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Abstract 

In this thesis, a scheme of using multiple controllers which handle multiple 

network devices has been proposed, while using OpenFlow controllers in the 

proactive operations paradigm, and this in order to face the problem of using a 

single controller in the SDN model, including the lack of reliability and scalability 

on such a model. The main characteristic of this new approach are focused on the 

ability to design a dynamic and highly programmable network, moving the 

intelligence from the underlying systems to the network itself through a controller. 

To evaluate the proper effects of this new approach, different dynamic and 

programmable networks that could simulate real scenarios and measure their 

performance contrasting the obtained results with the pragmatic theory has been 

implemented. The SDN (Software-Defined Network) controller (Open Daylight), 

has been utilized, and thoroughly examined. 

Different sort of nets has been worked out through diverse Open Daylight 

functionalities, either implementing the intelligence of the controller (bundle), or 

going through it by an outside intelligent application (External Orchestrator), and 

eventually sending it through  Open Daylight (by making Open Daylight work as 

an interpreter/translator from its language to OpenFlow or another protocol 

language). 

Summing up, the scheme that has been proposed in this research which is the 

multiple-proactive mode approach and the single proactive controller has scored 

no packet loss at all, in which implies the strength of reliability of this scheme, 

while the multiple reactive mode approach has a range of 1-8% packet loss ratio 

and the single reactive mode approach has a range of 1-25% packet loss ratio. 

Also, in case of delay the improvement which was obtained from our approach 

scored an average reduction of 13% comparing with other tested schemes. Thus, 

these new and interesting technologies show an astonishing capability to add more 

efficiency in different types of Networks.   
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Chapter 1  

Introduction  

Today’s Internet applications need the underlying networks to be quicker, 

carry large amounts of traffic, and to deploy a number of distinct, dynamic 

applications and services. Embracing of the concepts of “inter-connected data 

centres” and “server virtualization” has amplified network request enormously. In 

addition to various proprietary network hardware, distributed protocols, and 

software components, legacy networks are flooded with switching devices that 

decide on the route taken by each packet discretely; moreover, the data paths and 

the decision-making processes for switching or routing are collocated on the same 

device. The decision-making capability or network intelligence is distributed 

across the various network hardware components. This makes the introduction of 

any new network device or service a tedious job because it requires 

reconfiguration of each of the numerous network nodes. Legacy networks have 

become difficult to automate Networks today depend on IP addresses to identify 

and locate servers and applications. This approach works fine for static networks 

where each physical device is recognizable by an IP address, but is extremely 

laborious for large virtual networks. Managing such complex environments using 

traditional networks is time-consuming and expensive, especially in the case of 

virtual machine (VM) migration and network configuration. Thus, the SDN 

architecture is very valuable in order to simplify the task of managing large 

networks [1]. 

1.1 Background: Networks infrastructure developments 

In the traditional network approach, the most important part of the network 

functionality is implemented in the devices like switches or routers, and in 
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dedicated hardware. This structure involves some difficulties in network 

functionality, making it to change slowly. Another difficulty is the user usability 

which is means the hardware networks functionality is under the control of the 

provider of the appliance making it quite static [2]. 

Furthermore, networking organizations are under increasing pressure to be as 

effective and agile as possible with the traditional approach. One source of this 

pressure arises from the widespread adoption of Cloud Computing. As part of this 

server virtualization, virtual machines (VMs) are dynamically moved between 

servers in a matter of seconds or minutes. However, due to its hardware 

implementation, “if the movement of a VM crosses a Layer 3 boundary, it can 

take days or weeks to reconfigure the network to support the VM in its new 

location, with its consequently error prone”[3]. Accordingly, the appearance of 

Cloud Computing is steadily transforming up to now traditional hardware-centric 

data network to a software-based network functionality. This means that functions 

such as encryption or decryption, and the processing of TCP flows, which were 

previously performed in hardware designed specifically for those functions, are 

now driven largely, by the need for agility increase, to software running on a 

general purpose server or on a VM [4]. 

In a nutshell, the traditional network architectures are unsuitable to meet the 

requirements of the today's users and enterprises. Correspondingly, a wide range 

of new opportunities bound to the networking virtualization are opened, such as 

Software Defined Networking (SDN) and Network Virtualization (NV). With this 

new approach, the network can develop in scale functionality and easily 

deployment, performing in traffic engineering with an end-to-end view and better 

utilization of the resources. Furthermore, the expense of maintenance will be 

reduced since most of the control will be devolved by software platforms. Finally, 

network functionality progress more rapidly when it is based on software 

development lifecycle and it enables applications to dynamically request services 
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from the network which add more effective security functionality and reduce 

complexity [5]. 

1.2 Motivations 

The most common debate regarding the SDN networks is doubting the ability 

to handle a real network with a central controller which leads to the single point of 

failure problem, and this will lead to trusting issues around the capability of the 

network to scale and to be reliable. Also there are some concerns regarding the 

delay and fault tolerance which mean to enable the system to continue operating 

properly in the event of failure of the OpenFlow (SDN) deployment. 

Motivated by the aforementioned concerns, a number of critical execution 

concerns brought up for the situation of a physically decentralized control plane, 

which is the way that controllers are put inside the network, as the network 

execution can be significantly influenced by the number and the physical area of 

controllers, and in addition by the calculations utilized for their coordination. With 

a specific end goal to address this, different arrangements have been proposed, 

from survey the position of controllers as a optimization issue [8] to building up 

associations of this issue to the fields of local calculations and distributed 

computing for developing efficient controller coordination protocols [6]. 

Another concern brought up for the situation of physically appropriated SDN 

controllers is identified with the consistency of the network state kept up at every 

controller when performing policy updates, because of simultaneous issues that 

may happen by the mistake, distributed nature of the logical controller. The 

arrangements of such an issue can be like those of transnational databases, with 

the controller being stretched out with a transnational  interface characterizing 

semantics for either committing a policy update or prematurely ending [7]. 
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1.3 Aim and Objectives 

In this work, the main aim is to improve the controller’s reliability and scalability, 

by using multiple controllers operating in the proactive flow mode approach. The 

research aim is addressed through the following objectives: 

1. Literature review of previous work related to the SDN architecture, and all 

the main component of its network with the relation of the OpenFlow 

protocol as an innovation of new era of networks. 

2. Design and building a model networks of considerable size, which 

concentrated on the ability to design a dynamic and exceptionally 

programmable network, moving the intelligence from the basic 

frameworks to the network itself through a controller. 

3. Examine the bottleneck status of the controller to address the limitation of 

the network, as the control plane is managed by a controller that increase 

incredibly the user usability of the network: if a client/customer need to 

build up his own particular network with his own conditions and topology, 

will have the capacity to do it through the controller. 

4. Implement a new scheme design which helps the controller to deal with 

the reliability issue.  

5. Verify the design using Mininet testbed which support OpenFlow 

switches. 

1.4 Contributions 
 

There are three contributions of this thesis which are summarized in the 

following: 

1. Implemented multiple controllers instead of the single, logical controller to 

manage the network devices by more than one controller connected to 

each network device in which at least each network device will be 

connected to 3 or more controllers in the same time, such that they can 
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share its management. Besides, the proactive flow mode has been used to 

manage the flow entries.  

2. Implemented a different controller topology which have the same 

configuration to our proposed scheme and a comprehensive performance 

evaluation has been made between these two approaches. 

3. Proposing the configuration of VTN application which is available for the 

OpenDaylight project with the proposed multiple controller and proactive 

flow mode paradigm. As its services and features are good examples of 

NVF. 

1.5 Thesis Structure 

The thesis is divided in 6 chapters which are as follows: 

 Introduction: This chapter talks about the research briefly, the objectives of 

the research, the place which the research is designed for, the addition to 

knowledge and the research outline.  

 Literature Review: This chapter illustrates some previous studies in the 

research field including innovations and tools for a new network model, starts 

the hypothetical piece where to clarify the advances and instruments utilized 

amid this work. 

 OpenDayLight Controller: In this chapter, a concentrated overview about the 

OpenDaylight controller had been made. The essential device to implement 

networks using the new paradigms, is the controller. OpenDaylight is one of 

the most popular controllers used in SDN networks meanwhile, and it was the 

controller that had been used in this work. An intensive investigation of its 

features had been made in this chapter, in order to be capable to manage 

networks with it later. 

 Multiple-Controller with different operation paradigm:  A new scheme of 

using multiple controllers which handle multiple network devices, while using 



 

6 

 

OpenFlow controllers in the proactive operations paradigm has been described 

in this chapter. 

 SDN Applications: The OpenDaylight controller, which was installed during 

this work, can be easily used using a virtualized network. Hence, in this 

chapter the VTN Coordinator application had been used, which was installed 

on a separate VM, to be able to bring NFV features into our network.  An 

implementation for the Multiple Controllers approach with the VTN features 

has been proposed in this chapter. 

 

 Conclusion and Future Work: This is the final chapter which illustrates the 

stages of the research in brief and presents some ideas that may improve the 

system in the future.  
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Chapter 2  

Literature Review 

Computer networks are a complex technology that enables end-devices to 

intercommunicate with each other. A typical network infrastructure contains 

network devices such as: routers, switches, servers, web-servers, firewalls, load 

balancers, interruption prevention systems and further devices. The requirements 

for processing and managing the great amount of data sent over the network, are 

efficiency, reliability, flexibility and robustness. That has made the manufacturing 

enterprises of networking devices to implement complex and resource demanding 

protocols that enable routers and switches to interconnect with each other by 

packet switching and producing a networking topology for routing purposes[8].  

2.1 Virtualization Concept 

The concept of virtualization provided individual, dedicated resources from 

a larger common pool of resources and provided users with the desired 

customization and control. The field of virtualization expanded in part because of 

the limitations of shared resources. Although, virtualization has been used since 

distributed computing started, the combination of virtualization and networking, 

the core of SDN, has been motivated and enabled by reductions in hardware cost, 

advances in software, and limitations in current network configurations [9]. 

Furthermore, the term virtualization generally describes the separation of a 

resource or request for a service from the original physical delivery of that 

service. For example, with virtual memory, computer software gains access to 

more memory than is actually installed, via the background swapping of data to 

disk storage. Similarly, virtualization techniques can be applied to other IT 
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infrastructure layers  as well as networks, storage, laptop or server hardware, 

operating systems and applications[1]. 

2.1.1 Types of virtualization 

There are four different ways to virtualize a server. Each of these approaches 

uses a different configuration of the three virtualization components: applications, 

Operating Systems, and hypervisors. 

 Full virtualization: The hypervisor is responsible for fully simulating the 

underlying vendor hardware, when full virtualization has been utilized. This 

allows unchanged copies of Operating Systems (e.g., Windows, Linux, etc.) to 

perform on the virtualized server inside their own virtual machines. 

 Hardware-assisted full virtualization: CPU manufacturers added instructions to 

their products that support virtualization, as virtualization has become both more 

popular and more critical to the effective operation of a data centre. Accordingly, 

the hypervisor can leverage their features to permit guest Operating Systems to 

work in complete isolation, when these virtualization-enabled CPUs are utilized to 

power a server. One feature of these CPUs is the introduction of the “ring” 

concept, which refers to levels of security privileges that are permitted in the code 

that is currently executing. Applications work at a ring 3 level, rings 1 and 2 are 

used to perform device drivers, and ring 0 is used to Execute the hypervisor. 

AMD and Intel have also produced a ring 1 that allows the hypervisor to run 

computations directly instead of going through the Operating System. This results 

in an increase in the efficiency of the processing [10]. 

 Para-virtualization: In a virtual server that is using para-virtualization, the guest 

Operating Systems have each been amended in order to notify them that they are 

working in a virtual environment. Para-virtualization allows the relocating 

implementation of critical tasks from the virtual domain to the host domain. As a 

result of this, guest Operating Systems will spend less time performing operations 
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that are more difficult in a virtual environment compared to a non-virtualized 

environment. 

  Operating System virtualization: A hypervisor is not in used, when 

Operating System virtualization has been used on a server. In its place, the 

virtualization ability is built into the host Operating System. All the functions 

of a fully virtualized hypervisor is performed by the host Operating System. 

The major limitation of this approach is that all the virtual machines must run 

the same Operating System. Each virtual machine remains independent from 

all the others, but it is not possible to mix and match Operating Systems 

among them [9]. 

2.1.2 Virtual infrastructure 

A layer of abstraction between computing, storage and networking hardware, 

and the applications running on it, is offered using balance of virtualization 

technologies, as demonstrated in Figure 2.1. The user experiences are mostly 

unchanged, when the deployment of virtual infrastructure has been accomplished. 

However, virtual infrastructure offers administrators the advantage of managing 

shared resources across the enterprise, allowing IT managers to be more 

responsive to dynamic organizational needs and to better leverage infrastructure 

investments[1].

 

Figure 2.1  The conventional Operating System infrastructure Vs the Virtual 

infrastructure [1]. 
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Table 2.1 illustrates the main variations occur after visualization: 

Before Virtualization After Virtualization 

Single Operating System 

image for each machine. 

Hardware-independence of operating 

system and applications. 

Software and hardware strongly 

combined. 

Virtual machines can be provisioned to 

any system. 

Running multiple applications on same 

machine often produces conflict. 
Can manage Operating System and 

application as a single unit by 

compressing them into virtual 

machines. 

Underutilized resources. 

Inflexible and costly infrastructure. 

Table 2.1 Virtualization process effects before and after [1]. 

2.1.3 Relationship of Network Virtualization to SDN 

The abstraction of the physical network in terms of a logical network is 

identified as network virtualization, clearly does not need SDN. In the same way, 

SDN is the separation of a logically centralized control plane from the 

fundamental data plane, does not imply network virtualization. Interestingly, 

however, a cooperation between network virtualization and SDN has risen, which 

has started to stimulate a few new research areas. SDN and network virtualization 

relate in three fundamental ways [11]: 

 SDN as a supporting technology for network virtualization. Cloud providers 

want a way to permit multiple customers (or “tenants”) to share the same 

network infrastructure, from this demand, network virtualization has gained its 

importance among cloud computing environment. Nicira’s Network 
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Virtualization Platform (NVP) proposes this abstraction without demanding 

any support from the underlying networking hardware. In order to provide 

each tenant with the abstraction of a single switch connecting all of its virtual 

machines, a solution has been implemented by using overlay networking. 

Until now, in contrast to previous work on overlay networks, each overlay 

node is in fact an extension of the physical network a software switch (like 

Open vSwitch [12]) that encapsulates traffic destined to virtual machines 

running on other servers. Therefore, to control how packets are encapsulated, 

and updates these rules when virtual machines move to new locations, a 

logically centralized controller has installed the rules in these virtual switches. 

