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Abstract Results are reported from a search for physics
beyond the standard model in final states with at least three
charged leptons, in any combination of electrons or muons.
The data sample corresponds to an integrated luminosity
of 2.3 fb−1 of proton–proton collisions at

√
s = 13 TeV,

recorded by the CMS experiment at the LHC in 2015. Two
jets are required in each event, providing good sensitivity to
strong production of gluinos and squarks. The search regions,
sensitive to a range of different new physics scenarios, are
defined using the number of jets tagged as originating from
bottom quarks, the sum of the magnitudes of the transverse
momenta of the jets, the imbalance in the overall transverse
momentum in the event, and the invariant mass of opposite-
sign, same-flavor lepton pairs. The event yields observed in
data are consistent with the expected background contribu-
tions from standard model processes. These results are used
to derive limits in terms of R-parity conserving simplified
models of supersymmetry that describe strong production of
gluinos and squarks. Model-independent limits are presented
to facilitate the reinterpretation of the results in a broad range
of scenarios for physics beyond the standard model.

1 Introduction

Many types of beyond-the-standard-model (BSM) theories
can produce multilepton events (three or more leptons) with
a wide array of unique signatures [1–5], including a number
of supersymmetric (SUSY) models [6–15]. In these models,
multilepton final states can arise from the decay of multiple
vector bosons, e.g., in tt production with t → cH followed by
H → WW∗ or H → ZZ∗, or in strong production of pairs of
squarks or gluinos, which often initiate complex decay chains
that can result in multiple W and/or Z bosons. The standard
model (SM) processes that produce this final state are also
characterized by multiple bosons and are well-understood
both theoretically [16–30] and experimentally [31–35].
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This paper describes a search for new physics in final states
with three or more leptons, electrons or muons, produced at
the CERN LHC, in proton–proton (pp) collisions at a center-
of-mass energy of 13 TeV, with the CMS detector. The data
correspond to an integrated luminosity of 2.3 fb−1 collected
in 2015. The expected irreducible backgrounds come from
diboson production (WZ and ZZ) or other SM processes,
including ttW, ttZ, and ttH. These backgrounds are modeled
using Monte Carlo (MC) simulations that have appropriate
corrections applied to match the behavior of reconstructed
objects in data. Reducible backgrounds are processes that
produce one or more misidentified or nonprompt leptons, i.e.
those that arise from jets or meson decays, that pass all recon-
struction, identification, and isolation criteria. Estimates of
the probabilities of observing misidentified or nonprompt
leptons based on control samples in data are used.

As an example of the type of BSM models for which this
search has sensitivity, we interpret the results of this analysis
in the context of SUSY models that feature strong production
of pairs of squarks (̃q) or gluinos (̃g). In addition to multiple
leptons, these models predict that events can contain mul-
tiple jets, b-tagged jets, and missing transverse momentum.
Searches probing similar models have been carried out by
the ATLAS and CMS Collaborations using pp collisions at
8 TeV [36–44], and at 13 TeV [45–52]. Previous searches
exclude models with gluino mass less than approximately
1500 GeV, for a neutralino mass of 50 GeV, and models with
bottom squark mass less than 830 GeV.

The result of the search, which is consistent with SM
expectation, can also be used to constrain other BSM models
not explicitly considered in this paper. To this end, we also
provide upper limits on possible BSM contributions in the
kinematic tail of the search variables in terms of the product
of cross section, detector acceptance, and selection efficiency.

2 The CMS detector

The CMS detector features a superconducting solenoid of 6 m
internal diameter that creates a magnetic field of 3.8 T. Inside
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the magnet volume are a silicon pixel and strip tracker, an
electromagnetic calorimeter (ECAL) made of lead tungstate
crystals, and a hadron calorimeter (HCAL) made of brass
and scintillator, each composed of a barrel and two endcap
sections. Forward calorimeters provide additional pseudora-
pidity (η) coverage for the HCAL. Muons are detected in
gas-ionization chambers embedded in the steel flux-return
yoke outside the solenoid. The first level of the CMS trig-
ger system, composed of specialized hardware processors,
uses information from the calorimeters and muon detectors
to select the most interesting events in a fixed time interval
of less than 4 µs. The high-level trigger (HLT) processor
farm further decreases the event rate from approximately
100 kHz to less than 1 kHz, before data storage. A more
detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kine-
matic variables, can be found in Ref. [53].

3 Event selection and Monte Carlo simulation

Events used in this analysis are selected by the triggers that
collect dilepton and multilepton events for later study, using
variables constructed by the HLT. One set of triggers requires
two leptons satisfying loose isolation criteria and transverse
momentum pT > 17 GeV for the leading lepton and pT >

12 (8) GeV for the subleading lepton in the case of electrons
(muons). The second set of triggers places no requirements
on the isolation, has a lower pT threshold for the two leptons,
pT > 8 GeV, and also requires that the scalar sum of jets
with pT > 40 GeV reconstructed in the HLT be greater than
300 GeV.

