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Abstract—In this paper, a Self-Organising Cloud Radio Access
Network is proposed, which dynamically adapt to varying net-
work capacity demands. A load prediction model is considered
for provisioning and allocation of Base Band Units (BBUs) and
Remote Radio Heads (RRHs). The density of active BBUs and
RRHs is scaled based on the concept of cell differentiation and
integration (CDI) aiming efficient resource utilisation without
sacrificing the overall QoS. A CDI algorithm is proposed in
which a semi-static CDI and dynamic BBU-RRH mapping for
load balancing are performed jointly. Network load balance is
formulated as a linear integer-based optimisation problem with
constraints.The semi-static part of CDI algorithm selects proper
BBUs and RRHs for activation/deactivation after a fixed CDI cy-
cle, and the dynamic part performs proper BBU to RRH mapping
for network load balancing aiming maximum Quality of Service
(QoS) with minimum possible handovers. A Discrete Particle
Swarm Optimisation (DPSO) is developed as an Evolutionary
Algorithm (EA) to solve network load balancing optimisation
problem. The performance of DPSO is tested based on two
problem scenarios and compared to Genetic Algorithm (GA) and
the Exhaustive Search (ES) algorithm. The DPSO is observed to
deliver optimum performance for small-scale networks and near
optimum performance for large-scale networks. The DPSO has
less complexity and is much faster than GA and ES algorithms.
Computational results of a CDI-enabled C-RAN demonstrate
significant throughput improvement compared to a fixed C-RAN,
i.e., an average throughput increase of 45.53% and 42.102%, and
an average blocked users reduction of 23.149%, and 20.903% is
experienced for Proportional Fair (PF) and Round Robin (RR)
schedulers, respectively.

Index Terms - Base Band Unit (BBU), Cloud Radio Access
Network (C-RAN), Particle Swarm Optimisation (PSO), Remote
Radio Head (RRH), Self-Organising Network (SON).

I. INTRODUCTION
The surging volume of mobile data traffic witnessed in the

recent years is triggered by the dramatic growth in smart
mobile devices, diverse mobile internet enabled applications,
and ever increasing wireless access demands. It is predicted
that the global mobile devices and connections will increase
up to 20 billion or even 50 billion by 2020 [1]. One promising
direction is to densify the access networks (especially at data
traffic hot-spots) with small cells. However, network densifica-
tion comes with even bigger challenges, i.e., the considerable
increase in capital (CAPEX) and operational (OPEX) expen-
diture, a greater number of un necessary handovers among
small cells, traffic load imbalances, and under-utilised network
resources. Mobile Network Operators (MNOs) require inno-
vative methods and solutions beyond traditional performance
upgrades to extract maximum returns on investment while
maintaining high levels of network QoS.

In general, a network may not function at its best perfor-
mance levels if its resources are utilised inefficiently. Network
resources are often under-utilised during unbalanced traffic sit-
uations, particularly when some network cells may suffer from
heavy loads causing a high number of blocked users, while
others remain lightly loaded with their resources underutilised.
Therefore, it is crucial to achieving self-optimisation in the
network on varying traffic environment. Inter-cell optimisation
is a critical optimisation problem in Self Organising Networks
(SON) for the Third Generation Partnership Project (3GPP)
[2], [3].

Moreover, SON architectures can be divided into three
types - a) centralised, b) decentralised and, c) hybrid. In
the decentralised and hybrid SON architectures, the SON
algorithm partially runs on the network management level
and partially in the network elements. Coordination of dif-
ferent SON functions, possibly having conflicting goals and
operating on various time scales, is more challenging than in
the centralised architecture [4]. In the centralised structure,
a central Network Management System (NMS) or a SON
server decides the network optimisation algorithms and the
eNodeB parameter configuration [5]. The centralised SON
architecture is more manageable regarding the implementation
of SON algorithms compared to distributed and Hybrid SON
architectures. It enables the SON algorithms to jointly optimise
multiple network parameters, therefore, allowing a globally
tuned system. However, the centralised SON server in this
approach requires strict latency and delay requirements regard-
ing system KPIs and UE measurements for SON parameter
updates, which restricts the applicability of a purely centralised
SON architecture.

However, Cloud Radio Access Network (C-RAN) is a
promising centralised network architecture that can support
super-dense small cells deployment. C-RAN is considered
to meet the challenges mentioned above and has attracted
considerable attention by both academia and MNOs and is
a key enabler of Next Generation Mobile Networks (5G) [6]–
[8]. The C-RAN architecture consists of the following main
parts:

• Several BBUs aggregated into a BBU cloud/pool for
centralised management and processing.

• Distributed RRHs in a given geographical area.
• The connection between BBUs and RRHs (also ref-

ered to as front-haul) via an optical transport network

Unlike conventional cellular networks, where the base sta-
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tions are not always in peak time and often work in idle states
with their resources not fully utilised, in C-RAN, suitable
resource allocation schemes can dynamically adjust the logical
connection between BBUs and RRHs. It is necessary for a
system to optimise its resources according to varying traffic
environments. In C-RAN the problem of resource wastage is
overcome by dynamically allocating the shared and centralised
BBUs resources to the RRHs. Moreover, significant cost
and energy savings can be achieved by dynamically scaling
the BBUs concerning varying traffic caused by uneven user
distribution in the network [9]. C-RAN is feasible to realise
the coordinated control between multiple cells by centralised
management.

Although the main features in SONs include self-
configuration, self-optimisation, and self-healing. However,
this paper emphasises on self-optimisation technique in C-
RAN concerning network performance improvement. The pri-
mary focus is to model a multi-objective optimisation problem
along with several other criteria necessary to tailor the opti-
misation objective according to specific system requirements.
C-RAN combined with Self-optimising ability can provide
MNOs with a flexible network regarding network dimension-
ing, adaptation to non-uniform traffic and efficient utilisation
of network resources.. However, before a full commercial C-
RAN deployment, several challenges need to be addressed.
Firstly, the front-haul technology used must support enough
bandwidth for delivering delay sensitive signals (i.e., the 1
ms physical layer processing requirement of LTE). Secondly,
the proper BBU-RRH assignment in C-RAN to not only
support collaboration technology like Cooperative Multipoint
Processing (CoMP) but also enabling load balancing in the
network. Moreover, significant energy savings can be achieved
if the RRHs and BBUs are turned on/off in such a way that
the QoS of the network is not degraded.

In this context, a two-stage design is proposed in this
paper for efficient resource utilisation in a self-optimised C-
RAN with real time BBU-RRH mapping. Network resources
are utilised based on the concept of Cell Differentiation and
Integration (CDI) which allows a cell(s) to split into multiple
small cells and vice versa in response to a measured load
information in one or more cells in the network. CDI allows
C-RAN to adapt to varying capacity demands through resource
provisioning and allocation. Resource provisioning not only
resizes the number of BBUs in the pool to meet the fluctuating
traffic demands but also scales the density of active RRHs
required to serve a given geographical area. In the first stage,
the optimum number of BBUs is computed to serve the load
demand, and the RRHs are activated or deactivated based on
the concept of CDI to handle network traffic load. In this
paper, the number of BBUs required to serve the system load
at a given time is computed based on a prediction model
called Wiener process [10]. In the second phase, the proper
BBU-RRH mapping is identified to avoid unbalanced network
scenarios while maintaining high levels of QoS. The second
stage in this paper is modelled as an integer based linear
optimisation problem with constraints.