 Network virtualization for assessing and testing SDNs. It becomes possible 

to test and assess SDN control applications in a virtual environment before the 

application is deployed on an operational network, using the ability to separate 

an SDN control application from the underlying data plane. Mininet [13], [14] 

uses process-based virtualization to run multiple virtual OpenFlow switches, 

end hosts, and SDN controllers each as a single process on the same physical 

(or virtual) machine. To emulate a network with hundreds of hosts and 

switches on a single machine, Mininet permits the use of process-based 

virtualization. In such an environment, a researcher or network operator can 

improve control logic and easily test it on a full-scale emulation of the 

production data plane; once the control plane has been evaluated, tested, and 

debugged, it can then be deployed on the real production network. 

 Virtualizing (“slicing”) an SDN. In traditional networks, each virtual 

component needs to run own instance of control-plane software, which makes 

virtualizing a router or switch very difficult. In contrast, virtualizing a “dumb” 

SDN switch is considerably simpler. The FlowVisor [15] system allows a 

campus to support a testbed for networking research on top of the same 

physical equipment that carries the production traffic. The main idea is that 

each slice has a share of network resources and is managed by a different SDN 

controller,  and this implemented by dividing traffic flow space into “slices” (a 
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concept introduced in earlier work on PlanetLab [16]). FlowVisor runs as a 

hypervisor, speaking OpenFlow to each of the SDN controllers and to the 

underlying switches. To permit different third-party service providers (e.g., 

smart grid operators) to deploy services on the network without having to 

install their own infrastructure, a recent work has offered slicing control of 

home networks [17]. More recent work proposes ways to present each “slice” 

of a software-defined network with its own logical topology and address space 

[18]. 

2.2 Software-Defined Networking  

The SDN architecture and its components has been described in this section. 

Moreover, for a better understanding of the data and control planes, it will be 

further explained separately. Also, a description of how communication between 

each layer works, and an explanation for northbound and southbound interfaces 

will be clarified in this chapter. Finally, an overview of the existing SDN 

controllers and will be provided with an introduction to the ODL controller. 

2.2.1 SDN Architecture and Components 

Software-Defined Networking is a developing paradigm that empowers 

network innovation in view of four basic standards: (i) network control and 

forwarding planes are clearly separated,, (ii) instead of destination-based, the 

forwarding decisions are flow-based, (iii) the network forwarding logic is 

abstracted from hardware to a programmable software layer, and (iv) an element, 

called a controller, is presented to coordinate network-wide forwarding decisions. 

[19] 

The SDN architecture figure 2.2 is established on a principle of decoupling of the 

control plane or the network plane from the forwarding hardware, and a logical 
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centralization of a control program or a controller that makes forwarding decisions 

and installs instructions on switches or routers. [20] 

These instructions make the forwarding hardware to switch packets between ports. 

According to this architecture, the SDN can logically be represented as a three-

layered architecture: 

 Infrastructure layer: This layer is frequently mentioned to as a data plane. It 

contains forwarding hardware, for example, switches and routers, including 

forwarding components, and Application Programming Interfaces (API).  

 Control layer: The other name is a control plane. Network intelligence in a 

form of logically centralized and software-based SDN controller installed on 

any UNIX based Operating System (OS) function on any hardware. The 

control layer manages forwarding hardware and installs forwarding 

instructions through APIs.  

 Application layer: Applications and services take control over control and 

infrastructure layer through Representational state transfer (REST) APIs. The 

SDN concept allows developers to easily develop applications that execute 

networking function responsibilities. Applications are usually deployed to 

separate computers or clouds.[20], [21] 
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Figure 2.2 SDN Architecture [22]. 

The APIs in the SDN architecture is frequently called northbound and southbound 

interfaces. Those are used for the communication between hardware, controllers 

and applications. The connection between networking devices and controllers is 

known as the southbound interface, whereas the northbound interface is the 

connection between applications and the controllers [5]. 

2.2.2 SDN Switches 

Figure 2.3 shows the immigration from the traditional switch to the SDN switch, 

in the traditional networking paradigm the network infrastructure is considered the 

most essential part of the network. Each network device encapsulates all the 

functionality that would be required for the operation of the network. For 

example, a router require to provide the proper hardware like a Ternary Content 

Addressable Memory (TCAM) for quickly forwarding packets, as well as 

complicated software for executing distributed routing protocols like BGP. The 

three-layered SDN architecture presented above in section 2.2.1 changes this, by 

separating the control from the forwarding operations, which makes the 

management of network devices much simpler. As previously mentioned, all 
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forwarding devices contain the hardware that is responsible for storing the 

forwarding tables (e.g., Application-specific integrated circuits - ASICs - with a 

TCAM), but are removed of their logic. The controller commands to the switches 

how packets should be forwarded by installing new forwarding rules via an 

abstract interface. Each time a packet arrives to a switch its forwarding table is 

consulted and the packet is forwarded in view of that consultation from the 

controller. [22] 

 

Figure 2.3 Traditional Switch versus SDN Switch. 

In contrast, while moving all control operations to a logically centralized 

controller has the advantage of easier network management, it can also increase 

scalability issues if physical implementation of the controller is also centralized. 

Therefore, it might be beneficial to add some of the logic in the switches. For 

example in the case of DevoFlow [23], which is an amendment of the OpenFlow 

model, the packet flows are distinguished into two categories: small (“mice”) 

flows controlled directly by the switches and large (“elephant”) flows requiring 

the involvement of the controller. Likewise, in the DIFANE [24] controller middle 

switches are used for storing the necessary instructions and the controller is 

relegated to the simple task of dividing the instructions over the switches. 
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2.2.3 SDN Controllers 

As aforementioned, one of the fundamental ideas of the SDN philosophy is the 

presence of a network operating system placed between the network infrastructure 

and the application layer. This network operating system is in charge for 

coordinating and managing the resources of the whole network and for revealing 

an abstract unified view of all components to the applications executed on top of 

it. This idea is equivalent to the one followed in a typical computer system, where 

the operating system lies between the hardware and the user space and is 

responsible for managing the hardware resources and providing common services 

for user programs. 

In the same way, network administrators and developers are now presented with a 

homogeneous environment easier to program and configure much like a typical 

computer program developer would. The SDN model applicable to a wider range 

of applications and heterogeneous network technologies compared to the 

traditional networking paradigm, and this can be accomplished by using logically 

centralized control and the generalized network abstraction. For example, consider 

a heterogeneous environment composed of a fixed and a wireless network consist 

of a large number of related network devices (routers, switches, wireless access 

points, middle-boxes etc.). In the traditional networking paradigm, to make each 

network device work properly, there is a significant need of individual low level 

configuration by the network administrator. In addition, since each device aims a 

different networking technology, it would have its own specific management and 

configuration requirements, meaning that further effort would be required by the 

administrator to make the whole network operate as planned. On the other hand, 

the administrator would not have to worry about low level fine points, using the 

logically centralized control of SDN. Instead, the network management would be 

performed by defining a proper high level policy, leaving the network operating 
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system responsible for communicating with and configuring the operation of 

network devices. 

The controller can work in two different flow setup mode: 1) Proactive mode, and 

2) reactive mode. As aforementioned in section 2.2.2 the routers use TCAM for 

quickly forwarding packets, but the problem with limited TCAM and proactive 

flow management is a particular concern in carrier networks. They for the most 

part utilize the Border Gateway Protocol (BGP), which has extensively high state 

necessities [25]. Accordingly, with regard to different flow management 

approaches, analyses of the feasibility and practicability of SDN in that context 

and state-heavy protocols are relevant, at that point viable solutions are needed. 

The authors of [26] use a reactive approach to SDN and BGP. In a large network, 

it is often important to be able to detect high-volume traffic in near real-time. 

Existing work on the detection and identification of such high volume traffic 

(called heavy hitters) [27]. Entries for flows with low packet frequency are not 

carried in the flow table when space is not usable. Those flow entries are saved in 

the controller and packets belonging to low-frequency flows are transmitted from 

the switch to the controller, which takes in the complete forwarding knowledge of 

all flows. The proposed SDN software router is presented in [28]. Other 

approaches attempt to cut the flow table size. For example, source routing 

techniques can be leveraged to significantly decrease the number of flow table 

entries, as shown by Soliman et al. [29]. In their source routing method, the 

ingress router encodes the path in the form of interface numbers in the packet 

header. The routers on the path forward the packet according to the interface 

number of the path in the header. Since packets of source-routed flows contain the 

path in their headers, the switches on the path do not require a flow table entry for 

them. However, their method have need of some minor changes to the OpenFlow 

protocol to support the source routing. Source routing methods for SDN are also 

discussed in the IRTF [30]. 
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The forwarding state for BGP is also a concern in traditional networks without the 

challenging limitations of forwarding tables. Various approaches to solve this 

problem exist today. The authors of [31] attempt to develop the scaling of IP 

routers using tunnelling and virtual prefixes for global routing. Virtual prefixes 

are selected in such a way that prefixes are accumulated efficiently. Their solution 

requires a mapping system to employ the virtual prefixes. Ballani et al. [32] have 

a similar solution, where they remove parts of the global routing table with virtual 

prefixes. They illustrate that this technique can reduce the load on BGP routers. 

The idea of virtual prefixes is currently standardized in the IETF [33]. Distributed 

hash tables can also be used to effectively reduce the size of BGP tables, as shown 

in [34]. 

Other techniques are based on the idea of efficient compression of the forwarding 

information state, as shown in [35]. The authors use compression algorithms for 

IP prefix trees in such a way that lookups and updates of the FIB can be done in a 

timely manner. However, match fields in OpenFlow may contain wildcards and, 

therefore, have more freedom with regard to aggregation than prefixes in IP 

routing tables. Appropriate techniques must be developed and tested to reduce the 

state in OpenFlow switches. 

Having discussed the general concepts behind the SDN controller, the following 

subsections take a closer look at specific design decisions and implementation 

choices made at this main component that can prove to be serious for the overall 

performance and scalability of the network. 

2.2.4 Centralization of control in SDN 

There have been different proposals for physically centralized controllers, 

like for instance NOX [36] and Maestro [37]. In order to simplify the controller 

implementation, a physically centralized control has been designed. With all the 

applications seeing the same network state (which comes from the same 
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controller), all switches are controlled by the same physical unit, meaning that the 

network is not subject to consistency related issues. Despite its advantages, the 

controller acts as a single point of failure for the entire network, which makes this 

approach suffers from the same weakness that all centralized systems do. An 

approach to beat this was introduced by associating multiple controllers to a 

switch, permitting a backup controller to assume control in case of a failure. In 

this case, all controllers require to have a consistent view of the network, if not 

applications might fail to work properly. Moreover, since all network devices 

require to be managed by the same unit, the centralized approach can raise 

scalability concerns. 

One approach that more generalizes the idea of using multiple controllers over the 

network is to maintain a logically centralized but physically decentralized control 

plane. In this case, all controllers communicate and maintain a common network 

view, while each controller is responsible for managing only one part of the 

network. 

Thus, applications view the controller as a single unit, while actually control 

operations are performed by a distributed system. The advantage of this approach, 

apart from not having a single point of failure anymore, is that only a part of the 

network requires to be managed by each individual controller component, which 

has affect in increasing the performance and scalability. Some distinguished 

controllers that belong to this category are Onix [38] and HyperFlow [39]. One 

possible downside of decentralized control is, once more related to the 

consistency of the network state among controller components. It is possible that 

applications served by different controllers might have a diverse view of the 

network, which might make them work improperly, since the state of the network 

is distributed. 

A mix solution that tries to embrace both scalability and consistency is to use two 

layers of controllers like the Kandoo [40] controller does. The bottom layer is 
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composed by a group of controllers which do not have knowledge of the entire 

network state. These controllers only run control operations which need knowing 

the state of a single switch (local information only). On the other hand, the top 

layer is a logically centralized controller responsible for performing network-wide 

operations that need knowledge of the entire network state. The idea is that local 

operations can be performed faster this way and do not experience any additional 

load to the high-level central controller, effectively increasing the scalability of 

the network. 

 

 

2.2.5 SDN Challenges 

There are some concerns about the SDN controllers which can be raised about 

their performance and applicability over large networking environments. One of 

the most common concerns raised by SDN doubters is the ability of SDN 

networks to scale and be quick to respond in cases of high network load. This 

concern comes essentially from the fact that in the new paradigm control moves 

out of network devices and goes in a single unit responsible for managing the 

entire network traffic. Motivated by this concern, performance studies of SDN 

controller implementations [41] have revealed that even physically centralized 

controllers can perform really well, having very low response times. For example, 

it has been presented that even basic single-threaded controllers similar to NOX 

can handle an average workload of up to 200 thousand new flows per second with 

a maximum latency of 600ms for networks consist of up to 256 switches. Newer 

multi-threaded controller implementations have been shown to perform 

expressively better. For example, NOXMT [42], with an average response time of 

2ms in a commodity eight-core machine of 2GHz CPUs, can handle 1.6 million 

new flows per second in a 256-switch network. In order to increase the 
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performance even further, newer controller promises to design large industrial 

servers. For example, the McNettle [43] controller using a single controller of 46 

cores with a throughput of over 14 million flows per second, and latency under 

10ms, has claimed to be able to serve networks of up to 5000 switches.  

Also, the way that controllers are placed within the network, as the network 

performance can be significantly affected by the number and the physical location 

of controllers, is consider to be another important performance concern has been 

raised in the case of a physically decentralized control plane, as well as by the 

algorithms used for their organization. In order to address this, various solutions 

have been proposed, from viewing the placement of controllers as an optimization 

problem [44] to establishing connections of this problem to the fields of local 

algorithms and distributed computing for developing efficient controller 

coordination protocols [6]. 

A final concern that is related to the consistency of the network state maintained 

at each controller when performing policy updates, due to concurrency issues that 

might occur by the error prone, distributed nature of the logical controller, is 

raised in the case of physically distributed SDN controller. The solutions of such a 

problem can be similar to those of transactional databases, with the controller 

being extended with a transactional interface defining semantics for either 

completely committing a policy update or aborting [45]. 

2.2.6 SDN in the Industry 

The advantages that SDN offers compared to traditional networking have also 

made the industry focus on SDN either for using it as a means to simplify 

management and improve services in their own private networks or for developing 

and providing commercial SDN solutions. 
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Perhaps Google, is  one of the most characteristic examples for the adoption of 

SDN in production networks, which entered in the world of SDN with its B4 

network [46] developed for connecting its data centres worldwide. As explained 

by Google engineers, according to the very fast growth of Google’s back-end 

network, that’s was the reason of moving to the SDN paradigm. While 

computational power and storage become cheaper as scale increases, the same 

cannot be said for the network. The company was able to choose the networking 

hardware according to the features it required, by applying SDN principles, while 

it managed to develop innovative software solutions. Moreover, while at the same 

time using the centralized network controlled to a reduction of operational 

expenses, it made the network more efficient and fault tolerant providing a more 

flexible and innovative environment. More recently, Google revealed Andromeda 

[47], a software defined network underlying its cloud, which is aimed at enabling 

Google’s services to scale better, cheaper and faster. Also, Facebook and Amazon 

are planning on building their next generation network infrastructure based on the 

SDN principles, in order to develop itself in the field of networking and cloud 

services. 

