The ReSiT Study (Reducing Sitting Time): Rationale and protocol for an exploratory, single-group pilot study of an intervention to reduce sitting time among office workers

Abstract:
Background: Desk-based workers engage in long periods of uninterrupted sitting time, which has been associated with morbidity and premature mortality. Previous workplace intervention trials have demonstrated the potential of providing sit-stand workstations, and of administering motivational behaviour change techniques, for reducing sitting time. Yet, few studies have combined these approaches or explored the acceptability of discrete sitting-reduction behaviour change strategies. This paper describes the rationale for a sitting reduction intervention that combines sit-stand workstations with motivational techniques, and procedures for a pilot study to explore the acceptability of intervention components among university office workers.

Methods: The intervention is based on a theory and evidence-based analysis of why office workers sit. It seeks to enhance motivation and capability, as well as identify opportunities, required to reduce sitting time. Thirty office workers will participate in the pilot study. They will complete an initial awareness-raising monitoring and feedback task, and subsequently receive a sit-stand workstation for a 12-week period. They will also select from a ‘menu’ of behaviour change techniques tailored to self-declared barriers to sitting reduction, effectively co-producing and personally tailoring their intervention. Interviews at 1, 6, and 12 weeks post-intervention will explore intervention acceptability.

Discussion: To our knowledge, this will be the first study to explore direct feedback from office workers on the acceptability of discrete tailored sitting-reduction intervention components that they have received. Participants’ choice of and reflections on intervention techniques will aid identification of strategies suitable for inclusion in the next iteration of the intervention, which will be delivered in a self-administered format to minimise resource burden.

Corresponding Author: Benjamin Gardner
Institute of Psychiatry Psychology and Neuroscience
UNITED KINGDOM

First Author: Stephen Dewitt

Order of Authors:
Stephen Dewitt
Lee Smith
Louise Mansfield
John P Buckley
Stuart JH Biddle
Benjamin Gardner
<table>
<thead>
<tr>
<th>Order of Authors Secondary Information:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposed Reviewers:</td>
<td></td>
</tr>
</tbody>
</table>
The ReSiT Study (Reducing Sitting Time): Rationale and protocol for an exploratory, single-group pilot study of an intervention to reduce sitting time among office workers

Stephen Dewitt¹, Lee Smith², Louise Mansfield³, John P Buckley⁴, Stuart JH Biddle⁵, Benjamin Gardner¹§

¹ Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
² The Cambridge Centre for Sport and Exercise Sciences, Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
³ Department of Life Sciences, College of Health and Life Sciences, Brunel University, Uxbridge, UK
⁴ Institute of Medicine, University of Chester, Chester, UK
⁵ University of Southern Queensland, Queensland, Australia

§Corresponding author. Address: Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Room 2.11, Addison House, Guy’s Campus, London, SE1 1UL, UK.

Email addresses: SD: stephen.dewitt@kcl.ac.uk; LS: lee.smith@anglia.ac.uk; LM: louise.mansfield@brunel.ac.uk; JB: j.buckley@chester.ac.uk; SJHB: Stuart.Biddle@usq.edu.au; BG: benjamin.gardner@kcl.ac.uk
Abstract

Background: Desk-based workers engage in long periods of uninterrupted sitting time, which has been associated with morbidity and premature mortality. Previous workplace intervention trials have demonstrated the potential of providing sit-stand workstations, and of administering motivational behaviour change techniques, for reducing sitting time. Yet, few studies have combined these approaches or explored the acceptability of discrete sitting-reduction behaviour change strategies. This paper describes the rationale for a sitting reduction intervention that combines sit-stand workstations with motivational techniques, and procedures for a pilot study to explore the acceptability of intervention components among university office workers.

Methods: The intervention is based on a theory and evidence-based analysis of why office workers sit. It seeks to enhance motivation and capability, as well as identify opportunities, required to reduce sitting time. Thirty office workers will participate in the pilot study. They will complete an initial awareness-raising monitoring and feedback task, and subsequently receive a sit-stand workstation for a 12-week period. They will also select from a ‘menu’ of behaviour change techniques tailored to self-declared barriers to sitting reduction, effectively co-producing and personally tailoring their intervention. Interviews at 1, 6, and 12 weeks post-intervention will explore intervention acceptability.