The rest of the paper is organised as follows: Section II
presents a survey of related work; Section III presents the Self-

Optimising C-RAN framework; Section IV presents the system
model; Section V presents a model of load prediction and BBU
estimation; Section VI illustrates the formulation for dynamic
RRH-sector allocation problem. Section VII defines the CDI
algorithm. Computational results are discussed in Section VIII.
Finally, the paper is concluded in Section IX.

II. RELATED WORK

Numerous studies and methods on self-optimisation have
suggested addressing the problem of load balancing in cellular
networks via SON. When a traffic imbalance is detected
among cells, operation parameters are autonomously adjusted
such as antenna angle (Antenna tilt) [11] and/or handover
parameters [12] to reduce the coverage area to achieve Mo-
bility Load Balancing (MLB) [13]. In MLB, the handover
thresholds are adjusted following traffic conditions which
result in expansion or contraction of virtual transfer areas
among adjacent cells and thereby reducing or increasing users
in the cells. However, incorrect handover parameter adjustment
can cause additional handovers in the network which often
leads to handover ping-pongs/delays and radio link failures.
Mobility Robustness Optimisation (MRO) [14] is a SON
function which aims to eliminate link failures and reduce
unnecessary handovers caused by incorrect handover parame-
ters. Power adaptation for load balancing is another technique
to effectively change the cell coverage area which in return
changes the association of all users in the coverage area. In
LTE, Cell Range Expansion (CRE) [15] is a technique which
allows Low Power Nodes (LPN) to expand their coverage area
and take in users from the Macro Cell. Usually, users associate
to the cell which provides the strongest signal. However, in
CRE users connect to the LPNs despite receiving the strongest
signal from the Macro cell. A comprehensive survey on self-
organisation in future cellular networks, which includes a
detailed description of the schemes mentioned above along
with hybrid approaches and other existing SON load balancing
methods in the literature are provided in [16].

Moreover, the benefits of Artificial Intelligence (AI) tech-
niques while designing load balancing SON algorithms are
inevitable. Among numerous AI techniques, the Genetic Algo-
rithm (GA) [17], [18] and Swarm intelligence [19] are the most
embraced learning algorithms inspired the process of gene
evolution and the natural actions of swarms of ants, a shoal of
fish, a flock of birds etc, respectively.Many algorithms have
been designed to mimic the behaviour of natural organisms,
however, Particle Swarm Optimisation (PSO) [20] remains the
backbone of swarm intelligence on which all other algorithms
are built. Both GA and PSO are widely discussed in studies
related to network planning, interference management, routing
and coverage optimisation problems [21]–[24].

On the other hand, a number of research studies on en-
abling technologies for C-RAN exist. Here, some related stud-
ies on BBU-RRH mapping along with RRH-UE association
are briefly described. In [25], the authors propose a cross-
layer framework for downlink multi-hop C-RAN to improve
throughput performance by optimising both physical and net-
work layer resources. Also, RRHs beamforming vectors, user
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RRH association, and network coding based routing are opti-
mised in an overall design. In [26], the authors attempt to solve
a joint RRH and precoding optimisation problem which aims
to minimise network power consumption in a MIMO based
user-centric C-RAN. In line with this work, the authors of [27]
propose a weighted minimum mean square error (WMMSE)
approach to solving the network-wide beam-forming vector
optimisation problem for RRH-UE clusters formation. The
BBU scheduling is then formulated as a bin packing problem
for energy efficient BBU utilisation in a heterogeneous C-
RAN environment. A dynamic BBU-RRH mapping scheme
is proposed in [28] using a borrow-and-lend approach in
C-RAN. Overloaded BBUs switch their supported RRHs to
underutilised BBUs for a balanced network load and enhanced
throughput. The authors of [29] proposed a lightweight, scal-
able framework that utilises optimal transmission strategies
via BBU-RRH reconfiguration to cater dynamic user traffic
profiles. [30] describes the traffic adaptation and energy saving
potential of TDD-based heterogeneous C-RAN by adjusting
the logical connections between BBUs and RRHs. The authors
of [31] recently investigated an RRH clustering design and
proposed a spectrum allocation genetic algorithm (SAGA) to
improve network QoS via efficient resource utilisation.

Regarding other related work, research initiatives are taken
to develop Network Function Virtualisation (NFV) and Soft-
ware Defined Network (SDN) solutions for C-RAN [32]–[34].
NFV is an architectural framework that provides a virtualised
network infrastructure, functions and NFV orchestrator for
control and management [35]. However, SDN is a concept
related to NFV. SDN decouples data and control plane to
enable directly programmable control plane while abstract-
ing underlying physical infrastructure from applications and
services [36]. Although SDN and NFV are not the prime
focus of this paper, they are presented in this section for
completeness of the C-RAN introduction. Moreover, [8], [37]
provides a comprehensive survey on C-RAN and highlights the
challenges, advantages, and implementation issues regarding
different deployment scenarios. Also, an in-depth review of the
principles, technologies and applications of C-RAN describing
innovative concepts regarding many physical layer, resource
allocation, and network challenges together with their potential
solutions are highlighted in [38].

To sum up, the existing resource allocation mechanisms
in C-RAN does not take full advantage of the concept of
centralised BBU pool. This paper extends the scope of C-RAN
by introducing a concept of CDI with dynamic BBU-RRH
mapping for load balancing and efficient resource utilisation.
The system model in this article allows combining SON and
C-RAN for a more centrally managed network operations. The
proposed model is suitable for the framework of software
defined front-haul with optical switching for C-RAN [29].
However, this paper only focuses on the centralised-SON
aspect of the structure.

III. SELF-OPTIMISING CLOUD RADIO ACCESS NETWORK
FRAMEWORK

In this paper, the self-organising framework proposed in
the author’s previous work [39] is utilised. The framework is

applicable for short and long term dynamics of C-RAN and
maximises the overall QoS of the system while considering a
network load balance. Network QoS is maximised based on
desired system KPIs. Note that, several performance indicators
(KPIs) can be considered to measure the network QoS, so the
framework is modelled as a general multi-objective optimi-
sation problem including several criteria. Many other criteria
may be included to tailor other optimisation objectives subject
to specific operator policy requirements.
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Fig. 1: Genetric concept of a Self organisation in C-RAN

Fig. 1 shows a generic concept of a self-organisation in C-
RAN. The BBU cloud consists of aggregated BBUs pool and is
connected to the RRHs via an optical transport network which
may include a switch fabric (including a network of switches,
optical splitters, multiplexers) [40] and low latency, high
bandwidth fibre optic links as shown in Fig. 1. Note that, there
are various possibilities of front-haul deployment in C-RAN
[41]. The self-organisation concept is explained in phases as
shown in Fig. 1, where a SON server/controller inside the
BBU pool realises the self-organising concept. The observation
and analysis phases are utilised to detect the performance of
current network deployment (BBU-RRH configuration), and
then an optimal implementation is identified for performance
comparison. KPIs are used to monitor network status for
current and optimal deployment settings. Based on the chosen
KPIs, an algorithm decides the best system configuration, and
finally, the new topology (BBU-RRH setting) is enforced in
the execution phase (if necessary). The primary objective of
SON server/controller in the proposed C-RAN architecture is
as follows: (i) to compile required metric by discovering the
status of each KPI and (ii) to produce a decision and enforce it.
The BBUs feed the system KPIs to the main multi-objective
decision-making algorithm hosted by SON server/controller.
The weights or priority levels are then applied to each KPI for
decision making. The corresponding weight of a KPI defines
its preference value and is set according to network operator’s
preferences.