Networking companies have also started showing interest in developing 

commercial SDN solutions. There is a trend for creating complete SDN 

ecosystems targeting different types of customers, rather to be this interest only 

limited in developing specific products like OpenFlow switches and network 

operating systems. While telecommunication companies like Huawei are 

designing solutions for the next generation of telecom networks, with a specific 

interest in LTE and LTE-Advanced networks, another companies like Cisco, HP 

and Alcatel have entered the SDN market, presenting their own complete 

solutions intended for enterprises and cloud service providers. In 2012, VMware 

acquired an SDN startup called Nicira in order to integrate its Network 

Virtualization Platform (NVP) to NSX, VMware’s own network virtualization and 

security platform for software-defined data centres. With many major companies 
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like Broadcom, Oracle, NTT, Juniper and Big Switch Networks recognizing the 

benefits of SDN and proposing their own solutions, the list of providing SDN 

solutions constantly being grown.  

2.2.7 SDN Programming Interfaces 

As above-mentioned, the communication of the controller with the other 

layers is accomplished via a southbound API for the controller-switch interactions 

and through a northbound API for the controller-application interactions. In this 

section, a brief explanation about the essential concepts and concerns related to 

SDN programming had been made by separately examining each point of 

communication. 

 

 

2.2.7.1 Northbound API 

As of now talked about, one of the essential thoughts pushed in the SDN 

paradigm is the presence of a network operating system, lying between the 

network foundation and the high level services and applications, likewise to how a 

computer operating system lies between the hardware and the user space. 

Assuming such a centralized coordination unit and based on the simple operating 

system principles, a clearly defined interface should also be present in the SDN 

architecture for the interaction of the controller with applications. This interface 

should permit their communication with other applications, manage the system 

resources and permit the applications to have the right to use the underlying 

hardware without having any knowledge of low level network information. 

In contrast to the southbound communication, there is currently no accepted 

standard for the interaction of the controller with applications, whereas the 
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interactions between the switches and the controller are well-defined through a 

standardized open interface (i.e. OpenFlow) in the case of the southbound 

communication [48]. Therefore, to perform controller-application communication, 

each controller model needs to provide its own methods. Moreover, it is difficult 

to implement applications with different and many times conflicting objectives 

that are based in more high-level concepts, and this because the interfaces current 

controllers implement provide very low-level abstractions (i.e. flow 

manipulation).  

2.2.7.2 Southbound communication 

The southbound communication is very important for the handling of the 

behaviour of SDN switches by the controller. It is the way that SDN going to 

“program” the network. The most recognizable example of a standardized 

southbound API is OpenFlow [49]. Most projects related to SDN assume that the 

communication of the controller with the switches is OpenFlow-based, and 

therefore it is important to make a detailed demonstration of the OpenFlow 

approach. Yet, it should be made clear that OpenFlow is just one (rather popular) 

out of many probable implementations of controller-switch communications. 

Other alternatives like for example DevoFlow [23] also exist, trying to solve 

performance issues that OpenFlow faces. In this project, OpenFlow protocol I 

used as the communication protocol in which make our switches and controllers 

communicate which each other, in the next section a description of the main 

features of OpenFlow protocol will be clarified. 

2.3 Openflow overview 

SDN principle of separating the control and forwarding planes, makes the 

OpenFlow protocol provide standardized way of managing traffic in switches and 

of swapping information between the switches and the controller. From Figure 

2.4, it can be illustrated that the OpenFlow switch is composed of two logical 
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components. In order to forward packets, the first component comprises one or 

more flow tables which is responsible for preserving the information needed by 

the switch. A simple API permitting the communication of the switch with the 

controller, consider to be the second component is an OpenFlow client. 

 

Figure 2.4 Design of an OpenFlow switch and communication with the controller. 

2.3.1 OpenFlow Protocol 

As aforesaid, flow tables comprise of flow entries, each of which defines a set 

of instructions decisive how the packets belonging to that particular flow will be 

managed by the switch, that’s means how they will be processed and forwarded. 

Flow table has three fields for each entry as follows:  

i) A packet header which defining the flow. 

ii)  An Action responsible how the packet should be handled.  
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iii) Statistics, which save route of information same the number of packets and 

bytes of each flow and the time since a packet of the flow was last 

forwarded [50]. 

Inside an OpenFlow switch or router, a way through a grouping of flow tables 

characterizes how packets should be managed. When a new packet arrives, the 

lookup procedure starts in the first table and ends either with a match in one of the 

tables of the pipeline or with a miss, which is when no instruction is found related 

to that packet. A flow rule can be defined by combining different matching fields, 

as explained in Figure. 2.5. The packet will be discarded, if there is no default 

rule. On the other hand, the common event is to install a default rule which tells 

the switch to send the packet to the controller (or to the normal non-OpenFlow 

pipeline of the switch). The priority of the rules follows the natural sequence 

number of the tables and the row order in a flow table. Probable actions include: 

1) the packet forwarding to outgoing port(s); 2) encapsulate the packet and 

forward it to the controller; 3) drop the packet; 4) send the packet to the normal 

processing pipeline; and 5) send it to the next flow table or to special tables, such 

as group tables or metering tables presented in the latest OpenFlow protocol [2]. 

 

Figure 2.5   OpenFlow-enabled SDN devices[2] 
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As the OpenFlow protocol defined, the substitution of information between the 

switch and the controller occurs by sending messages over a secure channel in a 

standardized way. As explained in the basic controller principles, the controller 

can handle flows set up in the flow table of the switch, by adding, updating or 

deleting a flow entry, either proactively or reactively. Consequently, there is no 

longer a need for network operators to interact directly with the switch, since the 

controller is able to communicate with the switch using the OpenFlow protocol.  

Implying the matching process to the header of the packet does not need to be 

precise, as OpenFlow packet header field can be a wildcard. Different network 

devices like switches, routers and middle-boxes have a similar forwarding 

behaviour, and this was the idea behind producing this approach, also they only 

varying regarding which header fields they use for matching, and the actions they 

execute. In order to indicate how thoughtfully binds together a wide range of sorts 

of network devices, OpenFlow permits the utilization of any subset of these 

header fields for applying rules on traffic flows. For example a firewall would be 

emulated through a packet header field containing extra data like the source and 

destination IP addresses and port numbers, and also the transport protocol utilized, 

while a switch could be emulated by a flow entry utilizing a packet header 

performing  a match just on the IP address [50]. 

2.3.2 OpenFlow Protocol Messages 

The message exchange that occur between an OpenFlow controller and an 

OpenFlow switch is identify as OpenFlow protocol. Commonly, in order to give a 

secure OpenFlow channel, the protocol is being executed on top of SSL or 

Transport Layer Security (TLS).  

So as to perform add, update, and delete actions to the flow entries in the flow 

tables, the OpenFlow protocol has enabled the controller to do the job. OpenFlow 

protocol supports three types of messages, as shown in Table 2.2.  
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 Controller-to-Switch: These messages at times, require a reaction from the 

switch, and they are started by the controller. This class of messages 

empowers the controller to deal with the logical condition of the switch, 

including its configuration and details of flow and group-table entries. Also, 

the Packet-out message is included in this class. When a switch sends a 

packet to the controller and the controller chooses not to drop the packet but 

rather to direct it to a switch output port, then this message has to be utilized. 

 

 Asynchronous: These kinds of messages are sent without consultation from 

the controller. This class includes different status messages to the controller. 

Additionally included is, the Packet-in message, which is used to send a 

packet to the controller when there is no flow table match, and it is being 

utilized by the switch.  

 Symmetric: These messages are sent without demand from either the 

controller or the switch. They are simple however helpful. When the 

connection is first established Hello messages are commonly sent back and 

forth between controller and switch. Both the controller and the switch are 

using Echo request and reply messages, to measure the latency or bandwidth 

of a controller-switch connection or just verify that the device is operating. To 

stage features to be built into future versions of OpenFlow, the Experimenter 

message is being applied.  

Description Message 

Controller-to-Switch 

Features 

Ask for the abilities of a switch. Switch reacts with features 

answer that indicates its abilities. 

Configuration 

  Set and inquiry configuration parameters. Switch reacts with 

parameter settings. 
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2.3.3 The OpenFlow Flow Table. 

There are three types of tables in logical switch architecture, had been 

defined by OpenFlow protocol specification. A Flow Table identifies the 

Modify-State 

 Add, remove, and amend flow/group entries and set switch 

port properties. 

Read-State 

Gather information from switch, such as existing 

configuration, statistics, and capabilities. 

Packet-out Direct packet to a specified port on the switch. 

Barrier 

 Barrier request/reply messages are utilized by the controller to 

certify message dependencies have been met or to receive 

notices for accomplished operations. 

Role-Request 

 Set or query role of the OpenFlow channel. Beneficial when 

switch attaches to multiple controllers. 

Asynchronous-

Configuration 

Set filter on asynchronous messages or query that filter. 

Convenient when switch attaches to multiple controllers. 

Asynchronous 

Packet-in Transfer packet to controller. 

Flow-Removed 

Notify the controller about the removal of a flow entry from a 

flow table. 

Port-Status  Notify the controller of a modification on a port. 

Error Notify controller of error or problem situation. 

Symmetric 

Hello 

 Swapped between the switch and controller upon connection 

startup. 

Echo 

 Echo request/reply messages can be sent from either the 

controller or the switch, and they must return an echo reply. 

Experimenter  For further functions. 
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functions that are to be performed on the packets and matches received packets to 

a specific flow. As described successively, there may be multiple flow tables that 

work in a pipeline manner. A flow table may direct a flow to a Group Table, in 

the case of generating a variety of actions that affect one or more flows. 

Furthermore, a variety of performance-related actions can be generated on a flow 

as a Meter Table. It is useful to define what the term flow means, before 

continuing. Inquiringly, this term is not defined in the OpenFlow specification, 

nor is there a try to define it in virtually all of the literature on OpenFlow. 

Generally, a flow is a sequence of packets crossing a network that share a set of 

header field values. For instance, a flow might consist of all packets with similar 

source and destination IP addresses, or all packets with identical VLAN identifier. 

More particular definition are subsequently provided [51]. 

2.3.3.1 Flow-Table Components 

The basic structure block of physical switch architecture is the flow table. 

Each packet that arrives a switch passes through one or more flow tables. There 

are six components, in which each flow table contains entries is consisting of:  

1. Match Fields: Used to choose packets that have the same values in the fields.  

2. Priority: Relative priority of table entries.  

3. Counters: Updated for matching packets. The OpenFlow specification defines 

a selection of timers. For instance, the number of received bytes and packets 

per port, per flow table, and per flow-table entry; number of dropped packets; 

and duration of a flow.  

4. Instructions: Actions to be taken if a match take place.  

5. Timeouts: The maximum amount of idle time before a flow is expired by the 

switch.  

6. Cookie: Uncertain data value chosen by the controller. Thus, this value may 

be used by the controller to filter flow statistics, flow modification, and flow 

deletion; but not used when processing packets.  
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A flow table may include a table-miss flow entry, in every field is a match 

regardless of value, and has the lowest priority (priority 0). The Match Fields 

component of a table entry consists of the following required fields:  

 Ingress Port: Presents the port on the switch where the packet arrived. Also, it 

may be a switch-defined virtual port or a physical port.  

 Ethernet Source and Destination Addresses: Each entry can be a wildcard 

value (match any value), or an exact address, a bit-masked value for which 

only some of the address bits are checked.  

 IPv4 or IPv6 Protocol Number: A protocol number value, so that indicate the 

next header in the packet.  

 IPv4 or IPv6 Source Address and Destination Address: Each entry can be a 

wildcard value, or an exact address, a bit-masked value, a subnet mask value.  

 TCP Source and Destination Ports: Wildcard value or Exact match.  

 User Datagram Protocol (UDP) Source and Destination Ports: Wildcard 

value or Exact match.  

Any OpenFlow-compliant switch must be supported by the previous match fields. 

The following fields may be optionally supported:  

 Physical Port: Used in order to designate underlying physical port when 

packet is received on a logical port.  

 Metadata: During the processing of a packet, this field carrying additional 

information that can be passed from one table to another. Its use is discussed 

afterwards.  

 Ethernet Type: Ethernet Type field.  
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 VLAN ID and VLAN User Priority: Fields in the IEEE 802.1Q Virtual LAN 

header.  

 IPv4 or IPv6 DS and ECN: Explicit Congestion Notification fields and 

Differentiated Services.  

 Stream Control Transmission Protocol (SCTP) Source and Destination Ports: 

Wildcard value or Exact match.  

 Internet Control Message Protocol (ICMP) Type and Code Fields: Wildcard 

value or Exact match.  

 Address Resolution Protocol (ARP) Opcode: Exact match in Ether-net Type 

field.  

 Source and Target IPv4 Addresses in Address Resolution Protocol (ARP) 

Payload: Can be a wildcard value, or an exact address, a bit-masked value, a 

subnet mask value.  

 IPv6 Flow Label: Wildcard value or Exact match.  

 ICMPv6 Type and Code fields: Wildcard value or Exact match.  

 IPv6 Neighbour Discovery Target Address: In an IPv6 Neighbour Discovery 

message.  

 IPv6 Neighbour Discovery Source and Target Addresses: Link-layer address 

options in an IPv6 Neighbour Discovery message.  

 Multiprotocol Label Switching (MPLS) Label Value, Traffic Class, and 

Bottom of Stack (BoS): Fields in the top label of an MPLS label stack[50].  

Thus, OpenFlow can be used with network traffic including a variety of protocols 

and network services. Note that at the MAC/link layer, only Ethernet is supported. 
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Accordingly, OpenFlow as currently defined cannot control Layer 2 traffic over 

wireless networks. 

 Now an accurate definition of the term flow can be offered. A flow is a sequence 

of packets that matches a specific entry in a flow table, and this from the point of 

view of an individual switch. Considering, the definition is packet-oriented, in the 

sense that it is a function of the values of header fields of the packets that 

constitute the flow, and not a function of the path they follow through the 

network. A flow that is bound to a specific path is defined as a combination of 

flow entries on multiple switches.  

2.3.3.2 The Instructions Component 

 If the packet matches, then the entry of a table entry consists of a set of 

instructions that will be executed. Before describing the types of instructions, it’s 

useful to explain the terms “Action” and “Action Set”. Packet forwarding, packet 

modification, and group table processing operations, can be described as an 

actions [51]. The OpenFlow specification contains the following actions: 

 Output: Forward packet to identified port.  

