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We discuss and briefly overview recent progress with studying fluctuations in scattering on a resonance state
coupled to the background of many chaotic states. Such a problem arises naturally, e.g., when dealing with wave
propagation in the presence of a complex environment. Using a statistical model based on random matrix theory,
we obtain a number of nonperturbative results for various statistics of scattering characteristics. This includes
the joint and marginal distributions of the reflection and transmission intensities and phases, which are derived
exactly at arbitrary coupling to the background with finite absorption. The intensities and phases are found to
exhibit highly non-trivial statistical correlations, which remain essential even in the limit of strong absorption.
In the latter case, we also consider the relevant approximations and their accuracy. As an application, we briefly
discuss the statistics of the phase rigidity (or mode complexness) in such a scattering situation.
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1. Introduction and formalism

Scattering on a well isolated resonance is a textbook exam-
ple giving rise to the natural (“bell-shaped”) spectral profile
of the transmission intensity [1–4]. In the vicinity of the res-
onance with energy ε0 and width Γ0, the integral contribution
of all other (remote) possible resonances amounts to scatter-
ing phases with a weak energy dependence. In a resonance
approximation, one usually neglects such a non-resonant con-
tribution (which can also be eliminated by other means [5]).
The scattering amplitude between two open channels a and b
is then given by a multichannel Breit-Wigner formula [1]

S
(0)
ab (E) = δab − i

AaAb

E − ε0 + i
2Γ0

. (1)

For simplicity, we assume here invariance under time rever-
sal, so S is a symmetric matrix with the real channel ampli-
tudes Ac. The latter determine the partial (per channel) decay
widths A2

c and the total escape width Γ0 =
∑
cA

2
c , with the

sum running over all channels open at the given scattering en-
ergy E. This ensures the unitarity of the S matrix (at real E).

In many situations, such a resonance represents a specific
“simple” (deterministic) excitation that is coupled to the back-
ground of many “complicated” (usually chaotic) states [6].
The prominent examples include giant resonances and door-
way states in atomic and nuclear physics [7–11] and simi-
lar mechanisms in open mesoscopic systems [12–15]. Be-
cause of this coupling the initial amplitude is spread over the
background with a rate determined by the so-called spread-
ing width Γ↓ [6, 7]. This gives rise to an effective damping,
resulting in the mean (“optical”) S matrix

Sab(E) = δab − i
AaAb

E − ε0 + i
2 (Γ0 + Γ↓)

, (2)

where the average is performed over the fine energy structure
of the complex background. The arising competition between
two decay mechanisms leads to a strong suppression of trans-
mission through such a simple state when the ratio η ≡ Γ↓/Γ0

of the spreading (Γ↓) to escape (Γ0) width exceeds unity [16].

In the context of wave transport, the model provides a use-
ful approach for quantifying fluctuations in an established
transmission signal induced by a complex environment [16].
The applicability of the model is actually much broader [17].
It covers the whole range of the scattering observables, includ-
ing joint statistics of the intensities and phases [18].

The approach developed in [16–18] enables us to fully de-
scribe the influence of the chaotic background with finite dis-
sipative losses on the resonance scattering. In short, it makes
use of the well-known strength function formalism [6, 7] to
account for coupling to the background and employs random
matrix theory (RMT) [19–21] to model the chaotic nature of
the latter. We are interested in fluctuations in scattering at the
resonance energy ε0, corresponding to the peak of the original
signal. The starting point is the following convenient repre-
sentation of the S matrix at E = ε0 derived in [16, 17]:

S = 1− 1

1 + iηK
(1− S(0)) . (3)

Here S(0) stands for the S matrix (1) in the “clean” system
without the background. K denotes the local Green’s func-
tion [22] of the background defined by K = N∆

π ( 1
ε0−Hbg

)11,
which is a (rescaled) diagonal element of the resolvent of the
Hamiltonian Hbg describing N � 1 background states with
the mean level spacing ∆ ∼ 1

N . In the chosen units, the con-
stant η becomes the only parameter controlling the strength of
coupling to the background. Finite absorption is then taken
into account by uniform broadening Γabs of the background
states, resulting in complex K [22]

