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A robust superhydrophobic TiO2 
NPs coated cellulose sponge for 
highly efficient oil-water separation
Hui Zhang1, Yuqi Li1, Zexiang Lu1, Lihui Chen1, Liulian Huang1 & Mizi Fan  1,2

Oil-water separation has recently become a worldwide concern because of the increasing oil spill 
accidents and industrial oily wastewater generation. Herein, a facile method with the combined 
superhydrophobic coating and adhesive was used to fabricate superhydrophobic TiO2 NPs coated 
cellulose sponge. The developed materials exhibited excellent superhydrophobicity (WCA = 171°) 
and superoleophilicity (OCA = 0°), which can separate a variety of oil-water mixtures, including 
chloroform, toluene, kerosene and other contaminations. A high separation efficiency up to 98.5% for 
chloroform-water mixture was achieved when used for gravity-driven oil/water separation test. More 
importantly, the as-prepared samples exhibited excellent chemical stability and mechanical abrasion 
resistance even towards various corrosive oil/water mixtures (such as strong acid, alkali solution and 
salt-water environment) or a strong abrasion by aluminium oxide sandpaper of 600 mesh. In addition, 
the separation efficiency remained above 93% even after 40 scratch cycles, and the materials could be 
reused with a stable hydrophobicity, indicating a strong potential for industrial application.

In the past decades, marine oil spillage and chemical leakage have caused destructive impact on the water envi-
ronment1–3. Selective absorption4 and direct separation of oil/water mixture5–7 are two main processing methods 
to deal with water pollution issues. Among those efficient and effective methods8–10 reported, the direct sepa-
ration has been considered the optimal. For example, the oil/water mixture could be separated into two distin-
guished phases after a period of static storage because of the different densities of water and oil. However, the 
development of cost-effective, highly efficient and scalable separation materials, e.g. separation efficiency >98%, 
to achieve a rapid oil/water separation is desperately needed.

Constructing a super-antiwetting surface11–14 with superhydrophobicity and superoleophilicity has recently 
drawn great attentions. Oil droplets could be quickly absorbed and permeated through this kind of surface, while 
water droplets were repelled completely. Therefore, this super-antiwetting surface has potential applications in 
the field of oil/water separation. Jiang et al15. firstly fabricated a mesh film by a spray coating to separate the 
oil-water mixtures. Due to its special wettability, the mesh film exhibited excellent oil/water separation efficiency 
and selectivity. By spraying the mixture of palygorskite and polyurethane on copper mesh, Li et al16. also fabri-
cated an underwater superoleophobic mesh film, which has high oil/water separation efficiency (up to 99%). 
With these inspirations, a variety of techniques17–21 have been developed to produce oil/water separation materi-
als with super-antiwetting surfaces, including bio-based foam membranes22, filter paper23, metallic mesh-based 
materials24–26 and ceramic microfiltration membranes27, et al. Although these materials exhibited excellent 
oil-water selectivity and separation efficiency, there remained a number of problems, including the complicated 
preparing methods, expensive raw materials, poor mechanical stability and chemical stability, which limited their 
large-scale production.

Currently, cellulose-based oil/water separation materials have attracted wide attention due to its low cost, bio-
degradability and renewability. The super-antiwetting surface could be realized by constructing a highly textured 
structure on cellulose surface and introducing a low surface energy substrate28. Various fabrication methods have 
been reported to construct this kind of surfaces, including the plasma treatment method29, sol-gel method30, 31,  
chemical vapor deposition32, layer-by-layer technique33, Pickering emulsion polymerization34, spray-coating 
method30, and so forth. Among them, the spray-coating is considered commercially available for large-scale 

1College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. 2Nanocellulose 
and Biocomposites Research Centre, College of Engineering, Design and Physical Sciences, Brunel University, UB8 
3PH, Uxbridge, UK. Correspondence and requests for materials should be addressed to L.C. (email: fafuclh@163.
com) or M.F. (email: mizi.fan@brunel.ac.uk)

Received: 19 May 2017

Accepted: 1 August 2017

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0001-9580-4666
mailto:fafuclh@163.com
mailto:fafuclh@163.com
mailto:mizi.fan@brunel.ac.uk


www.nature.com/scientificreports/

2ScieNtific REPORTs | 7: 9428  | DOI:10.1038/s41598-017-09912-9

industrial application and independent of the substrate characteristics such as shape, surface structure and elec-
trical conductivity35. However, the coatings are traditionally sprayed directly onto the material surface, which 
will easily cause the falling-off of the micro/nanostructures in application. The as-prepared antiwetting surface 
is inherently fragile and could not be used towards a strong mechanical friction and abrasion, although some 
nanoparticles (NPs) of coating may be embedded into the rough fabric surface. Furthermore, most of reported 
fabric materials for oil/water separation could not be used towards a harsh environment (such as strong acid, 
alkali solution and salt-water environment).

