
104 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

SSED: Servers Under Software-Defined Network
Architectures to Eliminate Discovery Messages

Emad Alasadi and Hamed S. Al-Raweshidy, Senior Member, IEEE

Abstract— The high speed, low cost, sharing of peripheral
devices and central administration features of the Ethernet have
led to it being widely trusted as the backbone for recent networks.
However, it suffers from many practical limitations leading to a
lack of scalability, owing to its broadcast and multicast mecha-
nisms, particularly in relation to the discovery processes. Whilst
software-defined networks (SDN) have overcome many legacy
network problems, scalability remains a major issue, because
broadcasting and multicasting have been inherited. Moreover,
the problem is exacerbated with increasing network traffic,
which results in higher bandwidth consumption, congestion, and
increased probability of a single point of failure. To address
this, servers under software-defined network architectures to
eliminate discovery messages (SSED) is designed in this paper,
and a backbone of floodless packets in an SDN LAN network
is introduced. For SSED, flood discovery packets created by the
dynamic host configuration protocol in the application layer and
the address resolution protocol in the data link layer are con-
sidered, respectively. SSED eliminates any broadcast discovery
packets with better performance, lowers peak overhead, and
introduces an innovative mechanism for defining the relationship
between the servers and SDN architecture. Experimental results
after constructing and applying an authentic testbed verify that
our proposed model has the ability to improve the scalability by
removing broadcast packets from the data plane, reduction of
control packets in the control plane, lessening peak overhead on
the controller, preventing it experiencing failed requests, offering
better response time, and providing more efficient performance.

Index Terms— Software-defined networks, scalability,
broadcast, servers.

I. INTRODUCTION

THE Ethernet is the most popular technology in local
area networks that can be found in small geographic

zones, such as in the home, on campuses and in enterprise
network [1]. It allows for the sharing of resources with high
performance, which supports virtualization principles and the
client-server scheme in relation to the distribution of load
among the servers as well as assisting in administration. The
Ethernet protocol resides in the data link layer in the Internet
protocol suite, providing services for its own layer and up layer

Manuscript received September 24, 2016; revised March 27, 2017; accepted
October 5, 2017; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor Y. Chen. Date of publication November 3, 2017; date of current version
February 14, 2018. This work was supported by Brunel University London.
(Corresponding author: Emad Alasadi.)

E. Alasadi is with the Department of Electronic and Computer Engineering,
Brunel University London, Uxbridge UB8 3PH, U.K.

H. S. Al-Raweshidy is with the Department of Electronic and Computer
Engineering, College of Engineering, Design and Physical Sciences, Brunel
University London, Uxbridge UB8 3PH, U.K.

Digital Object Identifier 10.1109/TNET.2017.2763131

protocols, such as broadcast ones like the Address Resolution
Protocol (ARP) [2] in the data link layer and the Dynamic
Host Configuration Protocol (DHCP) [3] in the application
layer. It also services multicast protocols, such as the Bridge
Protocol Data Units (BPDUs) [4], which is a multicast packet
used by the Spanning Tree Protocol (STP) [4] in the link layer
and the Multicast Listener Discovery (MLD) protocol [5] in
the internet layer.

Despite broadcast and multicast protocols having the advan-
tage of providing different services, such as getting destination
MAC addresses, obtaining new IPs, loop free networking and
discovering neighbouring nodes, the compulsory broadcast
mechanism has resulted in multiple negative consequences that
motivated us to design our model, which are as follows.

• As a consequence of broadcast packets, broadcast storms
can happen in network topologies with multi-levels
of connection, such as tree topology, causing further
problems, such as congesting links, overloading the
controller’s/switch’s CPU (we observed that experimen-
tally the CPUs overloaded 100 % during approximately
0.5 sec of a storm) and generating MAC address flaps.
The STP protocol in legacy networks is used to overcome
the loop storm, however, it has the limitation of gener-
ating multicast traffic, which consumes bandwidth and
supports only seven hops as a maximum bridged LAN
diameter [6], thus restricting the network to scale. Practi-
cally, when increasing this to more than seven, the bridg-
ing loop problem takes down the whole the network as
happened in [7], one of the worst IT crises in history.

• Broadcasting leads to increased network traffic resulting
in collision and competition at the same link, which leads
to loss of packets, congestion and negative impact on
response time. Hence, Cisco recommends in [8], which
is a practical study, using no more than 500 devices
in one collision domain. However, this limit to the
Ethernet network means it cannot meet the needs of
recent technology, such as the Internet of Things (IoT).
In addition, the back-off algorithm used in collision
networks to solve collisions, theoretically leads to the
number of hosts being limited to 1,024 [9], which raises
the scalability problem in these networks.

• The broadcast mechanism leads to increased CPU usage
by the hosts, where practically hosts capture many
broadcast packets which are irrelevant to them [10].

• The broadcast mechanism leads to leaks in security,
such as when the ARP protocol is used for different

1063-6692 © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5144-5729

ALASADI AND AL-RAWESHIDY: SSED 105

types of attacks, such as broadcast attacks, poisoning,
spoofing and flooding, which result in the network
being completely stopped or make resources unavailable,
such as through a Denial of Service (DoS) flooding
attack. In addition, sniffing can occur, whereby broadcast
packets reach all of the hosts, even if they did not make
a request, which can lead to data being intercepted by
unauthorised hosts.

All of the above limitations become worse, if the number
of requests per second per workstation increases. In sum,
the above issues have resulted in Ethernet being subject to
lack of scalability [11], security leaks and limited reliability.

Another aspect that has motivated us regarding the proposal
is that none of the extant available solutions has efficiently
removed broadcast issues and scaled Ethernet. The techniques
and their associated disadvantages are provided next, classified
into two groups, according to the architecture of the different
types of switches they use.

A. Related Work With Legacy Switches

With this group, the proposed architectures use legacy
switch architecture in their design to solve broadcast issues.
In SEATTLE [12], the scalability is enhanced by using short
path routing and a hash table, whilst no configuration (plug
and play) is required, because it uses flat addressing. However,
it adds another software program to the switch to perform
some functions that are not supported by all types of switches,
which leads to a lack of backward compatibility. Moreover,
this switch requires an increase in the cache size when the
number of hosts increases, for it has the responsibility of
storing their additional information and also, it costs more
than a traditional switch. In EtherProxy [13], a new device is
introduced and inserted into the network, which partially stops
broadcasting, but still causes a delay in response times owing
to sniffing and analysis of each packet so as get its information.
In addition, it uses distributed multiple EtherProxy devices
that can find it difficult to synchronize the resolution tables
among them. Moreover, a failing EtherProxy device can lead
to isolation of all the switches and hosts behind it from the
operation. In contrast, SAL [14] uses a distributed database
in which the edge bridges store the host information. It does
not completely eliminate the broadcast, because it still uses it
among these edge bridges to retrieve the destination informa-
tion and if a failure occurs in them all the switches and hosts
will become isolated.

B. Related Work With the SDN Switches Concept

These proposals use SDN concept architecture in their
design to eliminate or reduce the effect of broadcasted pro-
tocols. In Portland [15], a dedicated centralised fabric man-
ager device is introduced that contains information about
the network. It adds another MAC format that is pseudo
MAC (PMAC) to encode the hosts’ position in the topology.
The PMAC packet is forwarded to the Portland switch that
contains special software for converting it back to actual MAC
(AMAC), which increases the complexity of the network and
the processing time in the switch. The other disadvantage

of this method is that it cannot work with other switches,
because the Portland switch has specific features, such as
announcements to itself periodically. In Po-Wen, et al.’s
framework [10] and the CPA framework [16] an ARP proxy
in the Ethernet network is proposed as a module inside the
SDN controller for handling ARP packets. It forwards every
broadcast ARP request to the controller plane and generates an
ARP reply message, which it sends back to the requested host.
In addition, the former framework builds the DHCP function
inside the SDN controller to deal with the DHCP broadcast
packets. In FSDM [17], an ARP proxy and DHCP relay
is introduced inside the SDN controller to handle ARP and
DHCP broadcasted packets. The DHCP relay logically links
the hosts and the ARP server, which leads to an increase in the
number of packets the controller deals with, thus increasing
the overhead on it.