Discussion: To our knowledge, this will be the first study to explore direct feedback from office workers on the acceptability of discrete tailored sitting-reduction intervention components that they have received. Participants’ choice of and reflections on intervention techniques will aid identification of strategies suitable for inclusion in the next iteration of the intervention, which will be delivered in a self-administered format to minimise resource burden.
Trial Registration: ISRCTN29395780 (registered 21st November 2016)

Keywords: Sedentary behaviour, sitting, physical activity, behaviour change, sit-stand desks
Background

Prolonged sedentary behaviour – i.e., any waking behaviour characterised by an energy expenditure of 1.5 metabolic equivalents or less, undertaken while sitting or lying down [1] – is associated with morbidity and premature mortality [2-4]. Sitting time has, for example, been linked to increased risk of diabetes, heart disease, and some cancers [5-8]. There is some evidence to suggest that the mortality risk associated with sitting time may be mitigated by taking 60+ minutes of at-least-moderate daily physical activity [9]. However, this is likely to be an unrealistic public health target. Objective data from the 2008 Health Survey for England indicate that 95% of UK adults do not meet physical activity recommendations [10]. Of particular concern are desk-based office workers. The typical office worker is estimated to sit for around 6 hours (6h) per 8h working day [11] and 10.6h in total across a 16h waking day [12]. With half of the UK workforce based in offices [13], workplace sedentary behaviour is now recognised as a major public health concern [14].

A recent expert consensus guideline recommended that office workers aim to stand for 2-4 hours per 8h working day [14]. Various behaviour change interventions have been developed to support office workers to reduce their sitting time [15]. Many of these have used motivational techniques; that is, methods that seek to enhance desk-based workers’ motivation to reduce their sitting time, or enable them to act on their motivation. For example, one intervention featured regular emails offering tips on sitting less, social media promotion of sitting reduction, workplace champions, post-of-decision prompts, and management support [16]. Observed reductions in sitting time (of up to 30mins per working day [16, 17]) in trials of such interventions testify to the potential value of using individual-level motivational strategies to reduce prolonged workplace sitting [17, 18].
One trial evaluated software that deactivated workers’ computers every 45 minutes, to facilitate breaks from desk-based computer work to engage in light physical activity [19]. Interviews suggested this approach yielded some benefits, including increased awareness of unhealthy sitting practices, but some participants experienced frustration at forced interruptions to their workflow. This suggests that the intervention, while potentially efficacious, may not have been acceptable to desk-based workers. Interventions that lack acceptability – i.e., intended recipients of the intervention are unwilling to engage with it – are unlikely to be implementable. While one study documented some public resistance to the notion of reducing workplace sitting time [20], interview studies indicate that office workers would be willing, in principle, to reduce sitting time at work [16, 21]. However, for many, the primary motivation during working hours is to complete work tasks [21, 22]. Taking regular standing breaks can be unwelcome, because it reduces valuable working time [22].

Height-adjustable sit-stand workstations (SSWs) are generally acceptable to office workers, as they permit desk-based work in a standing or seated position, so minimising workflow disruption [16, 21, 23, 24]. Managers often express concern about the cost of SSWs [22], which at present cost ≥£279 (US $375) per unit [25, 26]. Growing evidence of their efficacy for reducing sitting time [27], and associated benefits to workers’ health and wellbeing [28], may help to increase acceptability among managers in the long-term.

It may be fruitful to combine SSWs with motivational behaviour change strategies. This would ensure that workers have the environmental support necessary to undertake desk work when standing, and the motivation and capability to displace sitting with standing at the desk and in other office settings. To our knowledge, only two interventions have adopted this approach, and both were associated with reductions in sitting time [29, 30]. For example, in an Australian pilot trial, workers received SSWs and, in one-to-one
personally-tailored behavioural counselling sessions and phone call follow-ups with health
coaches, techniques designed to support the translation of sitting-reduction motivation into
action (e.g. goal setting, self-monitoring, problem solving; [30]). The acceptability of
components of this intervention was later explored in consultation with office managers
and employees, to ensure that the intervention was implementable [31].

Adopting a participatory approach to intervention development and evaluation can be of
benefit in developing effective interventions [32, 33]. Participant involvement in
intervention design and implementation can help to highlight the individual, organisational
and cultural contexts into which workplace sitting reduction initiatives must be embedded
if they are to be acceptable, feasible, and effective.

