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I 

 

Abstract 
 

This research provides a robust solution based on artificial intelligence (AI) 

techniques to overcome the challenges in Software Defined Networks (SDNs) that can 

jeopardise the overall performance of the network. The proposed approach, presented in the 

form of an intelligent agent appended to the SDN network, comprises of a new hybrid 

intelligent mechanism that optimises the performance of SDN based on heuristic optimisation 

methods under an Artificial Neural Network (ANN) paradigm.  Evolutionary optimisation 

techniques, including Particle Swarm Optimisation (PSO) and Genetic Algorithms (GAs) are 

deployed to find the best set of inputs that give the maximum performance of an SDN-based 

network. 

The ANN model is trained and applied as a predictor of SDN behaviour according to 

effective traffic parameters. The parameters that were used in this study include round-trip 

time and throughput, which were obtained from the flow table rules of each switch. A POX 

controller and OpenFlow switches, which characterise the behaviour of an SDN, have been 

modelled with three different topologies. Generalisation of the prediction model has been 

tested with new raw data that were unseen in the training stage. The simulation results show a 

reasonably good performance of the network in terms of obtaining a Mean Square Error 

(MSE) that is less than 10−6. Following the attainment of the predicted ANN model, 

utilisation with PSO and GA optimisers was conducted to achieve the best performance of the 

SDN-based network. The PSO approach combined with the predicted SDN model was 

identified as being comparatively better than the GA approach in terms of their performance 

indices and computational efficiency. 

Overall, this research demonstrates that building an intelligent agent will enhance the 

overall performance of the SDN network. Three different SDN topologies have been 

implemented to study the impact of the proposed approach with the findings demonstrating a 

reduction in the packets dropped ratio (PDR) by 28-31%. Moreover, the packets sent to the 

SDN controller were also reduced by 35-36%, depending on the generated traffic. The 

developed approach minimised the round-trip time (RTT) by 23% and enhanced the 

throughput by 10%. Finally, in the event where SDN controller fails, the optimised intelligent 

agent can immediately take over and control of the entire network. 
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1. Chapter One: Introduction 

1.1. Preliminaries to Programmable Network 

The standard computer network is constructed using multiple network devices, which 

are associated with very complex system rules. They include switches, routers, and several 

other types of middle boxes. The term ‘middle box’ refers to a component that modifies or 

influences traffic for an objective unrelated to packet forwarding, such as a firewall. It is the 

job of the network administrator to create policies and rules that are compatible with a broad 

variety of network conditions and scenarios. This is achieved by manually creating low level 

configuration requests out of high end policies. The problem is that administrators usually 

have to fulfil all of these goals with only a small number of basic resources. At the same time, 

they must ensure that the devices are flexible enough to be able to handle inconsistent 

conditions. Normally, network devices are vertically assimilated black boxes. As a result, the 

incidence of errors is high and the obstacles that network managers have to overcome are 

plentiful. These are just some of the reasons why network maintenance and construction is 

such a difficult job. 

One important obstacle that network managers and creators struggle with is called 

‘internet ossification.’ Ultimately, the internet is almost impossible to develop manually and 

to enhance, due to the enormous size of its deployment base and the increasing dependency 

we are putting on its resources (as an essential component of our social infrastructure). This 

applies to its rules, policies, guiding principles, general performance, and physical 

requirements. As existing and future internet applications and tools grow ever more 

sophisticated, the need for their development is becoming increasingly urgent. According to 

many experts, this kind of ossification is an almost insuperable issue, one that still has no 

obvious solution.     

However, a potential solution has been proposed in the form of ‘programmable 

networks’, with some technology experts believing that they can support and enrich network 

development. The primary objective is to give software developers an opportunity to utilise 

network tools in the same uncomplicated, productive way they can with other computing and 

data storage resources. SDN works by logically positioning network data in software based 

controllers (the control plane) and consequently, the network components function as basic 

packet forwarding tools (the data plane), which can be configured with the use of an open 

interface [1].  
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Much attention is being paid to Software Defined Networking (or SDN), which is a 

very young technology that can provide a networking paradigm such that the forwarding 

hardware is not inextricably linked to control actions. The result is faster and more efficient 

network management, requiring less time and fewer resources. The implication is that it 

could also allow for consistent, regulated development and innovation. 

Over the last decade, artificial intelligence and soft computing strategies have played 

an increasingly important part in the construction of contemporary networks (smart transport 

systems, for example). The introduction of these capabilities provides opportunities for 

enhancing the quality and integrity of existing computer networks. It is opening the door to 

novel ways of solving both cutting edge network problems (associated with SDN). In sum, 

the assimilation of AI strategies and the abstraction construct of the SDN paradigm has the 

potential to produce more versatile activity from network components.  

 

1.1.1. Concepts of Programmable Network 

The growing popularity of big data science and cloud servers is placing even more 

strain on traditional network structures. These require precision grained regulation of server 

to server networking, as well as enhanced stability, safety, and easy functionality. Similarly, 

it is becoming more common for applications to range across multiple databases and even 

servers that are geographically distinct and isolated from one another. As a result, basic user 

to server processes are now dwarfed by the amount of traffic produced by server to server 

interactions. Increasingly, these strains are being overcome through the use of SDN, which 

allows for network owners swapping the manual interface for a programmable version. This 

supports the automation of processes and actions (for example, policy regulation and 

configuration), being also a good way of helping networks to react faster to a variety of 

application requests.      

The purpose of network programming scenarios and conditions is to offer the 

provisions required to program novel network structures in an efficient, versatile manner. The 

way to identify a programmable network from a conventional one is to determine whether it 

has the capability of being configured via a marginal series of APIs, from which a practically 

unlimited variety of high end services can be constructed. Crucially, network programming 

scenarios cannot provide fundamental network algorithms with the ability to describe and 

distinguish network structures (for signalling or routing, for example). So, for such scenario a 
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series of network programming interface hardware, which supports the design and creation of 

network structures is required. From an abstract perspective, it is the equivalent of using 

software development ‘toolboxes’ to create novel applications, although, the application is 

actually a network structure in this context [2]. 

 

1.1.2.  Traditional Network Architecture 

As the amount of components and requests relating to the Internet of Things (IoT) and 

cyber physical frameworks increases, information and communication technology resources 

must continue to develop and evolve [3], [4]. In fact, a number of researchers have proved 

that conventional (older) networks are no longer sophisticated enough to fulfil rapidly 

expanding demands. One of the reasons for this is that the network devices are vertically 

assimilated and this creates a multifarious system that is very difficult to maintain [5], [6]. 

Conventional networks are only robust enough to facilitate vendor specific protocols [5], [1]. 

When it comes to fast moving network conditions, they simply do not provide a reasonable 

degree of adaptability.   

The reality is that all computer networks can be tricky to maintain. They include a 

large number of components; everything from switches to routers, attack detection systems, 

firewalls, server load balancers, address translators, and more. The switches and routers 

depend on intricate, carefully configured control policies, which are normally private and 

exclusive to the network owner. These policies apply network protocols that will pass 

through an enormous amount of interoperability and standardisation evaluations. It is 

common for network managers to construct separate network components via the use of 

configuration interfaces. However, the exact nature of these interfaces depends on the 

company that originally created them. In fact, distinct variations often exist among interfaces 

designed by the same company as well. While network management resources sometimes 

provide a primary stance from which the network can be constructed, systems of this kind do 

still function according to separate configuration interfaces, rules, policies, and components. 

It is this limited system that is preventing internet infrastructures from developing further. It 

has made network management substantially more challenging and raised operating costs.  

The underlying weakness of conventional network structures is that they continue to 

be inflexible. Consequently, opportunities for their development are few, particularly when it 

comes to network management, regulation, safety, scalability, error tolerance, virtualisation, 
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programmability, and automation. To provide a potential solution, some experts propose a 

different method of broadening network regulation and influence. The strategy is mostly 

based on the idea that reconfiguring standalone computer systems is a simple task. At the 

moment, managers, operators, and users do not have a lot of influence and there is not a lot of 

focus beyond just attempting to fulfil current working requirements. So, a viable solution is 

becoming increasingly important [7]. Over the last decade, Software Defined Networking 

(SDN) has emerged as the most suitable replacement for older networking structures, offering 

fast, dynamic, and adaptable network management. Furthermore, it converts overly intricate 

network structures into much more controllable versions [8].  

This substantial degree of adaptability and versatility, as compared with traditional 

hardware, is one of the reasons why SDN is such a promising prospect. It should be pointed 

out that traditional networks cannot be ‘programmed’ in any valuable way, which is why 

active networking represents a much needed and very innovative form of network regulation. 

It involves a programmable interface (or network API) that uncovers resources (packet 

queues, processing, storage, etc.) on the separate network nodes [7]. The aim is to facilitate 

the creation of bespoke functions which can be combined with the subsets of packets that 

travel through the nodes.  

To summarise, SDN is a rapidly developing paradigm with the ability to overcome the 

limitations of vertical assimilation in older networks. The objective is to increase adaptability 

as a way to facilitate the configuration of networks via centrally positioned (logical) network 

policies and protocols. Crucially, SDN is able to modify its network parameters very quickly 

by utilising information provided by the networking conditions or scenario. Furthermore, the 

standalone framework of SDN offers an improved approach to network management, leading 

to the creation of more efficient and easy to handle systems. The centrally positioned cost 

efficient structure offers greater network transparency and this supports the productive use of 

resources as well as the strengthening of performance. As a result of the progressively 

persistent presence of ‘intelligent’ programmable components within networks, SDN is 

needed improving safety and energy efficacy, whilst also enhancing network virtualisation.   

  

1.1.3.  Cognitive System  

Recently attention has been drawn to Cognitive network as a promising  technology to 

improve the performance of the network by distributes the system resources efficiently. 
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Over the last ten years, the scope and quality of communication networks has 

increased at a rapid rate. This is particularly true when it comes to mobile technologies and 

commercial IP networks (such as Long Term Evolution [LTE] or Universal Mobile 

Telecommunications Systems [UMTS]). For one thing, consumer demand for network 

resources has expanded and the range of services offered has been diversified to meet it. 

Consequently, the amount of network nodes has expanded too. In many cases, the movement 

of users presents a big challenge. Modern mobile traffic requires super-fast responses and the 

ability to maintain performance across broad geographical expanses. To achieve this, the 

paradigm of network management and application needs to be improved. Furthermore, most 

services present distinct traffic requests and some (such as cloud solutions and video 

streaming) depend on very fast connections as well as a high degree of stability and 

consistency [9] .  

In previous years, the application of new networks was only possible after a period of 

meticulous designing, testing, and preparation. The purpose of this was to ensure long term 

viability and simultaneously, to accommodate for the existing and future (forecasted) 

demands of end users. The problem is that all of the challenges discussed in previous sections 

(growing number of users, more pressure on traffic, etc.) serve to make this period of 

preparation obsolete. The only real alternative is the reactive and adaptive regulation of 

networks as a way to facilitate the flexible distribution of resources and the universal 

streamlining of network functions. Normally, network managers are most concerned with 

configuring them correctly, streamlining performance, and overcoming errors and challenges 

to security. It should be pointed out that there is another obstacle associated with the rapid 

expansion of network nodes, end users, and services, which is the old, unsophisticated 

manner in which networks are currently maintained and regulated [10].  

Only a handful of management tasks and activities are fully automated. As a response 

to this limitation, the notion of Cognitive Systems was developed. It pertains to focusing on 

consistent evaluations of the network and the application of logical, valuable choices based 

on network conditions. The problem with traditional systems of management is that they are 

based on what is known as ‘quasi static’ approaches, i.e. they prioritise centralised solutions, 

with the human facilitator making an essential contribution. SDN, and other systems like it, 

depend on reliable algorithms. They are designed to fulfil previously established objectives 

relating to network maintenance and regulation. Consequently, a suitable control theory or 

some other type of reactive optimisation strategy is needed for their successful application. 
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The thing to remember is that networks must function as efficiently as possible. This 

means that any concerns about the reliability and stability of cognitive algorithms are a major 

issue. It is certainly possible for heuristically oriented and control theory based algorithms to 

be incorporated into network regulation and autonomic management systems. Nevertheless, 

because the network processes are so intricate, the identification of suitable algorithms and 

the refining of their parameters are either extremely tough or completely impossible. One 

possible answer is to employ cognitive strategies, which are algorithms with the capacity to 

learn and adapt. They are a very promising prospect, inspired from how the living human 

being dealt with problems and solutions. Cognitive techniques consist of numerous 

algorithms, which based on huge learning system. The algorithms are including neural 

networks, machine learning, evolutionary algorithms, knowledge based on system and 

several other methods. The main characteristics of them are studying the problem 

environment and taking decision according to analyzing results of earlier decisions [8].  

 

1.2. Future Internet Architectures and the Internet of Things  

Ultimately, the expansion of Internet of Things (IoT) has presented ever more 

challenging requirements for both internetworking and networking systems. For example, 

there is the matter of allowing interactions between components linked to heterogeneous 

networks. The overall level of adaptability and configurability provided by SDN technologies 

is hindering the progress of network development. However, it has the potential to benefit 

network regulation enormously by creating new forms of interaction through the provision of 

robust (but easy to use) switching components (forwarders). These components are able to 

utilise any individual field of a message or packet to identify the outgoing port that will 

receive it. Capabilities like these are relevant to IoT, because they are likely to eliminate 

many of the problems which it has created. It should be noted that every IoT item 

(component or related ‘thing’) is shaped, designed, and constructed to fulfil a very particular 

purpose. Additionally, the conditions (in their entirety) in which some items exist are 

normally constructed with a specific goal or role in mind. Consequently, in order to realise 

the benefits in full, networks have to be willing to embrace heterogeneity as part of 

networking processes, fundamental policies, and networking components [11].  
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From a wider perspective, IoT involves comprehensive interactions between multiple 

heterogeneous networks, the items that exist within them, the conditions of their existence, 

the top and bottom layer policies that define them, and even the distinct goals that they are 

designed to fulfil. The best way to achieve all of this is with the application of a shared 

protocol for each of the conditions, scenarios, and items. It is what the IoT is based on and 

what continues to define its evolution, particularly now that IPv6 is emerging. The problem is 

that there are still some major challenges to overcome and a long way to go before many of 

these concepts and proposals become workable systems. Items, conditions, rules, and 

protocols are constructed to fulfil precise goals, which means that when attempting to apply a 

shared protocol, this may not even be a viable process and any reduction in central 

heterogeneity at the network level is going to cause major faults [12]. 