Fig. 2 provides a logical block diagram for a multiple objec-
tive decision making performed by the SON server/controller.
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Fig. 2: Block diagram of multi-objective decision making logic
for SON server

The BBUs feed the system KPIs to the main multi-objective
decision-making algorithm hosted by SON server/controller.
The weights or priority levels are then applied to each KPI for
decision making. The corresponding weight of a KPI defines
its preference value and is set according to network operator’s
preferences.

IV. SYSTEM MODEL

A. C-RAN Architecture

A self-optimised C-RAN (SOCRAN) architecture is pre-
sented in Fig. 3. The BBUs are decoupled from the RRH and
migrated to a centralised BBU-pool, whereas the RRHs with
simple RF transmission functions are left on the cell sites.
A SON controller inside the BBU cloud monitors the BBU-
pool resource utilisation as well as controls the front-haul.
Each RRH is connected to the BBU pool via optical transport
network (front-haul). Fig. 3 shows that each cell is covered
by seven RRHs. In contrast, the same geographical area is
served by a single high-power base station at extreme low
load traffic conditions. As the traffic load reaches the resource
limitation of the high-power base station, the geographical area
differentiates into C equally sized small cells by activating the
RRHs deployed. Furthermore, each of the C cells can further
differentiate into c more small cells by activating the RRHs
deployed within the cell to accommodate capacity demands.
The term cell and RRH are used interchangeably throughout
this paper since it is assumed that an RRH can serve only
one cell at a particular time t. Moreover, each RRH can be
served by only one BBU at a given time instance. The actual
number of RRHs required in the network is determined by
the coverage area, users density, and other environment-related
factors, however, in this paper, both C and c are considered
to be seven as a reasonable example.

In this paper, the concept of CDI is supported by considering
three tiers of RRHs deployment in the network as shown in
Fig. 4. Tier-3 RRH deployment imitates a single high-power
Base station serving a Macro cell as in traditional cellular
systems. Tier-2 and 1 represents a structure with universal
frequency reuse, where each cell is surrounded by a continuous
tier of 6 + E and 6 × [1 + j] + E cells, respectively. Where
E represents the number of other external macro cells, and j
accounts for the level of differentiation, e.g., level 1 represents
any one of the tier-2 cells further differentiated; level 2 shows
any two of tier-2 cells are further differentiated and so on as
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Fig. 3: Structure of a Cloud Radio Access Network represented
as SON

shown in Fig. 4. A set Si = {RRHi1,RRHi2, ...,RRHic} is
maintained for each cell Ci in tier-2 RRH deployment, which
contains a group of RRHs responsible for differentiating cell
Ci into c small cells provided that the sum of transmit powers
of all RRHs covers Ci coverage area. The transmission power
of the upper tier RRHs is split between the lower tier RRHs
(including the original RRH). The SON server monitors all
BBUs in the pool for traffic information and is responsible
for cell differentiation and integration with proper BBU-RRH
configurations, whereas the optical switch is in charge of
realising the settings via server commands.

B. System model constraints

This paper presents a centralised-SON architecture for C-
RAN, a central server/controller collects reports about the
BBUs and their users and informs the BBUs about the con-
figuration along with switching the BBU-RRH configuration
via server commands. Fine time-scale operations that happen
within a few milliseconds, such as user scheduling in the
frame, are executed by the BBUs themselves since they cannot
be realised in the same report-configure-inform cycle due
to latency limitations posed by the interfaces to/from the
controller. Since the complete deployment of C-RAN has to
pass through certain stages to extract its full potential [42], the
final stage involves BBU resource pooling via NFV. In this
sense, centralised SON can be seen as a direct extension of
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Fig. 4: Cell differentiation and integration with multiple tiers
of RRH deployment.

Software Define Networks control/data plane separation prin-
ciple, where resources can be virtualised thereby leveraging
full benefits of C-RAN. The proposed System model allows for
more efficient resource utilisation through centralised control
across aggregated BBU resources. However, the model is
constrained in the following ways:
• Since the SON server/controller is in charge of

monitoring the BBU-cloud, the whole network may
collapse in case of server/controller failure.

• Coarse time-scales may limit the optimisation pro-
cess due to interface-latency between SON controller
and the BBUs, along with the front-haul latency.

• The front-haul must support enough bandwidth for
delivering delay sensitive signals, and the switching
elements used to effect the BBU-RRH configurations
must not affect the sub-frames time scale (i.e., 1ms)

• The sub-frame processing delay on a link between
RRHs and BBU should be kept below 1 ms, to meet
HARQ requirements [42]

Potential solutions to the challenges/limitations mentioned
above are discussed in [43] and [44]. Furthermore, the strategic
deployment of RRHs to support the proposed concept may or
may not be feasible in real-time environments. The inclusion
of random RRHs distribution with different cell sizes and
shapes and the indefinite network extension in all directions
is a more realistic approach. However, such an approach gives
rise several other challenges such as RRHs being located very
close to each other, increased inter-cell interference at cell
edges, irregular cell shapes and sizes, and coverage holes
within a geographical area among others. Such challenges

need to be addressed within the CDI algorithm if a random
RRH deployment is considered. Especially by considering all
possibilities during cell differentiation and integration.

C. Channel model

In this paper, Guaranteed Bit Rate (GBR) users with QoS
requirements are considered. The frequency reuse factor is 1,
and the time-frequency resources are equal for all BBUs. The
basic unit of time-frequency resources that can be allocated
to users is known as the Physical Resource Block (PRB).
Let M and N represent the number of BBUs and RRHs in
the network, respectively, such that Kin represents the total
number of users in cell i served by RRH n. Each user
reports Channel Quality Information (CQI) to its serving BBU
every two subframes (i.e., 2 milli-seconds) for proper PRB
assignment. The channel model considered in this paper is a
composite fading channel which involves path-loss and both
small and large scale fading, given as:

Hkin = h∗kin lkin
[
AD−δkin

]
(1)

where h∗kin and lkin represent the small and large scale fading
channel between the RRH n and user k in cell i, respectively.
The small scale fading is assumed to be a Rayleigh random
variables with a distribution envelop of zero-mean and unity-
variance Gaussian process. AD−δkin reflects the path-loss be-
tween RRH n and user k in cell i, where A is a constant
which depends on the carrier frequency fc and Dkin is the
distance between user k and RRH n in cell i and a path-
loss exponent of δ. The large scale fading is assumed to be
lognormal random variable with a standard deviation of 10dB
and is typically modelled with a probability density function
of [45]:

ρ(l) =
ζ√

2πσll
exp

[
− (10log10l − µl)

2

2σ2
l

]
(2)

where ζ = 10/ln 10, and µl and σl are the mean and the
standard deviation of l, both expressed in decibels.