K = u− iv, v > 0, (4)

with the normalisation 〈iK〉 = 〈v〉 = 1. Within the RMT ap-
proach, Hbg can be modelled by the Gaussian orthogonal en-
semble (GOE) of random matrices, which enables us to fully
characterise the universal statistics of K at arbitrary absorp-
tion rate γ ≡ 2πΓabs/∆ [22–24]. Importantly, u and v are the
mutually correlated random variables that have the following
joint probability density function (jpdf) [22]:

P(u, v) =
1

2πv2
P0(x), x =

u2 + v2 + 1

2v
> 1. (5)
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The function P0(x) has the meaning of a probability distribu-
tion and its explicit form is known exactly at any γ [23, 24].

We now use these results to first discuss in Sec. 2 the arising
scattering pattern and how the two control parameters η and γ
can be extracted from the scattering data. Sections 3 and 4
then provide the detailed analysis of the statistical properties
of the transmission and reflection amplitudes in terms of var-
ious joint distributions. An application of the obtained results
to the so-called phase rigidity is considered in Sec. 5. Finally,
we conclude with a brief summary in Sec. 6.

2. Transmission and reflection amplitudes

Let us consider a two-channel setup, which is sufficient for
the discussion. The S matrix can then be parameterised as

S =

(
r+ t
t r−

)
(6)

in term of the transmission (t) and two reflection amplitudes
(r±). Their explicit forms are found from (3) as follows

t = t0/(1 + ηv + iηu) ≡
√
TeiθT ,

r± = (ηv ± r0 + iηu)/(1 + ηv + iηu) ≡
√
R±e

iθ±R .
(7)

The amplitudes t0 and r0 describe the direct coupling between
the channels avoiding the background (η = 0). They satisfy
the flux conservation, t20 + r2

0 = 1. The flux is no longer con-
served in scattering with the background at finite absorption,
when S becomes subunitary. Such a unitarity deficit can be
naturally quantified by the following matrix [25]:

1− S†S = (1− S0)d, d ≡ 2ηv

(1 + ηv)2 + η2u2
. (8)

The positive quantity d ≤ 1
2 is therefore a useful measure of

the total losses dissipated in the background [17].
At vanishing absorption, γ = 0, we have v = 0 (thus d = 0)

identically. The intensities and phases are then deterministic
functions of each other defined by the following relations:

T = t20 cos2 θT = 1−R±,
θ±R = π

2 + θT ± arctan(r0 cot θT ),
(9)

where θT = − arctan(ηu). Therefore, their distributions are
determined by the random variable u that is known [22, 26] to
be Cauchy distributed in this limit. This yields, in particular,
the following distribution of the transmission phase [18]:

P0(θT ) =
1

π(η cos2 θT + η−1 sin2 θT )
, (10)

which provides all others by a suitable change of variables.
At finite absorption, the correlations imposed by the above

(flux conservation) constraint (9) are removed. We find

T = t20/[(1 + ηv)2 + η2u2] ,

R± = [(ηv ± r0)2 + η2u2]/[(1 + ηv)2 + η2u2]
(11)

for the transmission and reflection coefficients, and

tan θT = −ηu/(1 + ηv) ,

tan θ±R = (1∓ r0)ηu/[(1 + ηv)(ηv ± r0) + η2u2]
(12)

for the corresponding phases. Thus they have non-trivial joint
statistics determined by the distribution (5) of u and v [17, 18].

