
Search Heuristics, Case-Based Reasoning and Software Project
Effort Prediction

Colin Kirsopp, Martin Shepperd, John Hart
Empirical Software Engineering Research Group
School of Design, Engineering and Computing

Bournemouth University
Royal London House

Bournemouth,
Dorset, UK

Email: {ckirsopp, mshepper, jhart}@bournemouth.ac.uk

Abstract

This paper reports on the use of search
techniques to help optimise a case-based
reasoning (CBR) system for predicting software
project effort. A major problem, common to ML
techniques in general, has been dealing with
large numbers of case features, some of which
can hinder the prediction process. Unfortunately
searching for the optimal feature subset is a
combinatorial problem and therefore NP-hard.
This paper examines the use of random
searching, hill climbing and forward sequential
selection (FSS) to tackle this problem. Results
from examining a set of real software project
data show that even random searching was better
than using all available for features (average
error 35.6% rather than 50.8%). Hill climbing
and FSS both produced results substantially
better than the random search (15.3 and 13.1%
respectively), but FSS was more computationally
efficient. Providing a description of the fitness
landscape of a problem along with search results
is a step towards the classification of search
problems and their assignment to optimum
search techniques. This paper attempts to
describe the fitness landscape of this problem by
combining the results from random searches and
hill climbing, as well as using multi-dimensional
scaling to aid visualisation. Amongst other
findings, the visualisation results suggest that
some form of heuristic-based initialisation might
prove useful for this problem.

1 BACKGROUND TO PROJECT
EFFORT PREDICTION

An important problem in the field of software engineering
is to be able to make predictions concerning size of, and
effort required for, software development projects. These

predictions must be made at an early stage during a
project, working primarily from feasibility and
requirements specification documents. Despite a
significant amount of research effort over the past 30
years, no one method has been found to be consistently
effective.

Early prediction techniques such as Boehm's COCOMO
prediction system (Boehm 1984) (and more recent
variants) were algorithms that sought to relate predicted
source code size together with a large number of cost
drivers to effort and nominal duration. Unfortunately,
there is little independent evidence that this type of
universal approach yields consistently useful results. It
would seem that despite the cost drivers and various
parameters COCOMO is over adapted to the data set from
which it was developed. Alternative approaches include
the use of simple statistical techniques such as stepwise
regression to develop models that have local predictive
value only. The MERMAID project is a good example of
this approach (Kok, Kitchenham et al. 1990). More
recently there has been considerable interest in a variety
of machine learning (ML) methods that are trained on
local data. This has included work with artificial neural
nets, for example (Finnie, Wittig et al. 1997), rule
induction algorithms (Mair, Kadoda et al. 2000) and
genetic programming systems to search for functions that
fit the data (Burgess and Lefley 2001; Dolado 2001).
Whilst some quite accurate results have been reported, all
these techniques suffer from the problem of poor
explanatory value. In other words they are able to
provide a prediction but not necessarily offer a
justification that is helpful for a project manager who will
need, in some sense, to trust the prediction if these are
techniques are to be deployed in practice. Another ML
technique is case-based reasoning (CBR). This has an
advantage in that there is substantial evidence (Klein
1998) that humans make use of analogies or prototypes
when solving problems.

The remainder of this paper is organised as follows. The
next section reviews the use of CBR for effort prediction.
We then address the feature subset selection problem
which causes particular difficulties for problems
characterised by large numbers of features, few cases and
limited domain understanding. We briefly review the
range of approaches to feature subset selection and in
particular how it may be viewed as a search problem. We
then turn to our effort prediction case study and show that
feature subset selection contributes significantly to
prediction accuracy for our CBR approach. We compare
three search techniques: random, steepest ascent hill
climbing and forward sequential selection. Next we try to
explain our results in terms of the fitness landscape and
the problems of visualisation since there are 43 binary
dimensions. We conclude with a discussion of the
significance of our results, the extent to which they might
be generalised and areas requiring further investigation.

