
Research Article
Optimizing Hadoop Performance for Big Data Analytics in
Smart Grid

Mukhtaj Khan,1 Zhengwen Huang,2 Maozhen Li,2 Gareth A. Taylor,2

Phillip M. Ashton,3 andMushtaq Khan4

1Department of Computer Science, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
2Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK
3National Grid, System Operation, Wokingham, UK
4Department of Computer Science, COMSATS Institute of Information Technology, Wah Cantt, Pakistan

Correspondence should be addressed to Mukhtaj Khan; mukhtaj.khan@awkum.edu.pk

Received 30 June 2017; Accepted 17 October 2017; Published 19 November 2017

Academic Editor: Panos Liatsis

Copyright © 2017 Mukhtaj Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid deployment of Phasor Measurement Units (PMUs) in power systems globally is leading to Big Data challenges. New
high performance computing techniques are now required to process an ever increasing volume of data from PMUs. To that extent
the Hadoop framework, an open source implementation of the MapReduce computing model, is gaining momentum for Big Data
analytics in smart grid applications. However, Hadoop has over 190 configuration parameters, which can have a significant impact
on the performance of the Hadoop framework.This paper presents an Enhanced Parallel Detrended Fluctuation Analysis (EPDFA)
algorithm for scalable analytics on massive volumes of PMU data. The novel EPDFA algorithm builds on an enhanced Hadoop
platform whose configuration parameters are optimized by Gene Expression Programming. Experimental results show that the
EPDFA is 29 times faster than the sequential DFA in processing PMU data and 1.87 times faster than a parallel DFA, which utilizes
the default Hadoop configuration settings.

1. Introduction

Phasor Measurement Units (PMU) are being rapidly
deployed throughout global electricity networks, facilitating
the development and deployment of Wide Area Monitoring
Systems (WAMS). WAMS provide a far more immediate and
accurate view of the power grid than traditional Supervisory
Control and Data Acquisition (SCADA) monitoring [1, 2],
collecting real-time synchronized measurements at a typical
rate of 1 sample per cycle of the system frequency.This brings
in new challenges in terms of data management that need to
be addressed to fully realize the benefits of the technology.

The devices transmit 4.32millionmeasurements per param-
eter per day for a 50Hz system. This is orders of magnitude
larger than traditionalmonitoring solutions and requires fast-
acting, scalable algorithms, combined with novel visualiza-
tion techniques to turn the growing datasets into actionable
information for network operators and planners alike.

The authors’ previous research has focused on the detec-
tion of transient events in PMU datasets using Detrended
Fluctuation Analysis (DFA), for the purpose of triggering
steady-state estimators [3] and on determining events suit-
able for system inertia estimation [4]. However, processing
an ever increasing volume of PMU data in a timely manner
necessitates a high performance and scalable computing
infrastructure. For this purpose we have parallelized the
works presented in [3] using the MapReduce computing
model [5] and implemented a parallel DFA (PDFA) [6] using
the Hadoop MapReduce framework [7].

The MapReduce model has become a de facto standard
for Big Data analytics by capitalizing on clusters of inex-
pensive commodity computers. The Hadoop framework is
an open source implementation of the MapReduce model
and has been widely adopted due to its remarkable features
such as high scalability, fault-tolerance, and computational
parallelization [8, 9]. In addition, the Hadoop framework has

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 2198262, 11 pages
https://doi.org/10.1155/2017/2198262

https://doi.org/10.1155/2017/2198262

2 Mathematical Problems in Engineering

also been applied in the power system domain for power grid
data analysis [6, 10–13].

Despite its remarkable features, Hadoop is a complex
framework, which has a number of components that interacts
with each other across a cluster of nodes.The execution times
of Hadoop jobs are sensitive to each component of the frame-
work including the underlying hardware, network infrastruc-
ture, and configuration parameters. It is worth noting that the
Hadoop framework has more than 190 tunable configuration
parameters, some of which have a significant impact on
the execution of a Hadoop job [14]. Manually tuning these
parameters is a time consuming and ineffective process and
is highly challenging when attempting to ensure that Hadoop
operates at an optimal level of performance. In addition,
the Hadoop framework has a black-box-like feature, which
makes it extremely difficult to find a mathematical model
or an objective function that represents a correlation among
the parameters. The large parameter space together with
the complex correlation among the configuration parameters
further increases the complexity of a manual tuning process.
Therefore, an effective and automatic approach to tuning
Hadoop’s parameters has become a necessity.

In this paper, we present an Enhanced Parallel Detrended
Fluctuation Analysis (EPDFA) algorithm for scalable ana-
lytics on massive PMU datasets. EPDFA is based on an
enhanced Hadoop platform whose configuration parameters
are optimized by Gene Expression Programming (GEP)
[15]. The EPDFA employs GEP to construct an objective
function based on a historical profile of the execution of jobs.
The objective function represents a mathematical correlation
among the core Hadoop parameters. It then makes use of
the constructed objective function to find a set of optimal
values of the core Hadoop parameters for performance
enhancement. It should be noted that, in the proposed
optimization process, the entire parameter search space
is considered in order to maintain the interdependencies
among the configuration parameters. The performance of
the EPDFA is evaluated on an experimental Hadoop cluster
configured with 8 Virtual Machines (VMs) and is compared
with both the original sequential DFA and the PDFA that only
utilizes the default Hadoop configuration settings. The PMU
data used in the evaluation was collected from the WAMS of
the Great Britain (GB) transmission system.