The Present Study

Previous work attests to the potential efficacy of combining SSWs and motivational
behaviour change strategies. Yet, few studies have adopted this approach, and only one has
explored intervention acceptability among desk-based workers [30]. This paper presents
the rationale for a new theory- and evidence-based intervention that combines SSWs with
motivational behaviour change techniques, and a protocol for a pilot study to explore the
acceptability of discrete components of a prototype of the intervention. The intervention
aims to reduce sitting time, and increase standing and light activity time, among office
workers.

The pilot study uses a single-group, parallel mixed methods design, and is designed to
inform a subsequent iteration of the intervention, suitable for real-world implementation
and evaluation in a randomised controlled trial. The study has two specific objectives: first,
to inform decisions about which components to consider removing, retaining, or refining in
a later iteration of the intervention, and second, to inform a statistical power analysis for a
future trial of the intervention. The first objective is served by qualitative interview data, which will explore the behaviour change strategies deemed by office workers to be acceptable and useful, and expectations and experiences of the intervention more broadly. We do not employ pre-specified quantifiable criteria for acceptability, but rather use qualitative analyses to explore responses relevant to acceptability from participants’ in-depth reflections on their experiences. The second objective is served by quantitative accelerometry data, which will document minutes spent sitting, standing and moving in the workplace before and after receiving the intervention.

The study is registered (ISRCTN29395780), and all procedures detailed below have received approval from the King’s College London Psychiatry, Nursing and Midwifery Ethics Panel (LRS-16/17-3718).

Methods

Rationale: Theoretical Basis of Intervention

In line with UK Medical Research Council guidance [34], the intervention we are developing, and a prototype of which will be assessed in the present pilot study, is informed by theoretical frameworks and empirical evidence. It draws on the COM-B model [35, 36], which proposes that all behaviour requires capability, opportunity, and motivation. Workplace sitting time reduction interventions may therefore most usefully target enhancements in office workers’ capability and motivation, and highlighting opportunities, to substitute sitting for standing and light activity.

Drawing on research into understanding, predicting and reducing sedentary behaviour [15, 37], our intervention makes three key assumptions regarding workers’ capability, opportunity, and motivation to reduce sitting.
Assumption 1: Workplace sitting is a non-conscious behaviour. Workplace sitting is, for most workers, not a consciously regulated activity, but rather a predominantly non-conscious behaviour incurred by work tasks and characteristics of the office environment [37]. This likely limits awareness of true sitting time, for two reasons. First, sitting may be a habitual response, to which workers pay little attention [38]. Habit theory proposes that repetition of an action (e.g. sitting) in a consistent context (e.g. when entering the office) leads, through associative learning of an action-context association, to the action being initiated automatically upon subsequent exposure to the context [39-41]. The habitual action can occur with little or no conscious awareness or motivation [42]. The stable, unchanging nature of the office environment is highly conducive to habit formation [43].

Second, people cognitively organise action such that sitting is unlikely to be a salient activity. All behaviours can be deconstructed into multiple sub-behaviours; any one work task (e.g. ‘writing a report’) can be broken down into smaller tasks (e.g. ‘sitting down at my desk’, ‘turning on my computer’, ‘opening my word processor’, ‘typing words’ [44]). Action Identification Theory hypothesises that people mentally represent actions at higher levels of abstraction, according to their purposes or consequences (e.g. ‘writing a report’), rather than attending to lower-level procedural intricacies (‘sitting down at my desk’ [45]). Workers are unlikely to consciously attend to the low-level actions (e.g. sitting, turning on the computer) that make up a more personally meaningful work activity (e.g. ‘having a meeting’, ‘checking emails’, ‘writing reports’), and so less likely to recall these sub-actions. Indeed, evidence consistently shows that people struggle to accurately recall sitting time directly [46], but provide more reliable estimates when sitting is operationalised as time spent in more meaningful, typically-seated activities [47, 48]. Disrupting sitting habits may depend on raising office workers’ awareness of their sitting patterns, and the contextual cues that prompt prolonged sitting [49, 50], to motivate behaviour change.
Assumption 2: Reducing sitting is of low priority to office workers. Workers have multiple, potentially competing goals at work. Although sitting reduction may be potentially valued, most workers are likely to prioritise completion of work tasks over reducing sitting time [22]. SSWs provide an important opportunity for displacing sitting with standing, with no adverse impact on work task completion [51], so facilitating achievement of both work and sitting reduction goals.

