
COVERAGE AND EFFECTIVE CAPACITY IN

DOWNLINK MIMO MULTICELL NETWORKS

WITH POWER CONTROL: STOCHASTIC

GEOMETRY MODELLING

Murtadha Al-Saedy, H. S. Al-Raweshidy, Senior Member, IEEE,
Hussien Al-Hmood, Member, IEEE, and Fourat Haider

M. Al-Saedy, H. S. Al-Raweshidy, and Hussien Al-Hmood (corresponding author) are with wireless network communications
centre (WNCC), College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, U.K.
(e-mail: {Murtadha.Al-Saedy, hamed.al-raweshidy, Hussien.Al-Hmood}@brunel.ac.uk).

F. Haider (corresponding author) is with Hutchison 3G UK, 20 Grenfell Rd., Maidenhead, SL6 1EH, U.K. (e-mail:
Fourat.haider@three.co.uk).



IEEE TRANSACTION ON COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2016 1

Abstract

In this paper, coverage probability and effective capacity in downlink multiple-antenna cellular
system are considered. Two scenarios are investigated; in the first scenario, it is assumed that the
system employs distance-based fractional power control with no multicell coordination. For the second
scenario, we assume the system implements multicell coordinated beamforming so as to cancel inter-
cell interference. For both scenarios, the BSs are assumed to randomly uniformly distributed in the area
according to Poisson point process (PPP). Using tools from stochastic geometry, tractable, analytical
expressions for coverage probability and effective capacity are derived for both scenarios. Numerical
results reveal that for a system with stringent delay QoS constraints, i.e. (traffic delay is intolerable), best
performance can be achieved by suitably adopting fractional power strategy when transmitting to the
users, while constant power allocation performs better than all other power allocation strategies when the
delay QoS constraints get loose (tolerable delay). For coverage probability, a fractional power control
is better than constant power and channel inversion power strategies for low signal-to-interference plus
noise ratio (SINR) thresholds, while the constant power strategy performs better than others in high
SINR thresholds.

Index Terms

Coverage probability, Effective capacity, stochastic geometry, fractional power control,
multiple-input multiple-output (MIMO), coordinated MIMO, beamforming.
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I. INTRODUCTION

With the rapidly growing number of smart phones and the ever-increasing demands for services

such as web browsing, multimedia services, and video streaming, future wireless networks are

expected to support high data rate services with diverse quality of service (QoS) requirements

[1]- [3]. The delay-sensitive applications impose the challenge of the service reliability, where

different delay QoS requirements are to be guaranteed to the end users [2]. As a response to

these challenges, a great part of research has been devoted to develop highly spectrally efficient

wireless network technologies [4], [5]. Consequently, wireless networks nowadays tend to be

more densified with aggressive frequency reuse [4]. However, this comes at the price of higher

inter-cell interference experienced by users at the cell-edge, resulting in degradation in system

performance of the currently deployed mobile systems [4].

The framework adopted for evaluating cellular systems is mainly based on the concept of

Shannon capacity [6]. Shannon capacity dictates the maximum achievable data rate achievable in

the system, and is related to coverage, which is the distribution of signal-to-noise and interference

ratio (SINR) in the cellular system. While this information-theoretic framework is suitable for an

analysis of system spectral efficiency, it does not impose any delay QoS constraints [7]. Thus, for

future wireless network with diverse delay QoS requirements, it is necessary to account for delay

QoS constraints when analysing the whole system performance [7]- [9] so as to evaluate the

the system capability of QoS provisioning. To this end, a powerful concept termed as effective

capacity is proposed in [10], it gives maximum arrival rate that a given service process can support

so that a QoS requirement specified by a certain QoS measure can be guaranteed [10]. Hence,

it gives the statistical QoS guarantees [7], where delay is required to be lower than a threshold

value only for a certain percentage of time. The effective capacity is known to be the dual of

effective bandwidth previously studied in wired networks [11], [12]. Using this effective capacity

concept, the delay-QoS constraint is characterized by the QoS exponent θ such that a small value

of θ corresponds to a looser QoS constraint (no delay constraint), i.e. (system can tolerate an

arbitrarily long delay), and the effective capacity is reduced to Shannon capacity. While a larger

value of θ corresponds to the case of stringent delay QoS constraint [13]. Based on the effective

capacity concept, various scheduling and power allocation schemes are proposed for single cell

scenario. In [13], [14], the optimal rate and power adaptation policies are analysed for effective
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capacity maximization. In [7], the tradeoff between power and delay is characterised assuming

only noise with no interference. In [10], [15], TDMA-based scheduling scheme for cellular

networks is developed. In [17], [15], it is shown that when the QoS constraint gets looser, the

optimal power allocation converges to the classical water-filling that achieves Shannon capacity,

while it converges to the scheme operating at a constant rate, i.e., channel inversion. For efficient

QoS provisioning, the two main wireless resources, i.e. power and bandwidth, should be very

efficiently utilised, and algorithms for this purpose are introduced in [16], [17]. In this regard,

power control has also been utilised to guarantee that SINR is above a target value required to

maintain wireless communication, hence resulting in better QoS. All the aforementioned works

are only limited to single cell scenario, hence, they do not consider a cellular systems with

inter-cell interference, where the inter-cell interference has non-negligible impact. To the best

of authors knowledge, no work has yet been done for analysing effective capacity in multicell

scenario. To bridge the gap in this area and characterise delay QoS using effective capacity in

interference-limited cellular networks, analytical framework is necessary from this perspective.

The traditional deterministic multicell models, namely hexagonal, lattice, and Wyner models,

have been extensively utilised for evaluating cellular networks performance [18]. However, in

reality, BSs are generally non-regularly-deployed; therefore the deterministic hexagonal models

are not sufficient for predicting the real system performance. Moreover, hexagonal and lattice

deterministic models do not allow tractability in the analysis [18]. The inadequacy of the

aforementioned models has motivated the research towards using random spatial models for

analysing cellular systems [18], [19]. The advantage of random spatial models is that they allow

analytical tractability and lead to closed-form or semi closed-form expressions for the main

system performance metrics, such as capacity, coverage probability. Furthermore, they are more

accurate for analysing densely-deployed networks that are rapidly gaining interest nowadays [18].