It is instructive to complement the above description of the
scattering pattern by the “external” viewpoint in terms of the
interference between the deterministic scattering phase (due
to the direct transmission) and the random phase induced by
the background [16]. To this end, we note that both S and S0

can be diagonalised by an orthogonal matrix Oϕ, where angle
ϕ expresses the degree of channel nonorthogonality. Then

S = Oϕ

(
1 0
0 −Sbg

)
OTϕ , (13)

where Sbg = 1−iηK
1+iηK ≡

√
Rbge

iθbg stands for the background
contribution into the full scattering process. This yields an
alternative parametrisation of the scattering amplitudes

t = sin 2ϕ
2 (1 +

√
Rbge

iθbg),

r± = 1
2 (1−

√
Rbge

iθbg)± cos 2ϕ
2 (1 +

√
Rbge

iθbg).
(14)

Note that the background acts as a single-channel scattering
centre. For such a situation, the joint distribution of the re-
flection coefficient Rbg and phase θbg is also known exactly
[23, 24] at arbitrary absorption (see [27] for the relevant exper-
imental study). In particular, we have 〈Sbg〉 = 1−η

1+η , yielding
the average transmission and reflection amplitudes as follows

〈t〉 =
sin 2ϕ

1 + η
, 〈r±〉 =

η ± cos 2ϕ

1 + η
. (15)

These expressions are useful for determining the model pa-
rameters when applying the approach to real systems. By
measuring the average amplitudes and fitting them to (15), one
can extract the background coupling η and the mixing phase
ϕ, thus fixing t0 = sin 2ϕ and r0 = cos 2ϕ. (Note that both
〈t〉 and 〈r±〉 are real, which should be helpful in eliminating
global phases that might be present in realistic situations.) The
absorption rate γ can then be obtained independently from the
correlation analysis of scattering spectra [28, 29]. This allows
one to perform comparison with the experimental data with-
out fit parameters. We now discuss theoretical predictions for
joint statistics of both intensities and phases in more detail.

3. Joint distribution of the intensities

3.1. Perfect coupling (no backscattering)

We consider first the case of perfect coupling t0 = 1 (r0 =
0). Making use of relations (11) and applying the Jacobian
calculus, the joint distribution P(R, T ) of the reflection and
transmission intensities is expressed in terms of the known
function P0 by the following attractive formula [17]:

P(R, T ) =
2

π(1−R− T )2√y
P0

(
η−1R+ ηT

1−R− T

)
, (16)
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FIG. 1. Contour plots of the joint distribution (16) of the reflection
and transmission intensities at perfect coupling. The absorption rate
γ = 0.1 (left) or 1 (right) and the background coupling η is increased
as η = 0.2, 0.5, 1, 2 (from top to bottom). Darker regions correspond
to higher values of the jpdf. Dashed lines indicate the boundaries of
the distribution support. Note the symmetry of the distribution at
η = 1 and also at the reciprocal values of η.

being nonzero only in the region defined by 1 − R − T > 0
and y = 1 + 2RT − (1− R)2 − (1− T )2 > 0. It follows at
once that function (16) has the following important symmetry

P(R, T )|η = P(T,R)|η−1 (17)

under the interchange η → η−1. The symmetry property (17)
holds at arbitrary absorption. This shows that the coupling
strength η controls the weight of the total flux distribution be-
tween its reflection and transmission sectors. In particular,
distribution (16) becomes symmetric with respect to the line
R = T at the special coupling η = 1 (see further Fig. 1).

In the limit of vanishing absorption, γ → 0, one can use

Γ = 1

Η = 0.2

Η = 0.5
Η = 1

Η = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.5

1.0

2.0

5.0

10.0

T

P
HTL

FIG. 2. Transmission distribution (20) at perfect coupling for γ = 1
and the same values of η as in Fig. 1. By the symmetry property
(21), the corresponding reflection distributions would be given by
the same curves at the reciprocal values of η.

[22] that P0(x)→ δ( 1
x ). This yields the following result:

Pγ=0(R, T ) = δ(1−R− T )P0(T ). (18)

The first (singular) factor here stands for the conditional pdf
of R, expressing in the present context the flux conservation
(9). The marginal distribution P0(T ) of T is given by [16]

P0(T ) =
1

π
√
T (1− T )

1

ηT + η−1(1− T )
. (19)

As discussed above, this form follows from the Cauchy distri-
bution of the random variable u in this limit.