Electron candidates are reconstructed using tracking
and electromagnetic calorimeter information by combining
Gaussian sum filter tracks and ECAL energy deposits [54].
The electron identification is performed using a multivariate
discriminant built with shower shape, track cluster matching,
and track quality variables. The working point for the selec-
tion is chosen to maintain approximately 90% efficiency for
accepting electrons produced in the decays of W and Z bosons
and also to efficiently reject candidates originating from jets.
To reject electrons originating from photon conversions, elec-
trons are required to have hits in all possible inner layers of
the tracker and to be incompatible with any secondary ver-
tices containing only another electron. The selected electron
candidates must have |η| < 2.5.

Muon candidates are reconstructed in a global fit to the
combined information from both the silicon tracker and the
muon spectrometer [55]. An identification is performed using
the quality of the geometrical matching between measure-
ments in the tracker and the muon system. To ensure the
candidates are within the fiducial volume of the detector, we
require that the candidate pseudorapidities satisfy |η| < 2.4.

The reconstructed vertex with the largest value of summed
physics-object p2

T is taken to be the primary pp interaction
vertex. The physics objects are the objects returned by a
jet finding algorithm [56,57] applied to all charged tracks
associated with the vertex, plus the corresponding associ-
ated missing transverse momentum. Both electron and muon
candidates are required to have a transverse (longitudinal)
impact parameter of less than 0.5 (1.0) mm from the primary
vertex. In addition, a requirement on the three-dimensional
impact parameter significance is applied. This variable is the
value of the impact parameter divided by its uncertainty and
is required to be less than 4 for both electrons and muons.
The rejection of nonprompt leptons is more efficient using
the impact parameter significance than the value of impact
parameter for similar prompt-lepton acceptance.

Lepton isolation is constructed using three different vari-
ables. The mini isolation, Imini, is the ratio of the amount
of measured energy in a cone to the transverse momen-
tum of the lepton. The radius is pT-dependent: Riso =
10 GeV/min(max(pT(�), 50 GeV), 200 GeV), resulting in
radii between 0.05 and 0.2. Requiring Imini to be below a
given threshold ensures that the lepton is locally isolated,
even in Lorentz-boosted topologies.

The second variable is the ratio of the lepton pT and the
pT of the jet matched to the lepton: pratio

T = pT(�)/pT(jet).
This jet must be separated by no more than 0.4 in �R from
the lepton it is matched to, where �R =

√
�φ2 + �η2. In

most cases, this is the jet containing the lepton. If no jet is
found within �R < 0.4, then pratio

T = 1. The use of pratio
T is a

simple way to identify nonprompt low-pT leptons originating
from low-pT b-quarks that decay with larger opening angles
than the one used in the mini isolation.

The last variable is prel
T , which is calculated by subtract-

ing the lepton momentum from the momentum vector of the
geometrically matched jet described above and then finding
the component of the lepton momentum that is transverse to
this new vector. If there is no matched jet, prel

T = 0. This
variable allows us to recover leptons from accidental overlap
with jets in events where some of the final state particles are
close together in Lorentz-boosted topologies.

Using the three variables above, a lepton is considered
isolated if Imini < I1 and that either pratio

T > I2 or prel
T > I3.

The Ii values depend on the flavor of the lepton. The prob-
ability to misidentify a jet is higher for electrons, so tighter
isolation values are used. The logic behind this isolation is
that a lepton should be locally isolated (Imini) and should
carry the major part of the energy of the corresponding jet
(pratio

T ) unless its overlap with the jet is accidental (prel
T ).

For electrons (muons), the tight selection requirements are
I1 = 0.12 (0.16), I2 = 0.76 (0.69), and I3 = 7.2 (6.0) GeV.
The loose lepton isolation is relaxed to Imini < 0.4, and the
other requirements are dropped. The loose leptons are used

123



Eur. Phys. J. C   (2017) 77:635 Page 3 of 29  635 

for background estimates. These selection requirements were
optimized using MC simulations.

The offline selection requires at least three well-identified
leptons in the event and any pair of opposite sign and same
flavor (OSSF) leptons having an invariant mass greater than
12 GeV to reject low mass Drell–Yan and quarkonium pro-
cesses. The leptons must pass offline pT thresholds of 20,
15, and 10 GeV for the first, second, and third lepton, respec-
tively, when pT-ordered. For this offline selection, the trigger
efficiency is above 99%.

Jets are reconstructed from particle-flow candidates [58]
clustered using the anti-kT algorithm [56] with a distance
parameter of 0.4 as implemented in the FastJet pack-
age [57]. Only jets with pT > 30 GeV and within the tracker
acceptance |η| < 2.4 are considered. Additional criteria are
applied to reject events containing noise and mismeasured
jets [59–61]. To avoid double counting, the closest match-
ing jets to leptons are not considered if they are separated
from the lepton by less than 0.4 in �R. From those selected
jets, the quantity HT is defined by HT = ∑

jets |pT|, for all
jets that satisfy the above-mentioned criteria. Jet energies are
corrected for a shift in the energy scale, contributions from
additional, simultaneous pp collisions (pileup), and residual
nonuniformity and nonlinearity differences between data and
simulation [60].

