
JITTAC: A Just-in-Time Tool for Architectural

Consistency

Jim Buckley, Sean Mooney, Jacek Rosik
Lero/CSIS

University of Limerick

Limerick, Ireland

{Jim.Buckley, Sean.Mooney, Jacek.Rosik}@ul.ie

Nour Ali
Visual Modelling Group

University of Brighton

Brighton, UK

N.Ali2@brighton.ac.uk

Abstract—Architectural drift is a widely cited problem in

software engineering, where the implementation of a software

system diverges from the designed architecture over time causing

architecture inconsistencies. Previous work suggests that this

architectural drift is, in part, due to programmers’ lack of

architecture awareness as they develop code. JITTAC is a tool

that uses a real-time Reflexion Modeling approach to inform

programmers of the architectural consequences of their

programming actions as, and often just before, they perform

them. Thus, it provides developers with Just-In-Time

architectural awareness towards promoting consistency between

the as-designed architecture and the as-implemented system.

JITTAC also allows programmers to give real-time feedback

on introduced inconsistencies to the architect. This facilitates

programmer-driven architectural change, when validated by the

architect, and allows for more timely team-awareness of the

actual architectural consistency of the system. Thus, it is

anticipated that the tool will decrease architectural inconsistency

over time and improve both developers’ and architect's

knowledge of their software’s architecture. The JITTAC demo is

available at: http://www.youtube.com/watch?v=BNqhp40PDD4

Index Terms—Reverse Engineering, Software architecture

discovery, software architecture consistency, compliance

I. INTRODUCTION

Even if software architects produce a well-defined, well

evaluated and well-documented architecture for a system, this

architecture must be embodied in the system’s implementation

for the associated quality requirements to be realized. This

situation is referred to in the literature as Architectural

Compliance [7] or Architectural Consistency [5]. There are

many challenges to achieving on-going Architectural

Consistency, including time pressures on the development team

during implementation/evolution, and lack of architectural

awareness on the part of (possibly new) programmers. Hence

this consistency can decrease during software development

lifecycles, and the recovery costs can be large, as is amply

illustrated in [8], page 16.

In an in-vivo case study performed by several of the authors

[6], a Reflexion Modelling approach was applied at 3-monthly

intervals during the re-development of a commercial system,

with a view to preventing the introduction of architectural

inconsistencies in that system as development proceeded. In

this particular scenario, architectural control was deemed

important by our industrial partner, as architectural drift and

degeneration were the prime motivators for the re-development

of the system in the first place. However, even in these

circumstances the authors found that the developers were

reluctant to retrospectively address the architectural

inconsistencies they had introduced.

This paper presents JITTAC, an Eclipse plug-in

(http://www.youtube.com/watch?v=BNqhp40PDD4), which

aims to address this concern by supporting on-going

architecture consistency for software development teams in a

real-time, proactive manner. It allows architects to check if the

currently implemented system is consistent with the as-

designed architecture, as an initial basis for on-going

consistency checking. Subsequently, it informs developers, as

they code, of the architecture-consistency implications of their

changes. It is envisaged that such a tool will lessen the

introduction of inconsistencies over time and will make

programmers more aware of the architectural consequences of

their coding actions.

Section 2 discusses the JITAAC tool in more detail. Section

3 presents our preliminary evaluations of the tool and our

proposed future studies. Section 4 discusses some of the related

work. Finally, section 5 highlights conclusions and further

work.

II. A WALKTHROUGH OF JITTAC

Consider the scenario where an architect is faced with a

system whose implementation may have drifted from its

original as-designed architecture. As shown in figure 1,

JITTAC allows the architect to define an architectural model of

the system (1) where components and their connections, can be

dragged and dropped from a palette (2). Additionally, drag and

drop facilities can be used to create mappings from the existing

source code elements in the package explorer (4) to the

components in this architectural model and a summary of these

mappings is available in an outline view (5). Many source code

elements can be mapped into one component and the

architectural models and mappings can be defined

incrementally and iteratively.

http://www.youtube.com/watch?v=BNqhp40PDD4
http://www.youtube.com/watch?v=BNqhp40PDD4&feature=youtu.be

Fig. 1. An Architect’s view of the JITTAC tool

As mappings are defined between the source code and the

architectural model, the results of a Reflexion-Modelling type

analysis are presented, in terms of the edges between the

modeled architectural elements: Solid edges represent

convergences where there exists a relationship both in the

architectural model and in the source code implementation.