For all the last three proposals (FSDM, CPA and the Po-
Wen framework), proxy techniques are used inside the SDN
controller, which has several disadvantages, such as lack of
scalability in large networks at peak load due to increased
request rates, resolution updates and mobility. This results in
greater latency and response times, which get increasingly
worse over time. In addition, there are controller overhead
issues, fault-tolerance issues and single point of failure prob-
lems. Moreover, this increases the probability of attacks and as
a consequence raises security issues, which is considered the
most important problem nowadays, as reported by the SDN
community [18].

There are effective features of the Ethernet protocol, such
as self-configuration for serving the plug and play feature,
centralised administration and the use of distributed servers,
all of which should be retained when designing SDN-LAN
architecture. However, when designing an SDN-LAN network
the aim should be to eliminate unwanted features potentially
inherited from legacy networks, such as the broadcast and
multicast features that lead to increases in the number of hosts
in one collision domain, minimise the number of protocols
that are used in one domain over the Ethernet protocol, such
as STP and increase the security as well as privacy for users.
In addition, the SDN-LAN architecture design should possess
some mandatory features so as to retain compatibility with
legacy networks’ hardware and software, such as keeping the
stander protocols code without touch, thereby allowing for
a gradual transfer from these networks to SDN. Moreover,
no new architecture hardware should be added to the network
as this would make it extremely difficult to change from the
legacy architecture to the new SDN one. Finally, so as to allow
for the continuing use of legacy switches no new software
should be added to the host and switch side, otherwise there
could be a backward compatibility problem among the hosts.

Hence, so as to satisfy all the aforementioned mandatory
features, whilst solving the above Ethernet challenges, we pro-
pose the Servers under Software-defined network architec-
tures to Eliminate Discovery messages (SSED). SSED, firstly,
introduces new mechanism for defining the relation between
servers and the control plane in SDN architectures. Secondly,
it handles broadcast and multicast messages that are generated
by the most important type of broadcast protocols in the

106 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

current Ethernet network paradigm. It eliminates all types of
broadcast and multicast messages that could be generate by
the broadcast or multicast protocols, such as ARP, DHCP,
Network Time Protocol NTP [19], multicast STP BPDUs
and multicast MLD protocol as well as any other future
broadcast and multicast protocol, through the same SSED
concept. In addition, it takes into account the peak load traffic
and overhead issues.

The main contributions of this paper can be summarised as
follows:

• It provides a practical solution that has been experimen-
tally proven to show that SSED is superior to legacy
switches.

• A new method is proposed that defines the relation
between the servers and the SDN architecture proactively
and reactively by minimising the number of rules installed
in the switches that are usually required in this kind of
relation. For example, in a legacy network each host has
its own rule in the switch, which leads to the number
of rules increasing linearly with the number of hosts
connected to that switch. However, using our model all
the hosts share just one rule to deal with the server.

• Servers are used to offer different services concurrently,
such as ARP and filter packets services in the SDN archi-
tecture, so as to decrease the overhead on the controller
as well as for security purposes.

• A large authentic testbed with 23 computers is built and
implemented to verify the superiority of the proposed
SSED mechanism.

• A plan for eliminating the broadcast mechanism with
load balance ability by using multiple servers in the same
Ethernet network is proposed, which supports scalability.

• Reducing management packets in the control and data
planes, minimizing the overhead on the controller at peak
load, protecting the controller from the effects of failed
requests and offering better performance in the Ethernet
network.

The rest for this paper is organised as follows. Firstly,
in section II we describe the current method of broadcasting
in legacy networks. In section III, description of the proposed
SSED with its design and mechanisms concepts is provided.
Then, in section IV, we introduce the implementations with
flowcharts for SSED components. The testbed experiments
are explained and the results presented in section V. Finally,
section VI contains the conclusion and proposals for future
work.

II. CURRENT SYSTEM DESCRIPTION

In this section, we describe the current broadcast Ethernet
system by mathematically analyzing the broadcast phase using
the learning switch mechanism and then explain the supported
protocol.

A. Learning Switch Mechanism

Whilst the broadcast protocols are used for different
services, such as obtaining destination MAC addresses or
assigning new IP addresses for hosts, it uses the same

Fig. 1. Steps for filling the MAC-to-Port table and broadcast mechanism
using legacy and SDN switches. (a) Legacy switch. (b) Legacy learning SDN
switch.

broadcast mechanism. Generally, there are two different
distribution phases to connect between source and destination
hosts or servers. First, there is the broadcast phase from the
source to request destination information or a service, and
second, there is unicast, which is from the destination to the
source to reply with destination information or in response to a
requested service. There are some services, such as the DHCP
containing more than two phases, for which every packet from
source to destination before using the offering IP address is
dealt with in a broadcast manner. The learning switch in SDN
architecture it has same principles as a legacy switch. For the
latter, see Fig.1(a), when the switch receives the broadcast
packet for different types of broadcasted protocols, which
is usually with the destination MAC address ‘ff:ff:ff:ff:ff:ff‘,
it saves the source MAC address in MAC-to-port table so as
to prevent broadcasting subsequently, if the switch deals with
same address again. Then it forwards the packet to all the other
ports in that switch except that which inputted the packet.
Then, the next switches use the same mechanism until the
requested packet reaches the destination host or server. In case
of the ARP service, the host that matches its IP address with
the IP address field in the broadcast packet will respond with
a unicast message that contains the IP and MAC addresses
for the source and destination host. This unicast packet is,
firstly, forwarded back to the switch that is connected to the
destination host. After that, the switch saves the port and
MAC addresses for the source and forward the packet back
in a unicast manner to the next switch that is already known,
because it has already dealt with it during the first phase and
so on. The learning switch in the SDN architecture can be
seen in Fig.1 (b) and the difference is that the MAC-to-port
table is stored in the SDN controller.

The number of packets in a learning switch network for
a broadcast phase in the control plane and data plane in the

ALASADI AND AL-RAWESHIDY: SSED 107

SDN architecture depends on the number of switches (Ns) and
the number of data links (Nl) connect to each switch. That is,
to reach the destination host or server in broadcast mechanism
the number of packets that are generated in control plane
during the broadcast phase (Ncp) is a function of the number
of switches F(Ns). The number of messages (Nm) between
each switch and the controller is equal to two: one Packet_in
message to the controller from the switch and one Packet_out
from the controller to the switch to flood the packet to all the
output ports, as in (1).

Ncp during broadcast phase = Nm ∗ Ns (1)

The number of packets that are generated in the data plane
during the broadcast phase (Ndp) is a function of the number
of switches and number of links F(Ns, NI), where one packet is
excluded from each calculation, because it represents the input
port and hence, is exempted from the flooding. Equation (2)
represents approximately the number of packets generated in
the data plane as a result of one requested broadcast packet
from the host.

Ndp during broadcast phase =
∑Ns

n=1
(NIn − 1) (2)

B. STP and the Learning Switch Mechanism

Practically, the learning switch forward mechanism needs
support protocols that let it complete its work without a loop-
network issue. Spanning-tree protocols such as STP, Rapid
Spanning Tree Protocol (RSTP) [4] are used in spanning loop
topologies to prevent a broadcast loop (loop-storm). A loop
storm can happen between two switches that have multiple
possible paths connecting them. In this case, the STP manages
the network logically by ensuring the availability of just one
possible path between two switches, which thus prevents a
loop storm. The main disadvantage of STP is that it is a
multicast protocol and to do its job it has to multicast BPDU
packets among switches every 2 seconds [4], which puts
more traffic in network and hence, causes delays in response
time. In addition, in some cases the whole network can break
down if it exceeds seven hops as the maximum bridged LAN
diameter, which thus has to be taken into account when
designing the network [7].

III. SSED DESIGN

To deal with all the factors discussed in section I and to
overcome the weaknesses in previous architectures, the SSED
flexible framework has been designed by the introduction of
Multi-To-One (MTO) collective service method and this is
introduced first. SSED is used to define the relation between
the SDN architecture and the servers proactively and reactively
as well as eliminating different types of broadcast packet. The
flexibility of SSED stems from its ability to forward packets
to destinations chosen by the controller (not by the host),
which depends on SDN controller management algorithms.
This feature gives the SDN architecture flexible behaviours
so as to be able to perform different functions, such as load
balance, management and packet forwarding. Whilst the focus
is on the ARP and DHCP broadcast messages, the same
concept will work for all other broadcast messages.