Power control is an important technique that has been widely studied in multicell networks.

Power control to compensate the effect of small-scale fading is studied in [20], however, such

power allocation strategy requires the knowledge of instantaneous channel state information

(CSI) at each scheduling instant, hence imposing heavy feedback signalling. Moreover, the signal

attenuation due to path-loss may outweigh the signal deterioration caused by small-scale fading.

Thus, small-scale fading based power control may not always be the suitable strategy for QoS

provisioning, and therefore it is worth considering distance-based power control that keeps the
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average SINR at a certain level necessary to signal decoding. Distance-dependent power control

is proposed for downlink systems in [21], [22], and uplink systems in [23]. In [22], discrete

power allocation scheme is proposed for ad hoc systems.

Unlike the aforementioned works, we consider multiple-input-multiple-output (MIMO) down-

link random cellular system employing fine-grained (continuous) distance-based fractional power

control, and analyse coverage probability and effective capacity for this system. The locations

of BSs are modelled as point Poisson process (PPP) [18], [19], whereby stochastic geometry

provides mathematical tools for dealing with such random processes. We consider two scenarios

of cellular networks. In the first scenario, it is assumed that distance-based power control is

employed by each BS when transmitting to its respective users, and it is assumed that no

coordination among BSs to cancel the interference takes place. Under this scenario, two cases are

investigated; single user MIMO (SU-MIMO) and multiuser MIMO (MU-MIMO). In SU-MIMO,

a BS serves only one user over single frequency-time slot via maximum ratio transmission (MRT)

technique. For MU-MIMO, on the other hand, the system utilises zero forcing (ZF) technique

to spatially multiplexes several multiple users data for simultaneous transmission, this technique

is known under the name of space division multiple access (SDMA).

In the second scenario, we further assume that several BSs can form a cluster and coordinate

their transmission so as to cancel the inter-cell interference at the unintended users by using

coordinated beamforming (CB) technique. Although, cancelling out interference is beneficial in

general, however, it comes at the price of loosing degrees of freedom. Therefore, we conduct

our analysis based on coordination range (the relative distance between the serving and last

BS involved in coordination). The coordination range can generally determine whether it is

more useful to coordinate or it might be better to transmit using the maximum eigen mode

of transmission channel. For both scenarios, we derive analytical expressions for coverage

probability, which is an important performance metric in the classical information-theoretic

approach. To characterise the delay QoS, analytical expression for effective capacity is derived

based on coverage probability analysis. Henceforth, coverage probability analysis is introduced

first, and, subsequently, effective capacity is derived.

The main contributions of the paper are as follows

• We study and analyse coverage probability and effective capacity for MIMO cellular systems

employing distance-based fractional power control and no multicell coordination is assumed.
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Two cases have been considered and analysed; SU-MIMO and MU-MIMO. Analytical

expressions are derived for coverage probability, subsequently the effective capacity is

derived in terms of coverage probability. Moreover, closed-form expressions are derived

for Laplace term accounting for interference for spacial cases power control factors.

• We study and analyse the coverage probability of MIMO cellular systems employing inter-

ference cancellation using multicell MIMO coordination. The coverage probability is defined

as a function of coordination range inside which the coordination takes place. Analytical

expression is derived for coverage probability of such scenario.

• We model the locations of BSs as random PPP model for both scenarios, where we use

tools from stochastic geometry to analyse coverage probability and effective capacity.

Organization: Section II describes the system model of the analysed cellular system. Section III

presents the main results of coverage analysis for SU-MIMO and MU-MIMO with power control

and no interference cancellation. In Section IV, the analytical result of coverage probability with

interference cancellation is presented. In Section V, analytical expression for effective capacity is

introduced. Section VI presents simulation and numerical results. Finally, conclusions are drawn

in Section VII.

Notations: Bold and lowercase letters denote vectors. The notations (.)H and ‖ . ‖ denote

conjugate transpose and norm of a vector, respectively. E{.} is the expectation operator, while

Ex{.} denotes the expectation with respect to x. Γ(k) stands for gamma function defined as:∫∞
0
xk−1e−xdx. P[a > b] is the probability that the inequality a > b holds true. P|x[y] is the

conditional probability of y given that x has already been given.

II. SYSTEM MODEL

We consider a downlink multicell cellular system. BSs, each equipped with Nt antennas, are

positioned in a two-dimensional horizontal plane as a homogeneous spatial PPP Φ with density

λ. In PPP, the number of nodes, e.g. BSs in a given bounded area A is a random variable

(r.v.) following Poisson distribution with their positions being uniformly distributed. When the

association policy for users is to connect to the nearest BS, the cell boundaries are shown to

be Voronoi tessellation [18], as shown in Fig. 1. Since we consider a homogeneous PPP, the

statistics evaluated for every node in the system will be similar. Hence, we will perform our

analysis based on a typical user at the origin. This is justified by Slivnyak’s [18], [19], which
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states that the statistical properties observed by a typical point of the Φ are similar to those

observed by a point at the origin in the process Φ ∪ {0}. The BSs distances from this typical

user are given according to the homogeneous PPP, Φ = {rk, k ∈ N}, on the two dimensional

plane R2, where rk denotes the distance from the kth BS. The user is assumed to be associated

with the nearest base station denoted as BS1 and located at distance r1 from it. While all other

BSs (BSk, k ∈ Φ) are regarded as interferers to this user as shown in Fig. 1. Notice that the

distance between a typical user and the kth BS is a r.v. following generalised Gamma distribution

given by [26]

frk(r) =
2(λπr2)k

rΓ(k)
e−λπr

2

(1)

We assume that each user is equipped with a single-antenna.

Assuming that each user is able to estimate its downlink channel perfectly and feed CSI back

to its serving BS by means of dedicated pilot signal. If the user is assumed to be helped through

coordination it should also estimate its channels to K−1 BSs and feed them back to its serving

BS, whereby they are conveyed to the other BSs through delay-free unlimited capacity links.