This research fabricated a superhydrophobic TiO2 NPs coated cellulose sponge via a facile method with the 
combined superhydrophobic coating and adhesive. This “superhydrophobic coating + adhesive” method was, 
to our knowledge, used for gravity-driven oil-water separation for the first time. The performance properties 
of the as-prepared material, including wettability, chemical stability, mechanical abrasion resistance, separation 
efficiency for oil-water mixtures and reusability were investigated in detail. As expected, the developed materials 
have a super-antiwetting surface, which can selectively capture the oil successfully while repelling the water com-
pletely. When used for gravity-driven oil-water separation test, the materials showed a high separation efficiency. 
More interestingly, the developed material exhibited excellent chemical stability, mechanical abrasion resistance 
and reusability.

Results and Discussion
The superhydrophobic TiO2 NPS coated cellulose sponge fabricated by a facile “superhydrophobic coating + adhe-
sive” method was shown in Fig. 1. Two kinds of TiO2 nanoparticles with different sizes (~100 nm and ~25 nm) 
were mixed to construct the hierarchical rough structure on the cellulose sponge. Meanwhile, the adhesive 
(EVO-STIK) was sprayed to increase the binding force between the superhydrophobic TiO2 NPS and cellulose 
sponge.

The surface morphologies of the original and the TiO2 NPS coated cellulose sponge were analyzed by FE-SEM, 
and shown in Fig. 2. As can be seen from Fig. 2a, the as-prepared cellulose sponge has an open porous network 
with uniform fiber of 20 um in diameter (Fig. 2b), and the pore size of network is 20~100 um. As shown in Fig. 2c 
and d, the treated fibers are coated with TiO2 NPs. The low-magnification image in Fig. 2c showed that the TiO2 
NPs are randomly distributed and close-packed over all treated fabrics and aggregated around the spaces of 
interfibers of sponge. High-magnification FE-SEM image in Fig. 2e showed that some TiO2 NPs modified with 
OTMS aggregated into micro/nano-cluster, resulting in the hierarchical roughness of micro/nano structure on 
the coating and around the spaces of inter-fibers (Fig. 2c). This aggregation might be due to the grafting of long 
chain alkyl group on the surface of TiO2 NPs. It is evident that this roughness of micro/nano structure is essential 
for the superhydrophobicity of the resulted materials. TEM image in Fig. 2f clearly showed the constituent nano-
particles in the coating. It is apparent that two kinds of TiO2 nanoparticles of different sizes randomly distributed 
in the superhydrophobic coating, forming the special rough structure. The size of the TiO2 nanoparticles was 
about 25 nm and 100 nm, respectively.

The chemical compositions of the original and superhydrophobic TiO2 NPS coated cellulose sponge were 
determined by X-ray photoelectron spectroscopy (XPS). It can be seen that the spectrum of the original TiO2 
nanoparticles (I) showed peaks for oxygen, titanium and carbon (Fig. 3a). However, besides C1s peaks, the Si 2p 
and Si 2 s peaks appeared in the spectrum of OTMS modified TiO2 nanoparticles (II). Meanwhile, the relative 
intensity of C1s peaks has enhanced significantly compared with the spectrum of the original TiO2 nanoparticles. 
It also can be seen from Fig. 3b that the chemical environment of Ti has changed after OTMS modification, with 
the binding energy of Ti 2p varied from 458.85ev to 458.74ev, indicating that the TiO2 NPS has been successfully 
modified by OTMS. In addition, the OTMS modification process may be proposed as shown in Fig. 3c. Firstly, 
–Si–OH functional groups were produced by the hydrolysis of OTMS. Then, the chemical reaction occurred 
between the –Si–OH and the hydrophilic –OH functional groups in TiO2 NPS. The –OH functional groups in the 
TiO2 NPS were replaced by long chain alkyl group in OTMS, resulting in the hydrophobicity of TiO2 NPS.

The CA values were measured to identify the hydrophobicity and oleophilicity of superhydrophobic TiO2 
NPS coated cellulose sponge. It can be seen from Supplementary Fig. S1a that the water and oil droplets could 
penetrate into the uncoated cellulose sponge, due to a great number of hydroxyl groups in cellulose fibers. 

