. 

 

Figure 2.7. Sample data for k-dist plot. 

 

Figure 2.8. K-dist plot for sample data in 
Figure 2.7. 

2.3.3.4 Euclidean distance 

The most commonly used distance between two points is Euclidean distance. Most 

of the time when people talk about distance, they refer to the Euclidean distance. It 

examines the square root of squared differences between coordinates of a pair 
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objects. For example, Figure 2.9 shows that the distance between two points in the 

plane with coordinates (x, y) and (a, b) is given by: 

 𝑑𝑖𝑠𝑡[(𝑥, 𝑦), (𝑎, 𝑏)] = √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 (2.18) 

 

Figure 2.9. Euclidean distance 

2.3.3.5 Clustering tendency test 

One way to determine whether a dataset has clusters is to try to cluster it and then 

check it. However, on checking, clusters are always found in a given dataset by 

almost all clustering algorithms. To get over this issue, we can try to assess whether 

a dataset has clusters without clustering, by measuring the clustering tendency of the 

dataset in Euclidean space. 

We used the Hopkins statistic to evaluate the clustering tendency. For this approach, 

we generate 𝑝 points that are randomly distributed across the data space and also 

sample 𝑝 actual data points [26]. For both sets of points, we find the distance to the 

nearest neighbour in the original dataset. Let the 𝑢𝑖  be the nearest neighbour 

distances of the artificially generated points, while the 𝑤𝑖  are the nearest neighbour 

distances of the sample of points from the original data set. The Hopkins statistic H 

is then defined by: 
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𝐻 =

∑ 𝑤𝑖
𝑝
𝑖=1

∑ 𝑢𝑖
𝑝
𝑖=1 + ∑ 𝑤𝑖

𝑝
𝑖=1

. (2.19) 

If the sample data points have roughly the same nearest neighbour distances, then 

H will be near 0.5. Data are highly clustered when the H value is close to 0 and data 

are regularly distributed in the data space when the H value is close to 1. 

2.4 Geometric Brownian motion-based corrosion simulation 

Localised corrosion has been recognised to have stochastic behaviour [27-30]. Many 

types of research have discussed the use of stochastic processes to model the 

deterioration of assets, including corrosion. The generation of new corrosion defects 

is modelled by a Poisson process in [31]. Zhang et al. [32-33] compared the gamma 

process-based, inverse Gaussian process and geometric Brownian motion process-

based models to characterize the growth of corrosion depth on underground pipelines 

based on multiple inline inspection data (ILI); uncertainties are considered from 

different sources by formulating the model in the hierarchical Bayesian framework 

including the error and random scattering with the inspection tools. Zhang et al. 

illustrated that the models could predict the growth of corrosion defects reasonably 

well. Caleyo et al. [34] proposed a new Markov chain model for pitting corrosion that 

avoids a reduction of the number of pitting states for simplicity. The model has been 

validated using both synthetic and experimental pitting corrosion data. Describing it 

as a non-homogeneous Poisson process, one can determine the evolution of the total 

number of pits. The stochastic behaviour is described by the gamma process because 

the mean and variance have a well-recognised evolution. This process is also very 

useful because of the capacity to couple successfully the stochastic attribute of the 

pitting initiation and the pitting corrosion growth [35]. Guida & Pulcini [36] proposed a 

state-dependent inverse gamma process for modelling pitting corrosion growth in 

nonlinear trend. The model is mathematically more tractable as it does not require 

discretization of time and state. 
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The model presented here is based on the geometric Brownian motion simulation as 

discussed by Zhang et al. [33] to predict the growth rate of the defect depth of pitting 

corrosion. 

In Zhang’s paper the instantaneous degradation rate at time 𝑡, 𝑟(𝑡), is given by: 

 𝑟(𝑡) = 𝑟0 ∙ 𝑒𝑥𝑝[𝛽𝑡 + 𝜎𝑊(𝑡)] (2.20a) 

i.e. 

 𝑙𝑜𝑔(𝑟(𝑡)) = 𝑙𝑜𝑔(𝑟0) + 𝛽𝑡 + 𝜎𝑊(𝑡) (2.20b) 

where 𝑟0 denotes the initial degradation rate, and 𝛽 and 𝜎 denote the drift and 

diffusion parameters, respectively and 𝑊(𝑡) is a standard Brownian process 

(Appendix B). Implicit in Eq. (2.20b) is that 𝑙𝑜𝑔(𝑟(𝑡2)) − 𝑙𝑜𝑔(𝑟(𝑡1)) = 𝛽𝛥𝑡 +

𝜎𝑊(𝛥𝑡) with 𝛥𝑡 = 𝑡2 − 𝑡1 and 𝑡2 > 𝑡1. 𝛥𝑡 is the time interval and 𝑊(𝛥𝑡)  characterises 

the noise in 𝛥𝑡. It follows that the logarithm of the instantaneous degradation rate at 

the present time  𝑡2, 𝑙𝑜𝑔(𝑟(𝑡2))  can be related to that at the previous 

time 𝑡1, 𝑙𝑜𝑔(𝑟(𝑡1)), through the Brownian motion given by: 

 𝑋(𝑡) = 𝛽𝑡 + 𝜎𝑊(𝑡) (2.21) 

that is 𝑙𝑜𝑔(𝑟(𝑡2)) = 𝑙𝑜𝑔(𝑟(𝑡1)) + 𝛽𝛥𝑡 + 𝜎𝑊(𝛥𝑡). This implies that 𝑟(𝑡2) is dependent 

on the current state of the degradation; therefore, the model is a state-dependent 

model. 

Let us denote 𝑥𝑖𝑗  as the depth of defect 𝑖  at the time of 𝑗𝑡ℎ  inspection, 𝑡𝑖𝑗 . The 

instantaneous growth rate at 𝑡𝑖,𝑗−1 is defined as 𝑟𝑖,𝑗−1 = (𝑥𝑖𝑗 − 𝑥𝑖,𝑗−1) 𝛥𝑡𝑖,𝑗−1⁄ , where 

𝛥𝑡𝑖,𝑗−1 is the time difference between current inspection 𝑗 and previous inspection 𝑗 −

1 .  𝑟𝑖,𝑗−1  is assumed to be constant within the inspection interval 𝛥𝑡𝑖,𝑗−1 . The 

inspection interval should not be too long, such as less than 5 years [37]. However, if 

only one inspection record is available, 𝛥𝑡𝑖,𝑗−1 will be the time difference between 

current inspection and the commission date of the asset. 
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Following the assumptions mentioned above and (2.20b), 𝑙𝑜𝑔(𝑟𝑖𝑗)  can be 

characterised by a Brownian motion process as: 

 𝑙𝑜𝑔(𝑟𝑖𝑗) = 𝑙𝑜𝑔(𝑟𝑖,𝑗−1) + 𝛽𝛥𝑡𝑖,𝑗−1 + 𝜎𝑊(𝛥𝑡𝑖,𝑗−1). (2.22) 

The drift parameter 𝛽 is the change rate between the logarithms of average growth 

rates corresponding to two consecutive inspection intervals; the standard Brownian 

motion process 𝑊(𝑡) characterizes the random noise in the change between 𝑙𝑜𝑔(𝑟𝑖𝑗) 

and 𝑙𝑜𝑔(𝑟𝑖,𝑗−1), and the diffusion parameter 𝜎 is a scaling factor that quantifies the 

uncertainty in the random noise. 

The depth at the time of the 𝑗𝑡ℎ inspection, 𝑥𝑖𝑗, can be calculated via 

 𝑥𝑖𝑗 = 𝑥𝑖,𝑗−1 + 𝑟𝑖,𝑗−1𝛥𝑡𝑖,𝑗−1. (2.23) 

2.5 Application 

2.5.1 Conductor A 

We chose one of the 84 conductors as an example of the application of extreme value 

analyses and called it Conductor A.  Conductor A consists of four sections with a 30-

inch diameter, and these sections of pipes are joined to form a single conductor pipe. 

The nominal thickness of sections one, two and three is 22mm each and section four 

is 28mm. Section 1 is above mean sea level while sections 3 and 4 are below mean 

sea level. Section 2 is in mean sea level or splash zone area where the external 

surface of the pipe is severely corroded. The corrosion level below mean sea level is 

observed to be minimal. For section 1 which is above mean sea level, only a few 

isolated pitting-like spots were detected. There are certain areas of Conductor A that 

could not be inspected due to the dead zone created by the conductor guide and 

because corrosion data of these areas are not available. For this case, we are 
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particularly interested in assessing section 2 where it is located in the sea water 

splash zone and external corrosion is found to be most severe in this area. To be 

more convenient, we called this section Conductor A2. Figure 2.10 shows the wall 

loss indication for Conductor A. 

Conductor A2 has a total 1052463 thickness measurements. Out of this total number 

of measurements, there are 6664 thickness measurements with wall loss up to about 

20%-40%; and 56 out of the total number of measuremeants with wall loss greater 

than 40% of nominal thickness. 

 

Figure 2.10. Conductor A consists of 4 sections, where section 2 is in sea splash zone and 
severe external corrosion is identified. 
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2.5.2 Block Maxima method 

In this section, we will use the block maxima method with GEVD for the conductor’s 

corrosion analysis. We focused on section 2 (shown in the Figure 2.10) as it is the 

most severely corroded area and used extreme value analysis to determine the 

maximum wall loss. We took the thicknesses measured between -8 metres to -10 

metres elevated from the top of the conductor pipe where this area is the splash zone, 

and severe external corrosion is detected in this zone; this gives a total of 478239 

readings. We assumed that the original thickness of Conductor A2 is its nominal 

thickness and obtained the defect depth by subtracting measured thickness from 

nominal thickness. We then mapped the defect depths onto a matrix. Figure 2.11 

shows a surface plot of defects for Conductor A2. 

 

Figure 2.11. Defects of conductor A2 at mean sea level 

The matrix consists of 239 columns and 2001 rows. The first step in our analysis is to 

define block maxima 𝑋𝑚𝑎𝑥1
, … , 𝑋𝑚𝑎𝑥𝑚

 and specify how to read the maxima from the 

corrosion map. We need to make sure the block maxima definition covers as much 

maximum defect depth as possible. 
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Figure 2.12, Figure 2.13, and Figure 2.14 show the different methods the corrosion 

map is divided into equally-sized or approximately equally-sized blocks. As shown in 

Figure 2.12 and Figure 2.14, some blocks do not cover the corroded area, and these 

give a larger number of homogeneous readings of defect depth. Figure 2.13 shows 

blocks divided by the matrix columns, and most of the severely corroded areas are 

covered. We chose the method as shown in Figure 2.13 for block maxima. 

 

Figure 2.12. Block maxima that are divided equally into squares 

 

Figure 2.13. Block maxima divided by matrix columns 
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Figure 2.14 Block maxima divided by matrix rows 

We know that the blocks should be divided by column, but we need to know also how 

many columns should be considered as one block. We conducted Kolmogorov-

Smirnov tests (K-S tests) to determine the number of columns for one block. We fitted 

the different block maxima to a generalised extreme value distribution (GEVD) and 

tested their goodness of fit. A description of the K-S test can be found in Appendix C. 

 

Figure 2.15. K-S test results for the GEVD for different block sizes 
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From Figure 2.15, we can see that 2-column blocks and 4-column blocks have smaller 

K-S D statistics. Smaller D statistics correspond with better fit of the distribution. Then 

we observed the significance level and p-value calculated in K-S test. The null 

hypothesis is that the data follow the extreme value distribution. The larger the p-

value implies the higher the significance level and the p-value must be greater than 

0.05 for the null hypothesis not to be rejected. The 4-column block has the larger p-

value. By comparing the D statistics and p-values, we considered the 4-column block 

samples to be a better choice compared to others to fit with GEVD. 

Parameters 

Maximum 

Likelihood 

Estimate 

Std. Error 

95% Confidence Interval 

Lower Upper 

𝜇 6.5086 0.2640 5.9912 7.0260 

𝜎 1.8199 0.1925 1.4426 2.1972 

𝜉 -0.3081 0.1006 -0.5053 -0.1109 

Table 2.1. Estimated parameters for GEVD fitting to block maxima 

Having 𝜉 < 0 implies that the support of the GEVD is bounded from above by 𝜇 −
𝜎

𝜉
=

12.38𝑚𝑚. The boundary value tells us that the predicted wall loss or defect depth 

should not be greater than 12.38mm regardless of the size of area to which we want 

to extrapolate the results. 



34 
 

 

Figure 2.16 Block maxima fitted with GEVD 

To extrapolate the maximum defect depth, we need to calculate the return level of the 

fitted GEVD.  We need to determine the return period, T of the block maxima 

distribution before the return level, which is defined as: 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑒𝑟𝑖𝑜𝑑, 𝑇 =
𝐴𝑠

𝐵𝑠
 

where 𝐴𝑠 is the surface area of the section of conductor pipe or larger area of the 

corroded area where sample corrosion is used for block maxima analysis, and 𝐵𝑠 is 

the area of the size of one block maximum. The definition of return period can be 

found in [14]. In this example we analysed only the splash zone where the area is 

between the elevation of -8 metres and -10 metres from the top of the conductor pipe. 