 Set-Queue: Sets the queue ID for a packet. When the output action occurred, 

after the packet is forwarded to a port, the queue id determines which queue 

dedicated to this port, in order to schedule and forward the packet. Forwarding 

behaviour is dictated by the configuration of the queue and is utilized to offer 

basic QoS support.  

 Group: Process packet via specified group.  

 Push-Tag/Pop-Tag: Push or pop a tag field for a VLAN or MPLS packet.  
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 Set-Field: By using field type, the various Set-Field actions can be identified; 

they modify the values of respective header fields in the packet.  

 Change-TTL: In order to modify the values of the IPv4 Time To Live (TTL), 

IPv6 Hop Limit, or MPLS TTL in the packet, the various Change-TTL actions 

is being used.  

An Action Set is a list of actions associated with a packet that are accumulated 

while the packet is processed by each table and executed when the packet exits the 

processing pipeline. Instructions are of four types:  

 Direct packet through pipeline: The Goto-Table instruction directs the packet to a 

table farther along in the pipeline. The Meter instruction directs the packet to a 

specified meter.  

 Perform action on packet: Actions may be performed on the packet when it is 

matched to a table entry.  

 Update action set: Merge specified actions into the current action set for this 

packet on this flow, or clear all the actions in the action set.  

 Update metadata: A metadata value can be associated with a packet. It is used to 

carry information from one table to the next [50]. 

2.4 Summary 

OpenFlow and its associated standards organization, the ONF is recognized 

with starting the discussion of SDN and providing the first proposal of modern 

SDN control, which comprises from: a centralized point of control, a northbound 

API that discoveries topology, path computation, and provisioning services to an 

application above the controller, in addition to a standardized   southbound 

protocol for instantiating forwarding state on a multivendor infrastructure. 
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Unfortunately, the OpenFlow architecture does not offer a standardized 

northbound API, nor does it offer a standardized east-west state distribution 

protocol that permits both application portability and controller vendor 

interoperability. Standardization may progress through the newly reproduced 

Architecture Working Group, or even the new open source organization 

OpenDaylight Project. OpenFlow provides a great deal of flow/traffic control for 

those platforms that can exploit the full set of OpenFlow primitives. The ONF has 

produced a working group to address the description/discovery of the capabilities 

of vendor hardware implementations as they apply to the use of the primitive set 

to implement well-known network application models.  
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Chapter 3                  

OpenDayLight Controller 

As above-mentioned, OpenDaylight is the controller that has been used in 

this thesis, Thus, in order to further use of the OpenDayLight Controller, this 

chapter introduce an accurate and theoretical overview of this controller, to 

program the control of different network scenarios [52].  

3.1  Introduction to the controller 

 The OpenDaylight project is a collaborative open source project, that the 

Linux Foundation has been hosted. According to its partners, the purpose of the 

project is to speed up the implementation of Software Defined Networking and 

create a solid foundation for Network Functions Virtualization. 

3.1.1 OpenDaylight primary phases 

The Linux Foundation announced the founding of the OpenDaylight 

Project, on April 8, 2013. This was after some months of the news of an industry 

merger forming around SDN, had been broken by the Software Defined 

Networking site "SDN Central”. Therefore, in order to raise new innovation, 

accelerate adoption, and create a more open and transparent approach to Software 

Defined Networking and Network Functions Virtualization, this platform has been 

exposed, by a community-led and industry-supported open source framework. 

From that point on, three major versions have been released: Hydrogen (February 

2014), Helium (September 2014), Lithium (June 2015), Beryllium (February 

2016), and the current Boron-SR2 (October 2016). During this period, an 

increasing number of companies have given support to the project: since the 



 

37 

 

foundational and very powerful ones such as Cisco, Intel, Microsoft... to other 

newer names like Huawei or Lenovo, until reach the remarkable number of almost 

50 influential brands [53]. 

3.1.2 Technology Overview 

OpenDaylight is a modular platform written in Java with most modules 

(bundles) reusing some common services and interfaces (Service Abstraction 

Layer, SAL). 

Each module is a service offered by the controller, and it is developed under 

multi-vendor sub-project following the idea of SDN, each user can deploy these 

already implemented bundles and also can develop his own one, in order to 

control his particular network. This gives many possibilities to personalize the 

network to the user. 

To leverage functionality in other platform bundles, the idea of building 

applications on the OpenDaylight platform with this bundle structure has been 

created. Each of which export important services through Java interfaces. The 

major portion of these services are built on a provider-consumer model over an 

adaptation layer called (Service Abstraction Layer, SAL). Therefore, SAL is 

consider to be a layer which used to establish the connection between everybody, 

not only between bundles, but also between inside the controller (bundles) and 

network devices (nodes, switches...), and even with external applications. 

3.1.3 Model View Controller (MVC) Platform 

OpenDaylight is a Model-View-Control platform. In order to separate 

internal representations of information from the ways that information is 

submitted to or taken from the user, the application has been split in three 

interconnected parts, and these parts are:  
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 Model YANG: It’s a model for data, Remote Procedure Call (RPC) and 

notifications 

 View  REST API: View self-generated and reachable through Northbound 

(ADSAL, or RESTconf. It is our user interface to see the information (e.g. a 

flow). 

 Control  Java Implemented Code: To handle data changes, notifications and 

RPC call backs. 

3.1.4 Fundamental Software Tools 

OpenDayLight uses the following software tools/paradigms. It is essential 

to the main usage of them, in order to use them in our design and configurations. 

These tools are listed as follows: 

 Java interfaces: These interfaces are used for event listening, specifications 

and forming patterns. This is the main way in which specific bundles 

implement call-back functions for events and also to indicate awareness of 

specific state. 

 Maven: It is a software tool used for the management and construction of Java 

projects. OpenDayLight uses Maven for easier build automation. Maven uses 

pom.xml (Project Object Model for this bundle) to script the dependencies 

between bundles and also to describe what bundles to load on start. 

 OSGi: This framework in the backend of OpenDayLight allows dynamically 

loading bundles and packaged JAR files, and binding bundles together for 

information exchange. 

 Karaf: is a small OSGi based runtime which provides a lightweight container 

for loading different modules. It will be available after the first release, so for 

Helium and Lithium releases [52]. 
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3.2 Advantages in front of other controllers 

Different kind of controllers can be used in order to deploy networks in the 

Software Defined Networking paradigm: like POX, RYU, Floodlight or ONOS. 

Among the available ones, there are some reasons to choose OpenDaylight: 

  Open Source: As an open source platform, OpenDaylight platform provide a 

universal access via a free license to the platform, and universal redistribution 

of that platform including subsequent improvements to it by anyone. 

According to this: 

 The Linux Foundation manages it. 

 Anyone interested is free to collaborate. 

 Free access to the platform. 

 Its services and behaviour can be modified by changing its prebuilt modules of 

implementing new ones. 

 

 Industry support: The industrial support of this platform encompasses the 

major part of the most powerful companies in the IT field. Some very 

important firms like Cisco, Intel, Microsoft... among many others, are part of 

the OpenDaylight members. 

 

 Novel functionalities: As a new platform, OpenDaylight implements some 

innovative functionalities respect other controllers. For instance the possibility 

of contacting with external applications that are not strictly connected with the 

network. This functionality is very useful and it is widely explained during the 

thesis, reaching the point that Chapters 5 and 6 are focalized on this topic. 
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 Running in a personal Java Virtual Machine (JVM): The main advantage 

is the portability that it offers. Running the platform in its own JVM 

proportionate the possibility to use and develop OpenDaylight on any 

hardware that support Java. 

 

 OpenDaylight is a cloud friendly environment: it will include an Open 

Stack Neutron, OpenStack’s virtual networking plug-in, and the Open vSwitch 

Database project will allow management from within OpenStack [10]. 

 

Figure 3.1 OpenDaylight Founding Members [54]. 

3.3 The Structure 

The following picture is offered by the OpenDaylight official site and shows 

the structure of the platform and the tools or devices, which it can contact with.  
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Figure 3.2: OpenDaylight modular structure platform[55]. 

To know the full platform overview, it is important to understand the above 

diagram (figure 3.2): 

 OpenFlow Enabled Devices: This is the network infrastructure managed via 

OpenDaylight. In this case OpenFlow plug-in. 

 Protocol Plugins: OpenDaylight supports these protocols for managing your 

network devices. One of the plugins is OpenFlow. 

 Service Abstraction Layer (SAL): This layer does all the plumbing between the 

applications and the underlying plugins. 

 Controller Platform: These are the applications that come pre-bundled with 

OpenDaylight to manage the network. It is possible to write our own bundle. 

 Bundles: They are each of the green small boxes inside the Controller Platform. 
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 Network Applications: These are applications with leverage REST NBI of 

OpenDaylight to build intelligence. 

3.3.1 Two different architectures (AD-SAL and MD-SAL) 

The Service Abstraction Layer, or SAL, is nothing more than a pipe that 

connects the Protocol Plugins with the bundles and the REST APIs as shown in 

Figure 3.2. Thus, the SAL API are the contract that the Protocol Plugins and the 

NFS (Application on the top of SAL layer: bundles, external applications...) sign, 

in order to be able to communicate to each other. It is also used to talk between 

bundles themselves or bundles and REST API. 

There are two different approaches to the SAL that can be taken into account 

when programming applications for OpenDaylight: the API-Driven SAL (AD-

SAL) and the Model-Driven SAL (MD-SAL). 

3.3.1.1 AD-SAL 

AD-SAL approach is more useful in case of requesting to control or program a 

network where it is allowed to access directly to the controller. It is also important 

to mention that the controller should not need to interchange much information 

between an external programs through the Northbound Interface, to OpenFlow 

through the Southbound Interface, since this approach does not provide a common 

REST API. 

In these favourable cases, the advantages of this architecture fall on the usability 

of the service adaptation which is well developed and with a wide range of Java 

classes and methods to process a packet-in. 

Figure 3.3 shows the AD-SAL approach, which has the following main 

characteristics: 

 It can be used with both southbound and northbound plugins. 

 It is stateless. 

 It is limited to flow-capable devices and services only. 
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 The applications are programmed into the controller as OSGi bundles. 

 The flow programming is reactive, by receiving events from the network.  

NB-Plugin 1 NB-Plugin 2

SB-Plugin 1 SB-Plugin 2

JAVA Plugin NB API JAVA Service NB API

JAVA Plugin SB API

Request Routing Adaptation

Rest API Rest API
Controller

……

……

AD-SAL

Figure 3.3 ADSAL architectures.[56] 

3.3.1.2 MD-SAL 

MD-SAL approach is preferable if the programmer cannot access physically 

to program the controller or he need to access the controller by an external 

application that needs to often contact OpenFlow. The reason is that MD-SAL 

provides a common infrastructure where data and functions defined in models can 

be accessed by means of a common REST API. So, installing an OpenFlow flow 

can be directly through the Northbound is quite simpler. 

Figure 3.4 illustrated MD-SAL approach, which has the following features: 

 It has a common REST API for all the modules. 

 It can store data for models in permanent or volatile APIs. 
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 It is model agnostic. It supports any device or service models. 

 The applications are programmed outside the controller. 

 The flow programming is proactive, without the possibility to receive events from 

the network. 

 

 

Figure 3.4 MD-SAL architectures.[56] 

3.3.2  Packet path in OpenDaylight managing Open- Flow devices 

After the knowledge of the details about OpenDaylight architecture, let's see 

which elements are involved in the installation of a flow in the both possible SAL 

approaches: 

 

3.3.2.1 In AD-SAL Architecture: 
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In AD-SAL the packet path begins from an OpenFlow enabled network device 

and goes to the controller. Then, the controller processes it and it comes back to 

the network device. 

 

Figure 3.5 Packet path in ADSAL managing OpenFlow devices [31]. 
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Figure 3.5 described how a packet flows between an OpenFlow enabled network 

device to the controller and which interfaces are being used. It is also explained 

which the return back path of the packet is: 

1. A packet arriving at a network device, like an OpenFlow switch, is sent to the 

appropriate protocol plugin of OpenDaylight which is managing the switch. 

2. IPluginOutDataPacketService: The plugin (in our case OpenFlow Plug-in) will 

parse the packet, generating an event for Service Abstraction Layer (SAL) for 

further processing. 

3. IListenDataPacket: SAL will dispatch the packet to all the modules listening for 

DataPacket. If the first packet is just an ARP Request, SAL will send it to the 

ARP Handler. However, if it is another kind of packet, it will be processed by its 

appropriate bundle.  

This configuration and also all these bundles can be changed. Furthermore, other 

bundles can be created following the user necessities.  

4. IDataPacketService: The Application/Module that has been commented in (3) is 

in charge of the packet processing in accordance with its own needs, so it is the 

user who can actually program it. Finally, a PACKET OUT is sent using 

IdataPacketService interface. For example, after processing the packet, the 

PACKET OUT can be a rule of where the OpenFlow switch has to send the 

packet and also install in this device a new flow. 

5. IPluginInDataPacketService: SAL receives the DataPacket and dispatches it to 

the modules listening for plug-in DataPackets. In this case OpenFlow plugin. 

6. OpenFlow plugin then sends the packet back to the device from where the 

packet was originated. Following the previous example, once the switch receives 

the DataPacket, it will know where to send the packet previously sent to the 
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controller. In addition, it will install a new flow in order to flow directly the 

upcoming packets with the same characteristics. 

3.5.2 In MD-SAL Architecture: 

AD-SAL is not the only way to insert flows. Figure 3.6 shows a scenario 

where an external application adds a flow by means of RESTconf API of the 

controller. Whereas in the previous example were about dealing with a reactive 

approach, in this case it is a proactive scenario. 

 

Figure 3.6 Packet path in MD-SAL managing OpenFlow devices [21]. 

1. When the controller is started with its corresponding plugins, the followings 

registrations are performed: 
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 The Flow Programmer Service registers with the MD SAL for Flow 

configuration data notifications. 

 The registration between the OF Plugin and the MDSAL between a 

Remote Procedure Call (RPC) to establish a connection between both 

platforms. Note that the RPC is defined in the OF Plugin model, and that 

the API is generated during build time. 

2. A client application that would be running anywhere establish a REST 

connection with the REST API of the OpenDaylight controller sending a flow add 

request. As has already been said, in AD-SAL there is a dedicated Northbound 

REST API on top of the Flow Programming Service. The MD-SAL provides a 

common infrastructure where data and functions defined in models can be 

accessed by means of a common REST API. The client application provides all 

parameters for the flow in the REST call. 

3. Data from the 'Add Flow' request is de-serialized, and a new flow is created in 

the Flow Service configuration data tree. (Note that in this example, the 

configuration and operational data trees are separated; this may be different for 

other services). Note also that the REST call returns success to the caller as soon 

as the flow data is written to the configuration data tree. 