Let us denote the downlink small-scale channel vector between the typical user and kth BS

as hk = [h1, ..., hNt ] ∈ C1×Nt , where each component of hk are an independent and identically

distributed (i.i.d) complex Gaussian r.v with zero mean and unit variance, i.e. CN (0, 1). In this

paper, we consider two beamforming techniques, MRT and ZF, which are defined as follows

1- MRT Beamforming: MRT beamforming vector is constructed such that it is aligned to the

channel direction, i.e. if the channel vector is h, the beamfomer is constructed as [24].

v =
hH

‖ h ‖
(2)

2- ZF: for MU-MIMO, let H = [h1h2...hK ] denote the aggregate channel matrix of K users.

The ZF beamforming vectors v1, ..., vK can be chosen to be the normalised columns of the

matrix [24]

V = H† = HH(HHH)−1 (3)

For interference cancellation via CB, a BS with Nt can cancel interference for up to K =

Nt − 1 users using ZF technique. As an example for a given nth user with channel vector

hn, the beamforming precoder vector can be obtained by projecting the vector hn on the
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null space of ĥn =
[
hH

1 , ...,h
H
n−1,h

H
n+1, ...,h

H
K

]H [24]

vn = (I− Pĥn)hn (4)

where Pĥn denotes the projection on ĥn, given as Pĥn = ĥ
H
n(ĥnĥ

H
n)−1ĥn.

The channel distribution of MIMO link is quite different from single antenna link. For single

antenna links, the channel is exponentially distributed for both direct and interfering links. While

for the link from multi-antenna BS to a single-antenna user the channel distribution depends on

the MIMO transmission technique and whether a BS is serving or interfering. This is because

when transmitting to a user, the BS precodes its signal for its intended user, hence resulting in

different effective channel distribution from the case when it acts as an interferer.

The effective channel of both direct and interfering links denoted as g0 and gi, respectively,

where gn =| vH
nhk |2, is an i.i.d r.v. following gamma distribution, i.e. Γ(∆, 1) and Γ(Ψ, 1),

respectively [25]. ∆ and Ψ are the shape parameters of gamma distribution.

Now, we describe the main two scenarios studied in this work as follows

• Fractional power control and no coordination: in this scenario, we assume that the system

does not implement multicell coordination, while employing distance-based fractional power

control. Two cases are studied under this scenario; SU-MIMO and MU-MIMO. Each BS

makes use of power control to compensate for path-loss attenuation experienced by its served

user. More specifically, each ith BS allocates power proportional to the user distance, Xαη
i ,

where η ∈ [0, 1] is the fractional power control factor, and Xi represents the distance from ith

interfering BS to its served user. Likewise, for MU-MIMO each user is allocated power

proportional to its distance from the BS. Since X1 = r1 the desired signal power at the

typical user becomes g0r
α(η−1)
1 . Moreover, the interference power from each interfering BS

becomes (Xα
i )ηgir

−α
i . Thus, a user closer to its serving BS demands less power than required

by a user farther away. Under this system model, the signal-to-noise and interference ratio

(SINR) can be written as

SINR =
g0r

α(η−1)
1

σ2 + I
(5)

where I =
∑

i∈Φ/{BS1}X
αη
i gir

−α
i is the aggregate interference experienced at the typical

user, and σ2 represents the additive noise power which is assumed to be constant. Note

that for SU-MIMO using MRT, ∆ = Nt and Ψ = 1, while for MU-MIMO utilising ZF,
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we have ∆ = Nt − Ψ + 1, where Ψ is the number of users served by MU-MIMO. It is

worth noting that for single antenna links, ∆ = Ψ = 1, which is equivalent to exponential

distribution, the interested reader can refer to [25] for more details.

• Multicell coordination: in this scenario, we assume that a cluster of BSs are able to

coordinate their beamforming to eliminate inter-cell interference at each unintended user.

For simplicity in analysis, let use assume SU-MIMO and η = 0, however the analysis can be

straightforwardly generalised to MU-MIMO and any power control strategy. Thus, SINR

for such scenario becomes

SINR =
g0Pr

−α
1

σ2 + Ic
(6)

where P is the transmit power, and

Ic =
∑

i∈Φ/{BS1,...,BSK}

giPr
−α
i (7)

is the aggregate inter-cell interference from all BSs except the set of BSs {BS1, ...,BSK}.

Recall that g0 ∼ Γ(∆, 1) and gi ∼ Γ(Ψ, 1), with ∆ = Nt −K + 1 and Ψ = 1 [25].

A. Effective Capacity

Now, we briefly introduce the concept of effective capacity concept (Ec). Consider a queuing

system of a typical BS with constant arrival rate as shown in Fig. 1. The arriving packets are

stacked in the buffer for transmission in time slot Ts, over a subband of bandwidth denoted as W .

The statistical delay QoS for this system can be defined as the probability for the queue length

of the transmitter buffer exceeding a certain threshold x decays exponentially as a function of

x, therefore the QoS exponent θ can be defined as [13]- [14]:

θ = − lim
x→∞

ln
(
P
[
q(∞) > x

])
x

(8)

where q(t) denotes the buffer length at time t. Notice that θ → 0 implies no delay constraint

required in the system, whereas θ → ∞ corresponds to system with a strict delay constraint,

therefore θ is considered as the delay QoS constraint of the system [10]. Accordingly, the Ec is

defined as [10]:

Ec =
Λ(−θ)
−θ

= − lim
n→∞

1

nθ
ln

(
E
{

e
−θ

n∑
i=1

R[i]
})

(9)
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where R[i] is the transmission rate in time slot i defined as:

R[i] = TsW ln

(
1 + SINR

)
(10)

Hereafter, we assume TsW = 1 [13]. Assuming that the stochastic service process is independent

and identically distributed (i.i.d) process, i.e. stationary and ergodic process, Ec in (9) can be

simplified to [13]- [16]

Ec = −1

θ
ln

(
E
{

e−θR[n]
})

= −1

θ
ln

(
E
{

1 + SINR

}−θ)
(11)

Thus, QoS can be incorporated in the scheduling process of the system by interpreting θ exponent

as the QoS requirement. Thereby, the effective capacity is maximised for a given θ instead of

the conventional approach in which the throughput is maximised subject to delay constraint.

