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Abstract—Gene expression programming (GEP) is
a data driven evolutionary technique that well suits for
correlation mining. Parallel GEPs are proposed to speed up the
evolution process using a cluster of computers or a computer
with multiple CPU cores. However, the generation structure of
chromosomes and the size of input data are two issues that
tend to be neglected when speeding up GEP in evolution. To fill
the research gap, this paper proposes three guiding principles
to elaborate the computation nature of GEP in evolution based
on an analysis of GEP schema theory. As a result, a novel
data engineered GEP is developed which follows closely the
generation structure of chromosomes in parallelization and
considers the input data size in segmentation. Experimental
results on two data sets with complementary features show
that the data engineered GEP speeds up the evolution process
significantly without loss of accuracy in data correlation mining.
Based on the experimental tests, a computation model of the
data engineered GEP is further developed to demonstrate its
high scalability in dealing with potential big data using a large
number of CPU cores.

Index Terms—Big data analytics, data engineering, gene
expression programming (GEP), parallelization and segmenta-
tion, schema theory.

I. INTRODUCTION

GENE expression programming (GEP) [1] is a mem-
ber of evolutionary algorithms (EAs) [2] with a similar

idea to both genetic algorithms (GAs) [3] and genetic pro-
gramming (GP) [4]. GEP operates on a genotype–phenotype
system to handle the representation of a candidate solution.
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GEP combines the linear structure of GA with the tree struc-
ture of GP providing a structured and flexible mechanism in
searching for solutions.

GEP has been applied to many problems,
including combinatorial optimizations [6], finite
transducers [42], classifications [7]–[10], [41], time series
predictions [11]–[13], and symbolic regressions [14]–[16].
GEP was also employed to automatically generate
a hyper-heuristic framework for combinatorial optimization
problems [43], [44].

We have previously applied GEP in particle
physics [17]–[19] to discriminate events from the back-
ground noisy signals. The performance was further improved
with a prefix notation [20] to represent a candidate solution.
In another work [39], we applied GEP to mine the corre-
lations of Hadoop [40] parameters for big data analytics.
GEP also has many applications in power systems, such as
the short-term load forecasting problem [21] and the static
security problem [22].

The flexible structure of GEP together with its black-box
style in solution searching makes GEP an appealing analytic
approach to big data problems. However, the sheer size of
big data would put a heavy burden on GEP computation
in evolution. To speed up this process, a number of paral-
lel GEP algorithms have been proposed using a cluster of
computers [24], [26] or a single computer with multiple CPU
cores [27]. Although the execution time of GEP decreases with
an increasing number of CPU processors, these parallel GEPs
suffer from two major limitations. On one hand, these paral-
lel GEPs simply distribute the computation of chromosomes
across a number of CPUs which breaks the generation struc-
ture of GEP leading to inefficiency in evolution. For example,
the work presented in [26] assigns CPUs to process the chro-
mosomes simultaneously, but it does not guarantee that the
chromosomes of the same generation are assessed together in
one iteration. On the other hand, these GEPs have not con-
sidered the size of an input data in parallelization leading to
a scalability issue when dealing with an ever-growing size of
potential big data. Therefore, the generation structure of chro-
mosomes and the size of input data are two issues that tend to
be neglected when speeding up the evolution process of GEP.

To fill the research gap, this paper presents a novel
data engineered GEP and makes four major contributions.

1) It proposes three guiding principles to elaborate the
computation nature of GEP in evolution, which pro-
vides a theoretical foundation for GEP parallelization
and segmentation. This is based on an analysis of our
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previous work on GEP schema theory [23] which is also
highlighted by Zhong et al. [38] in their work.

2) Different from the existing GEP solutions, the data engi-
neered GEP follows closely the generation structure
of chromosomes leading to an efficient process in
evolution.

3) It employs two segmentation schemes to further speed
up the evolution process. The cutting-in-sequence
scheme segments an input data set into a number of over-
lapped data chunks with an aim to maintain the accuracy
level of GEP in processing segmented data. The random
selection scheme selects samples from an input data set
without overlapping and builds a single data chunk for
processing.

4) A computation model of the data engineered GEP is
developed to demonstrate its high scalability in dealing
with potential big data.

The data engineered GEP is evaluated on two data sets with
complementary features. One data set has complex but loosely
coupled data samples in that each sample has a large number
of input factors. The other data set has strongly correlated
data samples but each sample has a small number of input
factors. Experimental results show that the data engineered
GEP reduces the computation time significantly without loss
of accuracy in processing the segmented data chunks, which
makes it scalable in dealing with potential big data problems.

The rest of this paper is organized as follows. Section II
gives a review on related work. Section III proposes three
guiding principles to elaborate the computation process of
GEP based on an analysis of GEP schema theory. Section IV
details the implementation of the data engineered GEP from
the aspects of segmentation, overlapping, and parallelization.
Section V evaluates the performance of the data engineered
GEP. Section VI develops a computation model to further
demonstrate the scalability of the data engineered GEP in deal-
ing with potential big data settings. Section VII concludes this
paper and points out some future work.