At finite absorption, the function P0(x) gets exponentially
suppressed (∼ e−γx/4) for large x � 1. As a result, the jpdf
P(R, T ) at small γ is mostly concentrated within a thin layer
∼ γ � 1 near the boundary R+T = 1. When γ is increased,
the distribution starts exploring its whole support. The typical
behavior of the distribution is illustrated on Fig. 1 displaying
the density plots at various values of η and γ. It clearly shows
highly non-trivial correlations between reflection and trans-
mission. Note, however, the symmetry (17) of the distribution
at the reciprocal values of η, which holds at any γ.

The marginal distributions can now be obtained by integrat-
ing (16) over R or T . One finds the following expression for
the transmission distribution (0 ≤ T ≤ 1) [17]:

P(T ) =

∫ 1−T

ρ−

dR

π(1−R− T )2

2P0

(
η−1R+ηT
1−R−T

)√
(ρ+ −R)(R− ρ−)

,

(20)
with ρ± = (1 ±

√
T )2. One can further show that this ex-

pression is equivalent to the one derived recently in [16]. The
advantage of representation (20) is that it utilizes the symme-
try property (17) explicitly. In particular, the distribution of
reflection is simply related to that of transmission as follows

P(ref)(R)|η = P(tr)(R)|η−1 . (21)

This remarkable relation shows that despite lacking any ap-
parent connection between the reflection and transmission co-
efficients at finite absorption, their distribution functions turn
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out to be linked by symmetry (21). With explicit formulae
for P0 found in [23, 24], Eqs. (16), (20) and (21) provide the
exact solution to the problem at arbitrary η and γ.

It is possible to perform further analysis in the physically
interesting limiting cases of weak and strong absorption, when
the function P0 is known [22] to have simple asymptotics. At
γ � 1, one has P0(x) ≈ 2√

π
(γ4 )

3
2

√
x+ 1e−

γ
4 (x+1), yielding

the leading-order correction factor exp[− γ
8η

(1+(η−1)
√
T )2√

T (1−
√
T )

] to
the zero-absorption distribution (19). Thus, the bulk of distri-
bution (20) is essentially reproduced by P0(T ) in this limit.
The correction factor becomes crucial near the edges, where
the exact distribution has an exponential cutoff. In the oppo-
site case of γ � 1, making use of P0(x) ≈ γ

4 e
− γ4 (x−1) results

in the following approximation at strong absorption [16]:

Pγ�1(T ) ≈
√
γη exp

[
− γ

8η
(1−(η+1)

√
T )2√

T (1−
√
T )

]
4
√
π(1−

√
T )T 3/4

√
1 + (η2 − 1)T

. (22)

Figure 2 shows the exact distribution (20) at moderate γ = 1.

3.2. Nonperfect coupling

In the general case of nonperfect coupling, r0 6= 0, only a
part (given by t20 = 1 − r2

0) of the incoming flux contributes
to the transmission. In view of (11), the transmission distri-
bution is then obtained by a simple rescaling of expression
(20). The reflection distribution takes a more elaborate form
because of the interference between the two reflected waves,
the one backscattered directly at the channel interface and the
one originating from the background. By expressing R± in
terms of the variables T and R at r0 = 0 studied above, one
can derive the corresponding distributions in the closed form.
The distribution of R = R+ (and similarly for R− by chang-
ing r0 → −r0 below) reads as follows [17]

P(R) =

∫ T∗

T−

dT

π(1−R−T )2

2P0(x)√
(T+ − T )(T − T−)

, (23)

where T∗ = min(1−R, T+), T± = 1+r0
1−r0 (1±

√
R)2, and

x =
(1 + r0)(R− r0) + T (η2 + r0)

η(1 + r0)(1−R− T )
. (24)

It reduces to Eq. (21) at perfect coupling, r0 = 0.
A particular feature of the reflection distribution (23) is the

dependence of its support on the sign of r0 (see also [16]).
The distribution vanishes identically for R ≤ 1 − T0, when
r0 > 0, and covers the whole range 0 ≤ R ≤ 1, when r0 < 0.
This follows from the compatibility requirement T− < T∗ and
is, of course, in agreement with definition (11).