Fig. 2. MTO concept with different applications in the SDN architecture.
(a) MTO general concept. (b) MTO rule connects infinite number of In-port
to one Out-port in SDN switch. (c) MTO logically connects multiple source
nodes to one destination node using unicast concept.

A. Multi-to-One Collective Method

A new flexible collective service method that can be
deployed in an SDN network is proposed, based on the ability
to the controller to have a general view of this network. Its
name comes from its job, which is defined as:

Directing multiple nodes that request the same service to a
final node that offers the requested service using the unicast
concept, in place of the usual broadcast request concept, with
just one installed forwarding rule for each service.

Hence, it is called Multi point-To-One point or simply
Multi-to-One (MTO). As shown in Fig.2 (a), MTO is a
group communication and routing methodology, for which
a set of nodes (or points) that needs a specific service is
routed logically to a single node (or point) independently
and in a unicast manner. By so doing, a message can be
transmitted from any member in that set to the final single
node, independently. The main features of the method are that
the source nodes may not be related to each other, there is
no limitation for number of nodes between the source nodes
and the destination node and source node request service in
a unicast manner, rather than through broadcast. MTO can
be applied in different applications, for example, in a single
SDN switch MTO connects logically multiple input ports from
different sources to one output port using a single installed rule
in the switch forwarding table, as shown in Fig.2 (b). The
main advantage is that the switch can deal with N number of
hosts without affecting the size of the forwarding table inside
the switch, which leads to a decrease in its memory size and
hence, lower cost.

Fig.2 (c) shows another example for implementing MTO
in multiple switch SDN architecture. Nodes (switches)
1,2,3,6 and 7 can connect logically to node (switch) 10 using
MTO collective method with a unicast manner. The main
advantage that is added when using the SSED architecture is
that the controller can have a view of all the switches in its data
plane by using the discovery mechanisms. So, it can forward
the packet anywhere in its network, even if the message is not
addressed to that destination and does this without modifying
the packet fields and as a consequence, this supports the client
server concept.

B. SSED Mechanisms

In the current Ethernet network, the broadcast mechanism
plays an important role in performing different function, such
as looking up MAC addresses associated with destination

108 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

IP addresses by using the ARP protocol, assigning automatic
IP addresses for hosts by using the DHCP protocol, solving
duplicate IPs by using the ARP protocol and keeping time
synchronous among hosts with NTP broadcast protocol. In this
paper, the broadcast mechanism is replaced by the SSED
mechanism, which makes the SDN controller and server share
the responsibly of responding to reply messages depending on
the type of service that is requested by the host. The server’s
role is to provide the service and the SDN controller’s role is
to ensure that it provides the best path to the source host and
the resultant reduced management leads to lower overhead in
its control plane.

By applying the MTO concept inside an SDN switch, SSED
forwards packets that need the same service and come from
different input ports to one output port. As a consequence,
the number of rules that are installed in each switch to reach
a specific server equates to one, regardless of the number of
source hosts connected to that switch. In addition, the forward-
ing decision inside the SDN switch will depend on the layer 2
(packets with destination MAC equal to ‘ff:ff:ff:ff:ff:ff’) and
layer 3 protocols that are supported by the switch to distinguish
the type of service that is asked for by the host. For instance,
the arp_type field needs to be able to distinguish an ARP
packet and that the service that is needed is hence an ARP one.
Moreover, if ports 67 and 68 are inside a UDP packet this can
be used to distinguish it from a DHCP service and port 123 in
such a packet can distinguish it from an NTP protocol [20].
By applying the MTO concept outside the SDN switch, the
controller in SSED can manage flexibly the requested service
from a host to any server that offers it with just one rule in
each switch.

The SSED mechanism distributes packets according to
packet type directly to a specific server using proactive
installed rules, so that the number in data plane in the
Request phase depends on the number of switches in the
best path (Nsb) between the host and the server, while no
packets enter into the control plane during this phase. During
the Reply phase, the data plane also will depend on the Nsb,
while in the control plane there is one Packet_in message
from the server plus a number of Packet_out messages equal
to the Nsb between the server and the requesting host.
Equations (3) and (4) represent the number of packets gen-
erated in the data plane (Ndp) and control plane (Ncp),
respectively, as a result of one requested packet from the
host.

Ndp = 2 ∗ Nsb (3)

Ncp = 1 + Nsb (4)

SSED contains some other mechanisms to perform its role,
as follows.

1) Relationship Between SDN Controller and Server’s
Location: With SSED, the server’s location is flexible in
that it can be in the nearest switch to the controller as a
data centre or can connect to any switch distributed in the
same subnet. The network administrator can benefit from
this flexibility in solving network issues, such as putting the
server near to the switch that has heavy active users so as to
reduce service access time [21]. In addition, the administrator

can spread out the servers in the network to share the load
among those offering the same service. This behaviour not
only supports servers with broadcast protocols as it can also
be used for any type of server in the same subnet.

2) SSED Operation Modes: In SSED, there are two types
of behaviour that the controller uses to manage the connection
between the servers and the hosts. Firstly, in bootstrap time,
it uses the proactive mode to install rules in every switch so
they can reach the ARP and DHCP servers (DHCP and ARP
just as example; not limited to these) using the best paths
available in that particular moment. If the network contains
more than one server offering the same service, the controller
can use distributed load algorithms, such as the Round Robin
algorithm, to distribute the load amongst them. Secondly,
if the network conditions change, such as a new server is
added or removed, a switch is added or removed. Moreover,
when there is congestion at the links then the reactive mode
can be used to redistribute the load among servers or to change
paths so as to be the best for reaching the servers.

3) SSED Failure Handling Mode: Since there are different
types of failure can be happened in an SDN network, SSED
covers most of the important ones and gives solutions.

a) Handling switch failure: The route between sources
and destinations can be disrupted owing to failure in the routed
switch or in its links. The controller in SSED uses a priority
feature provided by OpenFlow protocol [22] to install two
different rules in the same switch: a high priority rule for the
normal route and a low one for failure mode, which can be
used if a failure happens in neighbouring switches. In more
detail, if a switch fails or the link to one goes down, then all the
routes going through that switch will be disrupted. However,
SSED deploys a new failure mode mechanism, whereby the
controller identifies where the failure has happened by detect-
ing the deleted port from a neighbouring switch and reporting a
change in the port status. Then the controller reactively installs
a new rule in the neighbouring switch or this switch will
employ the second priority rule, proactively installed by the
controller, in its forwarding table in order to keep the service
offered by the servers working.

b) Handling server failure: The controller, to do its man-
agement job properly, needs to create tables to use so it can
track changes in the network. SSED creates a server-switch
table in the controller containing the information about which
switches are routed to which servers. For example, switch1
is set to reach server X that offers service Y. So, if failure
happens to server X, it is easy to know the switches that direct
packets to it and hence, install a new rule in switch1 to redirect
packets to another server that also offers service Y.

There is the possibility of a server failing performing any
service in any network, not just an SDN, SSED uses an echo
message that it sends periodically to each server in the server-
information table that is stored in the controller to check if
it still alive or not and accordingly, the controller updates the
status field in this table as required. SSED, after it detects the
failed server, will install new rules in the affected switches to
route to another server that offers same service, if there is one.
Otherwise, the controller forwards it to the default gateway so
as to obtain the same service from servers in another network.

ALASADI AND AL-RAWESHIDY: SSED 109

c) Handling controller failure: There are several previ-
ously devised mechanisms that SSED can use to overcome this
issue, such as back up with a different SDN controller [23]
and using or changing the switches to standalone mode so as
to take the responsibility for dealing with packets without an
external controller [24].