II. RELATED WORK

The majority of existing works on data engineering in GEP
only focus on parallelization. This section reviews some of the
representative works in this aspect. It first reviews some works
on schema theory which provides a theoretical foundation for
GEP computation analysis.

A. Schema Theory

Schema theory is used to describe how EAs work under
the pressure of selection. A solution provided by EAs can be
considered as a point in a search space, which contains all
the possible solutions to a problem. The schemata of a chro-
mosome containing such a solution can be considered as the
coordinates of the point in the search space. In order to find the
location of a good solution, a guided search space is provided
by the schemata of a chromosome during the evolutionary
process [3]. The schemata are generated by linking a set of
schema elements based on the output of a fitness function.
In this way, the search space containing a good solution is

explored point by point in the search space and eventually the
best solution can be generated.

Schema theory provides a theoretical support for analysis of
EAs. By investigating the behaviors and the execution results
of the genetic operations, the evolutionary process of EAs can
be mathematically described with a set of formulas which are
used to represent the propagation of schemata.

Holland [3] developed a GA schema theory to explain
the evolutionary mechanism of GA. The theorem predicts
the number of strings matching a schema in the next
generation based on the genetic information of the cur-
rent generation. Following Holland’s GA schema theory,
Koza [28] made the first attempt to define the schema in
GP as a subspace containing a set of subtrees which share
similar output behaviors. The GP schema is a tree struc-
ture which provides a deeper understanding of the input
data. Poli and Langdon [30] introduced a fixed-size-and-shape
schema which provides more restrictions on the shape of
the S-expression program matching the schema. S-expression
is a data representation of nested lists. In a later version,
Poli and McPhee [31], [32] developed a Cartesian node ref-
erence system to enhance the positional connection between
the schema and the tree structure. Each position in the tree
structure is indexed with one point in the node reference
system. As a result, a more precise analysis of the propagation
of the tree fragments matching the schema can be obtained.
All these works try to provide a structured and flexible
mechanism for a clear understanding of the GP evolutionary
process.

GEP is a relatively new EA algorithm. As a result,
few studies have been proposed on GEP schema theory.
Cheng and Xue [29] attempted to define GEP schema follow-
ing closely the work on GA schema theory. This paper does
not fully consider GEP specific features, such as the head–
tail structure of a chromosome and the phenotype–genotype
translation mechanism.

Huang [23] proposed a GEP schema theory which takes into
account the GEP specific features in a systematic way. This
paper defines a schema together with a set of corresponding
theorems to predict the propagation of a schema from one gen-
eration to another taking into account the head–tail structure
of a chromosome. The phenotype–genotype separation is also
considered. The genotype is used to select a schema which
can be part of an entire chromosome, not only the part of the
open reading frame [1]. The phenotype is used only to provide
the natural selection pressure through the fitness values of the
chromosomes containing a schema.

Recently, Zhong et al. [38] proposed a self-learning GEP
in which each chromosome is embedded with subfunctions
that can be deployed to construct the final solution. It is
worth noting that this paper can be theoretically explained
by the schema theory proposed in our previous work [23].
The evolutionary process is actually conducted by accumu-
lating the genetic information on schemata which can be
computed mathematically. As a result, the proposed self-
learning GEP provides a mechanism to maintain the structure
of the accumulated schemata which leads to an enhanced
performance.
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B. Parallel GEP

There are a number of works in parallelization of GEP
using a cluster of computers. For example, Zhihua et al. [24]
proposed a hybrid parallel GEP combined with simulated
annulling (HPGEPSA) using MPI [25] to achieve parallelism.
In HPGEPSA, a new generation only can be generated when
all the participating computers finish their computations. As
a result, the computation improvement through paralleliza-
tion is not significant especially when different types of CPU
processors are used with varied computing powers.

The asynchronous distribute parallel GEP based on the
estimation of distribution algorithm (ADPGEPEDA) further
optimizes the load of each participating processor [26] using
MPI. In ADPGEPEDA, each computer controls the evolu-
tionary process of a part of the population independently.
Since the computation capability of each participating com-
puter is considered, ADPGEPEDA performs better than
HPGEPSA in parallelization. However, the evolutionary pro-
cess in ADPGEPEDA does not guarantee the chromosomes of
the same generation would be assessed together in an evolu-
tionary iteration which might break the nature of the selection
process leading to an inefficient evolution.

Wu et al. [27] presented a parallel NICHE
GEP (PNGEPMP) using a single computer with multiple
CPU cores for parallelization. Since there is no delay in
computation among the homogeneous CPU processors,
PNGEPMP achieves an impressive speedup in computation
compared with ADPGEPEDA. However, PNGEPMP only
focuses on covering more points in the search space by
calculating the best fitness value generated from part of
a chromosome, which does not represent the behavior of the
whole chromosome. As a result, the accumulation of genetic
information is not properly maintained in PNGEPMP.

Summarising, the aforementioned parallel implementations
only focus on parallelization of the computation of GEP, but
do not follow closely the generation nature of GEP leading to
inefficiency in evolution. Furthermore, to make a parallel GEP
scalable in dealing with potential big data, data engineering
techniques, such as segmentation should also be considered.