2 CASE-BASED REASONING
A number of research groups including ourselves have
been investigating applying CBR to software project
prediction since the mid 1990s (Prietula, Vincinanza et al.
1996; Shepperd, Schofield et al. 1996). The basic
approach is that each completed project is considered as a
separate case and added to a case base. Each case is
characterised by n features which might be continuous,
discrete or categorical. Example features might include
the number of interfaces, the level of code reuse and the
design method employed. Clearly, a restriction is that
these features must be known (or reliably estimated) at
the time of prediction. A new project, for which a
prediction is required (known as the target case), is also
characterised by the same feature set and plotted in
standardised n-dimensional feature space. Distance,
usually a modified form of Euclidean distance is used to
identify the most similar cases to the target and these,
since they have known values for effort, etc., are used as
the basis of the prediction. For a thorough review of CBR
the reader is referred to (Kolodner 1993).

There have been some differences in approach, for
instance Prietula et al. make substantial use of adaptation
rules whilst our work is closer to a k nearest neighbour (k-
NN) method. We believe our approach to have the
advantage of being more flexible since we are not
restricted to a particular set of features which is a
requirement for adaptation rules. This flexibility enabled
us to develop ANGEL, a software estimation CBR tool
that has a shell structure that can deal with arbitrary sets
and types of features. Features are re-scaled so that the
influence of a feature is not related to the choice of unit.
This is achieved by normalising the using the difference
between maximum and minimum observed values as a
denominator. For more details see (Shepperd, Schofield
et al. 1996). In general the results have been sufficiently
encouraging — we found that ANGEL performed as well
or better than a stepwise regression model across 9 data

sets (Shepperd and Schofield 1997) — to generate
significant interest.

3 FEATURE SUBSET SELECTION
PROBLEM

Searching for useful feature subsets has been recognised
as a challenge for the ML community as a whole for a
number of years. This is because all techniques — and
not just CBR — are potentially vulnerable to erroneous,
irrelevant or redundant data. Approaches to searching for
subsets fall into two categories: filters and wrappers
(Kohavi and John 1997). Filters operate independently of
the ML algorithm reducing the number of features prior to
training. By contrast, the wrappers use the ML algorithm
itself on some sample of the data set in order to determine
the fitness of the subset. This tends to be computationally
far more intensive, but can find better subsets than the
filter methods. In this paper we focus on wrappers. This
is because our goal is prediction of a continuous variable
rather than classification and filter methods look for
features strongly correlated with the dependent variable
and orthogonal to the independent variables. Given our
need to re-scale features to overcome problems of
differing units, orthogonality is not necessarily a desirable
characteristic of a feature subset.

Various wrapper methods have been investigated by a
number of researchers. The original version of ANGEL
addressed the problem of searching for the optimal feature
subset by an exhaustive search using a jack knife on the
case base in order to determine fitness. However, the
search is O(2n) so when n exceeds 15-20 this becomes
computationally intractable. Other approaches have
included different variants of hill climbing algorithms
(Skalak 1994), simulated annealing algorithms (Debuse
and Rayward-Smith 1997), sequential feature selection
algorithms, both forward and backward (Aha and Bankert
1996) and genetic algorithms (Whitley, Beveridge et al.
1997). These have generally been reported to lead to
improvements in accuracy without the prohibitive
computational cost of an exhaustive search.

Essentially all these methods have a search component to
generate candidate subsets from the space of all possible
subsets and a fitness function which is a measure of the
error deriving from the ML algorithm using the subset,
trained on a sample from the data set and validated on a
holdout sample. Typical sampling techniques are the jack
knife and n-fold validation. The fitness function is
generally a measure of error and as such is a cost that
should be minimised. The exact nature of the measure
will depend upon the nature of what is being predicted but
is usually either based on the cost of misclassifications or
the sum of absolute residuals.

4 PREDICTION CASE STUDY
This case study examines the use of different search
algorithms to optimise the feature subset used to build
effort prediction systems for software development
projects. We look at the accuracy of the prediction
systems built using different feature subsets selected
using these algorithms. The results discussed in this study
were generated by the ArchANGEL CBR tool1. The
same tool settings (except feature subset selection
algorithm) were used for all runs. Predictions were made
using an inverse distance weighted average of the 3
nearest neighbours, i.e. k=3. The data set was jack-knifed
to produce a prediction for each case and the sum of
absolute residuals for these predictions was used as the
accuracy indicator for each prediction system.