Figure 1. Schematic illustration of the superhydrophobic cellulose sponge production using a spraying method.
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After coated with the superhydrophobic TiO2 NPS, water droplets could stand on the cellulose sponge surface 
(Supplementary Fig. S1b) forming a highly spherical bead (WCA = 171°), while the oil droplets were absorbed 
quickly (OCA = 0°), indicating excellent superhydrophobicity and the superoleophilicity of the as-prepared cellu-
lose sponge. In order to better understand the dynamic wettability of the fabricated cellulose sponge, the adhesion 
and permeating process of water and oil droplets were recorded by a high-speed camera system (Supplementary 
Fig. S2). Figure S2a showed the pictures of water droplet (5 μL) touching and then leaving the sample surface. As 
can be seen from Fig. S2a, the water droplet was forced to contact the sample surface with an obvious deforma-
tion, and almost no deformation was seen when leaving the sample surface, indicating an extremely low adhesion 
for the water droplets. This low adhesion is very favorable for oil-water separation process. It also can be seen 
from Supplementary Movie S1 and S2, after being dropped onto the fabricated cellulose sponge, the water drop-
lets slipped quickly and could not stick on the sample surface. It was considered to be in the Cassie state, and this 
phenomenon was similar to self-cleaning lotus leaf, which could be explained by the rough micro/nano structure 
and low surface energy substrate on the fabricated surface of cellulose sponge. Simultaneously, the oil adsorption 
process was shown in Fig. S2b. When a 5 μL oil droplet (pump oil) contacted the cellulose sponge surface, it 
spread out quickly and penetrated into the sample within 1.2 s, indicating an excellent oil wetting of the surface.

The oil-water selectivity of the as-prepared cellulose sponge was also investigated in this study. Figures S3a and S3b  
showed the absorption processes of the as-prepared sample for light oil (soybean oil) on the water surface and 

Figure 2. SEM images of (a) the original cellulose sponge, (b) single fiber, (c) TiO2 NPs coated cellulose sponge, 
(d) TiO2 NPs coated single fiber, (e) the as-prepared TiO2 superhydrophobic coating, and (f) TEM image of 
TiO2 superhydrophobic coating.
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heavy oil (chloroform) underwater, respectively. After being immersed into oil/water mixture, the sample strongly 
repelled the water but absorbed the soybean oil and chloroform (dyed with yellow) selectively and instantane-
ously as soon as it touched, indicating that the sample has excellent oil selectivity and adsorption capacity.

The oil-water separation experiment was performed by taking chloroform-water mixture as an example. As 
can be observed from Fig. 4, driven by its own gravity, the oil dyed with blue (chloroform) penetrated through 
the pre-wetted superhydrophobic cellulose sponge quickly, while the water dyed with red was selectively blocked 
(Supplementary Movie S3).

The reasons for this phenomenon may be explained as follows: when the superhydrophobic cellulose sponge 
was pre-wetted by oils or organic solvent, the hierarchical rough structure of the surface was filled with oil, as 
a result, the sponge surface turned relatively flat. In this case, the water droplets tended to be in the Wenzel 
state with a high contact angle hysteresis after being dropped onto the wetted surface36. Meanwhile, the low 
resistance of the wetted surface also causes the water droplets to move away easily. After separation, no visible 
water was observed in the filtered oil, indicating a high oil-water separation efficiency. According to the Equation 

Figure 3. (a) The XPS spectra of (I) the original and (II) OTMS modified TiO2 NPs, (b) The XPS narrow scan 
for Ti 2p, (c) A schematic illustration of the OTMS modification mechanism in the silanization reaction.

Figure 4. Oil/water separation process of the developed cellulose sponge (oil dyed with blue for enhancing the 
visual effect): (a) before separation, (b) after separation.
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ϕ(%) = m1/m0 × 100 (where, m0 and m1 are the mass of the water before and after the separation process, respec-
tively), the calculated separation efficiency for chloroform-water mixture is over 98.5% and 92.0% for other oils 
and organic solvents respectively (Supplementary Fig. S4).

The variation of water contact angle with the PH values was shown in Fig. 5a. Within the experimental error, 
the water contact angles were all greater than 150° in all PH values ranging from 1 to 14, indicating that the 
as-prepared cellulose sponge had excellent superhydrophobicity. When the samples were immersed into the cor-
rosive solution (1 mol/L HCl and 1 mol/L NaOH), organic solvent (chloroform and toluene) and 1 mol/L NaCl 
for 24 h respectively, they were still showed stable hydrophobicity. As shown in Fig. 5b, most of the water con-
tact angles were higher than 150°, except that the water contact angle was 149° in 1 mol/L NaOH solution. All 
the above test results showed that the as-prepared superhydrophobic sponge has a robust chemical stability. It 
not only has a wide range of PH feasibility, but also exhibits excellent resistance to many corrosive liquids like 
strong acid, alkali, salt solution and organic solvent, which are significantly important for industrialization of the 
as-prepared sample.