III. GEP SCHEMA AND COMPUTATION

In this section, we present three guiding principles to elabo-
rate the computation nature of GEP. First, we briefly describe
how the genotype is translated into the phenotype in GEP and
how the selection is conducted.

A. Genotype–Phenotype Translation

GEP combines a linear structured genotype chromosome
with a phenotype expression tree (ET) [1] as shown in Fig. 1.
In this example, the targeted problem has four input param-
eters (a, b, c, and d) and three mathematic function operators
{“+,” “− ,” “∗”}. The chromosome has only one gene which
is composed of a head and a tail. The elements of the head
are selected randomly from both the input parameters and the
mathematic function operators. The elements of the tail are
selected randomly only from the input parameters.

Fig. 1. Example of translation from a chromosome to ET.

The number of the elements of a gene is fixed which can
be defined by the user. The relation between the length of the
head and the length of the tail can be calculated as

Tail = Head ∗ (n − 1) + 1 (1)

where n is the maximum number of arguments that a function
operator requires.

The chromosome combines the input parameters and func-
tion operators during the evolutionary process. The ET is used
to express the correlations among the input parameters. In
this example, a candidate correlation among these parameters
is represented with a combination of the function operators,
i.e., (a + b ∗ ((b − c) ∗ a)). The translation from genotype to
phenotype in GEP is conducted in the following steps.

1) The element in the chromosome containing the function
of + is selected to build the root of ET.

2) The input parameter a and the function * are selected to
be placed on Level_1 as the leaf nodes of the function
of + in the ET.

3) For the function of * in Level_1, another two ele-
ments (input parameter b and function *) are selected
to be placed on Level_2 as the leaf nodes of the
Level_1 function of * in the ET.

4) The translation process continues until the ET is fully
filled with the input parameters.

It is noted that not all the elements in the tail are involved
in the translation process which is a typical feature of GEP
(i.e., open reading frame [1]). Based on their fitness values,
chromosomes in GEP are selected proportionally in evolving
into the next generation.

B. GEP Computation Analysis

Following the GEP schema theory proposed in [23], the
computation time of GEP in evolution consists of two parts.
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One part is related to the search space starting from a chro-
mosome of the initial generation to the best chromosome of
the last generation. The other part in computation is related
to the size of an input data set. The total execution time T of
a GEP evolutionary process can be calculated as

T = (Te × Td) × NG (2)

where
Te time to go through the search space in one generation;
Td time to process an input data set;
NG number of generations.
The evolution of GEP is actually a process in which

some segments of a chromosome are found useful and
linked together to build the best chromosome. Considering
the performance of the chromosomes that have simi-
lar genetic characteristics in the current generation, the
schema theory [23] estimates the number of the chromosomes
with such characteristics in the next generation. A schema is
defined as a segment of a chromosome and maintains a cer-
tain amount of genetic information. In turn, a chromosome
consists of a number of schemata representing all the possible
solutions in a search space. The search space is created with
the feature dimensions of an input data set and a chromosome
which provides a structure to maintain the feature dimensions
in the coordinate space.

The search space will be traversed during the evolution-
ary process to generate a number of schemata which are
linked within a chromosome. The genetic information which
is learned from the input data set is also accumulated by link-
ing the schemata. At the end of the evolutionary process, the
best chromosome which consists of the linked schemata is
generated to represent the final solution to a targeted problem.

Based on the above analysis of the schema theory, we now
propose three guiding principles to elaborate the computation
nature of GEP evolution.

1) Guiding Principle 1: To efficiently accumulate the
genetic information, the chromosomes of the same generation
must be processed together in one evolutionary iteration.

a) Supporting arguments: As indicated in the GEP
schema theory, the evolutionary process is an accumulation
of genetic information which is maintained in a chromosome.
Schema is a segment of a chromosome which contains genetic
information useful for a solution. The evolutionary process
that a schema is propagated into the next generation can be
represented by

E[M(H, t + 1)] = M × PR(H, t) × PGM(H, t) (3)

where
H schema;
t number of generations;
M number of chromosomes in a generation;
M(H, t + 1) number of chromosomes matching the

schema H in the generation of t + 1;
E[M(H, t + 1)] estimation of M(H, t + 1);
PR(H, t) probability of a chromosome that matches

H and is selected for replication taking
into account all the chromosomes in the
generation t;

PGM(H, t) probability that the schema H is still valid
after the genetic modification process tak-
ing into account all the chromosomes in the
generation t;

M × PR(H, t)× theoretical number of chromosomes
PGM(H, t) matching the schema H in the generation

of t + 1.
The evolution progresses with an increasing number of chro-

mosomes that match the schema H from one generation to
the next generation. PR(H, t) relies on the genetic operations
which are performed on the chromosomes. A genetic operation
is performed on all the chromosomes of the same generation
with an aim to maximize the exchange of genetic information
among these chromosomes. PR(H, t) can be calculated by

PR(H, t) = M(H, t) × f (H, t)