We denoted it by 𝑑𝑦 = 2001𝑚𝑚, and the entire Conductor A2 is from the elevation of 

-6.2 metres to -11.8 metres. The spacing between circumferential readings is 10mm, 

we denoted it by  𝑑𝑥 ≈ 10𝑚𝑚  and we have 239 readings per row on the matrix. 

Therefore, 𝐴𝑠 = 2001𝑚𝑚 × 10𝑚𝑚 × 239 = 4782390𝑚𝑚2. We used 4 columns on the 
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matrix as one block, so the size of one block is  𝐵𝑠 = 2001𝑚𝑚 × 10𝑚𝑚 × 4 =

80040𝑚𝑚2: 

𝑇 =
4782390

80040
= 59.75 

We then calculated the 𝑝 =
1

𝑀
 value that is required to calculate the return level and 

the value obtained is 𝑝 ≈ 0.0167. Hence by using equation (2.4), the return level is 

𝑧𝑝 = 6.51 −
1.82

(−0.31)
[1 − {−𝑙𝑜𝑔(1 − 0.0167)}−(−0.31)] = 10.73𝑚𝑚. 

Based on the extrapolated return level, we can say that the wall loss or defect depth 

that is expected to be exceeded on average once on the sample corroded area of 

section 2 of Conductor A is 10.73mm. 

Using the same estimated GEVD parameters, we can then extrapolate the corrosion 

probability for the other area of section 2 including the uninspected areas. We 

calculated return period for another part of section 2 and denoted it by 𝑇𝑠: 

𝑇𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝐴𝑟𝑒𝑎

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑂𝑛𝑒 𝐵𝑙𝑜𝑐𝑘
 

=
12566620𝑚𝑚2  −  4782390𝑚𝑚2

80040𝑚𝑚2
 

= 97.25 

and p-value (denoted by 𝑝𝑠): 

𝑝𝑠 =
1

𝑇𝑠
= 0.0103. 

Hence the maximum defect depth or return level for another area including 

uninspected area: 
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𝑧𝑝𝑠
= 6.51 −

1.82

(−0.31)
[1 − {−𝑙𝑜𝑔(1 − 0.0103)}−(−0.31)] = 10.96𝑚𝑚. 

2.5.3 Peak-over-threshold method 

In this section, we will use the peak-over-threshold method together with the 

generalised-Pareto distribution to find the maximum defect depth of Conductor A2.  

To determine a proper value of threshold 𝑢, we applied the methods discussed in 

2.3.1 and plotted a mean residual life plot using the available defect depth data. We 

also plotted 𝜎∗ and 𝜉 parameters against a range of threshold 𝑢. Figure 2.17 shows 

the mean residual life plot. It is initially linear but shows substantial fluctuations 

after 𝑢 = 2.8𝑚𝑚; multiple linearities can be found after this threshold value. We want 

to select a threshold value which is as large as possible, but if the threshold value is 

too large, the number of exceedances may not be sufficient to make meaningful 

inferences. Figure 2.18 shows the scale and shape parameters plotted against a 

range of threshold values. In Figure 2.18, the change in pattern after threshold 𝑢 =

5𝑚𝑚 was observed and the perturbations were increasing after this threshold value. 

Based on these two plots, we were given suggestions that the threshold value to use 

for inference is  𝑢 = 5𝑚𝑚  or lower value. However, as a reminder, in 2.3.3 we 

discussed that the corrosion defects might be locally-dependent where the depth of 

a single defect may influence the depth of another. We need to run cluster analyses 

on these data and de-cluster them before fitting with GPD for deduction, and the 

number of maxima from those clusters must be large enough to fit with GPD for 

meaningful inferences. 

Before running DBSCAN cluster analyses, we checked the clustering tendency of 

data for a range of thresholds. Figure 2.19 shows a plof of the Hopkins statistic against 

a range of thresholds. As discussed in 2.3.3.5, a data set is cluster-able if the Hopkins 

statistic is less than 0.5. The results show that all data sets that above the range of 

threshold values are cluster-able as they are much less than 0.5. Therefore, we 

conducted cluster analysis using DBSCAN for all the data set above the range of 
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threshold values. From every cluster, we select the maximum value and then fit with 

the GPD. 

Figure 2.20 and Figure 2.21 show respectively the estimated scale and shape 

parameters against a range of threshold values. Threshold  𝑢 = 4.5𝑚𝑚 was observed 

to have the minimum sampling errors, so we used this threshold value for our 

inference. 

Figure 2.22 shows the 𝐸𝑝𝑠 = 10 for DBSCAN clustering which we can see the sharp 

increase in distance. 𝑀𝑖𝑛𝑃𝑡𝑠 = 4 is used in this cluster analysis which is the original 

k value of DBSCAN algorithm, which is reasonable for most two-dimensional data 

sets. Figure 2.23 shows the defect data set before de-clustering and Figure 2.24 after 

de-clustering. With the data above threshold 4.5mm, the DBSCAN gave 142 clusters; 

from each cluster, we calculate the maximum value and then fit with the GPD. 

 

Figure 2.17. Mean residual life plot for defect depth data 
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Figure 2.18. Parameter estimates against threshold for defect depth data 

 

Figure 2.19. Hopkins Statistic against a range of threshold values. 



39 
 

 

Figure 2.20. Scale parameters against a range of thresholds for de-clustered data. 
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Figure 2.21. Shape parameter against a range of thresholds for de-clustered data. 

The following table (Table 2.2) shows the results of fitting the GPD to excesses above 

the threshold 𝑢 = 4.5𝑚𝑚: 

Parameters 

Maximum 

Likelihood 

Estimate 

Std. Error 

95% Confidence Interval 

Lower Upper 

�̃� 1.2269 0.1467 0.9394 1.5144 

𝜉 -0.0070 0.0852 -0.1739 0.1600 

Table 2.2 Estimated parameters for GPD fitting to defect data over threshold. 
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Figure 2.22. K-dist plot for defect depth data above threshold 

 

Figure 2.23. Defect depth data before de-clustering 
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Figure 2.24. Defect depth data after de-clustering 

To infer the maximum defect depths on the area of Conductor A2 with the inspection 

data we used for peak-over-threshold analysis, we need to calculate the return level 

of GPD using the estimated parameters as presented in Table 2.2. 

If 𝑁𝑠  denotes the number of threshold exceedances on the surface S then the 

expected value of 𝑁𝑠 is given by: 

𝐸(𝑁𝑠) = 𝜆 × |𝑆| 

where 𝜆 is the rate of exceedances per unit area of 𝑆 and |𝑆| is the size of 𝑆. We will 

need the rate of exceedances to extrapolate the maximum defect depth uninspected 

area. But firstly we will look at the inspected area we used for these parameters’ 

estimation.  

The total surface area of Conductor A2 is 12566620𝑚𝑚2 and the inspected area 

where this area has thickness measurements is 10524630𝑚𝑚2 . Then the rate of 

exceedances is: 
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�̂� =
142

10524630𝑚𝑚2
≈ 0.0000135/𝑚𝑚2 

𝑝 =
1

𝐸(𝑁𝑠)
= 0.007042254. 

Return level is then calculated using equation (2.11): 

𝑦𝑝 =
1.2269

(−0.007)
[0.007042254−(−0.007) − 1] = 5.976𝑚𝑚 

The return level means that the wall loss expected to be exceeded on average once 

is 5.975𝑚𝑚, and the maximum wall loss is 4.5𝑚𝑚 + 5.976𝑚𝑚 = 10.476𝑚𝑚. 

Using the same return level equation, we can extrapolate the maximum wall loss of 

the uninspected area. The expected number of wall loss defects on the other area of 

Conductor A2 is given by: 

𝐸(𝑁𝑢𝑛𝑖𝑛𝑠) = �̂� × (12566620𝑚𝑚2  − 10524630𝑚𝑚2) ≈ 28 

𝑝𝑢𝑛𝑖𝑛𝑠𝑝 =
1

𝐸(𝑁𝑢𝑛𝑖𝑛𝑠𝑝)
=

1

280
= 0.03630 

𝑦𝑝𝑢𝑛𝑖𝑛𝑠𝑝
=

1.2269

(−0.007)
[0.03630−(−0.007) − 1] = 4.022𝑚𝑚. 

The maximum defect depth of uninspected area is 𝑢 + 𝑦𝑝𝑢𝑛𝑖𝑛𝑠𝑝
= 8.522𝑚𝑚. 

2.5.4 Defect depth simulation and prediction 

Geometric Brownian motion (GBM) simulation is used to simulate the defect and 

predict the future growth rate. In extreme value analyses, we are interested in the 

maximum distribution of defects; hence we simulated the defect growth for each 

defect by using the block maxima 𝑥1, … , 𝑥𝑚 obtained in 2.5.2. 
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We have obtained only one single set of inspection data for these conductors. For 

Conductor A2, the inspection was conducted at the 32nd year start from its 

commissioning date; therefore the average growth rates between two inspections for 

defect cannot be estimated. In this case, we firstly treated the average growth rate for 

every defect in the block maxima as linear by averaging the defect depths into 32 

years and got the constant rate for each defect; we denoted it by 𝑐𝑖: 

𝑐𝑖 =
𝑥𝑖

32 𝑦𝑒𝑎𝑟𝑠
, 𝑖 = 1,2,3, ⋯ , 𝑚. 

In corrosion analyses, this is considered inappropriate to use a constant corrosion 

rate to predict the future depth of defect, especially when the corrosion is in extreme 

behaviour. 

Secondly, we need to estimate the growth rate of every year for 31 intervals. We 

defined the drift parameter and used 𝛽𝑖𝑛𝑖𝑡 to denote it, as shown below: 

𝛽𝑖𝑛𝑖𝑡 =
𝑐𝑖

𝑥𝑖 − 𝑐𝑖
−

𝜎𝑖𝑛𝑖𝑡
2

2
 

Parameter 𝛽𝑖𝑛𝑖𝑡  is the average change rate and it is constant because the corrosion 

growth rate is constant. We assumed each defect started growing since the conductor 

was commissioned. We then simulated the defect depths using geometric Brownian 

motion from year zero to year 𝑛 = 31 with the algorithm presented in Figure 2.25 for 

every defect 𝑥𝑖. 

In Figure 2.25, we denoted 𝑟𝑖, 𝑡 as the defect growth rate at year  𝑡 where  𝑡 = 0 is the 

time when the instantaneous growth rate of defect occurs. We have only single 

inspection record, so instead of using 𝑟𝑖, 𝑗  as shown in equation (2.22) which is 

depending on inspection records, we replaced j as t, giving n numbers of growth rates 

per defect. We generated 𝑧 random numbers for the diffusion parameter denoted by 

 𝜎𝑘 using the uniform distribution; the algorithm will loop through each  𝜎𝑘 then fit the 

simulated block maxima with GEVD and the diffusion which gives the closest 

simulated GEVD block maxima distribution is selected. In every loop of 𝜎𝑘, there is 
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another loop that simulates the growth rates for 31 intervals using GBM, and every 

loop reduces the instantaneous growth rate 𝑟𝑖, 0 by value 𝑓 until the sum of 𝑟𝑖, 𝑡 , 𝑡 =

0, ⋯ , 𝑛 equals or is less than 𝑥𝑖. This is to ensure that the initial instantaneous growth 

rate is not too high and we assumed the defect depth is increasing throughout the 

service life of the Conductor A2. Figure 2.26 and Figure 2.27 show respectively the 

distributions for actual and simulated block maxima fitted with the GEVD, and the 

estimated parameters are shown in Table 2.3. 

 

Figure 2.25. The algorithm to find diffusion parameter for the geometric Brownian motion and 
simulation of block maxima. 
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Figure 2.26. GEVD for actual defect depth block maxima from conductor A2. 

 

Figure 2.27. GEVD for simulated maximum defect depth block maxima. 
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Para-

meters 

Maximum 

Likelihood 

Estimate 

Std. Error 

95% Confidence Interval 

Lower Upper 

Actual Sim. Actual Sim. Actual Sim. Actual Sim. 

𝜇 6.509 6.451 0.264 0.264 5.991 5.882 7.026 6.9168 

𝜎 1.82 1.829 0.193 0.193 1.443 1.443 2.197 2.1978 

𝜉 -0.308 -0.313 0.101 0.101 -0.505 -0.504 -0.111 -0.1079 

Table 2.3 Estimated parameters for GEVD fitting to defect block maxima and simulated block 
maxima using the geometric Brownian motion. 

Once the closest simulated block maxima are identified, we used the simulated 

growth rates for each defect to calculate the drift parameter 𝛽  and diffusion 

parameter 𝜎. With both of these parameters obtained, we can simulate and predict 

the future defect growth rates using equation (2.22) and defect depths of Conductor 

A2 using equation (2.23). We have plotted the future maximum defect depth as shown 

in Figure 2.28. 

 

Figure 2.28. Simulated future maximum defect depth using the geometric Brownian motion. 
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2.6 Summary 

We have presented two different methods of application of extreme value theory on 

offshore conductor pipes’ inspection data; they are block maxima (BM) and peak-

over-threshold (POT) methods. Both methods can give similar results in inferring the 

maximum defect depths distribution and extrapolating the defect depth of uninspected 

area. The question is always which method to use over the other. The BM method is 

easy to use with the assumption that the data are stationary and long-range 

dependence at extreme levels is weak. However, there may be cases where the data 

cannot be divided equally to cover most of the extreme data, for instance, as shown 

in Figure 2.29. 

