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Abstract—Motor imagery is widely used in the brain-computer 

interface (BCI) systems that can help people actively control 

devices to directly communicate with the external world, but its 

training and performance effect is usually poor for normal people. 

To improve operators’ BCI performances, here we proposed a 

novel paradigm, which combined the covert verb reading in the 

traditional motor imagery paradigm. In our proposed paradigm, 

participants were asked to covertly read the presented verbs 

during imagining right hand or foot movements referred by those 

verbs. EEG signals were recorded with both our proposed 

paradigm and the traditional paradigm. By the common spatial 

pattern (CSP) method, we respectively decomposed these signals 

into spatial patterns and extracted their features used in the 

following classification of support vector machine (SVM). 

Compared with the traditional paradigm, our proposed paradigm 

could generate clearer spatial patterns following a somatotopic 

distribution, which led to more distinguishable features and 

higher classification accuracies than those in the traditional 

paradigm. These results suggested that semantic processing of 

verbs can influence the brain activity of motor imagery and 

enhance the mu event-related desynchronisation (ERD). The 

combination of semantic processing with motor imagery is 

therefore a promising method for the improvement of operators’ 

BCI performances. 

 
Index Terms—BCI; covert verb reading; ERD; mu rhythm; 

motor imagery. 

 

I. INTRODUCTION 

OTOR imagery can modify neural activity in motor 

cortices where the potential changes can be recorded by 

electroencephalogram (EEG) [1]. The activated areas are 

correlated with event-related desynchronisation (ERD) of mu 

and beta rhythm [2-6]. Corresponding to the type of motor 

imagery, the ERD was observed in the specific sensorimotor 

areas. For example, the imagery of left or right hand movement 

elicits ERD over the contralateral area, while the ERD of foot 

movement imagery localizes on the central area [7]. The 

different spatial distributions of ERD during imageries of 
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different movement enable us classify EEG signals according 

to the imagined movements and generate corresponding 

commands [4, 8]. Therefore, the EEG signals based on motor 

imagery are widely used in the brain-computer interface (BCI) 

systems. By imagery of left hand, right hand or foot movement 

respectively, a three dimensional command can be generated to 

control the BCI system devices [9,10], such as video games 

[11], wheelchair or virtual car [12, 13]. 

Successful application of motor imagery based BCI depends 

on the high accuracy of EEG signal classification. In recent 

years, more and more data analysis methods have been 

proposed for EEG signal processing to improve the 

classification performances [14-16], but users still need 

time-consuming practices for training before successfully 

operating the BCI devices. Moreover, the complexity of 

algorithms also limits the generalization of BCI systems. Hence, 

how to improve operators’ performance, especially in the 

convenient and user-friendly BCI systems based on motor 

imagery, is still a hot issue. As we all know, the performance of 

a BCI system relies not only on the system models but also on 

users’ brain activity patterns. Previous studies showed that 

feedback training is an effective method for participants to 

modulate the brain activity [17-21]. However, the performance 

of feedback-based BCI systems largely depends on the initial 

models constructed to provide the feedback. These initial 

models are calibrated with the data recorded at the beginning of 

the training sessions. The calibration data may not contain 

sufficient discriminability since participants are unfamiliar with 

the systems during the initial sessions. Therefore, the 

inaccurate feedback may be provided to the participants and 

frustrate them [22] and even produce an inhibitory effect on 

their EEG controls. There have also been other paradigms 

proposed to improve participants’ BCI performance. For 

example, Li and Zhang [23] attributed the decreased BCI 

performance to incorrect responses to the cues. They proposed 

an active training paradigm, in which participants were 

required to reconfirm trial labels after the imagery. This 

paradigm overcame the imagery mistakes that did not match 

with the given cues, and achieved better performance than the 

traditional paradigm. Nevertheless, the active training 

paradigm needs pressing keys to reconfirm the labels and 

cannot work well for users with motor disability of hands, 

especially those with limb or general paralysis.  

Embodied cognition demonstrates that language 

comprehension is closely linked to motor perception. Using 

event-related fMRI, Hauk et al. [24] showed that passively 
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reading action words referring to hand, foot or mouth actions 

could activate relevant motor areas similar to performing those 

corresponding actions. Recent studies also found a specific 

somatotopic motor representation of different body parts within 

the premotor cortex when participants processed hand-, foot- 

and mouth-related verbs [25]. These results indicated an 

interaction between language and motor processing. 

Furthermore, there were some researches demonstrating that 

processing action words can significantly influence the motor 

responses [26-31]. It has been shown that motor-related word 

generation can facilitate finger-tapping, suggesting that the 

semantic-motor representation has an effect on motor 

production [30]. This effect was attributed to the co-activated 

motor cortex by processing of action words and motor actions 

[28]. Motor imagery is also suggested to activate the motor 

cortex [32]. Imagery of hand, foot or mouth movements can 

elicit brain activity in the corresponding motor cortex [33, 34]. 