M × f (t)
(4)

where
M(H, t) number of the chromosomes matching H in the

generation of t;
f (H, t) average fitness value of the chromosomes matching

H in the generation of t;
f (t) average fitness value of all the chromosomes in the

generation of t.
Let PR

′(H, t) represent the probability of a chromosome that
matches H and is selected for replication taking into account
only a group of the chromosomes in a generation. We have

PR
′(H, t) =

n∑

i=1

(
PRi(H, t) × mi

M

)

=
n∑

i=1

(
mi(H, t) × f i(H, t)

mi × fi(t)
× mi

M

)

=
n∑

i=1

(
Fi(H, t)

Fi(t)
× mi

M

)

≤
n∑

i=1

Fi(H, t)

Fi(t)
× M

M
=

n∑

i=1

Fi(H, t)

Fi(t)

≤ M(H, t) × f (H, t)

M × f (t)
(5)

where
PRi(H, t) probability of a chromosome matching H that is

selected from the ith group of the chromosomes
in the generation of t;

n number of groups of the chromosomes in the
generation of t;

mi number of chromosomes in the ith group;
Fi(H, t) sum of the fitness values of the chromosomes

matching H in the ith group of the generation
of t;

Fi(t) sum of the fitness values of all the chromosomes
in the ith group of the generation of t.

Considering (4) and (5), we have

PR
′(H, t) ≤ PR(H, t). (6)

We denote PGM
′(H, t) as the probability that the schema H

is still valid after the genetic modification process considering
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only a group of the chromosomes in a generation. Following
the deduction process of (5), we have

PGM
′(H, t) ≤ PGM(H, t). (7)

Let E[M(H, t + 1)]′ represent an estimation of the number
of chromosomes that match the schema H considering only
a group of chromosomes in the generation of t. Based on (6)
and (7), we have

E[M[H, t + 1]] ≥ E[M[H, t + 1]]′ (8)

which indicates that a group of chromosomes matching
schema H in a generation would lead to an evolutionary
progress not faster than the case when all the chromosomes
in the same generation are processed together.

2) Guiding Principle 2: A smaller size of an input data set
leads to a faster evolutionary process of GEP.

a) Supporting argument: The size of an input data set
has an impact on the evolutionary progress of GEP. As
indicated in (2), the time in processing an input data set
(i.e., Td) depends on the size of the input data which can be
computed as

Td =
G∑

j=1

( Ne∑

i=1

(
Tei × Nd

)
)

j

(9)

where
Ne number of elements in a chromosome;
G number of chromosomes in the current generation;
Tei time needed to process the ith element of a chro-

mosome corresponding to a data point in the input
data set;

Nd number of data points in the input data set.
We denote Td

′ as the execution time to process a data chunk
which is smaller than the original input data set. Td

′ can be
computed as

Td
′ =

G∑

j=1

( Ne∑

i=1

(
Tei × Nd

′)
)

j

(10)

where Nd
′ is the number of data points in a data chunk.

Based on (9) and (10), the execution time difference
between the original input data set and a segmented data chunk
can be computed as

Td − Td
′ =

G∑

j=1

( Ne∑

i=1

(
Tei × Nd

)
)

j

−
G∑

j=1

( Ne∑

i=1

(
Tei × Nd

′)
)

j

=
G∑

j=1

( Ne∑

i=1

((
Tei × Nd

) − (
Tei × Nd

′))
)

j

=
G∑

j=1

( Ne∑

i=1

(
Tei × (

Nd − Nd
′))

)

j

> 0. (11)

3) Guiding Principle 3: To achieve a fair selection of
the chromosomes, an input data set must be segmented into
equally sized chunks.

a) Supporting argument: The evolutionary process pro-
gresses with an increasing number of chromosomes matching
the schema H in each generation.

Let
1) F be the fitness function representing the performance

of a chromosome in a generation;
2) di be the size of the ith data chunk;
3) c be a chromosome;
4) n be the number of chromosomes matching a schema H;
5) G is the number of chromosomes in the current gener-

ation.
Considering (5), it can be observed that PR(H, t) depends

on both f (H, t) and f (t) which can be computed by

f (H, t) =
∑n

i=0 F(c, di)

n
(12)

f (t) =
∑G

i=0 F(c, di)

G
. (13)

As a result, the probability that a chromosome is selected
for evolution depends on the size of the data chunk that the
chromosome processes. To ensure a fair selection, each chro-
mosome is processed with data chunks of the same size which
leads to an efficient evolution.

IV. DATA ENGINEERING IN GEP

Based on the proposed three guiding principles in
Section III, we present a data engineered GEP to speed up
computation in evolution.

A. Segmentation

Segmentation is employed to segment the original input
data set into a number of smaller data chunks of an equal
size. The size of a data chunk is determined by a predefined
segmentation ratio. A data chunk consists of a number of
data samples. Two segmentation approaches are employed,
which are random selection and cutting in sequence. Following
the approach presented in [33] which provides a good sam-
pling performance in data coverage, random selection is
developed to select data samples from the original input
data set and generate a data chunk. Each chromosome in
a generation is processed with the same data chunk during
the evolution of GEP. Cutting in sequence is implemented to
cut the original input data set into a number of data chunks of
an equal size in sequence. The order of the data samples in the
data chunks remains the same as they appear in the original
data set. While random selection targets at data samples with-
out a strong correlation, the cutting in sequence segmentation
scheme considers the correlations among the data samples of
a data chunk.