 

Figure 2.29. An example of block maxima that contains a large number of non-extrema. 

Based on the same set of data, we use the POT method and consider only the data 

above a threshold value 𝑢, then fit these data that are above 𝑢 to a generalised-

Pareto distribution for inference. Although it takes more effort to use the POT method 

including de-clustering of data, it is more robust, and extrema are always the values 

considered for inference. 
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Figure 2.30. An example of peak-over-threshold extrema 

Although we can apply the BM and POT methods to estimate the maximum defect 

depths of conductors, finding the distribution of maximum defect depth is not the end 

of the story; a prediction of future corrosion rate, given this information, is what 

integrity assessors would want to know. As it is recognised that localised corrosion or 

pitting can only be modelled stochastically, thus we used the geometric Brownian 

motion to model the defects and predict the future defect growths. This predictive 

method is essential for the plant operator or integrity engineer to make and take short-

term and long-term mitigation plans for ensuring the fitness of these conductors for 

service, and to repair or replace the entire conductors. 

2.7 Appendix 

2.7.1 Appendix A: Stationary data 

Some stationary sequences are important examples of dependent observations. To 

define the stationary sequences, we first need the definition of a condition known as 

the 𝐷(𝑢𝑛) dependence condition, which plays an important role, because the limit 

distributions for the maxima can be identified [16]. 
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Definition 2A.1 (The 𝐷(𝑢𝑛) dependence condition). Let {𝑢𝑛} be a real sequence. The 

condition 𝐷(𝑢𝑛) is said to hold if for any set of integers 𝑖1 < 𝑖2 < ⋯ 𝑖𝑝 and 𝑗1 < 𝑗2 <

⋯ 𝑗𝑞 such that 𝑗1 − 𝑖𝑝 ≥ 𝑠 ≥ 1, we have 

|𝐹𝑖1,𝑖2,⋯𝑖𝑝,𝑗1,𝑗2,⋯𝑗𝑞
(𝑢𝑛) − 𝐹𝑖1,𝑖2,⋯𝑖𝑝

(𝑢𝑛)𝐹𝑗1,𝑗2,⋯𝑗𝑞
(𝑢𝑛)| ≤ 𝛼𝑛,𝑠, 

where 𝛼𝑛,𝑠 is non-decreasing in 𝑠 and 

lim
𝑛→∞

𝛼𝑛,[𝑛𝛿] = 0, ∀ 𝛿 > 0. 

Note that for independent sequences, the dependence condition, (𝑢𝑛) , holds trivially 

with 𝛼𝑛,𝑠 = 0. 

Definition 2A.2 (Stationary sequence). A sequence 𝑋1, 𝑋2, ⋯ of random variables is 

called stationary if 

𝐹𝑖1,𝑖2,⋯𝑖𝑘
(𝑥1, 𝑥2, ⋯ 𝑥𝑘) = 𝐹𝑖1+𝑠,𝑖2+𝑠,⋯𝑖𝑘+𝑠(𝑥1, 𝑥2, ⋯ 𝑥𝑘), 

for every pair of integers 𝑘 and 𝑠. 

Theorem 2A.1 (Limit distributions of maxima: The 𝐷(𝑢𝑛) condition). Let {𝑋𝑛} be a 

stationary sequence and let {𝑎𝑛} and {𝑏𝑛} be two sequences of real numbers such 

that 

lim
𝑛→∞

𝑃𝑟(𝑎𝑛 + 𝑏𝑛𝑋𝑛:𝑛 ≤ 𝑥) = 𝐹(𝑥), 

where 𝐹(𝑥)  is a cdf. If the 𝐷(𝑢𝑛)  dependence condition holds for the sequence 

{𝑈𝑛 = 𝑎𝑛 + 𝑏𝑛𝑋𝑛:𝑛}  for each 𝑥 , then 𝐹(𝑥)  is one of the limit distributions for the 

independence case. 
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2.7.2 Appendix B: Standard Brownian motion 

A standard Brownian motion (or Wiener process) is a stochastic process with the 

following properties [38]: 

 𝑊0 = 0 

 With probability 1, the function 𝑡 → 𝑊𝑡 is continuous in t. 

 The process {𝑊𝑡}𝑡≥0 has stationary, independent increments. 

 The increment 𝑊𝑡+𝑠 − 𝑊𝑠 has the normal distribution. 

The term independent increments means that for every choice of non-negative real 

numbers 

0 ≤ 𝑠1 < 𝑡1 ≤ 𝑠2 < 𝑡2 ≤ ⋯ ≤ 𝑠𝑛 < 𝑡𝑛 < ∞, 

the increment random variables 

𝑊𝑡1
− 𝑊𝑠1

, 𝑊𝑡2
− 𝑊𝑠2

, ⋯ , 𝑊𝑡𝑛
− 𝑊𝑠𝑛

 

are jointly independent; the term stationary increments means that for any 0 < 𝑠, 𝑡 <

∞ the distribution of the increment 𝑊𝑡+𝑠 − 𝑊𝑠 has the same distribution as 𝑊𝑡 − 𝑊0 =

𝑊𝑡. 

2.7.3 Appendix C: Kolmogorov–Smirnov test 

The Kolmogorov-Smirnov test (K-S test) is one of the oldest goodness-of-fit tests, 

proposed by Kolmogorov (1933) and Smirnov (1939), to use 𝐷𝑛 statistic based on the 

comparison between the hypothesised distribution function 𝐹0(𝑥) and the empirical 

distribution function of the sample 𝑆𝑛(𝑥): 𝐷𝑛 = 𝑠𝑢𝑝−∞<𝑥<∞|𝑆𝑛(𝑥) − 𝐹0(𝑥)|. If 𝐹0(𝑥) is 

continuous and under the null hypothesis, the distribution of 𝐷𝑛  is independent 

of 𝐹0(𝑥) [39]. 
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The Kolmogorov-Smirnov goodness-of-fit test involves the examination of a random 

sample from a one-dimensional and continuous random variable, in order to test if 

the data were extracted from a hypothesised distribution 𝐹0(𝑥). The test is about the 

null hypothesis against a generic alternative: 

 
{
𝐻0: 𝐹(𝑥) = 𝐹0(𝑥) for every 𝑥

𝐻1: 𝐹(𝑥) ≠ 𝐹0(𝑥) for some 𝑥
 (2C.1) 

where 𝐹(𝑥) is the true cumulative distribution function. 

Let 𝑋 be the random variable with the continuous cumulative distribution function 

𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥) 

and let (𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑛)) be the order statistic of the random sample 𝑥𝑖~𝐼𝐼𝐷(𝐹), 𝑖 =

1,2, ⋯ , 𝑛, so that 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). 

The empirical distribution function is defined as follows: 

𝑆𝑛(𝑥) = {

0, for 𝑥 < 𝑥(1)

𝑘 𝑛⁄ , for 𝑥(𝑘) ≤ 𝑥 < 𝑥(𝑘+1) with 𝑘 = 1,2, ⋯ , 𝑛 − 1

1, for 𝑥 ≥ 𝑥(𝑛)

 

The statistic introduced by Kolmogorov (1933): 

𝐷𝑛 = sup
−∞<𝑥<∞

|𝑆𝑛(𝑥) − 𝐹0(𝑥)| 

for which the critical region of size 𝛼 to reject the null hypothesis in (2C.1) is 

𝑅 = {𝐷𝑛: 𝐷𝑛 > 𝐷𝛼,𝑛 =
𝑑𝛼

√𝑛
} 

where 𝑑𝛼  depends only on 𝛼. 

Smirnov (1939) suggest an asymptotic distribution of the one-sided statistic: 
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𝐷𝑛
+ = sup

−∞<𝑥<∞
|𝑆𝑛(𝑥) − 𝐹0(𝑥)| 

and Kolmogorov had given a proof of the theorem suggested by Smirnov. 
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Chapter 3. Application of Weibull Density Regression 

Analysis on Piping Deadlegs 

Abstract 

Deadlegs are segments in the piping systems that are continuously exposed to the 

process stream but with relatively different flow velocity where the process is stagnant. 

Deadlegs are prone to internal corrosion as a result of water separation from the 

primary product due to the low flow velocity. Estimating and predicting the corrosion 

rate of deadlegs in oil and gas process piping systems is a challenging task, due to 

multiple factors in the service environment causing internal corrosion, inspection 

being difficult due to inaccessibility or cost implications.  It is important to make 

accurate estimation and prediction of the corrosion rates of deadlegs since they are 

usually connected to the main line, and their leakage can lead to the release of fluid 

in the piping system. Case studies of piping deadlegs are presented here in which a 

Weibull density regression is carried out to make inference about the corrosion rates 

of deadlegs in a piping system by treating operational or design factors as 

independent regression variables.  The best linear unbiased estimators are derived 

for the estimation of the coefficients of the regression. Notably, a new Weibull density-

based regression model is proposed and applied to predict the corrosion rates of 

piping for several oil and gas process piping systems and water injection systems. 

The corrosion rate data of these pipings are analysed given the presence of multiple 

factors simultaneously. The results are interpreted with using the combination of 

different factors. The regression method shown here is an alternative to other 

methods that are more approximate and involve asymptotic inference. To reduce the 

use of dummy variables for categorical data and also minimise the impact of 

multicollinearity among those factors, the Bayesian hierarchical model is used 

together with Weibull density regression. 
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Keywords: piping; deadleg; corrosion; density regression; regression analysis; 

Weibull distribution; best linear unbiased estimators (BLUE); Bayesian hierarchical 

model; Markov chain Monte Carlo 

3.1 Introduction 

3.1.1 Motivation and purposes 

In oil and gas process piping systems, deadlegs are segments continuously exposed 

to the process but with abnormal flow velocity where the process stream is stagnant. 

These inactive segments usually connect to active pipes that are carrying the main 

petrochemical products. Some deadlegs examples include blanked branches, lines 

with normally closed block valves, lines with one end blanked, pressurised dummy 

support legs, stagnant control valve bypass piping, and instrument connections [1]. 

Deadlegs can be identified through piping and instrumentation diagrams (PI&D) and 

engineering judgement. Piping systems design typically avoids deadlegs, but they 

often form due to the changes of process. If deadlegs are unavoidable in a piping 

system, they can be minimised by eliminating dead ends in piping manifolds or 

providing drains [2]; the length of deadlegs must be as short as possible to prevent 

the fluid from being stagnant. 

Deadlegs are prone to internal corrosion because of stagnant flow as the water 

emulsifies with crude drops out of the petrochemical solution and disperses onto the 

surface of the metal. Water is the primary corrosion agent of internal corrosion. The 

stagnant particles will deposit on the metal surface, and this causes pitting corrosion 

and consequently leads to leakage of the metal. In a gas system, the low-velocity pipe 

section will cause the accumulation of condensate, and due to the increase of 

humidity, the corrosion problem becomes even more accentuated [3]. Deadlegs 

corrosion in piping systems contributes to the major percentage of internal damages 

in the oil and gas process industry. According to the American Petroleum Institute 

Pipeline Performance Tracking System (PPTS) Operator Advisory 2009-5, 85% of 
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deadleg incidents over the period from 2003 to 2007 were caused by internal 

corrosion. As deadlegs are connected to main pipes, identifying deadlegs and 

preventing incidents due to their internal corrosion has become vital to maintaining 

the integrity of the piping system. 

The challenge which most of the plant integrity engineers are facing is the 

inaccessibility of some of the deadlegs as they are commonly found at the dead end 

of the piping system, where thickness measurements cannot be obtained. Since it is 

hard to get at these deadlegs, monitoring of and maintaining these stagnant pipe 

segments are thus not easy. Therefore, a predictive numerical method for corrosion 

rate estimation is essential for those inaccessible deadlegs. We propose using 

Weibull density regression for inaccessible deadlegs corrosion extrapolation. The 

regression method models the relationship between field corrosion rates of deadlegs 

and corrosion rates of their main lines. The model also considers the influencing 

factors such as the geometry of deadlegs, the velocity of the main line, and deadleg 

length-to-diameter (L/D) ratio, as these factors are considered influential on the 

corrosion rate of deadlegs [5-9]. These factors are included in the Weibull density 

regression by taking them into account as independent variables of the model. 

Weibull distribution is used because it is flexible enough to model different types of 

datasets. 

3.1.2 Previous works on deadlegs corrosion 

Many kinds of research discuss deadlegs and their internal corrosion. Habib et al. [5-

7] analysed the effect of geometry of deadlegs on corrosion in a crude oil and water 

solution piping system. They described how the size of the stagnant fluid region 

increases with the increase of length-to-diameter (L/D) ratio and is influenced by the 

geometry. Thermal-fluid analyses of deadlegs in pharmaceutical water systems were 

discussed in detail with the effect of various factors such as flow rate, material, length 

and size of the pipe [8-9]. Ding et al. [10] investigated the complex flow, oil/water 

separation and the relation between fluid flow and the water concentration of vertical 

deadlegs based on the solution of algebraic slip mixture model. A technique of the 
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Process Hazard Analysis (PHA) model is created for recognising and addressing 

deadlegs and related corrosion issues that can be utilised to refresh corporate PHA 

systems to be more effective in preventing corrosion related incidents [11]. Bensman 

[12] discussed the line flushing method that is one of the mitigation techniques used 

to manage internal corrosion of deadlegs and provided an overview of the available 

models to determine the minimum velocity for flushing. The authors in [13] show that 

a numerical model that has the capability to model flow and mixing zone in a deadleg 

that modelled mass transfer rate can be used to estimate corrosion of carbon steel 

due to dissolved oxygen and microorganisms in deadleg under mass transfer limited 

conditions. 