Therefore, we hypothesized that processing of action words or 

verbs could influence the brain activity of motor imagery and 

would significantly improve the EEG signal classification. 

In this study, we proposed a novel paradigm, in which the 

cue stimuli involved not only an arrow labeling the action 

imagery but also a verb. Participants were asked to read the 

presented verb covertly during motor imagery of the movement 

referred by that verb. To compare our paradigm with the 

traditional paradigm, we mixed the two classes of trials with 

equal numbers in an experiment by labeling them. After 

preprocessing, the spatial features of recorded EEG signals 

were extracted for each paradigm by the common spatial 

patterns (CSP) method [35, 36]. These features were then 

respectively classified by the support vector machine (SVM) 

classifier [37, 38]. We expected that our proposed paradigm 

could achieve significantly higher classification accuracies than 

the traditional paradigm so as to greatly improve the BCI 

performance. 

  

II. METHODS  

A. Participants 

Eight healthy native Chinese speakers participated in this 

study. Their mean age is 22.6 years with standard deviation of 

2.01. All the participants were recruited from Tongji University 

and with normal or corrected-to-normal vision. Written 

informed consent was obtained from all the participants. This 

study was approved by the Ethics Committee of the Medicine 

and Life Science Faculty at Tongji University. The experiment 

was conducted according to the approved guidelines. 

 

B. Convert Verb Reading Paradigm 

In this covert verb reading paradigm, each cue stimulus was 

a verb presented above an arrow pointing to the right or beside 

an arrow pointing to the downward (Fig. 1). Eighteen 

commonest verbs were used here, including nine referring to 

hand movements: “抬 (raise), 推 (push), 挂 (hang), 捞 (refloat), 

拉 (pull), 挥 (wave), 抓 (grasp), 打 (hit), 摇 (shake)”; and nine 

referring to foot movements: “踩 (tramp), 跑 (run), 跳 (jump), 

蹬 (pedal), 踹 (stamp), 踢 (kick), 蹦 (leap), 踏 (tread), 走 

(walk)”. All the verbs were selected through the questionnaire 

about the familiarity of the movements referred by the verbs. 

 
Fig. 1 Examples of proposed cue stimuli for covert verb reading during motor 

imagery of right hand movements (A) or foot movements (B). 

 

There were two classes of trials in this paradigm. One class 

was for right hand motor imagery and the other was for foot 

motor imagery. Each trial began with a fixation cross presented 

in the center of the screen. This cross instructed participants to 

get ready for the experimental tasks. After 1 second, the 

fixation cross was replaced by a verb with an arrow, which 

appeared for 4 seconds. During this period, participants were 

instructed to covertly read the presented verb during motor 

imagery of the right hand or foot movement referred by the verb. 

Then, there was a blank screen for rest in a random duration 

between 1 second to 2 seconds. The timing of a trial in this 

paradigm was displayed in Fig. 2.  

 
Fig. 2 Timing of a trial of the covert verb reading paradigm. Each trial consisted 

of ready, task and rest periods. Participants started to execute the experiment 

tasks while the verb with the arrow was presented in the screen. 

 

C. Design and Procedure 

There were 3 homogeneous runs. Each run involved 36 

traditional and 36 covert verb reading trials. The trials for motor 

imagery of right hand and foot movements were equally 

distributed in each run. That is, there were equal traditional 

trials for motor imagery of right hand or foot movements, and 

equal new trials for covert reading of verbs referring to right 

hand or foot movements during imagining the corresponding 

movements. All the trials were presented in a pseudo random 

order.  
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Participants were seated in a comfortable chair in an 

acoustically and electrically shielded, dimly lit chamber. Their 

eyes were 80cm away from the screen. In the traditional trials 

(MI condition), participants were asked to imagine right hand 

or foot movements cued by the presented arrows. In the covert 

verb reading trials (VRMI condition), they were instructed to 

read the presented verb covertly during imagining the 

movement referred by that verb. No feedback was provided 

throughout both paradigms. Participants were also required to 

keep all of their body parts as still as possible while they were 

performing the experimental tasks. After each run, there was a 

break for two minutes. When each participant finished the 

experiment, we verbally inquired of them about the task 

difficulty of the covert verb reading paradigm. 