B. Overlapping

While segmentation reduces the computation complexity of
GEP, processing individual data chunks instead of the whole
data set normally degrades the accuracy level of GEP [1].
This is especially true when the data samples have strong cor-
relations. To minimize the accuracy degradation of GEP in
data segmentation, an overlapping scheme is developed which
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Algorithm 1 Overlapping Implementation
Input: two data chunks (A, B) without overlapping;
Output: two overlapped data chunks (A, B);
1: Set an overlapping ratio;
2: Calculate the number of samples to be overlapped;
3: FOR x = 1 TO number of samples DO
4: Take a sample from the overlapped partition in data chunk A;
5: Overwrite the sample in the overlapped partition of data chunk B;
6: x + +;
7: ENDFOR
8: RETURN data chunks A and B;

Algorithm 2 GEP Implementation
Input: A data set;
Output: A mathematical expression;
1: Segment the input data set into N data chunks
2: Generate N overlapped data chunks
3: Initialize the first generation of the population with more than N

chromosomes;
4: best_chromosome = chromosome(1);
5: best_fitness_value = 0;
6: WHILE i< termination generation number DO
7: FOR x = 1 TO size of the current population DO
8: Translate chromosome(x) into an expression tree(x);
9: global_fitness_value(x) = fitness_evaluator(expression_tree(x), N

data_chunks);
10: IF global_fitness_value(x)=the number of samples in

data_chunk(x) THEN
11: best_chromosome = chromosome(x) GOTO 21;
12: ELSE IF global_fitness_value(x) > best_fitness_value THEN
13: best_chromosome = chromosome(x);
14: best_fitness_value = global_fitness_value(x);
15: ENDIF
16: x + +;
17: ENDFOR
18: Generate the population of the next generation;
19: i + +;
20: ENDWHILE
21: RETURN best_chromosome;

takes into account the correlations among the data samples.
Algorithm 1 presents the overlapping scheme implemented in
the data engineered GEP.

C. GEP Implementation

Considering segmentation and overlapping, the data engi-
neered GEP is implemented as shown in Algorithm 2. The
GEP takes an input data set, and generates a mathemati-
cal expression which represents the correlations of the input
data parameters. The fitness evaluator of line 9 assesses the
performance of each chromosome in a generation follow-
ing the classical fitness function proposed in [1]. This fitness
evaluator has two versions, one is designed for the random
selection segmentation scheme without overlapping, whereas
the other is designed for the cutting in sequence segmentation
scheme with overlapping. In the case of random selection, the
quality of a chromosome is assessed considering the best local
fitness value.

However, the assessment in the case of cutting in sequence
follows the way as shown in Algorithm 3. In this case, the
quality of a chromosome is assessed based on its global fitness
value, which is an average of the local fitness values of the
chromosome when processing all the data chunks as shown
in lines 6–12. This helps prevent the GEP from trapping in
a local optimum.

Algorithm 3 Fitness Evaluator
Input: N data chunks and an expression_tree(x);
Output: The fitness value of a given chromosome;
1: data_chunk_no = x mod N;
2: current_data_chunk = data_chunk(data_chunk_no);
3: local_fitness_value = fitness(expression(x), current_data_chunk);
4: fitness_value = local_fitness_value;
5: IF local_fitness_value > best_fitness_value THEN
6: FOR y = 1 TO the number of N DO
7: current_data_chunk = data_chunk(y);
8: local_fitness_value = fitness(expression(x), current_data_chunk);
9: accumulation = accumulation + local_fitness_value;
10: ENDFOR
11: average_fitness_value = accumulation / N;
12: fitness_value = average_fitness_value;
13: ENDIF
14: RETURN fitness_value;

Algorithm 4 GEP Parallelization
Input: m CPU-threads, a population of chromosomes, N data chunks;
Output: the fitness values of chromosome in a population;
1: remain_chromosome = size of the current population;
2: WHILE remain_chromosome>0 DO
3: FOR y = 1 TO the number of m DO
4: index = remain_chromosome;
5: Assign CPU-Thread(y, chromosome (index)) //parallel execution
6: {
7: Translate chromosome(index) into an expression tree(index);
8: fitnese_value=fitness_evaluator(expression_tree(index), N

data_chunks);
9: global_fitnese_value = fitness_value;
10: }
11: remain_chromosome = remain_chromosome − 1;
12: ENDFOR
13: ENDWHILE
14: RETURN global_fitnese_value;

D. GEP Parallelization

The data engineered GEP presented in Section IV-C is fur-
ther parallelized with an aim to speed up the computation
process when dealing with potential big data. The parallel
GEP maintains the generation structure in such a way that it
processes the chromosomes on a generation basis using a num-
ber of CPU cores simultaneously of which each CPU core has
two threads. The multithreaded OpenMP [36] is employed in
the parallelization of the GEP calculating the fitness values
of the chromosomes of a generation in parallel as shown in
Algorithm 4.