3.1.3 Previous works on regression analyses for sample corrosion 

Regression analysis has been used widely in corrosion applications for various plant 

assets, ranging from high-temperature equipment and concrete structures to oil and 

gas pipelines and offshore floating structures. There are some pieces of literature 

regarding both the mathematical model and regression analysis. Barrett [14] used 

multiple linear regression analysis to estimate hot corrosion attack for nickel-based 

cast turbine alloys; different methods of transforming independent variables were 

shown to generate a higher R-squared value for a better fit of the model to the 

corrosion test samples. A regression method was used by Kung et al. [15] to identify 

the relationship between the corrosion rates of several alloys that were commonly 

used in the lower furnace of utility boilers and the corrosion damage factors such as 

H2S, Cr concentration in the alloy, and temperature. Garud at el. [16] evaluated flow-

accelerated corrosion in power plants using a regression technique for the spatial and 

temporal evolution of wall loss which can predict the wear rates of components and 

their associated uncertainties. Wen et al. [17] proposed the use of a support vector 

regression method that combined with particle swarm optimization to predict the 

corrosion rate of 3C steel in different seawater environments; it has shown a 

promising result such that the model could be used for real-time corrosion tracking of 

steel in an uncertain seawater environment. Ossai [18] analysed the effect of 

operating parameters such as temperature, CO2 partial pressure flow rate, etc. on the 
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corrosion rate of oil and gas wellheads by using multiple linear regression. 

Siamphukdee et al. [19] used regression methods for sensitivity analysis to assess 

the influencing factors for corrosion in reinforced concrete structures and found that 

those structures are highly sensitive to corrosion duration time, concrete resistivity, 

and chloride content. Suleiman et al. [20] investigated the process parameters that 

significantly influence the corrosion rate of mild steel in 0.5M sulphuric acid. Linear 

regression is used to analyse the effect of varied temperature, time, and concentration 

of inhibitor; corrosion rate was found to be reduced if the concentration of inhibitor 

and time were increased. A relationship between soil pH and soil resistivity on 

corrosion growth rate of carbon steel was studied and determined by Anyanwu et al. 

[21] using multiple regression analysis. Sodiki & Ndor [22-23] conducted corrosion 

experiments on steel, brass and aluminium that were exposed to certain external 

factors; the laboratory results were then fitted with a regression model where the 

response variable was the corrosion extent, and the external factors were taken as 

independent variables. Besides these, there are many studies about the corrosion 

rate modelling for pipelines using regression analyses. Qiu & Orazem [24] developed 

a model that coupled a boundary-element forward model with a nonlinear regression 

algorithm to interpret pipeline survey data. Mior et al. [25] used a power law to model 

the time dependence of metal loss in underground pipelines where parameters of the 

model such as metal loss constant and corrosion growth pattern were modelled using 

multiple linear regression. Velázquez et al. [26] proposed multivariate regression 

method for pitting corrosion in buried oil and gas pipelines that considered the age of 

pipeline, soil properties, and pipe properties as the covariates in the model. El-Abbasy 

et al. [27] developed models using regression technique for predicting the condition 

oil and gas pipelines based on actual inspection samples that account for the 

influence of various factors including corrosion. 

3.1.4 Piping deadlegs corrosion data 

We used data from various piping systems in an oil and gas plant that carry different 

products and have different design and operation properties. To protect the sensitive 

information of the source of data, the name of the company and locations are not 
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disclosed. These piping systems consist of the crude oil system, water injection 

system and fuel gas system. Thickness measurements were collected on a periodic 

basis as part of the preventive maintenance. An ultrasonic testing method (UT) is 

used to measure the wall thickness of identified critical areas or in another term, 

gauge point. Thickness was gauged at 3, 6, 9, and 12 o’clock for each gauge point 

and minimum measurement of each gauge point was recorded. Corrosion rates of 

those piping systems are estimated using the linear regression method [28] where 

the minimum thicknesses at gauge point at the last two inspections were taken, and 

the prediction is a linear extrapolation. 

More than 100 deadleg locations were identified from P&IDs, but only 1/3 of those 

deadlegs are accessible for UT inspection. The company intended to eliminate or 

minimise as many deadlegs as they could with an optimised cost and to remove those 

deadlegs by prioritising each deadleg removal; removing deadlegs requires shutting 

down the piping system. The challenge they encountered is the inaccessibility of 

some of the deadlegs as thickness measurements are not obtained, and a predictive 

numerical method for corrosion rate is needed for those inaccessible deadlegs. 

3.2 Weibull density regression 

3.2.1 Weibull distribution 

There are two forms of the Weibull distribution distinguished by the presence of either 

two or three parameters [29]; for our purposes we used the 2-parameter form for our 

density regression model. As its name implies, 2-parameter Weibull consists of 2 

parameters, the scale parameter 𝜂 and shape parameter 𝜆. 

The probability density function (pdf) is given by 
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where  

 𝜂 = 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑙𝑖𝑓𝑒 

  𝜆 = 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

and the cumulative distribution function (CDF) is given by 

 

The quantile function of this Weibull distribution 𝑄(𝑝; 𝜆, 𝜂) is given by 

 

The median �̆� of this Weibull distribution is given by 

3.2.2 Gamma transformation proportional hazards (Gt-PH) model 

We will introduce the Weibull regression via a general frame of density regression 

models which is based on the proportional hazards family. The regression is 

introduced via the scale parameter of the proportional hazards distribution [4]. 

Assume that the response variables Y have a probability distribution belonging to the 

proportional hazards family with baseline cumulative distribution function G. In the 

 
𝑓(𝑦; 𝜆, 𝜂) =

𝜆

𝜂
(

𝑦

𝜂
)

𝜆−1

𝑒
−(

𝑦
𝜂

)
𝜆

, 𝑦 > 0 
(3.1) 

 
𝐹(𝑦; 𝜆, 𝜂) = 1 − 𝑒

−(
𝑦
𝜂

)
𝜆

. (3.2) 

 
𝑄(𝑝; 𝜆, 𝜂) = 𝜂 ∙ [−𝑙𝑜𝑔(1 − 𝑝)]

1
𝜆. (3.3) 

 
�̆� = 𝜂 ∙ [𝑙𝑜𝑔(2)]

1
𝜆. (3.4) 



64 
 

method [30] based on proportional hazards family-based, the Weibull distribution is 

written as 

where 𝜃 is the proportionality parameter with 𝜃 = 1 𝜂𝜆⁄  and 𝐺(𝑦; 𝜆) is dependent only 

on 𝜆. For the 2-parameter Weibull distribution 𝐺(𝑦; 𝜆) = 1 − 𝑒𝑥𝑝(−𝑦𝜆), and 𝜆 is the 

shape parameter. 

In general, when covariate 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑝)  information is available, regression 

model is usually introduced via the scale parameter 𝜃, see Cox [49]. The log linear 

model is used to model 𝑙𝑜𝑔(𝜃) as the linear regression function of 𝑥, thus 

where 𝑥𝑇 is the transpose of 𝑥 and 𝛽 is the regression coefficient vector.  

Coefficients 𝛽 are estimated using a combination of transformation of gamma-

distributed random variable and ordinary least squares estimate (OLS). This method 

is different from the conventional parametric regression fitting such as maximum 

likelihood estimate (MLE). The method derives the best linear unbiased estimators 

(BLUE) [31] of 𝛽  with the least variance of the estimate among linear unbiased 

estimates. This method is called gamma transformation proportional hazards (Gt-PH) 

density regression. 

Given the response Y and covariates  𝑥 ,  {𝑥𝑖 , 𝑌𝑖}𝑖=1
𝑛 : let 𝜃𝑖 ≡ 𝜃(𝑥𝑖) and 𝑆𝑖 =

−𝑙𝑜𝑔(�̅�(𝑌𝑖; 𝜆)) then 2𝜃𝑖𝑆𝑖~𝜒2(2). The distribution 𝜒2(2) is a special case of a gamma 

distribution for a gamma random variable, Γ. The gamma distribution is the maximum 

entropy probability distribution of Γ for which E(𝑙𝑜𝑔(Γ)) = 𝜓(𝑠ℎ𝑎𝑝𝑒 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) −

𝑙𝑜𝑔(1 (𝑠𝑐𝑎𝑙𝑒 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)⁄ ) is fixed, where 𝜓(𝑡) = 𝑑 log(𝛤(𝑡)) 𝑑𝑡⁄  is the digamma 

function [4][32]. Therefore, 

𝐸[𝑙𝑜𝑔(𝑆𝑖) + 𝑙𝑜𝑔(𝜃𝑖)] = 𝜓(1) 

 𝐹(𝑦; 𝜆, 𝜃) = 1 − [1 − 𝐺(𝑦; 𝜆)]𝜃 = 1 − 𝑒𝑥𝑝(−𝜃𝑦𝜆) (3.5) 

 𝑙𝑜𝑔(𝜃(𝑥)) = 𝑥𝑇𝛽 (3.6) 
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𝑉𝑎𝑟[𝑙𝑜𝑔(𝑆𝑖) + 𝑙𝑜𝑔(𝜃𝑖)] = 𝜓′(1) 

where 𝜓′(𝑡) = 𝑑2 log(𝛤(𝑡)) 𝑑𝑡2⁄ , 𝜓(1) = −𝛾 with the Euler-Mascheroni constant 𝛾 ≈

 0.5772 and 𝜓′(1) =
𝜋2

6
. 

Let 

Then we have the standard linear regression function 

𝐸(𝑈𝑖) = 𝑥𝑇𝛽 

𝑉𝑎𝑟(𝑈𝑖) = 𝜓′(1). 

It is required to estimate the shape parameter before we move on to the next step of 

the calculation. McCool [29] has provided a proven likelihood function for shape 

parameter estimation. Qiao and Tsokos explains McCool’s theorem in [33]. They 

showed that, given the response data  𝑌,  the shape parameter 𝜆  of the Weibull 

distribution can be estimated by solving the equation (3.8) using the Newton-Raphson 

method: 

Once 𝜆 is known, by using the equation (3.7) we obtain the observed vector 𝑈 

from  𝑈𝑖 = −𝑙𝑜𝑔(�̅�(𝑌𝑖; 𝜆)) − 𝛾 , where  �̅�(𝑦; 𝜆) = 𝑒−𝑦𝜆
, and  𝛾 ≈ 0.5772 . Then the 

coefficients of density regression 𝛽 are estimated via a linear regression model with 

data (𝑥, 𝑈). 

The density regression model (3.6) can be written as 

𝑙𝑜𝑔(𝜃)𝑖 = 𝛽0 + 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + ⋯ + 𝑥𝑖𝑝𝛽𝑝,   𝑖 = 1,2,3 … 𝑛 

 𝑈𝑖 = −𝑙𝑜𝑔(𝑆𝑖) − 𝛾. (3.7) 

 𝜆

𝑛
∑ 𝑙𝑜𝑔(𝑦𝑖)

𝑛

𝑖=1

∑ 𝑦𝑖
𝜆

𝑛

𝑖=1

− 𝜆 ∑ 𝑦𝑖
𝜆 ∙ 𝑙𝑜𝑔(𝑦𝑖)

𝑛

𝑖=1

+ ∑ 𝑦𝑖
𝜆

𝑛

𝑖=1

= 0. 
(3.8) 
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where 𝛽0 is the intercept. Once the regression for 𝑙𝑜𝑔(𝜃) or 𝜃 is obtained, we move 

to obtain equations (3.2), (3.3), and (3.4) to find the regression functions for CDF, 

quantile function and median; we transformed the proportional parameter 𝜃  to 

become scale parameter with the equation (3.9) 

3.3 Bayesian hierarchical regression analysis 

The essential characteristic of Bayesian methods is their explicit use of probability to 

quantify uncertainty in inferences based on statistical data analysis [34]. The 

Bayesian approach also allows the model to take into account the historical 

information or expert judgement, where it is always called the prior information, to 

update the model to give a more accurate outcome. More detail about the advantages 

of applying the Bayesian method to data analysis can be found in [34-36]. 

Various statistical applications incorporate different parameters that can be seen as 

related or associated by one means or another by the structure of the problem, 

inferring that a joint probability model for these should mirror the dependence among 

them. For the most part, the objective of hierarchical modelling is to determine the 

extent to which factors measured at different levels or groups influence an outcome 

using a typical regression modelling framework. Ordinary regression, however, is 

inappropriate, because of the lack of independence of errors for observations within 

groups. Thus, an alternative model must be developed to compensate for this lack of 

independence. 

Lynch [36] explains that, with few parameters in nonhierarchical models, they 

generally cannot fit large datasets accurately, whereas, with many parameters, they 

tend to overfit such data in the sense of producing models that fit the existing data 

well but lead to inferior predictions for new data. By comparison, hierarchical models 

 

𝜂 = (
1

𝜃
)

1
𝜆

. 
(3.9) 
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can have enough parameters to fit the data well, while using a population distribution 

to structure some dependence on the parameters, thereby avoiding problems of 

overfitting. 