The reminder of the paper is organized as follows.
Section 2 reviews the related work on Hadoop configuration
tuning. Section 3 introduces a set of core Hadoop con-
figuration parameters, which are considered in this work.
Section 4 presents in detail the design and implementation
of the EPDFA for scalable analysis on PMU data. Section 5
compares the performance of the EPDFA with that of the
sequential DFA and the PDFA, respectively, using an exper-
imental Hadoop cluster. Section 6 concludes the paper and
proposes some further work.

2. Hadoop Parameter Tuning

In this section the related work on autotuning Hadoop
configuration parameter settings is reviewed.

In the relevant literature, there are several Hadoop per-
formancemodels that focus on tuning Hadoop configuration
parameters in order to enhance the execution of Hadoop
jobs [14, 16–20]. Wu and Gokhale proposed Profiling and
Performance Analysis-Based System (PPABS) [17], which
automatically tunes the Hadoop configuration parameter
settings based on executed job profiles. The PPABS frame-
work consists of Analyzer and Recognizer components. The
Analyzer trains the PPABS to classify the jobs having similar
execution times into a set of equivalent classes. The Analyzer
uses𝐾-means++ to classify the jobs and simulated annealing
to find optimal settings. The Recognizer classifies a new
job into one of these equivalent classes using a pattern
recognition technique. The Recognizer first runs the new
job on a small dataset using default configuration settings
and then applies the pattern recognition technique to classify
it. Each class has the best configuration parameter settings.
Once the Recognizer determines the class of a new job, it
then automatically uploads the best configuration settings for
this job. However, PPABS is unable to determine the fine-
tuned configuration settings for a new job that does not
belong to any of these equivalent classes. Herodotou et al.
proposed Starfish [14, 16] that employs a mixture of cost
model [21] and simulator to optimize a Hadoop job based
on previously executed job profile information. However,
the Starfish model is based on simplifying assumptions
[20], which indicate that the obtained configuration may be
suboptimal. Liao et al. [18] proposed a search based model
that automatically tunes the configuration parameters using
a Genetic Algorithm (GA). One critical limitation is that it
does not have a fitness function implemented in the GA.The
fitness of a set of parameter values is evaluated by physically
executing a Hadoop job using the tuned parameters, which
is an exhaustive and time consuming process. Liu et al. [19]
proposed two approaches to optimize Hadoop applications.
The first approach optimizes the compiler at run time and
a new Application Programming Interface (API) was devel-
oped on top of a Java Bytecode Optimization Framework
[22] to reduce the overhead of iterative Hadoop applications.
The second approach optimizes a Hadoop application by
tuning Hadoop configuration parameters. This approach
divides the parameters search space into subsearch spaces
and then searches for optimum values by trying different
values for parameters iteratively within the range. However,
both approaches are unable to provide a sophisticated search
technique and a mathematical function that represents the
correlation of the Hadoop configuration parameters. Li et al.
[23] proposed a performance evaluation model for the whole
system optimization of Hadoop. The model analyzes the
hardware and software levels and explores the performance
issues in both levels.Themodel mainly focuses on the impact
of different configuration settings on job execution time
instead of tuning the configuration parameters. Yu et al. [20]
proposed a performance model, which employs a combina-
tion of Random-Forest and GA techniques. The Random-
Forest approach is used to build performance models for
the map phase and the reduce phase and a GA is employed
to search optimum configuration parameter settings within
the parameter space. It should be noted that a Hadoop job

Mathematical Problems in Engineering 3

Table 1: Hadoop core parameters as GEP variables.

GEP variables Hadoop parameters Default values Data types𝑥0 io.sort.factor 10 Integer𝑥1 io.sort.mb 100 Integer𝑥2 io.sort.spill.percent 0.80 Float𝑥3 mapred.reduce.tasks 1 Integer𝑥4 mapreduce.tasktracker.map.tasks.maximum 2 Integer𝑥5 mapreduce.tasktracker.reduce.tasks.maximum 2 Integer𝑥6 mapred.child.java.opts 200 Integer𝑥7 mapreduce.reduce.shuffle.input.buffer.percent 0.70 Float𝑥8 mapred.inmem.merge.threshold 1000 Integer𝑥9 Input data size (number of samples/MB) User Integer

is executed in overlapping and nonoverlapping stages [24],
which are ignored in the proposed performance model. As
a result, the performance estimation of the proposed model
may be inaccurate. Furthermore, the proposed model uses a
dynamic instrumentation tool (BTrace) to collect the timing
characteristic of tasks. BTrace utilizes extra CPU cycles
that generate extra overheads, especially for CPU-intensive
applications. As a result, the proposed model overestimates
the execution time of a job.

3. Hadoop Parameters

The Hadoop framework has more than 190 tunable config-
uration parameters that allow users to manage the flow of a
Hadoop job in different phases during the execution process.
Some of them are core parameters and have a significant
impact on the performance of a Hadoop job [14, 18, 25].
Consider that all of the 190 configuration parameters for opti-
mization purposes would be unrealistic and time consuming.
In order to reduce the parameter, search space, and effectively
speed up the search process, we consider only core parame-
ters in this research. The selection of the core parameters is
based on previous research studies [14, 17, 18, 25, 26].The core
parameters as listed in Table 1 in brief are as follows.

io.sort.factor. This parameter determines the number of files
(streams) to be merged during the sorting process of map
tasks.The default value is 10, but increasing its value improves
the utilization of the physical memory and reduces the
overhead in IO operations.