As a particular application of the above results, one can
study the statistics of total losses in the system. The distri-
bution of the unitarity deficit d = 1− R − T can be found in
an exact form, see Ref. [17] for further discussion.

4. Joint intensity-phase distribution

The joint distribution P(T, θ) of the transmission intensity
and phase θ ≡ θT can be derived and studied along the sim-
ilar lines. (One can set t0 = 1 throughout without loss of
generality.) We find the following exact representation [18]:

P(T, θ) =
Θ(cos θ −

√
T )

4πT (cos θ −
√
T )2

P0[xη(T, θ)], (25)

where Θ(x) is the Heaviside step function and

xη(T, θ) =
T (1 + η2)− 2

√
T cos θ + 1

2η
√
T (cos θ −

√
T )

. (26)

The joint distribution (25) is nonzero for 0 ≤ T ≤ cos2 θ.
Its profile within this region is controlled by two parameters γ
and η. Therefore, the transmission intensity and phase exhibit
strong statistical correlations at finite absorption.

In the limit of vanishing absorption, γ = 0, one finds

Pγ=0(T, θ) = δ(T − cos2 θ)P0(θ) (27)

in agreement with the flux conservation constraints (9). In the
general case of finite absorption, the singularity of the joint
distribution is removed, since T and θ are no longer functions

FIG. 3. Contour plots of the joint distribution (25) of the transmission
intensity (T ) and phase (θ) at the background coupling η = 0.5, 1, 2
(rows) and absorption rates γ = 0.1, 1 (columns). The dashed line
indicates the boundary T = cos2 θ of the distribution support.
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of each other. As was already mentioned, the function P0(x)
gets exponentially suppressed at large x � 1. As a result,
the distribution at small γ is mostly concentrated within a thin
layer ∼ γ � 1 near the boundary T = cos2 θ. When γ is
increased, the distribution starts exploring its whole support.
Its weight is gradually moved from the central region around
T ∼ 1−2η at η � 1 to a stripe around T ∼ η−2 at η � 1. All
these features are clearly seen on Fig. 3 showing the density
plots of P(T, θ) for various values of η and γ.

It is worth discussing the statistical correlations between T
and θ in more detail. It is natural to expect that such cor-
relations should go away, when absorption becomes strong.
Making use of the exact limiting form P0(x) ≈ γ

4 e
− γ4 (x−1)

at γ � 1, we readily get the following asymptotic expression:

P(asym)
γ�1 (T, θ) =

γ exp
[
−γ(1+η)2

8η
T−2〈t〉

√
T cos θ+〈t〉2√

T (cos θ−
√
T )

]
16πT (cos θ −

√
T )2

,

(28)
where 〈t〉 = (1 + η)−1. This clearly shows that the correla-
tions remain essential even at strong absorption.

Still, assuming very large γ � 1, one can perform fluc-
tuation analysis further. In such an extreme limit, one finds
that
√
T − 〈t〉 and θ eventually become uncorrelated normal

variables with the corresponding variances σ2
T = 4η2

γ(1+η)4 and

σ2
θ = 4η2

γ(1+η)2 . We note, however, that such a Gaussian ap-
proximation is very crude, because of the finite support of the
exact distribution (25). One can obtain a better approximation
at strong absorption by studying the joint statistics of the real
(tr) and imaginary (ti) parts of t instead [18]. The two turn
out to decorrelate faster than T and θ when absorption grows.
At γ � 1, one finds that both tr −〈t〉 and ti become uncorre-
lated normal variables with the same variance σ2

T . In such an
approximation, finding the amplitude and phase distributions
of tr =

√
T cos θ and ti =

√
T sin θ reduces to a classical

problem studied by Rice [30] (see also [31]), yielding

P(rice)
γ�1 (T, θ) =

1

4πσ2
T

e−(T−2〈t〉
√
T cos θ+〈t〉2)/2σ2

T . (29)

The Rician approximation (29) resembles the exact asymp-
totic form (28) in its structure, but fails to properly take into
account the boundaries of the distribution support. For that
reason, it provides a reasonable approximation only at η ≈ 1,
when the density is mostly concentrated in the centre, showing
noticeable deviations otherwise, when the density gets con-
centrated near T ∼ 1 (T ∼ η−2) for small (large) η. Note
that our asymptotic result (28) is free from such shortcomings,
providing uniformly good approximation even at moderately
large γ. We refer to Ref. [18] for further discussion.