Bayes’ Theorem is often expressed as: 

𝑝(𝜃|𝑑𝑎𝑡𝑎) ∝ 𝑝(𝑑𝑎𝑡𝑎|𝜃) × 𝑝(𝜃) 

where 𝑝(𝜃|𝑑𝑎𝑡𝑎) is the posterior, 𝑝(𝑑𝑎𝑡𝑎|𝜃) is the likelihood, and 𝑝(𝜃) is the prior. 

This equation itself uncovers a basic hierarchical structure in the parameters since it 

says that a posterior distribution for a parameter is equivalent to a conditional 

distribution for data under the parameter (second level) multiplied by the marginal 

(prior) probability for the parameter (first level). In other words, the posterior 

distribution is the prior distribution weighted by the observed information. 

The hierarchical structure of these parameters does not need to be stopped at a 

higher level; it can, in theory, continue to infinity levels. Assume we have 𝐽 

observations inside each of 𝐺  groups: 𝑦11, ⋯ , 𝑦𝐽1, 𝑦12, ⋯ , 𝑦𝐽2, ⋯ , 𝑦1𝐺 , ⋯ , 𝑦𝐽𝐺 , and 

thatthe data are distributed within groups according to some distribution 𝑄  with 

parameter 𝜃, but that each group has its own parameter (𝜃𝑔). Thus: 

𝑦𝑖𝑔 ~ 𝑄(𝜃𝑔). 

We assume further that parameters 𝜃𝑔 are from a distribution 𝑊 with parameter ξ, so: 

𝜃𝑔 ~ 𝑊(𝜉) 

ξ is called a “hyper-parameter”. 

Lastly, assume 𝜉 has some vague distribution, for example a uniform distribution: 

𝜉 ~ 𝑈(−100, 100). 

Then the posterior distribution for all unknown parameters would be: 
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𝑝(𝜉, 𝜃|𝑦) ∝ 𝑝(𝑦|𝜃, 𝜉)𝑝(𝜃|𝜉)𝑝(𝜉). 

We may be interested only in the marginal distribution for 𝜉 rather than the posterior 

distributions for the group level parameters 𝜃𝑔: 

𝑝(𝜉|𝑦) ∝ ∫ 𝑝(𝑦|𝜃, 𝜉)𝑝(𝜃|𝜉)𝑝(𝜉)𝑑𝜃
∞

−∞

. 

We perform Markov chain Monte Carlo (MCMC) simulation to solve this integration 

stochastically as we sample from the conditional posterior distributions for each 

parameter. 

3.3.1 Markov Chain Monte Carlo (MCMC) methods 

It is hard to use the analytic method to evaluate and analyse the solution of the 

posterior distribution. Markov chain Monte Carlo methods are utilised to simulate the 

posterior so that it can be analysed. The results can then be used to make inferences 

about the models and parameters. MCMC had been known for a considerable length 

of time before its implications for Bayesian statistical modelling were fully recognised. 

Formally, a sequence of random variables 𝑋(0), 𝑋(1), 𝑋(2), ⋯ forms a Markov chain if, 

for all 𝑡, the distribution of the 𝑡 + 1𝑡ℎ variable in the sequence is given by 

that is, conditional on the value of 𝑋(𝑡), the distribution of 𝑋(𝑡+1) is independent of all 

other preceding values, 𝑋(𝑡−1), ⋯ , 𝑋(0) [37]. The transitional distribution of the Markov 

chain 𝑝𝑡𝑟𝑎𝑛𝑠(𝑥|𝑋(𝑡) = 𝑥(𝑡)) defines the conditional probability of current value of the 

chain to move to a specific new value. The marginal distribution of 𝑋(𝑡+1)  will 

converge to a unique stationary distribution as 𝑡 → ∞ under a fairly general regularity 

condition. In simple terms, this says that although each variable in the chain depends 

directly on the value that came before it, in the end we reach a point such that all 

subsequent values are distributed marginally according to the same fixed distribution, 

 𝑋(𝑡+1) ~ 𝑝𝑡𝑟𝑎𝑛𝑠(𝑥|𝑋(𝑡) = 𝑥(𝑡)), (3.10) 
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which, extremely importantly, is independent of the start value 𝑋(0). Another way to 

say, in the end, overlooks where it began and fits in with an underlying "equilibrium" 

distribution. 

3.3.1.1 Gibbs sampling 

Gibbs sampling is one of the most simple and widely used MCMC methods used in 

Bayesian statistics. Its use in Bayesian statistics was introduced by Gelfand and 

Smith [48], although it was developed and used in physics before 1990. Gibbs 

sampling sweeps through each variable to sample from its conditional distribution by 

fixing the remaining variables to their current values to generate a posterior 

distribution.  According to Lynch [36], the algorithm of generic Gibbs sampler is given 

by: 

Algorithm 1 Gibbs sampler 

Assign a vector of starting values, S, to the parameter vector: 𝑥(0) = 𝑆 

for iteration 𝑖 = 1,2, ⋯ do 

𝑥1
(𝑖)

 ~ 𝑝 (𝑋1 = 𝑥1|𝑋2 = 𝑥2
(𝑖−1)

, 𝑋3 = 𝑥3
(𝑖−1)

, ⋯ , 𝑋𝐷 = 𝑥𝐷
(𝑖−1)

) 

𝑥2
(𝑖)

 ~ 𝑝 (𝑋2 = 𝑥2|𝑋1 = 𝑥1
(𝑖)

, 𝑋3 = 𝑥3
(𝑖−1)

, ⋯ , 𝑋𝐷 = 𝑥𝐷
(𝑖−1)

) 

⋮ 

𝑥𝐷
(𝑖)

 ~ 𝑝 (𝑋𝐷 = 𝑥𝐷|𝑋1 = 𝑥1
(𝑖)

, 𝑋2 = 𝑥2
(𝑖)

, ⋯ , 𝑋𝐷−1 = 𝑥𝐷−1
(𝑖)

) 

end for 

 

In Algorithm 1, sampling is not done directly from the posterior distribution itself. The 

samples are simulated by sweeping through all the conditionals of posterior with one 

random variable at a time. The algorithm is initialised with random values so the early 

iterations of the simulation based on the algorithm may not necessarily be 

representing the posterior distribution. Nevertheless, according to the theory of 
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MCMC, Algorithm 1 generates a stationary distribution of the samples which will be 

the target joint posterior of interest. 

3.3.2 Hierarchical stages 

The levels of a hierarchical Bayesian model are called stages. Regardless of the 

model’s complexity, the first stage always is the likelihood that is closest to the data. 

The second stage of a hierarchical model consists of probability distributions for some 

or all of the parameters that appeared in the likelihood. The parameters of the priors 

at the second stage of a hierarchical model are more unknown than the first stage. 

The third (and last) stage specifies prior distributions for the parameters at the second 

stage, called hyper-priors. The use of "hyper" in the third stage for prior distribution of 

parameter is to differentiate the priors in the third stage from the second; they arise 

particularly in the use of conjugate priors. 

3.3.2.1 First stage 

The first stage of the model provides the distribution of the data given certain model 

parameters. Let 𝑢𝑖𝑘 represent the transformed observed value of 𝑈 in equation (3.7) 

of category 𝑖, 𝑘 = 1, ⋯ , 𝑛𝑖, and 𝑞 = 1, ⋯ , 𝑝. The likelihood is expressed as: 

where 𝜏𝑢
2 is the precision of the points around the group-specific regression line, 𝛼0𝑖 

is the intercept, 𝛼1𝑖 , … , 𝛼𝑝𝑖 are coefficients for category 𝑖, µ𝛼𝑖
 is the expected value of 

regression function, 𝑛𝑖 is the number of values for category 𝑖, and 𝑞 is the number of 

coefficients. This model assumes that all categories share the same precision 

parameter. 

 
𝑢𝑖𝑘|𝛼0𝑖 , 𝛼𝑞𝑖 , 𝜏𝑢

2 ~ 𝑁 (µ𝛼𝑖
,

1

𝜏𝑢
2)  

(3.11) 
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3.3.2.2 Second stage 

The second stage prior consists of independent normal densities for the category-

specific intercepts and coefficients: 

𝛼0𝑖|𝛽0
𝑏 ,

1

𝜏𝛼0
2  ~ 𝑁 (𝛽0

𝑏 ,
1

𝜏𝛼0
2 ) 

𝛼𝑞𝑖|𝛽𝑞
𝑏 ,

1

𝜏𝛼𝑞
2  ~ 𝑁 (𝛽𝑞

𝑏 ,
1

𝜏𝛼𝑞
2 ). 

We assumed that the category-specific intercepts 𝛼0𝑖 and 𝛼𝑞𝑖 are draws from normal 

densities.  Here the precision parameter 𝜏𝛼0
2  captures the variability among intercepts 

for different categories. If this precision is small then the intercepts at different 

categories tend to be very different from one another. Similarly, the precision 

parameter 𝜏𝛼𝑞
2  captures how different the slopes for different categories are. As 

expected in a hierarchical model, the parameters in the second-stage priors are all 

unknown quantities that we wish to estimate. 

3.3.2.3 Third stage 

The third stage consists of prior distributions for all the remaining unknown 

parameters. The conventional, semi-conjugate priors are as follows: 

𝛽0
𝑏  ~ 𝑁 (µ0,

1

𝜏0
2) 

𝛽𝑞
𝑏  ~ 𝑁 (µ𝑞 ,

1

𝜏𝑞
2) 

𝜏𝑢
2 ~ 𝐺(𝑎𝑢, 𝑏𝑢) 

𝜏𝛼0
2  ~ 𝐺(𝑎𝛼0

, 𝑏𝛼0
) 
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𝜏𝛼𝑞
2  ~ 𝐺 (𝑎𝛼𝑞

, 𝑏𝛼𝑞
). 

The prior on 𝜏𝑢
2  can be very vague, because the observed data values make 

estimation of this precision parameter quite easy. However, 𝜏𝛼0
2  and 𝜏𝛼𝑞

2  are the 

precisions of unknown and unobservable parameters. Without prior knowledge, these 

parameters should be specified to make the hyper-prior vague (e.g. say µ0 = 0, 
1

𝜏0
2 =

10,000 ;  µ𝑞 = 0 , 
1

𝜏𝑞
2 = 10,000) [36]. The hyper-prior distributions for the population 

variance and the error variances are gamma distributions, with parameters 𝑎𝑢 =

0.001, 𝑏𝑢 = 0.001, 𝑎𝛼0
= 0.001, 𝑏𝛼0

= 0.001, and 𝑎𝛼𝑞
= 0.001, 𝑏𝛼𝑞

= 0.001. 

3.4 Application 

3.4.1 Weibull density regression 

Here we applied the Weibull density regression method to the corrosion rate data of 

deadlegs. We identified the covariates for the regression model as the following 

(Table 3.1): 
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Covariates Categories 

System Type Gas System 

Water System 

Oil System 

Deadleg Design T-joint 

Branch 

Orientation Horizontal 

Vertical 

Mix Orientation 

(Horizontal + Vertical) 

Length 

Diameter 

Log(Flow Rate) 

Main Line Corrosion, CRml 

Table 3.1. Covariates that are used in the Weibull density regression. 

We modelled main line flow rate by transforming it into its natural logarithm because 

the variance of flow rate is large; it ranges from 2.5 to 600000m3/hr. The flow of the 

main line is influential to microbiological induced corrosion in the deadleg and 

tuberculation from deadleg opening to a certain length of deadleg [13]. We factorised 

system type, deadleg design and orientation into categories and introduced dummy 

variables for them [38]. For water system type, we assigned 1 to the water system 

and 0 to oil system; while for oil system we assigned 1 to oil system and 0 to water. 

One of the categories has to be the base category by dummy variable approach; 

hence we do not include the gas system as a coefficient in the equation. The same is 

done for deadleg design and orientation covariates. We believe there is a correlation 

between main lines and deadlegs corrosion rates; hence we included it into the 

regression model. There are three types of orientation: horizontal, vertical and mix 

orientation. Mix orientation is for the deadlegs which are oriented partially horizontal 

and vertical. Based on many pieces of research about deadlegs and corrosion [5-7], 

the size of a stagnant fluid region increases with the increase of deadleg length-to-

diameter ratio L/D, and L/D has been considered an important factor in a stagnant 
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column of a pipe. However, we separate length of deadleg and diameter by making 

them two different independent variables in the regression equation in order to see 

the effect of diameter of deadleg on corrosion as well. 