The instantaneous Signal-to-Interference-and-Noise-Ratio γ
based on CQI received from user k in cell i served by RRH
n at the pth PRB of subframe τ is expressed as

γkin,p(τ) =
Hkin,p(τ)Pin,p(τ)

N0 +
∑
j∈C

∑
a∈c,a6=n Hkja,p(τ)Pja,p(τ)

(3)

where Pin,p(τ) and Hkin,p(τ) are the transmit power and chan-
nel gain between the serving RRH n of user k in cell i at pth

PRB of subframe τ . N0 is the power of Additive White Gaus-
sian Noise per PRB and

∑
j∈C

∑
a∈c,a6=n Hkja,p

(τ)Pja,p(τ)
represents the interference power from all other RRHs a in
cells j except the serving RRH n of user k on subframe τ in
cell i. The average spectral efficiency of a user k served by
RRH n in cell i at any time instance t is given as

ϑkin(t) =
1

RB.Nτ

 ∑
τ∈[t−1,t]

∑
p∈RB

log2 [1 + γkin,p(τ)]

 (4)



6

where RB is the total number of PRBs assigned to a BBU
and Nτ is the number of sub-frames in a load balancing
cycle. We assume that the dynamic load balancing cycle is
2 seconds (i.e., 2000 subframes in 1 cycle). To keep up with
the requirement throughput φk, the number of PRBs required
by user kin at a time period t can be calculated by multiplying
the achievable user throughput to the PRB bandwidth (i.e., 180
KHz per PRB)

NkRB(t) =

⌈
φk(t)

pBW.ϑkin(t)

⌉
(5)

where pBW represents the bandwidth of a PRB and d.e is
the ceil function.

V. LOAD PREDICTION AND BBU ESTIMATION

This paper proposes a semi-static cell differentiation and
integration scheme, which determines the number of BBUs
and RRHs to be activated/deactivated depending on load
distribution across the network to accommodate capacity de-
mands. The BBUs and RRHs needed to handle traffic load is
determined at the end of each cell differentiation or integration
(CDI) cycle. The CDI cycle is a constant time interval after
which a decision on required number of active BBUs and
RRHs is made. A CDI cycle of 60 seconds is considered in this
paper. However, to avoid constant scaling of BBUs due to load
fluctuations, future load demand change is predicted to calcu-
late the number of required BBUs. A decreasing predicted
load might require scaling down the BBUs and integration of
multiple cells into a single cell (i.e., from lower to higher tier
RRH structure). However, an increasing predicted load might
scale up the BBUs and further differentiation of cells (i.e.,
from higher to lower tier RRH structure).

A. Load Prediction Based on Wiener Processes

Let ηm(t) be the load of a BBU at time period (t), which
is represented as

ηm(t) =

∑K
k=1 Im,k(t)NkRB(t)

RB
(6)

Where Im,k is a binary indicator such that Im,k = 1 if
user k is served by BBUm. However, an important constraint∑M
m=1 Im,k = 1,∀k defines that each user k is served by only

one BBU at time period t. Note that, all BBUs are assigned
the same number of PRBs. Another important constraint is that∑K
k=1 Im,k(t)NkRB(t) ≤ RB,∀m, which states that the number

of PRBs assigned to users served by the same BBU should
not exceed the BBU PRB limitation. The total actual load on
the network at time t is represented as the aggregated load on
each active BBU at time t, which is given by

η(t) =

M∑
m=1

ηm(t) (7)

The predicted total load on the network at time t + ∆t is
modelled as a stochastic process based on Wiener Processes.
The idea is to utilise accurate records of current and past load
values to predict future load demands [10]. Let the total load

on the network at time t and t + ∆t is given by η(t) and
η(t+ ∆t) respectively, then

η(t+ ∆t) = η(t) + ∆η(t) (8)

where ∆η(t) represents the load variation between time t and
t+ ∆t and can be modelled as

∆η(t) = µ∆t+ εδ
√

∆t (9)

where ε is standard normal random variable with zero mean
and standard 1. ∆η(t) is a normally distributed random
variable with mean µ∆t and standard deviation δ

√
∆t. The µ

and δ in (9) are refered to as expected drift-rate and standard
deviation rate of ∆η(t) respectively, since for any arbitrary
time interval ∆t the mean µ∆t and standard deviation δ

√
∆t

are directly calculated from µ and δ.
The values of µ and δ in (9) can be estimated by taking

previous s sample values of η i.e., [t, t − τ̌ ], [t − τ̌ , t −
2τ̌ ], ..., [t − (s − 1)τ̌ , t − sτ̌ ]. Where τ̌ is the sampling time
interval. The estimator µ̂ of µ and δ̂ of δ are given as:

µ̂ =

∑s
i=0 (η (t− iτ̌)− η (t− iτ̌ − τ̌))

sτ̌
(10)

δ̂ =
1√
τ̌

√∑s
i=1 (η (t− iτ̌)− η (t− iτ̌ − τ̌)− µ̂τ̌)

2

s
(11)

From (10) and (11), ∆η(t) in (9) is calculated and the total
network load η(t + ∆t) in (8) is predicted for the next time
t+ ∆t.

B. Number of BBUs required in the network

The required number of BBUs to serve the offered traffic
load at a particular time t can be calculated using predicted
network load η(t+ ∆t) and actual load η(t), such that:

No. of BBUs =


dη(t+ ∆t)e if η(t) ≤ η(t+ ∆t) < M
|M| if η(t+ ∆t) > M
dη(t)e if η(t+ ∆t) < η(t) < M

(12)
where M is the total number of BBUs in the BBU pool and the
notation d.e is the ceil function. Moreover, the load contributed
by an active RRHn in the network is given by

ηRRHin
(t) =

K∑
k=1

Ik,in(t)NkRB(t) (13)

where Ik,in(t) is a binary variable which indicates the associ-
ation of user k with RRH n of cell i at time t. Ik,in(t) equals
to 1 if user k is associated with RRH n at time t in cell i.

VI. DYNAMIC BBU-RRH CONFIGURATION AND
FORMULATION

For a SOCRAN architecture shown in Fig. 3, it is essential
to balance the network load amongst the active BBUs by
proper BBU-RRH configuration. After each CDI cycle, the
network may reconfigure itself by scaling the BBUs and RRHs
with respect to traffic load. However, during the process, the
RRH to BBU mapping might not satisfy the QoS requirement.
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Therefore, If the BBU-RRH configuration at time t is known
then it is necessary to adjust the BBU-RRH configuration
at time t + 1 to adaptively balance the variance in traffic
demands. Note that, the time between t and t + 1 is longer
than that of a subframe (i.e., one millisecond) and is called
the load balancing cycle. A user location indicator vector
u = {u1, u2, ..., uK} is defined which shows users association
with RRHs such that uk = {rin|rin ∈ Z+ : i, n = 1, 2, 3, ...C},
where uk = rin if user k is associated with RRH n of
cell i. To indicate RRHs association with BBUs, a vector
r = {r11, r12, ..., rin} is defined, where rin ∈ {1, 2, ...,M}
and rin = m indicates RRH n of cell Ci is being served by
BBU m. Whereas, rin = 0 indicates that RRH n of cell Ci
is not active. If the user location indicator vector u is given,
then the problem is to identify the new RRH allocation vector
r.

Network performance determined by Key Performance Indi-
cators (KPIs) indicates its QoS. Based on these KPIs, the SON
server identifies optimum BBU-RRH conguration by utilising
the existing number of active BBUs and RRHs, to achieve
a highly stable network with highest achievable QoS with
respect to load demand. Following are the important KPIs
considered for BBU-RRH mapping problem;

A. Key Performance Indicator for Load Fairness Index

In this paper a Jains fairness index ψ is monitored, which
determines the level of load balancing in the network at a
particular time and is evaluated by using the load distribution
in all cells. The Jains fairness index [46] at time t can be
defined as

ψ(t) =

(∑M
m=1 ηm(t)

)2

|M|
(∑M

m=1 η
2
m(t)

) (14)

where |M| is the required number of active BBUs computed in
(12). The range of ψ is in interval [ 1

M , 1], with higher value
representing a highly balanced load distribution amongst all
active BBUs. Therefore, maximising ψ is one of the objectives
of this work to achieve a highly balanced load in the C-RAN.