Scratch test was considered to be an effective method to evaluate the robustness of the as-prepared 
super-antiwetting surface against the mechanical force37–39. The aluminium oxide sandpaper of 600 mesh was 
used as an abrasion surface during the scratch test. As shown in Fig. 6a, under a weight of 100 g, the developed 
sample was abraded by sandpaper for 40 cycles. In the sandpaper abrasion test, the TiO2 NPs coated cellulose 
sponge was slightly damaged, a few nanoparticles and tiny fibers were abraded out (Supplementary Movie S4 
and Fig. S5b). As shown in Fig. 6b, the water contact angle values decreased with the increase of the number 
of scratches cycles, but they were still higher than 150° after 40 scratch cycles, indicating excellent mechanical 
abrasion resistance of the as-prepared super-antiwetting surface. Fig. 6c displays the changes of separation effi-
ciencies as a function of scratch cycles during the abrasion test. The result showed that the separation efficiency 
of chloroform-water mixture still remained above 93% after 40 scratch cycles. The above test demonstrated that 
the as-prepared sample has excellent robustness. This robustness may be ascribed to the adhesive and coarse 
structure of cellulose sponge, which may make the nanoparticles fixed and embedded into the fibers firmly (see 
Supplementary Fig. S5 and Fig. S6). As a result, most of the TiO2 NPs left on the sample surface and the spaces of 
inter-fibers of sponge, although a few have fallen off in the process of sandpaper abrasion.

The recyclability of the as-prepared superhydrophobic cellulose sponge was also evaluated in this study. After 
being rinsed with ethanol and water thoroughly, the cleaned cellulose sponges were dried for the next use. Fig. S7 
showed the changes of water contact angle with the recycle numbers of the superhydrophobic cellulose sponge. 
It can be seen from Fig. S7 that, with the increase of the recycle numbers from 1 to 25, the CA values decreased 
gradually, which might be caused by the fall off of a small amount of TiO2 superhydrophobic coating. However, 
the CA values were still nearly 150°, indicating that the recycled samples remained the stable hydrophobicity and 
were feasible for the large-scale industrial applications.

In conclusion, a robust superhydrophobic TiO2 NPs coated cellulose sponge was fabricated via a facile 
“superhydrophobic coating + adhesive” method. This simple method has successfully overcome the loss off 
nanoparticles in their subsequent uses. The developed sample exhibited excellent super-antiwetting property 
(WCA = 171°and OCA = 0°) and was feasible for gravity-driven oil/water separation uses, such as chloroform, 
toluene and kerosene. A high separation efficiency up to 98.5% for chloroform-water mixture was achieved in 
the test and a good reusability could be seen. More interestingly, the sample exhibited excellent chemical stability 
and mechanical abrasion resistance even towards various corrosive oil/water mixtures or a strong abrasion. The 
developed approach is feasible for mass industrial production.

Materials and Methods
Materials. Titanium oxide nanoparticles (~100 nm in diameter) and TiO2 P25 were purchased from Aladdin 
Biochemical Technology Co., Ltd. (Shanghai, China). Octadecyltrimethoxysilane (OTMS) was obtained from 
Macklin Biochemical Co., Ltd. (Shanghai, China). Absorbent cotton was obtained from a local pharmacy and 
ball-milled before use. EVO-STIK was obtained from Bostik Co. (British, Europe). Kerosene and Soybean oil 
were supplied by Zhaoming Trading Co, Ltd (Fuzhou, China). Toluene, Chloroform, and Hexane were purchased 

Figure 5. Relationship between the water contact angle with (a) pH values and (b) corrosive medium liquids, 
salt solution and organic solvent.
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from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China, purity 99%). All chemicals were analytical grade 
reagents and were used without any further purification.

The preparation methods. Preparation of superhydrophobic coating. In brief, 1.58 ml of OTMS was 
placed into 201.6 ml of absolute ethanol, to which 8.4 g of P25 (TiO2 NPS, ~25 nm) was added and magnetically 
stirred for 2 h. Then, 8.4 g of titanium oxide nanoparticles (TiO2 NPS, ~100 nm) were added to the above mixture 
and stirring continued for 0.5 h. Finally, the above mixture was kept under ultrasonic irradiation with a power of 
150 w for 2.5 h until a uniform paint-like suspension was formed.