III. COVERAGE PROBABILITY ANALYSIS: NO INTERFERENCE CANCELLATION

In this section, analytical expressions are derived for coverage probability for a typical user

in MIMO system. We first introduce the coverage of SU-MIMO with power control, then we

proceed to analyse the coverage of MU-MIMO. The coverage probability, i.e., the probability

of achieving the target SINR γ̄ at the typical user can be defined as P[SINR > γ̄], which

is equivalent to the complementary cumulative distribution function CCDF of the SINR [19].

Coverage probability can also be interpreted as the average fraction of the network area (users)

for which (for whom) SINR is greater than γ̄.

A. Coverage Probability with SU-MIMO

Now we focus on the coverage probability of SU-MIMO with power control. An upper bound
for coverage is introduced in the following theorem.

Theorem 1: The upper bound on the coverage probability for SU-MIMO system employing
distance-based fractional power control, P SU

c , is given by:

P SU
c ≤

Nt∑
m=1

(
Nt

m

)
(−1)m+1

∫ ∞
0

2πλr1e
−(πλr2

1+γ̄mζr
α(1−η)
1 σ2)exp(−2πλψ)dr1 (12)

where

ψ = EX
{
γ̄mζr

(2−αη)
1 Xαη

α− 2
2F1

(
1, 1− 2

α
; 2− 2

α
;−γ̄mζr−αη1 Xαη

)}
, (13)
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ζ = (Nt!)
−1
Nt , and

pFq(a1, .., ap; b1, ...bq; z) =
∞∑
n=0

(a1)n...(ap)n
(b1)n...(bq)n

zn

n!
(14)

is the hypergeometric function, where (a)n denotes the Pochhammer symbol representing the
falling factorial [27].

Proof: See Appendix A.
The lower bound for the coverage probability can be obtained by setting κ = 1. Furthermore,

it can be observed that the bound is closed for single-input single-output (SISO), i.e. Nt = 1.
The expressions in the above results involve double integrations, however the expectation in (13)
can be further simplified using the following corollary.

Corollary 1: For the (13), closed form expressions can be obtained for special cases defined
below: When α = 4, η = 0, ψ is given by:

ψ =
r2

1γ̄mζ

α− 2
2F1

(
1, 0.5; 1.5;− γ̄mζr

2
1

πλ

)
(15)

Proof: See the Appendix B.

Note that this case corresponds to constant power allocation. Following the same steps in

Appendix B, (13) can be also obtained in closed form for other two special cases. When α =

4, η = 1, ψ is given by:

ψ =
2γ̄mζ

(λπr1)2(α− 2)
4F1

(
1, 0.5, 1.5, 2; 1.5;− 4γ̄mζ

(πλ)2r4
1

)
(16)

This case corresponds to full-channel inversion. When α = 4, η = 0.5, ψ is given by:

ψ =
γ̄mζ

λπ(α− 2)
3F1

(
1, 0.5, 2; 1.5;− γ̄mζ

πλr2
1

)
(17)

This case corresponds to the fractional power control. For the other values of α and η, the

integration should be evaluated numerically.

B. Coverage Probability with MU-MIMO

When the system utilises SDMA to serve multiple users, a number of Ψ users can be served

simultaneously over the same frequency band and time slot. Since the users have different

positions from the BS, each user will be allocated an amount of power based on its distance from

its serving BS. This, however, may lead to more analysis complexity. For tractability of analysis,

let us assume that the set of scheduled users served via SDMA are located on equal distances

from their serving BS, hence, they will be allocated the same amount of power. Alternatively, we
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can also assume that the users are located at different distances from the serving BS, however,

they will be allocated an equal amount of power proportional to farthest user distance from its

serving BS. These assumptions significantly render the analysis more tractable.
In the following theorem, an exact analytical expression of coverage probability for MU-

MIMO is presented.
Theorem 2: The coverage probability of a typical user served via full-SDMA in MU-MIMO

employing distance-based fractional power control is given by

PMU
c =

∫ ∞
0

2πλr1e
−(πλr2

1+γ̄r
α(1−η)
1 σ2)exp(−2πλψ)dr1 (18)

where

ψ = EX
{ Ψ∑
m=1

(
Ψ

m

)
r2−mαη

1 Xmαηγ̄

mα− 2
2F1

(
Ψ,m− 2

α
;m+ 1− 2

α
;− γ̄r

α(1−η)
1 Xαη

rα1

)}
(19)

Proof: See the Appendix C.

It is worth noting that the expectation in (19) can be obtained in closed form in special cases

as in Corollary 1. Note that the above result is tight for full-SDMA, i.e. the number of users

served by each BS is equal to the number of transmit antennas (∆ = Nt − Ψ + 1). Otherwise,

an upper bound should be sought for coverage probability in a similar manner to SU-MIMO

analysis.

IV. COVERAGE PROBABILITY WITH MULTICELL COORDINATION

In this section, we consider coordinated MIMO and study the effect of interference cancellation

on coverage probability. We consider a user-centric multicell coordination whereby a user selects

a cluster of BSs denoted as B =
{

BS1, ...,BSK
}

that are able to share CSIs of their respective

users to cancel the interference experienced by him. Since our focus here is on the interference

cancellation and its impact on coverage, we simply assume SU-MIMO and constant power

allocation η = 0. However, the analysis can be straightforwardly extended to MU-MIMO and

general fractional power control cases.
For the sake of tractability of analysis, a new parameter ρ is introduced to designate the

coordination distance ratio, it is defined as ratio of the user distance to its serving BS BS1 over
its distance to the first interfering BS BSK , i.e. ρ = r1

rK
. This parameter defines the coordination

range inside which the interference is to be eliminated using coordinated beamforming technique.
Moreover, this parameter sheds light on where the coordination strategy is more beneficial
than transmission with no coordination. Although the analysis can be conducted by averaging
over all randomness involved in the assumed scenario, we will set out our analysis based on
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the conditional coverage probability for a given value of ρ. The following theorem gives the
conditional probability of coverage.