B. Key Performance Indicator for Network Throughput

To compute an optimal BBU-RRH setting with higher
system capacity, maximising network throughput is considered
as a second objective in this paper. The practical capacity of
user k served by RRH n at in cell i at time t is given as

Ckin(t) =
∑
p∈Nk

RB

pBW.log2 (1 + aγkin,p(τ)) (15)

where pBW denotes the bandwidth per PRB (i.e., 180 KHz)
and a denotes the bit error rate (BER) and is defined by a =
−1.5/ln(5BER) and BER is set to 10−6. The overall network
throughput at time t can be expressed as

ξ(t) =

M∑
m=1

K∑
k=1

Im,k(t)Ckin,p(t) (16)

where Im,k(t) notifies if the user k is being served by BBU
m at time (t) i.e., Im,k = 1 if user k is served by BBU m.

Note that, serving a user k at a given sub-frame τ by BBU
m depends on the scheduler employed. This paper considers
Proportional Fair (PF) AND Round Robin (RR) scheduling
for the optimisation process. Moreover, the overall throughput
ξ at time t is normalised before reusing it in the optimisation
procedure.

C. Key Performance Indicator for Handovers

Network transition to a new BBU-RRH configuration may
require significantly forced handovers. An increased number
of forced handovers in the system is undesirable and leads to
performance degradation. Allocating an RRH to a new BBUs
at a particular time results in forced handovers of all users
associated with the RRH. Since inter-BBU handovers not only
involves BBUs but a signalling overhead between the Serving
Gateway (S-GW) and Mobility Management Entity (MME),
therefore, it is desirable to achieve a new optimum BBU-RRH
configuration with a minimum required handovers. A handover
index h(t) is monitored as a third objective for load balancing
problem and is given as

h(t) =
1

2

(∑M
m=1

∑K
k=1 |Im,k(t)− I◦m,k(t)|

K

)
(17)

where I◦m,k(t) is a binary variable that indicates a user’s as-
sociation in previous BBU-RRH configuration i.e., I◦m,k(t)=1,
if user k is served by BBU m in previous BBU-RRH config-
uration.

For proper BBU-RRH configuration, a QoS function is
needed which is the weighted combination of KPIs defined
in (14), (16), and (17). The multiple objectives are combined
into a single QoS objective function. This paper represents
QoS as the following maximisation problem with constraints:

Max QoS(t) = αψ(t) + βξ(t)− (1− α− β)h(t)

s.t. C1 :

K∑
k=1

Im,k(t)NkRB ≤ RB,∀m ∈ {1, 2, ...M}

C2 :

M∑
m=1

Im,k(t) = 1,∀k ∈ {1, 2, ...,K}

(18)

Both α and β are control parameters of the QoS function. The
main objective is to maximise the QoS function.

VII. CELL DIFFERENTIATION AND INTEGRATION (CDI)
ALGORITHM

According to the intuitive analysis above, a CDI algorithm
is proposed in this section. The CDI algorithm executes proper
cell differentiation, and integration of a geographical area and
provides a balanced network by identifying correct BBU-
RRH configuration. The block diagram of CDI algorithm
is shown in Fig. 5. Network information is collected in the
first step and analysed for proper cell differentiation and
integration. The information includes, user location indicator
u, load contributed by each RRH, BBU-RRH mapping vector
r, actual network load, predicted load, and the required number
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of BBUs. The algorithm seeks to utilise the network resources
efficiently by calculating the necessary number of BBUs and
RRHs to serve capacity demands at the end of each CDI cycle.
Apart from a single BBU required to serve load requirements,
proper BBU-RRH configuration is adjusted at the end of
optimisation step by comparing the analysed and optimised
QoS values. For the optimisation part of the algorithm, a
Discrete Particle Swarm Optimisation (DPSO) algorithm is
developed as an Evolutionary Algorithm (EA) to solve the
BBU-RRH configuration problem and is explained in the next
section. The optimisation process continues until the CDI cycle
is completed. Note that, the CDI algorithm shown in Fig. 5 is
triggered at the beginning of each CDI cycle.

The pseudo-codes for semi-static cell differentiation and
integration are given in Algorithm 1 and Algorithm 2, re-
spectively.Both algorithms execute the scaling of RRHs and
BBUs with respect to network load distribution. However, an
important consideration is the first association of RRHs to
the required number of BBUs during cell differentiation and
integration. Algorithm 3 and 4 are supporting algorithms for
Algorithm 1, and 2, respectively, which covers all possible
cases of initial BBU-RRH assignment during differentiation
or integration along with cases where the number of BBUs
are increased, decreased or remain unchanged. The initial
BBU-RRH mapping is important for efficiently utilising the
available BBU resources so as to prevent high blocking
rate before a proper BBU-RRH mapping is identified in the
optimisation step. Therefore, the blocking rate of the network
at time t can be measured as

Blocking rate =

[
1−

(∑M
m=1

∑K
k=1 Im,k(t)

)
K

]
× 100 (19)

where Im,k(t) as discussed earlier, is a binary indicator such
that Im,k = 1, if user k is served by BBU m at time t. Note
that, users are served based on the choice of scheduler used by
a BBU. Moreover, the amount of resource shortage (or PRB
shortage) in the network based on users PRB demand can be
estimated as follows

Resource Shortage =

M∑
m=1

max
[
(ηm(t)− 1), 0

]
× 100 (20)

where ηm(t) is the load on BBU m at time t defined in
(6). Note that, the CDI algorithm triggers Algorithm 1 and
Algorithm 2 sequentially, i.e., Algorithm 2 is triggered imme-
diately after the Algorithm 1 is executed. In the interest of
simplicity and understanding, the CDI algorithm is separated
into different pseudo-codes.

A. Discrete Particle Swarm Optimisation (DPSO)

Particle Swarm Optimisation (PSO) is a robust optimisation
technique inspired by social behaviour of flocking organisms.
PSO method uses Swarm Intelligence for solving global opti-
misation problems [47]. PSO utilises a population (or swarm)
of particles, where each particle represents a solution, namely
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Fig. 5: Block Diagram of CDI Algorithm for one CDI cycle

a BBU-RRH association vector r. As the QoS represented
in (18) is considered as the main objective function (or
fitness function), PSO seeks to maximise the QoS function
by finding the best solution vector {r11, r12, ..., rin}. PSO
operates on a group of particles (or solutions) to probe the
solution space in a random way with different velocities. The
vector {r11, r12, ..., rin} is viewed as the particle position in the
n-dimensional solution space while discovering the optimal
solution can be viewed as particles probing the solution to
search for the optimum position. To direct the particles to their
best fitness values, the velocity of each particle is changed
stochastically at each iteration. The velocity update of each
particle j depends on the historical best position experience
(pbest) of the particle itself and the best position experience
of neighbouring particles, i.e., the global best position (gbest).
Therefore, every particle in the swarm tends to direct itself
towards the best solution at each iteration. Since the solution
vector r is real-valued, the standard PSO algorithm can not be
applied directly to solve the discrete optimisation problem.
Therefore, a Discrete PSO is developed to solve the QoS
maximisation problem defined in (18). The DPSO algorithm
is described in Fig. 6 and the following steps:

Step 1: Generate initial population R0 with popula-
tion/swarm size of |∆|. Where R0 consists of N-bit particles
(BBU-RRH mapping solutions). Where N is taken according
to the number of active RRHs in the network and the su-
perscript 0 represents the initial iteration number I = 0. The
best position of each particle pbest0j = r0

j , 1 ≤ j ≤ |∆| are
initialised with a random velocity of V0

j for each particle.
Step 2: Calculate the fitness values for each particle (BBU-

RRH mapping solution) in the current swarm/population using
the fitness function F defined as QoS in equation (18) and
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Algorithm 1: Pseudo-code for Semi-static Cell Differen-
tiation with number of BBU requirement

Input : Current network load η (t) from (7)
Predicted load η (t+ ∆t) from (8)
BBU-RRH mapping vector r
Required number of BBUs from (12)

1 if No. of active BBUs =1 then
2 if η (t+ ∆t) ≥ |PRB| then
3 -Activate required No. of BBUs
4 -Differentiate cell into tier-2 RRH structure by

BBU-RRH mapping using Algorithm 3
5 -Update BBU-RRH mapping vector r
6 for i=1 to C do
7 -Select set Si
8 -Compute ηRRHij

(t) from (13)
9 if ηRRHi1

(t) > |PRB| then
10 - R← Si {Add Si to R}
11 -Diffentiate cell Ci according to

Algorithm 3.
12 -Update BBU-RRH mapping vector r.
13 end
14 end
15 else
16 -No cell differentiation required.
17 -Tier-3 RRH structure remains.
18 end
19 else
20 if No. of active BBUs ≤ No. of required BBUs then
21 if All RRHs deployed in the network are active

then
22 -Activate the required No. of BBUs.
23 -Update BBU-RRH mapping vector r
24 else
25 -Activate required number of BBUs
26 for i= 1 to C do
27 -Select set Si
28 -Compute ηRRHi1(t) from (13)
29 if ηRRHi1

(t) > |PRB| then
30 - R← Si {Add Si to List R}
31 -Differentiate cell Ci using Algorithm

3
32 -Update BBU-RRH mapping vector r
33 end
34 end
35 end
36 end
37 end

identify the global best position achieved i.e., gbest0 =
argmax
1≤j≤|∆|

F(pbestI
j).

Step 3: Update particle j position by updating its velocity.
The velocity update equation is given as

vI
j = wvI−1

j + c1ε1

(
pbestI

j − xI
j

)
+ c2ε2(gbestI

j − xI
j)

1 ≤ j ≤ |∆|
(21)
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Fig. 6: Block Diagram of DPSO algorithm

where xI
j is the current position of particle j in iteration I and

ε1, ε2 are random numbers chosen between the range [0− 1].
Both c1 and c2 are acceleration constants that pulls the particle
towards best position. Values in the range 0-5 are chosen for c1
and c2. The inertial weight w represents the effect of preceding
velocity on the updated velocity. Larger and smaller value of w
are used for global exploration and local search expedition in
the search-space, respectively. However, choosing an optimum
value for w can assist a balanced proportion between global
and local exploration of the search space. Usually values
between 0-1 are selected for w [48]. A value of 0.9 for w
is selected in this paper. The new position of particle j for the
next iteration I + 1 will be:

xI+1
j = xI

j + vI
j (22)

Step 4: Update the iteration counter (I = I + 1). If the
convergence criteria is satisfied then end else go to step 5.

Step 5: Update particle j,s personal best position as

pbestI
j =

{
pbestI−1

j if F(rI
j) ≤ F(pbestI−1)

rI−1 if F(rI
j) > F(pbestI−1

j )
(23)

Step 6: Update global best position achieved by:

gbestI =

argmax
1≤j≤|∆|

F(pbestI
j) if F(pbestI

j) > F(gbestI−1)

gbestI−1 otherwise
(24)

Step 7: Repeat all steps starting from step 1.

VIII. COMPUTATIONAL RESULTS AND ANALYSIS

Before going to a more thorough analysis of the proposed
CDI concept, the performance of DPSO is tested in BBU-RRH
configuration problems.
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Algorithm 2: Pseudo-code for Semi-static Cell Integration
with number of BBU requirement
Input : Current network load η (t) from (7)

Predicted load η (t+ ∆t) from (8)
BBU-RRH mapping vector r
Required number of BBUs from (12)

1 if No. of active BBUs =1 then
2 -No cell integration required.
3 -A high-power BS serves the geographical area.
4 else
5 if No.of required BBUs=1 then
6 -Integrate all cells into tier-3 RRH structure, i.e.,

a high power BS should serve the geographical
area.

7 -Switch-off remaining BBUs.
8 -Update BBU-RRH mapping vector r.
9 else

10 for i=1 to C do
11 -Select set Si
12 for j=1 to end of Si do
13 -Compute load ηRRHij

(t) from (13)
14 -Sum=Sum+ηRRHij

(t)
15 end
16 if Sum ≤ PRB then
17 -Integrate all cells by switching-off all

RRHs in set Si except RRHi1.
18 -Offload RRHs to required number of

BBUs according to Algorithm 4.
19 -Update BBU-RRH mapping vector r.
20 end
21 end
22 -Run Algorithm 4

{Case of BBU reduction and no integration}
23 end
24 end

A. Performance of DPSO algorithm

The performance of DPSO is demonstrated over two dif-
ferent problem scenarios, P1, P2, and compared with the
known Genetic algorithm (GA) [49] and ES algorithm. P1

network scenario consists of 5 active BBUs and 19 active
RRHs including two differentiated cells (Tier 1, level 2, RRH
structure). Whereas, P2 scenario includes 5 active BBUs and
49 active RRHs (Tier 1, level 7, RRH structure). The aim
is to analyse the performance DPSO optimisation algorithm
for small and large networks. User distribution within each
cell is uniform where 6 and 25 users are considered for non-
dense and high dense cells, respectively. One fifth of the
RRH supported cells are chosen randomly to have high-density
users.

For Monte Carlo analysis, the DPSO, GA and ES algorithms
are repeated 50 times with 50 different initial BBU-RRH
settings for both problem scenarios and the results obtained
are averaged. The load fairness index, normalised network
throughput, and handover index are represented in Figs 7b,
8b and 8a, respectively, over 200 iterations for both P1 and

TABLE I: Computational Results for DPSO, GA and ES

P1 (19 RRH) P2 (49 RRH)

Quality of Service
DPSO 0.599142 0.588970

GA 0.599142 0.568473
ES 0.599142 0.592940

Load Fairness Index
DPSO 0.984797 0.971681

GA 0.984797 0.969936
ES 0.984797 0.975680

Network throughput
DPSO 0.958 0.9515

GA 0.958 0.941499
ES 0.958 0.95598

Handover Index
DPSO 0.380957 0.387010

GA 0.380957 0.387021
ES 0.380957 0.383659
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Fig. 7: (a) Quality of Service and (b) Load Fairness Index for
DPSO, GA, and ES

P2. The optimum values shown in the figures and Table.I, are
achieved by exhaustively searching for all possible solutions
(NM) using ES algorithm, which helps in demonstrating the
improvement in each iteration of the DPSO and GA algo-
rithms. Note that, ES algorithm is independent of the number
of iterations.