io.sort.mb. During job execution, the output of a map task is
not directlywritten into the hard disk but is written into an in-
memory buffer which is assigned to each map task. The size
of the in-memory buffer is specified through the io.sort.mb
parameter.The default value of this parameter is 100MB.The
recommended value for this parameter is between 30% and
40% of the Java Opts value and should be larger than the
output size of amap taskwhichminimizes the number of spill
records [27].

io.sort.spill.percent. The default value of this parameter is 0.8
(80%). When an in-memory buffer is filled up to 80%, the
data of the in-memory buffer (io.sort.mb) should be spilled

into the hard disk. It is recommended that the value of
io.sort.spill.percent should not be less than 0.50.

mapred.reduce.tasks. This parameter can have a significant
impact on the performance of a Hadoop job [24].The default
value is 1. The optimum value of this parameter is mainly
dependent on the size of an input dataset and the number of
reduce slots configured in a Hadoop cluster. Setting a small
number of reduce tasks for a job decreases the overhead in
setting up tasks on a small input dataset while setting a large
number of reduce tasks improves the hard disk IO utilization
on a large input dataset.The recommended number of reduce
tasks is 90% of the total number of reduce slots configured in
a cluster [28].

mapreduce.tasktracker.map.tasks.maximum, mapreduce.task-
tracker.reduce.tasks.maximum. These parameters define the
number of the map and reduce tasks that can be executed
simultaneously on each cluster node. Increasing the values
of these parameters increases the utilization of CPUs and
physical memory of the cluster node which can improve the
performance of a Hadoop job.

mapred.child.java.opts. This is a memory related parameter
and the main candidate for Java Virtual Machine (JVM)
tuning. The default value is -Xmx200m which gives at most
200MB physical memory to each child task. Increasing the
value of Java Opt reduces spill operations to output map
results into the hard disk which can improve the performance
of a job.

mapred.inmem.merge.threshold. The threshold value indi-
cates the number of files for the in-memory merge process.
When the number ofmap output files equal to threshold value
is accumulated then the system initiates the process of merg-
ing themap output files and spill to a disk. A value of zero for
this parameter means there is no threshold and the spill pro-
cess is controlled by the mapred.reduce.shuffle.merge.percent
parameter [27].

4. The Optimization of Hadoop Using GEP

The automated Hadoop performance tuning approach is
based on a GEP technique, which automatically searches

4 Mathematical Problems in Engineering

Table 2: Mathematic functions used in GEP.

Functions Function descriptions Input data types
plus 𝑓(𝑎, 𝑏) = 𝑎 + 𝑏 Integer or float
minus 𝑓 (𝑎, 𝑏) = 𝑎 − 𝑏 Integer or float
multiply 𝑓(𝑎, 𝑏) = 𝑎 ∗ 𝑏 Integer or float
divide 𝑓(𝑎, 𝑏) = 𝑎/𝑏 Integer or float
sin 𝑓(𝑎) = sin(𝑎) Integer or float
cos 𝑓(𝑎) = cos(𝑎) Integer or float
tan 𝑓(𝑎) = tan(𝑎) Integer or float
acos 𝑓(𝑎) = acos(𝑎) Integer or float
asin 𝑓(𝑎) = asin(𝑎) Integer or float
atan 𝑓(𝑎) = atan(𝑎) Integer or float
exp 𝑓(𝑎) returns the exponential 𝑒𝑎 Integer or float
log 𝑓(𝑎) = log(𝑎) Positive integer or float
log10 𝑓(𝑎) returns the (base-10) logarithm of 𝑎 Positive integer or float
pow 𝑓(𝑎, 𝑏) returns base 𝑎 raised to the power exponent 𝑏 Integer or float
sqrt 𝑓(𝑎) = sqrt(𝑥) Positive integer or float
fmod 𝑓(𝑎, 𝑏) returns the floating-point remainder of 𝑎/𝑏 (rounded towards zero) Integer or float
pow10 𝑓(𝑎) returns base 10 raised to the power exponent 𝑎 Integer or float
inv 𝑓(𝑎) = 1/𝑎 Integer or float
abs 𝑓(𝑎) returns absolute value of parameter 𝑎 integer
neg 𝑓(𝑎) = −𝑎; Integer or float

for Hadoop optimum configuration parameter settings by
building amathematical correlation among the configuration
parameters. In this section we first describe the GEP tech-
nique and then present the implementation of the EPDFA
algorithm with the Hadoop performance enhancement.

GEP [15] is a new type of Evolutionary Algorithm (EA)
[29]. It is developed based on concepts that are similar to
Genetic Algorithms (GA) [30] and Genetic Programming
(GP) [31]. Using a special representational format of the solu-
tion structure, GEP overcomes some limitations of both GA
and GP. GEP uses a combined chromosome and expression
tree structure [15] to represent a targeted solution of the
problem being investigated. The factors of the targeted solu-
tion are encoded into a linear chromosome format together
with some potential functions, which can be used to describe
the correlation of the factors. Each chromosome generates
an expression tree, and the chromosomes containing these
factors are evolved during the evolutionary process.

4.1. GEP Design. The execution time of a Hadoop job can be
expressed using (1) where𝑥0, 𝑥1, . . . , 𝑥𝑛 represent theHadoop
configuration parameters.