Assumption 3: Sitting reduction techniques can be tailored to sitting reduction barriers. Some behaviour change strategies, provided supplementary to SSWs, are particularly well-suited to changing perceptions of capability, awareness of opportunities, and motivation to reduce workplace sitting. A recent review found the most promising workplace sitting-reduction strategies to include setting and reviewing behavioural goals, self-monitoring, problem-solving and restructuring the social and physical environment [15]. Nonetheless, we assume that office workers will differ in their motivation, and perceptions of capability and opportunity, and so behaviour change strategies must be tailored to individual needs. An office worker with little motivation to sit less will, for example, likely require different intervention techniques to a motivated worker unable to identify opportunities.

The above assumptions have informed the content of our intervention in several ways. The intervention comprises three core components: an initial monitoring and feedback phase, provision of tailored sitting reduction techniques, and fitting of a height-adjustable SSW. In light of the non-conscious nature of workplace sitting, the intervention seeks to firstly raise office workers’ awareness of their true sitting time, and the tasks that incur prolong periods of sitting [50]. This aims to enhance motivation to reduce sitting time, and potentially identify opportune moments for standing and movement. In a subsequent face-to-face behavioural counselling session, participants will be offered a ‘menu’ of behaviour
change techniques, tailored to their self-declared capability, opportunity and motivation, from which they will select techniques that they expect will be most useful for reducing their sitting time. Finally, SSWs are provided as a means of ensuring participants have a readily accessible opportunity to displace sitting time with standing while completing desk-based tasks.

Pilot Study

Study design

The study uses an exploratory, single-group parallel mixed-methods design, to investigate the acceptability of components of a workplace sitting reduction intervention prototype, among a sample of office workers at one London university. Universities possess a range of office environments for desk-based occupations, with workers from across the socioeconomic spectrum. The experiences of workers within the university setting are therefore likely to be relevant to desk-based workers in a range of other employment settings.

We will assess participants’ experiences of the intervention over time via semi-structured interviews, conducted at three points (1, 6, and 12 weeks post intervention) over a 12-week period. Additionally, all participants will be fitted with an accelerometer-inclinometer which distinguishes sitting and standing time, prior to and following the intervention, and a week prior to the 6 and 12 week follow-ups. This will allow quantification of changes in sitting, standing and activity following the intervention.

Participants

Desk-based workers (N = 30) will be recruited. Our sample size is pragmatic; a sample size of 30 is conventionally deemed adequate for single-group pilot studies, as it permits collection of a sufficient amount of useful data while minimising research costs [52]. It is
also appropriate in qualitative research of this kind, for recruitment of a sample with a broad demographic profile [53].

Eligibility Criteria

Participants will be office- and desk-based workers aged 18 years or over who self-declare working at least 3 days per week, and whose job requires them to sit at a workstation of which they are the sole user for the majority of their typical working day. This will ensure they have sole access to the SSW for a sufficient period of time during the intervention to implement the behavioural strategies.

Workers with a physical condition which prevents standing for prolonged periods (e.g. musculoskeletal, pain, pregnancy) will be excluded. Participants must not have taken part in similar workplace standing research previously, nor ever used a SSW for two or more consecutive days. They also must not intend to leave the employ of the host site, or to take an absence for longer than 10 consecutive work days for the duration of the study.

Recruitment Procedure

The study will be advertised via posters at the host site and fortnightly all-staff circular emails. Participants who self-report meeting eligibility criteria, as stated in study advertisements, will be emailed an information form and demographic questionnaire. The questionnaire will allow us to not only record the demographic profile of our sample, but also screen and select participants to ensure a diversity of age and occupational seniority. They will have the opportunity to discuss the project by phone with a researcher prior to deciding whether to take part.
Study procedure

Unless otherwise stated, all sessions described below will take place in a private meeting room local and convenient to the participant, in the workplace (e.g. their office, or a local meeting room). One researcher – a post-doctoral psychologist – will run all sessions.

Session 1 (10 days pre-baseline). Potential participants who complete the questionnaire will be invited to a face-to-face meeting at which they will be informed of the study timeline and procedures, and invited to complete a consent form. Those who consent will be fitted with an activPAL accelerometer/inclinometer device (PAL Technologies, Glasgow, UK), wrapped in a nitrile dressing and covered using a waterproof medical grade dressing, for continuous wear for seven days. The researcher will instruct and demonstrate to the participant how to fit the device to the centre of the lower right thigh.