Theorem 3: The upper bound of coverage probability in cellular systems employing interfer-
ence cancellation using coordinated-MIMO and conditioned on ρ with path-loss α = 4, PCB

c (ρ),
is given as

PCB
c (ρ) ≤ (λπ)

(2G(γ̄, ρ) + 1)K

∆∑
m=1

(
∆

m

)
(−1)m+1

K−1∑
n=0

(λπ)n(2G(γ̄, ρ) + 1)n

n!
Gn(γ̄, ρ) (20)

where:

Gn(γ̄, ρ) = (2Z)−
n+1

2 Γ(n+ 1)exp

((
λπ(G(γ̄, ρ) + 1)

)2

4Z

)
D−(n+1)

(√
2

Z
λπ
(
G(γ̄, ρ) + 1

))
(21)

G(γ̄, ρ) =
mκγ̄ρα

α− 2
2F1

(
1, 1− 2

α
; 2− 2

α
;−mκγ̄ρα

)
(22)

Z =
σ2mκγ̄

P
(23)

where κ = (∆!)(−1/∆) and ∆ = Nt −K + 1.
D−v denote the parabolic cylinder function.

Proof: See Appendix D.

V. EFFECTIVE CAPACITY ANALYSIS

In this section, analytical expression are introduced for effective capacity. The effective capac-
ity can be expressed in terms of coverage probability, and thus it will be defined as a function of
the key system parameters; BSs density, path-loss, power control policy, and antenna number. For
multicell setting, the effective capacity quantifies the average of maximum arrival rate supportable
by a system with inter-cell interference. It can also be interpreted as (i) the average of the
maximum arrival rate that the system can support for a randomly chosen user, (ii) the average
fraction of users for whom the maximum arrival rate can be supported, (ii) the average fraction
of the network area for which the maximum arrival rate can be supported. The following theorem
gives the effective capacity expression.

Theorem 4: For a given QoS exponent θ, the upper bound of effective capacity in multicell
cellular systems can be approximated by:

Ec ≈ −
1

θ
ln

(
1−

N∑
n=1

ωnf(xn)

)
(24)

where xn and ωn are the nth zero of the Hermite polynomial Hn(xn) of degree N , and the
corresponding weight of the function f(.) at the nth abscissa respectively. The f(xn) is the
coverage probability of the system with γ̄ = mκ

(
x
−1
θ
n − 1

)
.

Proof: See Appendix E.
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VI. NUMERICAL RESULTS

This section provides the simulation and analytical results of coverage probability and effective

capacity for both considered scenarios. To simulate PPP model, we first consider a bounded area

of 10km2. The density of BSs in this area is λ = 1/(30000 ∗ π2) BS per m2. The number of

BSs follows Poisson distribution. Then, the BSs are distributed uniformly on the bounded area.

The points distributed as such represents one realization of point process. We also consider a

grid model assuming uniformly spaced square area of BSs. For simulation purposes, 36 BSs are

positioned at regular distance from each other.

In Figs. 2(a) and (b), analytical expressions of coverage probability of SU-MIMO are compared

with grid simulation for different antenna number for power control factors η = 0, 1, and

assuming interference-limited case, i.e. σ2 = 0. It can be clearly observed that the analytical

expressions excellently approximate the simulation of coverage probability over the entire range

of signal-to-interference ratio (SIR) of interest..

Similar observation can be made about Figs. 3(a) and (b) that show the comparison of

simulation and analytical results of MU-MIMO system and coordinated MIMO, respectively,

assuming σ2 = 0. It can be clearly noticed that for both cases the analytical expressions

approximate the analytical expressions for different antenna numbers and entire range of (SIR).

Figs. 4(a) and (b) depict the coverage probability of SU-MIMO and MU-MIMO, respectively,

as a function of power control strategies η = 0, 0.25, 0.5, 1, and antenna number Nt = 2, 4.

It can be clearly observed the fact that for all η values, the coverage probability decreases

with the increase of transmit antenna Nt in MU-MIMO (full SDMA) scheme, while increasing

for SU-MIMO as shown clearly in Fig. 5, that compares between both schemes for different

power control factors and Nt = 2. This is due to two reasons: firstly, ZF utilised in SDMA

to cancel intra-user interference causes loss in degrees of freedom, hence degrading the signal

quality. Secondly, more interference is generated with the increase in number of users served via

SDMA. Despite the decrease in both coverage and average user rate with MU-MIMO scheme,

the scheme serves more users and may results in higher sum rate in the system. This presents

another delicate trade-off inherent in wireless systems between area spectral efficiency measured

in (bits/sec/Hz/m2) and user-link spectral efficiency given in (bits/sec/Hz). Noticeably, both

SU-MIMO and MU-MIMO have an identical performance in terms of power control strategies;
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the coverage probability of both is highest with fractional power control in low SIR threshold

values, while the constant power allocation provides the best performance in higher SIR values.

Now, let us focus our discussion on the impact of power control strategies on coverage probability

in both SU-MIMO and MU-MIMO schemes. We consider the constant power η = 0 as the the

reference of comparison. It can be clearly observed that for both SU-MIMO and MU-MIMO

cases the constant power allocation almost gives comparable performance (coverage probability)

to the cases (η = 0.25, η = 0.5) in low SIR thresholds, while outperforming all other power

control strategies in high SIR values.

The largest coverage probability in the lower 50 percentile is provided by η = 0.25 followed

by η = 0.5 before crossing below η = 0 case at 8.5 dB and−4 dB for SU-MIMO and MU-MIMO

(with Nt = 2), respectively. The difference in coverage for η = 0, 0.25, 0.5 is almost negligible in

the low SIR thresholds. As η increases towards 1, the coverage decreases accordingly. The case η

provides the lowest coverage across the entire range of SIR thresholds. The effect of power

control can be fully explained by concentrating on the performance of cell-edge users relative to

the cell-centre and the intrinsic trade-off between their performance. Cell-centre usually enjoy

good channel conditions and are not susceptible to strong interference. Thus, they are typically

noise-limited, and reducing the transmit power inevitably reduces their SIR. Considering this

fact, constant power control is the optimal power strategy. On the other hand, cell-edge users

typically more susceptible to high interference (interference-limited case). Hence, employing high

power control factors such as η = 1 results in an increase in their SIR, while relatively reducing

the transmit power of cell-centre users served by neighbouring BSs (interfering BSs). This

disparity becomes more noticeable with high η values. Consequently, there is a delicate trade-

off between increasing interference experienced by cell-edge users and reducing interference

from cell-centre users at the neighbouring cells, giving rise to the fact that fractional values

of η provides the highest coverage values for the majority of users.