The target regression model for deadleg corrosion rate is as the following (3.12): 

Given the deadleg corrosion rate data, the shape parameter 𝜆 estimated by solving 

the equation (3.8) using Newton-Raphson method is 2.364. The coefficients derived 

from the density regression are shown in the following table: 

Coefficients Value Std. Error 

Intercept, 𝛽0 6.8038 0.650615 

System Type Water System, 𝛽1,1 0.7330 0.583899 

Oil System, 𝛽1,2 1.8565 0.776923 

Deadleg Design Branch, 𝛽2 -0.6366 0.482866 

Orientation Vertical, 𝛽3,1 -0.7128 0.488898 

Mix (Horizontal + Vertical) , 

𝛽3,2 

-0.1236 0.552269 

Length, 𝛽4 -0.0013 0.003148 

Diameter, 𝛽5 -0.2638 0.179658 

Log(Flow Rate) , 𝛽6 0.1055 0.056706 

Main Line Corrosion, 𝛽7 -14.2714 2.272186 

Table 3.2. Coefficients estimated in density regression 

We plotted a chart to see the trend of the model corrosion rate against the field 

corrosion rate from gauge points as shown in Figure 3.1. Field corrosion rates are the 

corrosion rates of the deadlegs which are estimated using the linear regression 

 𝑙𝑜𝑔(𝜃) = 𝛽0 + 𝛽1,1 ∙ [𝑊𝑎𝑡𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚] + 𝛽1,2 ∙ [𝑂𝑖𝑙 𝑆𝑦𝑠𝑡𝑒𝑚] + 𝛽2

∙ [𝐵𝑟𝑎𝑛𝑐ℎ] + 𝛽3,1 ∙ [𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙] + 𝛽3,2 ∙ [𝑀𝑖𝑥 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛]

+ 𝛽4 ∙ [𝐿𝑒𝑛𝑔𝑡ℎ] + 𝛽5 ∙ [𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟] + 𝛽6 ∙ [𝑙𝑜𝑔(𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒)]

+ 𝛽6 ∙ [𝐶𝑅𝑚𝑙]. (3.12) 
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method where the minimum thicknesses at gauge points at the last two inspections 

were taken; a gauge point is the location where thickness measurement is gauged. 

We plotted the median and the 0.95 quantile against the field corrosion rate. 

 

Figure 3.1. Corrosion rate from the field vs model 

Figure 3.2 shows the effect of different influencing factors on the corrosion rate of 

deadlegs. We plotted median corrosion rate against main line flow rate by setting 

other factors as constant; then we plotted median corrosion rate against different 

geometry for the different piping system. The same are done for length and diameter 

of deadleg. 
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Figure 3.2. Effect of factors on deadleg corrosion 

Based on the results of density regression analysis, we can check and compare the 

effect of each factor on the corrosion of deadlegs in different piping systems. In Figure 

3.1, the model corrosion rate has a similar trend as the field corrosion rate. Median 

corrosion is close to the field corrosion, but nearly half of the corrosion rates are lower 

than the field corrosion rate. Most of the model values of the 0.95 quantile are higher 

than those from field data, but it may be overly conservative by using only the 0.95 

quantile for the extrapolation of corrosion rates of all deadlegs. Different quantile 

values are used for different scenarios. An assumption is made here that corrosion 

rate of a deadleg is higher than the corrosion rate of its parent line. We used the 0.80 

quantile for vertical deadleg as most of the modelled corrosion rates at this quantile 

are higher than main line and field deadleg corrosion rates; this is shown in Figure 

3.3. For horizontal deadlegs, we used the 0.7 quantile to model their corrosion rates 

while for mixed-oriented deadlegs we used the 0.95 quantile as illustrated in Figure 

3.4 and Figure 3.5 respectively. Based on the assumption that deadleg corrosion 
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should be higher than the main line corrosion rate, if the modelled corrosion rate is 

lower than main line’s, higher quantiles will be used. 

Figure 3.2 shows that an increase of flow rate decreases the rate of corrosion of 

deadlegs. Corrosion is found to be more severe in vertically-oriented deadlegs than 

other deadlegs. For the increase of deadleg length where its diameter is the same, 

we can see the increase of corrosion rate where with the diameter is unchanged, and 

increase of deadleg increases the length-to-diameter ratio. The diameter also plays 

a significant role in deadleg corrosion. The larger diameter of deadleg pipe will have 

a higher corrosion rate. These results are in line with the research in [5-9, 13]. 

 

Figure 3.3. Model corrosion rates at different Weibull quantiles for vertical deadlegs. 
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Figure 3.4. Model corrosion rates at different Weibull quantiles for horizontal deadlegs. 
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Figure 3.5. Model corrosion rates at different Weibull quantiles for mix (vertical + horizontal) 
deadlegs. 

3.4.2 Bayesian hierarchical regression analysis 

The application shown in section 3.4.1 is generally considered as frequentist 

approach where the conclusion is drawn from a sample of deadlegs corrosions by 

emphasizing the frequency or proportion of the original data. As previously discussed, 

the deadleg corrosion dataset consists of corrosion data from the different piping 

system; they are categorised into gas, oil, and water piping systems. We used dummy 

variables to handle the categories in the ordinary regression model. Although a 

dummy variables approach seems to do the work fine, it introduces several problems 

as well at the same time that may distort the entire regression analysis. According to 

Holgersson et al. [38], few reasons were stated of avoidance of using dummy 

variables: 
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 It is argued that the hypothesis tests for dummy variables are only valid if all 

different categories have equal variances. This is unlikely to be the case in 

real-world applications. 

 Dummy variables may incur multicollinearity in the analysis thereby leading to 

a distorted result. 

 The number of observations must be equal in all different categories for the 

dummy variable method to be invariant to the coding of zeros and ones (e.g. 

50% men and 50% women). 

Holgersson et al. proposed a separate regression for each category of data. However, 

due to the small corrosion dataset of deadlegs we obtained, we ruled out the option 

of splitting the dataset into multiple datasets based on types of piping system. 

Due to the reasons mentioned above, we used the Bayesian methods to analyse our 

data. The nature of our data are in groups (gas, water, and gas piping deadlegs). We 

want to reduce the number of dummy variables in our model; therefore the common 

problems imposed by dummy variables as discussed by Holgersson et al. can be 

improved. Besides that, the Bayesian hierarchical models are flexible tools for 

combining information and partial pooling of inferences thus giving more efficient 

estimates of the parameters in each group. If given more data in the future, the model 

can be updated by taking the current estimates as the prior information. Hence the 

models can be evolved over time to become more accurate by taking new information 

into consideration. 

We ran the Bayesian hierarchical regression analysis by using OpenBUGS software. 

The output from our OpenBUGS sampler for regression is presented below in Table 

3.3. 

We denoted the simulated coefficients for Bayesian regression by 𝛽𝑏 to differentiate 

them from ordinary regression estimates. It is apparent that the MCMC sampling 

yielded smaller standard errors for all the parameters, which implicates that these 

parameters are relatively less spread in the sampling distribution. Each different 

piping system has its own respective intercept, 𝛽0,1
𝑏  for gas system, 𝛽0,2

𝑏  for water 
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system and 𝛽0,3
𝑏  for oil piping system. Other coefficients are shared for all different 

types of piping system: 

For gas system: 

For water system: 

For oil system: 

 

  

 𝑙𝑜𝑔(𝜃) = 𝛽0,1
𝑏 + 𝛽1

𝑏 ∙ [𝐵𝑟𝑎𝑛𝑐ℎ] + 𝛽2,1
𝑏 ∙ [𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙] + 𝛽2,2

𝑏

∙ [𝑀𝑖𝑥 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛] + 𝛽3
𝑏 ∙ [𝐿𝑒𝑛𝑔𝑡ℎ] + 𝛽4

𝑏 ∙ [𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟]

+ 𝛽5
𝑏 ∙ [𝑙𝑜𝑔(𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒)] + 𝛽6

𝑏 ∙ [𝐶𝑅𝑚𝑙]. 

(3.13a) 

 

 𝑙𝑜𝑔(𝜃) = 𝛽0,2
𝑏 + 𝛽1

𝑏 ∙ [𝐵𝑟𝑎𝑛𝑐ℎ] + 𝛽2,1
𝑏 ∙ [𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙] + 𝛽2,2

𝑏

∙ [𝑀𝑖𝑥 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛] + 𝛽3
𝑏 ∙ [𝐿𝑒𝑛𝑔𝑡ℎ] + 𝛽4

𝑏 ∙ [𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟]

+ 𝛽5
𝑏 ∙ [𝑙𝑜𝑔(𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒)] + 𝛽6

𝑏 ∙ [𝐶𝑅𝑚𝑙]. 

(3.13b) 

 

 𝑙𝑜𝑔(𝜃) = 𝛽0,3
𝑏 + 𝛽1

𝑏 ∙ [𝐵𝑟𝑎𝑛𝑐ℎ] + 𝛽2,1
𝑏 ∙ [𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙] + 𝛽2,2

𝑏

∙ [𝑀𝑖𝑥 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛] + 𝛽3
𝑏 ∙ [𝐿𝑒𝑛𝑔𝑡ℎ] + 𝛽4

𝑏 ∙ [𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟]

+ 𝛽5
𝑏 ∙ [𝑙𝑜𝑔(𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒)] + 𝛽6

𝑏 ∙ [𝐶𝑅𝑚𝑙]. 

(3.13c) 
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Coefficients Value Std. Error 

Intercept Gas System, 𝛽0,1
𝑏  6.280769 0.00114 

Water System, 𝛽0,2
𝑏  6.692429 0.001628 

Oil System, 𝛽0,3
𝑏  7.484044 0.001878 

Deadleg Design Branch, 𝛽1
𝑏 -0.188750 0.0006321 

Orientation Vertical, 𝛽2,1
𝑏  -0.308220 0.0006847 

Mix (Horizontal + 

Vertical) , 𝛽2,2
𝑏  

0.034518 0.0005398 

Length, 𝛽3
𝑏 -0.000739 0.000005645 

Diameter, 𝛽4
𝑏 -0.137906 0.0002886 

Log(Flow Rate) , 𝛽5
𝑏 0.083375 0.0001044 

Main Line Corrosion, 𝛽6
𝑏 -13.085336 0.004409 

Table 3.3. Estimated coefficients in the Bayesian hierarchical modelling. 

3.4.3 Convergence checking 

In order to make sure the parameters estimated by sampling process in MCMC can 

be used for predictions, assessment of convergence is essential by using some 

diagnostic tools. As long as Markov chains of the sampling converge, it is safe to say 

that the multicollinearity issue is addressed and the estimated parameters can be 

used for the model. Cowles and Carlin [39] reviewed thirteen convergence 

diagnostics and described the basic theory and practical usage of each. We have 

selected three diagnosis methods for our model convergence checking; they are trace 

plots, autocorrelation function plots, and Gelman-Rubin diagnostics. 

Figure 3.6 shows the trace plots for all the parameters from two chains run for 200000 

iterations. First 50000 iterations have been removed which are regarded as “burn-in”. 

Regularly, initial samples are not entirely valid because the Markov chain has not 

stabilised. With the absence of clear upward or descending patterns, the trace plots 

suggest the convergence of the simulation. 
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The Markov chain usually produces dependence in the samples. Autocorrelation is a 

quantitative measure of this dependence and autocorrelation function plots are used 

for these measurements. In Figure 3.7, the chains for all parameters are converged 

to 0 in the end. This is consistent with convergence of the Markov chains sampling. 

Lastly, we performed the Gelman-Rubin convergence diagnostic. The Gelman-Rubin 

diagnostic evaluates MCMC convergence by analysing the difference between 

multiple Markov chains. The estimated between-chains and within-chain variances 

are compared to assess the convergence for each model parameter. Significant 

differences between these variances indicate non-convergence [40-41]. The Gelman-

Rubin diagnostic returns a factor which is called the potential scale reduction factor 

(PSRF) that can be interpreted as a convergence diagnostic. We can safely conclude 

that each simulation is close to the target distribution and nearly converged if the 

PSRF value is close to 1 [40]. Table 3.4 presents the PSRF for each parameter. As 

the PSRFs for all parameters are equal to 1, this manifests the simulations for all 

parameters are approximately converged. Figure 3.8 shows the visual confirmation 

of PSRF. 
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Figure 3.6. Trace plots for 200000 iterations of the model. 
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Figure 3.7. Autocorrelation plots for 200000 iterations of the model. 
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Figure 3.8. Gelman-Rubin diagnostic plots for 200000 iterations of the model. 
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Coefficients PSRF 

Intercept Gas System, 𝛽0,1
𝑏  1 

Water System, 𝛽0,2
𝑏  1 

Oil System, 𝛽0,3
𝑏  1 

Deadleg Design Branch, 𝛽1
𝑏 1 

Orientation Vertical, 𝛽2,1
𝑏  1 

Mix (Horizontal + Vertical) , 𝛽2,2
𝑏  1 

Length, 𝛽3
𝑏 1 

Diameter, 𝛽4
𝑏 1 

Log(Flow Rate) , 𝛽5
𝑏 1 

Main Line Corrosion, 𝛽6
𝑏 1 

Table 3.4. Potential scale reduction factor (PSRF) of Gelman-Rubin convergence diagnostic. 

3.4.4 Mann-Whitney-Wilcoxon test 

Looking at the results of both frequentist and the Bayesian hierarchical approaches, 

it is hard to tell which method is giving a better estimation, because frequentist and 

the Bayesian approach are based on different philosophy. However, we conducted a 

statistical test to determine which model generates a closer estimate compared to the 

field data, which are the measured deadlegs corrosion rates. 

We used the Mann-Whitney-Wilcoxon (MWW) test for the statistical test for the 

Bayesian and frequentist anayses to compare the results of the estimation. The 

choice of this statistical test is on account of its ability to accommodate different 

statistical distributions without assuming the samples to follow the normal distribution 

[42]. 

We used the median of estimated Weibull distribution from both frequentist density 

regression and the Bayesian hierarchical model to compare with the deadlegs 

corrosion samples. We then observed the significance level and p-value calculated in 
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MWW test. The null hypothesis is that the field corrosion rates and median of 

estimated Weibull distribution are identical. 