Participants will also be asked to monitor the work tasks they undertake for the following week, using task categories agreed between the researcher and participant (e.g. ‘emailing’, ‘phone calls’, ‘word processing’, ‘scanning’, ‘printing’). During this one-week period, participants will be sent two emails daily, once in the middle of the working day, and once around the end of the working day, inviting them to log their tasks by replying to the email. The email will include the agreed task categories, with space for the participant to indicate which task categories have been undertaken during each hour of the working day up to that point. At the end of the final day of monitoring (the fifth work day), participants will receive an additional email requesting an estimation of the total time they have spent sitting during the previous five days of monitoring from 9am to 5pm including...
their lunch break. Eight days later (allowing an extra day for the accelerometer to complete
data collection), the researcher will collect the accelerometer.

Session 2: Intervention (Baseline). Ten days after Session 1 (allowing two days for
synthesis of objective movement and work-task data), a second session will be held at
which the motivational component of the intervention and SSW will be administered.
Participants will be provided with feedback on their sitting time as well as a review of their
tasks over the preceding week. They will be asked which of the following three statements,
derived from the COM-B questionnaire [35], is most applicable to them: “I do not feel
capable of reducing my sitting at work” (capability); “I do not feel I have the opportunity
to reduce my sitting at work” (opportunity); “I do not feel motivated to reduce my sitting at
work” (motivation). They will then be offered a selection of behaviour change techniques,
tailored to their responses to the questions. This portion of the intervention session will be
conducted in a private meeting room, and while participants will be free to ask questions at
any point, we expect it to take a maximum of 40 minutes. Participants will also fit
themselves with the accelerometer, for data collection purposes only, for a further 7-day
wear period.

Following this, a height-adjustable desk-mounted SSW unit will be fitted to their office
desk, and they will be provided with ergonomic instructions and accompanying tips. This
portion will take a maximum of 20 minutes.

Sessions 3-5: Follow ups 1-3 (1, 6, 12 weeks post-baseline). Participants will be
visited on three further occasions (as close to 1, 6 and 12 weeks post-baseline as possible).
At each visit, the researcher will collect the accelerometer (fitted one week prior by the
researcher) and conduct a semi-structured interview. At the final session (12 weeks post-
baseline) the SSW will be removed.

Intervention Content

Our intervention prototype comprises three, sequentially administered components: (a) an initial phase of monitoring and feedback on existing sitting patterns; (b) a ‘menu’ of behaviour change techniques from which participants select techniques tailored to their needs; and (c) provision of a height-adjustable desk for a 12-week period. Intervention content is described more fully, using descriptions from the BCT Taxonomy v1 [54], in Additional File 1.

Monitoring and feedback. The researcher will provide feedback on participants’ objectively-recorded average daily sitting time over the monitoring week (i.e. between Sessions 1 and 2), with comparison to their subjective estimate of their sitting time. They will be shown a bar graph, created in Microsoft Excel, of raw data extracted from the accelerometer depicting the average proportion of each hour of the working day (9am-5pm) spent sitting, standing and walking. This will identify and stimulate discussion of prolonged periods of sitting. The researcher will discuss the task record for the previous week, as well as activity levels during their commute, lunch time and any breaks throughout their working day. The researcher will also provide personalised feedback on the tasks and times of day apparently most conducive to sitting, standing or light activity. Participants will be told of recent research that has linked prolonged periods of sitting and increased risks of heart disease and diabetes [5-8], and will be provided with a set of expert-consensus guidelines for reducing sitting [14]. The aim of this component is to raise awareness of true sitting time and its health implications, and highlight personally-relevant work tasks that incur sitting versus those associated with more movement.

Menu of Behaviour Change Techniques. Next, participants will receive access to a set of potential behaviour change techniques tailored to their self-declared COM-B barriers
to sitting-reduction. Responses to COM-B questions will determine which techniques will
be focused upon. After selecting barrier-matched techniques, participants will be offered
the option of viewing non-barrier-matched techniques.