Then, on the other side of the argument, there is SDN. It embraces the comprehensive 

configurability of network components, in relation to both middle and end point constructs. 

To realise in full such an enormous endeavour, a number of general strategies for isolating 

data and control planes within the routing and switching components have been developed. 

They depend on the streamlining of middle point network components and converting them 

into basic, easy to use, packet forwarders. To fulfil the network goals, a refined general 

control policy is used to apply them, in accordance with the required forwarding principles.   

When considering the attributes of SDN, particularly from an IoT viewpoint, it is 

important to ask what part it has to play in the maintenance of heterogeneous networks and 

items. This is not the only requirement it must fulfil, for it also needs to contribute to a 

broader, stronger collaborative system by introducing a higher layer control solution to the 

network [13]. This solution should be able to communicate efficiently with the SDN 

controllers. It should be noted that the SDN approach suggests the construction of a 

conceptually centrally positioned ‘brain’, with a working knowledge of the conditions and 

topology of the network. The brain is responsible for making choices related to packet 

forwarding. It converts these selections into new forwarding protocols and delivers them to 

all of the relevant forwarding components. 

 

1.3.  Motivations 

 In recent years, researchers have shown an increased interest in enhancing network 

performance. The continued evolution of network applications and the ability of many 
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devices operate from the same location shows that networking requirements have become 

substantially more sophisticated. Today, internet traffic is a lot more expansive and 

demanding, with increasingly complex needs, particularly in an age where big data reigns 

supreme. Now, thousands of end point devices can communicate and access different types of 

network traffic, with these intricate patterns being too fast paced for traditional networking 

systems to handle. This is why contemporary data facilities need to be highly adaptable and 

capable of growing to meet changing demands. Furthermore, new approaches to networking 

are essential.   

When traffic rapidly increases, there is a risk of network congestion. The danger here 

is that intolerable levels can lead to an unreliable service and, potentially, lost information. It 

may be possible to remedy the issue and deal with some of the other vulnerabilities by upping 

the bandwidth and creating additional channels for the data to travel down. Nevertheless, the 

amount of information that businesses are required to handle has also increased 

exponentially. The result is a greater degree of pressure and responsibility for network 

operators, particularly when it comes to providing a high quality user interface. 

Unfortunately, boosting bandwidth is a costly process, particularly when you have to do it for 

every single network component; it simply is not affordable in most cases. It certainly is not 

value for money at times when the amount of traffic is only moderate.  

The Software Defined Network, however, has the potential to provide intelligent data 

monitoring and optimised traffic management. It also makes it possible to gather centralised 

data from the entire network. Moreover it makes automation, regulation, and reconfiguration 

easier than ever before. If used correctly, it promises sustainable solutions for all of the issues 

described. Essentially, the SDN model unchains network controls from the forwarding/data 

plane within the network devices and instead, offers a centralised form of control. 

Consequently, the core networking structure can be shifted and adapted to fit different types 

of service and application. 

When huge volumes of data are combined with intelligent computing systems, 

information is interpreted much faster and this helps network operators to make smarter, 

more dynamic decisions. Consequently, the assimilation of machine learning/artificial 

intelligence with SDN architectures is a highly valuable resource and it can substantially 

increase the integrity and reliability of networks. Currently, artificial intelligence is a great 

way to observe the activities and responses of SDN applications and virtual machines. If 
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problems or vulnerabilities are identified, it is easier to make rapid choices regarding the 

optimal solution.  

1.4. Research Aim and Objectives 

The aim of this study is the notion (and application) of bringing SDN together with AI 

strategies and approaches to networking. A new intelligent approach of selecting the 

optimum flow rules parameter set that is proposed depends on Artificial Neural Networks 

(ANN), Genetic Algorithms (GAs) or Particles Swarm Optimisation (PSO) to achieve the 

best performance in an SDN network. It is hoped that this will lead to the discovery of 

adaptive behaviours for modern network components. To fulfil this goal, several objectives 

have been pursued to find the potential solutions to meet this aim:  

 Simulating the SDN network: By Mininet emulation, three different topologies were 

generated with different numbers of switches and hosts. 

 Data Collection: For three hours, three recommended SDN topologies were run and 

when finished, comprehensive sets of data were gathered for all three. 

 Data analysis: Prior to the training phase, the data that had been gathered were 

analysed and pre-processed. The datasets were divided into inputs and outputs, being 

subsequently randomly split into three subcategories: training set (70%), testing set 

(15%) and validation set (15%). 

 ANN Training: The training set data which had been studied was supplied as input 

for the ANN, which meant the latter could output a prediction in advance of the 

optimisation period, The table parameters from OpenFlow acted as the input data, 

while the output of the ANN was shown by latency and throughput. 

 Data Post-Processing and Testing: The forecast ANN output was proven with 

concealed raw data (validation set) in order to authenticate the ANN training. Its 

accuracy was established using the testing dataset.  

 Data Optimisation: In order to ascertain which is the optimum OpenFlow rule table 

set of the SDN network, the established ANN output was used to run two distinct 

optimisation techniques. These EAs were evaluated alongside one another to verify 

which parameter was more effectual when implemented in the above approach. 
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1.5. Contributions to Knowledge 

As understand here, this work makes many vital contributions across numerous 

crucial areas. The outcomes of this study enhance current knowledge of OpenFlow rule table 

optimisation in the following ways. 

 

1. Predicting SDN network behaviour 

As a means to select the optimum ANN topology and Levenberg-Marquardt (LM) 

learning algorithm, ANN with a comprehensive search can be deployed. The 

proficient neural network improves the understanding of SDN performance 

behaviour. Principally, in terms of its capability of permitting elevated levels of 

traffic, the ANN provides an uncomplicated way of predicting the effectiveness of 

SDN systems. This novel, hybridised, framework is created with a variety of distinct 

topologies. The proposed solution has the capability of both creating and maintaining 

excellent input/output interactions among complex, non-linear tasks.  

2. Presenting an intelligent optimiser for an SDN network 

In order to increase the network throughput and decrease the end-to-end delay with 

relative an innovative and advanced form of hybridised networking, with the aim of 

improving productivity and efficacy in relation to SDN architectures, is implemented. 

This is achieved by the adoption of empirical alterations and the incorporation of new 

neural paradigms. Sophisticated streamlining methods, including Genetic Algorithms 

(GAs) and Particle Swarm Optimisation (PSO), are deployed as ways of identifying 

the optimal arrangement of inputs for ensuring high level performance. As described, 

the proposed framework had to be scrutinised and put to the test by introducing a 

small amount of previously unseen content. Following this, it was combined with GA 

and PSO to discover the most beneficial integration of systems and components 

between the two. The results show that SDN with PSO provides this, because when 

assimilated they perform at an accelerated level, with fewer inaccuracies and 

congestion problems than with the other arrangement. The performance comparison 

of PSO and GA is implemented using MATLAB 2017a. 

3. Identify a suitable method for directing surplus traffic 

The risk of congestion can be lowered by smart steering principles, which are used to 

enhance network throughout and optimise resource allocation.  

4. Avoiding traffic congestion and the bottleneck problem 

When packets have to be updated two or even three times, this holds up movement in 

the rest of the network and leads to delays.  Consequently, it is also necessary to 
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minimise the number of packets lost and to decrease the drop ratios. This is achieved 

by avoiding traffic congestion. Ultimately, the goal was to make sure that as few 

packets as possible are being directed back to the controller to avoid the bottleneck 

problem that can occurs in the SDN controller.  

5. Improve controller reliability 

The SDN controller lessens the general network accessibility in SDN, and does so by 

exhibiting a single point of stoppage. Nonetheless, the entire network is susceptible to 

collapse when a crucial controller crashes in an SDN network. The suggested method 

could work as a support smart controller, that is to say, if the main controller fails and 

the support controller has the same information about the networks, it can make 

cognitive decisions on its behalf.  

1.6. Organization of the Thesis 

 Chapter two: Presents the background information for legacy networks and 

architecture of SDN networks, followed by SDN challenges and the related works 

regarding the thesis and how of using soft computing is implemented in an SDN 

network. 

 Chapter three: Describes the experimental tools and the topologies adopted for this 

research, in detail, as well as the controller and traffic generation tools. Also, it 

introduces a performance prediction scheme for an SDN-based network using 

different ANN topologies. Finally, it provides the experimental results with their 

corresponding analysis. 

 Chapter four: Introduces the way to optimise a hybrid intelligent system for SDN. In 

addition, two evolutionary based optimisation methods, namely, genetic algorithms 

and particle swarm optimisation are introduced. All these intelligent-based 

approaches are employed in this thesis to enhance network performance by using 

intelligent controllers.  

 Chapter five: Describes the different types of routing protocols used in SDN and 

gives an explanation of the proposed solution of a smart slow steering agent in such 

networks. In addition, a comparison of the SDN network performance with the 

proposed intelligent SDN controller is illustrated.  

 Chapter six: Provides a summary of the thesis, conclusions and suggestions for future 

research avenues.  
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2.  Chapter Two: Literature Survey and Related Works 

2.1. Introduction 

Traditional (older) networks depend on specialised algorithms, which are applied to 

particular components (hardware devices) as a way to regulate and observe the movement of 

information. They can also organise and supervise routing channels as well as making 

decisions about how many components can be linked to the network [14]. Normally, routing 

algorithms of this kind are used in conjunction with hardware devices like Application 

Specific Integrated Circuits (ASIC), which are constructed to fulfil a targeted goal or 

purpose.  

Take packet forwarding, for instance. When it comes to older networks, the receipt of 

a packet from a routing component triggers the application of a series of protocols positioned 

deep inside the firmware. These protocols identify the destination component and the routing 

channel which the packet has taken. Crucially, high end routers are able to choose whether or 

not packets are handled in certain ways, as a result of their makeup and information type. 

Normally though and certainly when it comes to basic, low end routers, all data packets 

bound for the same location are treated in the same way.  

A Cisco routing device, for instance, enables a user to determine the objectives of 

different flows via modified local router programming techniques. Consequently, it is 

possible to intervene directly in the formation of router queues. To be precise, a tailored, 

bespoke local router structure facilitates superior management of traffic and helps users to 

position their goals and demands in order of urgency. However, a weakness associated with 

this approach is the restriction of existing network components when in the presence of 

elevated network traffic. This has the potential to cause serious problems and substantially 

degrade overall performance. The faster network traffic increases, the bigger the challenges 

relating to safety, dependability, stability, scalability and efficiency become.    

It remains very difficult to reconfigure and reorient conventional network processes. 

Older networking components are not dynamic or flexible enough to handle differing packet 

types or varying packet contents. This is because the routine protocols are so rigidly applied 

and embedded with no real room for adaptability [15]. It is a major limitation, as the 

networks (which form the very heart of the internet) must have the capacity to respond to 
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shifting networking conditions [16]. They must be able to do this without consuming huge 

amounts of time and resources.  

One potential answer is to stop applying data handling protocols as embedded 

elements of the hardware and to start treating them as software modules instead. 

Interestingly, this idea returns to the concept of Software Defined Networking [4].  It was 

initially constructed by Nicira Networks and it has its roots in tests and experiments 

performed by researchers at Princeton, Stanford, and CMU [14]. This approach would give 

network managers a lot more power over network traffic. Consequently, they would have the 

opportunity to enhance substantially the efficiency of the network and to ensure that it is 

making full use of its allocated resources.  

The primary purpose of SDN is to enable transparent user controlled regulation of the 

forwarding hardware within a network [17]. It takes advantage of opportunities to isolate the 

control plane from the data plane inside switches and routers. It should be pointed out that the 

control plane may be made out of a single or several controllers [18], the exact number being 

determined according to the size of the network. The job of the data plane is to receive 

requests and information from the control plane and to apply them as required to the 

hardware [19]. When several controllers are present, they are able to construct highly 

efficient and dependable peer to peer network protocols. Whether single or multiple, all of the 

switches associated with a data plane must provide the same information. The system offers a 

comprehensive (but simple) perspective on the complete network and it allows users to 

implement universal modifications without the need for device specific programming. The 

switches of the data plane are expected to monitor the flow tables, which are also regulated 

by the controllers. Yet, their only truly essential responsibility is to pass information between 

themselves. So, the switches are strained more than is necessary, because they are involved 

with control processes even though this is not strictly a requirement.  

Around thirty years ago, some network operators were using highly specialised 

systems (like cloud storage) to separate the network operating architecture (equivalent to the 

control processes of the SDN control plane) from the more resource and time heavy requests 

(equivalent to the movement of information to the data plane). Hence, the truth is that the 

ideas and constructs relating to SDN are not entirely novel and they have actually been 

around for quite some time. Currently, cloud technologies allow network storage and 

computation without the need for local resources. This separation of data and control planes 

is an essential part of the most sophisticated, wide ranging networking systems. Ultimately, 
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SDN leads to greater network efficiency and productivity, with a particular focus on 

streamlined network maintenance, information handling, and network regulation [6]. For all 

of these reasons, it is a viable way to mitigate the issues facing older networks. It is good 

news, then, that SDN is growing in popularity and appeal all the time [20] (see Figure 2-1). 

SDN is becoming an increasingly common element of cloud software and solutions, 

as well as commercial data centres. When it is applied, network managers have the 

opportunity to exert a greater influence over the movement of information. It also allows 

them to modify the attributes of routing and switching components within a network from a 

principal position [10]. As a result, it becomes possible to make random modification to 

routing channels. Furthermore, they get to enjoy an additional level of influence over the 

network information and can order goals and objectives in accordance with their urgency 

[13]. They may also choose to permit or deny specific data packets, depending on what they 

are trying to achieve.  When control applications are handled as if they were software 

modules, a manager no longer needs to make decisions for each component in turn.    

When SDN is considered from the viewpoint of cloud technology, it is clear that it 

can offer enormous advantages. For one thing, it allows cloud vendors to utilise a broad range 

of components. Usually, mainstream vendors like Amazon and Google have no choice but to 

source high end routers and switchers from one single supplier. This is so they can quickly 

reprogram the routing parameters and ensure that all of the components are compatible. 