Approach p-value 

Frequentist 0.2441 

Bayesian 0.1454 

Table 3.5. Mann-Whitney-Wilcoxon test for frequentist Weibull median and the median of 
Weibull estimated using the Bayesian approach. 

Table 3.5 shows the result of the MWW test for the two different analyses of the model. 

As the p-values of both methods turns out to be greater than the 0.05 significance 

level, this implies that there is no evidence to reject the null hypothesis and conclude 

that both the presented frequentist and Bayesian methods can be used for analysis 

of the model. 

3.5 Summary 

Corrosion rate can be obtained by the actual field inspection using NDT, but 

sometimes some areas of the piping system are difficult for the inspector to access 

to collect thickness measurements. There are other parts of the system where 

thickness measurements may simply not be available, requiring a prediction of the 

corrosion rate to be made using available data from comparable operating 

environments. Even in cases where thickness measurements are available, it is 

useful to supplement this information based on predictive methods. Indeed, the 

predictions themselves can be made more reliable by incorporating new data as and 

when they become available. 

Weibull density regression is suitable for corrosion analyses where there exist needs 

to consider multiple factors at the same time in the estimation. The proposed 

approach demonstrates the effect of various factors on the rate of corrosion of 

deadlegs. The results are in line with previous studies on how those factors 

considered in the density regression model affect the internal corrosion of piping 
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deadlegs. By using the different quantile levels of the Weibull distribution, we can 

predict the corrosion rates of inaccessible piping deadlegs of different design and 

operation conditions on account of the assumption that deadlegs' corrosion rates are 

always greater than the corrosion rates of their parent lines. 

The Bayesian analysis is also conducted on the Weibull density regression  model. 

Both the frequentist and the Bayesian analysis result in similar regression coefficient 

estimates in terms of posterior mean. But, instead of the point estimate by frequentist 

method, the Bayesian analysis can provide a complete picture by posterior. 

We also found that the Bayesian analysis is easy to cope with a regression model 

with overused dummy variables (for categorical data) in the independent variables. 

The Bayesian analysis enables the current analysis to be updated when future data 

is available. For example, the Bayesian analysis method can directly take current 

analysis as prior for any future data analysis of the same model and comparison. 

The regression approach shown here complements other approaches including those 

that involve physics-based models and Bayesian belief networks [43-45]. A piping 

integrity management approach may have inputs for a predicted life model or 

structural reliability models that consider other damage mechanisms such as shown 

in [46], and risk-based decision support models that include the impact of 

consequential failure such as shown in [47]. 
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Chapter 4. The Use of Corrosion Data Analyses for 

Predicting Remaining life for Integrity Assessments 

Abstract 

In order to show how the analyses of raw inspection monitoring data feed into integrity 

assessments, prediction of remaining useful life of conductors and deadleg piping is 

discussed in this research. By using the estimated corrosion rate and growth model, 

we can predict the remaining useful life of piping and the structural reliability of the 

conductors. For piping, there is always a threshold value for remaining wall thickness 

that is determined from design data. Once the wall thickness is thinned beyond or 

defect depth grows above this threshold, the pipe should be repaired or replaced to 

maintain its fitness for operation in the entire piping system. For conductors, the 

situation is different; although leaking is a failure mode, the main failure mode and 

concern is the loss of the physical integrity of the entire system due to the wall 

thickness of an area reducing to less than a certain threshold. The discussion in this 

section of the thesis is centred on demonstrating the use of results from analyses of 

data for the purpose of piping and offshore conductors remaining life assessments. 

We employ the first-order reliability method (FORM) to evaluate the time-dependent 

system reliability for these two different components.  

Keywords: Remaining useful life; first order reliability method; probability of failure; 

piping deadlegs; conductor pipes. 

4.1 Introduction 

The remaining useful life (RUL) of an asset is defined as the length from the present 

time to the end of the useful life. The idea of the RUL has been broadly applied as a 

part of operational research, reliability, and statistics literature with important 

applications in many fields such as material science, biostatistics and econometrics. 
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RUL estimation is one of the key factors in oil and gas asset integrity and maintenance 

management. 

The degradation rate and growth estimation methods have been discussed in 

previous chapters, for piping deadlegs and oil and gas offshore conductor pipes. One 

of the approaches in determining the remaining life of a component is by measuring 

the remaining thickness of the component where the thickness of the component must 

be above a certain threshold value to ensure it is fit for service. 

The remaining life of a component can be determined based on the computation of a 

minimum required thickness for the intended service conditions, thickness 

measurements from an inspection, and an estimate of the anticipated corrosion rate 

[1]. The general remaining life equation based on thickness is given by: 

 𝑅𝐿

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
. 

(4.1) 

API579 is one of the standards that provide calculations for the minimum required 

thickness for different types of components and design codes [1]. For a newly 

installed component, the remaining life is the entire life of the component, where the 

nominal thickness is usually used as the current thickness. 

4.1.1 Motivation and purposes 

Measurement of wall thickness for inaccessible piping deadlegs is not available. 

However, the corrosion density is extrapolated by using the available information of 

other deadlegs such as thickness measurements, design factors, and operational 

information. For offshore conductor pipes, the maximum defect depth is estimated by 

using extreme value theory and the corrosion growth is simulated by using geometric 

Brownian motion. When the corrosion density and defect growth are calculated, the 

predicted remaining lifetime distribution of these components can be obtained. The 

purpose of this research is to predict the remaining useful life of existing inaccessible 
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piping deadlegs and offshore conductor pipes; also to provide information that can be 

used to plan the future construction and maintenance of piping systems and offshore 

conductors. We propose that a reliability model be used as a prognosis method for 

remaining lifetime of these components. The first order reliability method (FORM) is 

used to estimate the current and target probabilities of failure for these components. 

It is feasible and efficient in evaluating the probability of failure and lifetime of the 

target components by using FORM. 

4.1.2 Previous works on remaining useful life estimation with corroded assets 

Kowaka and Tsuge [2] used extreme value theory to identify corrosion rates for 

different assets such as buried pipelines, storage tanks, and so on, and showed a 

pragmatic approach in predicting remaining life of those assets by observing the curve 

shift across the thickness axis in time on probability plots. Ahammed [3] developed a 

non-linear limit state model which incorporates multiple normal and non-normal 

random variables to probabilistically estimate the remaining life of a corroded pipeline. 

Caleyo et al. [4] presented different reliability assessment methods utilising a limit 

state function to predict the remaining useful life of pipelines with active corrosion 

defects. Li et al. [5] predicted the remaining life of underground pipelines by using a 

mechanically-based probabilistic model that takes account of random effects of 

corrosion in the pipelines. Ossai [6] estimated the mean time to failure (MTTF) for oil 

and gas pipelines by using Monte Carlo simulation and degradation models, and the 

survival function was determined with the Weibull distribution. Liu [7] computed the 

parameters in the degradation model by using a Bayesian approach to derive the 

failure time and remaining life distribution for circuits of pipelines. Zangenehmadar 

and Moselhi [8] used an artificial neural network (ANN) approach to predict the 

deterioration rate of water distribution networks along with remaining useful life 

estimation that included various important factors in the model. Son et al. [9-10] 

showed prognostic methods of assessing remaining useful lifetime for plant 

components based on stochastic processes. Yasseri and Mahani [11] illustrated a 

pragmatic way of determining the remaining useful life of pipelines by using a first 
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order reliability method; the method includes several influencing factors such as 

material properties, corroded area and degradation rates. 

4.2 Remaining useful life assessment for inaccessible piping 

deadleg 

In Chapter 3 we used Weibull density regression to model the corrosion rates of the 

piping deadlegs. Due to the inaccessibility of these deadlegs, thickness gauging 

cannot be performed. Because of this reason, we used the nominal thickness and 

corrosion density to estimate the probabilities of failure of these deadlegs. 

The ultimate failure of a pipe occurs when the thickness of an area or point is 

completely worn out, in other words, 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  0. However, any pipe may fail 

when its toughness, strength, and chemical resistance capabilities are below the 

allowable thresholds. In the material design standard for piping such as ASME B31.3, 

the thickness of these materials must be maintained above a required level of 

thickness; this threshold is commonly known as the minimum required thickness. If 

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≤ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠,  fitness-for-service (FFS) will be 

conducted to examine whether they are still safe to continue to operate, otherwise 

repair or replacement would be carried out. 

We employ the first-order reliability method to evaluate the time-dependent system 

reliability of these inaccessible piping deadlegs. By using the equation (4.1), we 

calculated the the predicted remaining lifetime distribution with nominal thickness and 

minimum required thickness respectively. Let 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 be the nominal predicted 

remaining lifetime distribution and 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 be the minimum required predicted 

remaining lifetime distribution: 

𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

=
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 0

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
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𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

=
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 0

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
. 

The limit state for the piping deadleg life is 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

− 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

. 

4.2.1 First order reliability method 

The first order reliability method has been broadly used in corrosion applications for 

reliability-based assessment [4, 12-17] due to its effectiveness in dealing with the 

numerous uncertainties that are either inherent to the corrosion process or involved 

in the inspection and evaluation of corrosion defects. 

Given the 𝑛 -dimensional vector of random variables 𝑋 = (𝑋1, 𝑋2, ⋯ , 𝑋𝑛)𝑇 , with 

continuously differentiable distribution 𝐹𝑋(𝑥), 𝐺(𝑥) is the function that defines the 

limiting state such that 𝐺(𝑥) ≤ 0 is the unsafe domain and 𝐺(𝑥) > 0 represents the 

safe domain. Figure 4.1 shows the probability integration in FORM, failure zone, and 

safe domain. To make the shape of the integrand 𝑓𝑥(𝑥)  regular, all the random 

variables 𝑋 are transformed to standard normal variables 𝑈 = (𝑈1, 𝑈2, ⋯ , 𝑈𝑛). The 

mean and standard deviation of the standard normal variable are 0 and 1 respectively. 

The condition for the CDFs of the random variables to remain the same before and 

after the transformation from X to U must be met. This type of transformation is called 

a Rosenblatt transformation [18], which is expressed by: 

 𝐹𝑋(𝑥) = Φ(𝑢) (4.2) 

in which Φ(∙) is the CDF of the standard normal distribution. 

The transformed standard normal variable is then given by: 

 𝑈 = Φ−1[𝐹𝑋(𝑥)]. (4.3) 

After the transformation, the probability integration becomes: 
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𝑝𝑓 = 𝑃{𝑔(𝑈) < 0} = ∫ ɸ𝑈(𝑈) 𝑑𝑢

𝑔(𝑈)<0

. (4.4) 

The reliability index 𝛽 is the shortest distance from origin to failure 𝑔(𝑈) = 0 in 𝑈-

space. The point 𝑈∗ = (𝑢1
∗ , 𝑢2

∗ , ⋯ 𝑢𝑛
∗ ) on the failure surface is the so-called probable 

point (MPP). The reliability index 𝛽 and MPP 𝑈∗ can be computed by the solution of 

a constrained optimization in U-space as follows: 

 
{

𝑚𝑖𝑛‖𝑈∗‖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑔(𝑈) = 0.
 (4.5) 

The HLRF-BGFS method is used to solve the constraint optimisation problem [19]. 

If 𝑈∗, with 𝑈∗ ≠ 0, is the solution point of the optimisation problem in Equation (4.5), 

then the following equation (4.6) holds for each distribution parameters of random 

vector 𝑋: 

 𝑈∗𝑇∇𝑢𝑔(𝑈∗) + ‖𝑈∗‖‖∇𝑢𝑔(𝑈∗)‖ = 0 (4.6) 

where 

 
∇𝑢𝑔(𝑈∗) = [

𝜕𝑔(𝑈∗)

𝜕𝑈1

𝜕𝑔(𝑈∗)

𝜕𝑈2
⋯

𝜕𝑔(𝑈∗)

𝜕𝑈𝑛
]

𝑇

 (4.7) 

 
‖𝑈∗‖ = √𝑈1

∗2 + 𝑈2
∗2 + ⋯ 𝑈𝑛

∗2
 (4.8) 

 

‖∇𝑢𝑔(𝑈∗)‖ = √[
𝜕𝑔(𝑈∗)

𝜕𝑈1
]

2

+ [
𝜕𝑔(𝑈∗)

𝜕𝑈2
]

2

+ ⋯ + [
𝜕𝑔(𝑈∗)

𝜕𝑈𝑛
]

2

. (4.9) 

From equation (4.6), the reliability index 𝛽 can be expressed as follows: 
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𝛽 = ‖𝑈∗‖ =

−𝑈∗𝑇∇𝑢𝑔(𝑈∗)

‖∇𝑢𝑔(𝑈∗)‖
. (4.10) 

The probability of failure can be approximately calculated by: 

 𝑝𝑓 = 1 − Φ(𝛽). (4.11) 

More information about FORM can be found in [20]. 

 

Figure 4.1. Probability Integration in FORM 

4.2.2 Case study 

We used example data to show how the remaining useful life using FORM works. 