Execution Time = 𝑓 (𝑥0, 𝑥1, . . . , 𝑥𝑛) . (1)

In this research, we consider 9 core Hadoop parameters
and based on the data types of these Hadoop configuration
parameters, the functions shown in Table 2 can be applied
in the GEP method. A correlation of the Hadoop parameters
can be represented by a combination of the functions. Figure 1
shows an example of mining a correlation of 2 parameters

Correlation mining
Parameter

setting samples
Mathematical

functions

x0 x1

x0 + x1

x0 ? x1

Figure 1: An example of parameter correlation mining.

(𝑥0 and 𝑥1) which is conducted in the following steps in the
proposed GEP method:

(i) Based on the data types of 𝑥0 and 𝑥1, find a function,
which has the same input data type as either 𝑥0 or 𝑥1
and has 2 input parameters.

(ii) Calculate the estimated execution time of the selected
function using the parameter setting samples.

(iii) Find the best function between 𝑥0 and 𝑥1, which
produces the closest estimate to the actual execution
time. In this case, the Plus function is selected.

Similarly, a correlation of 𝑥0, 𝑥1, . . . , 𝑥𝑛 can be mined
using the GEPmethod.The chromosome and expression tree
structure of GEP is used to hold the parameters and func-
tions. A combination of functions, which takes 𝑥0, 𝑥1, . . . , 𝑥𝑛,
as inputs is encoded into a linear chromosome that is
maintained and developed during the evolution process.
Meanwhile, the expression tree generated from the linear

Mathematical Problems in Engineering 5

Input: A set of Hadoop job running samples;
Output: A correlation of the Hadoop parameters;(1) FOR 𝑥 = 1 TO size of populationDO(2) create chromosome (𝑥) with the combination of mathematic function and parameter;(3) fitness value (𝑥) = 0;(4) 𝑥++;(5) ENDFOR(6) best chromosome = chromosome (1);(7) best fitness value = 0;(8) WHILE 𝑖 < termination generation numberDO(9) FOR 𝑥 = 1 TO size of populationDO(10) Translate chromosome (𝑥) into expression tree (𝑥);(11) FOR 𝑦 = 1 TO the number of training samplesDO(12) evaluate the estimated execution time for case (𝑦)(13) IF ABS (timeDiff) < bias window THEN(14) fitness value (𝑥)++;(15) ENDIF(16) 𝑦++;(17) ENDFOR(18) IF fitness value (𝑥) = the number of training samples THEN(19) best chromosome = Chromosome (𝑥) GO TO(29);(20) ELSE IF fitness value (𝑥) > best fitness value THEN(21) best chromosome = Chromosome (𝑥);(22) best fitness value = fitness value (𝑥);(23) ENDIF(24) Apply replication, selection and genetic modification on chromosome (𝑥) proportionally;(25) Use the modified chromosome (𝑥) to overwrite the original one;(26) 𝑥++;(27) ENDFOR(28) 𝑖++;(29) ENDWHILE(30) Return best chromosome

Algorithm 1: GEP implementation.

chromosome produces a form of 𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛) based
on which an estimated execution time is computed and
compared with the actual execution time. A final form of𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛) will be produced at the end of the evolution
process whose estimated execution time is the closest to the
actual execution time.

In the GEP method, a chromosome can consist of one or
more genes. For computational simplicity, each chromosome
has only one gene in the proposed method. A gene is
composed of a head and a tail. The elements of the head
are selected randomly from the set of Hadoop parameters
(listed in Table 1) and the set of functions (listed in Table 2).
However, the elements of the tail are selected only from the
Hadoop parameter set. The length of a gene head is set to 20,
which covers all the possible combinations of the functions.
The length of a gene tail can be computed using

Length (GeneTail) = Length (GeneHead) × (𝑛 − 1) + 1, (2)

where 𝑛 is the largest number of input arguments of a
function. In the following section, we present how the GEP
method evolves when mining a correlation from the Hadoop
configuration parameters in order to construct an objective
function.

4.2. Mining Hadoop Parameter Correlation with GEP. Algo-
rithm 1 shows the implementation of the GEP method in
order to construct an objective function that represents the
correlation between the Hadoop configuration parameters
and estimates the execution time of a job. The input of
Algorithm 1 is a set of Hadoop job execution samples, which
are used as a training dataset.

In Algorithm 1, Lines (1) to (5) initialize the first gen-
eration of 500 chromosomes, which represent 500 possible
correlations between the Hadoop parameters. Lines (8) to(29) implement an evolution process in which a single
loop represents a generation of the evolution process. Each
chromosome is translated into an expression tree. Lines (11)
to (17) calculate the fitness value of a chromosome. For each
training sample, GEP produces an estimated execution time
of a Hadoop job and compares with the actual execution
time of the job. If the difference is less than a predefined bias
window, the fitness value of the current chromosome will be
increased by 1.

The size of the bias window is set to 50 seconds, which
allows a maximum of 10% of the error space taking into
account the actual execution time of a Hadoop job sample.
Line (18) states that the evolution process terminates in an
ideal case when the fitness value is equal to the number of

6 Mathematical Problems in Engineering

training samples. Otherwise, the evolution process continues
and the chromosome with the best fitness value will be
retained as shown in Lines (20) to (23). At the end of
each generation as shown in Lines (24) to (25), a genetic
modification is applied to the current generation to create
variations of the chromosomes for the next generation.

We varied the number of generations from 20000 to
80000 in the GEP evolution process and found that the

quality of a chromosome (the ratio of the fitness value to the
number of training samples)was finally higher than 90%.As a
result, we set 80000 as the number of generations.The genetic
modification parameters were set using the classic values [15]
as shown in Table 3.