The combined secondary vertex algorithm [62,63] is used
to assess the likelihood that a jet originates from a bottom
quark (b jet). Jets in this analysis are considered to be b
tagged if they pass the algorithm’s medium working point,
which has a tagging efficiency of approximately 70% and a
mistag rate of approximately 1% for light quarks and gluons.

The missing transverse momentum pmiss
T is defined as the

negative vector sum of transverse momenta of all particle-
flow candidates reconstructed in the event. Its magnitude is
referred to as pmiss

T . Jet energy corrections are propagated to
the pmiss

T following the procedure described in Ref. [64].
To estimate the contribution of SM processes to the signal

regions (described in Sect. 4) and to calculate the efficiency
for new physics models, MC simulations are used. All the SM
samples are generated using the MadGraph5_amc@nlo
2.2.2 [65–67] program at leading order (LO) or next-to-
leading order (NLO) in perturbative QCD, with the excep-
tion of the diboson production samples (WZ and ZZ) that
are generated using powheg v2 [68–72] at NLO precision.
The NNPDF3.0 [73] LO (NLO) parton distribution func-
tion (PDF) set is used in MC simulations generated at LO
(NLO). Parton showering and hadronization are simulated
using pythia 8.205 [74] with the underlying event tune
CUETP8M1 [75]. The CMS detector response is determined
using a Geant4-based model [76].

Events corresponding to the production of SUSY pro-
cesses are generated with MadGraph5_amc@nlo at LO
precision, allowing up to two additional partons in the matrix

element calculations. The SUSY particle decays, parton
showering, and hadronization are simulated with pythia.
The detector response for signal events is simulated using
a CMS fast-simulation package [77] that is validated against
the Geant4-based model. Cross sections for SUSY signal
processes, calculated at NLO with next-to-leading-log (NLL)
gluon resummation, are taken from the LHC SUSY Cross
Section Working Group [78–83]. All simulated events are
processed with the same reconstruction procedure as data.
They include the effects of additional interactions, which
can occur in the same or adjacent beam crossings (pileup).
The distribution of additional interactions is matched to that
observed in data. The pileup interactions are simulated by
overlaying the primary interaction with additional minimum
bias events, which are generated with the same pythia con-
figuration as described above.

4 Search strategy

The goal of this analysis is to search for possible excesses
over the expected yields from SM processes in different
categories of events with three or more leptons. With the
2.3 fb−1 data sample at

√
s = 13 TeV, the search is focused

on strongly produced SUSY particles, which benefit most
from the increase of the production cross section with respect
to 8 TeV. A few examples of diagrams of simplified models
of SUSY processes [84,85] that can give rise to multilep-
ton final states are shown in Fig. 1. In these models, SUSY
particles that are not directly included in the diagrams are
assumed to be too heavy to be accessible at the LHC. There-
fore, the free parameters in these models are usually the mass
of the produced particles: gluinos and squarks, as well as the
mass of the lightest supersymmetric particle (LSP).

Typical SUSY processes relevant for this work include
T1tttt, which corresponds to gluino pair production where
each gluino decays to a tt pair and the LSP (Fig. 1—top).
Another model, referred to as T5qqqqWZ, involves gluino
pair production, where each gluino decays to a pair of light
quarks (u, d, s, and c) and a neutralino (χ̃0

2 ) or chargino
(χ̃±

1 ), followed by decay of the neutralino or the chargino to
a W or Z boson, respectively, and the LSP (Fig. 1—middle).
The probability for the decay to proceed via χ̃+

1 , χ̃−
1 , or

χ̃0
2 is 1/3 for each case, leading to the probabilities of hav-

ing WW, ZZ or WZ bosons in the final state to be about
44.5, 11.1, and 44.5%, respectively. Only the final state with
WZ bosons contributes significantly to the acceptance of this
search. Final states with WW bosons do not contribute, and
the contribution from ZZ final states decaying to four lep-
tons is negligibly small. In this scenario the neutralino and
chargino are assumed to be mass-degenerate. A model called
T6ttWW, features bottom squark pair production with their
subsequent cascade decays via top quarks and W bosons
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Fig. 1 Diagrams for gluino and bottom squark pair production leading
to multilepton events for simplified models of supersymmetry: (top)
T1tttt, (middle) T5qqqqWZ, and (bottom) T6ttWW

(Fig. 1—bottom). The LSP is a neutralino in all of these
models.