The data used for the case study is the so-called 'Finnish
dataset'. This dataset contains 407 cases described by 90
features. The features are a mixture of continuous,
discrete and categorical. However, there are a number of
missing data values and also some features that would not
be known at prediction time and so should not be included
in a prediction system. Removing features with missing
values or after-the-event data, leaves a subset of 44
features that are actually used in the case study. The data
set also exhibits significant multi-collinearity, in other
words there are strong relationships between features as
well as with the feature to be predicted, namely effort.
Software project effort data sets are characterised by
relatively few cases (almost invariably under 500 and
typically less than 50). Therefore the data set used in this
paper is at the large end of this spectrum.

The number of possible combinations of feature subsets is
2n where n is the number of features. In this case study
there are 44 features, however, one is used as the target
feature (what we are trying to predict). This leaves 43
features as the input to the subset search, giving 8.8 e12

possible combinations. Clearly an exhaustive search is
not feasible so other search strategies must be considered.

This case study examines three alternative strategies:
1. Random feature subset selection
2. Multi-start steepest ascent hill climbing
3. Forward sequential selection

We restricted our choice for two reasons. First, other
groups have had some success with these algorithms for
finding good feature subsets. Second, there seems no
purpose in examining more complex search strategies if
the problem can be effectively solved using a hill-climber
(Juels and Wattenberg 1994). Also, in order to analyse

1 ArchANGEL is the most recent version of the ANGEL software tool
for project prediction. It may be downloaded from
http://dec.bmth.ac.uk/ESERG/ANGEL/

the value of feature subset selection we used the accuracy
from using all features as a comparative baseline.

As a search problem we need to consider two additional
issues: representation of solutions and measurement of
fitness. Fortunately, for feature subset selection problems
the set of candidate features can simply represented as a
bit string where 1 denotes selected and 0 excluded. This
also provides a view of neighbourhood which is defined
as any move derived from mutating a single bit, in other
words moving any one feature into, or out of the selected
set. Fitness, or strictly speaking cost2, is a little more
complex. As stated in the previous section we are
concerned with wrappers. Informally we prefer a feature
subset that leads to more accurate project effort
prediction. This is defined as jack-knifing across the
entire data set so that we obtain a predicted effort value ê
for every case. This can be compared with the true effort
value e, in order to derive an absolute residual r which is
|ê-e| since we are indifferent to the direction of error. For
the entire data set we sum the absolute residuals. Note
that this is a more neutral view of prediction error
compared with, say, the sum of the squares of the
residuals which adopts a more risk averse stance since a
few extreme errors will dominate the fitness measure.

4.1 RANDOM FEATURE SELECTION
A simple approach to finding a suitable feature subset in
such a large search space is to collect results from a large
number of randomly generated feature subsets. Table 1
shows the summary of results from 4028 randomly
sampled feature subsets.

Table 1: Summary statistics for random feature selection
Count 4028
Mean 91272
Median 91831
Min 56988
Max 135586

It is worth noting that using all features gives a result
close to the mean of the random feature subsets. This
implies that a randomly chosen subset of the features is
likely to be just as good as using all available features.
The best solution found has an accuracy value of 56988
compared with 88522 using all features. This is a
significant improvement (recall that low values of sum(|r|)
are preferred), however we next turned to a more
systematic search strategy in order to seek better results.

4.2 HILL CLIMBING
A commonly used search strategy is hill climbing. In this
case study the algorithm used was a multi-start steepest

2 Whilst we actually wish to minimise the fitness function we will retain
the usual terminology of hill-climbing, peaks and so forth.

ascent hill climbing where each climb has a new,
randomly selected starting point (or initial feature set).
The algorithm is steepest ascent because the entire
neighbourhood is evaluated and the move with the best
result is used as the next base position. The
neighbourhood is defined as any new feature set that can
be obtained from toggling a single bit. This definition of
the neighbourhood means that any feature set has 43
neighbours that must be evaluated for each step in the
climb.

Table 2: Summary statistics for 113 hill climbs

Count 113
Mean 47803
Median 51909
Min 29916
Max 61049

Table 2 gives the summary statistics for the accuracy
levels achieved by the 113 hill climbs. We see that the
best feature subset found by hill climbing gave a result of
29916. This is a significant improvement over both using
all features and random searching (88522, 56988), see
also Table 3. Also worthy of note is that the maximum
(worst) value of a peak found by hill climbing was 61049.
This is only slightly worse than the best of the random
results (56988). In fact, all but 8 of the 113 climbs
produced results better than all 4028 random selections.