Sit-Stand Workstation. Participants will receive a VariDesk Pro Plus 30 desk-
mounted unit (Varidesk, Texas, USA; £325 [US$405]) for the 12-week intervention period
(“Adding objects to the environment”). The VariDesk unit has been selected because it is
height-adjustable and noiseless, allowing both sitting and standing work with minimal
disruption to others. Participants will be instructed in appropriate, safe use of the
workstation by the researcher, who has received Display Screen Equipment training. A
poster with images displaying ergonomically optimal desk use will be placed near the
workstation, to be visible when standing or sitting. Participants will also be offered a range
of tips regarding the use of the desk, including tips on physical comfort and environmental
strategies to facilitate sitting reduction (e.g. leaving the desk in the raised position at the
end of the workday). If it is not possible to fit the workstation during Session 2, it will be
fitted at a subsequent appointment as soon as possible after Session 2.

A summary of key points of the session will be emailed to participants the following
day. They will also be offered regular emails containing key points from the session, to
serve as motivational boosters and reminders of the session, for the 12-week intervention
period. Participants will select the content and frequency of this information.

Qualitative data and analysis

Intervention Session (Session 2) and Semi-Structured Interviews (Sessions 3-5).
The intervention session, and semi-structured interviews undertaken at 1, 6 and 12 weeks
post-baseline, will all be digitally recorded and transcribed verbatim for analysis. While
participants will not be interviewed in the intervention session, their utterances will be
treated as study data as they may reveal expectations of the intervention, and decisions
underpinning intervention technique choices.

The three semi-structured interviews will cover: participants’ experiences of sitting and
standing since the previous meeting; the usefulness of the sitting-reduction techniques
delivered to them, their adherence to them, and any suggested improvements or
amendments; their perceptions of their capability, motivation and opportunity to reduce
their sitting; and the conduciveness of the physical and social office environment to sitting-
reduction (see Additional File 2). At 1-week post-baseline only, the interview will also
cover motives for and expectations of participation and reducing sitting.

Analysis. Qualitative data will be analysed using inductive Thematic Analysis
procedures, from a realist epistemological perspective [55]. Analysis will generate a set of
themes that reveal which intervention components appeared acceptable and why, and
which require refinement or removal from the intervention. Data will also reveal
participants’ underlying beliefs, attitudes and values regarding sitting, standing and moving
in the workplace, which likely act as barriers to or facilitators of workplace sitting
reduction [56].

Quantitative Data and Analysis

Demographics. Gender, age, postcode, ethnicity, highest qualification, annual income,
presence of disability and job title data will be self-reported for sample description
purposes.

Sitting, standing, and activity. Sitting, standing and sit-stand transition data will be
recorded using the activPAL micro accelerometer-inclinometer (PAL Technologies Ltd,
Glasgow, UK), for 7-day wear periods. The activPAL micro is small (53x35x7mm),
lightweight and provides accurate measures of sitting time and sit-to-stand transitions per
hour in X, Y and Z dimensions when compared to direct observation in office-based free-

living environments [57-59]. Sitting time data will be used to both analyse the success of
the approach, and to provide feedback on sitting times to participants during the
intervention session.

Analysis. Quantitative data (accelerometry) will be extracted using specialist software
designed for use with the activPAL (activPAL™ Professional v7.2.32; PAL Technologies
Ltd, Glasgow, UK). Data will be summarised for each participant, and across the data-set
as a whole, using descriptive statistics. Changes in accelerometry over time will be
assessed using mixed effects ANOVA, to allow for multiple measures from each
participant at each of four time points.

Discussion

Evidence increasingly suggests that sitting time is a risk factor for morbidity and early
death [2-4]. We have developed a novel sedentary behaviour reduction intervention, based
on our conceptual analysis of why office workers sit and how best to reduce sitting, and
behaviour change theories and evidence more broadly. The intervention combines two
approaches – provision of SSWs, and motivational support – that have separately shown
promise for reducing sitting time [15, 27]. We will pilot the intervention among a sample
of 30 office workers at a UK university. Key novel elements of our study are that the
motivational support intervention component is tailored to theory-derived determinants of
sitting reduction, and that, in engaging participants in selecting from a menu of
intervention techniques, our participants will co-design their intervention and its
implementation. This participatory approach may enhance intervention effectiveness [32,
33]. Our pilot study will be the first, to our knowledge, to explore direct feedback on the
acceptability of discrete tailored sitting-reduction intervention components. Acceptability
is an important determinant of intervention success [35], but has been largely overlooked in the development and testing of sitting-reduction interventions to date. Results will be used to inform the refinement of intervention content, as part of an overarching intervention development project.