After 80000 generations, GEP generates an objective
function as described in (3) representing a correlation of the
Hadoop parameters listed in Table 1.

𝑓 (𝑥0, 𝑥1, . . . , 𝑥9) = ((𝑥7 ∗ 𝑥9) − (((((𝑥2 − 𝑥8) + (𝑥1 − 𝑥4)) / ((𝑥4 ∗ 𝑥4 ∗ 𝑥4) /𝑥7)) − 𝑥6)𝑥4))
+ (𝑥9(𝑥4 − atan (exp (𝑥1)))) + 𝑥9
− tan(((pow ((𝑥9 − 𝑥7) , (𝑥3 − 𝑥0))) − ((𝑥4 ∗ 𝑥4 ∗ 𝑥4) − (𝑥4 − 𝑥9))) ∗ (cos((𝑥7/𝑥0)(𝑥9 − 𝑥7))))
+ (𝑥9 − (𝑥4 ∗ 𝑥4))
+ (𝑥9 − tan((pow ((𝑥1 − 𝑥5) , (𝑥3 − 𝑥0)) − (log10 (𝑥4) − (𝑥4 + 𝑥9))) ∗ cos(fmod (𝑥7, 𝑥3)𝑥6))) .

(3)

4.3. Optimizing Hadoop Settings with GEP. The correlation
mined in the previous section describes eachHadoop param-
eter’s contribution to the execution time. In GEP optimiza-
tion, each chromosome represents a Hadoop configuration
setting. Based on the objective function represented by (3),
GEP finds the best chromosome that leads to the shortest
execution time of a Hadoop job in each generation. GEP uses
a range for each parameter that is involved in the evolution
process as shown in Table 4. The range of each involved
parameter is selected based on the values used in the training
dataset for the corresponding parameters.

Initially default values were set for the involved param-
eters and the values were then updated to obtain optimal
solution. Updating the configuration values for the involved
parameters is dependent on a number of factors such as input
data block size, available physical memory, the number of
CPUs, and the type of applications. For example, we set a
range of 10∼100 for 𝑋1. The value of 𝑋1 is based on the data
block size and its value must be greater than the input data
block size in order to reduce the number of spill records. In
this work the size of the data block is 5MB. In the PDFA, the
computation is mainly conducted in themap phase and very
little work is performed in the reduce phase.Therefore, we set
a large range of values for 𝑋4 (i.e., 1∼8) as compared to 𝑋5
(i.e., 1∼2).
4.4. The Implementation of EPDFA. The EPDFA algorithm
proposed in this paper is optimizing the authors’ previous
work [3, 4, 6] where a dataset of PMU frequency measure-
ments is detrended on a sample-by-sample sliding window.
The window was configured to be 50 samples long, this is
to detect for changes or fluctuations in the power systems
state over a 1-second period (at 50Hz), looking for a specific

loss shape in frequency, following an instantaneous loss in
generation. A root mean square (RMS) value is then taken
of the fluctuation, 𝐹 for every window, as shown in (4); this
value is then comparedwith a threshold value, predetermined
through a number of previous baseline studies,𝐹 = 0.2×10−3,
to detect for the presence of an event.

𝐹 (𝑛) = √ 1𝑛
𝑛∑
𝑘=1

[𝑒 (𝑘)]2, (4)

where 𝑛 is the size of the window (50 samples), 𝑘 is the sample
number, and 𝑒(𝑘) is the detrended signal.

Figure 2 shows the software architecture of EPDFA for an
off-line analysis of PMU data in an enhancedHadoop cluster.
OpenPDC [32] was installed which collects measurements
from the installed PMUs, which are then stored in the
OpenPDC data historian. OpenPDC was configured in such
a way that when the data historian size reaches 100MB, a new
data file is created in .d format with a corresponding time-
stamp.

A data agent application has been developed in the Java
programming language which automatically detects the new
data file and moves it to the Hadoop cluster. A portion
of the PMU measurements was processed by PDFA with
different configuration settings in order to create a historical
jobs profile (training datasets). Once the historical job profile
was created EPDFA invoked the GEP optimizer. The GEP
optimizer has been implemented as a two-stage process.
In the first stage, it utilizes the jobs profile and constructs
the objective function as presented in Section 4.2. In the
second stage, the GEP optimizer searches for an optimal
configuration setting within the parameter search space,

Mathematical Problems in Engineering 7

PMU

PMU

PMU

OpenPDC software

Hadoop
job profile

PMU data file

Data
agent

Optimized hadoop
framework

GEP
optimizer

Off-line data mining

Create new file
(.d format)

Java program
to check for
new .d file
and then send to
HDFS

HDFS storage

Output

On-line application

Data historian
100MB

Figure 2: The software architecture of EPDFA.

Table 3: GEP parameter settings.

Genetic modification parameters of GEP Values
One-point recombination rate 30%
Insertion sequence transposition rate 10%
Inversion rate 10%
Mutation rate 0.44%

which is then configured in a physical Hadoop cluster for
performance enhancement.

5. Experimental Results

The performance of the EPDFA was extensively evaluated
from the aspects of both computational speedup and scala-
bility. For this purpose, an experimental Hadoop cluster was
set up using an Intel Xeon server machine configured with
8VMs. In this section, we first give a brief introduction to
the experimental environment thatwas used in the evaluation
process and then present the experimental results.