Ultimately though, every system seems to have its strengths and weaknesses [8]. Certainly, 

no supplier is perfect, but purchasing from one source negates the need to apply custom 

settings to every new component. However, it is now possible to use SDN to reconfigure 

resource or routing allocations rapidly via a cloud vendor. In addition, it allows cloud users to 

get even more value out of cloud based tools and resources as well as to carry out tests and 

trials involving virtual flow slices. These are legitimate solutions, if all of the routers used by 

the company adhere to SDN requirements.   

A communications network forms the backbone of any successful organisation. These 

networks transport a multitude of applications, including real-time voice, high-definition 

video and delay-sensitive data. Networks must provide predictable, measurable and, 

sometimes, guaranteed services by managing throughput, delay, jitter and loss parameters on 

a network. 
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QoS technologies refer to the set of parameters such as throughput, delay, PDR, and 

many others. The objective of QoS technologies is to make voice, video and data 

convergence appear transparent to end users. QoS technologies allow different types of traffic 

to contend inequitably for network resources. Voice, video, and critical data applications may 

be granted priority or preferential services from network devices so that the quality of these 

strategic applications are not degraded to the point of being unusable.   

In network, the loss of data is one of the more detrimental effects of a network 

congestion problem. As an example, packet loss, where data packets are lost in transmission, 

causes poor video quality, bad VoIP service, and online gameplay to react slowly. 

Accordingly, network congestion causes packet loss when an Internet route becomes 

saturated. The full Internet route allows no further data to be transmitted. The result is data 

packets will not make it to the receiving computer. In this study we try to enhance the QoS of 

the network to reach a higher quality service in network applications. 

 

https://datapath.io/resources/blog/causes-of-packet-loss/
https://datapath.io/resources/blog/what-is-acceptable-voip-jitter/
https://datapath.io/resources/whitepapers/online-gaming-performance-whitepaper/
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Figure 2-1 Comparison of a traditional network and SDN network 

 

2.2. Software Defined Networking Architecture 

The aim of SDN is to allow the network to transition to an explicitly programmable 

state and make the core infrastructure available for abstraction, as a way to streamline 

network services and applications further. The Open Networking Foundation ONF describes 

it as ‘an evolving network structure which separates the forwarding processes from the 

network controls [8]. 

SDN controllers always feature centrally positioned (logically) network cognisance, 

because it provides a broad, clear picture of the network in its entirety, which ensures 

efficiency, stability, and ease of use. When it comes to a network structure like this, the 
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cognitive features extract information from the networking components and regulate the 

network as a cohesive, unified system. This is achieved with the addition of the centralised 

controller. Normally, the controller operates via a remote commodity server and interacts 

across a secure connection, with the forwarding engines adhering to a series of standardised 

rules. The objective is to convert the infrastructure components into basic forwarding engines 

with the ability to receive and interpret inbound packets [21]. They do this according to a 

series of parameters created in a rapid, reactive manner by either one or multiple controllers. 

This occurs at the control level and relies upon a degree of previously established program 

logic.  

Refer to [22], where ONF is provided as an example of a high end SDN networking 

structure divided into three vertical levels, as illustrated in Figure 2-2. The three illustrated 

layers are the Application layer and Northbound Application Programming Interface (API), 

Control layer and Infrastructure layer.  

 

Figure 2-2 Block diagram architecture of a software defined network (SDN) 
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2.2.1 Application Layer and Northbound Application Programming 

Interface (API) 

As shown in Figure 2-2 the application level is the most important for the SDN. It 

interacts with the control level, via the use of an Application Control Plane Interface (or 

ACPI), which in some literature is referred to as the ‘northbound application interface’ [23]. 

It plays an essential role, because it is tasked with managing and regulating software based 

security and business requests. Some common examples of applications like this include 

firewalls, network virtualisation, intrusion prevention systems (IPS), mobility management 

and Intrusion Detection Systems (IDS).  

When it comes to exploring the application level, existing literature on the subject 

tends to take one of two approaches. The first involves focusing on the role of SDN 

applications as a way to regulate particular networking conditions (also known as ‘use cases,’ 

in this context). The second is concerned with the value of SDN applications for regulating 

particular network processes and objectives.  

A) SDN Applications: Within this level, the SDN requests and processes 

communicate with the controllers as a way to fulfil precise network objectives. 

The processes can be grouped into different types of network ability or form. The 

most common are universal access control lists (U-ACAL), load balancing (LB), 

traffic engineering (TE), security, and quality of service (QoS). The overarching 

goal is to meet the demands and requirements of the network owner.   

 

B) SDN Use cases: In contrast, some SDN applications are created to fulfil a 

particular purpose, while being subject to a specific scenario or set of conditions. 

Areas in which SDN has been used in this way include Network Function 

Virtualisation (NFV), Information Content Networking (ICN), cloud solutions, 

mobile networks, and network virtualisation.  

The involvement of the northbound interface offers a stable, consistent way for 

network operators and application developers to utilise SDN services and carry out important 

network maintenance roles [24]. In some cases, it is compatible with a broad range of 

controllers. This is because a carefully constructed interface allows developers to build 

software that is fully separate from not just the data plane, but also the limitations of the 
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specific SDN controller server. The significance of the northbound interface will be explored 

in more detail later. 

The beauty of SDN is that it can be used in conjunction with any type of conventional 

networking scenario (either personal or commercial), which makes it useful for individual 

users, businesses, data centres, and internet exchange facilitators. Due to its versatility, SDN 

is a common feature of many different types of network application. Currently, low to mid-

level applications can carry out standard processes like load balancing, security 

implementation, and routing. However, they are also capable of supporting newer processes 

and perspectives. These include mobility regulation for wireless networks, network 

virtualisation, the minimising of energy consumption, failover and reliability processes 

relating to the data plane, QoS requirements, amongst other things.  

One popular analogy is to look at network applications as if they are miniature brains, 

which have a great deal of influence over how forwarding devices operate. In fact, they are 

responsible for applying the regulatory logic that is eventually converted into requests 

designed for use in the data plane. To understand this better, it might be easier to stick with 

routing as an example, because it is quite a basic process. In this context, the logic of the 

application is concerned with uncovering the channel that packets will use to move from the 

point of transmission to the point of receipt (this channel can be called 1-2, say). To fulfil the 

objective, the routing application must, according to the topology parameters, determine 

which channel provides the optimal journey. Once identified, it can tell the controller to 

implement the relevant forwarding protocols to all forwarding components encountered along 

this channel (from point 1 to 2).  

One of the most convincing reasons for widespread implementation of SDN is this 

enormous degree of versatility and variability. When brought together with reactive ‘use 

case’ allocations, the benefits for network management become clear. Even though the 

amount of possible networking conditions is practically limitless, the majority of SDN 

applications can be divided into one of five classifications [25]: (1) measurement and 

monitoring; (2) mobility and wireless; (3) data centre networking; (4) security and reliability; 

and (5) traffic engineering. Generally, the northbound interface is treated as a software API 

and not a protocol. When it is incorporated into a system, it becomes easier to utilise control 

plane features and services. There does not even need to be that much information about the 

core network switches for this to work.   
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2.2.2 Control Layer 

The most essential part of the SDN structure is the controller, which is tasked with 

regulating and facilitating every single movement within the network. This is achieved by 

introducing flow entries to switch devices.  It is also the most intricate component. The 

controller embodies the heart of the network, because it is the primary contributor to the 

Network Operating System (NOS). The applications are positioned at one end of the process 

and the network components sit at the other, with the controller linking the two. The control 

level is applied in the form of a server or a collaborative series of servers (referred to as ‘SDN 

controllers,’ collectively). The job of the SDN control level is to convert service commands 

from the application level into clear, practical instructions and requests. These are transmitted 

to the data plane switches and they give applications valuable information about their 

behaviour and conditions. As previously explained, the controller is in charge of identifying 

the optimal route and ensuring that it runs successfully [26]. Refer to Figure 2-3 for a 

demonstration of how this happens. The figure provides details on the key processes that all 

controllers are expected to offer and they can be listed as follows:   

Shortest path forwarding: the controller uses routing data gathered from switches to 

identify the quickest channel;  

Notification manager: the controller interprets, reconfigures, and passes on details about 

certain conditions to the application (these include security alerts, condition changes, and 

other types of scheduled/pre-set alarms);  

Security mechanisms: the controller facilitates safe forms of separation and security among 

services and applications;  

Topology manager: the controller constructs and regulates data relating to switch 

interconnection topologies;  

Statistics manager: the controller uses the switches to gather information about traffic;  

Device manager: the controller modifies switch protocols and features as a way to better 

regulate flow tables.  
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Figure 2-3 SDN control plane functions and interfaces 

 

Often, interactions shared by the switches and the controller are kept safe with the use 

of Secure Sockets Layer SSL or a similar security standard. It should be pointed out that the 

forward level must apply the security feature, if it wants to bind clients to a Service Level 

Agreement. Another strength of the controller is its robust ability to determine optimal QoS 

conditions. It is able to manipulate explicitly the flow table as a way to distinguish between 

dissimilar traffic objectives and priorities. The network structure presented above must 

include the following three elements:  

(A) Supervision of Resources – the forwarders must be able to watch and supervise 

the relevant network resources consistently. The controller expects and requires regular status 

updates. In some cases, the controller will specifically ask for these updates;    

(B) Signalling of Resources – the forwarders are expected to interact with the 

controller via the use of signalling alerts. The controller needs data to carry out certain 

processes like upgrading the flow table or modifying the QoS policies. The most important 

information relates to the rate of resource consumption;  
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(C) Allocating Resources – in some circumstances, the controller asks the forwarder 

to hold specific resources back, usually for use at a later time. Common requests relate to the 

allocation of CPU calculation time, buffer size, and memory space, among other things [25], 

[27].  

The primary role provided by the SDN controller is perceived as a type of Network 

Operating System (NOS). The purpose of an SDN NOS is to make it easier for the developers 

to formalise network protocols and to carry out efficient network maintenance without having 

to worry about the complex attributes of individual network devices. This is highly valuable, 

because these devices are often fast moving, broad ranging, and heterogeneous.  In a similar 

way to traditional OS structures, an NOS offers developers abstraction of low end 

components, a range of key features and processes, and some shared application 

programming interfaces [28]. 

There are two main types of flow setup: reactive and proactive. When it comes to 

reactive setups, flow commands are established by the controller, if there is no entry present 

within the flow tables. The instructions are delivered immediately after the initial packet of 

flow arrives at the OpenFlow switch. Consequently, it is just this initial packet that stimulates 

interaction between the controller and the switch. Crucially, all flow entries become obsolete 

once a pre-established period of stagnation is complete, being then erased. While reactive 

setups are limited by a relatively slow journey, their inherent adaptability makes it easier to 

implement real time responses as well as to accommodate traffic load and QoS demands.     

On the other hand, proactive setups are based on flow commands that are already 

present within the flow tables. This means that the setup is carried out well before the initial 

packet is received by the OpenFlow switch. The biggest benefit of this system is that there is 

no need to wait around for the controller to respond. Hence, it is faster and the controller only 

needs to be ‘activated’, if there is a problem or a flow command cannot be detected. The 

downside is that it can overload flow tables linked to the switches.    

It should be noted that, while fine grained traffic movements (referred to as miniature 

or micro flows) are inherently versatile, they are not usually compatible with bigger 

networks. However, macro flows can be constructed by assimilating multiple miniature 

flows. They are a suitable option, because implementing a rougher grained movement allows 

the controller to make smaller, less impactful compromises between scalability and 

adaptability. To react to a flow setup command, the controller must first ensure that the flow 
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is compatible with the protocols attached to the application level. Once it has done this, it can 

determine which steps to take next. It is expected to identify an optimal channel for the flow 

and, where necessary, to implement new flow entries at every switch encountered on the 

journey. This applies to the switch responsible for generating the command as well. In 

accordance with the flow entries implemented, a design decision is made on the regulated 

granularity flow, which triggers the need for a compromise between scalability and 

adaptability. The controller prioritises by interpreting the conditions required for efficient 

network maintenance.  

Refer to Table 2-1 for a list of existing controller applications and a brief description 

of each [29]. Currently, each controller listed (apart from RYU) is compatible with Version 

1.0 of the OpenFlow protocol[1]. Also featured are two special function controller 

applications (RouteFlow [1] and Flowvisor [30]).  

 

Table 2-1 

Current Controller implementations compliant with the OpenFlow standard 

Controller Language Open 

Source 

Created by Description 

POX [59] Python Yes Nicira General, open-source SDN controller written 

in Python. 

NOX [17] Python/C++ Yes Nicira The first OpenFlow controller written in 

Python and C++. 

MUL [60] C Yes Kulcloud OpenFlow controller that has a C-based 

multi-threaded infrastructure at its core. It 

supports a multi-level north-bound interface 

for application development. 

Maestro 

[21] 

Java Yes Rice University A network operating system based on Java; it 

provides interfaces for implementing modular 

network control applications and for them to 

access and modify network state. 

Trema 

[61] 

Ruby/C Yes NEC A framework for developing OpenFlow 

controllers written in Ruby and C. 

Beacon 

[22] 

Java Yes Stanford A cross-platform, modular, Java-based 

OpenFlow controller that supports event-
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based and threaded operations. 

Jaxon [62] Java Yes Independent 

Developers 

a Java-based OpenFlow controller based on 

NOX. 

Helios 

[24] 

C No NEC An extensible C-based OpenFlow controller 

that provides a programmatic shell for 

performing integrated experiments. 

Floodlight 

[38] 

Java Yes BigSwitch A Java-based OpenFlow controller (supports 

v1.3), based on the Beacon implementation, 

that works with physical- and virtual- 

OpenFlow switches. 

SNAC 

[23] 

C++ No Nicira An OpenFlow controller based on NOX-0.4, 

which uses a web-based, user-friendly policy 

manager to manage the network, configure 

devices and to monitor events. 

Ryu [63] Python Yes NTT, OSRG 

group 

An SDN operating system that aims to 

provide logically centralised control and APIs 

to create new network management and 

control applications. Ryu fully supports 

OpenFlow v1.0, v1.2, v1.3, and the Nicira 

Extensions. 

NodeFlow 

[64] 

JavaScript Yes Independent 

Developers 

An OpenFlow controller written in JavaScript 

for Node.JS [65]. 

Flowvisor 

[48] 

C Yes Stanford/Nicira Special purpose controller implementation. 