Applying theory to intervention design allows scientific knowledge about behaviour change to be used in specifying the techniques most likely to change behaviour, and the mechanisms through which such change might be achieved [60]. Yet, few workplace sitting-reduction interventions evaluated to date have been explicitly theory-based [15]. There are multiple ways in which theory can inform interventions [61]. Drawing on the COM-B Model [36], our intervention delivers change techniques tailored to participants’ self-reported capability, opportunity and motivation to reduce sitting. There are limitations to this approach; participants may not be aware of the true barriers to their sitting [62], and so the techniques they choose to receive may lack efficacy for reducing their sitting time. Nonetheless, it seems prudent to identify the intervention content with which office workers are most (or least) likely to engage. Interventions that are not acceptable to office workers are unlikely to be implementable.

We will adopt an exploratory qualitative approach to investigate intervention acceptability, probing participants’ reflections to identify elements they did or did not find useful, interesting, engaging, or otherwise pertinent. One limitation is that our qualitative methods will not quantify acceptability, precluding evaluation against a predetermined threshold. Conversely however, qualitative methods allow for in-depth coverage of the reasons underlying acceptability [56]. This will help us to identify whether and how discrete components require modification in the next iteration of the intervention. Views expressed by our intervention recipients towards a sitting-reduction intervention have the potential to generate new knowledge of office workers’ underlying beliefs, attitudes and
values towards workplace sitting and activity, which may not be revealed by direct questioning [56].

One potential limitation of our study is that acceptability is explored among intervention recipients only. The feasibility of workplace sitting reduction interventions depends on acceptability not only among office workers, but also managers [30, 31]. Senior management at the study site – a UK university – may have a more positive and open attitude towards testing novel, evidence-based sitting-reduction interventions than other employers. Research has documented doubts among employers about the benefits of sitting reduction [22]. Furthermore, the intervention prototype we will test is resource-intensive, requiring one-to-one behavioural counselling from a trained psychologist. This is unlikely to be scalable; office managers may not be willing to fund provision of such support, or may not want workers to attend such sessions during working hours. Indeed, office workers may not be willing to attend lengthy one-to-one appointments if they are seen to reduce time available for pressing work tasks [22]. However, the present study represents a step towards developing a scalable intervention acceptable to employers and workers alike. We intend to use the findings from the present study to inform a refinement of the intervention that can be delivered in a less resource-intensive way. Tailored self-administered computer-based interventions, for example, can effectively mimic face-to-face behavioural counselling [63]. While we note that a recent computer-based sitting-reduction intervention was found to have no impact on objectively measured sitting time [24], this may have been due to the selection of content included in the intervention, rather than the delivery format.

One potential criticism of our study is that it targets sitting reduction primarily by addressing the needs of individual workers. Such an individual-level conceptualisation of sitting reduction could be argued to neglect broader determinants of workplace sitting...
behaviour. Ecological models portray sedentary behaviour as the product of a complex
interplay of individual, organisational and environmental factors [64]. Achieving
sustainable reductions in workplace sedentary behaviour may require not only changes in
workers’ motivation and capability, and the provision of more opportunities, but also
commitment from senior management to the creation of organisational and cultural norms
supporting standing and light movement [31]. The aims of the present study are, however,
consistent with a broader ecological approach. Managers are unlikely to want to commit
resources to support intervention strategies that are shown to lack acceptability among
office workers [22]. Our study will help to identify discrete sitting reduction intervention
components with which office workers are most willing to engage.

Trial Status

The trial is currently in the recruitment and data collection phase.

Abbreviations

ANOVA: Analysis of Variance. BCT: Behaviour Change Technique. COM-B: Capability,
Opportunity, Motivation – Behaviour Model. ISRCTN: International Standard RCT
Number Register. RCT: Randomized Controlled Trial. SSW: Sit-Stand Workstation.

Competing Interests

Biddle: Funding has been received since 2013 for consultancy work from Fitness First,
Nuffield Health, and Unilever. None of this work is currently active. Funding was received
in 2016 for consultancy work for Halpern PR Limited. In-kind support through the
provision of a sit-to-stand desk was provided by Ergotron from 2012-2014. Advice has
been requested by and offered to Active Working, Get Britain Standing, and Bluearth, none with funding. All other authors declare that they have no competing interests.