With the exact result (25) in hand, one can now obtain both
marginal and conditional pdf’s by performing the relevant in-
tegrations. In particular, the distribution of the transmission
intensity can be brought to the form (20) discussed above.
The distribution P(θ) of the transmission phase is obtained
by integrating (25) over T and reads as follows [18]

P(θ) =
sec2 θ

2π

∫ ∞
0

dp

p2
(1 + p)P0[x(p, θ)], (30)

where sec θ = (cos θ)−1 and x(p, θ) is defined by

x(p, θ) =
(1 + p)2 sec2 θ − 2p+ η2 − 1

2ηp
. (31)

With an explicit formula for P0 found in [23], expression (30)
provides the exact result at arbitrary η and γ.

Further analysis is possible in the limits of weak and strong
absorption, utilizing simpler asymptotic forms of P0 as be-
fore. One finds the following approximation at small γ:

Pγ�1(θ) ≈ P0(θ)
[
erfc(
√
µ) + 2

√
µ/πe−µ

]
, (32)

where µ = γ
4η (sec2 θ− 1 + η) and erfc(z) = 1− erf(z) is the

complementary error function. The bulk of distribution (32)
is essentially given by that at zero absorption, Eq. (10). The
correction factor becomes crucial near the edges, where the
exact distribution has an exponential cutoff ∼ e−(γ/4η) sec2 θ.

In the opposite case of strong absorption, γ � 1, we find

Pγ�1(θ) ≈ γ sec2 θ

4π

[
K0(ξ) +

γ sec2 θ

4ηξ
K1(ξ)

]
e−ν , (33)

Γ = 5

-
Π

2
-

Π

4
0 Π

4

Π

2

0.0

0.5

1.0

1.5

Γ = 1

0.0

0.2

0.4

0.6

0.8

Γ = 0.1

0.0

0.2

0.4

0.6

0.8

Η = 0.5

Η = 1

Η = 2

Θ

P
HΘL

FIG. 4. Distribution (30) of the transmission phase at the absorption
rate γ = 0.1, 1 and 5 (top, middle and bottom) and the background
coupling η = 0.5 (blue solid lines), 1 (pink dashed lines) and 2
(green dot-dashed lines). The black dotted lines (top inset) show the
zero absorption result (10) for comparison.
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with ξ = γ
4η sec θ

√
sec2 θ − 1 + η2, ν = γ

4η (sec2 θ− 1− η),
and Kn(z) being the modified Bessel function. In the limit
of very large γ, the phase distribution tends to a Gaussian
with zero mean and the variance σ2

θ provided above. Figure 4
shows the exact phase distribution for various η and γ.

5. Phase rigidity and mode complexness

Let us now discuss an application of the above results in the
context of the so-called phase rigidity [32]. It is a useful mea-
sure to quantify the influence of the environment resulting in
complex-valued field patterns [33]. In open chaotic billiards,
e.g., such a complexness reveals itself in long-range correla-
tions of the wave function intensity and current density [34]
that were studied experimentally [35]. Following [36, 37], it is
also convenient to characterise the above-mentioned complex-
ness through a related parameter, the ratio q2 of the squares
of the imaginary and real parts of the relevant complex field.
Such a q-factor was studied in microwave billiards [38], where
it can be linked with the presence of nonhomogeneous losses
[39]. For weakly open chaotic systems, the RMT approach to
the q-factor statistics was developed in [40].