 

D. Data acquisition and preprocessing 

EEG data were recorded from 64 electrodes using a 10–20 

system Easycap (Brain Products). Eye blinks or movements 

were monitored by the electrodes on outer canthi and below 

each eye. There were another two electrodes used as reference 

by posited on the left and right mastoids. To ensure the effect of 

covert verb reading on motor imagery, electrode impedances 

below 50kΩ were accepted since our experiment referred the 

EEG results reported by Dalla Volta et al. (2014). The signals 

were sampled at 500Hz and filtered from 8 to 13Hz. This 

frequency band was with the best classification performance in 

our experiment and showed the largest difference between the 

covert verb reading paradigm and the traditional paradigm. 

After removing artefacts elicited by electrooculogram (EOG) 

and electromyogram (EMG), the continuous EEG signals were 

divided into epochs according to the labels. 

 

E. Data processing 

CSP is an effective method for feature extraction in BCI [35, 

36]. We employed it in this experiment to extract features from 

the EEG signals.  

Next, features extracted by CSP method were used to 

calculate a SVM classifier for parameter adjustment. 

 To appropriately estimate the classification accuracy, the 

data sets under the traditional and covert verb reading 

paradigms were divided into training and testing sets 

respectively. Each training set was used to calculate a SVM 

classifier, which is then used to classify the corresponding 

testing set. This procedure was repeated 15 times with different 

data parts into training and testing sets. 

 

III. RESULTS 

To evaluate the classification performance, we implemented 

a 5-fold cross-validation for each of the two paradigms. 

TABLEⅠshowed the classification accuracies (in%) for all the 

participants during MI and VRMI conditions and this result was 

also shown with the standard deviations in Fig. 3. Clearly, 

VRMI condition produced better classification accuracies for 

almost all the participants than MI condition. Since the 

classification accuracies for participant S3 and S5 were not 

increased by the covert verb reading paradigm, the data from 

the two participants was excluded from the following data 

analysis.  

 
Fig. 3 Classification accuracies of all the participants from the traditional (MI) 

and covert verb reading (VRMI) paradigms. 

 

Paired t test on the classification results showed that the 

classification accuracies were significantly increased in the 

VRMI condition (t=4.661, P=0.006). For all the participants, 

we extracted the most important spatial patterns by CSP 

method over the parietal cortex which performs motor 

processing (Fig. 4). During MI condition, the motor imagery of 

right hand did not elicited reasonable ERD on the contralateral 

hemisphere. For most of the participants, the spatial patterns for 

the motor imagery of right hand were similar to that for the 

motor imagery of foot. By contrast, during the VRMI condition, 

most of right hand motor imagery elicited an increased EEG 

variance over the right hemisphere since the ERD of EEG took 

place on the left hemisphere. The pattern for motor imagery of 

right hand was mainly focused at electrode C4, which overlaid 

the motor hand area. However, the focus for foot imagery was 

at electrodes slightly right to Cz.  

TABLE I  

CLASSIFICATION ACCURACIES DURING MI AND VRMI CONDITIONS (IN%) 

Participant S1 S2 S3 S4 S5 S6 S7 S8 
Mean 

Accuracy 

MI 57.96 66.85 60.19 66.67 96.30 69.44 70.56 61.11 68.63 

VRMI 69.44 78.15 55.00 72.04 96.11 76.39 77.50 62.50 73.39 
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Fig. 4 The two most significant spatial patterns extracted by CSP method for all 

the participants, with data filtered by 8-13Hz. 

 

To show the difference between the motor imagery of right 

hand and foot, grand-averaged power spectral densities (PSDs) 

were calculated for each condition (Fig. 5). For the covert verb 

reading paradigm, the energy from right hand motor imagery 

was higher than that from foot motor imagery at C4 and Cz. For 

the traditional motor imagery paradigm, there was no 

significant feature between the two classes of motor imagery 

tasks at C4, while signals from right hand motor imagery were 

higher than that from foot motor imagery on most of the band at 

Cz. 
 

 
Fig. 5 The grand-averaged spectra of the two different paradigms at C4 and Cz 

(blue: right hand, red: foot). 

IV. DISCUSSION 

The present work proposed a covert verb reading paradigm 

for motor imagery based BCI systems. Through the influence 

of verb processing on the brain activity of motor imagery, this 

new paradigm resulted in more easily discriminated features 

extracted from spatial patterns and significantly higher 

classification accuracies of EEG signals than the traditional 

paradigm. These results suggested that the covert verb reading 

paradigm could help users greatly improve their BCI 

performances. 

Mu-rhythm changes on the basis of motor imagery over the 

motor cortex [39] and was reported to be task sensitive. In our 

experiment, the involvement of covert verb reading contributed 

to the reduced amplitude of mu rhythms for right hand motor 

imagery over the left hemisphere. This suggested that covert 

verb reading influenced brain activity of motor imagery and led 

to the clearer mu ERD over the corresponding brain regions. 