Fig. 7a shows that both DPSO GA algorithm converges to
the optimum solution in P1 with a Convergence Rate (CR)
of 0.970 and 0.8150, respectively. Where CR is defined as
the number of times, the DPSO finds a best or optimum
solution during the entire number of iterations. This implies
that over 200 iterations, the optimum solution is achieved
195 times by DPSO and 163 times by GA for P1. For P2,
the CR of DPSO and GA algorithm is 0.2750 and 0.2550,
respectively. However, the optimum solution is not achieved
by both algorithms over 200 generations. DPSO algorithm
achieves the best value 56 times whereas GA achieves the best
value 52 times i.e., after 145 iterations and 145×|∆| fitness
evaluations for DPSO, and after 149 iterations and 149×|∆|
fitness evaluations for GA. Both DPSO and GA still achieve
99.3012% and 95.8735% of the optimum value found by ES
algorithm after an enormous 549 (MN) fitness evaluations.

Fig. 7b shows that the DPSO and GA algorithm converge
to the optimum load fairness index value after 13th and 16th

iterations in P1. However, in P2, the optimum value can not be
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found over 200 iterations. The best load fairness index value
achieved by DPSO is after 164 iterations and 164×|∆| fit-
ness evaluations. Whereas 170 iterations and 170×|∆| fitness
evaluations by GA. Which is 99.59% and 99.4113% of the
optimum value found by ES algorithm. ES algorithm performs
549 fitness evaluations to find the optimum value which is a
considerable amount of fitness evaluations.

Figs 8b and 8a displays the convergence of DPSO and
GA algorithms to the optimum value for normalised network
throughput and handover index, respectively, for both P1 and
P2 . In P1, the optimum value for handover index and network
throughput is achieved after 38 and 10 iterations by DPSO and
after 41 and 13 iterations by GA, respectively. For P2, both
DPSO and GA could not find the optimum value over 200
iterations. However, the best possible value achieved by DPSO
and GA for network throughput is 99.537% and 98.49361% of
the optimum value found by ES algorithm, respectively. The
best value achieved for handover index by DPSO and GA are
99.1343% and 99.1315% of the optimum value, respectively.
The ES algorithm finds the optimum value after performing
549 enormous fitness evaluations whereas the DPSO algorithm
performs 114×|∆| and 145×|∆| to find the best value for
network throughput and handover index, respectively. Note
that, the α and β control parameters in (18) are selected by
performing an exhaustive search (ES) algorithm to identify the
optimal BBU-RRH setting for P1. Both α and β values are
orderly set to 0, 0.1, ..., 1 with a constraint α+β ≤ 1 as shown
in Fig. 9. An optimal BBU-RRH setting is found using ES
algorithm for each pair of α and β. It is observed that setting
a higher value for load fairness index (until α = 0.8) not
only reduces the resource shortage but also improves network
balance. Setting values for α > 0.8 results into improper
BBU-RRH mapping which implies that maximising network
load balance is overly considered compared to maximising
network throughput and minimising handovers, resulting into
an increased resource shortage. This paper considers α = 0.8
and β = 0.1 which means assigning a 10% weight to handover
minimisation.

B. Complexity comparison

The computation complexity of DPSO and GA algorithm
compared to ES algorithm is presented by comparing the
number of fitness evaluations carried out by both algorithms.
For ES algorithm, the computational complexity is O

(
|N ||M |

)
where N and M are the number of RRHs and BBUs, respec-
tively. The required fitness evaluations for N RRHs and M
BBUs in the network for ES algorithm is |N ||M |. However,
the computational complexity of DPSO and GA is O (|∆|I).
The number of fitness evaluations at each iteration of DPSO
and GA algorithm depends on the swarm/population size |∆|.
Therefore, the required fitness evaluations for DPSO are |∆I|.
Note that, the ES algorithm finds the optimum value after
evaluating an enormous number of fitness functions which is
|N||M|−|∆|I times more than the fitness evaluations of DPSO
and GA at the Ith iteration/generation.

In P1, the optimum BBU-RRH configuration is achieved
after 37 × 2 × 102 (I × |∆|) fitness evaluations by GA
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Fig. 8: (a) Average handovers and (b) average network
throughput for DPSO, GA and ES.
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Fig. 9: Resource shortage for different α and β.

and 5 × 2 × 102 (I × |∆|) whereas the ES algorithm finds
the optimum BBU-RRH configuration after 519 (|N||M|) fit-
ness evaluations. The ES algorithm performs 1.9073 × 1016

(|N||M| − |∆|I) extra fitness function evaluations than the
number of fitness evaluations performed at 5th iteration of
DPSO and 14.114×1016 more fitness function evaluations than
the number of fitness evaluations performed at 37th generation
of GA.

In. P2, the near optimum BBU-RRH configuration is found
after 144 × 2 × 102 (I × |∆|) fitness evaluations by DPSO
and after 148 × 2 × 102 (I × |∆|) fitness evaluations by GA.
The ES however, performs 549 fitness evaluations to find the
optimum solution. Note that, the optimum solution found by
ES algorithm required 1.7764 × 1034 (|N||M| − |∆|I) more
fitness evaluations than DPSO and GA, which is too enormous.

C. Performance analysis of CDI algorithm

To make the simulation more realistic, the user arrivals in
Fig. 10b follows a Poisson process with rate λ. However, due
to the dynamic spatial and temporal nature of user traffic,
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Fig. 10: (a) Rate function for time in-homogeneous user
arrivals and (b) Actual vs Predicted network load with respect
to time

the user arrival is modelled as a time-inhomogeneous pro-
cess. This is achieved by multiplying the time-homogeneous
Poisson process with traffic intensity parameter λ and the rate
function f(t) shown in Fig. 10a. The rate function is unit-less
and reshapes the traffic from constant intensity to an analogous
time varying profile that reflects typical traffic patterns in a
real cellular network. If users arrive in the system following
a Poisson process with intensity λ users/min, with a constant
service time of h (60 sec), then the number of users at time
t is calculated as K(t) = χhf(t). Where χ ∼ Poiss (λ) is
a random variable with mean λ (i.e., λ = 200). Moreover,
different data rate requirements are assumed for end users
based on 3GPP standard simulation parameters [50] i.e., 4-25
kbps for audio, 32-384 kbps for video, 28.8 kbps for data, and
60 kbps for real-time gaming services. A reliable prediction of
network load is achieved if the collected load samples are 25 or
larger [51]. In this paper, network load prediction is performed
every ∆t = 60 sec. However, the actual network load is
sampled every τ̆ = 2.4 sec. The initial load prediction starts
after a ’training period’ of 1 minute. This allows the prediction
model to have enough first samples to estimate µ̂ and δ̂ for
∆η. The CDI algorithm proposed in this paper determines
the number of BBUs and RRHs required to handle traffic
demands. Fig. 11 shows an actual number of active BBUs and
RRHs with respect to time, based on uniform user distribution
and network load shown in Fig. 10b. The path- loss models
for micro and pico-user at a distance D from transmitter and
frequency 2GHz are given as PLmic(dB) = 34.53+38log10D,
and PLpico(dB) = 140.7+36.7log10D [52], [53], respectively.
It is considered that the RRHs support micro cells in tier-2
RRH structure.