4. The MD-SAL generates a 'data changed' notification to the Flow Programmer 

Service since this one is registered to receive notifications for data changes in the 

Flow Service data tree. 

5. The Flow Programmer Service reads the newly added flow, and performs a 

flow add operation. 

6. At this point the Flow Programmer Service tells the OF Plugin to add the flow 

in the appropriate switch. The Flow Programmer Service uses the OF Plugin 

generated API to create the RPC input parameter, called DTO, for the 'AddFlow' 
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RPC of the OF Plugin. So basically, the Flow Programmer Service communicates 

the OF Plugin API that it wants to add a new flow. 

7. The Flow Programmer Service gets the service instance (actually, a proxy), and 

invokes the 'AddFlow' RPC on the service. The MD-SAL will the request to the 

appropriate OF Plugin (which implements the requested RPC). 

8. The 'AddFlow' RPC request is routed to the OF Plugin, and the implementation 

method of the 'AddFlow' RPC is invoked. 

9. The 'AddFlow' RPC implementation uses the OF Plugin API to read values 

from the DTO of the RPC input parameter. (Note that the implementation will use 

the getter methods of the DTO generated from the yang model of the RPC to read 

the values from the received DTO.) 

10. The 'AddFlow' RPC is further processed (pretty much the same as in the AD-

SAL) and at some point, the corresponding flow-mod is being sent to.  

3.4 OpenDaylight Communication Technique. 

Finally, in order to have a full idea of the all necessary functions that 

OpenDayLight process, it’s useful to understand the following steps which 

describes the communication procedure between the OpenDayLight controller and 

the OpenFlow switch. 

1. A switch is discovered by the controller whenever a transport channel between 

them is first established.  

2. The controller then discovers the physical ports of a connected switch along with 

its other features using Feature Request and Feature reply [57] OpenFlow 

messages.  

3. Next, the controller determines the switch-to-switch adjacency (neighbouring 

switches) by generating periodic LLDP messages. 
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4. At first, the controller creates an LLDP message, puts it in the payload of an 

OpenFlow PacketOut message, and then sends it to one of its connected switches 

(switch A in Figure 3.7). 

5. The action field in this PacketOut message tells the receiving switch to forward 

the LLDP packet to a particular port. The switch (switch B in Figure 3.7) at the 

other end of this link (if there is one) receives this packet, encapsulates it in an 

OpenFlow PacketIn message, and sends the encapsulated packet to its controller. 

6. The controller then de-capsulate the packet and determines the originating switch 

(i.e. switch A) as well as discovering the switch-to switch adjacency (here, link A-

B). Note that the LLDP messages traverse only one hop in this technique. 

 

Figure 3.7 Topology Discovery in SDN. 
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3.5 Summary 

The main improvement that OpenDaylight offers is the possibility of 

controlling a network by three different ways: 

Scenarios can be controlled by implementing a bundle inside the controller, this 

module will probably be developed in the AD-SAL architecture due to the 

facilities this layer give when a programming inside the platform is being done. 

In some occasions the control of the network has to be implemented outside the 

controller for different causes, in these situations, MD-SAL is the most intelligent 

choice as it provides a common REST API from outside the controller to the 

network devices. 

Finally, a hybrid solution can be developed by programming the intelligence of 

the network externally but also by taking advantage of some bundles already 

implemented in OpenDaylight. 
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Chapter 4  

Multiple-Controller with Different 

Operation Paradigm 

 Large scale complex networks face a lot of challenges, in particular, they 

require re-policing or reconfigurations from time to time. To this end, SDN, a 

model where a central program, known as a controller, orders the whole network 

behaviour, is increasingly gaining importance. The underlying concept of SDN is 

that of separating the traditional merging of the control plane and data plane, into 

different two entities, where the network routers/switches simply forward packets 

and the control/management plan is implemented by a centralised controller. At 

the present time, OpenFlow is the most common SDN protocol/standard, is 

concerned with the southbound interface between the controller and the 

routers/switches.  However, a single controller being used in such a model has 

major difficulties, including lack of reliability and scalability. In this research, a 

scheme using multiple controllers which handle multiple network devices, while 

using OpenFlow controllers in the proactive operations paradigm had been 

proposed.  

4.1 SDN Overview 

SDN has gained a lot of attention in recent years, because; 

 It addresses the lack of programmability in existing networking architectures; and  

 Enables easier and faster network innovation.  

SDN [22] is a paradigm that clearly distinguishes the data plane from the control 

plane and this promising architecture enables software implementations of 
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complex networking applications, with the expectation of less specific and 

cheaper hardware as well as the prospect of greater flexibility. With SDN, 

network Ethernet devices become simple packet forwarding devices [58], while 

the “brain” or control logic is implemented in the controller [59], [60], as shown 

in figure 4.1. SDN controllers and forwarding devices communicate with each 

other by the southbound SDN interfaces and OpenFlow [61] is one of the most 

common of this type. Many marketers, including HP, NEC, NetGear, and IBM, 

produce OpenFlow-capable network switches that are available in the marketplace 

[61]. The Open Networking Foundation (ONF) is responsible for standardising the 

OpenFlow protocol. There are a variety of OpenFlow controllers, for example, 

NOX, Floodlight, and OpenDayLight. 

 

Figure 4.1 Traditional network Device VS SDN Architecture.  

4.2 OpenFlow Protocol 

The components of the OpenFlow architecture are: 1) the OpenFlow 

controller, 2) the OpenFlow device (switch), and 3) the OpenFlow protocol. 

Figure 4.2 shows the various components of this architecture. The OpenFlow 

protocol is the communication language through which the switch and the 

controller can understand each other, such that the controller is able to manage the 

switch by adding, updating, and deleting flow entries in flow tables, no matter 

which flow setup mode (reactive or proactive) is used.   
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Fig 4.2  Main components of an OpenFlow switch [50]. 

4.3 State of the Art 

In distributed control hierarchy the load can be reduced significantly and 

this approach has been applied in many applications, such as FlowVisor, 

Hyperflow, and Kandoo. HyperFlow tries to provide scalability, using as many 

controllers as necessary to reach it, but keeping the network control logically 

centralised. Specifically, the Hyperflow mechanism is aimed at synchronizing the 

state of a network with all available controllers[61]. Kandoo sorts applications by 

its scope: local and network wide, with the former being deployed in the locality 

of datapath for processing requests and messages there, thereby reducing 

controller load. Network-wide applications are handled by a controller, and in a 

distributed hierarchical arrangement, a root controller takes care of them and 

updates them to all other controllers in SDN [24]. Flowvisor slices the network, 

with each slice being handled by a controller or a group of controllers, thus 

reducing the load and making an efficient decision handling mechanism [15]. 

Another proposal, the DevoFlow [23] and The “Doing It Fast And Easy” 

(DIFANE) [24]. In the DevoFlow proposal the aim is to deal with the scalability 

problem by evolving network control to switches with an aggressive use of a flow 

wildcard and introducing a mechanism to improve visibility [39]. While the 
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DIFANE approach examines the scalability issues that arise with OpenFlow in 

large networks and with many fine-grained flow entries. It proactively pushes all 

states in the data path (addressing the lack of data path memory in a scalable 

manner), by installing all forwarding information in the fast path.  

4.4 Plan Choices for OpenFlow-Based SDN 

Today, SDN is mostly applied for flexible and programmable data centres. 

There is a need for network virtualization, energy efficiency and dynamic 

formation and enforcement of network policies. An important feature is the 

dynamic creation of virtual networks, commonly referred to as network-as-a-

service (NaaS). Even more complex requirements arise in multi-tenant data centre 

environments. SDN can provide these features easily, due to its flexibility and 

programmability. 

However, SDN is also discussed in a network or Internet service provider (ISP) 

context. Depending on the use case, the design of SDN architectures varies a lot. 

In this section, a clarification of the architectural design choices for SDN had been 

demonstrated. A discussion of their implications regarding to performance, 

reliability and scalability of the control and data plane will be made. 

4.4.1 Physically vs. Logically Centralized in the SDN Control Plane 

Originally, a centralized control plane is considered for SDN. It provides a 

global view and knowledge of the network and allows for optimization and 

intelligent control. It can be implemented in a single server, which is a physically 

centralized approach. Obviously, a single controller is a single point of failure, as 

well as a potential bottleneck. Thus, a single control server is most likely not an 

appropriate solution for networks, due to a lack of reliability and scalability. 

As an alternative, a logically centralized control plane may be used to provide 

more reliability and scalability [62]. It consists of physically distributed control 
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elements that interface with each other through the so-called east- and west-bound 

interface which is illustrated in Figure 4.3. Since that distributed control plane 

interfaces with other layers, like a centralized entity, the data plane and network 

applications see only a single control element. A challenge for logically 

centralized control is the consistent and correct network-wide behaviour. Another 

common term for the SDN logically centralized control plane is the “network 

operating system” (network OS). 

 

Figure 4.3. Logically centralized control plane [62]. 

Several studies investigated the feasibility, scalability and reliability of logically 

centralized control planes. Some of other researches, investigate the issue of the 

placement of the distributed control elements inside the network [44][38]. 

The importance of limited latency for control communication in OpenFlow-based 

networks has been highlighted by McKeown in [44]. Thus, to meet these latency 

constraints, they propose a number of required controllers with their position in 

the network. Another consideration has been done by Hock et al. [63] to optimize 

the placement of controllers with regard to latency, in addition to controller load, 

reliability and resilience. Their proposed scheme can be used to implement a 

scalable and reliable SDN control plane. In the HyperFlow proposal, the authors 

of [39] intend a control plane that is based on the NOX OpenFlow controller. 
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They discuss the management of network applications and the consistent view of 

the framework in detail. For example, when a link breaks, one controller notices 

the failure, but other controllers may not be aware of the connection failure. The 

HyperFlow architecture ensures in such cases that network applications operate in 

a consistent state of the network, even though control elements may not share 

identical knowledge about the network. A hierarchical control platform called 

Kandoo is proposed in [40], which arranges controllers in a layers structure as 

there are some lower and higher layers are constructed. Controllers in lower layers 

process local network events and program the local portions of the network under 

their control. Controllers on higher layers sort network-wide decisions. In 

particular, they instruct and query the local controllers at lower layers. 

Another study [64] compares the performance of network applications that run on 

a distributed control platform. Network applications that are aware of the physical 

decentralization showed better performance than applications that assume a single 

network-wide controller.  

4.4.2 In-Band vs. Out-of-Band Signalling in Control Plane 

In the following, a discussion about the communication between the control 

components and the forwarding devices on the data plane will be clarified. This 

control channel has to be strong and dependable. In SDN-based data centre 

networks, this control channel is often constructed as a separate physical network 

in parallel with the data plane network. Carrier and ISP networks have different 

demands. They often cross over a rural area or a continent. Hence, a separate 

physical control network might not be price-effective or feasible at all. Therefore, 

two main design options for the control channel exist: in-band control plane and 

out-of-band control plane. 

With in-band control, the control traffic is sent like data traffic over the same 

infrastructure. This is depicted in Figure 4.4. This variant does not involve an 
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additional physical control network, but has other major disadvantages. Firstly, 

the control traffic is not distinguished from the data traffic, which raises security 

worries. Failures of the data plane will likewise touch on the control plane. 

Therefore, it is possible that a failure disconnects the switch from its control 

element, which makes the restoration of the network more complicated. 

 

Figure 4.4 In-band signalling [62]. 

Out-of-band control requires a separate control network in addition to the data 

network, as illustrated in Figure 4.5. This is a common approach in data centres 

that are fixed in geographical size. In the data centre context, the maintenance and 

cost of an additional control network are commonly satisfactory. This may be 

different for wide-ranging networks, such as carrier networks, where a separate 

control network can be costly with regard to CAPEX and OPEX. The advantages 

of an out-of-band control plane are that the separation of data and control traffic 

improves security. Data plane network failures do not affect control traffic, which 

eases network restoration. Moreover, a separate control plane can be implemented 

more securely and dependably than the data plane. This ensures the high 
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availability of the control plane and can be crucial for disruption-free network 

operation [62]. 

 

Figure 4.5 Out-of-band signalling [62]. 

A potential approach that combines in-band and out-of-band control planes for 

carrier networks is based along the control planes in optical networks, such as 

synchronous optical network (SONET) or synchronous digital hierarchy (SDH) 

and optical transport networks (OTN). In such networks, an optical supervisory 

channel (OSC) may be shown on a separate wavelength, only along the same fibre 

over which data traffic is transported. In a similar way, a dedicated optical channel 

could be allocated for SDN control traffic when an optical layer is available. 

Moreover, other lower layer separation techniques may be utilized to implement 

separated control and data networks over the same physical base. 

4.4.3 Multiple Controllers in Control Plane 
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The switch can establish communication with a single controller or with 

multiple ones [50][39]. Having multiple controllers improves reliability, as a 

switch can continue to operate in OpenFlow mode, if one controller or controller 

connection fails. The handover between controllers is initiated by the controllers 

themselves, which enables quick recovery from failure and also controller load 

balancing. The controllers coordinate the management of the switch between 

themselves, and the aim of the multiple controller functionality is only to help 

synchronise controller handoffs performed by the controllers. When OpenFlow 

operation is started, the switch must connect to all controllers it is configured 

with, and attempt to maintain connectivity with all of them concurrently. 

Although many controllers send controller-to-switch commands to the switch, the 

reply or error messages related to those commands must only be sent on the 

controller connection accompanying with that command. Asynchronous messages 

might need to be sent to multiple controllers, the message being duplicated for 

each eligible OpenFlow channel and each of them are sent when the respective 

controller connection allows it[50]. 

There are three operational modes for controllers that have been defined in 

OpenFlow 1.3: (1) master, (2) slave and (3) equal [50]. The default role of a 

controller is OFPCR_ROLE_EQUAL. In this role, the controller is equal to other 

controllers with the same role and has full access to the switch. A controller can 

demand its role to be changed to OFPCR_ROLE_SLAVE, whereby it has read-

only access to the switch. Otherwise, the controller can request its role to be 

changed to OFPCR_ROLE_MASTER, which is similar to OFPCR_ROLE_EQUAL 

such that it has full access to the switch, with the difference being that the switch 

make sure it is the only controller in this role. When a controller changes its role 

to OFPCR_ROLE_MASTER, the switch modifies all other controllers with that 

role to OFPCR_ROLE_SLAVE.  
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A switch may be at the same time connected to multiple controllers in equal state, 

multiple controllers in slave state, and at most one controller in the master state. 

Each controller can communicate its role to the switch via an 

OFPT_ROLE_REQUEST message and the latter must remember the role of each 

controller connection, which can change at any time. 