Figure 1: Distribution of Results from Hill Climbing

Figure 1 shows the distribution of results from Table 2.
Note the bi-modal nature of this hill climbing results.
There are number of significantly better solutions that are
clearly separated from the main distribution of results.
When the distinction between this set of outlying good
solutions and the other results was investigated it was
found that the best solutions used fewer features.

Figure 2: Scatter plot of accuracy against number of
features used

Figure 2 shows a scatter plot of sum(|r|) against the
number of features included in the feature subset. A
slight trend is notable in the main cloud of results but it is
the lower valued outliers that dominate, in other words no
good solution was found that contains more than 15
features (out of 43).

4.3 FORWARD SEQUENTIAL SELECTION
Another form of search that can be used in this situation is
a sequential feature selection algorithm. We used a
forward sequential selection (FSS) algorithm due to the
observation that the best solutions from hill-climbing
were relatively sparse (see Figure 2)3. FSS works in a
similar way to steepest ascent hill climbing. The first
difference is that it starts from having no features selected
rather than a random selection. Secondly, features are
only added (never removed). The best single feature for
prediction is found first and added to the feature set. An
attempt is then made to add a second feature. This is
done by evaluating the combination of the selected feature
with each of the other features. The best of these
combinations becomes the current feature set and an
attempt is made to add another feature. This process is
repeated until none of these combinations yields a better
result than the current feature set.

3 An alternative variant would be the backward sequential search (BSS).
In this algorithm all features are initially selected and features are
removed one by one. Normally, BSS is recommended rather than a FSS.
This is because BSS evaluates features to remove in the presence of all
the other features that may be included in the final solution. This allows
it to take advantage of any interaction between the features when making
the decision on which feature to remove. However, it has been
suggested that BSS 'is more easily confused by large numbers of
features' and than FSS 'is preferred when the optimal number of selected
features is small', see for example (Aha and Bankert 1996). Since this
search has a large number of features and the results from hill climbing
suggest that the better results have a small number of features we chose
FSS.

The FSS result was 30202. This is only slightly worse
than the result from the best hill climb (by less than 1%)
and this result was reached far more quickly. The FSS
result was obtained by evaluating just 243 feature
combinations. A single hill climb required an average of
688 evaluations and only 3 of 113 hill climbs were equal
to or better than the FSS result. This means that hill
climbing would on average require around 19000
evaluations to find an equal or better result.

5 FITNESS LANDSCAPE
The close relationship between the form of the fitness
landscape and the performance of search algorithms has
been noted by many researchers, e.g. (Crisan and
Muhlenbein 1998; Reeves 2000). Since the 'no free
lunch' theorem (Wolpert and Macready 1997), researchers
realise that is not possible to say that a particular search
algorithm is always better than another. Research now
concentrates on trying to show that a particular search
algorithm is better than another for a restricted class of
search problem. Difficulties with this approach include
trying to define a class of search problem and trying to
identify that class of problem a priori.

A step towards identifying which search algorithms are
best for which class of problem is to identify
characteristics of the fitness landscape that aid a particular
algorithm. Work has been done towards this on a
theoretical basis (Sharpe 1998). This section attempts to
describe the landscape for this particular search problem
and to comment on how this may have affected the results
from the search algorithms used. However, there are
several challenges. First, and obviously, there is the sheer
size of the landscape. Second, there is a visualisation
problem. It is convenient to think in terms of a landscape
in which the x and y co-ordinates represent the search
space and the height the quality or fitness of the solution.
Thus we use such abstractions as hill-climbing and peaks.
For our problem we must confront 43 dimensions each of
extreme coarseness i.e. binary. Consequently simple
representations are inapplicable.

The random search can be thought of as sampling from
the entire landscape. The results from this sampling could
therefore be used to make inferences about the underlying
population where the underlying population is the set of
results obtained from an exhaustive search of the feature
space (if that were computationally possible).

The results shown in Figure 3 show the distribution of
'heights' in the fitness landscape (but not their positions).
Values follow an approximately normal distribution
centred on a mean of just over 91000 with approximate
maximum and minimum values of 135000 and 57000.
This gives some idea of typical values, although clearly

the whole point of a hard search is that we are interested
in the extreme outliers. So we have some idea of the
proportions of the fitness landscape that lie at particular
heights, but no information on how individual points are
positioned in the fitness landscape. The landscape could
be entirely chaotic or organised as a single smooth peak.
There is no way of knowing the structure of the landscape
from these results.