For the definition of the signal regions (SRs) we use sev-
eral event variables: the number of b-tagged jets (Nb), HT,
pmiss

T , and a classification depending on whether the event
contains any OSSF dilepton pairs with an invariant mass
between 76 and 106 GeV, i.e. consistent with the Z boson
(called “on-Z” if so and “off-Z” otherwise in the following).
Events that do not contain any OSSF pairs are included in
the off-Z sample.

The separation in b-tagged jet multiplicities maximizes
signal-to-background ratios for different signal models. For
example, the T1tttt model features several b jets, which would
be categorized into SRs which are almost free of WZ back-
ground owing to the b-tagged jet requirement. Including the
zero b-tagged SRs keeps the analysis sensitive to signatures
such as the T5qqqqWZ model. Additionally, a categorization
in HT and pmiss

T is useful to distinguish between compressed
and noncompressed SUSY spectra, i.e. models with small

or large mass differences between the SUSY particles in the
decay chain.

A baseline selection is applied to the data set to select
events of interest: three or more electrons or muons satisfying
the requirements pT ≥ 20, 15, and 10 GeV; m�� ≥ 12 GeV;
at least two jets; HT ≥ 60 GeV; and pmiss

T ≥ 50 GeV.
Events containing additional leptons with pT > 10 GeV are
included in the event selection. Table 1 shows the definition of
the subdivision of the baseline selection into two sets of SRs
for events that contain on-Z and off-Z dilepton pairs. There
are 15 SRs for each of the two groups, hence in total 30 SRs.
A set of four SRs with low or medium HT and low or medium
pmiss

T are defined for each of the b-tagged jet multiplicities 0,
1, and 2. Motivated by the low expected yield of events with
Nb ≥ 3, SR 13 is defined for high b-tagged jet multiplici-
ties and also has pmiss

T < 300 GeV and HT < 600 GeV. Two
additional SRs with large HT (SR 14) and large pmiss

T (SR 15),
respectively, have been defined as nearly background-free
SRs, since noncompressed SUSY models can yield events
with very large values of pmiss

T or HT. Both of these SRs are
inclusive in the number of b-tagged jets, and every selected
event with pmiss

T ≥ 300 GeV is categorized in SR 15, while
SR 14 is populated with events with pmiss

T < 300 GeV and
HT ≥ 600 GeV.

5 Background estimation

Backgrounds in the multilepton final states can be divided in
three categories:

1. Nonprompt or misidentified leptons are those arising
from heavy-flavor decays, misidentified hadrons, elec-
trons from unidentified photon conversions, or muons
from light-meson decays in flight. For this analysis,
tt events can enter the SRs if nonprompt leptons are
present in addition to the prompt leptons from the W
boson decays. These nonprompt leptons typically origi-
nate from semileptonic decays of hadrons containing a b
quark, which, in this case, is not reconstructed as a jet.
Therefore, tt events typically have low HT and pmiss

T and
predominately populate SR 1 and SR 5, with 0 and 1
b-tagged jets, respectively.

In addition to tt, Drell–Yan events can enter the base-
line selection, although they are largely suppressed by
the pmiss

T > 50 GeV requirement. Processes that yield
only one prompt lepton, e.g. W+jets and single top quark
production, are effectively suppressed by the three-lepton
requirement because of the low probability that the two
nonprompt leptons pass the tight identification and iso-
lation requirements.
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Table 1 Definition of
multilepton signal regions.
These regions are the same for
the on-Z and off-Z regions

Nj Nb pmiss
T (GeV) 60 ≤ HT < 400 GeV 400 ≤ HT < 600 GeV HT ≥ 600 GeV

≥2

0 50–150 SR 1 SR 3

SR 14

150–300 SR 2 SR 4

1 50–150 SR 5 SR 7
150–300 SR 6 SR 8

2 50–150 SR 9 SR 11
150–300 SR 10 SR 12

≥ 31RS003–053
≥0 ≥ 51RS003

2. Diboson production could yield multilepton final states
with up to three prompt leptons in WZ production and
up to four prompt leptons in ZZ production. Especially
in signal regions without b-tagged jets, WZ production
has a sizable contribution. The normalization of this
background is obtained from a dedicated control region
enriched in WZ events.

3. Other SM processes that can yield three or more lep-
tons are ttW, ttZ, and triboson production VVV where V
stands for a W or Z boson. We also include the contribu-
tion from the SM Higgs boson produced in association
with a vector boson or a pair of top quarks in this cate-
gory of backgrounds. Processes that produce additional
leptons from internal conversions, which are events that
contain a virtual photon that decays to leptons, are also
included here as X + γ , where X is predominantly tt or
Z. Those backgrounds are obtained from simulation and
appropriate systematic uncertainties are assigned.