RouteFlow 

[66] 

C++ Yes CPqD Special purpose controller implementation. 

  

2.2.3 Eastbound and Westbound 

Typically, SDNs feature either a distributed or a centrally positioned control plane. As 

Figure 2-4 shows:- west/east bound APIs represent a unique type of interface, which is 
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sometimes needed by distributed control planes [5]. Presently, every controller is responsible 

for applying its own west/east bound APIs. The roles carried out by the interfaces cover 

things like algorithms for data stability frameworks, observation/alert functions (for example, 

testing whether a controller is operational or warning of a takeover from a series of 

forwarding components), and export/import movements among controllers. It should be noted 

that controller to controller interactions are not usually determined by OpenFlow protocols.  

 

  

 

   

Figure 2-4 Distributed controllers: east/westbound APIs 
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2.2.4  SDN infrastructure Plane  

Most SDN structures share common features with conventional network 

arrangements. They consist of networking components (middle box tools, switches, routers, 

etc.) and the key thing that sets them apart is the low level nature of the older systems. The 

conventional physical components are utilised as basic forwarding resources providing no 

inherent influence and there is no software capable of making instant, informed choices. As a 

result, the network intelligence gets withdrawn from the data plane components and placed in 

a centrally positioned (logical) control structure (refer to Figure 2-2). This particular strategy 

guarantees interaction and regulation efficiency, as well as smooth connections between the 

control and data plane components. Crucially, the new networks that are constructed get 

positioned above standard and open interfaces [21]. 

When it comes to OpenFlow/SDN structures, two constructs are very important. As 

has been discussed at length, the network relies heavily on its forwarding components and 

controllers and there is a representation of this in Figure 2-5. OpenFlow compatible 

forwarding components are structured according to an assortment of flow tables, with every 

entry in a table being made up of three aspects: (a) a common principle or instruction; (b) 

commands to be carried out by reciprocal packets; and (c) counters that record information 

from the reciprocal packets. The term ‘data plane component’ refers to a specific type of 

software or hardware resource, which is designed to handle packet forwarding. On the other 

hand, controllers are a type of software arrangement (or a ‘network brain,’ to return to a 

previous analogy) operated via a commodity hardware foundation. To put it another way, 

open interfaces allow controller components to configure heterogeneous components quickly 

and accurately. This is a strength that is highly valuable, because older networks tend to 

struggle as the range of closed and proprietary interfaces is just too vast and the distribution 

of the control plane is too sophisticated. The figure outlined below is one of the most widely 

recognised representations of an SDN data plane component [25].   
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                       Figure 2-5 OpenFlow-enabled SDN devices 

 

  In accordance with the associated table, actions are taken and decisions are made as 

soon as a packet emerges. Within the OpenFlow component, a channel moving through the 

arrangement of flow tables tells the packets how they will be processed and transported. 

These actions are ceased when a match is found within one of the flow tables or it is 

determined that there are no compatible matches and therefore, no viable commands. The 

urgency of the commands is determined by the established arrangement of numbers within 

the tables and the row positions.  

Three potential outcomes are as follows: (a) deliver the packet to an outbound port; 

(b) modify it and deliver it to the controller; or (c) eliminate it completely. If no standardised 

command or action can be found, the packet is eliminated. It is important to point out though 

that it is also possible to apply a standardised command, which instructs the switch to deliver 

the packet to the controller [31]. Sometimes, it is possible to construct a flow command by 

bringing together several distinct but compatible fields (refer to Figure 2-5). 

2.2.5 Southbound Protocol  

Southbound APIs (also known as southbound interfaces) provide a strong link 

between forwarding and control components. Accordingly, they play a vital role when it 

comes to keeping the data and control planes communicating without compromising their 

standalone nature. The problem is that these interfaces are rigidly bound to the forwarding 

components within the core virtual or physical framework. It is not unusual for new types of 

switch to undergo many years of testing and preparation before being introduced to the 
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market [32]. The build time is even lengthier if they are being constructed from the ground 

up. In fact, the update rotations and cycles alone can last as long as eight to ten months. For 

this reason, investing in such a project can be hazardous and challenging. The reality, 

however, is that southbound interfaces are an integral part of emerging network capabilities 

[33], so they do need to be made more accessible and stable. OpenFlow is just one example 

of an alternative, improved interface and like many others; it has been championed by 

networking specialists and experts.     

As stronger, faster interfaces are developed, levels of interoperability will increase 

and it will become easier for network managers to apply vendor agnostic components. In fact, 

this is already happening as a result of innovative technologies like OpenFlow. Currently, the 

system is highly regarded and hence, is one of the most broadly utilised southbound 

interfaces for developers working with SDN. Yet, OpenFlow is not alone, for is certainly not 

the only southbound interface compatible with SDN. Some other API structures include POF 

[32, 33], Hardware Abstraction Layer (HAL) [34], [35], ForCES [36], OpenState [37], 

Programmable Abstraction of Data Path (PAD) [38], OVSDB, Revised Open Flow Library 

(ROFL) [39], and OpFlex [40]. Nevertheless, one of the primary advantages of OpenFlow is 

that it offers a shared protocol for the incorporation of OpenFlow oriented forwarding 

components and the smooth maintenance of interactions among control and data plane 

constructs (controllers and switches).  

More specifically, the protocol presents three key data sources, these data channels being the 

primary method for transmitting valuable information throughout the network. The first (1) 

involves the movement of statistical information from the forwarding components to the 

controller. The second (2) sees packet data being delivered to the controller (by forwarding 

components) in the event that it is not clear how to handle an imminent flow or because there 

is a direct command to ‘deliver to controller’ attached to the flow table entry. Finally, the 

third (3) involves event related data being delivered to the controller only if a shift in 

conditions is detected.  

2.3. OpenFlow Specification  

The structure of OpenFlow interfaces is made up of three key elements (refer to 

Figure 2-6): a robust flow channel; a controller; and a compatible switch. The switches 

depend on flow tables to move their packets. The term ‘flow table’ simply refers to an 

arrangement of flow entries or priorities. As part of the OpenFlow system, there is a standard 
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that enables software applications to configure the flow tables relating to various switches. 

Counters are used as a way to record statistical information about moving packets. The 

entries all contain data relating to compatible counters, commands, and fields. Packets that 

are inbound are checked against these credentials and if a match is identified, the packet is 

handled exactly as the entry command instructs. In some cases, even if there is no match, the 

packet is still delivered to the controller.    

The controller is a type of software system tasked with modifying the flow tables of 

switches. This is achieved via the OpenFlow principles and standards. The switches and 

controllers are linked by a robust interface and the packets move within its parameters. The 

interface helps to regulate the switches, process packets, and to make sure that outbound 

packets are transported to the right location. If there are interactions between the controller 

and the switch, it is because the flow table has sanctioned them [41]. From an internal 

perspective, switches employ Random Access Memory (RAM) and Ternary Content 

Addressable Memory (TCAM) to interpret packets. All switches that are compatible with 

OpenFlow need to have the ability to forward packets based on the commands provided by 

the relevant flow table. Refer to Figure 2-7 for a detailed representation of how packets are 

handled by network components. 
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Figure 2-6 Components of an OpenFlow 1.1 switch 

 

 

 

Figure 2-7 Elements of an OpenFlow-compliant switch 

 

A. OpenFlow 1.0 

The benefit of the OpenFlow framework is that it precisely defines the matching 

algorithm and packet parsing requirements. The packet compatible algorithm begins by 

checking the VLAN and Ethernet fields against one another. They may then be checked 

against IP header fields, if more information is needed. If the IP type signals TCP or UDP, 

the corresponding transport layer header fields are considered. Several actions can be set per 

flow. It is possible to combine IP packets and Ethernet by searching for compatible data 

within the destination and source address. Similarly, VLAN and Ethernet based fields are 

able to be brought together for the purposes of Ethernet, Explicit Congestion Notification 

(ECN), and differentiated services (DS). In addition, combining UDP and TCP destination 

and source port numbers is a viable option too. In 2009, Version 1.0 of OpenFlow was 
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introduced to the market [42], being now the most broadly employed interface and common 

to networks right across the world. 

The most significant activity takes place during forwarding behaviours, which is 

because they transport the packets to either one targeted port or they deliver it to all of them. 

In some scenarios, the header fields of the packet are edited and this might include tweaks to 

the IP source, VLAN label, or destination address. As already discussed, there are other 

conditions that lead to the elimination of the packet as well. When a packet is disregarded, the 

controller allows for the application of network access control via the OpenFlow interface 

[43]. It is able to ask the switch to secure all packets within the flow and to deliver them to 

the controller, even if there is no specific command to do so.  

Crucially, statistical records and monitoring are the responsibility of the counters in 

the switch. However, the controller has the authority to challenge this information. It has the 

right to question statistics that provide specific entries relating to active and delivered 

packets.  Statistical records pertaining to the packet flows are kept safe within the flow tables. 

There is also accessible information about the number of packets per queue and per port. 

Switches working in conjunction with Version 1.0 of OpenFlow utilise a total of twelve 

header fields: Ether type; Ingress Port; IP ToS bits; Ether src; TCP/UDP dst port; IP dst; 

Ether dst; VLAN id; VLAN priority CoS; IP src; IP Proto; and TCP/UDP src port. They are 

displayed as part of the payload and header sections of the Ethernet packets moving towards 

the switches. 

One or several header fields can be used to find a matching flow entry and packet. 

Crucially, a field within the flow table may present the value of ANY and be compatible with 

every packet. Consequently, ANY can be applied to the switch hardware, via the third 

masking protocol of the Ternary Content Addressable Memory, if indeed, the forwarding 

table has been handled according to TCM principles. During the first phase of the process, 

the Ethernet packet moving into the switch gets sent to a packet parsing point. Then, during 

phase two, the header fields are taken and inserted into a packet lookup header, where they 

will be employed as a matching tool. The third phase involves the lookup header being 

delivered back to the packet matching tool. Following this, the header is checked against the 

commands associated with each flow entry contained in the flow table. It is important to 

recall that the entries are arranged according to their degree of urgency [41], which is why the 

lookup header is checked first, beginning with the initial entry in the table. When a match is 

identified, phase five sees the packet being handled according to the command provided by 
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the table. However, if no match exists, the initial two hundred bytes of the packet are 

delivered to the controller for interpretation and further handling. Figure 2-7 demonstrates the 

primary parts of an OpenFlow compatible switch, whilst Figure 2-8 presents the associated 

information from the data plane attached to this switch.    

 

     

Figure 2-8 How a packet is processed and forwarded in an OpenFlow 1.0 switch 

 

B. OpenFlow 1.1   

In 2011, Version 1.1 of OF was introduced [44] and within this system, multiple flow 

tables are pipelined. It uses fields arranged into a total of fifteen tuples. Additional data is 

provided in the form of meta descriptions and tags and they can also be shared among 

different tables. MPLS tagging is facilitated with the use of two more data fields. Other added 

support includes: Support for VLAN and QinQ, adding; modifying and removing VLAN 

headers; Support for virtual ports and tunnels; Multipath routing; and ECMP. Instead of 
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depending on traditional commands, it utilises Instructive Content, which contains a greater 

amount of detail and more insight into how the packets should be treated or changed. When a 

packet reaches a switch, it begins to search for a matching entry in Table Zero. Presuming 

that such an entry can be identified, the packet is handled precisely as the commands in the 

entry describe. For example, the command may be in the form of a ‘Deliver To’ request and 

this might direct the packet to a different table. In some cases, the flow commands direct the 

packet to a series of tables, each with other own entries. However, this usually only occurs 

when there is more than one flow that needs handling. 

C. OpenFlow 1.2 

Version 1.1 of OF was introduced in early 2011. It was quickly followed, in late 2011, 

by an updated system called Version 1.2 [24]. The new version allows the switches to link up 

to more than one controller at any one time. The result is a more robust system, with a 

smaller risk of faults, and superior load balancing. It provides extra support for resources, like 

extensible matches, type-length-value TLV functions, and IPv6. The introduction of TLV 

increases the overall versatility of OF, because it means that the fundamental protocols are no 

longer limited according to size and arrangement.  

D. OpenFlow 1.3 

The updates didn’t stop with Version 1.2, however. Version 1.3 was introduced in 

early 2012 [39]. This newer system is an improvement because it incorporates metre charts, 

which make it easier to apply QoS processes, such as rate restrictions. Furthermore, a cookie 

field has been attached to all messages containing packets that are bound for the controller. 

The aim is to facilitate more efficient searches. The more information that a controller 

receives, the faster it can decide what to do with the packet. Now, each flow table is required 

to keep a table miss record, which provides detailed instructions on how best to handle a 

packet with no identifiable match. For example, the command may be to eliminate the packet, 

it could be delivered to the controller or possibly directed on to a different table to continue 

searching for a match.  

Earlier iterations of OF allowed switches to link up with more than one controller, if it 

helped with load balancing and error tolerance. Now, switches can construct auxiliary links 

and use them to strengthen the primary links which they have with the controller. Version 1.3 

is a good example of how an interface can maximise the parallelism capabilities inherent 

within the majority of switches. In addition, Version 1.3 incorporates ‘per connection’ event 
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filtering as way to enhance and expand the degree of controller support. The idea is that every 

controller is able to remove event related data that it deems invaluable.   

 

E. OpenFlow 1.4 

The most recent iteration and upgrade of OF is Version 1.4, which was introduced in 

late 2013 [2]. There is more support for optical ports, because there are updated port 

attributes and standards. They incorporate data fields designed to aid the tracking and 

programming of delivered/received frequencies. One of the main differences, however, is that 

TLV functions play a greater role in some aspects of the system. Within older iterations, 

when the flow table became full and overloaded, the switch would transmit a fault alert to the 

controller, which would tell the latter that action was needed. The problem is that the process 

is not very efficient. It can take a relatively long time for the controller to be alerted and for 

an appropriate response to be taken. Fortunately, Version 1.4 of OF features an all new 

‘Eviction’ function. It gives a switch the power to disregard and remove entries with a lower 

degree of urgency, if the table is so full that immediate action is required.  

Moreover, switches can now warn the controller if it detects that a table will be 

overloaded soon. This can only be achieved, however, if certain parameters and boundaries 

are established early on [45]. For example, the controller first has to determine what counts as 

‘too full’, so that an alert is sent when this number is surpassed or almost surpassed. In 

addition, a new bundle feature supports the quasi-atomic completion of multiple commands. 