4.4.4 Proactive vs. Reactive in Management of Flow Entries 

Starting with explaining why flow tables in OpenFlow switches are limited in 

size, and then, discussing two approaches for flow table entry management. 

In the SDN architecture, the control plane is the element which is responsible for 

the configuration of the forwarding devices. By using the OpenFlow protocol, the 

controller installs flow table entries in the forwarding tables of the switches. As 

discussed in Chapter 2 Section 2.3.3.1, an entry consists of match fields, counters 

and forwarding actions. The OpenFlow match fields are wildcards that match to 

precise header fields in the packets. Wildcards are typically installed in ternary 

content-addressable memory (TCAM) to certify fast packet matching and 

forwarding. Though, TCAM is very expensive, so that it needs to be small; as a 

consequence, only a modest number of flow entries can be accommodated in the 

flow table. In the following, a description of two flow management approaches 

will be explained, which are the proactive and the reactive flow management. 

Both options are not equally exclusive: it is common in OpenFlow networks to 

install some flows proactively and the remaining flows reactively. 

The flow entries can be installed temporary and in particular before they are 

actually needed by the controller. This approach is referred to as proactive flow 

management [58]. However, this approach has a disadvantage: flow tables must 

hold many entries that might not fit into the expensive TCAM. 
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To manage with small flow tables, flow entries can also be installed reactively, 

i.e., installed on demand. This is clarified in Figure 4.6. (1) Packets can arrive at a 

switch where no corresponding rule is installed in the flow table, and therefore, 

the switch cannot forward the packet on its own; (2) The switch notifies the 

controller about the packet; (3) The controller identifies the path for the packet; 

(4) The controller installs appropriate rules in all switches along the path; (5) 

Then, the packets of that flow can be forwarded to their destination.  

 

Figure 4.6 Reactive flow management. 

The mechanisms to enable reactive flow management in OpenFlow are based on 

timeouts. The controller sets an expiry timer that defaults to one second. The 

switch tracks the duration to the last match for all entries. Idle entries are removed 

from the switch. When more packets of an expired flow arrive, the controller must 

be asked for path installation again. 

Both flow management approaches have different advantages and disadvantages. 

The reactive flow management approach holds only the lately used flow entries in 

the table. On the one hand, this allows one to handle with small forwarding tables. 
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On the other hand, controller interface is required if packets of a flow arrive in a 

switch that has no appropriate entry in the flow table. After some time, the correct 

entry will be ultimately installed in the switch, so that packets can be forwarded. 

The resulting delay depends on the control channel and the current load of the 

controller. Thus, reactive flow management reduces the state in the switches and 

relaxes the need for large flow tables, but it increases the delay and reliability 

requirements of the control channel and control plane software. Particularly, 

failures of the control channel or the controller will have substantial impact on the 

network performance if flow entries cannot be installed in a timely manner [62]. 

With a proactive flow management approach, all required flow entries are 

installed in the switches by the controller as described in figure 4.7. Depending on 

the use case and network, a huge amount of flows must be installed in switches, 

e.g., BGP routing tables can have hundreds of thousands IP prefixes. This may 

require switch memory hierarchy optimizations that are not needed with reactive 

flow management. While proactive flow management increases state requirements 

in switches, it reduces the requirements on the control plane and software 

controller performance and is stronger against network failures in the control 

plane. That means that if the controller is overloaded or the communication 

channel fails, the data plane is still fully functional. 

Based on the above-mentioned explanation, the main advantage of the proactive 

mode is the ability to make the system function properly in case of any fail of the 

communication channels comparing with the reactive mode, which makes the 

network reliable and strong, also it reduces the time delay and that’s why this was 

my best choice to use for my proposed scheme.  



 

64 

 

 

Figure 4.7 Proactive flow management. 

4.5 Methodology and Network Design 

In order to test and evaluate our network, Mininet is used which is a network 

emulator that simulates a collection of end-hosts, switches, routers, and links on a 

single Linux kernel. It uses lightweight virtualization which is the capability of an 

operating system to be installed directly on the server hardware and provides the 

functionality to create Virtual Servers, and this to make a single system look like a 

complete network.  Mininet is important tool to the open source SDN community 

as it is commonly used as a simulation, verification, testing tool, and resource. 

Furthermore, it can be used to create an accurate virtual network with real 

working components but running on a single machine for ease of testing. It’s an 

open source project hosted on GitHub which allows us to create custom 

topologies, and provides the ability to create hosts, switches and controllers via: 1) 

Command Line, 2) Interactive User Interface, and 3) Python application [65].  

The reason of using Mininet in our experiments is how widely it used for 

experimentation that it allows us to create custom topologies, many of which have 

been demonstrated as being quite complex and realistic, such as larger, Internet-
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like topologies that can be used for BGP research. Another important feature of 

Mininet is that it allows for the full customization of packet forwarding. 

In table 4.1, an illustration of the software which had been used in the 

i

m

p

l

e

m

entation and experiments of this research.   

 

Table 4.1 Software used in implementation and experiments. 

Furthermore, as aforementioned the test environment chosen for this 

research was the OpenFlow emulation virtual machine using Mininet. The 

experiment was built using VMware Workstation 11.1.0. The hp EliteBook 

workstation PC had been used in this research and it has the following 

specifications; processor Intel ® Core ™ i7 – 3630QM CPU 2.4 GHZ,16GB of 

RAM running the operating system Windows 8.1 Pro 64bits. As such, the test 

environment implements and performs the actual protocol stacks that 

communicate with each other virtually. That is, the Mininet environment allows 

for the execution of real protocols in a virtual network. 

4.6 Proposed scheme 

In an attempt to start describing our design, an explanation of our 

architecture, operation steps and network scenarios will be clarified as follows: 

4.6.1 Topology 

Software Function Version 

Mininet Network Emulator 2.2.1 

Open vSwitch Virtual SDN Switch 2.0.2 

OpenDayLight SDN Controller Platform Lithium-SR4 

VMWare Workstation Virtualization Software 11 

Linux (Ubuntu) Host Operating System 14.4 

Python Programming Language 2.7.6 
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In this research, multiple controllers had been used as shown in Figure 4.8 instead 

of the single, logical controller which shown in Figure 4.9. That is, it was 

recognised that a network device can be managed by more than one controller 

such that they can share its management, and used the proactive flow mode to 

manage the flow entries.  

 

 

Figure 4.8 Multiple controllers managing multiple network devices. 

 

Figure 4.9. Single controller managing multiple network devices. 

4.6.2 Operation steps 
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1. Initiate a cluster of multiple controllers. 

2. Configure the OpenFlow switches to connect to the multiple controllers of the 

cluster whenever the transport channel between them has been established and 

consequently, each switch has an active connection to more than a single 

controller.  

3. Each controller chooses to accept the connection initiated by OpenFlow switches.  

4. After a connection is set up, the controller sends a message to get the OpenFlow 

switch’s information.   

5. The controller uses some form of broadcast request and ACK mechanism, like 

ARP, to determine the reachability of the target host. The information collated by 

the Link Discovery module is used to build the neighbour database in the 

controller by capturing all the OpenFlow neighbours of a given OpenFlow Switch 

in the network. 

6. By using the information that has been gathered in step5 the controllers populate 

the flows proactively in the flow tables of the switches.  

7. When a connection is broken, after a random time interval, the network device 

will re-initiate a connection to the controller.  Then go to step3.  

4.6.3 Network Scenarios 

A network with the proactive mode had been created to make a comparison 

with the reactive mode using a centralised controller in one experiment, whilst in 

another a different controllers had been used, and in a third a multiple peer to peer 

controllers with equal roles had been used, subsequently comparing all the three 

scenarios. The controller that was used in all of our experiments is the ODL 

controller, which is a collaborative, open source project aimed at advancing SDN.  

In this experiment, an installation of the ODL controller in four Ubuntu servers 



 

68 

 

had been made, and they were connected remotely to the network that had been 

created in this research. Layer 2 connectivity is discovered by an SDN controller. 

Three network topologies were used to test this scheme. So, linear topology, star 

topology, and tree topology had been used as shown in Figure 4.10 (a), (b), and 

(c) respectively captured from the GUI of the Opendaylight controller that had 

been used in this work.  

   

                                   Figure 4.10 (a) Linear Topology,                            (b) Star Topology, 

 

(c) Tree Topology. 

The Mininet environment allows the execution of real protocols in a virtual 

network. First, four experiments had been created to compare among them in 

which is the best result, for the first comparison the subsequent scenarios had been 

created:  
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1. Proactive-multiple controllers with linear network topology scenario.  

2. Proactive-single controllers with linear network topology scenario.  

3. Reactive-multiple controllers with linear network topology scenario.  

4. Reactive-single controllers with linear network topology scenario.  

For the second comparison the following scenarios had been made: 

1. Proactive-multiple controllers with Tree network topology scenario. 

2. Proactive-multiple controllers with Star network topology scenario.  

3. Proactive-multiple controllers with linear network topology scenario. 

In the third comparison an evaluation to distinguish the difference between 

multiple controllers and the use of different controllers had been made, which is 

how most researchers built their consumptions regarding the distributed controller 

architecture. 

1. Proactive-multiple controllers with linear network topology scenario. 

2. Proactive-different controllers with linear network topology scenario. 

 

4.6.4 Network configuration 

After execution of Python script in Mininet to launch our networks, a network 

model is created 128 virtual hosts, each with a separate IP address as defined in 

Python code, and created 128 OpenFlow software switches in the kernel having 

required ports, in which one virtual hosts per switch with a virtual Ethernet cable. 

Furthermore, 128 virtual hosts are distributed linearly between 128 switches and 

all switches are connected with each other as well via same virtual Ethernet cable. 

Next the process of setting the MAC address of each host equal to its IP address is 

established. Finally, the configuration progression of the OpenFlow switches to be 

connected to our four remote controllers. 
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4.6.5 Evaluation suite for Mininet 

Another concern of Mininet networks is how to evaluate these networks. 

After being able to create all of our network scenarios and configured all of our 

network elements, a test of this proposed scheme had been made, the evaluation of 

several metrics needs to be concerned. And for traffic generation, the  D-ITG [66] 

had been used in this research.  

4.6.5.1 Distributed Internet Traffic Generator D-ITG 

To evaluate the performance of Mininet D-ITG in version 2.8.1-r1023 was 

used: Distributed Internet Traffic Generator (DITG) is a platform capable to 

produce traffic that accurately adheres to patterns defined by the inter departure 

time between packets (IDT) and the packet size (PS) stochastic processes [67]. 

Therefore, it offers a rich variety of probability distributions for the traffic 

generation and uses some models proposed to emulate sources of various 

protocols. With it, it is possible to generate various packet streams and collect 

statistics with a logging server. In Figure 4.11 all the important modules of the D-

ITG are depicted. The ITGSend module is responsible for the traffic generation, 

while the ITGRecv module is the sink for the packets, which are delivered over a 

Data Channel. To collect logging information both, the ITGSend and ITGRecv are 

communicating via a Log Channel with the ITGLog module. For remote control 

the ITGManager offers the functionalities to adjust parameters of ITGSend 

through the Signalling Channel[68]. Consequently, every module is connected 

through several communication channels to other modules. ITGSend performs the 

traffic generation and sending processes, while ITGRecv receives it. ITGLog is a 

storage to collect all log files, while ITGManager is used for the remote control 

[67]. 

Finally, the D-ITG decoder (ITGDec) analyses the results collected by the 

ITGLog module. It calculates the packet loss, throughput, jitter and delay, both 
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the one-way delay (OWD) and the round-trip time (RTT). Moreover, it can 

analyse log information in real-time, e.g., if the sender is instructed by a controller 

entity to adapt the transmission rate based on channel congestion and receiver 

capacity. 

 

 

Figure 4.11 The architecture of the D-ITG traffic generation[66]. 

4.7 Experimental Results and Discussion 

First the performance test result is shown in Figure 4.12 and 4.13 presents the 

round-trip time (RTT) delay occurred in first comparison that had been mentioned 

above in the section 4.6.3. In Figure 4.12 the proposed scheme of multiple-

proactive mode approach has the better performance and the delay was almost 

neglected compare with the multiple-reactive mode approach. Also, Figure 4.12 

shows that the proposed scheme of this research  reduced the RTT by 13.03% in 

case of comparing the proposed proactive multiple-controller scheme with the 

reactive multiple-controller scheme, and in Figure 4.13 the RTT has been reduced 

by 13.15% in case of comparing the reactive single-controller scheme with the 

proactive single-controller scheme.  
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Figure 4.12 Delay for linear topology and different flow mode in case of multiple-

controllers scenarios. 

 

Figure 4.13 Delay for linear topology and different flow mode in case of single-

controllers scenarios. 

Figures 4.14 and 4.15 presents the packet loss ratio happened also in first 

comparison. It can be seen that in Figures 4.14 and 4.15 the proposed scheme of 

multiple-proactive mode approach and single proactive controller has no packet 

1

10

100

1000

0 20 40 60 80 100 120 140

D
el

ay
 (

m
se

c)
 

Number of Switches 

Proactive-multiple- controllers-linearTopo

Reactive-multiple- controllers-linearTopo

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120 140

D
el

ay
 (

m
se

c)
 

Number of Switches 

Proactive-single- controllers-linearTopo

Reactive-single- controllers-linearTopo



 

73 

 

loss at all, while the multiple reactive mode approach has a range of 1-8 % packet 

loss ratio and the single reactive mode approach has a range of 1-25 % packet loss 

ratio. These results considerable and, more desirably, therefore the improvement 

increases when the network gets larger, which indicates an aggregating effect and 

is meaningful to network reliability and scalability. 

 

Figure 4.14 Packet Loss Ratio for linear topology and different flow mode in case 

of multiple-controllers scenarios.

 

Figure 4.15 Packet Loss Ratio for linear topology and different flow mode in case 

of single-controller scenarios. 

Second, a Proactive-multiple controllers scenarios for three network topologies 

had been created to test the proposed scheme, so, linear topology, star topology, 

and tree topology had been used. The performance test result is shown in figure 

4.16 shows that the star topology has the lowest delay by 25.16% compared with 
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the linear topology and by 6.22% compared with the tree topology. In addition, 

from Figure 4.17 it can be seen that the average throughput was the highest in the 

case of the tree topology by 18.39% comparing with the linear topology, and by 

5.52% comparing with the star topology. This leads us to conclude that the linear 

topology is the worst case for network topology, and that’s why the experiments 

had been done using the linear topology to see the performance of the proposed 

network scheme in the worst conditions. 

 

Figure 4.16 Delay for different topology in case of proactive-multiple-controller 

scenarios. 