In the present case, it is natural to consider the phase rigid-
ity of the transmission amplitude defined by

ρ =
t2r − t2i
t2r + t2i

=
1− q2

1 + q2
= cos 2θ. (34)

Therefore, fluctuations of ρ are directly induced by those of θ.
The corresponding distributions are related as follows

P(ρ) =
1√

1− ρ2
P(θ)|sec2 θ=2/(1+ρ) , (35)

for −1 ≤ ρ ≤ 1, and similarly for q2 = 1−ρ
1+ρ . Distribution

(34) can be fully described using the results presented above.
In the limit of zero absorption, γ = 0, Eq. (10) results in

P0(ρ) =
2

π
√

1− ρ2[η + η−1 + (η − η−1)ρ]
. (36)

This distribution develops a square root singularity ∼ 1√
1−|ρ|

at the edges and has the following symmetry under the invo-
lution η → η−1: P0(ρ)|η = P0(−ρ)|η−1 . It is interesting to
note that the functional form (10) already appeared earlier in
a different context [41], where it describes the distribution of
the phase of the complex wave function induced by an exter-
nal magnetic field. (Then η is playing the role of the strength
of that field.) As discussed there (see also [37]), such a form
arises from the assumption for the real and imaginary parts of
the wave function to be uncorrelated Gaussian variables with
different variances. For the transmission amplitude, however,

such an assumption is simply not applicable, as tr and ti are
deterministic functions of each other at zero absorption. Here,
distribution (10) appears by a different reason (which can ac-
tually be related to the so-called Poisson kernel).

At finite absorption, the correlations between tr and ti re-
main strong, decreasing gradually with the increase of γ. One
finds that the phase rigidity distribution (35) has an exponen-
tial cutoff ∼ exp[− γ

2η(1+ρ) ] as ρ → −1, whereas the square
root singularity at ρ → 1 remains unaffected. Of course, one
can perform more detailed analysis of (35) making use of the
exact form of the phase distribution provided by Eq. (30).

6. Conclusions

We have presented a systematic study of fluctuations in res-
onance scattering induced by coupling the transmitting reso-
nance to the chaotic background. Our approach combines the
strength function formalism to account for the interaction with
the background and the RMT modelling to mimic the chaotic
nature of the latter. It enables us to obtain a number of the
nonperturbative results for various statistics of the scattering
observables. This includes the joint and marginal pdf’s of the
reflection and transmission intensities and phases that are de-
rived in exact forms valid at arbitrary coupling to and losses
in the background. The intensities and phases are found to de-
velop strong and non-trivial statistical correlations, which re-
main essential even in the limit of strong absorption. In the lat-
ter case, we discuss the relevant approximations and their ac-
curacy. In particular, a simple asymptotic expression (28) for
the joint intensity-phase distribution has been obtained that,
in contrast to the Rician distribution, provides good uniform
approximation within the whole distribution support.

The obtained results can be used, e.g., to quantify the statis-
tics of total losses or to study the phase rigidity (or mode
complexness) in such a scattering situation. We note that it
has now become possible to measure the full S matrix, in-
cluding the phases, in various microwave cavity experiments
[27, 29, 42–47]. In particular, exact analytical predictions for
the statistics of diagonal [23, 24] and off-diagonal [48, 49] S
matrix elements were tested with high accuracy in such stud-
ies (see [50] for the most recent analysis). Therefore, we
expect the results presented here to find further applications
within a broader context of wave chaotic systems.
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Phys. Rev. Lett. 94, 036804 (2005).
[36] R. Pnini and B. Shapiro, Phys. Rev. E 54, R1032 (1996).
[37] O. I. Lobkis and R. L. Weaver, J. Acoust. Soc. Am. 108, 1480

(2000).
[38] J. Barthélemy, O. Legrand, and F. Mortessagne, Europhys.

Lett. 70, 162 (2005).
[39] D. V. Savin, O. Legrand, and F. Mortessagne, Europhys. Lett.

76, 774 (2006).
[40] C. Poli, D. V. Savin, O. Legrand, and F. Mortessagne, Phys.

Rev. E 80, 046203 (2009).
[41] E. Kanzieper and V. Freilikher, Phys. Rev. B 54, 8737 (1996).
[42] S. Hemmady, X. Zheng, J. Hart, T. M. Antonsen, E. Ott, and

S. M. Anlage, Phys. Rev. E 74, 036213 (2006).
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