Finally, the fault alert is a type of symmetric trigger, which can be launched by the controller 

or the switch if the conditions warrant it. For the purposes of the recommended system in this 

thesis, POX controllers will be used combined with Version 1.0 of OpenFlow, because the 

vast majority of SDN controllers are compatible with this interface (apart from RYU) [5].  

2.4.  Centralised Control of the SDN 

As aforementioned, when it comes to SDN structures, the data plane gets separated 

from the control plane (which is closely associated with the controlling components of 

routing technologies). Within the data plane, there are flow tables designed to identify the 

optimal outbound port for every inbound flow. Consequently, every control command or 

preparation from the router is gathered and accumulated at the heart of the controller. The 

controller is tasked with the job of maintaining and directing network processes. For a 
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centrally positioned controller, an extensive understanding of the system is essential and 

multiple OpenFlow switches may be linked to just one controller. This is how cohesive, 

centralised actions are taken [27]. Rather than relying on multiple network components with 

an insufficient understanding of the system, a single knowledgeable controller can formulate 

responses according to its familiarity and awareness of the network. Thus, one of the biggest 

benefits of incorporating a centralised controller is the fact that maintenance and the location 

of key data is the responsibility of one easily handled central point. The result is a more 

organised, more efficient network.    

The standard SDN is software oriented [5]. In other words, all network intelligence is 

centrally positioned at the heart of controllers. The network is skilfully maintained by a 

program operated according to a centrally positioned controller, which is achieved by 

modifying the packet delivering processes within the core network components. The 

principles used to interpret and handle the packets are incorporated into the network 

components as a way of supporting the duties required for sustaining a network. These duties 

might include server load balancing, general network upkeep, routing, access regulation, and 

traffic optimisation. Ultimately, the control logic is shaped around a much more universal 

perspective, instead of being a primarily localised, distributed resource.  

The way that SDN configures and controls network traffic is via a console with 

centrally positioned controllers. It saves an enormous amount of time and resources, 

particularly when it comes to network updates and system maintenance for very big 

companies. For, all granular/regulatory modifications to the core network can be carried out 

from one central location. This is particularly desirable because it negates many of the 

challenges associated with programming separate switches. Some other advantages of using a 

centrally positioned controller are outlined below.   

Automation and Virtualisation – the reality is that centralised functions and 

comprehensive automation being incorporated right at the heart of SDN is a great way to 

boost productivity, integrity, reliability, and scalability. One of the biggest advantages of 

SDN is the fact that network virtualisation constructs a cohesive framework right across 

every piece of associated software, which includes the routing and switching components too. 

The result is that features and processes can be modified at speed and without incurring high 

expenses. Plus, the network manager no longer needs to find a way to access the service layer 

just to make a quick alteration and this results in a much easier to use network.  
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Increased Speed and Flexibility – the construction of VMs (virtual machines) makes 

it substantially easier to create fully functioning SDN structures.  

Network Scalability and Unified Maintenance – there is more freedom to try 

innovative system configurations and arrangements. The power of SDNs is that they enable 

network managers to bypass the restrictions created by Simple Network Management 

Protocols. 

Broader, More Granular Security – SDNs are a simple way to implement robust 

security, even for end systems, apps and Bring Your Own Device (BYOD) scenarios. This 

lattermost condition is particularly important for office based businesses, as it can be difficult 

to keep track of network authorised component and devices. This is advantageous, because 

virtual machines present a number of new security issues and limitations.  

Adaptability – with the support of enhanced adaptability (as a result of SDN 

structures), businesses are able to construct customised networking services safely without 

the need for anything more sophisticated than basic development resources.   

Ease of Use – as a result of greater network configurability, businesses are able to 

create innovative applications with the potential to keep enhancing assimilation, interaction, 

ease of use, and a host of other valuable attributes. Ultimately, a company does not have to 

rely on external resources to improve any of these factors.  

Centrally Positioned Automation and Regulation – the term ‘Deep Packet 

Inspection’ refers to a type of networking program, which scans packets for signs of faults, 

errors and unwanted behaviours. So, for example, it is a good way to detect spam, viruses, 

and other forms of unstable activity. Generally, any action which deviates from the matched 

command in the flow table can potentially be identified as unwanted or dangerous to security. 

It is one of the most effective ways to implement sophisticated network automation, security 

structures, and non-compliance policies. When SDN and DPI are brought together, they 

further the centralised management of network protocols and facilitate fast, successful 

automation. To reiterate, automation and streamlined policy management can be 

implemented across the entire network. The support of a centrally positioned DPI is a 

recommended way to transmit data to all of the affiliated network components, as opposed to 

expecting every single one to handle its own DPI requirements. The benefit of this is that the 

network can be perceived as a unified, cohesive entity, rather than a series of distinct 

components, when increasingly in depth information about network traffic is collected. 
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Virtual Pressures – it should be noted that the combination of physical and virtual 

systems usually leads to greater versatility, scalability, and reliability. SDN gives network 

managers the opportunity to set up more than one network, rather than always having to 

modify individual networking components manually to meet changing conditions [26],[4]. In 

fact, the highest quality control strategies have the power to allocate bandwidth for the 

specific purpose of moving data traffic to the right locations.  

2.5.  Traffic Engineering Analysis 

Software Defined Networking represents the next generation of network arrangements 

and interactions. Consequently, it has an enormous amount of potential and it could end up 

being used to do some very sophisticated things. As aforementioned, it is based on the 

primary goal of isolating the control and forwarding levels within a network structure. This is 

particularly valuable when it comes to systems, whereby network managers can configure 

packet forwarding responses to enhance the development abilities of applications 

substantially.  

One of the most helpful types of network application is Traffic Engineering, which 

scrutinises the quantification and maintenance of network traffic. It is also used to construct 

optimal channel processes and direct traffic more skilfully so as to maximise the value of key 

resources [2], [46]. Overall, the goal is almost always to improve quality of service and to 

help the network fulfil user demands with less effort and strain. When analysed next to older, 

more conventional systems, it is clear to see that SDN is a marked improvement.    

To start with, the fundamental principles of flow management within SDNs dictate 

that, when a flow reaches a switch and it cannot identify any matching commands, it is 

handled with the following four step process. Initially (A), the ingress switch delivers the first 

packet of the flow to the controller and then, (B) the controller determines the right 

forwarding channel for the flow. Next, (C) the controller directs the flow to the correct flow 

tables along the optimal channel and finally, (D) any other packets linked to the flow 

(sometimes from different flows with matching features) are moved across the data plane and 

require no further contribution from the control plane. It should be noted that forwarding 

protocols can take some time to be established, so there is likely to be some degree of 

inactivity. In the event that the accumulated traffic contains a large amount of new flows, a 

substantial overhead may be generated across the data and control planes. Figure 2-9 

demonstrates the four core thrusts that modern traffic engineering processes are concerned 
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with and shaped to fit, these being: (1) topology upgrades; (2) flow management; (3) traffic 

evaluation (incorporating characterisation); and (4) error tolerance. 

 

 

Figure 2-9 The scope of traffic engineering approaches in current SDNs 

 

The issue of unwanted inactivity may be solved by using traffic engineering strategies 

to enhance flow maintenance and efficiency. If this is the case, TE needs to be structured in a 

way that allows it to minimise the compromise between load balance and dynamism [47]. 

Furthermore, to guarantee optimal network integrity, SDN must be able to carry out failure 

recovery processes in an open, clear, and skilful manner. The goal and general rule of thumb 

is to respond to and solve node and individual link faults within a fifty millisecond window. 

Version 1.1 of OF has attempted to enhance overall networking integrity by incorporating a 

rapid response system for node and link faults. It allows a substitute channel to be allocated, 

so that the switch can alter the forwarding route without having to consult the controller first. 

Yet, it should be explained that, even though improvements have been made with the 

introduction of centralised approaches, getting fault response times right is a big task. To 

achieve it, the central controller has to identify alternative channels and warn all of the 

relevant switches about the fault before it can take any kind of corrective response, with all of 
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these processes taking time. Nevertheless, the standard of failure responses has to be 

extremely high every time that an error develops (whether it is associated with links, 

controllers, switches, or anything else) [48]. Not only this, but all fault responses must take 

into account the restrictions on flow table resources and memory within switches.  

    The topology modification processes of the SDN are primarily concerned with 

forecasted shifts and alterations (like tweaks to network protocols and regulations). They are 

much better at handling changes to conditions that they have been able to prepare for, but this 

doesn’t really help when it comes to fault tolerance. As centralised controllers regulate each 

of the switches featured in an SDN/OF network via fast paced adjustment of the universal 

network principles, a reasonable degree of stability and predictability is important for all of 

them. This allows separate packets and flows to be managed either by the original rules or by 

the updated ones, but it makes sure that the two do not clash and try to influence the same 

entity at the same time. While rules and regulations are being changed and improved, there is 

a risk of more flows being disregarded and eliminated. Others are likely to be disrupted and 

reach their intended destinations at a later time than predicted, which ultimately is bad for the 

integrity of the network and it can lead to a hugely inefficient use of resources. Ideally, the 

fault response needs to be carried out in as close to real time as possible for the system to be 

successful. It is not an easy thing to achieve, particularly in accordance with a very big 

SDN/OF system. Often, there are some switches that cannot be directly linked to the central 

controller and this is a tricky limitation. Thus, the major obstacle for topology upgrades is 

determining how best to ensure that the SDN controller is able to modify the network without 

compromising on quality, productivity, integrity, or efficiency.  

Finally, all traffic evaluation tools need to offer suitable methods of traffic tracking 

and reporting, invariant testing techniques, analytics/extraction of trends/attributes, flow/state 

data procurement, fault debugging functions, and more. In fact, traffic tracking and recording 

processes are some of the most essential elements of broader traffic evaluation. They are a 

great way to identify link and network faults and prepare for link overloads and ‘pile ups.’      

One particularly pressing concern is the amount of SDN networks, which continue to 

utilise older, less efficient flow oriented tracking processes [49]. Many of these have more in 

common with the earlier forms of IP network. As such, they can result in inflated monitoring 

costs and a much greater rate of resource consumption than is preferred. Plus, there is plenty 

of evidence to suggest that introducing a controller with an overly intricate tracking and 

monitoring system will only end up unnecessarily obfuscating the network. While Version 
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1.3 of OF did launch upgraded flow metering functions, many of the existing controllers 

(Floodlight, NOX, POX, etc.) and easily accessible switches fail to offer sufficient support 

for variable flows and diverse, dynamic statistical data [50]. Consequently, there is a need for 

improved, enhanced tracking features, which should be as simple as possible, offer ease of 

use, demand minimal expenses as well as reliable and precise traffic calculations.     

2.6.  Dynamic Update of the Forwarding Rules 

OpenFlow networks provide another distinct advantage, whereby they facilitate the 

fast paced modification and improvement of forwarding protocols. Crucially, no form of 

human intervention is needed and the controller has the power to alter entries in the flow 

tables at any point. When the system is correctly configured, it can handle a huge variety of 

topological alterations at quick speeds. The actions are made according to judgements elicited 

by the software controller, which is the ‘brain’ of the network.  

The next section will explore the interactions between OpenFlow controllers and 

switches. The OpenFlow framework is based on three core ideas [51], these being: (A) the 

network is reinforced and supported by switches that are compatible with the OpenFlow 

interface; (B) the control plane is made up of a single one or multiple controllers; and (C) the 

control plane is linked to the switches via a robust control channel. When the phrase 

OpenFlow compatible switch is used, it refers to a simple forwarding component, which 

directs packets as it is told to by the relevant flow table entries. Each table contains a series of 

entries, with its own match credentials, commands, and requests. In some contexts, these 

entries are known as ‘flow rules.’ Every entry is attached to a header field and this determines 

which packets are a match and which are not viable for the table. They consist of a wildcard-

capable match over specified header fields of packets. Ternary content addressable memory 

TCAM is an important part of supporting rapid fast wildcard matches.  

The purpose of the counters is to gather statistical data about the flows [51]. They 

record the amount of packets processed and the time it took for the delivery to be completed, 

whilst the ‘actions’ refer to what commands were used to deal with a particular packet. For 

instance, the most useful commands are ‘Deliver To,’ ‘Eliminate,’ and ‘Alter Field.’  The 

switch needs Ternary Content Addressable Memory if it is to facilitate the rapid 

transportation of packets to their intended locations. In accordance with the specific 

OpenFlow policies, the header fields can prioritise different types of matching credential (for 

example, MPLS, IPv4, IPv6, etc.). Refer to figure 2-10 for more details. 
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Figure 2-10 Flow table entry for OpenFlow 

 

The controller is a software based resource tasked with the job of filling and 

regulating the flow tables of each switch. It has the power to alter the forwarding actions of a 

switch by eliminating, adding, or changing entries. The OpenFlow system shapes and refines 

the rules which give the controller the ability to influence switches, which depends upon the 

maintenance and monitoring of robust data channels to achieve this. Three key types of 

interaction are observed within the OpenFlow network structure. The first sees information 

passed from the controller to the switch. This type of interaction plays a vital role in resource 

identification, channel modifications, switch configurations, and the extraction of data. The 

second is symmetric messaging, which does not rely on approval from the controller [41]. In 

fact, this form of connection needs no contribution from either the switch or the controller; 

whichever one triggers the interaction, it does not have to involve the other. For instance, 

‘echo’ interactions are a good example. They are a clever way of testing whether the 

controller is activated and ready to receive packets.  The third and last type of interaction is a 
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form of balanced and asynchronous connection. It is triggered by OpenFlow compatible 

switches and it does not require any contact with or approval from the controller. The aim is 

to warn the controller about the imminent receipt of packets, as well as to help it prepare for 

changing conditions, and switch faults.  

2.7. Challenges of OpenFlow-based Networks  

Despite their many benefits, OpenFlow applications do present some unique 

obstacles, so it is important for these issues to be discussed and explored. While some of the 

associated limitations cannot be investigated as part of this study (due to time and resource 

constraints), this section outlines some of issues relating to general performance, reliability, 

the scalability and security. 