Authors’ Contributions

SD and BG drafted the manuscript, which was iteratively refined following feedback from all authors. Intervention and study procedures have been developed by all authors.

Acknowledgements

The authors thank Jennifer Hall for her invaluable advice regarding intervention design.

Funding

This work was supported by the Medical Research Council (grant number MR/N008979/1). The funding body had no role in the design of the study, nor collection, analysis or interpretation of data, nor in writing the manuscript or the decision to submit for publication.

Ethics Approval and Consent to Participate

Ethical approval for this preliminary work was obtained from the King’s College London Psychiatry, Nursing and Midwifery Ethics Panel (LRS-16/17-3718).

Availability of Data and Materials

The datasets that will be generated during the current study will be made available from the corresponding author on request.

Consent for Publication

Not applicable.

8. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, Khunti K, Yates T, Biddle SJ. Sedentary time in adults and the association with diabetes,
cardiovascular disease and death: systematic review and meta-analysis.

2016;388(10051):1302-1310.

reduction interventions among adults. Health Psychology Review. 2016;10(1):89-
112.

16. Mackenzie K, Goyder E, Eves F. Acceptability and feasibility of a low-cost, theory-
based and co-produced intervention to reduce workplace sitting time in desk-based

17. Verweij LM, Proper Ki, Weel AN, Hulshof CT, van Mechelen W. The application
of an occupational health guideline reduces sedentary behaviour and increases fruit

18. Evans RE, Fawole HO, Sheriff SA, Dall PM, Grant PM, Ryan CG. Point-of-Choice
Prompts to Reduce Sitting Time at Work: A Randomized Trial. American Journal

19. Cooley D, Pedersen S, Mainsbridge C. Assessment of the impact of a workplace
intervention to reduce prolonged occupational sitting time. Qualitative health

20. Gardner B, Smith L, Mansfield L. How did the public respond to the 2015 expert
consensus public health guidance statement on workplace sedentary behaviour? A

21. Waters CN, Ling EP, Chu AH, Ng SH, Chia A, Lim YW, Muller-Riemenschneider
F. Assessing and understanding sedentary behaviour in office-based working

22. Hadgraft NT, Brakenridge CL, LaMontagne AD, Fjeldsoe BS, Lynch BM, Dunstan
DW, Owen N, Healy GN, Lawler SP. Feasibility and acceptability of reducing
workplace sitting time: a qualitative study with Australian office workers. BMC

Figures

674. Figure 1. Participant Flow.

Additional files

677. Additional File 1. (Word document; .docx)

679. Table S1. Intervention content provided in Session 2: description and component behaviour change techniques.

681. Additional File 2. (Word document; .docx)

683. Appendix 1. Interview schedules.
Potential participants receive information about study, complete demographic screening form

Session 1: Briefing & Consent
(~10 days Pre-Baseline)
Brief & Consent participant
Intervention and measurement tasks: Fit accelerometer, give instructions on recording work tasks

Pre-intervention
(~2 days pre-Baseline)
Intervention and measurement tasks: Collect accelerometer

Session 2: Intervention Session
(Baseline)
Intervention tasks: Provide feedback; Offer menu of behaviour change techniques; Fit Sit-Stand Workstation
Measurement task: Fit accelerometer

Session 3: Follow-up 1
(~1 week post-baseline)
Measurement tasks: Collect accelerometer, run semi-structured interview

Pre-follow-up 2
(~5 weeks post-baseline)
Measurement task: Fit Accelerometer

Session 4: Follow-up 2
(~6 weeks post-baseline)
Measurement tasks: Collect accelerometer, run semi-structured interview

Pre-follow-up 3
(~11 weeks post-baseline)
Measurement task: Fit accelerometer

Session 5: Follow-up 3
(~12 weeks post-baseline)
Measurement tasks: Collect accelerometer, run semi-structured interview
Click here to access/download

Supplementary Material

Additional File 1 - Supplementary Table 1, BCTs.doc
Click here to access/download
Supplementary Material
Additional File 2 - Interview Schedule.docx
Click here to access/download

Supplementary Material

SPIRIT 2013 checklist.docx
Click here to access/download

Supplementary Material

Funded grant proposal (case for support), April 2015.pdf
Click here to access/download
Supplementary Material
Funded grant proposal (overview), April 2015.pdf
Click here to access/download
Supplementary Material
Ethics approval letter.pdf