Dashed edges represent divergences where there is a

relationship in the implementation but not in the architecture.

Dotted edges represent a relationship specified in the

architecture, but not present in the implementation. Typically,

the architect will focus on the latter two types of edges in their

efforts to address architectural drift.

The tool allows for further analysis of divergent edges.

Specifically when the edge is clicked upon, the tool lists the

source code relationships underpinning the edge (see the

Architectural Relations view (3) for the code relationships

underpinning the edge between Command and Common).

JITTAC then allows the architect to click on the Source in the

Architectural Relations view, to navigate to the associated

source code. If that code is changed to address the

inconsistency, this change gets reflected back to the

architectural model instantaneously and the divergent edge

becomes a convergent one. For a fuller description of this

Architecture Recovery functionality, please refer to our

description of the prototype version of the tool in [1].

While the prototype tool does provide some functionality

towards addressing on-going architectural drift, JITTAC builds

on this functionality substantially, to more fully consider the

scenario where the architectural drift has been addressed and

the architect is happy for development work to proceed. As the

programmers work, they are given an enriched coding view

(see figure 2) where any architectural inconsistency they

introduce is marked in the coding margin on saving (figure

2(a)). In addition, as they code, an enriched auto-complete

function re-ranks and color-codes the auto-complete options

(again see figure 2(a)) in an architecture-aware fashion. Auto-

complete options that would result in an architecturally

consistent dependency are colored green and ranked first.

Auto-completes options as-yet unmapped to the architectural

model are colored orange and ranked second. Finally, auto-

completes that would result in architectural inconsistencies are

colored red and are ranked third. Thus, programmers become

architecturally aware Just-In-Time: just before they commit to

their source code change.

In another addition to the prototype tool, JITTAC allows

the developer to right click on any line of source code that is

causing an inconsistency (see figure 2(b)) and, through that,

navigate directly to the architectural model to view the

inconsistency, highlighted and in context. In fact, JITTAC

allows architects to define several architectural models for each

subject software system. Each model can provide a different

architectural view or granularity. So, when the programmer

introduces an inconsistency in the code, the tool navigates the

programmer to the specific architectural model associated with

that inconsistency.

(a) (b)

Fig. 2. A Developer’s view of the JITTAC tool

Finally, the same right-click interface (see figure 2(b))

allows programmers, if they believe that the dependency is

justified, to email the architect with a rationale for inclusion of

the specified architecturally-inconsistent code (through the

'Propose Architectural Change' option).

III. EMPIRICAL EVALUATION

In-vivo evaluation of the initial prototype version of

JITTAC was carried out at two financial software companies

based in Ireland, as was reported in QoSA 2012 [1]. This

prototype version was called the ACTool

(http://www.lero.ie/project/rca/arc) and it had many of the

architecture facilities provided by the final tool: It had facilities

for the architect to make explicit their designed architecture

and to check the implementation’s consistency with that

architecture.

This prototype tool was used to check the consistency of

three commercial systems in these organizations with their as-

designed architecture, these systems ranging from 35KLOC to

over 2.2MLOC. In general the real-time aspect of the system

was well received:

“…the results were instant, that when you dragged your

package or class it showed violations straight away"

This real-time feedback often prompted participants to

generate model entities directly from the source code: dragging

packages or classes from the package explorer directly onto the

architectural canvas to create architectural components and get

immediate feedback on their dependencies. This was typically

done when the participant was happy with a 1:1 mapping

between a software entity in the package explorer (code) and a

proposed architectural component. They also did it when they

wanted quick feedback on the workings of a package or class,

or when they wanted confirmation that most of the observed

inconsistencies in a model were due to one specific software

entity. In one case, this was the default model-building

behavior of the participant: a behavior that seems to directly

conflict with Reflexion Modelling principles of building an as-

envisaged model first and then checking it. This real-time

feedback behavior was observed in all 3 sessions.