The background contribution from nonprompt and
misidentified leptons is estimated using the “tight-to-loose
ratio” method [52]. The tight-to-loose ratio f is the proba-
bility for a nonprompt lepton that satisfies the loose require-
ments to also satisfy the full set of requirements. The non-
prompt background contribution is obtained from the num-
ber of events in an application region containing events with
at least one of the leptons failing the full set of tight iden-
tification and isolation requirements, but passing the loose
requirements, weighted by f/(1 − f ). This ratio is mea-
sured in a control sample of QCD multijet events that is
enriched in nonprompt leptons (measurement region), by
requiring exactly one lepton passing the loose object selec-
tion and one recoiling jet with �R(jet, �) > 1.0. To sup-
press events with leptons from W and Z boson decays,
pmiss

T < 20 GeV and MT < 20 GeV are also required, where

MT =
√

2pmiss
T pT(�)(1 − cos �φ) and �φ is the difference

in azimuthal angle between the lepton and pmiss
T . The remain-

ing contribution from these electroweak processes within the
measurement region is subtracted using estimates from MC
simulations.

The dependence of the tight-to-loose ratio on the flavor
of the jet from which the nonprompt lepton originates is
reduced by parameterizing the ratio as a function of a vari-
able that is more strongly correlated with the parent parton
pT than with lepton pT. This variable is calculated by correct-
ing the lepton pT as a function of the energy in the isolation
cone around it. This definition leaves the pT of the leptons
passing the isolation requirement unchanged and modifies
the pT of those failing the requirement, so that it is a bet-
ter proxy for the parent parton pT and results in a flatter
tight-to-loose ratio as a function of the parent parton pT.
The cone correction significantly improves the results of the
method when applying it in simulation. The flavor depen-
dence, which is much more important for the case of elec-
trons, is also reduced by adjusting the loose object selection
to obtain similar ratios for nonprompt electrons that originate
from both light- and heavy-flavor jets. To avoid experimental
biases, the tight-to-loose ratio is also measured as a function
of η.

The tight-to-loose ratio method of estimating the non-
prompt background is validated in a control region exclusive
to our baseline selection with minimal signal contamination.
This region is defined by having three tight leptons, one or
two jets, 20 < pmiss

T < 50 GeV, and an off-Z dilepton pair.
We find agreement of the order of 20% between the predicted
and observed yields in this control region in data, which val-
idates the predictions and uncertainties of this method.

The WZ process is one of the main backgrounds in the
regions with zero b-tagged jets. The relative contribution of
this process in various SRs is estimated from the MC simu-
lation at NLO, but the normalization is taken from a control
region that is highly enriched for this process: three leptons
pass nominal identification and isolation requirements, two
leptons form an OSSF pair with |m�� − mZ| < 15 GeV, the
number of jets is zero or one, the number of b-tagged jets is
zero, 30 < pmiss

T < 100 GeV, and the MT of the third lepton
(not in the pair forming the Z) is required to be at least 50 GeV
to suppress contamination from Drell–Yan processes. The
expected WZ purity in the selected sample is 84%. Using
this control region, we find that the WZ background pre-
dictions from simulation are consistent with data. The ratio
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between the prediction and data obtained with 2.3 fb−1 of
data is 1.13 ± 0.17. The uncertainty on the normalization
of the WZ background includes the statistical uncertainty
related to the event yield in the CR and a systematic compo-
nent related to a small contamination of the CR due to other
processes.

6 Systematic uncertainties

Systematic uncertainties are characterized as either experi-
mental, theoretical, or arising from the limited size of sim-
ulated event samples. These sources of uncertainties and
their magnitudes are described below, and are summarized
in Table 2. The table also provides the effect of varying the
uncertainties by ±1 standard deviation (s.d.) on the signal
and background yields. The jet energy scale uncertainty and
the uncertainty in the b tagging efficiency are the only ones
that can cause simulated events to migrate between signal
regions.

The major experimental source of uncertainty is the
knowledge of the jet energy scale (JES), which accounts
for differences between kinematical variables from data and
simulation and affects signal and background events that are
taken from simulation samples [60,61]. For the data set used
in this analysis, the uncertainties on the JES vary from 2 to
8%, depending on the pT and η of the jet. The impact of these
uncertainties is assessed by shifting the jet energy correction

factors for each jet up and down by ±1 s.d. and recalcu-
lating all of the kinematic quantities. The JES uncertainties
are propagated to the missing transverse momentum and all
variables derived from jets (numbers of jets and b-tagged
jets, and HT) used in this analysis; this propagation results
in 1–20% variation in the MC background estimation in the
regions with higher data yields.

A similar approach is used for the uncertainties associated
with the corrections for the b tagging efficiencies for light-,
charm-, and bottom-flavour jets, which are parametrized as a
function of pT and η [62,63]. The variation of the scale factor
correcting for the differences between data and simulation is
at maximum 5–10%, and leads to an effect of 1–20% on the
yields, depending on the SR and on the topology of the events
under study. If one considers only highly populated SRs to
get an overview of the main effects on the background yields,
the bulk of the ttW yield varies by ∼10% and the WZ yield
by ∼13%.