Embodied theories suggest that language understanding 

involves sensory and motor experiences related to the semantic 

meaning of that language [40-43]. Especially, the processing of 

verbs such as ‘grasp’ recruits the experiences related to the 

actions represented by those verbs [24, 44-47]. In previous 

studies, using the source estimation of multi-channel EEG, the 

processing of concrete verbs was found to activate the specific 

motor areas in a somatotopic manner [25]. Further, reading of 

the sentences including verbs related to hand actions was 

reported to elicit a greater mu ERD over the motor hand areas 

[48]. The present result that the ERD became clearer when 

covert verb reading was involved in the traditional paradigm of 

motor imagery in our experiment is consistent with these 

findings. Our results suggested that the involvement of covert 

verb reading is a promising approach to the improvement of 

operators’ performance in the motor imagery based BCI 

systems. 

On the basis of mu ERD, we decomposed the raw EEG 

signals into spatial patterns using CSP method. These patterns 

could maximize the difference between the EEG recordings 

during right hand and foot motor imagery. In VRMI condition, 

the clearer mu ERD resulted in more distinguishable spatial 

patterns than in traditional MI condition. These characteristic 
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patterns defined the best directions that were most suitable for 

discrimination between the two classes of experimental tasks. 

Since the features used later for classification were calculated 

from the projections of EEG signals onto these best directions, 

the more distinguishable patterns resulted in the more easily 

classified features. Therefore, compared with the classification 

accuracies obtained from MI condition, the accuracies from 

VRMI condition were greatly improved. 

In our results, the spatial patterns for motor imagery of foot 

in the VRMI condition were slightly right to that in the MI 

condition. This may be resulted from the influence of covert 

verb reading. Previous work reported that the reading of action 

words referring to hand or foot actions differentially activated 

motor areas that either were directly adjacent to or overlapped 

with the areas activated by actual movement of hands or feet 

[24]. According to this result, when motor imagery is 

accompanied with covert verb reading, the spatial patterns may 

appear a little deviation.  

Although the average accuracy was greatly improved in the 

covert verb reading paradigm, there was one participant (S3) 

performing worse during this new paradigm than during the 

traditional paradigm, and another participant (S5) having 

almost same performances during the two paradigms. Our 

inquiry result showed that participants preferred to imagine 

different actions to verbs in their favor. The verbs used in the 

covert verb reading paradigm referred only some of their 

preferred actions. For some specific participants, the verbs 

which are not preferred by them may influence their 

performance of the motor imagery task. In our experiment, all 

other participants reported that there were no more than 3 verbs 

not referring to their preferred actions and they could quickly 

adapt to the covert reading and imagination tasks, whereas S3 

was in trouble with 7 verbs when he imagined the actions. He 

reported that, compared with the traditional task, he was often 

in a muddle during the covert reading and imagination tasks. 

Therefore, the worse performance of S3 during the new 

paradigm might be derived from too many verbs in the 

experiment referring the actions that he did not prefer to 

imagine. These verbs puzzled him and made the new task more 

difficult for him. As for S5, he is a pro-operator and has been 

specifically trained for a long time under the traditional 

paradigm of motor imagery. He reported that not all of the 

verbs presented were used in his usual motor imagery, and there 

was a little maladjustment during the initial trials of the covert 

verb reading paradigm. This may be the reason that he could 

not perform better under the new paradigm. The results from S3 

and S5 suggested that how to apply personalized verbs in the 

covert verb reading paradigm for more general usage may be 

worth investigating in our future studies. 

V. CONCLUSION 

In this work, we proposed a novel paradigm for motor 

imagery based BCI, in which the strategy of covert verb reading 

was utilized to enhance the traditional motor imagery. The 

significant improvement of BCI performance was achieved 

because of the enhanced mu ERD and more easily classified 

features from spatial patterns. The results from our experiment 

also provided evidence for the interaction between semantic 

processing and motor imagery, and suggested that semantic 

processing is helpful for the classification of motor imagery 

signals. This new paradigm can not only improve the traditional 

MI-BCI paradigm but also contribute to the training of novice 

users to adapt to a BCI system faster and more efficiently. 

Importantly, consistent with the traditional paradigm, this 

covert verb reading paradigm does not need any body actions. It 

is therefore appropriate for patients with motor or limb 

disability, and can help them more easily communicate with 

external environment. In the future studies, personalized verb 

selection for covert verb reading will be an interesting issue for 

the further investigation. Moreover, how to use the multi-class 

of imagined actions in this new paradigm and how to accurately 

translate the corresponding EEG signals to the multi-class of 

control signals for devices will also be worth studying. 
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