
28—1

Using Function Points to Find Cost Analogies

Karen Atkinson and Martin Shepperd

School of Computing and Cognition
Bournemouth University

Talbot Campus
Poole, BH12 5BB, England

Abstract

Finding effective techniques for the early estimation of project
effort remains an important — and frustratingly elusive —
research objective for the software development community.
We have conducted an empirical study of 21 real time projects
for a major software developer. The study collected a range of
counts and measures derived from specification documents,
including a derivative of Function Points intended for highly
constrained systems. Notwithstanding the fact that the projects
were drawn from a comparatively stable environment,
traditional approaches for building prediction systems, (for
example, regression analysis) failed to yield a useful predictive
model. By contrast, estimation based upon the automated
search for analogous projects produced more accurate
estimates. How much this is a characteristic of this particular
dataset and how much these findings might be more generally
replicated is uncertain. Nevertheless, these results should act as
encouragement for follow up research on a much under utilised
estimation technique.

Keywords: Effort prediction, analogy, function points, real time.

1. Background

The concern of this research is to find an effective means to aid software
project mangers predict development effort at an early stage in a project.
We have conducted an empirical study of 21 real time projects for a major
software developer. The study collected a range of counts and measures
derived from specification documents, including an adaptation of
Function Points [1, 5] by the European Function Point Users' Group
(EFPUG)1 intended for highly constrained systems [3]. Details are given in
Table 1.

Abbreviation Variable Explanation
proj project number project number

1The European Function Point Users' Group has recently been renamed
the UK Function Point Users' Group (UFPUG) and a distinct EFPUG
umbrella group formed.

28—2

est1 estimate 1 first project effort estimate (not always
available)

est2 estimate 2 second project effort estimate (at detailed
specification stage)

act actual effort actual effort in person hours
est_dur estimated duration estimated duration in weeks
act_dur actual duration actual duration in weeks
extra extra effort effort for unplanned activities (person

hours)
UA_RTFP unadjusted FPs unadjusted real time Function Points

given as:

IMT + IATi

i=1

i= IMT

! +OMT + OATi

i=1

i=OMT

! +ER

IMT #input message types #input message types
IAT #input attributes the sum of attributes for each all input

messages
IT IMT+IAT
OMT #output message types output message types
OAT #output attributes the sum of attributes for each all output

messages
OT OMT+OAT
ER #entities referenced the number of unique entities

referenced by a system
EA #entity attributes the sum of all entity attribute counts
ERA ER + EA
EA_RTFP entity attribute realtime

FPs
UA-RTFP + EA

Table 1: Project Data Collected

The initial results from our empirical study were somewhat disappointing
as we were unable to find an effective method for predicting effort despite
the fact that the projects were drawn from a comparatively stable
environment. traditional model building approaches, such as regression
analysis, failed to yield a useful predictive model. We were unable to find
a model that was significantly better than the expert judgement of the
project managers involved. A detailed account is given by [4].

Given the lack of success with the traditional methods we have gone on to
explore the use of analogy as a means of making a cost estimate. The next
step is to find a method to automate the search for analogies. First, we
characterise each project in terms of the various specification measures
available, for example the number of input and output messages, message
and entity size. Next, we use proximity analysis based upon a
standardised measure of Euclidean distance in n-dimensional space to
find the most similar project or analogy. Finally, having found the
analogy, we use the known effort of the analogy as the basis for the
estimate for the new project. This approach can be made more robust by
using the weighted mean of more than one analogy.