5.1. Experimental Setup. Theexperiments were performed on
a Hadoop cluster using a high performance Intel Xeon server
machine comprising 4 Intel Nehalem-EX processors running
at 2.27GHz each with 128GB of physical memory. Each
processor has 10 CPU cores with hyperthread technology
enabled in each core. The specification details of the server
and the software packages are listed in Table 5. Oracle

Table 4: Range of parameters.

Variables Ranges𝑋0 10∼230𝑋1 10∼100𝑋2 0.60∼0.85𝑋3 1∼16𝑋4 1∼8𝑋5 1∼2𝑋6 110∼1000𝑋7 0.70∼0.85𝑋8 200∼1000𝑋9 Variable

Virtual Box [33] was installed and configured 8VMs on the
server machine. Each VM was assigned with 4CPU cores,
8 GB RAM, and 150GB hard disk storage. Hadoop-1.2.1 was
installed and configured on one VM as the Name Node and
the remaining 7VMs as the Data Nodes. The Name Node
was also used as a Data Node. The data block size of the
Hadoop Distributed File System (HDFS) was set to 5MB and
the replication level of data blocks was set to 2. We varied
different numbers of PMU data samples in the experiments.

5.2. Experimental Results. In this section a comparison of
the computational efficiency of the EPDFA is presented with

8 Mathematical Problems in Engineering

Table 5: Hadoop cluster setup.

Intel Xeon Server

CPU 40 cores with
hyperthread enabled

Processor 2.27GHz
Hard disk 2 TB and 320GB

Connectivity 100Mbps Ethernet
LAN

Memory 128GB

Software

Operating system Ubuntu 12.04 TLS
JDK Version 1.6

Hadoop Version 1.2.1
Oracle Virtual Box Version 4.2.8

OpenPDC Version 1.5
Python Version 2.7.3

8.
64

60
.4

8

43
.2

0

86
.4

0

17
.2

8

34
.5

6

69
.1

2

77
.7

6

25
.2

9

51
.8

4

Number of data samples (millions)

DFA
PDFA
EPDFA

0
200
400
600
800

1000
1200
1400
1600
1800

Ti
m

e (
m

in
)

Figure 3: Execution times of the DFA, PDFA, and EPDFA.

that of authors’ previous work on the DFA [3] and PDFA [6]
algorithms, respectively.

A set of PMUdata samples provided byNationalGrid, the
National Electricity Transmission SystemOperator (NETSO)
for GB, was used in the evaluation. The data comprised
6000 samples of frequency measurements at 50Hz from a
PMU, equating to 2 minutes’ worth of system data. The data
contained a known system event, in the loss of a generator
exporting approximately 1000MW. In order to create a
massive PMU data scenario, this dataset was replicated a
number of times to provide a relatively large number of
PMU data samples up to 86.40 million. In order to evaluate
the computational performance of the EPDFA, a number of
experiments were carried out that varied the number of PMU
data samples from 8.6 million to 86.4 million samples. The
sequential DFA was run on a single VM whereas both the
PDFA and EPDFA were executed on 8VMs. Furthermore,
the PDFA was run using the default Hadoop configuration
settings as shown in Table 1. The EPDFA was run on the
GEP optimized Hadoop configuration settings. Table 6 lists
a portion of the optimized Hadoop settings. Both the PDFA
and the EPDFA were run 3 times each and average execution
time was obtained. Figure 3 shows the execution times of

EPDFA
PDFA

8.64 25.92 34.56 43.20 51.84 60.48 69.12 77.76 86.4017.28
Number of data samples (millions)

10
20
30
40
50
60
70
80
90

100
110

Ti
m

e (
m

in
)

Figure 4: Computational gap between the EPDFA and PDFA.

EPDFA
PDFA

17.28 25.92 34.56 43.20 51.84 60.48 69.12 77.76 86.408.64
Number of data samples (millions)

12
14
16
18
20
22
24
26
28
30

Sp
ee

du
p

ov
er

 D
FA

Figure 5: Speedup of both the PDFA and EPDFA over DFA.

the sequential DFA, the PDFA, and the EPDFA on different
numbers of PMU data samples.

From Figure 3 it can be observed that the EPDFA
performs better than both the DFA and PDFA. For example,
the sequential DFA took 1690minutes when processing 86.40
million samples whereas the PDFA and EPDFA took 103
minutes and 58 minutes, respectively, when processing the
same number of samples. It is worth noting that, due to
long execution times of the sequential DFA, it is hard to
differentiate computationally between the PDFA and EPDFA.
For this purpose, Figure 4 is plotted over the number of
data samples in order to clearly show that the EPDFA is
computationally faster than PDFA.

Based on results presented in the Figure 4, the computa-
tional speedup of the PDFA and the EPDFA when compared
to DFA can be calculated using, respectively,

Speedup𝑖EPDFA = 𝑇𝑖EPDFA𝑇𝑖DFA , (5)

Speedup𝑖PDFA = 𝑇𝑖PDFA𝑇𝑖DFA , (6)

where 𝑖 represents the number of PMU data samples in
millions, 𝑖 ∈ [8.64, 86.40], 𝑇𝑖EPDFA is the execution time of the
EPDFA on 𝑖 number of data samples, 𝑇𝑖DFA is the execution
time of the DFA on 𝑖 number of data samples, and 𝑇𝑖PDFA is
the execution time of the PDFA on 𝑖 number of data samples.
The speedup results are shown in Figure 5.

Mathematical Problems in Engineering 9

Table 6: GEP recommended configuration parameter settings.