Figure 3: Distribution of results for randomly selected
feature sets

The results from the hill climbing also help provide
information concerning the fitness landscape. Hill
climbing algorithms depend on certain assumptions about
the nature of the fitness landscape for their operation.
They exploit local correlations in the structure of the
search space, i.e., they assume that there is likely to be
better point near to a good point. A hill climbing
algorithm would not work in a chaotic landscape. The
significantly better results produced by the hill climbing
(over the random selection) suggest that there is structure
in the landscape that is exploited by hill climbing. The
length of the climbs also supports this view. The less
structured the landscape the shorter individual climbs
would be. The median climb length was 15 steps and the
maximum climb length was 31 steps. Compare this with
the 43 steps that is needed to traverse the entire breadth of
the state space and there are clearly large-scale structures
in the fitness landscape.

What else can the hill climbing results tell us about the
structure of the fitness landscape? Firstly, there are a
large number of distinct peaks in the landscape (highly
multi-modal). The 113 hill climbs found 98 distinct peaks
- only 15 climbs found a previously visited peak.
Interestingly, all of the peaks that were visited more than
once were one of the ten highest peaks. This suggests that
the better peaks in this landscape have larger basins of
attraction.

If we combine the hill climbing results with the random
results another observation can be made. The best of

4028 random selections was better than only the worst 8
hill climbs. There is very little chance of finding a good
result by random searching. This implies that little of the
feature space lies near the top of the hills, i.e., the peaks
are very sharp.

As well as the local structures within the landscape that
aid individual hill climbs there could also be larger scale
structures or trends. To try to identify any such trends
requires a way of visualising the position and height of
points in 43 dimensional binary space. A multi-
dimensional scaling (MDS) algorithm was used to
achieve this visualisation. MDS is used to compress high
dimensional data into lower dimensional data while
attempting to retain the relative distances between the
data points. We used the MDS algorithm provided by the
statistics package SPSS to convert the similarity in feature
subsets corresponding to each peak into co-ordinates in 2
dimensional space. These points were then plotted and
their height or fitness denoted by different symbols. Note
that we have no data on intervening points so we cannot
draw contours.

Figure 4: MDS of hill climbing results

The results for the best 100 hill climbs are shown in
Figure 4. There is a general tendency for the better peaks
to be in the upper part of the figure and the worse peaks to
be in the lower part of the figure. More notable is the
tight cluster of Xs representing the 25 best climbs (10 best
peaks). These observations show that there are some
global trends within the feature space. This may be a
trend in just the height of the peaks or a general raising of
the landscape. To investigate this issue a second random
sampling was done that was constrained to the region of
the highest 10 peaks. Figure 5 shows the results from this
localised random sampling.

From the clear differences in central tendency between
the constrained and the global random samples, there

appears to be a tendency for the average height to increase
towards a particular region in the feature space. To
continue the landscape analogy, although there are many
local peaks throughout the landscape, in general the
landscape rises towards a localised massif. This massif
has a higher average level of fitness as well as the highest
peaks. It does, however, still contain some deep sinkholes
(see Table 3 where the lowest fitness was in excess of
143000).

Figure 5: Distribution of restrained random search

Table 3: Summary statistics for restrained random search

Count 5358
Mean 58095
Median 56714
Min 31353
Max 143824

In some ways FSS can be thought of as a single steepest
ascent hill-climb with a fixed starting point and some
moves made taboo, since once features are included in a
subset they cannot subsequently be removed. The best
hill climbs are all in a region of sparse feature subsets and
the FSS path also operates in this region of the fitness
landscape. The value of a good starting point can be seen
in the short length of the path (5 steps) and consequent
efficiency gains.

To summarise, we know the landscape is multi-modal,
that the peaks have steep slopes and small summits and
somewhat surprisingly there are some very large scale
structures as evidenced by the large basins of attraction
for the better solutions. This last observation was
unexpected. What we do not know is whether there exists
some higher peak, or peaks, but with a very small basin of
attraction.