4) Handling Discovery (Join, Leave and Mobility): One of
the most powerful aspects of SDN is its ability to discover
its controlled network components in relation to cases of
join, leave (normally or in a failure case) or mobility. SSED
performs discovery with high accuracy and speed as well
as dynamically detecting changes. There are two types of
discovery in SSED a switch discovery mechanism and a
host (could be a server too) discovery mechanism.

a) Switch discovery: SSED generates a switch-
information table in the initial setup of the network and
puts it in the SDN controller’s memory. When a new SDN
switch connects with the controller, there is an exchange of
negotiate messages between the two, the information from
which being used by the controller to register the switch
in the switch-information table. Then, the controller starts
sending discovery packets using the Link Layer Discovery
Protocol (LLDP) [25] to discover the topology (how these
switches are connected together) and registers that relation
in the same switch-information table as pairs in the hash
table. The important difference with SSED from other
platforms is that it stops sending LLDP, because of the fact
that any port or switch added to the SDN network must be
reported to the controller [22]. This use of LLDP leads to a
decrease in the excessive number of multicast packets that
are usually generated [26]. In addition, if a switch leaves,
then SSED performs the same procedure as for failure mode,
as discussed above and then, removes the switch from the
switch-information table.

b) Host discovery: SSED creates host-passport table
when first establishing the network and puts it in the SDN
controller’s memory. If a new host joins the network, then
there are two standard possible ways for setting up its IP,
manually or dynamically, using the DHCP service. In both
cases, static IP or dynamic IP, the host firstly must send an
ARP probe packet, which is an ARP request packet with the
sender IP address equal to all zeroes and the destination IP
address equal to checked IP [27]. ARP probes are sent by the
host in order to detect if there is a conflict IP with other hosts
before commencing to use that IP. Then, the switch forwards
that request packet to the SSED controller, which will register
in the host-passport table all the requesting host’s information,
including the IP and MAC addresses provided by the host
as well as the port number and switch ID resting with the
switch. After this, the controller will forward the host’s IP and
MAC information to all ARP servers in the local network.
This forwarding to all servers is an important step to load
balancing among ARP servers that SSED is able to deploy.
It is important to note that the host sends another type of
packet, an ‘ARP Announcement’, which is an ARP request
packet with the sender’s IP address equal to the destina-
tion one, if no ARP conflicting reply message has been
received as a result of the generated ARP probe packet [27].

An ARP Announcement is sent by the host to tell the other
hosts that it is commencing to use the announced IP and the
controller uses that packet to update the host-passport table
with the valid IP address.

The host sends an ARP probe and announcement packet
each time its IP changes. If the host leaves the network for
any reason, such as failure or normal leaving and its departure
is of no consequence, then no action is taken. However, SSED
will wait for a set time of no activity for that host and will
then delete it from the host-passport table, sending update
messages to all the ARP servers instructing them to delete
it too. The host-passport table contains a field with the name
Last Activity Time (LAT) to record the time of the last activity
by the host. Otherwise, if the host moves from one switch to
another, it sends an announcement message to the controller
that leads to the updating of the field switch ID just in host-
passport table and the host can still use the same IP.

c) Server discovery: The controller, when the network
is first established, creates a server-information table and any
server joining the network sends an announcement message
using the UDP protocol to define itself to the controller, which
then inserts the server information in the server-information
table. The server-information table is a hash table containing
the MAC address, IP address (usually static IP), join date,
leave date, status, pool range (used for DHCP), type of
service, port number and switch ID fields. If a server leaves
by planned leave, as stated in the leave date field in the
server-information table, then prior to this at a set time, the
controller will withdraw responsibility from that server and
give it to another offering same service, such as ARP, DHCP,
and NTP among others. For the controller to do this, the same
procedure in proactive mode that we discussed above to install
rules in selected switches and forwarding packets to the new
server is used. However, if any server leaves unplanned, such
as in a failure situation, the controller, firstly, will remove
it from the server-information table and will make another
server available to provide its service (see subsection B.3.b
in section III above). Finally, in the case of a move of a
server from one switch to another, such as from one VM to
another, the server will send an announcement message using
the UDP protocol to define its new position and which switch
it connects with. Then, the controller updates the switch ID
field (which records the switch ID that is connected to that
server) in the server-information table and server-switch table.
The controller then updates the affected switches and instructs
them to forward packets to the server’s new location.

5) SSED Without STP: As SSED stops all broadcast and
multicast packets as well as taking responsibility for managing
the forwarding of packets from sources to destinations, there
is no possibility of a broadcast or multicast storm occurring in
a loop network topology. Experimentally we stop STP from
working in the SSED architecture in a loop network topology
and we check the network to see that it is free from any storm.
In contrast, stopping STP is impossible with legacy switches
in a loop network topology.

6) Handling Other Issues Related to Broadcast: Broadcast
packets can be used for different purposes even though they
have not been actually designed for them, such as an attack on

110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

other components of network (controller, servers, hosts etc.)
that lead to several security issues. In addition, broadcast
packets can be used to solve duplicate IPs among hosts in same
network, but these lead to high consumption of bandwidth and
congestion at the links.

a) Handling security issues: Security matters have yet
to be completely solved in legacy networks, as well as in
SDN ones, as has been widely reported [18]. SSED handles
security issues by dealing with each leak individually. Firstly,
it does not allow any broadcast packet to reach the controller,
thereby stopping any flood of ARP request or reply that is
often used by hackers to attack it, stop its work or spoil its
tables. In addition, SSED stops any broadcast packets among
hosts, because all the packets it forwards are to a specific
server depending on the service requested. This avoids ARP
cache poisoning inside a host as can happen during a man-
in-middle attack, one of the most common forms. Moreover,
it results in the avoidance an ARP flood attack to a victim
host that could stop it functioning or consume its resources.
Furthermore, there is the absence of flooding packets that
consume shared resources in network. SSED also does not
allow any ARP reply packet to transfer through the network
components except that containing in its IP field the IP for the
ARP server as the source server. The IP server is completely
transparent to users, which leads to increased security. Taking
all these factors into account, these lead to reduced security
overhead (high overhead generated as a result of checking each
packet) on the controller, because the servers work as filters
to it and just pass tested active packets. That is, the server
will check the validation of a request then reply, whilst the
controller simply undertakes management of it. For example,
if host1 is an attacker and sends one or multiple ARP requests
to attack the SDN controller, the ARP server will detect it
is an invalid request by using a specific algorithm, and the
server will not forward this request to the controller. As a
consequence, there is reduced probability of an attack on the
controller and reduced overhead in the control plane.

b) Handling duplicate IPs: Duplicate IPs occur when two
clients on the same link use the same IP address concurrently,
as a result, problems happen for one or both clients [27] such
as over consumption of resources, flood storms and security
issues. To solve this issue, usually in legacy networks the
host, before using the IP address assigned to it by the DHCP
server, broadcasts ARP Probe packets which is an ARP request
with the ’sender IP address’ field set to all zeroes and the
’destination IP address ‘set to the IP address being probed [27].
The purpose of this is to check whether there is the same IP
address available in the network so as to avoid duplicate IPs.
To this end, SSED stops any such broadcast by immediately
dropping the packet and the duplication problem is solved
by a specific code in the controller. This is a major feature
of the controller’s management, especially when the network
becomes big with many connected hosts. The controller checks
the IP field in all the host-passport table rows in case of a
new host joining the network or changing its IP address as a
result of it awakening from sleep mode, changing the network
interface from inactive to active mode and for other cases of
change in connectivity [27]. Then, if there is duplication of

Fig. 3. A flowchart of the SSED bootstrap, proactive and reactive
components.

IPs between at least two hosts, the controller sends an ARP
conflicting reply message to at least one of the duplicated
hosts, the choice depending on the registered times for that IP
and the newer registered hosts will be chosen to change IP(s).
Specifically, the conflict message notifies the user through a
screen message to change the IP manually or to activate the
sending of a DHCP discovery message to the DHCP server so
as to obtain a new IP.

c) Handling head-of-line blocking (HOL) phenomena:
SSED deals with the head-of-line blocking (HOL) phenomena,
which occurs owing to other packets are blocked when the
packet at the front of the FIFO queue cannot move. The
probability of its occurrence increases with the broadcast
mechanism as more packets are generated on the output ports
and so more compete to use them. SSED solves this, whereby
the controller in SSED has a whole view on its network and
installs different rules/paths to the ARP server in each switch
with different priority levels. Hence, the first packet in FIFO
is no longer waiting if the output port busy as the packet can
go through different ports to reach its destination. In addition,
SSED by eliminating the broadcast mechanism reduces the
probability of HOL happening.