Now let us assume that a typical BS serves only one user, i.e. SU-MIMO, but uses the rest

of its degrees of freedom to cancel the interference on the users in neighbouring cells. Fig. 6

provides the coverage probability of coordinated MIMO as a function of ρ, and compares between

no coordination with coordination schemes. As previously discussed, coordination causes loss

in degrees of freedom and thereby lowering SIR. This loss of degrees of freedom may be

disadvantageous when the nearer interferers are far away from the user, therefore, in this case,
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no coordination, i.e. transmitting through MRT, is preferable as it exploits the whole degrees of

freedom provided by the system. This case corresponds to the lower values of ρ as shown in

Fig. 6. However, when the interferes get closer, i.e. ρ = 0.95, coordination becomes more useful

to enhance the coverage for the system. When ρ = 0.8, for low SIR thresholds MRT performs

better than CB before crossing below CB curve in −6 dB, where CB outperforms MRT.

Fig. 7 depicts the performance of Ec for SU-MIMO and MU-MIMO as a function of power

control factor. Similar to the coverage probability, the performance of Ec for SU-MIMO scheme

is noticeably better than that of MU-MIMO due to the same reason mentioned previously. Notice

that when θ gets larger, Ec approaches 0, suggesting that the system is incapable of supporting

the arrival rate when the delay constraint is very stringent.

For both schemes, it can also be clearly observed that for low delay constraints i.e. θ → 0,

lower power control factors provide comparable performance with the strategy of η = 0 being

the best over all. When delay constraint gets more stringent θ → ∞ , fractional power control

strategy outperforms the others, in particular η = 0.25 yields the best performance. Note that the

strategy of η = 1 gives the worst performance over the entire range of θ values. When the delay

constraint gets looser, i.e. small θ, it might be better to transmit with power control factors less

than 0.25. While in case of stringent delay constraint, transmitting with power η = 0.25 provides

the best performance. These observations suggest that fractional power control of η ≤ 0.25 is

the best strategy among all others for enhancing Ec in interference-limited scenarios.

The impact of power control factor on Ec can be understood by noticing the behaviour

of Ec with respect to θ. When the delay constraints θ becomes more stringent, the best power

policy is to compensate for the path-loss and keep the rate as fixed as possible calling for using

power control factor 0.5 > η > 0. Although a strategy with large values of θ keeps a user with

fixed SIR (hence fixed rate), it cause strong interference to the cell-edge of neighbouring cells

or deprive cell-centre users from high SIR gain that is necessary for QoS guarantee.

VII. CONCLUSIONS

This paper studied coverage probability and effective capacity in MIMO downlink cellular

networks employing distance-based power control. The BSs are assumed to be distributed accord-

ing spatial PPP model. Tractable, analytical expressions for coverage probability and effective

capacity are derived for two system scenarios; in the first scenario, fractional power control is
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employed with no multicell coordination, while in the second, the system is assumed to employ

coordination. For the first scheme, closed-form expressions for Laplace transform accounting

for interference are introduced for special cases. Then, novel, tractable expression for effective

capacity are derived in terms of coverage probability. These expressions are functions of the

main system parameters which can give an insight on the system design guide. The numerical

results shows that for coverage probability, the strategy of power control factor η ≤ 0.25 is the

best in low thresholds, while constant power allocation outperforms the others in high thresholds.

Moreover, for effective capacity the constant power allocation strategy performs better in low

QoS constraints, while fractional power control factors, i.e. η ≤ 0.25, outperforms the other

strategies in high QoS constraints. For the second scheme, the same analysis is carried out

to derive analytic expressions for coverage probability and effective capacity as functions of

coordination distance ratio ρ. Numerical results reveal that coordination performs better when

the interferers are close enough to the served user, while MRT is better when the interferers are

far enough from the served user.

APPENDIX A
PROOF OF THEREOM 1

Since g0 ∼ Γ(Nt, 1), and its CCDF is the regularized gamma function given by γ(Nt,x)
Γ(Nt)

=∫ x
0
tNt−1e−t

Γ(Nt)
dt, we use the bounds on the CCDF given as [28]

(1− e−ζx)Nt ≤ γ(Nt, x)

Γ(Nt)
≤ (1− e−x)Nt (25)

using binomial expansion yields
Nt∑
m=1

(
Nt

m

)
(−1)m+1e−ζmx ≥ γ(Nt, x)

Γ(Nt)
≥

Nt∑
m=1

(
Nt

m

)
(−1)m+1e−mx (26)

then we have:

P SU
c =

∫ ∞
r1≥0

P
[
g0r

α(η−1)
1

(σ2 + I)
≥ γ̄|r1

]
fr1(r1)dr1

=

∫ ∞
r1≥0

P
[
g0 ≥ r

α(1−η)
1 γ̄(σ2 + I)|r1

]
fr1(r1)dr1

a

≤
∫ ∞
r1≥0

Nt∑
m=1

(
Nt

m

)
(−1)m+1e−γ̄mζr

α(1−η)
1 σ2E

{
e−sI |r1

}
fr1(r1)dr1 (27)
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where s = γ̄mζr
α(1−η)
1 , the inequality in (a) stems from substituting the upper bound of γ(Nt,x)

Γ(Nt)

in (26). The Laplace term, i.e., E{e−sI | r1} that is conditioned on r1, can be obtained as

follows [19]:

E{e−sI | r1} = EΦ,gi,Xi

{
e−s

∑
i∈Φ/{BS1}

giX
αη
i r−αi

}
= EΦ,Xi,{gi}

{( ∏
i∈Φ/{b1}

e−sgiX
αη
i r−αi

)}

= EΦ

{( ∏
i∈Φ/{b1}

Egi,Xi
{
e−sgiX

αη
i r−αi

})}
a
= exp

(
− 2πλ

∫ ∞
r1

(
1− Eg,X

{
e−sgX

αηυ−α
})

υdυ

)
b
= exp

(
− 2πλEX

{∫ ∞
r1

(1 + sXαηυ−α)Ψ − 1

(1 + sXαηυ−α)Ψ
υdυ

})
c
= exp

(
− 2πλEX

{∫ ∞
r1

∑Ψ
m=1

(
Ψ
m

)
(sXαηυ−α)m

(1 + sXαηυ−α)Ψ
υdυ

})
where (a) follows from the probability generating functional (PGFL) property of a PPP [19].