Assume the corrosion density we obtained is 𝐶𝑅 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒 = 2.364, 𝑠𝑐𝑎𝑙𝑒 =

0.25), the nominal thickness of the deadleg pipe is 15.2mm and its minimum required 

thickness is 8.6mm; the pipe has been in service for 15 years. Table 4.1 shows the 

example data for this case: 

  



101 
 

Parameters Values 

Corrosion Distribution (Weibull 

Density), mm/year 

Shape 2.364 

Scale 0.25 

Nominal Thickness, mm 15.2 

Minimum Required Thickness, mm 8.6 

Current Years in service 15 

Table 4.1. Example data of piping deadleg for a demonstration of the probability of failure 
estimation using FORM. 

The predicted remaining lifetime distribution from the nominal thickness to 0: 

𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

=
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 0

𝐶𝑅 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2.364, 0.25)
 

and the predicted remaining lifetime distribution from the minimum required thickness 

to 0: 

𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

=
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 − 0

𝐶𝑅 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2.364, 0.25)
. 

The performance function for the deadleg is given by: 

𝑔(𝑋) = 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

≥ 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

. 

It is important to identify which probability distribution 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 and 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 belong to 

before running FORM. The two distributions are not symmetric and have positive 

skewness; hence we used lognormal, Weibull, Gumbel, and also Normal distribution 

to fit to these lifetime data and observed which probability distribution has the best fit 

to the data. The fitting is done using maximum likelihood estimation [21]. 

We conducted a statistical test on all the distribution fittings by using the Kolmogorov-

Smirnov (KS) test [22] and Anderson-Darling (AD) test [23]. We observed the 

statistics calculated in KS-test and AD-test; the smaller the statistics’ values, the 

better the fit of the data to the lifetime distribution. Table 4.2 and Table 4.3 show the 
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estimated parameters of all our fitted distributions and the statistics of KS test and AD 

test for the lifetime distributions, respectively for  𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 and 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

. 

Based on the KS and AD test, it is suggested that both lifetime distributions are fitted 

the best with the lognormal distribution among all the selected distributions. So the 

life distribution of this component using its nominal thickness is 

𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 ~ 𝐿𝑁(4.3535, 0.545)  and the life distribution using minimum required 

thickness is 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 ~ 𝐿𝑁(3.7839, 0.545). 

Statistical Distribution Parameters KS-Test 

Statistic 

AD-Test 

Statistic 

Lognormal Mean log = 4.3535; 

SD log = 0.545 

0.0767 122.2 

Weibull Shape = 2.1; 

Scale = 102.3  

0.1481 577.9 

Normal Mean = 93.533; 

SD = 87.996 

0.2314 1105.9 

Gumbel Max Location = 53.93; 

Scale = 68.61 

0.2427 862.2 

Table 4.2. KS and AD tests for  𝑿𝒏𝒐𝒎
𝒅𝒆𝒂𝒅𝒍𝒆𝒈
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Statistical Distribution Parameters KS-Test 

Statistic 

AD-Test 

Statistic 

Lognormal Mean log = 3.7839; 

SD log = 0.545 

0.0767 122.2 

Weibull Shape = 2.1; 

Scale = 57.874 

0.1481 577.9 

Normal Mean = 52.92; 

SD = 49.787 

0.2314 1105.9 

Gumbel Max Location = 30.513; 

Scale = 38.819 

0.2427 862.2 

Table 4.3. KS and AD tests for  𝑿𝒎𝒊𝒏
𝒅𝒆𝒂𝒅𝒍𝒆𝒈

 

The life distribution 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 is shown in Figure 4.2. 

 

Figure 4.2. Life distribution of piping deadleg 

Given lognormally distributed variable 𝑋  with expected value µ  and standard 

deviation 𝜎, the Rosenblatt transformation is expressed by: 
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𝐹𝑋(𝑥) = Φ (
𝑙𝑜𝑔𝑥 − µ𝑙

𝜎𝑙
) 

where 𝜎𝑙 = √𝑙𝑜𝑔 (
𝜎2

µ2 + 1) and µ𝑙 = 𝑙𝑜𝑔µ −
1

2
𝜎𝑙

2. 

The transformed standard normal variable then becomes: 

𝑈 = Φ−1[𝐹𝑋(𝑥)] =
𝑙𝑜𝑔𝑥 − µ𝑙

𝜎𝑙
 

𝑋 = 𝑒𝑥𝑝(𝜎𝑙𝑢 + µ𝑙). 

And the performance function is: 

𝑔(𝑈) = 𝑒𝑥𝑝(𝜎𝑙𝑛𝑜𝑚
∙ 𝑢𝑛𝑜𝑚 + µ𝑙𝑛𝑜𝑚

) − 𝑒𝑥𝑝(𝜎𝑙𝑚𝑖𝑛
∙ 𝑢𝑚𝑖𝑛 + µ𝑙𝑚𝑖𝑛

) 

where 𝑒𝑥𝑝(𝜎𝑙𝑛𝑜𝑚
∙ 𝑢𝑛𝑜𝑚 + µ𝑙𝑛𝑜𝑚

) is the transformed standard normal distribution for 

𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

and 𝑒𝑥𝑝(𝜎𝑙𝑚𝑖𝑛
∙ 𝑢𝑚𝑖𝑛 + µ𝑙𝑚𝑖𝑛

) for 𝑋𝑚𝑖𝑛
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

. 

We can obtain the probability of failure for the deadleg component with current year 

in service through the cumulative function of 𝑋𝑛𝑜𝑚
𝑑𝑒𝑎𝑑𝑙𝑒𝑔

 ~ 𝐿𝑁(4.3535, 0.545). By using 

FORM, we obtained the target failure probability of 0.23 for which the thickness of the 

component will be thinned below its acceptable thickness at approximately year 52. 

The difference in year between the current probability of failure and the target failure 

probability is the remaining useful life of this component. Figure 4.3 shows the 

probability of failure for the current year in service, target probability, and theoretical 

remaining useful life on a cumulative function plot. 

Nonetheless, the calculated failure probability is not an absolute figure; it is left to the 

judgement of the integrity engineer to decide if any further adjustment is of any value. 

Usually, the target POF should be set lower than the 0.23 in the preventive 

maintenance routine. Once the POF exceeds a certain level of threshold, the integrity 
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engineer should take action to come out with a plan to survey these deadlegs, to see 

whether they need further maintenance. 

 

Figure 4.3. Remaining useful life and probability of failure of piping deadleg 

4.3 Remaining useful life assessment for offshore conductor pipe 

The oil and gas operators encounter a critical challenge in maintaining the ageing 

offshore well conductors assets as most of these assets have been operated beyond 

their original design life. The limited information about the oil well construction, 

unknown operational conditions, and poor though-life maintenance further 

aggravates the problems. These conductor pipes provide the structural foundation for 

oil wells and prevent the corrosion effect due to sea splash to the external surface of 

the inner casing of the entire conductor asset. 

Unlike pipeline or piping systems that carry the oil and gas product, leakage of the 

conductor does not cause immediate failure to the system. However, the thickness of 

the conductor pipe must be maintained above a certain level of threshold, which is 

known as minimum required thickness, to continue providing the support to the 
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conductor system. There are not many industrial guidelines for computing the 

minimum required thickness for conductor pipes. However, Ramasamy et al. have 

shown a method of calculating the minimum required thickness for offshore 

conductors in [24]. 

In Chapter 2, extreme value theory and the geometric Brownian motion are used to 

predict the corrosion growth of the conductor pipes. The geometric Brownian motion 

model is a state-dependent model that assumes the defect depth continues to grow 

deeper or larger over time and calculates the maximum defect depth for every year 

by using a return period method. To estimate the remaining life of the conductor pipe, 

we can observe the defect growth and identify the year when defect depth ≥ 

maximum allowable defect depth. Maximum allowable defect depth is the difference 

between the nominal thickness and minimum required thickness of a conductor pipe. 

Figure 4.4 shows the allowable defect depth and remaining useful life of a conductor 

pipe. Recall that we extrapolated the maximum defect depth for the non-sample area 

of the conductor pipe surface as well, which is  why there are two curves plotted in 

Figure 4.4. We can see that the remaining life for this conductor is about 4 years since 

last inspection, based on the defect growth on other areas, as the growth of this area 

reaches the minimum required thickness first. 
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Figure 4.4. Allowable defect depth of conductor pipe 

4.4 Summary 

In oil and gas exploration, production and refinery plants, there are many components 

in the asset systems that require adequate and sufficient maintenance to enable the 

system to function properly. Each element in the system has a design life limit that 

the manufacturer has come out with during the laboratory testing. Some components 

may operate longer than their original design life, whereas some may fail earlier than 

their design life; it is due to various factors that can determine the degradation and 

deterioration of the components. 

It is important to conduct remaining useful life assessments for these components by 

taking various influencing factors into account, to allow the operator to know the 

remaining life of the assets after they have been put in service for years. Appropriate 

preventive actions can be taken based on the outcome of remaining useful life 

assessment to hold back from severe system failure that could result in high 

consequential cost and fatality. 
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We have presented two different models for conducting remaining life assessment in 

two different components using the latest taken thickness measurements for piping 

deadlegs and offshore conductor pipes. The geometric Brownian motion is used for 

conductor pipe remaining life assessment while FORM is used for piping deadlegs. 

Depending on the availability of data, the models can be used for different assets and 

components, not only limited to the components presented above. Our approach may 

have inputs for risk-based decision support models that include the impact of 

consequential failure. 

It is important to note that defining the probability of failure and risk targets is the 

responsibility of the owner-user. The targets should be developed based on owner-

user internal guidelines and overall risk tolerance. Owner-users often have corporate 

risk criteria defining acceptable and prudent levels of safety, environmental, and 

financial risks. These owner-user criteria should be used when making risk-based 

inspection (RBI) decisions since acceptable risk levels, and risk management 

decision-making will vary among companies [25]. 

It is argued that to know the remaining thickness of an asset for remaining life 

estimation, more frequent non-destructive testing (NDT) should be conducted on 

those assets instead of using probabilistic and statistical analyses for remaining life 

estimation. It is true that the inspection gives more information on the fitness of 

service of those assets; however, over inspection will increase the total budget in 

integrity assessment and maintenance. Besides this, statistical analyses and risk-

based approaches enable integrity engineers to prioritise the inspection on higher risk 

areas. 
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Chapter 5. General Conclusion 

In this thesis, we established statistical methods to estimate the integrity and 

reliability for piping deadlegs and offshore conductors. The thesis consists of three 

technical chapters. In Chapters 2 and 3, we discuss the modelling of defects for 

offshore conductor pipes and piping deadlegs respectively; whereas in Chapter 4 

we studied the remaining useful life of these components by making use of the 

corrosion density and growth rate derived from the previous chapters. 

In Chapter 2, we present two different methods of application of extreme value 

theory on offshore conductor pipes’ inspection data; they are Block Maxima (BM) 

and Peak-over-Threshold (POT) methods. Both approaches can give similar 

results in inferring the maximum defect depths distribution and extrapolating the 

defect depths of uninspected areas. The BM method is easy to use with the 

assumption that the data are stationary and long-range dependence at extreme 

levels is weak. Our studies show that the POT method is more robust than BM 

especially for the cases where the data cannot be divided into equally-sized 

blocks for the BM method, and de-clustering of data reduces the chance of local 

dependency in the sample. It is recognised that localised corrosion or pitting can 

only be modelled stochastically. Thus we usegeometric Brownian motion to model 

the defects and predict the future defect growths. This predictive method is 

essential for a plant operator or an integrity engineer to make and take short-term 

and long-term mitigation plans for ensuring the fitness of these conductors for 

service, and when to repair or replace the entire conductors. 

In Chapter 3, we use a Weibull density regression to extrapolate the corrosion 

density of inaccessible piping deadlegs. The proposed approach demonstrates 

the effect of various factors on the rate of corrosion of deadlegs. The results 

presented are in line with previous studies on how those factors considered in the 

density regression model affect the internal corrosion of piping deadlegs. By using 

different Weibull quantiles levels, we can predict the corrosion rates of 

inaccessible piping deadlegs of different design and operation conditions on 



113 
 

account of the assumption that deadlegs' corrosion rates are always greater than 

the corrosion rates of their parent lines. Both the frequentist and the Bayesian 

methods are used for the analysis of the regression model; they result in similar 

coefficient estimates but the Bayesian analysis can provide a complete picture by 

posterior. We found that the Bayesian analysis is easy to cope with a regression 

model with overused dummy variables (for categorical data) in the independent 

variables, and it enables the current analysis to be updated when future data is 

available. 

In Chapter 4, we present two separate models for assessing remaining life 

assessment in two different components using the latest recorded thickness 

measurements from a piping system and offshore conductor pipes. The models 

use the geometric Brownian motion and limiting state functions with first order 

reliability method to estimate the components’ remaining useful life. Depending 

on the availability of data, the models can be used to predict the remaining useful 

life for different assets and components, not limited only to piping deadlegs and 

offshore conductors. Our approach may have inputs for risk-based decision 

support models that include the impact of consequential failures. 

In future, when new inspection data are made available to these components, the 

models demonstrated can be updated and enhanced on account of the new 

information given. The models can be evolved over time to become more accurate 

by taking new information into consideration. Improvements to the models can be 

made by applying various statistical approaches: Bayesian updating theorem, 

artificial neural network and machine learning techniques, or any other statistical 

methods. Besides the first-order reliability method, other numerical integration 

methods such as crude Monte Carlo and importance sampling can be used to find 

the limit state of a component. 