6 DISCUSSION
This paper has looked at the performance of a number of
search techniques to solve a real world software
engineering problem. The problem was the optimisation
of the feature set used by a k-NN system to predict
software project effort. Table 4 shows a summary of the
results for these techniques.. The table shows accuracy of
the best feature set found by each method (measured as
the sum of the absolute residuals). It also shows the
maximum and mean values for techniques where multiple
results were produced. To provide an intuitive feel for the
practical value of the prediction systems produced, an
alternative measure of accuracy — mean absolute relative
error — is also included4. Finally, as a means of
indicating the efficiency of the techniques we provide the
number of different feature sets evaluations required by
each technique.

Table 4: Summary of results

All
features

Random
search

Hill
climbing

FSS
Evaluations 1 4028 74433 243
Min sum|r| 88522 56988 29916 30202
Max sum|r| 135586 61049
Mean sum|r| 91272 47803
% Error 50.8 % 35.6 % 15.3 % 13.1 %

The simplest and quickest technique is to use all of the
features, as this requires a single evaluation. However the
accuracy results obtained are very poor. Prediction made
using this system had an average error of 50.8%. This is
intended as a base line against which we see all other
techniques yield accuracy benefits.

The results show that a random search is clearly better
than simply using all features. The best feature set found
with this method resulted in a prediction system with an
average error of 35.6%. Longer runs of random trials
could bring this value down further but more intelligent
search techniques would probably be preferred.

Hill-climbing found the best solution known to us (as
measure by sum|r|5). This result was equivalent to an
average error on predictions of about 15%. However, hill
climbing is very computationally intensive. The table
shows that a total of 74433 different feature sets were
evaluated during the 113 hill climbs. This form of
multiple-start hill climbing (like the random search) has
no in-built end point. It can be run indefinitely but is

4 We did not use mean absolute relative error (sometimes referred to as
MMRE in the software engineering literature) as our fitness function
since it is asymmetric and heteroscedastic.
5 From table 3 it can be seen that although hill climbing has a lower
sum|r| than FSS, it has a higher % error. This rank reversal is due to
different accuracy indicators measuring different aspects of error.

likely to show diminishing returns as it converges on an
exhaustive search.

Forward sequential selection yielded a result only
fractionally worse than the best hill climbing result in
terms of residuals and slightly better in terms of relative
error (13.1 %). The major advantage of the FSS
technique was only 243 evaluations were required to
reach this result

Following this study the authors would make the
following recommendations to anyone trying to optimise
a feature subset for case-based prediction of software
development effort.
1. If the feature set is small (<15-20 features) use an

exhaustive search. This will always find the
optimum feature subset.

2. If the feature set has more than 20 features an
exhaustive search will not be computationally
possible. Based on the work presented in this paper
(albeit a single dataset) the authors would
recommend trying FSS since it is significantly more
efficient than a hill-climber and there was little
difference in accuracy.

It is worth noting that the inherently noisy nature of such
real world data means that there may be little scope for
further improvement. Also, for our problem we are only
seeking good engineering approximations. Thus we can
view a solution as good enough. Any "real world" project
effort prediction will be vulnerable to changes in
environment, requirements, staff and so on, thus in
practice ultra-high levels of accuracy are somewhat
illusory. If readers are considering applying more
complex algorithms to tackle this type of problem they
should consider whether it would be worthwhile in the
light of the relatively small improvement that might
potentially be yielded.

As well as applying a set of search techniques to a
particular software engineering problem, we have also
attempted to describe the fitness landscape of the
problem. Given that the fitness landscape is comprised of
43 binary dimensions describing the landscape is a
difficult task. A number of techniques were employed to
help describe and visualise the landscape. Firstly, the
result from the random search were interpreted as samples
from the fitness landscape and used to find how much of
the landscape was at various heights. Secondly, hill
climbing was used to look for the presence of structure in
the landscape and to gauge the number and height of
peaks in the landscape. Multi-dimensional scaling was
used as a means of visualising the relative position of the
various peaks found by hill climbing. The results from
the MDS helped to identify global trends in the landscape.
Localised exhaustive or random searches can also be used

to further investigate areas of interest within the fitness
landscape.

The result of the investigation of the fitness landscape for
this problem showed it to be highly multi-modal. The
landscape contained sharp peaks and troughs and rose
towards a multi-peaked 'massif' that contained all of the
better results found.