Lepton identification scale factors have been measured by
comparing efficiencies in data and simulation using the “tag-
and-probe” method [54,55] and are applied as a function of
lepton pT and η. The corresponding uncertainties on the scale
factors have been evaluated and are approximately 2% for
both electrons and muons. Trigger efficiency scale factors
have been found to be very close to unity. An uncertainty
of 3% in the scale factors has, however, been assigned to
cover the difference between trigger efficiencies measured
in simulation over a large number of samples.

Table 2 Summary of the sources of uncertainties and their magnitudes. The third column provides the changes in yields of signal and background
induced by one s.d. changes in the magnitude of uncertainties

Source Magnitude (%) Effect on yield (%)

Integrated luminosity [88] 2.7 2.7a

Limited MC sample sizes 1–100 1–100a

Jet energy scale 2–8 1–20a

b tagging efficiency 5–10 1–20a

Pileup 5 3a

Renormalization and factorization scales −50 / +100 11–13 (cross-section) / 3–18 (acceptance) (ttW,ttZ,ttH)

PDF — 2–3 (ttW,ttZ,ttH)

Other backgrounds 50 50 (rare processes, tribosons, etc.)

Lepton efficiencies 2 6a

Trigger efficiencies 3 3a

FastSim lepton efficiencies 3–10 3–10 FastSim signals

FastSim trigger efficiencies 5 5 FastSim signals

Tight-to-loose ratio control region statistical uncertainty 1–100 1–100 (nonprompt bkg. only)

Tight-to-loose ratio systematic uncertainty 30 30 (nonprompt bkg. only)

EW subtraction in tight-to-loose ratio 100 (ewk. SF) 1–5 (nonprompt bkg. only)

WZ control region normalization 15 15 (WZ only)

WZ extrapolation 10–30 2–30 (WZ only)

a Applied to both signal and background simulation samples

123



Eur. Phys. J. C   (2017) 77:635 Page 7 of 29  635 

All these uncertainties related to corrections of the sim-
ulation (JES corrections, b tagging efficiency scale factors,
lepton identification and trigger scale factors) have been esti-
mated also for the fast simulation used for the signal samples.
We propagate them to the expected signal yields following
the same procedure.

The uncertainties in the renormalization (μR) and factor-
ization scales (μF) and the PDF are considered for some of the
rare processes, namely ttW, ttZ, and ttH. Both the changes
in the acceptance and cross sections due to those effects are
taken into account.

For the study of the renormalization and factorization scale
uncertainties, variations up and down by a factor of two with
respect to the nominal values of μR and μF are considered.
The maximum difference in the yields with respect to the
nominal case is observed when both scales are varied simul-
taneously up and down. The effect on the overall cross sec-
tion is found to be about 13% for ttW and about 11% for ttZ.
An additional uncertainty in the acceptance corresponding
to different signal regions is included. This is found to be
between 3 and 18% depending on the SR and process.

The uncertainty related to the PDFs is estimated from the
100 NNPDF 3.0 replicas by computing the deviation with
respect to the nominal yields for each of them, and for each
signal region (the cross section and acceptance effects are
considered together) [86]. The root mean square of the vari-
ations is taken as the value of the systematic uncertainty.
Since no significant variations among the different signal
regions are seen, a flat uncertainty of 3(2)% is applied to the
ttW (ttZ) background. This value also includes the deviation
resulting from varying the strong coupling strength αS(MZ),
which is added in quadrature, and whose magnitude is simi-
lar to or smaller than that of the PDF set uncertainty. For the
ttH process, the same uncertainties as estimated for ttZ are
applied. A theoretical uncertainty of 50% is assigned to the
remaining rare processes.

In signal samples, the uncertainty due to initial-state radi-
ation is computed as a function of the pT of the gluino pair
using the methods described in Ref. [87]. For values below
400 GeV, no uncertainty is applied. For values between 400
and 600 GeV, a 15% uncertainty is assigned, and above
600 GeV this uncertainty is increased to 30%.

The limited size of the generated MC samples represents
an additional source of uncertainty. The uncertainty in signal
processes and backgrounds such as ttW, ttZ, and ttH, is cal-
culated from the number of MC events entering each of the
signal regions.

For the nonprompt and misidentified lepton background,
we assign several systematic uncertainties. The statistical
uncertainty resulting from the limited number of events in
the application region used to estimate this background con-
tribution varies from 1 to 100%. The regions where these
uncertainties are large are generally regions where the over-

all contribution of this background is small. When no events
are observed in the application region, the upper limit of
the background expectation is set to 0.35, which is found by
applying the most probable tight-to-loose ratio as if the appli-
cation region contained an event count equal to the variance
of a Poisson distribution with a mean of zero.

The systematic uncertainties related to the extrapolation
from the control regions to the SRs for the nonprompt lepton
background are estimated to be 30%. This magnitude has
been extracted from the level of closure achieved in a test
that was performed with MC samples yielding nonprompt
leptons to validate background predictions based on control
samples in data, as described in Sect. 5.