V. PERFORMANCE EVALUATION

To evaluate the performance of the data engineered GEP,
a number of experiments were conducted. This section ana-
lyzes the impact of segmentation, overlapping, and paralleliza-
tion on the performance of the GEP, respectively. First, it
introduces the two data sets employed in the evaluation.

A. Data Sets

Two data sets were evaluated in the experimental tests which
are detailed below.

1) Power System Data Set: The total data set contains
9568 data points (measurements) collected from a com-
bined cycle power plant over six years [34], [35]. It consists
of 5000 measurements for training and 4568 measurements
for testing. Following our previous work presented in [39],
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TABLE I
GEP PARAMETER SETTINGS

GEP generates a mathematical function which represents the
correlations of the power-related environmental factors for
production prediction of the power plant.

2) Particle Physics Data Set: This data set [17]–[19] con-
tains 10 000 samples of events of which the first 5000 samples
were used for training and the rest were used for testing.
A sample can be classified into an event signal or a background
noise. Each sample has eight input factors. Similar to the pro-
cessing on the power system data set, the data engineered
GEP also generates a mathematical function representing the
correlations of the input factors which is used for classification.

It is worth noting that the use of two data sets in the
evaluation has some considerations. On one hand, the time
serial power system data set is not complex in that each
data sample has a small number of factors with simple mathe-
matical dependencies. However, the power data samples have
a strong correlation among them. On the other hand, the par-
ticle physics data set is complex due to the large size of input
factors of a data sample together with the mathematical or
logical dependencies among these factors. Different from the
power data set, the samples in the particle physics data set
are not highly correlated. As a result, these two data sets
with complementary features were selected for evaluating the
performance of the data engineered GEP.

B. GEP Parameter Settings

The settings of data engineered GEP are listed in Table I.
The parameters were set using the classical values used for
a traditional GEP.

One gene was employed for each chromosome to avoid the
use of the connection function, which might lead to an inef-
ficient chromosome structure [1]. Considering the complexity
of the two data sets, we set 20 000 generations for the physics
data and 10 000 generations for the power data.

To evaluate the performance of the data engineered GEP,
an Intel Xenon Server was configured with two Intel E5-
2697 V2 CPU processors at 2.7 GHz running Linux Ubuntu
version 14.04. Each of the two processors has 12 CPU cores
and supports 24 threads with a shared memory space of
64 GB. We conducted ten runs for each test in the evaluation
and observed that the execution times of the ten runs were
highly stable. For example, Table II shows the coefficient of

TABLE II
COEFFICIENT OF VARIATION VALUES (%)

Fig. 2. Impact of overlapping on particle physics data.

Fig. 3. Impact of overlapping on power system data.

variation values of nine tests on the two data sets, which are
in the range between 2.2% and 10.8%. As a result, an average
value of ten runs was taken for each test.

C. Overlapping

A number of tests were conducted to evaluate the
performance of the GEP with the cutting in sequence overlap-
ping scheme from the aspects of both accuracy and execution
time. Figs. 2 and 3 show the results of the GEP on the two
data sets with a segmentation ratio of 10%.

From Figs. 2 and 3, it can be observed that accuracy level
of the GEP goes up with an increasing overlapping ratio on
the two data sets but at the cost of a higher execution time in
computation. The overlapping ratios of 10%, 40%, 50%, and
80% were evaluated with a consideration that a low or high
overlapping ratio would not balance well the tradeoff between
the accuracy gain and execution time incurred. That was the
reason why 50% was selected as the best overlapping ratio.

D. Segmentation

The segmentation ratio determines the size of a data chunk
that is assigned to each chromosome. Three segmentation
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Fig. 4. Impact of segmentation on the two data sets.

ratios (i.e., 50%, 10%, and 5%) were tested in the evalua-
tion. Fig. 4 shows the impacts of the segmentation ratios on
the execution time of the data engineered GEP on the two
data sets, respectively.

Although the execution time of GEP decreases when the
segmentation ratio goes down, a small segmentation ratio
might lead to a low accuracy level in data processing. For
example, when the segmentation ratio is 10%, the GEP pro-
duces an accuracy of 94.68% on the particle physics data and
99.06% on the power system data, respectively. However, the
case of using a segmentation ratio of 5% generates 93.942%
on the particle physics data and 96.81% on the power system
data in term of accuracy. As a result, a segmentation ratio of
10% was selected in the evaluation.

E. Parallelization

To evaluate the performance of the data engineered GEP
in parallelization (denoted as P-GEP), we implemented an
existing parallel GEP work (i.e., NICHE) [27] for compari-
son purpose. The number of CPU threads was varied from 1 to
48 in the tests. Two versions of the P-GEP were implemented.
The P-GEP-overlap adopts the cutting in sequence segmen-
tation scheme with overlapping, whereas the P-GEP-random
adopts the random segmentation scheme without overlapping.