IV. SSED IMPLEMENTATION

We show in detail how SSED implementation handles
ARP and DHCP broadcast messages by using a server-based
concept with that of MTO. We extend the RYU controller by
adding the three SSED components as follows.

A. SSED Bootstrap, Proactive and Reactive Components

SSED combines proactive and reactive mechanisms, as can
be seen in Fig. 3. Firstly, SSED-bootstrap starts with estab-
lishing the network by joining the SSED SDN controller,
which directly starts to discover the network under its control.
SSED establishes a switch-information table that contains a
hash table (e.g. Source switch: [Destination switch, Source
port, Destination port and Cost]), which will start being filled
when a new switch joins the network. The SSED uses LLDP
to discover the network and continues filling the switch-
information table. The discovery of the switches process will

ALASADI AND AL-RAWESHIDY: SSED 111

be continued until a specific time as configured by the admin-
istrator so as to let all the available switches join the network.
In addition, SSED creates a host-passport table that contains
host discovery information and a server-information table that
contains information about each server joining the network.
After finishing the bootstrap time, both the switch-information
table and the server-information table will be used in the
SSED proactive-mode to find the best path between each SDN
switch and the ARP and DHCP servers by using Dijkstra’s
algorithm, after some development. SSED proactively installs
one forwarding rule for each server in each switch so as to let
ARP and DHCP broadcast messages be forwarded directly to
their respective servers without going through the controller.
This mode uses the MTO concept as SSED completely ignores
where the broadcast packets are coming from (i.e. from which
sources) and just focuses on the output port (the rule is: do not
care about input ports and go to specific output port). MTO
will make one forwarding broadcast rule work with an infinite
number of hosts to reach the ARP and DHCP servers that
has no effect on switch memory. Proactive mode is repeated
every threshold time to deal with any changes in the switches
topology, whilst concurrently the ARP and DHCP components
start working in the multi-thread concept. If a new switch joins
the network, the SSED reactive mode adds it to the switch-
information table and starts to discover how it connects to
other switches.

B. DHCP Component

There are two ways to assign an IP address to a host,
statically by using manual configuration or dynamically by
using the DHCP protocol. With a dynamic IP address, the host
sends broadcasted DHCPDISCOVER message to request an
address from the DHCP server, which has pool of them to
offer. The message will be entered into the nearest SDN
switch, which connects to that host and the switch uses the
MTO rule, which has already been installed in proactive mode
in the bootstrap time, in all the switches along path to the
DHCP server so as to forward that message. The DHCP server
answers with a DHCPOFFER message, which is a unicast
one that contains the host’s MAC address in the target MAC
address field in an Ethernet packet and this server’s MAC
address in the source MAC address field. This DHCPOFFER
contains an offer of an IP from an IP pool in the DHCP
server. The message will go back to the nearest connected
SDN switch, which does not have a rule for forwarding and
so it sends the message using the OpenFlow protocol as
Packet-in to the SSED controller. SSED uses just one packet-
in message to complete all stages of the requested service
in order to eliminate overhead on the controller, especially
during peak load. The controller catches the packet-in message
and decapsulates it to get the DHCP information, subsequently
checking the type of DHCP packet. Then, the controller checks
whether it is a DHCPOFFER packet and the source MAC
address to see that it belongs to one of the DHCP servers in
the server-information table, for security reasons.

If NO, the controller will drop the packet, because it has
come from an unauthorised source, if YES, the controller will

Fig. 4. Flowchart of the SSED DHCP component for handling DHCP
messages architecture.

look inside the host-passport table to update the existent host
record and reset the expire-host-timer field that is used to
check whether the host is still alive. SSED uses the hash func-
tion to perform lookup in the host-passport table and considers
the IP/MAC field in received packets as the key to finding the
host’s record. Following this, SSED controller finds the best
path back to the host that has made the DHCPDISCOVER,
installs rules to prevent next time Packet-in to the controller
and then, forwards DHCPOFFER to the host. The host will
generate a DHCPREQUEST message, which is also a broad-
cast message and sends it to the nearest switch that then
forwards it to the server without notifying the controller with
a packet-in, as the MTO rule already exists in the switch. The
DHCP server will receive a DHCPREQUEST and then sends
back a DHCPACK as a final agreement that allows the host
to use the requested IP address. The DHCPACK will be
forwarded directly to the host that has made the request
without notifying the controller as there is a rule already
installed in that switch from the previous DHCPOFFER
phase.

There are other types of DHCP messages that transfer
between the DHCP server and host without send notification to
controller in the SSED architecture. A DHCPNACK message
is a unicast from the server to the host, letting it know that the
requested IP address is not allowed owing to an error, such
as it now being used by another host or it is no longer valid.
In addition, there is DHCPRELEASE, which is broadcast mes-
sage sent by the host to the DHCP server to let the server know
it will log out from network. Moreover, DHCPDECLINE
is a broadcast message from host to server to notify it
there is an error in the configuration parameters. In excep-
tional cases, if DHCPDISCOVER, DHCPNACK, DHCPACK,
DHCPREQUEST, DHCPDECLINE and DHCPRELEASE are
sent as Packet-in to the SSED controller, this means that the
switch sending the messages to the controller has just joined
the network and so, the MTO rule has not yet been installed.
Only a DHCPOFFER message should be sent in the Packet-
in to the controller and just for the first time, because after
that the server knows the route to the requesting host, unless
there has been a change in the network topology. A detailed
flowchart of the DHCP component in our model is shown
in Fig. 4.

112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 5. Flowchart for handling ARP messages.

C. ARP Component
The implemented ARP component contains two parts.

Firstly, there is the ARP host discovery, which is described
in detail in section III (host discovery mechanism). Secondly,
the ARP service part refers to when a host needs to connect
to other host it first having to get its MAC address so as to
be able to send messages over the Ethernet. It sends an ARP
broadcast REQUEST message to the nearest connected switch,
which already proactively has had the MTO rule installed
in it to forward any broadcast ARP REQUEST to the ARP
server. Consequently, there is just one rule to forward messages
from infinite hosts to the ARP server following a unicast
concept. The request is forwarded along the switches until
it reaches the ARP server. The server then decapsulates the
message and sends an ARP REPLY message with the MAC
address for the destination host in the source MAC field,
if it finds it in the host passport table, if does not then the
server drops the packet. It is very important to let the server
work as a filter just for valid requests so as to minimise the
overhead on the controller. The switch that is connected to
the ARP server will encapsulate ARP REPLY in a Packet-in
message and sends it to the controller just the first time.
The ARP component in SSED will be triggered by the ARP
packet and decapsulates it to find the type of ARP message
and the destination host for it. If the message is a broadcast
request message with a zero in the IP source field or the IP
source is equal to the IP destination, then SSED deals with
the packet as an advertisement message. If not, this means
there is new switch joining the network and hence, the MTO
rule has not yet been installed in it. So, SSED finds the best
path between that switch and the ARP server and installs the
MTO rule. However, if the message is ARP REPLY, then
SSED checks the source field for that message and if it is not
from the ARP server it then drops the message for security
reasons. Otherwise, it looks up the host-passport table to
update the host information and resets the expire timer, whilst
also calculating the best path back from the ARP server to
the host that has made the request. A detailed flowchart of the
ARP component in our proposed algorithm is shown in Fig. 5.

V. TESTBED RESULTS

In this section, comprehensive testbed results are provided to
demonstrate the performance of our SSED model. The testbed

Fig. 6. SDN testbed environment with 23 computers.

was built using 23 PCs, as can be seen in Fig. 6, twenty
of which have the specifications of core 2 Quad, 2.66 GHz,
2.9 GiB memory and an Ubuntu 14.04 operation system. These
can be used either as SDN switches by activating an open
virtual switch (OVS) or as a host performing role of a single
host or multiple-virtual hosts, depending on the experimental
scenario.