(b) stems from the independence between Φ and both channel fading g and X , and evaluating

the expectation over g,i.e. Γ(Ψ, 1). (c) yields from binomial expansion. For SU-MIMO, we

have Ψ = 1, by substituting in Ψ, and evaluating the inner integration as∫ ∞
r1

υ

1 + s−1X−αηυα
dυ = sXαη r

2−α
α

1

α− 2
2F1

(
1, 1− 2

α
; 2− 2

α
;−sX

αη

rα1

)
(28)

we have

E{e−sI | r1} = exp(−2πλψ) (29)

where ψ is given by (13). By plugging (1) (for K = 1) and (29) in (27), (12) follows immediately.

APPENDIX B
PROOF OF COROLLARY 1

Assuming that the distance between each interfering BS and its served user referred to as X

is a r.v. following Rayleigh distribution as proven by [26], for given values of α = 4 and η = 0,

expressing the hypergeometric function as an infinite series, invoking the relation Γ(a, b) =
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(a)bΓ(a), and implementing integration and some algebraic manipulations [29], we have the

following

ψ = EX
{
γ̄r

(2−αη)
1 Xαη

α− 2
2F1

(
1, 1− 2

α
; 2− 2

α
;−γ̄r−αη1 Xαη

)}
a
=
γ̄r

(2−αη)
1

α− 2

∫ ∞
0

Xαη
2F1

(
1, 1− 2

α
; 2− 2

α
;−γ̄r−αη1 Xαη

)
(2πλXe−πλX

2

)dX

b
=

2πλγ̄r
(2−αη)
1

α− 2

∫ ∞
0

Xαη+1e−πλX
2
∞∑
n=0

(1)n(1− 2/α)n
(2− 2/α)nn!

(−γ̄r−αη1 Xαη)ndX

c
=

2πλγ̄r
(2−αη)
1

α− 2

∞∑
n=0

(1)n(1− 2/α)n(−γ̄r−αη1 )n

(2− 2/α)nn!

∫ ∞
0

X1+(1+n)αηe−πλX
2

dX

d
=

2πλγ̄r
(2−αη)
1

α− 2

∞∑
n=0

(1)n(1− 2/α)n(−γ̄r−αη1 )n

(2− 2/α)nn!

Γ
(2+(1+n)αη

2

)
2(πλ)(1+

(1+n)αη
2

)

e
=

2πλγ̄r
(2−αη)
1

α− 2

∞∑
n=0

(1)n(1− 2/α)n(−γ̄r−αη1 )n

(2− 2/α)nn!

(2+αη
2

)nαη/2Γ(2+αη
2

)

2(πλ)(1+
(1+n)αη

2
)

f
=

2πλγ̄r
(2−αη)
1

α− 2

∞∑
n=0

(−γ̄r−αη1 )n(1)n(1/2)n
2πλ(3/2)nn!

g
=
γ̄r

(2−αη)
1

α− 2 2
F1(1, 1/2; 3/2;−γ̄r−αη1 ) (30)

where (a) comes from the assumption that the distance between each interfering BS and its served

user referred to as X is a r.v. following Rayleigh distribution. In (b), the hypergeometric function

is expressed as an infinite series by invoking the relation Γ(a, b) = (a)bΓ(a). In (c) and (d), we

insert the integration inside the summation and integrating with respect to X , respectively. In

(e), (f), and (g), we got an expression which can be expressed once again as a new hypergoemtric

function by using the definition in (14) and simple mathematical simplifications.
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APPENDIX C
PROOF OF THEOREM 2

Following similar steps of Appendix A and noticing that in full-SDMA ∆ = 1 and Ψ = Nt;

the desired signal link is exponentially distributed, i.e. g0 ∼ exp(µ), and µ = 1, then we have

PMU
c =

∫ ∞
r1≥0

P
[
g0r

α(η−1)
1

(σ2 + I)
≥ γ̄|r1

]
fr1(r1)dr1

=

∫ ∞
r1≥0

P
[
g0 ≥ r

α(1−η)
1 γ̄(σ2 + I)|r1

]
fr1(r1)dr1

=

∫ ∞
r1≥0

EI
{

exp(−γ̄rα(1−η)
1 (σ2 + I)) | r1

}
fr1(r1)dr1

=

∫ ∞
r1≥0

e−γ̄r
α(1−η)
1 σ2EI

{
e−γ̄r

α(1−η)
1 | r1

}
fr1(r1)dr1 (31)

To evaluate EI
{
e−γ̄r

α(1−η)
1 | r1

}
, let s = γ̄r

α(1−η)
1 , by following the same approach in Appendix A

for evaluating Laplace transform, we have

E{e−sI | r1} = exp(−2πλψ) (32)

where ψ is given by(19). By plugging (32) in (31), (18) follows immediately.

APPENDIX D
PROOF OF THEOREM 3

Similarly, by considering the upper bound of coverage probability as in the Appendix A, we

have:

PCB
c = Er1,rK

{
P
[
g ≥ rα1 γ̄

P
(σ2 + Ic)|r1, rK

]}
≤ Er1,rK

{ ∆∑
m=1

(
∆

m

)
(−1)m+1e−Zr

α
1 EIc

{
e−

mκγ̄
P

rα1 Ic |r1, rK

}}
(33)

where ∆ = Nt −K + 1, and Z given by (23), and Ic is the the aggregate interference coming

from all BSs in the point process Φc, defined as Φc = Φ/{BS1, ...,BSK}.

Note that since the nearest interferer is located at distance rK , we condition the Laplace

transform in (33) on both r1 and rK . Similarly, the Laplace transform can be obtained following

the same approach, by denoting s = mκγ̄
P
rα1 , and substituting for ρ as ρ = r1

rK
, then we have

EIc{e−sIc} = exp
(
− 2πλf(γ̄, α)

)
(34)



IEEE TRANSACTION ON COMMUNICATIONS, VOL. XX, NO. Y, MONTH 2016 20

where f(γ̄, α) = r2
KG(γ̄, ρ), and G(γ̄, ρ) is given by (22).