Configuration parameters Optimized values
Number of data samples in million 17.28 34.56 51.84 69.12 86.40
io.sort.factor 10 10 13 19 12
io.sort.mb 38 13 58 62 55
io.sort.spill.percent 0.90 0.90 0.90 0.89 0.90
mapred.reduce.tasks 14 14 13 2 16
mapreduce.tasktracker.map.tasks.maximum 8 6 8 8 8
mapreduce.tasktracker.reduce.tasks.maximum 1 1 1 2 1
mapred.child.java.opts 169 135 121 124 121
mapreduce.reduce.shuffle.input.buffer.percent 0.73 0.65 0.65 0.65 0.75
mapred.inmem.merge.threshold 200 200 201 202 201

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Sp
ee

du
p

ov
er

 P
D

FA

17.28 25.92 34.56 43.20 51.84 60.48 69.12 77.76 86.408.64
Number of data samples (millions)

Figure 6: Speedup of the EPDFA over PDFA.

From Figure 5 it can be observed that, compared with
the sequential DFA, the EPDFA has achieved a maximum
speedup of 29.03 when processing 86.40 million samples.
Alternatively, the PDFA has achieved a maximum speedup
17.33 when processing 69.12 million samples. The average
speedup of the EPDFAwhen compared to theDFA is 26 times
faster whereas the PDFA is 16 times faster. Furthermore, the
maximum speedup of the EPDFA is 1.87 times faster than the
PDFA as shown in Figure 6, whereas theminimum speedup is
1.08 times faster than the PDFAwhen processing 8.64million
samples.

The computational scalability of the EPDFA was also
evaluated from the aspects of both VMs and PMU data
samples. Figure 7 shows the execution times of the EPDFA
in processing the 5 sets of PMU data samples with a varied
number of VMs from 1 to 8. It can be observed that the
execution time of the EPDFA is continuously decreased
with an increasing number of VMs. Compared with the
performance of the EPDFA running on a single VM, the
EPDFA achieves the highest speedup on the largest number
of data samples which is also clearly indicated by Figure 8.
For example, when processing 8.64 million samples, the
EPDFA running on 6VMs is 3.43 times faster than running
a single VM whereas it achieves a speedup of 4.83 on 8VMs.
Furthermore, when processing the 86.40million samples, the
EPDFA achieves a speedup of 4.68 on 6VMs and 5.93 on
8VMs.

2 4 6 81
Number of VMs

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

Ti
m

e (
s)

17.28 million samples
34.56 million samples
51.84 million samples

69.12 million samples
86.40 million samples

Figure 7: Computation scalability of EPDFA.

2 4 6 81
Number of VMs

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Sp
ee

du
p

ov
er

 o
ne

 V
M

s

17.28 million samples
34.56 million samples
51.84 million samples

69.12 million samples
86.40 million samples

Figure 8: Speedup of the EPDFA over a single VM.

6. Conclusion

Executing a Hadoop job using default parameter settings has
led to performance issues. In this paper we have presented
EPDFA to improve Hadoop performance by automatically
tuning its configuration parameters. The optimized Hadoop
framework can be utilized for scalable analytics on massive
PMU data. The EPDFA achieved a maximum computational

10 Mathematical Problems in Engineering

speedup of 29.03 times faster than the sequential DFA and
1.87 times faster than a parallel DFA.

At present the Hadoop framework is highly applicable to
off-line scalable data analytics. However, the high processing
overhead associated with input and output files limits the
application of Hadoop to on-line analysis of PMU data
streams. Further research will apply in-memory processing
techniques [34] in order to enable real-time data stream
analytics for power system applications.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Zima, M. Larsson, P. Korba, C. Rehtanz, and G. Andersson,
“Design aspects for wide-area monitoring and control systems,”
Proceedings of the IEEE, vol. 93, no. 5, pp. 980–996, 2005.

[2] M. Rihan, M. Ahmad, and M. S. Beg, “Phasor measurement
units in the Indian smart grid,” in Proceedings of the 2011
IEEE PES International Conference on Innovative Smart Grid
Technologies-India, ISGT India 2011, pp. 261–267, India, Decem-
ber 2011.

[3] P. M. Ashton, G. A. Taylor, M. R. Irving, I. Pisica, A. M.
Carter, and M. E. Bradley, “Novel application of detrended
fluctuation analysis for state estimation using synchrophasor
measurements,” IEEE Transactions on Power Systems, vol. 28,
no. 2, pp. 1930–1938, 2013.

[4] P. M. Ashton, G. A. Taylor, A. M. Carter, M. E. Bradley, and
W.Hung, “Application of phasormeasurement units to estimate
power system inertial frequency response,” in Proceedings of the
2013 IEEE Power and Energy Society General Meeting, PES 2013,
Canada, July 2013.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” in Proceedings of the 6th Conference
on Symposium on Opearting Systems Design Implementation,
vol. 6, p. 10, 2004.

[6] M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,
“Parallel detrended fluctuation analysis for fast event detection
on massive pmu data,” IEEE Transactions on Smart Grid, vol. 6,
no. 1, pp. 360–368, 2015.

[7] Hadoop., “Apache Hadoop,” https://hadoop.apache.org/.
[8] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “PLANET:

Massively Parallel Learning of Tree Ensembles with MapRe-
duce,” in Proceedings of the the VLDB Endowment, vol. 2, pp.
1426–1437, 2009.

[9] A. Pavlo, E. Paulson, A. Rasin et al., “A comparison of
approaches to large-scale data analysis,” in Proceedings of the
International Conference onManagement of Data and 28th Sym-
posium on Principles of Database Systems, SIGMOD-PODS’09,
pp. 165–178, USA, July 2009.