The uncertainty associated with the electroweak (EW)
background subtraction in the tight-to-loose ratio compu-
tation is propagated through the full analysis process by
replacing the nominal tight-to-loose ratio with another value
obtained when the scale factor applied to the electroweak
processes in the measurement region is varied by 100% of
its difference from unity. The overall effect on the nonprompt
background yield lies between 1 and 5% depending on the
SR considered.

The estimate of the WZ background is assigned a 15% nor-
malization uncertainty using the measurement in a dedicated
control region. This uncertainty is compatible with the one
quoted for the experimental measurement of this process in
Ref. [33]. Additional uncertainties for the extrapolation from
the control region to the signal regions of 10– 30% are taken
into account depending on the SR. These uncertainties are
dominated by the JES and b tagging uncertainties described
earlier.

Finally the uncertainty on the integrated luminosity is
2.7% [88].

7 Results and interpretations

Expected event yields are compared to the observation in
Tables 3 and 4. Comparisons of distributions of HT, pmiss

T ,
Nj, Nb, leading lepton pT, subleading lepton pT, and trailing
lepton pT measured in data with those predicted by the back-
ground estimation methods are shown in Fig. 2 (Fig. 3), using
all the events satisfying the off-Z (on-Z) SR selection criteria.
The nonprompt lepton background comes from the technique
described in Sect. 5. The hatched band represents the total
background uncertainty in each bin. A graphical summary of
predicted backgrounds and observed event yields in individ-
ual SRs is also shown. In these figures, the “rare” component
is the sum over several SM processes, such as triboson pro-
duction, associated Higgs production, tttt, and other lower
cross section processes.

The number of events observed in data is found to be
consistent with predicted SM background yields. The results

123



 635 Page 8 of 29 Eur. Phys. J. C   (2017) 77:635 

Table 3 Off-Z SRs:
Comparison of observed event
yields in data with predicted
background yields

Nb HT (GeV) pmiss
T (GeV) Predicted Observed SR (off-Z)

0 b-tags

60-400
50-150 19.26+4.81

−4.80 18 SR 1

150-300 1.16+0.31
−0.20 4 SR 2

400-600
50-150 1.20+0.47

−0.40 3 SR 3

150-300 0.29+0.44
−0.09 0 SR 4

1 b-tags

60-400
50-150 16.57 ± 4.52 24 SR 5

150-300 2.32+0.80
−0.76 1 SR 6

400-600
50-150 0.67+0.45

−0.09 2 SR 7

150-300 0.48+0.29
−0.07 0 SR 8

2 b-tags

60-400
50-150 4.49+1.81

−1.79 4 SR 9

150-300 0.31+0.44
−0.09 1 SR 10

400–600
50–150 0.40+0.27

−0.26 0 SR 11

150–300 0.08+0.43
−0.08 0 SR 12

≥3 b-tags 60–600 50-300 0.13+0.43
−0.09 0 SR 13

≥0 b-tags >600 50-300 1.84+0.44
−0.37 3 SR 14

≥0 b-tags ≥0 ≥300 1.62+1.22
−1.19 0 SR 15

Table 4 On-Z SRs:
Comparison of observed event
yields in data with predicted
background yields

Nb HT (GeV) pmiss
T (GeV) Predicted Observed SR (on-Z)

0 b-tags

60–400
50–150 38.01 ± 5.92 39 SR 1

150–300 4.48+0.84
−0.75 3 SR 2

400–600
50–150 4.88+1.49

−1.47 4 SR 3

150–300 1.88+0.47
−0.39 3 SR 4

1 b-tags

60–400
50–150 11.84+2.28

−2.26 14 SR 5

150–300 1.53+0.42
−0.34 1 SR 6

400–600
50–150 1.18+0.49

−0.23 1 SR 7

150–300 0.42+0.44
−0.10 3 SR 8

2 b-tags

60–400
50–150 2.55+0.67

−0.51 2 SR 9

150–300 0.72+0.76
−0.28 0 SR 10

400–600
50–150 0.55+0.45

−0.13 0 SR 11

150–300 0.31+0.51
−0.17 0 SR 12

≥3 b-tags 60–600 50–300 0.21+0.44
−0.13 0 SR 13

≥0 b-tags >600 50–300 4.22+0.68
−0.63 5 SR 14

≥0 b-tags ≥0 ≥300 1.41+0.50
−0.25 1 SR 15

are used to calculate upper limits on the production cross
section of gluinos or squarks for the various models discussed
in Sect. 4, as a function of the gluino or squark, and the
chargino or neutralino masses. For each mass hypothesis,
the observation, background predictions, and expected signal
yields from all on-Z and off-Z SRs are combined to extract
an upper limit on the cross section, at 95% confidence level
(CL) using the asymptotic formulation of the LHC-style CLs

method [89–92]. Log-normal nuisance parameters are used
to describe the systematic uncertainties listed in Sect. 6.