Of the remaining three PCs, one works as a SDN controller,
with the specifications of core i7, 3.40 GHz, 3.8 GiB memory
and an Ubuntu 14.04 operation system. SSED uses a RYU
SDN controller as the network operating system (NOS), which
was developed by Nippon Telegraph and Telephone (NTT) as
an open source operating system [28] that provides tools and
libraries for design SDN components, which was written using
the Python language for fast, easy and community supportive
development. The SSED components are implemented under
RYU using its expansive library. The final two computers are
Samsung laptops, one of which works as the ARP server and
the other as the DHCP server, both having the specifications
of core i7, 2.20 GHz, 7.8 GiB memory and an Ubuntu
14.04 operating system. The SDN controller and OVS switches
use the OpenFlow protocol [22]. The experiments use one
of two types of topology, linear or hybrid, depending on
the purpose that they are designed to perform. Specifically,
the linear topology is used in experiments that check the
response time, because the effect element in this is the distance
between the source and the destination, which is defined as the
number of hops between them.

The hybrid topology (it is used in real networks) is used
in the experiments that are designed to evaluate the network
traffic ratio (see Fig. 7), because it is affected by the path that
is chosen to reach the destination, which definitely is impacted
upon by the mechanism that is used to forward packets.

To prove the efficient performance of SSED, several exper-
imental scenarios were designed as follows. Note that the
comparison involves the legacy switch scheme and our pro-
posed scheme. There are two parts in this section, with the
first dealing with traffic, whilst the second pertains response
time.

The first part contains four experiments and concerns traffic
in both the control and data planes. Ten PCs are used as OVS
switches with a hybrid topology, as shown in Fig.7.

• The first experiment is performed to measure packet
traffic in the control plane during 120-seconds bootstrap
time and idle network behaviour using our SSED model
and the legacy learning switch model.

ALASADI AND AL-RAWESHIDY: SSED 113

Fig. 7. 1-10 switches (S) in hybrid topology, the red circles with an (X)
connect to the host and the green circles with a (-) connect to the server.

• The second experiment is designed to measure the ratio
of the network traffic to generation traffic, in both the
control and data planes when generating 1 ARP of
requested traffic under a traditional flooding scheme and
our proposed scheme.

• The third experiment considers resource consumption for
uncompleted requests, by calculating the ratio of network
traffic to the generated failed requests in the control and
data planes for both the SSED proposed scheme and the
legacy scheme.

• The fourth experiment is performed to measure and
compare the controller’s CPU usage under the legacy
broadcast scheme and SSED.

In second part, three experiments are performed to measure
the response, latency and discovery time with 10 PCs being
used as OVS switches in a linear topology.

• The fifth experiment is performed to evaluate the time
for discovering host information on the server side and
the latency in the controller when dealing with discovery
packets. This is achieved by generating an ARP discovery
packet from the host side and recording the receiving time
for that packet on the server and controller side.

• The sixth experiment is run to measure the response time
for receiving a service that is requested by a host.

• The seventh experiment is performed by increasing the
number of hosts’ requests per second on the SDN net-
work. The aim is to evaluate the performance of the SSED
during generated light, medium, heavy load from users
working concurrently (how does increasing the number
of requests affect the response time) on this network.
It differs than previous experiment, in that it involves
measuring how the response time is affected by sharing
the network with multiple users. Then, the performance
of SSED is compared with that for legacy schemes.

A. Bootstrap Traffic: SSED and Legacy Scheme Comparison

In this experiment, we first fix number of switches in testbed
to 10 and use the hybrid topology in Fig. 7. In addition, no
hosts are connected to the network so as to avoid traffic from
them, with the focus thus being on traffic that is generated
to establish the main parts of network, including the SDN
switches and controllers. There are some processes start auto-
matically during the bootstrap process without any external
input (e.g. hosts), for example, the SSED switch discovery
process and the legacy switch learning process. Thus, during
the bootstrap time we can calculate how many packets are
in and out from the control plane to establish the network
before any host is connected to it. We run the experiment for

Fig. 8. Network traffic with SSED compared to the legacy learning switch
mechanism during the bootstrap and idle network condition.

120 seconds, which is approximately enough bootstrap time
for the discovery of 10 switches and the Wireshark tool is used
to measure network traffic in the control plane. Gradually, over
time, as can be seen in Fig. 8, the number of Packet_in and
Packet_out in the control plane by using SSED is increased
to reach 8,022 packets.

That number of packets is being generated because SSED
during the bootstrap mode generates LLDP packets for man-
agement and switch discovery purposes. In addition, it drops
all legacy management packets, such as a multicast listener
report message in the MLD protocol, which is multicast by an
IP node to report their interface status to their neighbours [5]
and a multicast STP, which is used to build loop-free topology
in a legacy network [4]. Regarding the traffic from using the
legacy learning switch, this is significantly greater, rising to
54 653 packets, because it relies on flooding for discovery and
on management services using MLD and STP. That is, when
the time reaches 120 seconds, SSED only makes 14.67 % of
the overhead (number of packets) on the control plane that the
legacy learning switch deploys for discovery and management
services in the bootstrap period and when the network is
idle. The idle network statistic is beneficial for evaluating
the standard calculation that can help administrators find
the threshold overhead on the control plane, thus potentially
allowing for the determination of the hardware and software
specifications needed for that plane.

B. Ratio of Network Traffic to Generated Traffic:
SSED and Legacy Scheme Comparison

In this experiment, we use hybrid topology and increase
the number of switches from 1 to 10 switches. Only one ARP
request message is generated from an edge host to the edge
ARP server, as can be seen in Fig. 7, where the red circle with
an (X) is the server and the green one with a (-) is the host.
Then, by using the Wireshark tool the ratio of network traffic
to generation traffic is calculated in both the control and data
planes under the legacy flooding scheme and our proposed
scheme. The main idea is send one ARP request packet and
to measure how many packets will be generated in these two
planes to get an ARP reply to the requesting host.

Regarding the control plane statistics, with an increase in
the number of switches in the network the number of control
message in control plane is approximately still the same or just
slightly increases when using the SSED proposed model,

114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 9. Reduce network traffic in the control plane: comparison between
SSED and the legacy learning switch mechanism.

Fig. 10. Network traffic in the data plane: comparison between SSED and
the legacy learning switch mechanism.

because the ARP reply process needs just one Packet_in as
the control message from the server to the controller plus a
number of Packet_out messages equal to the number of hops
for the best path between the server and the requesting host.
For example, in Fig.9 it can be seen that no matter whether
the network has 6, 7 and 8 switches, the number of control
messages remains the same, i.e. five control messages, because
there is one Packet_in to the controller from the server and
four Packet_out to install the forwarding rule in the switches
along the best path from the server to the host.

With hybrid topology, sometimes the distance stays
unchanged between the source (host) and the destina-
tion (server) when increasing the number of switches in the
network, because there are a number of possible paths to
connect these two entities, which is different to linear topology
with only one possible path. On the other hand, for the legacy
learning switch the network traffic increases significantly when
the number of switches in the network becomes greater,
because of the flooding of ARP broadcast packets to reach
every switches in the network even though some are not on
the path for reaching the destination.

The data plane statistics in Fig. 10, show that by gen-
erating one ARP request from an edge host with hybrid
topology SSED keeps or uniformly increases (+4 packets per
new switch) the ratio of packets to handle sending ARP reply
packets by the ARP server to the host that has made the
request (keeping or increasing the ratio depends on number
of links that is needed to connect the host with the server).
In contrast, the legacy learning switch increases the ratio
practically linearly, because it floods the packet to every node
in the network.

Fig. 11. Effect of the retransmission of traffic in the control plane: comparison
between SSED and the legacy learning switch mechanism.

SSED needs just 44.44 % of the number of packets needed
by the legacy learning switch to deal with 10 switches in order
to send back an ARP reply to the sender because it benefits
from the proactive installed rule in the switches using the MTO
method to reach quickly the ARP server. In addition, it uses
the Dijkstra algorithm to find the best path between the server
and the host who has made the request.