However, the prototype tool did not have all the facilities to

support on-going architectural consistency checking during

continued development of the system. Specifically, it did not

have the enriched autocomplete of the final prototype, the

ability to navigate to and highlight a programmer-coded

inconsistency in the architectural model or the ability to email

the architect to notify them of introduced inconsistencies. In

addition, it did not have the facility to model, and show

consistency with, more than one designed architecture for a

given system.

 JITTAC, the current prototype that implements these

features, has currently been trialed in one other organization.

Here it was again used to check the consistency of a

commercial system with its as-designed architecture. The part

of the system modeled was approximately 150KLOC. The

results were consistent with those of the initial study: the

participant used a real-time feedback approach as their default

behavior and was positive about it.

Our next round of evaluation will concentrate on the just-

in-time capabilities of the tool for controlling architectural

consistency in an on-going basis. This will take the form of an

in-vivo case study where the architect in an organization will

check the level of consistency between the implementation of

one of their commercial systems and its envisaged architecture,

as of a specific date (see figure 3). He will use the company's

commit repository to do the same evaluation for a past release

of their system. This will allow us determine the rate of

inconsistency introduction, over the lifetime of a release,

without the JITTAC tool's support.

The tool will then be circulated to the company's

programmers and they will be shown how to use it. At the same

time, they will complete a short quiz focused on the

architectural consistency of a number of source code

dependencies. This will allow us to quantify their knowledge of

how the as-designed architectural model maps to the code they

work on.

At the next release of the system and after the programmers

have used JITAAC to develop this release, the programmers

will be asked to complete another quiz and the architect will

again check the consistency of the system. These measures will

allow us to determine any change in the programmers’

knowledge of how the as-designed architectural model maps to

the code base and it will allow us determine the rate of

inconsistency introduction, over the lifetime of that release,

with the JITTAC tool's support.

Current Release

-System consistency check;

-JITTAC introduction across team;

-Programmers’ Quiz

Release +1

-System consistency check;

-Programmers’ Quiz

Release -1

-System consistency check;

∆ Inconsistencies
∆ Inconsistencies

∆ Programmer’s Knowledge

Fig. 3. JITTAC longitudinal evaluation plan

The difference between the rate of inconsistency

introduction over the 2 releases will give us an initial indication

of the utility of the tool, as will comparing the results of the

quizzes that the programmers undertake. This, when coupled

with qualitative analysis of extemporaneous factors over the 2

releases (programmer diaries and changes to the architectural

model driven by programmers) will provide a rich data set on

JITTAC’s capabilities and limitations. This will ideally prompt

more controlled studies of individual aspects of and the overall

approach underpinning JITTAC.

IV. RELATED WORK

JITTAC is based on the Reflexion Modelling approach

proposed by Gail Murphy et al. [1], who produced the

JRMTool prototype tool [3]. This tool was batch-oriented: a

model is defined, the mappings to the code created and an

analysis tool is executed to give feedback to the user at periodic

intervals. There are many differences between JITTAC and

http://www.lero.ie/project/rca/arc

JRMTool, but the basic ones are that JITTAC provides instant

feedback as code is mapped to the architecture, the

architectural model is changed instantaneously when the code

is updated, it provides developers with inconsistency awareness

as they are developing through margin alerts and auto-

complete, and it allows architecture team awareness:

Developers can send emails to architects when inconsistencies

are introduced.

Passos et al. [4] reviewed the most promising architecture

consistency approaches in their 2010 paper. Ultimately, they

suggested that Reflexion Modelling with real-time feedback

was the most appropriate avenue, based on a well-defined

existing process. The JITTAC prototype tool presented in this

paper supports this real-time feedback and goes beyond it.

Most closely related to this work is the work of Knodel [7].

He has simultaneously developed a real-time Reflexion

Modelling-based tool called SAVELife that gives real-time

feedback to architects and developers on the consistency

between their designed architecture and their implementation.

However, SAVELife does not provide intellisense support to

developers, the navigation from the code to the architectural

model, or the communication between the developers and

architects.

A recent approach for detecting architectural

inconsistencies is the one defined by Haitzer and Zdun [9].