2.7.1. Performance 

The reality is that most network creators and managers have embraced SDN as a 

superior replacement for older, more rigid protocol arrangements. It is not difficult to see why 

this would be the case. It provides adaptable, dynamic, efficient, and stable networking 

processes, alongside a whole host of other benefits. They include ease of use, smaller set up 

and maintenance expenses, an enhanced user experience, and fully centralised controls. Yet, 

it is just as important to point out that SDN structures also carry some fundamental 

performance limitations. For example, there are negative effects on performance, if all 

elements of the SDN are not meticulously configured and maintained, which potentially 

include lost packets, traffic congestion, inactivity or a lower throughout. Similarly, the 

control level can end up creating a kind of bottleneck within the network and severely 

disrupting traffic flows [52], which is a particular risk for big enterprises relying on just one 

controller. 

In recent years, a number of studies have explored some of these risks and limitations 

in more depth. For instance, the work of Luo [53] and Tanyingyong [54] proposes new 

methods of improving the efficiency of OpenFlow systems. In fact, they recommend an 

updated network structure as a way to bolster lookup abilities. When network accelerator 

tools were applied, a 20% drop in inactivity was observed, in comparison with standard 

configurations. According to Luo, incorporating Linux and opting for a basic commodity 

network interface card is the most viable option. This strategy was also tested and the results 
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indicate a rise in throughput of as much as 25% on the productivity levels normally 

associated with OpenFlow switches.  

According to Yeganeh and his research group [55], the best solution is Kandoo. The 

approach appears to be a highly effective way of improving general scalability and helping a 

network to handle greater amounts of traffic. Essentially, it is a network resource designed to 

decrease the number of events processed at the control plane and it works by applying two 

levels of controllers. The bottom level is made up of multiple controllers with no awareness 

of the state of the network and no links to one another. It deals with the majority of events so 

that the pressure on the top level is substantially alleviated. This top level is responsible for 

sustaining network wide conditions. However, other researchers recommend alternative 

methods to maximise interactions between switches and the CPU.  

Mogul and his group [56] recommended the application of software oriented counters, 

but the problem with this study is that the researchers never actually tested the theory in 

experimental conditions. So, it is not known whether the recommendation is a viable one. 

What they did do is discuss the strengths and limitations of software based counters at length. 

However, without clear test results, the proposal can be nothing more than an unsupported 

suggestion. Hopefully, future studies will remedy this. Nevertheless, it should be borne in 

mind that OpenFlow switches gather statistical information relating to every new flow and 

according to the researchers, this information is securely held inside the switch via the use of 

Application Specific Integrated Circuits. They argue that holding the information in a CPU is 

a better idea, because it has a greater capacity and is more readily able to interpret diverse, 

dynamic data.  

According to Lu [57], one possible answer might be to integrate CPU and ASIC 

processes. The researchers have explored weaknesses of using both approaches in isolation in 

detail. For one thing, the size packet buffer and size forwarding tables are significantly 

restricted and they believe that a combination of the two is a good way to minimise these 

negative impacts. They actually did go on to formulate a prototype design, testing their 

system by directing 50k bidirectional TCP flows between a total of four servers. It achieved 

3.9 Gb/s of forwarding with the added support of a CPU. They also discovered that sizeable 

TCP traffic movements can be processed without any lost packets.  

The published work of Vanbever and his group [58] recommended HotSwap. This is a 

resource which facilitates fast, accurate, and reliable modifications of SDN controllers. The 
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primary objective of the tool is to jump quickly between controllers without causing 

problems or faults across the network. Rather cleverly, it takes note of valuable data being 

passed among the switches and the controller. It is able to bootstrap the updated controller by 

mimicking earlier network activities. Once the updated controller finally gets up and running, 

the status of the network is exactly as it was before the changes were made.  HotSwap is 

particularly useful at times when specific controllers are due a targeted update. According to 

the researchers, a solution of this kind is very important, because moving quickly between old 

controllers and updated ones almost always leads to traffic congestion and lost packets as 

well as there being a greater risk of faults.  

As part of the recommended strategy aimed at solving key performance challenges in 

this thesis, a soft computing tool is incorporated.  The resource turned out to be extremely 

good at providing valuable data and this information was used to streamline performance, 

alleviate congestion along with reducing the amount of lost packets. It was added to the 

OpenFlow controller and eventually transitioned to become an integral element of the system. 

2.7.2. Reliability  

When it comes to reliance on the controller, there are additional problems relating to 

accessibility [59].  To ensure the maximum degree of network access and avoid manual 

faults, the SDN controller must be able to modify and approve certain network topologies 

skilfully. Yet, it should be noted that, often, the amount of skill demonstrated is limited, due 

to conflicts caused by the ‘brain/split’ dilemma [39],[60]. This places too much weight and 

pressure on just one individual region, thus leading to potential failure. One possible solution 

is an OpenFlow compatible switch with the ability to forward packets via cached commands 

and protocols. However, even this does not provide a permanent fix, because interaction with 

an active controller is essential at some point. The ‘legacy’ network is defined by the fact 

that, if a single one or multiple components malfunction, network traffic gets redirected 

towards substitute components that are in close enough proximity to sustain healthy 

movement. The success of OpenFlow systems depends upon interaction with the controller, 

which is a necessity. Yet, the problem is that, when the SDN malfunctions and there is no 

substitute controller, this leaves just a single centralised controller to carry out the entire 

sequence. The destruction of the entire network is guaranteed if this lone controller fails, 

because it is the only place left for the system to try and tolerate a serious fault [59]. Hence, 

as there are no other controllers to share the load, the outcome is poor. Fortunately, IT 
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providers can decrease the likelihood of a total meltdown by diversifying and expanding the 

central controllers.        

The SDN controller must be able to facilitate dual path commands or support the 

redirection of fast moving traffic into other, substitute links, if it wants to increase its 

tolerance of link and path faults. When it comes to controller faults specifically, it must allow 

the grouping of two or more SDN controllers when they are activated, but not currently in use 

[59]. For this to work though, memory and storage links between active and operational 

controllers must be established and kept open.  

According to some researchers [17], there is an effective way to minimise concerns 

about network dependability. Assimilation between control congestion and unstructured 

multi-pathing has its roots in an innovative, highly adaptable load balancing multi-pathing 

strategy. It presents a distributed algorithm as a way to tolerate possible controller faults. The 

switches are consistently ‘informed’ by the algorithm, which alerts them to any alterations to 

the ‘path load’ within the relevant channels. On the other hand, according to [61], centralised 

controller processes are likely to disrupt network traffic and flow commands, if a fault 

develops with the controller. As one possible answer to the problem, they recommend the use 

of a distributed network structure (or SiBF) made up of a legion of rack managers (RMs). 

There is one manager assigned to every rack and they have the ability to function as 

controllers, in the event that one or more collapses. That is, if a central controller 

malfunctions, flow commands are processed by the temporary substitute RM, which remains 

the situation until the central controller can be brought back online and made fully functional 

again. If a switch malfunctions, SiBF introduces novel mappings (new backup flow 

commands) to the ToR switches for each activated entry. The only difference is that the 

packets get to their intended destinations by taking different routes, with the important thing 

being that they are successfully delivered as per the original plan.  

It should be explained that managing the degree of latency requited for new flow 

generation is a tricky task too. If a switch processes a packet with no identifiable match, the 

initial two hundred bytes of data are delivered to the controller, which gives it a chance to 

implement a fresh or modified forwarding command. The problem is that the amount of 

inactivity (while the new rule is being formulated) must strike a perfect balance between 

efficiency and maximum functionality. For instance, if it takes too long for the new rule to be 

formulated, there is a higher chance that the accessibility criteria of a network will not be 

fulfilled [41] (refer to [59], for a more detailed example of this). In the case of OpenFlow 
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systems, link faults are quickly brought to the attention of the controller, so that it can start to 

create a solution and alternative route. This happens fairly quickly, but it does not happen fast 

enough. That is, there is still an unwanted degree of latency and it can take some time for the 

controller to be brought up to speed on the situation.  

Within a distributed network, a multipath proposal for OpenFlow is designed to work 

out how to bounce back from faults with the minimum amount of latency. If the switch 

believes that a particular port has been deactivated, it applies a restorative backup flow. It 

might not be a completely ‘real time’ response, but it means that the controller does not have 

to give explicit approval, instructions, or interactions before a solution can be implemented. 

Without the need to travel to the controller and ask for guidance, the recovery can begin right 

away.  Many high end carriers demand that their networks have the ability to recover from 

faults within a fifty second window. Yet, according to the experiment in [62], a high 

proportion of networks fail to achieve this target. It should be pointed out that, despite its 

limitations, centralised control systems do present some big benefits, even in terms of 

network protection and resilience.  

2.7.3. Scalability 

It should be noted that separating the control and data planes is not without its 

problems either. Quite apart from the general difficulty of defining standard APIs between 

both planes, there are likely to be limitations regarding adaptability. As Voellmy [63] 

explains, ‘the SDN controller is at risk of becoming a tight, congested bottleneck if the 

network sharply increases the amount of end hosts and switches.’ Nevertheless, the SDN can 

be separated and differentiated from older, more conventional networks by isolating the 

control and data planes from one another [64]. One feature of SDN is that both planes are 

able to develop and operate without the presence of the other. This is possible just so long as 

some form of API sustains a link between the two. Such a centralised perspective on the 

network serves to speed up modifications across the control plane. 

When a great many packets are being delivered to one controller, the likelihood of 

serious traffic congestion rises. In fact, there are inevitable consequences for performance at 

any point that an overabundance of packets is being pushed through the channel. Strong, 

successful networks guarantee efficient congestion regulation at the switches and they don’t 

require explicit commands or guidance from the controller to respond to faults [41]. 

Ultimately, no matter what arrangement the network takes, it is necessary to consider the 
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possibility of congestion whenever the amount of nodes is increased. The number of 

commands lined up to be processed by the controller steadily grows as the amount of flows, 

switches, and bandwidth increases. There is always a possibility that the components will 

become overloaded, so careful monitoring is essential.   

The reality is that it continues to be very difficult for OpenFlow networks to support 

the movement of abundant flows. It can take an unsuitable long time to modify packets at the 

control plane too and this is another problem. In light of these weaknesses, it can be argued 

that there is uncertainty surrounding the question of whether OpenFlow applications can be 

used to regulate core network processes [41]. This is one of the reasons why OpenFlow is 

normally utilised for the outer portions of a network and not the middle functions.  Research 

by Heller and his group [65] explained how just one controller can be used to maintain an 

optimal degree of inactivity. The researchers suggest that the implementation of k controllers 

will decrease inactivity by k. In regards to OpenFlow structures, there are two key scalability 

obstacles. The first is the fact that there are hardware related restrictions on the rate at which 

new flows can be formulated. The second is that, due to restrictions on hardware capabilities 

and table size, the amount of flows that can be accommodated is relatively low.  

On top of the possibility of controller overload, the flow set up process often 

introduces new restrictions to network adaptability and flexibility [63]. This process is 

defined by the four steps outlined below:  

1. The switch receives a packet, but it can find no matching table entry;  

2. The switch delivers an alert to the controller and asks for further information on how to 

handle the packet;  

3. The controller generates a brand new command and delivers it to the switch; 

4. The switch uses the updated information to change the entry and update the command. 

Preliminary tests on SDN switches and controllers proved that the controller is able to 

react to the alert within a one millisecond window [18]. Even with the support of high end 

components, the tests found that switches were able to ‘accommodate a few thousand 

installations per second with a sub-10 millisecond delay at best.’  So, while the reaction times 

of the controller are impressive, they hold little value, if the hardware switches cannot match 

or surpass this level of speed. Ultimately, the overall efficacy and productivity of the set up 

process is determined by the quality of its controller software and components (memory, 
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CPU, etc.)  The forwarding information base (FIB) for a switch must introduce a degree of 

inactivity while it sends an alert to the controllers and asks for more detailed instructions.  

In some cases, SDN unintentionally conceals a proportion of network traffic and this 

can make dealing with faults very difficult. When utilising older, more conventional systems, 

it would not take a network manager long to figure out, for instance, that the cause of 

congestion was most likely a faulty backup. The fastest response would be to reorient the 

backup to a period that was less hectic and overcrowded. However, when it comes to SDN, 

the only fully transparent elements related to User Datagram Protocol traffic are the tunnel 

endpoint and tunnel source, which means that the network manager cannot get a clear picture 

of how the tunnel is being utilised. That is, it is very tricky to figure out whether congestion is 

a result of an email, replication, or other malfunction. Moreover, the UDP tunnels hide the 

identity of the biggest communicator.  

When congestion is causing havoc and users are experiencing serious issues, 

narrowing the fault down to just one area is unreasonably hard. As the degree of transparency 

decreases, it gets even harder to find viable solutions. Additional faults develop and the 

flexibility of the network is compromised [18], [64]. The reality is that, the longer it takes to 

find a workable solution, the more likely it is that the network will become untenable and its 

associated enterprise will lose money. It is clear then that inactivity and congestion both 

present serious problems for network flexibility [59]. The expenses associated with broadcast 

overheads and the propagation of flow entries both impose restrictions on the inherent 

flexibility of SDN networks. Therefore, to regulate and control the rapid expansion of flow 

entries, the controller should be permitted to apply header modifications to the core 

components. The targeted switches are the egress and ingress.           

Another way to enhance the flexibility of the network is to introduce the use of virtual 

storage migration and virtual machines in the spaces between key locations. This usually 

takes the form of IaaS software and middleware solutions, with their roots in OpenFlow and 

Crossroads. The latter is a type of network fabric closely connected with OpenFlow. This 

issue has been explored a little in earlier chapters [66],[67] and alternatively, DIFANE can be 

employed, as [68] suggests. The term refers to a distributed flow maintenance structure with 

the ability to range in size, depending on the needs of the user (amount of hosts, protocols, 

flows, etc.) In fact, there are various software oriented proposals that could be used to solve 

many of the bigger limitations to SDN flexibility. For instance, CORONET is a system which 

is able to respond extremely quickly to faults [69].  
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It lends itself well to vast, sprawling networks due to the VLAN components attached 

to its local switches. The advantage of CORONET is that it can bounce back from link and 

switch faults with a minimum of downtime. Plus, it is compatible with modifiable, adjustable 

networks. It employs substitute multipath routine strategies when needed and it can be 

combined with almost any type of network topology. If that were not enough, it is very 

skilled at using centralised controllers to direct and deliver packets, as required. CORONET 

is defined by a series of modules that are tasked with route mapping, traffic control, topology 

exploration, and finding the optimal (fastest) channel for packets. One of its strongest 

elements is the employment of VLANs, because this is an effective way to standardise packet 

movements and ensure that processes do not become unnecessarily overcomplicated. They 

are also great at regulating the amount of flow commands and facilitating the upkeep of a 

fully adaptable and flexible system.  