C. Effect of Retransmission Traffic (Resources Consumption)
on the Control and Data Planes: Comparison
Between SSED and Legacy Switches

To evaluate the effect of retransmitting traffic (that
normally occurs in a daily network) with SSED, experiments
for 10 hosts connected to an edge switch with 10 fixed SDN
switches in a hybrid topology network is utilised. The hosts
generate ARP faulty requests in order to obtain the goal of
evaluating the effect of retransmitting traffic on resources
consumption. A failed ARP request refers to not being able
to find a requested destination’s MAC address in the ARP
hash table in the ARP server, which can be performed by
sending requests to an unreached random destination. As a
consequence of the failed request, the source starts retransmis-
sion of the ARP request multiple times as this is the normal
behaviour of the Transmission Control Protocol (TCP) [29].
The main reason for retransmitting is that the source that made
the request has not received a reply within a specific time
period, which could be due to several causes, such as network
congestion, interface error or buffer overflow. Other reasons
for this are that the ARP server has not yet registered the
destination host in its ARP hash table or the server has blocked
its address owing to a security issue. Consequently, any ARP
request asking for that a host’s MAC address will not get a
reply and this results in the retransmission of the same request
from the source. To make the experiment replicate daily used
network traffic as closely as possible, different ARP request
rates are generated from the 10 hosts at the same time.

Regarding control plane evaluation, Fig. 11 shows that with
an increasing number of requests there is absolutely no effect
on it when using SSED, because it proactively gives the
responsibility to answer requests to the server that uses data
plane for the purpose. The server works as a filter for reducing
the number of requested packets and just passes the valid
ones to the controller. This results in reduced overhead on

ALASADI AND AL-RAWESHIDY: SSED 115

Fig. 12. Resource consumption during concurrently failed requests in the data
plane: comparison between SSED and the legacy learning switch mechanism.

Fig. 13. Average CPU usage in the controller for SSED and the legacy
learning switch mechanism.

the controller and eliminates the possibility of an attack on
the controller. In contrast, the ratio of traffic using the legacy
learning switch increases linearly to reach 24 000 packets of
a Packet_in and Packet_out form for 4,000 requests in the
control plane, because it floods every retransmitted request to
everywhere in the network.

In relation to the data plane evaluation (see Fig. 12),
SSED generates 20% of the legacy learning switch traffic.
That is, it provides a 80% reduction in consumption of network
resources in the data plane when the number of failed requests
reaches 4,000 with all hosts working concurrently.

D. CPU Usage in the Controller (SSED Scalability)

In this experiment, a hybrid topology with 10 switches is
connected and N number of virtual hosts are created and
connected to the network. A fixed request number of a heavy
user generation rate of 8 ARP requests per second is generated
per virtual host with random IP addresses for sources and
destinations. For this, the system monitor CPU tool in Linux
is deployed to monitor the CPU usage, the measurement of
which before any model being applied is 2.9% of core i7 CPU
with 3.40 GHz, while it is 3.36% for SSED and 4.96 % for
the legacy learning switch for the bootstrap communication
management network.

As can be seen from Fig. 13, with a growth in the number
of virtual hosts and a fixed rate of eight requests per second
per host, the average percentage of CPU usage under SSED
increases slightly from 6.31% to 12.5% for 1 to 500 virtual
hosts (at peak load), respectively. It can clearly be seen that
it reaches approximately a stable state after the connection
of 50 virtual hosts concurrently owing to SSED’s balanced
multithread algorithm. This percentage of CPU usage is for

Fig. 14. Time spent on the host discovery process using SSED.

handling ARP replies by finding the best path and installing
rules in switches from the server to the host. However, when
using the legacy learning switch the increase in (N) leads to an
increase CPU usage from 6.42 to 43.12 for 1 to 500 (peak load
host number [8]) virtual hosts, respectively. This is because
it has to handle many Packets-in and Packets-out per each
ARP request owing to the flooding scheme as well as the
complexity of the algorithm for finding the shortest path to the
source. Next, the results of the second part of the experiments
using the same constructed testbed, but with linear topology
are reported regarding the three experiments relating time.

E. SSED Host Discovery Time and Controller Latency

In this experiment, with the SSED model, linear topology
is used with an increased number of switches from 1 to 10
and one host connects to one edge switch, while the ARP
server connects to another. The host generates an ARP dis-
covery packet, as explained in section III, which is entered
as Packet_in to the controller, which then forwards this to
the server. The latency time for the controller to complete
the discovery packet forwarding process is evaluated and the
results can be seen in Fig. 14. After that, the discovery packet
will be received by the ARP server, which adds or updates
the record in host passport table. The time that the discovery
packet needs to reach the server from the requesting host is
evaluated.

It can be seen from Fig. 14 that the latency value and
discovery host time have negligible impact on scalability, i.e.
when the number of switches is increased, with the average
values for these being 5.71 ms and 6.21 ms, respectively. This
result is because SSED uses the controller as a link between
the host and the server for the host discovery service, so the
number of hops between the host and the sever is immaterial.
In addition, the time that the host discovery packet spends at
links and the ARP server is calculated by subtracting the total
discovery time from the controller latency time, the average
being 0.49 ms. This means that the discovery packet needs just
8.58 % of the time spent in the controller to pass through the
links and server, which proves that the SDN controller owing
to its complex nature (performing multiple jobs at the same
time) spends more time compared with the distributed services
that SSED uses to deal with broadcasted packets.

F. Response Time

In this testbed experiment, a linear topology with an increase
in the number of switches from 1 to 10 and generating one

116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 1, FEBRUARY 2018

Fig. 15. ARP response time, comparing the proposed SSED model with the
legacy learning switch mechanism

fixed ARP request using the ARPing tool from the host
connected to an edge switch requests the MAC address for
a destination host that connects to the network randomly.
From Fig. 15, it is clear that with an increase in the number
of switches, the ARP response time using SSED increases
gradually at average of 0.19 ms for each added switch to the
network.

This rate is as a consequence of sending a Packet_out
message from the controller to the added switch to install the
matching rule in order to match and forward the ARP reply
from the ARP server to the host. By contrast, when using the
legacy learning switch the growth rate is 3.29 ms on average,
when adding a new switch to the path between source and
destination hosts. This is because each added switch deals in
the broadcast phase with one Packet_in by sending it to the
controller as an ARP request and one Packet_out is sent by
the controller to instruct the switch to flood that packet to all
neighbouring nodes. After that, to handle the ARP reply on the
way back from the destination host, the added switch sends
one Packet_in to the controller to look up in the MAC-to-port
table the source node that has made the request, which in
turn, sends one Packet_out in the form of an ARP reply to the
requesting host. As a consequence, as can be seen in Fig. 15,
the response time practically linearly increases in proportion
to the network switch scalability.

Regarding the scalability in relation to this experiment,
by using the broadcast mechanism the ARP packet during
the Request and Reply phases passing 10 switches requires
35.57 ms. Whilst SSED with that response time (i.e. 35.57 ms)
can pass approximately 161 switches (whereas, as can be seen
in Fig. 15, the response time for one switch is 4.95 ms and each
added switch needs 0.19 ms). As a consequence, SSED scales
the network approximately 1510% more than the broadcast
mechanism.

G. SSED Performance During Different Load

The performance and its stability for the proposed model
is evaluated by generating light, medium, heavy and over-
loaded traffic from 10 concurrently working hosts. For this
experiment, 10 fixed switches are connected with a linear
topology. There are 10 hosts, each being connected to one
SDN switch and the ARP server is connected to the fifth
switch. The different rates of traffic sent concurrently from
each host, are 1–4 requests per second (RPS) as light traffic
users, 5-6 RPS as medium traffic users, 7-8 RPS heavy traffic

Fig. 16. The performance measures according to average ARP response time
with different request rates from 10 fixed hosts connected to 10 switches.

users (at peak load [13]) and 10–12 RPS as overloaded traffic
users. Each source host generates an ARP request for a MAC
address for random destinations, each being designed to be
unique in relation to all other requests from the same host so
as to guarantee that they are not affected in any way by others
requests.

As can be seen Fig. 16, with a light load traffic of 40 RPS
as the total number of requests from 10 hosts working at the
same time, the proposed model offers a better average response
time than the legacy learning switch with the values being
16.34 ms and 23.86 ms, respectively. For a medium load with
6 RPS from each host, SSED also offers a better response
time, the figures this time being 20.806 ms and 24.481 ms,
respectively.