 

Figure 4.17 Throughput for different topology in case of proactive-multiple-

controller scenarios. 
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Finally a Proactive-Different controllers scenario had been created in which a 

number of switches had been assigned to just one of each existing controllers, and 

compare it with the proactive multiple controller network which had been 

proposed in this research. The performance test result is demonstrated in Figure 

4.18 and 4.19 respectively can be seen that the proposed scheme has the highest 

throughput by 11.89% compared with the proactive different controller scheme, 

but with more delay by 7.44% and its reasonably for the delay to be less in the 

case of use different controllers, because each controller has less OpenFlow 

switches to manage which reduces the control message packets through the 

network.  

 

Figure 4.18 Throughput for proactive-multiple/different-controller scenarios. 
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Figure 4.19 Delay for proactive-multiple/different-controller scenarios. 

While considering that the OpenFlow architecture has a promising future due to 

its simplicity and suitability to new technologies, its centralized architecture gives 

scalability problems. This problem has been studied by researchers from several 

points of view. This research analyses the performance of different and Multiple 

Open- Flow controller operating in reactive and proactive approach. All 

evaluation’s results show the increase on controller performance when it used the 

proactive approach with Multiple-controllers scheme. Our proposal tries to solve 

this problem by using multiple-controllers with equal role functionality in the 

proactive flow mode approach which improves the performance of proactive 

approach but maintaining the facility of reactive approach. 

4.8 Summary 

In this chapter, various significant studies and experiments had been reviewed 

which have been conducted to develop and improve SDN reliability and 

scalability issues. By focusing on the work that had been done to develop and 

improve the control plane and management plane, which is the most relevant to 

this research. Thus, in this work the proposed scheme was using multiple 

controllers which handle multiple network devices, while using OpenFlow 

controllers in the proactive operations paradigm. Several experiments had been 

conducted to assess the performance of the multiple-proactive controllers 

framework proposed in this research. In the experiments, the implementation of 

the framework was done by using ODL controller. By examining and evaluating 

different network scenarios, considering the results obtained in this Chapter, the 

proposed scheme showed promising results and is worth being applied in SDN 

networks, as it makes the network more reliable and easy to scale without 

affecting the performance of the network. 
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Chapter 5                                         

Virtual Tenant Network with Multiple 

SDN Controller Coordination 

This chapter covers installation and configuration of one application 

available for the OpenDaylight project. Applications use the northbound APIs to 

interconnect with underlying networking devices. They provide additional 

services using data collected by a controller. VTN is an application, because its 

services and features are good examples of NVF. In addition, it can be used with 

the Mininet network.  

5.1 Virtual Tenant Network Overview 

Multi-inhabitant networks, are data-centre networks that are separated and 

consistently partitioned into tinier, segregated networks. Similar to tenants in an 

apartment compound, multi-tenant networks work all alone network with no 

ability to see into the other logical networks, yet share the physical networking 

gear. It’s been some time, since the ability to divide networks into logical entities 

has been available through the use of VLANs. Accordingly, virtualized data-

centres and cloud computing concepts have brought multi-tenancy back to the 

consideration of network administrators. The need to separate and control parts of 

the network does not convert when moving to the cloud, whether the applications 

needed by the business processes of the organization or federal regulatory 

requirements. In order to ensure that local data is secure and may even help 

develop the IT association into one focused on services, and presents more 

willingly than simply bits and bytes, because of that, the multi-tenant network 

approach that public cloud provider’s has been utilized this approach. Beside the 

security aspects of multi-tenancy networks, breaking the data-centre network by 
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application and service could be the foundation to develop the IT organization 

from an operations mode into principally an internal vendor, providing 

applications and services to business units in much the same manner as public 

cloud service providers. Building a private cloud infrastructure would enable 

enterprise applications to be delivered to business units as a service, by using 

service providers, and with clearly defined service-level agreements and bill-back 

processes. This effort has been supported by multi-tenant networks, which allows 

specific quality of service and security policies to be set for each "customer" of IT 

services [69]. 

5.2 OpenDaylight Virtual Tenant Network  

OpenDaylight Virtual Tenant Network (VTN) is an application that offers 

multi-tenant virtual network on an SDN controller. It provides API for creating a 

common virtual network regardless of the physical network. 

 Conventionally, the network is configured as a silo for each department 

and system, which implies huge investment in the network systems and operating 

expenses are needed. Therefore, several network appliances must be installed for 

each tenant, and those boxes cannot be pooled with others. It is a hard work to 

design, implement and operate the entire complex network. The logical 

abstraction plane, considered to be the uniqueness feature of VTN. This allows the 

complete separation of logical plane from physical plane. Users can design and 

deploy any desired network without knowing the physical network topology or 

bandwidth restrictions. The network can be defined corresponding to the users, by 

using VTN, and this with a look and feel of conventional L2/L3 network. Once 

the network is composed on VTN, it will consequently be mapped into underlying 

physical network, and afterward configured on the individual switch utilizing 

SDN control protocol. The definition of logical plane makes it conceivable, not 

just to hide the complexity of the underlying network, but additionally better to 
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deal with network resources. It accomplishes reducing reconfiguration time of 

network services and minimizing network configuration errors[70]. 

5.2.1 VTN architecture 

Figure 5.1 shows the major components of VTN. VTN includes VTN 

manager and VTN coordinator. In order to manage the information of the virtual 

network, including network topology and mapping information, VTN manager 

has been deployed inside SDN controller in the form of plug-in. VTN coordinator 

manages multiple SDN controller and provides REST APIs for VTN application 

[71]. VTN applications are network applications used in the virtual network.  

 

Figure 5.1 VTN Architecture [72].   

5.2.1.1 VTN Coordinator 

In the OpenDaylight architecture, the VTN Coordinator is part of the network 

application, orchestration and services layer. Its key function is to generate the 

virtual network through the OpenDaylight REST APIs. It also provides its own 

REST APIs to external northbound applications while supporting the use of 

multiple controllers, and their coordination, at the same time[70]. 
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5.2.1.2 VTN Manager 

In the Opendaylight VTN project, the intelligence has been provided by the 

manager module. It is a plug-in inside the controller which, interacting with other 

plug-ins to implement the elements of the created VTN model. 

5.2.2 Virtual Network Construction  

In the VTN, a virtual network is made using virtual nodes (vBridge, vRouter) 

and virtual interfaces and links. The connection of  virtual interfaces which has 

been  made on virtual nodes via virtual links,  can probably configure a network 

which has an L2 and L3 transfer function[70]. Follows brief description for the 

virtual nodes, which has above-mentioned. 

 vBridge: Represents L2 switch functions.  

 vRouter: Provides router functions.  

 vTep: It is a representation of Tunnel End Point (TEP). 

 vTunnel: It is a Tunnel logical representation.  

 vBypass: Provides connectivity between controlled networks.  

 Virtual interface: Represents virtual node’s end points.  

 Virtual Link (vLink): Is a connection between virtual interfaces.  

5.2.3 vBridge Functions 

It’s worth to clarify, that according to the destination MAC address, the 

vBridge provides the bridge function that transfers a packet to the proposed virtual 

port. When the destination MAC address has been learned, the vBridge looks up 

the MAC address table and transmits the packet to the corresponding virtual 



 

81 

 

interface. In the event, when the destination MAC address has not been learned, 

the process is to transmit the packet to all virtual interfaces other than the 

receiving port. The learning process of MAC addresses as follows: 

 MAC address learning: The vBridge learns the MAC address of the 

connected host. The source MAC address of each received frame is mapped to 

the receiving virtual interface, and this MAC address is stored in the MAC 

address table created on a per-vBridge basis. 

 MAC address aging: The MAC address stored in the MAC address table is 

saved as long as the host gives back the ARP reply. After the host is 

disconnected, the address is kept until the aging timer times out. MAC 

addresses can be registered manually, in order to have the vBridge learn MAC 

addresses constantly. 

5.2.4 vRouter Functions 

The vRouter transfers IPv4 packets between vBridges. Routing, ARP 

learning, and ARP aging functions, is supported by the vRouter. The functions are 

described as follows: 

 Routing function: When an IP address is registered with a virtual interface of 

the vRouter, the default routing information for that interface is registered. It 

is also possible to statically register routing information for a virtual interface. 

 

 ARP learning function: The vRouter links a destination IP address, MAC 

address and a virtual interface, based on an ARP request to its host or a reply 

packet for an ARP request, and maintains this information in an ARP table 

prepared for each routing domain. The registered ARP entry is saved until the 

aging timer, has times out. The vRouter transmits an ARP request on an 

individual aging timer basis and deletes the associated entry from the ARP 
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table if no reply is returned. For static ARP learning, ARP entry can be 

registered information manually.  

 

 

5.2.5 Mapping of Physical Network Resources 

Map physical network resources to the constructed virtual network. 

Mapping detects which virtual network each packet transmitted or received by an 

OpenFlow switch belongs to, as well as which interface in the OpenFlow switch 

transmits or receives that packet. There are two mapping methods. Port mapping 

is first searched for the corresponding mapping definition, when a packet is 

received from the OpenFlow switch, then VLAN mapping is searched, and the 

packet is mapped to the appropriate vBridge according to the first matching 

mapping. 

 Port mapping  

Maps physical network resources to an interface of vBridge using Switch ID, Port 

ID and VLAN ID of the incoming L2 frame. Untagged frame mapping is also 

supported. 

 VLAN mapping 

Maps physical network resources to a vBridge using VLAN ID of the incoming 

L2 frame. Maps physical resources of a particular switch to a vBridge using 

switch ID and VLAN ID of the incoming L2 frame. 

 MAC mapping 

Maps physical resources to an interface of vBridge using MAC address of the 

incoming L2 frame (The initial contribution does not include this method). 

5.3 Methodology and Network Design 

In this experiment four Opendaylight controllers had been used, using 

VMware Workstation 11.1.0, each controller was installed in Ubuntu server 14.04 
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with 2GB of RAM 2 cores per processor and size of 32GB of hard disk, a VTN 

manager was installed also per controller which is the plugin provides REST APIs 

to internal components. Also, one Fedora20 server with 2GB of RAM, 2 cores per 

processor and size of 60GB of hard disk had been used, in this server, a VTN 

coordinator which is an external application that utilizes the interface provided by 

the manager and provides a user with a VTN Virtualization had been installed. 

In order to test and evaluate our network, the Mininet network emulator had 

been used to simulate the proposed network.  

5.4 Proposed scheme 

To describe the design, the system architecture, algorithm and network 

scenarios are described first: 

5.4.1 Architecture 

By using the network abstractions, VTN enables to configure virtual 

network across multiple SDN controllers. This provides highly scalable network 

system.  In our network VTN had been created on each SDN controller. Each user 

can manage those multiple VTNs with one policy, those VTNs can be united to a 

single VTN. This feature can be deployed to multi data centres environment. Even 

if those data centres are geographically separated and controlled with different 

controllers, a single policy virtual network can be realized with VTN. 

5.4.2 Operation steps 

8. Initiate a cluster of multiple controllers. 

9. In the “karaf” console of each controller, execute “feature:install odl-

vtn-manager-rest” to install the VTN manager features.  
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10. Starting the VTN coordinator by using the following command “/usr/lo-

cal/vtn/bin/vtn_start”. 

11. After running the Mininet script of the proposed network, the OpenFlow switch 

transit unicast packet. 

12. Through the OpenFlow plugin in the ODL controller a “PACKET_IN” 

notification sent to the VTN manager to notifies it, with the unicast packet. 

13. The VTN manager determines the VBridge to which the packet is mapped. 

14. In the VBridge Mac address table the process of searching to find the output 

destination is occurred. 

15.  After finding a match for the output destination a packet forwarding is instructed 

to AD-SAL, if physical network path is present. 

16. Flow entry setting are instructed by using the “PACKET_OUT” message. 

17. Finally, packet are transmitted and Flow entry is set. 

5.4.3 Network Scenarios 

A network with multiple controllers managing 15 Openflow switch with tree topology 

structure had been created as shown in Figure 5.2, the network had been divided into 

two vlans to test the VTN features in one experiment, and compare it with the same 

network topology and configuration but by using single controller. Therefore, two 

experiments had been created to compare among them to examine the effective 

characteristic between the two approaches, and these scenarios are:  

1. Multiple Controllers with VTN feature. 

2. Single Controller with VTN feature. 
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Figure 5.2 the proposed 15 switch in tree topology structure. 

5.4.4 Network Configuration 

In our python script, the Controllers information had been created as 

illustrated in Figure 5.3. This will map the controller instance with the VTN 

application.  

 

Figure 5.3 Controllers setup. 
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Figures 5.4 and 5.5 demonstrate our piece of script which used to create a VTN 

plane, a vBridge1 had been made to be used as a gateway between hosts in VLAN 

200, also made a vlan map with vlanid 200 for the vBridge1, Also, a vBridge2 had 

been made for VLAN 300 and finally a vlan map with vlanid 300 had been made 

as well for the vBridge2.  

Figure 5.4 VLAN hosts distribution. 

 

Figure 5.5 VLAN host configuration. 
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5.5 Evaluation results and Discussion 

Experiments have been conducted to assess the performance of the 

multiple-proactive controllers with VTN framework proposed in our research. In 

the experiments, the traffic flow used in this test is generated by ping and Iperf 

tests. As per well-known Iperf is a tool to measure the bandwidth and the quality 

of a network link which can be used for evaluation of parameters such as 

bandwidth, delay, window size, and packet loss. It is used in evaluation of both 

TCP and UDP traffic [73]. The bandwidth presented by Iperf is the bandwidth 

from the client to the server. In the default settings, the Iperf client connects to the 

Iperf server on the TCP port 5001, and this has been demonstrated as shown in 

Figure 5.6. 

 

Figure 5.6 Iperf default settings. 

The metrics that had been evaluated were (1) the round trip time (RTT) which is 

the interval between the instance packet-in is sent out and the instance 

packet-out or flow-mod is received, and this to show the flow setup latency 

which had been measured on all switches and then take the average, also (2) end- 

to-end throughput, aggregated over all flows, which were measured using Iperf. 

Note that RTT is essentially a control-plane metric and throughput a data-plane 

metric; using these two metrics allows us to see how the two planes quantitatively 

interact. In all networks, link capacity is 1 GBPS, and Open- Flow channels are 

provisioned out of band with band- width also 1 GBPs. Flow-table entry timeout 
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is 60 seconds by default.  All the results are averaged over 15 equal-setting runs. 

The test environment implements and performs the actual protocol stacks that 

communicate with each other virtually. Mininet environment allows the execution 

of real protocols in a virtual network. 

First, in order to test the IP connectivity between hosts in VLAN 200 as well as 

between hosts in VLAN 300, while there is no connectivity between the two 

VLAN groups, by executed the “pingall” command, the result should that 

the connection was successively made as can be seen in Figure 5.7 part of the 

project. The OpenDaylight controller was tested with the VTN application using 

NVF possibilities 

 

Figure 5.7. Ping command result for the IP connectivity between hosts in the 

two VLANs. 