To reference one more proposal, DEVOFLOW, refers to a type of miniature flow 

regulated by the data plane, at the same time as much bigger flows are being handled by the 

central controller. The idea is that, by dividing the two, the workload for the primary 

controller becomes much smaller and there is less strain on the core components of the 

network [70], [71]. The strategy mitigates the impact of poor controller transparency and 

ensures that flow scheduling overheads remain as modest as possible.    

2.7.4. Security 

According to statistical research conducted by IT experts, approximately 31% of 

corporate users are uncertain whether they think SDN is a safer or more risky network 

structure than some of the other mainstream options [63]. Around 12% of corporate users 

believe that SDN presents serious security problems.  

The controller contains invaluable insights about the network and therefore, is a prime 

target for invaders. For this reason, appropriate safety strategies need to be implemented to 

guarantee the accessibility of the controller, whilst protecting it from any threats. If an 

invader manages to get into the controller, the likelihood of the rest of the system being 

infiltrated is very high and the network becomes useless. The channel running from the 

switches to the controller is particularly sensitive. To some extent, Transport Layer Security 

can be employed as a way to protect communication. The problem is that this feature is not 

currently a mandatory part of SDN networks. Additionally, most permit the use of plain text 

traffic between the switches and controller. As a result, whilst TLS is able to increase the 
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safety of the channel, its overall impact is determined by the shape of the system and how the 

manager chooses to operate it. That person is under no obligation to incorporate a feature of 

this kind. To reiterate, heavy reliance on controllers is one of the biggest limitations for 

OpenFlow networks. It presents a significant security concern, as information thieves are 

aware of how important it is for a business.      

Like the packet channels, flow tables can be particularly vulnerable to invaders. It is 

interesting to note that there is scant literature on this subject and hence, there is no a clear 

picture of just how sensitive this component may be. Nevertheless, multiple controllers can 

be used to regulate one flow table and in this scenario, one is usually experimental (not 

essential), whilst the other is the primary component. Crucially, however, the experimental 

controller is still at risk from the same security concerns as the primary component. 

Therefore, the network manager must sustain the stability and reliability of the flow table to 

guarantee that the two cannot be easily distinguished [41]. This reduces the likelihood that a 

destructive (invading) command originating from one of the controllers will go on to 

manipulate flow entries relating to the other as well. Presently, flow visor is the most 

common way of managing controller security, but OpenFlow may be able to offer superior 

solutions, seeing as it is a much newer technology.     

There are some interesting benefits to be enjoyed with the support of a centralised 

software oriented controller. When it comes to distributed networks, it is necessary to deal 

with security concerns and inherent risks by making modifications to individual components 

and protocols, in turn. Obviously, this is very time consuming and it makes it harder to build 

a cohesive, unified system. Hence, using a controller located outside of the data plane is a 

better way to streamline security processes.   

According to most researchers, strengthening servers by hardening network 

components, rather than superficially securing them, is always the superior option. Some IT 

companies invest a lot of time and money in what they judge to be serious security risks and 

weaknesses. Yet, it should be remembered that, according to extant literature, most SDN 

dangers arise because the components have not been fully or skilfully assimilated with one 

other. In other words, the network does not fit together seamlessly, so it is hard for operators 

to move around it quickly. It must be understood that complexity is rarely a positive thing for 

controller processes. Not only does it increase the expense associated with maintenance and 

reduce ease of use, for it also makes the likelihood of an attack greater, because the manager 

does not have a full picture of the network processes.       
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As aforementioned, if invaders get into the central controller, they have the freedom 

to destroy almost every component in the system [72], which essentially means the end of the 

network. It is within the power of the network owner to apply an intelligent access control 

list. This is a detailed breakdown of which packets are authorised and which should be denied 

and eliminated as way to keep the network safe from malicious commands. To enhance SDN 

security significantly, the controller must be able to tolerate and facilitate the authorisation 

and authentication credentials established by the network operators. To be precise, it must 

have the ability to recognise which actions can and cannot be permitted. Furthermore, to 

maximise security, the network operator has to be able to employ the same principles used to 

regulate traffic for the purposes of monitoring and protecting SDN movements.  

To conclude, the controller must have the ability to warn network managers of any 

imminent invasion or infiltration [60]. It should also have the resources to restrict interactions 

to emergency messages and alerts only during a security breach. The problem is that the 

existing technology offers no guidelines on how to build up a deeper knowledge of network 

topology or the impact of latency and lost packets. Similarly, SDN lacks loop detection 

capabilities and it cannot respond to faults when certain conditions are present [73]. 

Furthermore, SDN does not offer enough provision for successful horizontal interactions 

between network nodes and this places substantial limits on how the network components 

function. While it seems clear that SDN has a lot to offer businesses and large data centre 

networks, its weaknesses cannot be ignored. In particular, it is in need of stronger, more 

cohesive standardisation regulations.   

2.8.  Using Soft Computing in SDN 

Over the last decade, there has been a growing interest in the advantages of SDN 

architectures, with a particular focus on OpenFlow structures. The core component 

responsible for driving this new technology forward is the OpenFlow agent. This is a 

software program that a switch activates to facilitate and sustain remote, configurable links to 

forwarding entries. Overall, it is a positive transition, because it significantly raises the 

possibility of dramatic extensibility changes, enhanced network processes, and more 

manageable expenses.  

It should be pointed out that, when experimenting with different degrees of network 

capability and functionality, it is easy to underestimate the importance of compatible, 

collaborative interactions and responses from network components. The problem is that there 
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is no official or formalised method for determining the value of a component. Network 

operators can find out whether a component is active, but this does not tell them much about 

its role and connections to other parts of the system. Additionally, the fact that OpenFlow 

principles and protocols are so variable makes it hard to determine whether a component is 

responding in an inefficient manner [74].   

From a broad perspective, SDN has the potential to eliminate some of the biggest 

obstacles to applying and maintaining innovative processes within networks. Presently, the 

primary thrust of SDN is OpenFlow. Within this structure, software operates according to a 

centrally positioned controller. In this regard, it is useful to think of the controller as the 

‘brain’ of the network. It is involved in all of the decisions and it also has the ability to make 

choices through the switches. If this were not possible, the network would run at a much 

slower speed [33]. The controller regulates and monitors the actions of a series of switches, 

which are themselves tasked with regulating and maintaining an assortment of forwarding 

tables.  

The dependability of the network is imperative. This is true no matter what system 

architecture is being used, because stability and consistency result in faster, more efficient 

processes. It is not always easy to achieve though, especially with the invention of ever more 

sophisticated network configurations and components [75]. As a system grows more 

complex, the chance of software malfunction and bugs substantially increases. The good 

news is that many researchers are now turning their attention to the construction of stronger, 

faster and superior debugging tools.  

It is possible to optimise load balance, cognitive network processes, and network 

safety by incorporating a variety of artificial intelligence oriented strategies [76], There are a 

number of studies that have sought to combine SDN networks with artificial intelligence 

features. While the results have mostly been inconsistent, there is evidence to suggest that 

hybridised AI strategies are the secret to facilitating more sophisticated activities within SDN 

architectures. 

 Soft-Computing (SC) can be used for developing intelligent system and learning 

machines. The main goal of SC is modelled and provided intelligent solutions for 

complicated problems that cannot be modelled mathematically. Therefore, SC will fulfil a 

strong, manageable and not expensive solution from approximate reasoning and uncertainty. 

Recently, the SC techniques are being used successfully in several applications [77].  
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Several experts recommend soft computing strategies as a way to further test and 

streamline networks. For instance, the work by Yilan [78] proposed a genetic algorithm 

designed to tackle bandwidth related multi path optimisation issues. Similarly, Gao and his 

group [79] argued that a Particle Swarm algorithm is the best way to deal with control 

placement challenges, because it accounts for both the constraints on controller abilities and 

the impact of forced inactivity.  

Risidianto and his research group [80] spent time analysing the efficiency of an SDN 

virtual system, in relation to its responses to various virtualisation conditions. The researchers 

performed tests on par virtualisation, OS based virtualisation, and hardware facilitated 

virtualisation. Victor-Valeriu and Ionita [81] suggest a possible strategy for circumventing 

DDos invasions. They employed a sophisticated cyber protection structure with the ability to 

analyse dangers at a rapid speed. The resource was shaped around the strengths of a neural 

network and took inspiration from concepts of biological danger. Interestingly, the test 

managed to demonstrate full packet capture and minimise the impact of malicious invasions. 

However, the researchers point out that, for this to work, the central controller must first be 

alerted to the threat and recognise that it needs eliminating or avoiding. One of the biggest 

advantages of the proposed system is the fact that it can be used to gather identifying data 

about the invader. The work of Zhang and Fumin [82] investigate the efficacy of SDN 

applications when network management protocols are used for the purposes of automation. 

They also tested the capacity for IP load bearing, network virtualisation, the cohesive 

regulation of optical deliveries, Qos guarantees, and fast switching across wireless networks. 

Sgambelluri [83] focussed on particular common proposals designed to enhance backup and 

operational flows, particularly when a variety of urgencies are attached to commands and 

packets.  

Ognjen and his group [84] implemented and evaluated an ant colony optimisation 

(ACO) approach to flow table rules in SDN environment. This design improves the quality of 

experience (QoE) by reducing the number of packets loss. The ACO-based heuristic 

algorithm includes calculation of new route path depending on traffic load and the network 

restrictions.     

Yao and his team [85] proposed a new method to enhance the global feasible traffic in 

SDN network, this method called PSO based Maximum Flow (PSO-MF) algorithm.  The 

goal of this algorithm was to maximise the number of forwarding rules by using PSO 
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technique to solve the size limitation problem with resources in TCMA-based SDN switches. 

This problem will be affected the performance of the network during high traffic demand. 

S. Kim, in his PhD research [86] proposed cognitive network management design called 

CogMan for SDN. The proposed method offers reactive, loops deliberative and, reflective where 

the reflective loop is planned to use learning algorithms for thinking, and impact planning and 

decisions performed in the deliberative loop. 

Mehdi and Liyuan in [87] demonstrated a method working based on repeated the 

same information every day in the data centres. The method is included implementation of an 

ANN network in the switch or router to choose a multipath route rather than single path 

route. Multipath routing with ANN can reach dynamic load balancing and optimized routing 

without involvement from the SDN controller. 

Finally, the work of Wu and Huang [88] recommends the introduction of an 

innovative open flow controller. It is shaped to fit sophisticated intracerebral neural 

architectures. According to the researchers, it is an effective way to facilitate the robust but 

flexible transmission of media across a wireless network. By employing a modified PSO, the 

researchers were able to ‘teach’ the core controller equation to become more efficient, 

particularly when transmitting media distributed within the sigmoid and radial activation 

functions of the intracerebral neural network.  Thus, whilst binary responses are determined 

by the controller, it is subject to the influence of link control protocols. These guidelines and 

principles are produced as well as being organised by a highly efficient neural architecture, 

which is itself sensitive to the impact of wireless link performance and mobile connection 

speeds.  

The primary aim of this section was to discuss some of the most interesting solutions 

for overcoming key SDN limitations. Most come with some weaknesses of their own, but 

they still indicate a very promising future for the development of SDN networks.   

2.9. Summary 

Currently, the Internet of Things lies right at the heart of the biggest, broadest, most 

versatile networking solutions, with at present, over fifteen billion devices being linked to the 

internet. The figure is predicted to reach more than fifty billion by the year 2020. The amount 

of information produced by these devices is unfathomably large and the problem is that a 

successful IoT must be able to process and interpret it. As the reliance on networking 

technology grows, so too do the obstacles relating to resource distribution, traffic flows, and 
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fundamental network strength and safety. According to some experts, centralised controllers 

and increased configurability is the right way to tackle many of these challenges. Regarding 

which, one of the most promising recommendations is Software Defined Networking. It is 

hugely beneficial, because it offers a configurable and centralised system of control, but it 

does not need to carry out extensive modifications on existing networks to achieve these 

goals.  

Throughout this chapter, SDN has been explored in great depth and considered in 

relation to a broad variety of conditions and scenarios. To summarise, SDN is believed, by 

most experts, to be a viable method of streamlining network maintenance and regulation. It is 

also a great way to support future research endeavours and attempts to improve interactions 

between the data and control planes. It should be noted that, while the aim in this chapter has 

been to cover as many different aspects of SDN as possible, it is not the most comprehensive 

account available. There are plenty of other resources of this matter and many investigate 

different issues.  
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3. Chapter Three: Performance Prediction of a Software Defined 

Network 

3.1. Introduction 

With the aim of achieving enhanced data transmission in software defined networking 

(SDN) an Artificial Neural Network has been proposed, in which the global network 

approach to SDN was employed to predict the performance of the Software Defined Network 

according to effective traffic parameters. Quality of service (QoS) is recognised as a 

significant and vital consideration in networks. In SDN/OpenFlow networks, the capacity for 

intelligent recognition of flow requirements (e.g. bandwidth, delay, jitter, and throughput) is 

an essential specification for the network components, if QoS is to be guaranteed. The two 

categories of components in SDN are the switches and controllers, with the latter instructing 

the former regarding how the flows should be routed. An additional component, which will 

be incorporated into the SDN network, is a data analysis server or cluster designed to store 

application data as well as to analyse and anticipate flow behaviour.  

Those QoS parameters used in this thesis are round-trip time, throughput and the flow 

table rules for each switch, which are also used in the learning system. A POX controller and 

OpenFlow switches, which characterise the behaviour of a Software Defined Network, have 

been modelled and simulated via Mininet and Matlab platforms. An ANN has the ability to 

provide an excellent input-output relationship for nonlinear and complex processes. The 

network has been implemented using different topologies of one or two layers in the hidden 

zone with different numbers of neurons. Generalisation of the prediction model has been 

tested with new data that are unseen in the training stage. The simulated results show 

reasonably good performance of the network. 