The same trend occurs for the heavy and overloaded scenar-
ios, lead to the conclusion that SSED is efficient in terms of
its performance as it well dealing effectively with increasing
traffic rates. This is mainly because it handles ARP requests
with fewer Packet_in and Packet_out than the legacy learning
switch, which means less traffic is transmitted across the
network and as a consequence, there is less competition as
well as congestion at links, which in turn leads to lower
response times. However, the average response time using the
legacy learning switch increases with an increasing number
requests, whereby each request entered to the switch will
generate 1 Packet_in and 1 Packet_out until reaching the
destination through all switches using the broadcast mecha-
nism. Subsequently, each reply generates another 1 Packet_in
and 1 Packet_out, if the switch was chosen as a hop within
the shortest return path, otherwise (i.e if the switch is not
chosen within the return path) the switch deals with just the
1 Packet_in and 1 Packet_out that were generated during the
broadcast phase. As can be seen from Fig.16, both approaches
approximately meet at 8 RPS and there is 1 ms difference
between them in 10–12 RPS, for two reasons. Firstly, there
is the use of linear topology, which reduces the detrimental
effect of the broadcast mechanism and hence, diminishes the
response time when using that mechanism. Secondly, SSED,
by using the ARP server at the middle switch, leads to more
competition on that switch when increasing the requests and
hence, increases the response time.

VI. CONCLUSION AND FUTURE WORK

In this paper, firstly, the Ethernet network with its current
switch features and the state of art architectures aimed at
enhancing and overcoming its limitations have been discussed,

ALASADI AND AL-RAWESHIDY: SSED 117

Most of these drawbacks occur owing to the nature of usage
of broadcast packets. To address these, the SSED architecture,
design and implementation using several constructed testbed
experiments with 23 computers to handle broadcasting packets
was introduced, in particular, with the purpose of overcoming
the side effects of broadcasting. The results have shown that
the proposed model can eliminate broadcast packets from
the network, thereby providing better performance. For future
work, the aim is to test SSED for all well-known broadcast
protocols and services. Finally, the plan is to apply it to load
balance among more than one server in a data centre network.

REFERENCES

[1] P. T. Congdon, P. Mohapatra, M. Farrens, and V. Akella, “Simultane-
ously reducing latency and power consumption in OpenFlow switches,”
IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 1007–1020, Jun. 2014.

[2] An Ethernet Address Resolution Protocol, document RFC 826,
Nov. 1982.

[3] Dynamic Host Configuration Protocol, document RFC 2131, Mar. 1997.
[4] IEEE Standard for Local and Metropolitan Area Networks: Media

Access Control (MAC) Bridges, IEEE Standard 802.1D, 2004.
[5] Multicast Listener Discovery Version 2 (MLDv2) for IPv6, document

RFC 3810, Jun. 2004.
[6] IEEE standards for Local and Metropolitan Area Networks: Media

Access Control (MAC) Bridges, IEEE Standard 802.1D, 1990.
[7] S. Berinato, “All systems down,” CIO Mag., Apr. 2003. [Online].

Available: https://www.cio.com.au/article/65115/all_systems_down/
[8] J. Menga, “VLAN operations,” in CCNP Practical Studies: Switching,

1st ed. Indianapolis, IN, USA: Cisco Press, 2003, ch. 2, sec. 3, p. 150.
[9] P. Dordal, “Ethernet,” in An Introduction to Computer Networks (1.8.22).

Chicago, IL, USA: Loyola Univ. Press, 2016, ch. 2, sec 2, p. 48.
[10] P.-W. Chi, Y.-C. Huang, J.-W. Guo, and C.-L. Lei, “Give me a broadcast-

free network,” in Proc. IEEE Global Commun. Conf., Austin, TX, USA,
Dec. 2014, pp. 1968–1973.

[11] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates
in software-defined networks,” IEEE/ACM Trans. Netw., vol. 24, no. 6,
pp. 3412–3425, Dec. 2016.

[12] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A scalable
Ethernet architecture for large enterprises,” in Proc. ACM SIGCOMM,
Seattle, WA, USA, Aug. 2008, pp. 3–14.

[13] K. Elmeleegy and A. Cox, “EtherProxy: Scaling Ethernet by suppressing
broadcast traffic,” in Proc. IEEE INFOCOM, Rio de Janeiro, Brazil,
Apr. 2009, pp. 1584–1592.

[14] A. Shpiner, I. Keslassy, C. Arad, T. Mizrahi, and Y. Revah, “SAL:
Scaling data centers using smart address learning,” in Proc. 10th Int.
Conf. Netw. Service Manage. (CNSM) Workshop, Rio de Janeiro, Brazil,
Nov. 2014, pp. 248–253.

[15] R. N. Mysore et al., “PortLand: A scalable fault-tolerant layer 2 data
center network fabric,” in Proc. ACM SIGCOMM, Barcelona, Spain,
Aug. 2009, pp. 39–50.

[16] H. Cho, S. Kang, and Y. Lee, “Centralized ARP proxy server over
SDN controller to cut down ARP broadcast in large-scale data center
networks,” in Proc. Int. Conf. Inf. Netw. (ICOIN), Siem Reap, Cambodia,
Jan. 2015, pp. 301–306.

[17] W. Jian, H. Tao, L. Jiang, and L. Yunjie, “A novel floodless service
discovery mechanism designed for software-defined networking,” China
Commun., vol. 11, no. 2, pp. 12–25, Feb. 2014.

[18] D. Jorm. (Apr. 3, 2015). SDN and Security, Open Network Oper-
ating System (ONOS). Accessed: Sep. 15, 2016. [Online]. Available:
http://onosproject.org/2015/04/03/sdn-and-security-david-jorm/

[19] Network Time Protocol (Version 3) Specification, Implementation and
Analysis, document RFC 1305, Mar. 1992.

[20] J. Touch et al., Service Name and Transport Protocol Port Number
Registry, document RFC6335, The Internet Assigned Numbers Author-
ity (IANA), Aug. 2016.

[21] M. Bienkowski, A. Feldmann, J. Grassler, G. Schaffrath, and S. Schmid,
“The wide-area virtual service migration problem: A competitive analy-
sis approach,” IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 165–178,
Feb. 2014.

[22] OpenFlow Switch Specification, Version 1.5.0 (Protocol version 0x06),
Open Networking Foundation, Menlo Park, CA, USA, Dec. 2014.

[23] G. Yao, J. Bi, and L. Guo, “On the cascading failures of multi-controllers
in software defined networks,” in Proc. 21st IEEE Int. Conf. Netw.
Protocols (ICNP), Göttingen, Germany, Oct. 2013, pp. 1–2.

[24] Open vSwitch Manual, 2nd ed. San Francisco, CA, USA: TLF, 2014,
p. 10.

[25] IEEE Standard for Local and Metropolitan Area Networks: Station and
Media Access Control Connectivity Discovery, IEEE Standard 802.1AB,
2016.

[26] U. C. Kozat, G. Liang, K. Kokten, and J. Tapolcai, “On optimal topology
verification and failure localization for software defined networks,”
IEEE/ACM Trans. Netw., vol. 24, no. 5, pp. 2899–2912, Oct. 2016.

[27] IPv4 Address Conflict Detection, document RFC 5227, Jul. 2008.
[28] R. Kubo, T. Fujita, Y. Agawa, and H. Suzuki, “Ryu SDN framework:

Open-source SDN Platform software,” NTT Tech. Rev., vol. 12,
no. 8, pp. 1–5, Aug. 2014. [Online]. Available: https://www.
ntt-review.jp/archive/ntttechnical.php?contents=ntr201408all.pdf&
mode=show_pdf

[29] Transmission Control Protocol Darpa Internet Program Protocol Spec-
ification, document RFC 793, Sep. 1981.

Emad Alasadi received the B.Sc. degree
in computer and software engineering from
Al-Mustansiriyah University, Baghdad, Iraq,
in 2003, and the M.Sc. degree in computer
engineering and information technology from the
University of Technology, Baghdad, in 2006. He is
currently pursuing the Ph.D. degree in electronic and
computer engineering with Brunel University, Lon-
don, U.K. His research interests include software-
defined networking and network architecture.

Hamed S. Al-Raweshidy (SM’03) received the
B.Eng. and M.Sc. degrees from the University of
Technology, Baghdad, Iraq, in 1977 and 1980,
respectively, and the Ph.D. degree from Strathclyde
University, Glasgow, U.K., in 1991. He is currently a
Professor of communications engineering. He is also
the Director of the Wireless Networks and Commu-
nications Centre, Brunel University London, U.K.
He has published over 380 papers in international
journals and referred conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