Figure 5.8 demonstrate the connection of the network after executing the “net” 

command in the CLI of the Mininet. 
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Figure 5.8 Network Connection. 

Second, the result which are obtained from performing the Iperf and the ping 

test were compared to get the throughput and the delay for each of the scenarios 

that have been accomplished as shown in Figure 5.9 and Figure 5.10 respectively.  

 

Figure 5.9 The Throughput for Multi and Single Controller with VTN. 

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p

u
t(

M
b

p
s)

 

Number of Switches 

Multi_Controller-Throuput (Mbps) Single_Controller-Throuput (Mbps)



 

90 

 

 

Figure 5.10 The Delay for Multi and Single Controller with VTN. 

From both of the results graphs, It can be found that the Single Controller VTN 

approach has higher throughput and less delay than the Multi Controller VTN 

approach, and this very reasonable because of the setup time of each controller 

and the time consumed in the control messages between the controllers and the 

switches which affect the overall running time but the Multi Controller VTN has 

no packet loss and improves the reliability,  the scalability,  and provide efficient end-

to-end services comparing with the single point of failure that may happen in case 

of  the Single Controller VTN which risk all the network to fall down. 

5.6 Summary 

The SDN system was built in a virtualized environment with some advanced 

features installed. The OpenDaylight controller, which was installed during the 

project, can be easily used using a virtualized network. Moreover, the VTN 

Coordinator application, which was installed on a separate VM, was able to bring 

NFV features into the system. The OpenDaylight controller (Lithium version at 

the time of writing) was able to test the Multiple Controller approach which was a 

problem in earlier Opendaylight versions. 
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Chapter 6  

Conclusions and Future work 

In this chapter, the stages of the work of this thesis are illustrated in brief, and a 

number of methods that may improve the system in the future are presented. 

6.1 Conclusions 

While considering that the OpenFlow architecture has a promising future due to 

its simplicity and suitability to new technologies, its centralized architecture gives 

reliability and scalability problems. This problem has been studied by researchers 

from several points of view.  

This research analyses the performance of different and Multiple Open-Flow 

controller operating in reactive and proactive approach. All evaluation’s results 

show the increase on controller performance when it used the proactive approach 

with Multiple-controllers scheme. Our proposal tries to solve this problem by 

using multiple-controllers with equal role functionality in the proactive flow mode 

approach which improves the performance of proactive approach but maintaining 

the facility of reactive approach.  

Our proposed scheme of multiple-proactive mode approach and single proactive 

controller has scored almost no packet loss in which implies the strength of 

reliability our scheme had, while the multiple reactive mode approach has a range 

of 1-8 % packet loss ratio and the single reactive mode approach has a range of 1-

25 % packet loss ratio. 

 Also in case of delay the improvement which was obtained from our approach 

scored an average reduction of 13% comparing with other tested schemes. 
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Consequently, these results indicate an aggregating effect and is meaningful to 

network reliability and scalability. 

In addition, as the VTN project is one of mature projects in OpenDaylight, which 

provides network virtualization support for OpenFlow. And its most key features 

are Virtual network, provisioning, flexible traffic control and automatic detouring 

on link failures.  

The ODL VTN module, with or without OpenStack, provides an easy, flexible 

and efficient method of configuration for multi-tenancy in a virtualized 

environment. This configuration capability is error tolerant and done over reduced 

time spans.  

The VTN feature had been used accompanied with multiple-proactive controller 

and was successfully worked   in a way to provide NFV in our network. From all 

our experiment it can be declared that the multiple controller is a great solution for 

reliability and scalability issue in the SDN-OpenFlow networks.    

 

6.2 Future Work 

There are several possible methods and techniques that can be applied in the 

future to develop and improve that has been done in this thesis. In regards of 

Network Sharing for different types of networks that are implementing solutions 

based on SDN and NVF, It can be improved by sharing architecture that is based 

on VTN provided to VNFs over SDN. By virtualizing the tenant SDN control 

functions of a VTN, and moving them into the cloud by using one of the cloud 

computing platform that supports all types of cloud environments, such as 

OpenStack project.  

 

The control of a VTN is a key requirement related with network virtualization, 

since it allows the dynamic programming, in which direct control and 

configuration of the virtual resources allocated to the VTN. For future work an 
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evaluation of the first SDN/NFV orchestration architecture can be done, in a 

multi-partner testbed to dynamically deploy independent SDN controller instances 

for each VTN and to provide the required connectivity within minutes. Moreover, 

it is suggested to investigate further applications of VTN to extend functionalities 

offered to network providers.  
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Appendix A: The python code for the multiple controllers with linear 

network configuration 
 

#!/usr/bin/python 

 

""" 

This example creates a multi-controller network from semi-scratch by 

using the net.add*() API and manually starting the switches and controllers. 

 

This is the "mid-level" API, which is an alternative to the "high-level" 

Topo() API which supports parametrized topology classes. 

 

Note that one could also create a custom switch class and pass it into 

the Mininet() constructor. 

""" 

 

from mininet.net import Mininet 

from mininet.node import Controller, OVSSwitch, RemoteController 

from mininet.cli import CLI 

from mininet.log import setLogLevel 

from mininet.topo import Topo 

from mininet.log import lg 

from mininet.util import irange, quietRun 

from mininet.link import TCLink 

from functools import partial 

 

def multiControllerNet(): 

    "Create a network from semi-scratch with multiple controllers." 

     

    net = Mininet( controller=Controller, switch=OVSSwitch ) 

 

    print "*** Creating (reference) controllers" 

    c1 = net.addController( 'c1', controller=RemoteController, ip='192.168.179.129', 

port=6633) 

    c2 = net.addController( 'c2', controller=RemoteController, ip='192.168.179.131', 

port=6633) 

    c3 = net.addController( 'c3', controller=RemoteController, ip='192.168.179.132', 

port=6633) 

    c4 = net.addController( 'c3', controller=RemoteController, ip='192.168.179.133', 

port=6633) 
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    print "*** Creating switches" 

    s1 = net.addSwitch( 's1', protocols='OpenFlow13' ) 

    s2 = net.addSwitch( 's2', protocols='OpenFlow13' ) 

    s3 = net.addSwitch( 's3', protocols='OpenFlow13' ) 

     . 

     . 

     . 

     s128 = net.addSwitch( 's128', protocols='OpenFlow13' ) 

    

    print "*** Creating hosts" 

    h1 = net.addHost( 'h1' ) 

    h2 = net.addHost( 'h2' ) 

    h3 = net.addHost( 'h3' ) 

     . 

     . 

     . 

 

    h128 = net.addHost( 'h128' ) 

 

    print "*** Creating links" 

 

    net.addLink( s1, h1 ) 

    net.addLink( s2, h2 ) 

    net.addLink( s3, h3 ) 

     . 

     . 

     . 

 

    net.addLink( s128, h128 ) 

 

    net.addLink( s1, s2 ) 

    net.addLink( s2, s3 ) 

    net.addLink( s3, s4 ) 

    net.addLink( s4, s5 ) 

    net.addLink( s5, s6 ) 

    net.addLink( s6, s7 ) 

    net.addLink( s7, s8 ) 

    net.addLink( s8, s9 ) 

    net.addLink( s9, s10 ) 

    net.addLink( s10, s11 ) 

    net.addLink( s11, s12 ) 

    net.addLink( s12, s13 ) 

    net.addLink( s13, s14 ) 

    net.addLink( s14, s15 ) 

    net.addLink( s15, s16 ) 

    net.addLink( s16, s17 ) 

    net.addLink( s17, s18 ) 

    net.addLink( s18, s19 ) 

    net.addLink( s19, s20 ) 

    net.addLink( s20, s21 ) 
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    net.addLink( s21, s22 ) 

    net.addLink( s22, s23 ) 

    net.addLink( s23, s24 ) 

    net.addLink( s24, s25 ) 

    net.addLink( s25, s26 ) 

    net.addLink( s26, s27 ) 

    net.addLink( s27, s28 ) 

    net.addLink( s28, s29 ) 

    net.addLink( s29, s30 ) 

    net.addLink( s30, s31 )   

    net.addLink( s31, s32 ) 

    net.addLink( s32, s33 ) 

    net.addLink( s33, s34 ) 

    net.addLink( s34, s35 ) 

    net.addLink( s35, s36 ) 

    net.addLink( s36, s37 ) 

    net.addLink( s37, s38 ) 

    net.addLink( s38, s39 ) 

    net.addLink( s39, s40 ) 

    net.addLink( s40, s41 )     

    net.addLink( s41, s42 ) 

    net.addLink( s42, s43 ) 

    net.addLink( s43, s44 ) 

    net.addLink( s44, s45 ) 

    net.addLink( s45, s46 ) 

    net.addLink( s46, s47 ) 

    net.addLink( s47, s48 ) 

    net.addLink( s48, s49 ) 

    net.addLink( s49, s50 ) 

    net.addLink( s50, s51 ) 

    net.addLink( s51, s52 ) 

    net.addLink( s52, s53 ) 

    net.addLink( s53, s54 ) 

    net.addLink( s54, s55 ) 

    net.addLink( s55, s56 ) 

    net.addLink( s56, s57 ) 

    net.addLink( s57, s58 ) 

    net.addLink( s58, s59 ) 

    net.addLink( s59, s60 ) 

    net.addLink( s60, s61 ) 

    net.addLink( s61, s62 ) 

    net.addLink( s62, s63 ) 

    net.addLink( s63, s64 ) 

    net.addLink( s64, s65 ) 

    net.addLink( s65, s66 ) 

    net.addLink( s66, s67 ) 

    net.addLink( s67, s68 ) 

    net.addLink( s68, s69 ) 

    net.addLink( s69, s70 ) 

    net.addLink( s70, s71 ) 
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    net.addLink( s71, s72 ) 

    net.addLink( s72, s73 ) 

    net.addLink( s73, s74 ) 

    net.addLink( s74, s75 ) 

    net.addLink( s75, s76 ) 

    net.addLink( s76, s77 ) 

    net.addLink( s77, s78 ) 

    net.addLink( s78, s79 ) 

    net.addLink( s79, s80 ) 

    net.addLink( s80, s81 ) 

    net.addLink( s81, s82 ) 

    net.addLink( s82, s83 ) 

    net.addLink( s83, s84 ) 

    net.addLink( s84, s85 ) 

    net.addLink( s85, s86 ) 

    net.addLink( s86, s87 ) 

    net.addLink( s87, s88 ) 

    net.addLink( s88, s89 ) 

    net.addLink( s89, s90 ) 

    net.addLink( s90, s91 ) 

    net.addLink( s91, s92 ) 

    net.addLink( s92, s93 ) 

    net.addLink( s93, s94 ) 

    net.addLink( s94, s95 ) 

    net.addLink( s95, s96 ) 

    net.addLink( s96, s97 ) 

    net.addLink( s97, s98 ) 

    net.addLink( s98, s99 ) 

    net.addLink( s99, s100 ) 

    net.addLink( s100, s101 ) 

    net.addLink( s101, s102 ) 

    net.addLink( s102, s103 ) 

    net.addLink( s103, s104 ) 

    net.addLink( s104, s105 ) 

    net.addLink( s105, s106 ) 

    net.addLink( s106, s107 ) 

    net.addLink( s107, s108 ) 

    net.addLink( s108, s109 ) 

    net.addLink( s109, s110 ) 

    net.addLink( s110, s111 ) 

    net.addLink( s111, s112 ) 

    net.addLink( s112, s113 ) 

    net.addLink( s113, s114 ) 

    net.addLink( s114, s115 ) 

    net.addLink( s115, s116 ) 

    net.addLink( s116, s117 ) 

    net.addLink( s117, s118 ) 

    net.addLink( s118, s119 ) 

    net.addLink( s119, s120 ) 

    net.addLink( s120, s121 ) 
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    net.addLink( s121, s122 ) 

    net.addLink( s122, s123 ) 

    net.addLink( s123, s124 ) 

    net.addLink( s124, s125 ) 

    net.addLink( s125, s126 ) 

    net.addLink( s126, s127 ) 

    net.addLink( s127, s128 ) 

     

    print "*** Starting network" 

    net.build() 

    c1.start() 

    c2.start() 

    c3.start() 

    c4.start() 

 

    s1.start( [ c1, c2, c3, c4 ] ) 

    s2.start( [ c1, c2, c3, c4 ] ) 

    s3.start( [ c1, c2, c3, c4 ] ) 

    . 

    . 

    . 

    s128.start( [ c1, c2, c3, c4 ] ) 

 

    print "*** Testing network" 

    #net.pingAll() 

    h1, h2  = net.hosts[0], net.hosts[1] 

    print h1.cmd('ping -c15 %s' % h2.IP()) 

    h1, h10  = net.hosts[0], net.hosts[9] 

    print h1.cmd('ping -c15 %s' % h10.IP()) 

    h1, h20  = net.hosts[0], net.hosts[19] 

    print h1.cmd('ping -c15 %s' % h20.IP()) 

    h1, h40  = net.hosts[0], net.hosts[39] 

    print h1.cmd('ping -c15 %s' % h40.IP()) 

    h1, h60  = net.hosts[0], net.hosts[59] 

    print h1.cmd('ping -c15 %s' % h60.IP()) 

    h1, h80  = net.hosts[0], net.hosts[79] 

    print h1.cmd('ping -c15 %s' % h80.IP()) 

    h1, h100  = net.hosts[0], net.hosts[99] 

    print h1.cmd('ping -c15 %s' % h100.IP()) 

    h1, h120  = net.hosts[0], net.hosts[119] 

    print h1.cmd('ping -c15 %s' % h120.IP()) 

     

    print "testing bandwidth between h1 and hn" 

    h1, h2 = net.get( 'h1', 'h2' ) 

    net.iperf((h1, h2)) 

    h1, h10 = net.get( 'h1', 'h10' ) 

    net.iperf((h1, h10)) 

    h1, h20 = net.get( 'h1', 'h20' ) 

    net.iperf((h1, h20)) 

    h1, h40 = net.get( 'h1', 'h40' ) 
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    net.iperf((h1, h40)) 

    h1, h60 = net.get( 'h1', 'h60' ) 

    net.iperf((h1, h60)) 

    h1, h80 = net.get( 'h1', 'h80' ) 

    net.iperf((h1, h80)) 

    h1, h100 = net.get( 'h1', 'h100' ) 

    net.iperf((h1, h100)) 

    h1, h120 = net.get( 'h1', 'h120' ) 

    net.iperf((h1, h120)) 

        

 

    print "*** Running CLI" 

    CLI( net ) 

 

    print "*** Stopping network" 

    net.stop() 

 

if __name__ == '__main__': 

    setLogLevel( 'info' )  # for CLI output 

    multiControllerNet() 

 