2. Finding Analogies

28—3

As the name suggests, estimating by analogy, involves searching for one
or more completed projects in similar domains and then using the known
amount of effort — modified as appropriate — to form the new estimate.
Analogies may be sought at either the total project or the sub-system �level.
Cowderoy and Jenkins [2] suggest the following steps:

1. Select analogies and rank in order of applicability.�
2. Assess similarities and differences.
3. Assess quality of analogy itself e.g. how reliable was record

keeping?�
4. Consider known special cases e.g. ignore team X as they don't use

the SSADM� development method
5. Modify the analogy to reflect the current situation

OLD PROJECT (Building Society
System)�

CMPLX = nominal
DATA = nominal
RELY = high
LANGUAGE = 50% COBOL, 50% C

LENGTH = 4 KDSI

NEW PROJECT (Banking System)�

CMPLX = nominal�
DATA = nominal
RELY = high
LANGUAGE = 50% 4GL, 50% C�
size = 20-40% larger
�
LOW LENGTH = 4 * 1.2 * (0.38�* 100/50)
HIGH LENGTH = 4 * 1.4 * (0.38�* 100/50)

Figure 1 Estimation by Analogy

By way of example, Figure 1 shows how size data from an analogous
system can be used to generate estimates for the new Banking System.
Note that in this case the three COCOMO product cost drivers, plus
programming language information, are used to help assess the validity of
the analogy. In this case the analogy is not exact, our estimator believes
that the new system will be 20-40% larger and 50% will be developed
using a 4GL rather than COBOL. Assuming that a conversion factor is
known between the two programming languages then we are in a position
to produce upper and lower bounds for our estimate of 4.256 and 3.648
KDSI.

28—4

Despite the simplicity of the concept, there are significant problems
including how to find an analogy in the first place, especially within a
large organisation, and how to gauge the representiveness of the analogy
once found?

For these reasons we decided to explore mechanisms to automate the
search for analogies and to use the dataset as a means of validating the
success or otherwise of our approach. The next section describes the
details of the different automated search mechanisms and their relative
performances.

3. Results

Our approach to automating

To assess how each prediction method performed we jack knifed the
dataset by successively witholding one project and using the remaining 20
as a source of analogy. This means that the effort for each project is
estimated once using the other 20 observations as input to the prediction
model.

The effectiveness of each prediction model is shown by means of the two
indicators, mean magnitude of relative error (MMRE) which indicates the
average percentage error, irrespective of the direction, and PRED(25)
which gives the percentage of projects where the predicted value lies
within 25% of actual value.

Prediction Method Mean Magnitude
of Relative Error

(MMRE)

Pred (.25)

Expert judgement 39% 40%
Realtime FPs 99% 10%
Best case analogy 8% 95%
Analogy (2 cases unweighted)
IT, OT, ER, EST2

50% 43%

 Analogy (best case unweighted)
(all variables)

68% 29%

Table 2: Comparative Performance of the Prediction Methods

Table 2 shows how estimating by analogy performs, compared with expert
judgement and an algorithmic model using real time FPs and derived by
linear regression.

4. Conclusions

Our study has shown, at least for this dataset, that searching for analogies
is at least as effective method for software project effort estimation than

28—5

either expert judgment or traditional algorithmic models derived by
regression analysis.

Acknowledgements

The authors wish to thank the organisation that supplied the data which
has made this study possible. Regretfully the persons concerned must
remain anonymous. We also wish to thank Schlumberger Technologies
and Butterworth-Heinemann for their generous contributions towards the
project travel expenses.

References

[1] Albrecht, A.J. and J.R. Gaffney, 'Software function, source lines of
code, and development effort prediction: a software science validation',
IEEE Trans. on Softw. Eng., 9(6), pp639-648, 1983.

[2] Cowderoy, A.J.C. and J.O. Jenkins. 'Cost estimation by analogy as a
good management practice', in Proc. Software Engineering 88. Liverpool:
IEE/BCS, 1988.

[3] EFPUG, Counting Practices for Highly Constrained Systems. Draft
Report No. , European Function Point User Group, 1992.

[4] Shepperd, M.J. and R. Turner. 'Real-time Function Points: an
industrial validation', in Proc. European Software Cost Modelling Meeting.
Bristol: ESCOM, 1993.

[5] Symons, C.R., 'Function point analysis: difficulties and
improvements', IEEE Trans. on Softw. Eng., 14(1), pp2-11, 1988.