It can be observed from Figs. 5 and 6 that the execution time
of the P-GEP in processing both the particle physics data and
the power system data decreases with an increasing number of
CPU threads. The two versions of the P-GEP are significantly
faster than the NICHE work. This is mainly due to the fact that
P-GEP follows closely the generation structure of GEP lead-
ing to an efficient evolution. In addition, processing segmented
data chunks further speeds up the computation. P-GEP-random
is even faster than P-GEP-overlap because the less computa-
tion overhead incurred in accessing the multiple data chunks.
It is worth noting that the execution time of the P-GEP in
processing small data chunks does not decrease significantly
when the number of CPU threads increases which reflects the
fact that parallelization better suits big data processing which
will be further discussed in Section VI.

Figs. 7 and 8 show the accuracy of P-GEP in comparison
with the NICHE work in processing the two data sets. The
accuracy of P-GEP-overlap is similar to that of NICHE in

Fig. 5. Computation of the P-GEP on particle physics data.

Fig. 6. Computation of the P-GEP on power system data.

Fig. 7. Accuracy of the P-GEP on particle physics data.

all the tests. On average, P-GEP-overlap produces an accu-
racy of 94.57% on the particle physics data and 96.26% on
the power system data, whereas NICHE produces an accuracy
of 94.62% and 94.83%, respectively. It is worth noting that
P-GEP-overlap is more accurate than P-GEP-random on the
power system data due to the fact that overlapping well suits
data sets, such as the power system data with a strong cor-
relation among data samples. The P-GEP-random produces
the worst level of accuracy due to its random selection of
data chunks without overlapping.

Figs. 9 and 10 further show that parallelization better
suits for processing potential big data. It can be observed
from Fig. 9 that the execution time of P-GEP-overlap using
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Fig. 8. Accuracy of the P-GEP on power system data.

Fig. 9. Impact of segmentation ratio on the execution time of P-GEP-overlap
in processing particle physics data.

Fig. 10. Impact of segmentation ratio on the execution time of the P-GEP-
overlap in processing power system data.

a segmentation ratio of 50% decreases significantly when the
number of CPU threads increases. However, P-GEP-overlap
does not produce much difference in processing the particle
physics data using a segmentation of 10% and 5%, respec-
tively. In the case of processing power system data as shown
in Fig. 10, the execution time of the parallel P-GEP-overlap
using a segmentation ratio of 5% is even slower than the case
of using a segmentation ratio of 10% when the numbers of
CPU threads are 24 and 48, respectively. This is because the
segmented power system data chunks are small in volume
which leads to a higher overhead in parallelization than the
speedup achieved in computation.

Fig. 11. Distributions of the execution times of the P-GEP and NICHE in
processing the two data sets.

TABLE III
RESULTS OF SHAPIRO–WILK TEST

TABLE IV
RESULTS OF t-TEST

F. Statistical Analysis

To further compare the performance of the data engi-
neered GEP with that of the NICHE work, we employed
48 CPU threads and conducted 50 runs in total on the two
data sets, respectively. The execution times in running the two
algorithms follow a normal distribution as can be observed
from Fig. 11.

We further performed normality test on the execution times
of the two algorithms using the Shaprio–Wilk test [46] which
handles well with a small number of data samples. The W
values of the Shaprio–Wilk tests as shown in Table III confirm
the observed normal distributions as shown in Fig. 11.

Therefore, we employed t-test [45] to compare P-GEP with
NICHE on the execution times which follow a normal distribu-
tion and the comparison results are shown in Table IV. It can
be observed that the data engineered GEP with overlapping
is faster than NICHE on both data sets at a significance
level higher than 99.9%. We further observe that the accu-
racy of the data engineered GEP is slightly higher and more
stable than that of NICHE. This is mainly due to the fact
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that the data engineered GEP considers the global fitness of
chromosomes rather than their local values.

VI. GEP COMPUTATION SCALABILITY ANALYSIS

To further investigate the computation scalability of the
data engineered GEP in dealing with potential big data using
a large number of CPU threads, we developed its compu-
tation model based on the experimental results presented
in Section V. In this section, we present the computation
model and analyze the computation scalability of the data
engineered GEP.

A. GEP Computation Model

Following our previous work [39] we developed a compu-
tation model of the data engineered GEP on the two data sets,
respectively, which represents the correlations between the
input parameters (number of CPU threads x0, data size x1,
and segmentation ratio x2) and the output (execution time).

The computation model of the data engineered GEP for the
particle physics data set can be represented by

ExecutionTime =
[−49.6019773651

Sin(x0)
∗ Sin(x1)

]

+ 2 ∗
(

Square(x0)

Sqrt(x1)

)

+ Square(25.013766624)

+ Sqrt

(
Power(20.9463112056, 4)

Sqrt(x1)

)
. (14)

This is mined from the experimental results obtained using
both 5% and 50% segmentation ratios on the physics data.
These two ratios generated a large gap between the two result
sets which leads to a highly accurate computation model in
dealing with data samples with a large number of factors.