Plugging (34) in (33) and de-conditioning on both r1 and rK yields the following:

PCB
c ≤

∫ ∞
0

fr1(r1)

∫ ∞
r1

frK (rK)
∆∑

m=1

(
∆

m

)
(−1)m+1e−Zr

α
1 Eρ
{
e−2πλG(γ̄,ρ)r2

K |ρ
}

drKdr1

≤ Eρ
{ I2︷ ︸︸ ︷∫ ∞

0

fr1(r1)

∫ ∞
r1

frK (rK)
∆∑

m=1

(
∆

m

)
(−1)m+1e−Zr

α
1 e−2πλG(γ̄,ρ)r2

KdrK︸ ︷︷ ︸
I1

dr1 |ρ
}

(35)

Since r1, rK , and ρ variables are independent of each other, we interchange the integration order

using Fubini’s theorem. Accordingly, after substituting (1) in (35), we have

I1 =
∆∑

m=1

(
∆

m

)
(−1)m+1e−Zr

α
1

∫ ∞
r1

frK (rK)e−2πλG(γ̄,ρ)r2
KdrK

=
∆∑

m=1

(
∆

m

)
(−1)m+1e−Zr

α
1

∫ ∞
r1

e−λπr
2
Ke−2πλr2

KG(γ̄,ρ)

(
2(λπ)Kr

(2K−1)
K

Γ(K)

)
drK

=
2(πλ)K

Γ(K)

∆∑
m=1

(
∆

m

)
(−1)m+1e−Zr

α
1

Γ

(
K,λπ(2G(γ̄, ρ) + 1)r2

1

)
2

(
2λπG(γ̄, ρ) + λπ

)K (36)

where the last result can be obtained by utilising the integral identity:
∫∞
u
xme−βx

n
dx = Γ(v,βun)

nβv
.

Plugging (36) and (1) with K = 1 in (35) and considering I2, we have:

I2 =
2(πλ)K

Γ(K)

∆∑
m=1

(
∆

m

)
(−1)m+1

2

(
2λπG(γ̄, ρ) + λπ

)K ∫ ∞
0

Γ

(
K,λπ(2G(γ̄, ρ) + 1)r2

1

)
e−λπr

2
1

×e−Zrα1 (2λπr1)dr1 (37)

By expressing the gamma function in (37) as Γ(s, x) = (s − 1)!e−x
∑s−1

n=0
xn

n!
, doing some

mathematical manipulations, and conditioning on ρ, we have:

PCB
c (ρ) ≤ πλ

2

(
2G(γ̄, ρ) + 1

)K ∆∑
m=1

(
∆

m

)
(−1)m+1

K−1∑
n=0

×
∫ ∞

0

e−
(
λπ
(

2G(γ̄,ρ)+1
)

+λπ
)
r2
1e−Zr

α
1

(
λπ
(
2G(γ̄, ρ) + 1)r2

1

))n
n!

(2λπr1)dr1 (38)
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Notice that the above expression is the conditional probability of coverage represented as a

function of ρ, so we omit the expectation symbol. This integral can be evaluated numerically,

and it can be obtained in a closed-form for a special case of α = 4, and is given by:

PCB
c (ρ) ≤ πλ

2

(
2G(γ̄, ρ) + 1

)K ∆∑
m=1

(
∆

m

)
(−1)m+1

K−1∑
n=0

(λπ)n

n!

(
2G(γ̄, ρ) + 1

)n
Gn(γ̄, ρ) (39)

where Gn(γ̄, ρ) and G(γ̄, ρ) are given in (21) and (22), respectively. The above result, can be ob-

tained by changing the variable r2
1 = x and invoking the integral identity

∫∞
0
xv−1e−βx

2−γxdx =

(2β)−v/2Γ(v)exp( γ
2

8β
)D−v(

γ√
2β

).

APPENDIX E
PROOF OF THEOREM 4

Starting from (12), and using the following identity: E{x} =
∫∞
t≥0

P[x ≥ t]dt, where the ex-

pectation operation is defined over all randomness involved in the SINR, we have the following:

E
{

1 + SINR

}−θ
=

∫ ∞
r1≥0

∫ 1

t≥0

fr1(r1)P
[(

1 + SINR

)−θ
> t|r1

]
dtdr1 (40)

=

∫ ∞
r1≥0

∫ 1

t≥0

fr1(r1)P
[
SINR < (t

−1
θ − 1)|r1

]
dtdr1 (41)

= 1−
∫ ∞
r1≥0

∫ 1

t≥0

fr1(r1)P
[
SINR > t

−1
θ − 1|r1

]
dtdr1 (42)

by substituting for the upper bound of coverage probability in the above integration and approx-

imating the integration in (42) by Gauss-Hermite quadrature given by [27]:∫ 1

0

xkf(x)dx ≈
N∑
n=1

ωnf(xn) (43)

(24) follows immediately.
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Fig. 1. An illustration of random network configuration, BSs are distributed randomly in two-dimensional space, and each BS
has queues for packet accumulation. The scheduler serves a user (or multiple users in MU-MIMO) according the rule scheduling
that should incorporates θ of the user.
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Fig. 2. Simulation results of coverage probability of SU-MIMO, (Nt = {1, 2, 4}, η = {0, 1}, σ2 = 0).
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Fig. 3. (a) shows the comparison with simulation results for MU-MIMO, (Nt = {2, 4},η = 0, σ2 = 0). (b) shows the
comparison with simulation results for coordinated-MIMO, (η = 0, Nt = {2, 4}, K = {2, 4}, σ2 = 0).
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Fig. 4. (a) and (b) show the the coverage probability for SU-MIMO and MU-MIMO, respectively for various fractional power
control strategies are shown in both cases. (η = 0, 0.25, 0.5, 1, Nt = {2, 4}, σ2 = 0).
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Fig. 5. Comparison between SU-MIMO and MU-MIMO for different power control strategies; (η = 0, 0.5, 1, Nt = {2, 4},
σ2 = 0).
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Fig. 6. Comparison between coordination using CB and no coordination using MRT for different ρ values, (Nt = 2, P = 1,
σ2 = 0).
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