[10] F. Bach, H. K. Çakmak, H. Maass, and U. Kuehnapfel, “Power
grid time series data analysis with pig on a Hadoop cluster
compared to multi core systems,” in Proceedings of the 2013 21st
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, PDP 2013, pp. 208–212, UK, March
2013.

[11] R. Hafen, T. D. Gibson, K. K. Van Dam, and T. Critchlow,
“Large-scale exploratory analysis, cleaning, and modeling for

event detection in real-world power systems data,” in Proceed-
ings of the 3rd Int’l Workshop on High Performance Computing,
Networking and Analytics for the Power Grid, HiPCNA-PG 2013
- Held in Conjunction with the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC
2013, USA, November 2013.

[12] M. Edwards, A. Rambani, Y. Zhu, and M. Musavi, “Design of
hadoop-based framework for analytics of large synchrophasor
datasets,” in Proceedings of the 2012 Complex Adaptive Systems
Conference, pp. 254–258, USA, November 2012.

[13] P. Trachian, “Machine learning and windowed subsecond event
detection on PMU data via hadoop and the openPDC,” in
Proceedings of the IEEE PES General Meeting, PES 2010, USA,
July 2010.

[14] H. Herodotou and S. Babu, “Profiling, what-if analysis, and
cost-based optimization of MapReduce programs,” Proceedings
of the VLDB Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.

[15] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13, no.
2, pp. 87–129, 2001.

[16] H. Herodotou, H. Lim, G. Luo et al., “Starfish: A self-tuning
system for big data analytics,” in Proceedings of the 5th Biennial
Conference on Innovative Data Systems Research, CIDR 2011, pp.
261–272, usa, January 2011.

[17] D. Wu and A. Gokhale, “A self-tuning system based on
application profiling and performance analysis for optimizing
hadoop mapreduce cluster configuration,” in Proceedings of
the 20th Annual International Conference on High Performance
Computing, HiPC 2013, pp. 89–98, India, December 2013.

[18] G. Liao, K. Datta, and T. L. Willke, “Gunther: Search-based
auto-tuning of MapReduce,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics): Preface, vol. 8097, pp. 406–419,
2013.

[19] J. Liu, N. Ravi, S. Chakradhar, and M. Kandemir, “Panacea:
Towards holistic optimization of MapReduce applications,”
in Proceedings of the 10th International Symposium on Code
Generation and Optimization, CGO 2012, pp. 33–43, USA, April
2012.

[20] Z. Yu, Z. Bei, H. Zhang et al., “RFHOC: A Random-Forest
Approach to Auto-Tuning Hadoop’s Configuration,” IEEE
Xplore: IEEE Transactions on Parallel and Distributed, vol. PP,
no. 99, p. 1, 2015.

[21] H. Herodotou, “Hadoop Performance Models,” Technical
Report, CS-2011-05, 2011, http://www.cs.duke.edu/starfish/files/
hadoop-models.pdf.

[22] R. Vallée-Rai, L. Hendren, P. Co, P. Lam, E. Gagnon, andV. Sun-
daresan, “Soot - A Java bytecode optimization framework,” in
Proceedings of the 20th Annual CASCON Conference, CASCON
2010, pp. 214–224, Canada, November 2010.

[23] Y. Li, K. Wang, Q. Guo et al., “Breaking the boundary for
whole-system performance optimization of big data,” in Pro-
ceedings of the 2013 ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED 2013, pp. 126–131, China,
September 2013.

[24] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang, “Hadoop
Performance Modeling for Job Estimation and Resource Provi-
sioning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 2, pp. 441–454, 2015.

[25] M. Khan, Z. Huang, M. Li, G. A. Taylor, and M. Khan,
“Optimizing hadoop parameter settings with gene expression

https://hadoop.apache.org/
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf
http://www.cs.duke.edu/starfish/files/hadoop-models.pdf

Mathematical Problems in Engineering 11

programming guided PSO,” Concurrency Computation, vol. 29,
no. 3, Article ID e3786, 2016.

[26] K. Kambatla, A. Pathak, and H. Pucha, “Towards Optimizing
Hadoop Provisioning in the Cloud,” in Proceedings of the in
Proceedings of the 2009 Conference on Hot Topics in Cloud
Computing, 2009.

[27] T. White, Hadoop:The Definitive Guide, Yahoo press, 4th edi-
tion, 2015.

[28] S. Babu, “Towards automatic optimization of MapReduce
programs,” in Proceedings of the Proceedings of the 1st ACM
Symposium on Cloud Computing, pp. 137–142, ACM, New York,
NY, USA, June 2010.

[29] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms,
Oxford University Press, Oxford, UK, 1996.

[30] J. H. Holland,Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, Mass, USA, 1992.

[31] J. R. Koza, Genetic Programming: on the Programming of Com-
puters by Means of Natural Selection, MIT Press, Cambridge,
Mass, USA, 1992.

[32] OpenPDC., “CodePlex,” http://openpdc.codeplex.com/.
[33] Oracle Virtual Box., https://www.virtualbox.org/.
[34] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

“Discretized streams: Fault-tolerant streaming computation at
scale,” in Proceedings of the 24th ACM Symposium on Operating
Systems Principles, SOSP 2013, pp. 423–438, USA, November
2013.

http://openpdc.codeplex.com/
https://www.virtualbox.org/