They define a Domain Specific Language (DSL) that can be

used to generate architectural models from source code and

identify inconsistencies. However, inconsistencies are not

visually shown in the architecture model since they are

implemented as rules. In addition, when code is updated the

architectural models are not updated automatically; changes to

the DSL code are needed in several cases. It also does not

provide real-time architecture knowledge to developers as they

update the code or architecture team awareness.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we present JITTAC a tool that provides just in

time architectural consistency support to reduce the

architectural drift phenomena. The tool allows both architects

and developers to acquire architectural knowledge and receive

feedback in real-time. It allows architects to check the

consistency between the implemented architecture and the as-

designed one, both during development and retrospectively. In

addition, developers receive architecture feedback as they

develop, because the tool informs them of the architecture

consistency implications of their changes. It also facilitates the

communication between developers and architects, allowing

developers to express the rationale behind their inconsistencies

when they deem them appropriate.

We have evaluated the JITTAC tool on four commercial

projects to check their architecture consistency. However, we

have not evaluated the tools features and usefulness for the on-

going architectural support of developers. To evaluate this, we

have designed a protocol to perform a longitudinal study in a

commercial setting and, in liaison with a commercial partner,

plan to execute it in the near future.

Our future work directions are towards extending the tool to

provide fuller support for architecture recovery and

consistency. The current stand-alone plug-in will be

reengineered to a client-server implementation where a central

repository of architectural models will be preserved on the

server. This central repository will provide increased

consistency in the team's architectural models over time,

providing a greater degree of team awareness.

In addition, currently the architectural models generated in

the tool reflect implementation-based, inter-component

dependencies based on import statements, invocations and field

accesses only. We hope to trial the visualization of novel

dependencies such as annotation-similarity and OO constructs

like inheritance. Finally, we intend to scale up the approach to

probe architectural consistency for web systems and service

oriented ones. For this we will have to apply different

(dynamic) analysis techniques: not only the static analysis ones

which are currently supported by JITTAC.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation

Ireland grant 10/CE/I1855 to Lero - the Irish Software

Engineering Research Centre (www.lero.ie). Video production

acknowledgements to Leah Morgan, Eoin Murray and David

Moya Garcia.

REFERENCES

[1] N. Ali, J. Rosik, and J. Buckley, “Characterizing Real-Time

Reflexion-based Architecture Recovery in Practice” Proceedings

of Quality of Software Architecture, 2012.

[2] G. C. Murphy, D. Notkin, K. J. Sullivan. “Software reflexion

models: Bridging the gap between source and high-level

models,” Proceedings of the 3rd ACM SIGSOFT Symposium on

Foundations of Software Engineering, pp. 18–23, 1995.

[3] jRM Tool Eclipse Plug-In. Available at:

http://jrmtool.sourceforge.net/

[4] L.T. Passos, R. Terra, M. Valente, R. Diniz, N. C. Mendonça,

“Static Architecture-Conformance Checking: An Illustrative

Overview”. IEEE Software 27(5): pp. 82-89, 2010.

[5] Rosik J., Buckley J., and Babar M.A, "Design Requirements for

an Architecture Consistency Tool" Proceedings of the 21st

Working Conference of the Psychology of Programmers' Interest

Group, pp. 109-124, 2009.

[6] Rosik, J., LeGear, A, Buckley, J. Babar, M.A., Connolly, D.,

"Assessing Architectural Drift in Commercial Software

Development: A Case Study." SPE 41(1): 63-86, 2011.

[7] J Knodel, D. Muthig, M. Naab, M. Lindvall, "Static evaluation

of software architectures," Conference on Software Maintenance

and Reengineering, pp. 279–294, 2006.

[8] J. Knodel, “Sustainable Structures in Software Implementations

by Live Compliance Checking,” PhD Thesis, Fraunhofer

Institute for Experimental Software Engineering, 2010.

[9] T. Haitzer, U. Zdun, “DSL-based Support for Semi-Automated

Architectural Component Model Abstraction Throughout the

Software Lifecycle”, Proceedings of Quality of Software

Architecture (QoSA’12), pp. 61-70, 2012

http://www.lero.ie/
http://jrmtool.sourceforge.net/