To conclude, we have described the successful use of
search techniques on a real world software engineering
problem. By means of the search for better feature
subsets, prediction error has been reduced from 50.8 % to
13.1 %. We have also suggested techniques to help
visualise fitness landscapes and used them on a real
example. Lastly we have noted that applying search
techniques to engineering problems is not necessarily the
search for an optimum value. A good enough result
reached in a timely fashion may be better than a
prolonged search for an optimum result. The successful
use of simple search techniques such as FSS and hill
climbing suggest that researchers should try such methods
before resorting to more complex techniques and that as a
side effect these techniques also reveal useful information
about the nature of the fitness landscape.

Acknowledgments
The authors are indebted to STTF Ltd for making the
Finnish data set available.

References
Aha, D. W. and R. L. Bankert (1996). A comparative

evaluation of sequential feature selection
algorithms. Artificial Intelligence and Statistics V.
D. Fisher and J.-H. Lenz. New York, Springer-
Verlag.

Boehm, B. W. (1984). "Software engineering economics."
IEEE Transactions on Software Engineering 10(1):
4-21.

Burgess, C. J. and M. Lefley (2001). "Can genetic
programming improve software effort estimation? A
comparative evaluation." Information & Software
Technology 43(14): 863-873.

Crisan, C. and H. Muhlenbein (1998). The frequency
assignment problem: A look at the performance of
evolutionary search. Artificial Evolution: Lecture
Notes in Computer Science, Vol. 1363:: 263-273.

Debuse, J. C. W. and V. J. Rayward-Smith (1997).
"Feature subset selection within a simulated
annealing data mining algorithm." J. of Intelligent
Information Systems 9: 57-81.

Dolado, J. J. (2001). "On the problem of the software cost
function." Information & Software Technology
43(1): 61-72.

Finnie, G. R., G. E. Wittig and J.-M. Desharnais (1997).
"A comparison of software effort estimation
techniques using function points with neural
networks, case based reasoning and regression
models." J. of Systems Software 39: 281-289.

Juels, A. and M. Wattenberg (1994). Stochastic
hillclimbing as a baseline method for evaluating
genetic algorithms, Technical Report, Univ. of
California at Berkeley.

Klein, G. (1998). Sources of Power : How People Make
Decisions. Cambridge, Ma, MIT Press.

Kohavi, R. and G. H. John (1997). "Wrappers for feature
selection for machine learning." Artificial
Intelligence 97: 273-324.

Kok, P., B. A. Kitchenham and J. Kirakowski (1990). The
MERMAID approach to software cost estimation.
Esprit Technical Week.

Kolodner, J. L. (1993). Case-Based Reasoning, Morgan-
Kaufmann.

Mair, C., G. Kadoda, M. Lefley, K. Phalp, C. Schofield,
M. Shepperd and S. Webster (2000). "An
investigation of machine learning based prediction
systems." J. of Systems Software 53(1): pp23-29.

Prietula, M. J., S. S. Vincinanza and T. Mukhopadhyay
(1996). "Software Effort Estimation With a Case-
Based Reasoner." J. Experimental & Theoretical
Artificial Intelligence 8: 341 - 363.

Reeves, C. R. (2000). Fitness landscapes and evolutionary
algorithms. Artificial Evolution: Lecture Notes in
Computer Science, Vol. 1829: 3-20.

Sharpe, O. (1998). Beyond NFL: A few tentative steps.
3rd Conf. on Genetic Programming (GP'98),
Madison, Wisconsin., Morgan Kaufman.

Shepperd, M. J. and C. Schofield (1997). "Estimating
software project effort using analogies." IEEE
Transactions on Software Engineering 23(11): 736-
743.

Shepperd, M. J., C. Schofield and B. A. Kitchenham
(1996). Effort estimation using analogy. 18th Intl.
Conf. on Softw. Eng., Berlin, IEEE Computer Press.

Skalak, D. B. (1994). Prototype and feature selection by
sampling and random mutation hill climbing
algorithms. 11th Intl. Machine Learning Conf.
(ICML-94), Morgan Kauffmann.

Whitley, D., J. R. Beveridge, C. Guerra-Salcedo and C.
Graves (1997). Messy genetic algorithms for subset
feature selection. International Conference on
Genetic Algorithms, ICGA-97.

Wolpert, D. H. and W. G. Macready (1997). "No Free
Lunch Theorems for Search." IEEE Transactions on
Evolutionary Computation 1(1): 67-82.