For the power system data, we employed the experimental
results obtained using both 5% and 10% segmentation ratios
to mine the computation model of data engineered GEP which
can be represented by

ExecutionTime = Power(Sqrt(x1 − TAN(x2)), 3)

+
((

x0 − x1

Sqrt(x0)

)
∗ (x0 − x2)

)

+ Cos(Log(x1)) ∗ (Square(x0))

+ Cos(Power(x1,−401043.774094)) ∗ [
Square(x0)

]

−
(

Tan

(
Log

[
Square

(
80595.3126401

x1

)])

+ Square

(
Log

(
Square

[−409114.183858

x1

])

+ Square

(
Log

(
Square

[−22415.3897725

x1

]))

× x2

100
∗ x0

80.6
∗

(
Power

(
1 + 0.6 ∗ 1

x0
, x0 − 1

)

− Power(1.0093, x0)

)
. (15)

The use of these two ratios on the power system data with
a small gap aimed to reflect the fine-grained behaviors of the

Fig. 12. Computation model validation on particle physics data.

Fig. 13. Computation model validation on power system data.

computation model in dealing with data samples with a small
number of factors.

B. Validation of GEP Computation Model

We employed the two data sets of the original sizes to gen-
erate the computation model to estimate the execution times of
the data engineered GEP running on a varied number of CPU
threads. To validate the computation model of the data engi-
neered GEP, we compared the estimated values with the actual
execution times in processing the two data sets but with dou-
bled sizes. Figs. 12 and 13 show the performance of the
computation model on the two data sets, respectively, using
a segmentation ratio of 50%.

The accuracy of the computation model can be computed by

Accuracy = 100%

−
(|Theoretical Result − Experimental Result|

Experimental Result

)

× 100%. (16)

Tables V and VI show that the computation model achieves
an average accuracy level of 96.05% on the particle physics
data and 95.14% on the power system data, respectively.

C. Computation Scalability

We applied the computation model to evaluate the scal-
ability of the data engineered GEP in dealing with big
data scenarios. Figs. 14 and 15 show that for the two data sets,
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TABLE V
COMPUTATION MODEL VALIDATION ON PARTICLE PHYSICS DATA

TABLE VI
COMPUTATION MODEL VALIDATION ON POWER SYSTEM DATA

Fig. 14. Computation scalability on particle physics data.

Fig. 15. Computation scalability on power system data.

the execution time of the data engineered GEP increases
slowly with an increasing size of input data up to 100 TB,
using 10 000 CPU threads.

We further evaluated the computation scalability of the
data engineered GEP in dealing with varied numbers of CPU
threads. Fig. 16 shows that the execution time of the data engi-
neered GEP decrease when processing 1 TB particle physics
data with an increasing number of CPU threads up to 1000.
It can be observed that the speedup of parallelization is high
when the number of CPUs is less than 100 due to the fact
that CPU threads themselves can also cause an additional
computation overhead.

Fig. 16. Parallelization on particle physics data.

Fig. 17. Parallelization on power system data.

Fig. 18. Fluctuations in performance gain via parallelization.

Data samples in the power system data set have a simpler
structure than the data samples in the particle physics data set.
As a result, the performance gain achieved via parallelization
in processing one unit of power system data using a num-
ber of CPU threads is less than the case of processing one
unit of particle physics data. When the structure of a data set
like the power system data is simple, the performance gain of
parallelization can be easily offset by the computation over-
head incurred in maintaining these CPU threads. This can be
observed from Fig. 17 showing that the execution time of
the data engineered GEP decreases sharply with an increasing
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number of CPU threads up to 23. The data engineered GEP
reaches the lowest estimated execution time of 5.66E + 013 s
when 23 CPU threads participate in the computation. After
this point, the execution time goes up due to a high ratio of
the overhead incurred in maintaining these CPU threads to the
performance gain achieved through parallelization. The fluc-
tuations in performance gain via parallelization can be further
observed in Fig. 18, where a segmentation ratio of 5% was
used on the two original data sets.

Overall the data engineered GEP achieves a high scalability
in dealing with potential big data using a large number of CPU
threads.

VII. CONCLUSION

In this paper, we have presented an efficient data engineered
GEP solution in dealing with potential big data. It builds on
the proposed three guiding principles which necessitate the
considerations on the generation structure of chromosomes,
the size of input data, and the segmentation of data chunks
when speeding up the evolution process of GEP. Experimental
results confirmed that the data engineered GEP which follows
closely the generation structure of chromosomes in evolution
and considers the size of input data did speed up the evolution
process significantly without loss of accuracy in data corre-
lation mining. The computation model further showed that
the data engineered GEP is highly scalable in dealing with
potential big data.

It should be pointed out that for data sets with a high volume
in size but a low complexity in data structure, purely increasing
the number of CPU threads could lead to slow executions due
to the fact that the overhead incurred in maintaining these CPU
threads is higher than the performance gain to be achieved
through parallelization.

The data engineered GEP can further benefit from the
schema theory proposed in our previous work [23] which
introduces the concept of building blocks in GEP evolution.
A GEP building block is a segment shared by high quality
chromosomes in a population which can be discovered dur-
ing the evolutionary process. Building blocks can be used
to replace the corresponding segments of low quality chro-
mosomes for computation speedup in evolution. Therefore,
a future work will research how the data engineered GEP can
be integrated with building blocks.
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