Preparation of cellulose sponge. Sodium hydroxide/urea solution system (7 wt%/12 wt%) was prepared and 
placed in a low temperature water tank for freezing until −12 °C was achieved. Thereafter, the absorbent cotton of 
1.46 g was weighed and added to the above solution system slowly with the mechanical stirring for 2 h. The result-
ing homogeneous solution was poured into the cylindrical polystyrene mould. After regeneration in deionized 
water, the samples were placed into the freeze-drying system (Telstar LyoBeta, Spain) for drying 6 h to produce 
the cellulose sponge.

Preparation of superhydrophobic cellulose sponge. Subsequently, by using a high-pressure spray gun (with 
0.2 Mpa N2), the as-prepared paint-like suspension was sprayed onto the sponge surface, which has been treated 
by the spray adhesive (EVO-STIK) previously. The spraying process was repeated 10~15 times. Finally, the supe-
rhydrophobic TiO2 NPS coated cellulose sponge (superhydrophobic cellulose sponge) was obtained and dried in 
air for at least 2 h before testing.

Characterization. The morphological structures of the fabricated cellulose sponge and TiO2 NPS coated 
cellulose sponge were assessed by Scanning Electron Microscopy (SEM, Philips Co., Ltd., Holland). All the sam-
ples were cut to 5 mm × 5 mm coupons and coated with a thin layer gold using sputtering for better conductivity 
before use. The chemical constituents of original and OTMS modified TiO2 were analyzed by X-ray photoelec-
tron spectroscopy (XPS, ESCALAB250 spectrometer). Contact angle measurement apparatus (DSA30, Kruss, 
Germany) was carried out to identify the hydrophobicity and oleophilicity of TiO2 NPS coated cellulose sponge. 
The measured water droplets and oil droplets were all 5 μL, and each sample was measured at least five different 
positions to obtain the water contact angle (WCA) and oil contact angle (OCA) values.

Oil-water selectivity. The oil-water selectivity of the superhydrophobic cellulose sponge was examined by 
using soybean oil (ρ < ρwater) and chloroform (ρ > ρwater) (as representative oil candidates), which were dyed yel-
low for observation, respectively. Subsequently, a piece of sample was immersed into the above oil/water mixture 
and then the oil-water selectivity was observed.

Figure 6. (a) Sandpaper abrasion test of the developed superhydrophobic cellulose sponge (one cycle of the 
test), (b) plot of water contact angles and the number of scratch cycles, (c) separation efficiency versus number 
of scratch cycles (chloroform-water mixture as a test).
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Oil-water separation. The performance of the as-prepared superhydrophobic cellulose sponge was eval-
uated by the oil-water separation efficiency. The sample disc with a radius of 30 mm and 3 mm thickness was 
pre-wetted by oil or organic solvent, and then fixed between the two glass tubes. The oil-water mixture was 
poured onto the superhydrophobic cellulose sponge and the oil-water separation process was driven by its own 
gravity. Testing oils or organic solvents including Chloroform, Hexane, Kerosene, Toluene and Soybean oil were 
used and dyed with blue. Meanwhile, the water was dyed with red for easy observation.

Chemical stability test. The chemical stability of TiO2 NPS coated cellulose sponge was examined accord-
ing to the works of Li and his collaborators40, 41, in which the values of water contact angle (WCA) was measured 
using the water droplets with pH ranging from 1 to 14. In addition, the as-prepared superhydrophobic cellulose 
sponge was also tested by immersing into the corrosive liquids such as HCl (1 mol/L), NaOH (1 mol/L), salt solu-
tion (1 mol/L NaCl) and organic solvent such as chloroform and toluene, for 24 h respectively. After being dried, 
the WCA values were measured again.

Robustness test. The aluminium oxide sandpaper of 600 mesh was chosen as an abrasion surface to test the 
robustness of the as-prepared superhydrophobic cellulose sponge. The sample weighted 100 g was faced down to 
the sandpaper and moved for 20 cm along the ruler. The above process was defined as 1 cycle of abrasion. After 
each cycle, water contact angle was measured to evaluate the wettability of the sample.

Recycling test. After the oil-water separation test finished, the oil contaminated superhydrophobic cellulose 
sponge could be reused by rinsing with ethanol and water thoroughly. The cleaned superhydrophobic cellulose 
sponge was dried for 2 h in an oven (60 °C), followed by CA values measurement to test the superhydrophobicity 
of the sample.
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