The RRH-BBU association vector r = {r11, r12, ..., rin}
is maintained and updated after each CDI cycle only if the
number of BBUs or RRHs are scaled and also if the BBU-
RRH mapping is re-configured. Newly activated RRHs and
BBUs in the network are mapped according to Algorithm 3
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Fig. 11: Number of active BBUs and RRHs with respect to
network load/time

and 4. In this paper, a maximum of 49 RRHs are deployed
in the network to support semi-static cell differentiation and
integration. The BBU pool consists of 5 BBUs that can be
activated and deactivated according to load demand. The initial
BBU-RRH mapping at the beginning of a CDI cycle might
degrade the network QoS with unnecessarily blocked users.
Therefore, dynamic BBU-RRH mapping is proposed as an
optimisation problem to identify proper BBU-RRH mapping.
The CDI algorithm utilises DPSO to find optimum BBU-
RRH configuration to overcome network QoS degradation and
minimising unnecessarily blocked users.

For a more thorough analysis, the proposed CDI enabled
C-RAN (CDI-CRAN) concept is compared to a fixed C-RAN
scenario (F-CRAN). The BBU cloud holds five BBUs in both
cases. However, the F-CRAN scenario does not support cell
differentiation or integration, and only 7 RRHs serves the
entire macrocell coverage area. However, the dynamic BBU-
RRH mapping is enabled in the F-CRAN scenario which
shows 57 possible BBU-RRH mapping solutions to choose
from at the beginning of each CDI cycle. However, the number
of possible BBU-RRH mapping solutions for CDI scenario at
the start of each CDI cycle is MN, where M and N represents
the number of active BBUs and RRHs, respectively. Moreover,
an increasing user arrival is considered in the network with
random data rates requirement as explained earlier. However,
a Monte-Carlo analysis is performed, where uniformly dis-
tributed users are envisaged for each instance, and the average
of all distributions are taken into account regarding network
load, throughput, blocked users, and resource shortage analy-
sis. Figs 12a and 12b shows the comparative performances re-
garding average blocked users and average network throughput
for F-CRAN and CDI-CRAN with Proportional Fair (PF) and
Round Robin (RR) scheduling techniques. The CDI algorithm
includes 2 phases, i.e., the cell integration/differentiation phase
and the BBU-RRH optimisation phase. The optimisation phase
in both F-CRAN and CDI-C-RAN is tested with both GA and
DPSO algorithm in the second phase and the results achieved
are compared.

The simulation results demonstrate the advantage of using
CDI-CRAN instead of an F-CRAN setting. When an F-
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Algorithm 3: Initial RRH association to active BBUs
during cell differentiation.
Input : List A of newly activated BBUs

List R containing sets of RRHs supporting cell
differentiation

1 if A is not empty then
2 for m=1 to No. of active BBUs do
3 -Compute ηm(t) from (6)
4 if ηm(t) ≤ lower limit then
5 A← BBUm{Add BBUm to List A}
6 end
7 end
8 I=1;
9 while not the end of List R do

10 -Select Ith set from list R
11 m = 1;
12 for j=1 to end of set Si do
13 if m> |A| then
14 m = 1
15 end
16 BBUm ← RRHij{Map RRHij to BBUm

except R1j}
17 m = m+ 1;
18 end
19 I=I+1;
20 end
21 else
22 for m=1 to No. of active BBUs do
23 -Compute ηm(t) from (6)
24 if lower limit ≤ ηm(t) ≤ Upper limit then
25 A← BBUm{Add BBUm to A}
26 end
27 end
28 if A is still empty then
29 A ← All active BBUs
30 end
31 -Sort A in increasing order of BBU loads
32 I=1;
33 while not the end of List R do
34 -Select Ith set from List R
35 m = 1;
36 for j=1 to end of set Si do
37 if m> |A| then
38 m=1;
39 end
40 BBUm ← RRHij{Map RRHij to BBUm

except RRH1j}
41 end
42 I=I+1;
43 end
44 end

CRAN is considered, the average blocked users in the network
are much higher with significantly lower average throughput,
using any scheduling technique, as shown in Figs 12a and 12b,
provided that the dynamic BBU-RRH mapping is enabled
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Fig. 12: (a) Average blocked users and (b) Average network
throughput for fixed and CDI-enabled C-RAN.

in both scenarios. However, an interesting observation is
the significant drop in the averaged blocked users and the
necessary increase in average network throughput in CDI-
CRAN compared to F-CRAN. This indicates that during cell
differentiation, an overloaded cell divides into multiple smalls
cells. This not only reduces the user to RRH distances but
also the PRB demands resulting from high SINR. Note that,
cell differentiation increases the number of RRH interferers in
the network. However, RRHs served by the same BBU does
not contribute to the overall interference experienced by users
served by the same BBU.

From the results shown in Fig. 12b, it is observed that
the average network throughput increases by 44.56% in the
CDI-CRAN compared to F-CRAN, both enabled with GA (as
an optimisation algorithm) and PF schedulers. Whereas with
DPSO algorithm and PF schedulers, an increase of 45.53% is
observed. However, with RR schedulers the average network
throughput increases by 40.68% and 42.102% in CDI-CRAN
with GA and DPSO, respectively. Moreover, the average
throughput difference between GA and DPSO algorithm in
a CDI-CRAN, with PF and RR scheduling is 4.022% and
4.12%, respectively.

Fig. 12a shows that with PF scheduling in both CDI-
CRAN and F-CRAN, about 52.29% and 23.149% reduction
in the average number of blocked users is observed in CDI-
CRAN hosting GA and DPSO, respectively. However, with
RR scheduler, the average blocked users decline seen in CDI-
C-RAN compared to F-CRAN is 17.489% and 20.903% for
GA and DPSO, respectively. Table.II shows that the average
resource shortage drastically decreases in the CDI CRAN,
compared to F-CRAN provided that both F-CRAN and CDI-
CRAN have an equal amount of available resources (i.e., 5
BBUs, 5×100 PRBs). A 76.4% decrease in average PRB
shortage is estimated with CDI-enabled C-RAN compared to
fixed C-RAN for both GA and DPSO. Moreover, the overall
blocking rate experienced during the course of simulation is
also highlighted in Table.II.
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TABLE II: Comparison results for fixed and CDI-enabled C-
RAN

Blocking
Rate[%]

Resource
Shortage

GA DPSO GA DPSO
PF RR PF RR

F-CRAN 35.99 81.66 35.34 81.10 16.44× 103 16.42× 103

CDI-CRAN 26.87 67.33 25.809 62.13 38.79× 102 38.47× 102

IX. CONCLUSION

The concept of cell differentiation and integration in C-RAN
is examined with an objective to utilise network resources
efficiently without degrading the overall network QoS. A load
prediction model is considered for pro-active network scaling
of BBUs and RRHs. Network load balance is maintained
via proper BBU-RRH mapping and is formulated as a linear
constrained integer programming problem. In this regard,
a CDI algorithm is developed for C-RAN and tested for
comparison with an F-CRAN setting. Computational results
show a significant increase in average network throughput and
a noticeable decrease in average blocked users and average
resource (PRBs) shortage. The CDI algorithm hosts a DPSO
algorithm which is developed to find optimum BBU-RRH
configuration dynamically. The performance of DPSO is tested
and compared to GA and ES. Using two benchmark problems,
the DPSO delivered noticeably faster convergence compared
to GA and ES, which makes the CDI algorithm more reliable
for a self-organised C-RAN.
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