These upper limits are used to calculate exclusion contours
on the concerned sparticles mass plane, shown in Fig. 4 for
the simplified models under consideration. In these figures,
the thick black lines delineate the observed exclusion region,
which is at the lower masses side. The uncertainty in the
observed limit, represented by the thinner black lines, is the
propagation of the NLO + NLL cross section uncertainties
for the relevant signal process [78–81]. The red dashed lines
represent the expected limits with the uncertainties reflecting
those discussed in Sect. 6.
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Fig. 2 Off-Z samples: from left
to right, top to bottom,
distributions of HT, pmiss

T , Nj,
Nb, pT of leptons for the
predicted backgrounds and for
the data in the off-Z baseline
selection region, in these plots
the rightmost bin contains the
overflow from counts outside
the range of the plot. On the
bottom-right corner the total
predicted background and the
number of events observed in
the 15 off-Z SRs is shown
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Fig. 3 On-Z samples: from left
to right, top to bottom,
distributions of HT, pmiss

T , Nj,
Nb, pT of leptons for the
predicted backgrounds and for
the data in the on-Z baseline
selection region, in these plots
the rightmost bin contains the
overflow from counts outside
the range of the plot. On the
bottom-right corner the total
predicted background and the
number of events observed in
the 15 on-Z SRs is shown
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Fig. 4 Exclusion contours as a function of m g̃ or m
˜b, and mχ̃0 or

mχ̃± , for the simplified SUSY models (top-left) T1tttt, (top-right)
T6ttWW, and (bottom) T5qqqqWZ. The color scale indicates the
95% CL observed upper limits on the cross section. The observed

(expected) exclusion curves are indicated by the solid (dashed) lines
using NLO+NLL production cross sections, along with the correspond-
ing ±1 s.d. theoretical (experimental) uncertainties

The yields and background predictions can be used to test
additional BSM physics scenarios. To facilitate such rein-
terpretations, we provide limits on the number of multilep-
ton events as a function of the pmiss

T threshold in the kine-
matic tails of this search. These limits are obtained based
on the tails of our SRs, in particular we consider events
with HT > 400 GeV, both with and without an on-Z lep-
ton pair, employing the LHC-style CLs method carried out
with pseudo-experiments [89–91]. They are shown in Fig. 5
in terms of the product of cross section (σ ), detector accep-
tance (A), and selection efficiency (ε). As we increase the
pmiss

T threshold, the observed and expected limits converge
to 1.3 fb.

8 Summary

We have presented the search for beyond-the-standard-model
physics in final states with at least 3 leptons, electrons or
muons, using proton–proton data collected with the CMS
detector at

√
s = 13 TeV, corresponding to an integrated

luminosity of 2.3 fb−1. The analysis makes use of techniques
based on control samples in data to estimate reducible back-
grounds and to validate the simulation for use in estimating
irreducible backgrounds. To maximize sensitivity to a broad
range of possible signal models, we investigate 30 exclu-
sive signal regions. The event yields observed in data are in
agreement with the standard model background predictions.
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Fig. 5 Limits on the product of cross section, detector acceptance, and selection efficiency, σ Aε, for the production of multilepton events with
(left) or without (right) an on-Z lepton pair as a function of the pmiss

T threshold

This search is designed to be sensitive to multiple BSM
models. As an example, we interpret the result in the con-
text of a gluino-pair production model that features cascade
decays producing four top quarks in the final state. In this
simplified model, we exclude gluinos with a mass of up
to 1175 GeV in the case of a massless lightest supersymm-
teric particle (LSP). For gluino masses up to approximately
1150 GeV, neutralino masses below 650 GeV are excluded.
These are the first CMS results reported in this final state at√
s = 13 TeV.
In a bottom squark pair production model with cascade

decays that contain two top quarks and two additional W±
bosons, we also set limits on the masses of the bottom squark
and the chargino. We exclude bottom squarks with a mass
of up to 450 GeV in the case of a chargino with a mass of
200 GeV. For bottom squark masses up to approximately
450 GeV, neutralino masses below 300 GeV are excluded.
In a similar search at

√
s = 8 TeV [42], the bottom squark

mass limit was slightly larger and the chargino mass limit
was approximately the same.

An additional interpretation is presented in a gluino pair
production model with four light quarks and two vector
bosons in the final state. For the case of one W and one
Z boson in the final state, we exclude gluino masses up to
825 GeV when the LSP mass is 100 GeV, and LSP masses
up to 500 GeV for 700 GeV gluinos.

Finally, limits on the number of multilepton events with
HT > 400 GeV as a function of pmiss

T threshold are also
presented in terms of the product of cross section, detector
acceptance, and selection efficiency. For a pmiss

T threshold
greater than 500 GeV, the observed and expected limits are
1.3 fb.
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