3.2.  A comprehensive Survey of Intelligent Control Systems 

Human intelligence has been widely used as the blueprint for the development of 

intelligent systems and humans remain at present considerably more adept than the resulting 

devices over a range of attributes. These attributes tend to be those specifically needed for 

attaining control objectives, including adaptability, analytical thinking, associative memory, 

creativity, the ability to learn, the ability to discern and distinguish items as well as the ability 

to make observations, either independently or under guidance, when faced with challenging 

situations [89]. 
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3.2.1. Parallel Processing 

The making of a good decision involves the interplay and synthesis of numerous 

information and learning sources in a strategy known as parallel processing. For example, in 

the process of selecting an item of clothing for purchase, a shopper is involved in considering 

numerous factors (colour, style, cost, fabric) which are taken into account along with the 

individual’s previous experience and hearsay, in order to reach a final decision. Similarly, in 

the management of a dynamic system, the control specialist must begin by deriving the 

system’s behaviour from a range of influential criteria.  

The required system behaviour, under any given circumstances, can then be obtained 

by the appropriate selection and handling of the criteria. Thus, human beings make decisions 

by the parallel processing of information, such that a wide body of knowledge and data must 

be taken into account rapidly and simultaneously. This type of strategy has therefore been 

modelled and applied to networking in order to obtain human-like behaviour [90]. Thus 

artificial intelligence, such as the Artificial Neural Network (ANN), involves data handling 

by the interchange of inputs and outputs among numerous units. The data acquired by the 

decision maker is frequently fragmentary and/or vague (so-called fuzzy data), hence a range 

of deduction and estimation strategies (fuzzy logic) must be employed to arrive at an 

appropriate decision. 

3.2.2. Learning Procedure 

The central aspect of natural intelligence is the learning process, by which human 

beings are able to become increasingly astute and adept. With respect to artificial 

intelligence, the learning procedure involves training an intelligence-based system to carry 

out a specified task. There are three main approaches, as outlined below. 

 (i) Supervised learning. This is an evaluation-oriented approach in which a set of 

instructive tasks is presented according to the formula 3.1: 

 

[
𝑢1

1 ⋯ 𝑢𝑖
1

⋮ ⋯ ⋮
𝑢1

𝑛 ⋯ 𝑢𝑖
𝑛

] = [
𝑦1

1 ⋯ 𝑦𝑘
1

⋮ ⋯ ⋮
𝑦1

𝑛 ⋯ 𝑦𝑘
𝑛

] (3-1) 

where, n = example value, i = input (u) value and k = target(𝑦) value.  
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 As these instructive tasks are executed the model parameters are adapted in order to 

make the model outputs approach the target values. This approach can be employed in 

intelligence-based control and modelling. 

(ii) Unsupervised learning. This approach employs a set of inputs without any 

specified target values and hence, the model parameters are adapted in response to the input 

values alone. This approach is primarily employed for clustering and pattern recognition 

processes. It is also applicable in system analysis and in image processing (feature 

extraction). 

 (iii) Associative reinforcement learning. This evaluation-oriented approach differs 

from supervised learning in that it generates a single score or grade reflecting the level of 

performance of the model over a given group of inputs, rather than giving an individual 

output value for every input. This approach is particularly suitable for control software. 

3.2.3. Adaptation  

The ability to alter the pattern of behaviour to suit the environment, known as 

adaptation, is possibly the most intriguing aspect of human-like performance. Likewise, the 

achievement of robust and competent functioning under uncertain conditions necessitates 

intelligent control or modelling to revise or adjust the parameters and in some cases, the 

configuration of the system, continuously. The adaptability and robustness of controllers 

might be assessed by, for instance, a set of challenges designed to monitor changes in the 

desired set of outputs, performance perturbations, or performance failures [91]. 

3.3. Artificial Intelligence Methodology 

As outlined in previous sections, the primary aim in establishing an artificial 

intelligence methodology is to generate human-like functioning. The extensive body of 

literature relevant to this endeavour is so vast that the resulting survey for this could not be 

completely exhaustive. Instead, the aim here is to highlight the development of practical 

techniques, with a particular focus on the SDN control and optimisation approaches. 

Particular attention will be drawn to the ANN methods, and to optimisation techniques, 

including genetic algorithms (GAs) and particle swarm optimisation (PSO), which are 

employed in this thesis. 
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3.4. Artificial Neural Network  

The basic requirement of an intelligent system is that it must be capable of performing 

a range of operations, including machine learning, parallel data processing, generalisation etc, 

which enable it to generate appropriate decisions under uncertain conditions [89].  

Artificial Neural Networks (ANNs) have emerged as a primary aspect of artificial 

intelligence due to their particularly favourable possibilities. Furthermore, the rapid progress 

in very-large-scale integration (VLSI) and super-fast computers, along with expanding 

research into neural system algorithms and architectures, have led to the successful 

application of ANNs in a considerable variety of interesting utilities. This includes their uses 

in intelligent control systems, primarily for the modelling and prediction of incomplete 

nonlinear and dynamic systems and for adaptation and control of uncertain dynamic systems 

[92]. A large number of exhaustive reviews have been published regarding the use of ANNs 

for modelling and control applications [93] - [94]. The primary features of ANNs are outlined 

below. 

3.4.1. The Neuron model  

The biological neural network uses the neurone as its basic component, with an 

estimated 10
11

 making up the human brain. As indicated in Figure 3-1, the neurone consists 

of three parts: the cell body, the axon, and the dendrites. The dendrites consist of branched 

nerve fibre nets, which are active in passing signals to the cell body. This, in turn, effectively 

measures and processes the signals to generate an output, which can be transmitted via the 

single long axon fibre, to other neurones. The axon of one cell connects with others via the 

accessible dendrites, the point of contact being termed a synapse [95]. 
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Figure 3-1 A streamlined schematic diagram showing the connection (synapse) 

between two biological neurones 

Artificial neurones are of two fundamental categories: (i) single-input neurones, in 

which a scalar input is multiplied by a scalar factor (termed the weight) to generate a scalar 

output; and (ii) multi-input neurones, in which a vector of weighted inputs is received from 

the outside world or from other neurones and is summed according to equation Eq. (3-2) 

𝛼𝑗 = 𝑤1,𝑗𝑢1 + 𝑤2,𝑗𝑢2 + ⋯ + 𝑤𝑖,𝑗𝑢𝑖 + 𝑏1,𝑗 = ∑ 𝑤𝑖,𝑗𝑢𝑖 + 𝑏1,𝑗 𝑛
𝑖=1           (3-2) 

 

where, α = the activation state of neurone j. This formula shows that the relationship 

between the input (u) and activation state (α) is a linear combination. As indicated in Figure 

3-2 and Eq. (3-3), the activation state is then processed, either nonlinearly or linearly, by an 

activation function.  
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Figure 3-2 Signal processing in a multi-input neurone 

𝑦𝑘 = 𝑓(𝛼𝑗)          (3-3) 

As described in detail by Hagan [95], there are a large number of activation functions 

utilised in ANNs, each being selected according to the specific problem that the neurone is 

tackling. 

3.4.2. The Structure of Neural Networks 

Parallel operation requires the functioning in concert of a large number of neurones. This 

active set of neurones, termed a layer, is a standard building block of ANN structure or 

topology. The specific structural arrangement of the neurones making up the neural 

network is closely related to the learning algorithms employed in training the network. 

Three distinct primary categories of network structure can be identified, as outlined 

below. 

       I       Single-Layer Feedforward Networks 

Shown schematically in Figure 3-3, this type of network consists of a single layer of 

connection weights and can frequently be characterised as an input unit. This unit receives 

signals from the external environment and transmits them to other network components for 

processing. This initial layer is not counted in the layer number, as it is not involved in the 

performance of computations or in the function of the output unit which delivers the network 

response. 

II Multi-layer Feedforward Networks 

From Figure 3-4 it can be seen that this category is characterised by the presence of 

extra hidden layers containing hidden neurone computation nodes (also termed hidden units) 

which serve the purpose of providing a useful mediation between the external input and the 

network output. The inclusion of one or more hidden layers makes it possible for the network 
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to derive higher order statistics [96] and this important type of neural network has been 

fruitfully employed to elucidate a broad range of challenging issues in numerous scientific 

and technological areas [97]. 

 

 

Figure 3-3 Schematic diagram of a single layer feedforward neural network 
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Figure 3-4 Schematic diagram of a multi-layer feedforward neural network 

 

The majority of ANN-based control systems, such as those cited in the present work, 

make use of the multi-layer feedforward structure. Neural networks are able to estimate 

functions and mathematical operators to any desired standard. In particular, the feedforward 

artificial neural networks (FFANNs) can define the relationships between input and output 

for a range of systems, thus leading to their reputation as universal approximation devices 

[97]. 

This structure, consequently, became favoured for the characterisation of nonlinear 

models and classifiers; finding frequent application in pattern recognition, output prediction 

for various operations, nonlinear control, etc. The primary learning approach in multi-layer 

FFANNs is that of error backpropagation (Bp) [98]. This was developed around 1985 by a 

number of research groups and is generally used alongside an optimisation method, such as 

gradient descent. 

The error Bp approach consists of the following steps: 

(i) Random initialisation of the network weight followed by iteration of the 

subsequent steps until the desired criterion is attained; 

(ii) Summation of the weighted input and computation of the hidden layer(s) output 

using an activation function Eq.(3-4 ): 
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 ℎ𝑗 = 𝑓(∑ 𝑤𝑖,𝑗𝑢𝑖) (3-4) 

Where, hj: the actual output of hidden neurone j, ui is the input signal of input neurone 

i, wi,j is the weight between input neurone i and hidden neurone j and f is the activation 

function. 

 (iii) Summation of the weighted output of the hidden layer and computation of the 

layer output using an activation function Eq. (3-): 

 

 �̂�𝑘 = 𝑓(∑ ℎ𝑗𝑤𝑗,𝑘) (3-5) 

Where, �̂�𝑘 is the output of neuron k, 

(iv) Calculation of the backpropagation error according to Eq.(3-6): 

 𝛿𝑘 = �́�(�̂�𝑗)(𝑦𝑘 − �̂�𝑘)                                                                              (3-6) 

Where, �́� = activation function derivative, and 𝑦𝑘 = desired output (actual output) of 

the neuron k. 

(v) Calculation of the weight correction term according to Eq.(3-7): 

 )1()( ,,  twhtw kjjkkj            (3-7) 

where, t is a time step, η is an appositive constant called the learning rate 

coefficient and α is another constant called a momentum factor; 

(vi) Summation of the change in input (delta) for each hidden neurone and 

computation of the error term according to Eq.(3-8): 

 

 )( ,

'

, jiiikjkkj wufw           (3-8) 

(vii) Calculation of the weight correction term according to Eq.(3-9): 

 )1()( ,,  twutw jiijji           (3-9) 
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 (ix) Revision of weights according to Eq.(3-10) and Eq.(3-11): 

 
kjkjkj wtwtw ,,, )()1(   (3-10) 

 
jijiji wtwtw ,,, )()1(   (3-11) 

 

III Recurrent Neural Networks 

In contrast to FFANNs, recurrent neural networks (RNNs) incorporate one or more 

feedback loops, i.e. they are structured with internal connections that feed back to another 

layer or to themselves. This structure makes it possible for the network to handle 

unidirectional data flow (as in biological systems) and to discriminate between separate input 

patterns from the same input sequence (thus identifying time-dependent patterns). A 

feedforward network is incapable of performing the latter function without pre-processing of 

the inputs [99].  

Furthermore, RNNs possess a dynamic memory, such that their outputs at any specific 

time are shaped not only by the present input, but also the previous inputs and outputs. The 

primary categories of RNNs are the fully recurrent network, the Hopfield network, recursive 

neural networks and the Elman network. 

3.5. Simulation Analysis  

Due to the highly diversified nature of the network, the behaviour of software-defined 

networking systems is significantly non-linear. Consequently, the QoS of the network can be 

impacted upon by a significant number of factors and the operational correlation between the 

various performance parameters cannot be expressed by any existing near-standard statistical 

evaluation. However, an ANN can be used to predict the optimal performance of an SDN 

network based on the rule table inputs and QoS parameters as outputs. The ANN has the clear 

advantages of economy, simplicity, and efficiency and, most of all, the ability to learn from 

examples. The neural network has been modelled using the Levenberg – Marquardt training 

algorithms, with the absolute percentage error of predicted and computed QoS parameters 

being obtained by the steps outlined in this chapter. 

To start with, the network simulation experiments are detailed using Software Defined 

Networks (SDN) with the Python-based POX Controller in a simulated environment with a 



67 

 

Mininet network emulation platform. Then, the Matlab programme is used to pre-process all 

the collected data sets and to prepare them for implementation in an ANN. The model is 

developed according to the following steps. 

1. Simulate the SDN by Mininet. Three different SDN network topologies are 

used, Mesh topology with 5 switches, Mesh topology with 15 switches and custom 

topology with 9 switches. For each switch two hosts are connected. 

2. Database collection. A wide range of data have been collected from SDN 

network included flow rules and network performance parameters. The network 

program is run for each topology for 180 minutes and collects all the data for every 5 

minutes to build the learning intelligent system. As is well known, QoS has been a 

very important and indispensable issue in networks. In order to ensure it in 

SDN/OpenFlow networks, it is absolutely essential to improve the controller or the 

switch performance. Hence, the important requirements of flows, such as throughput 

and delay (RRT) are collected and used as data sets output in the ANN association 

with the flow rules that generate these parameters.  

3. Analysing and pre-processing of the data. The input for the ANN will be a set 

of flow rule and the corresponding throughput and delay for that rule. In order to 

begin with ANN modelling, pre-processing (normalising) of data is vitally important 

to make all input parameters lie within a specific range [-1, 1]. 

4. Training of the ANN using all the data that are collected from three different 

scenarios, which are run for three hours. Train the network with specific properties 

like a network topology, training algorithm, and a minimum of accepted error 

between the predicted and actual output. 

5. Testing of the trained ANN in order to check for model generality: the trained 

network is tested by unseen data and then the output compared with actual one. 

6. Post-processing of the output data: after an acceptable result has been obtained 

by testing network, the normal value of output is calculated by post processing of the 

predicted value. 

7. Using the ANN, once trained, for simulation and prediction of the 

performance of SDN. 

3.5.1. Creating the training dataset from SDN Topology Selection 

All experiments were conducted using a Dell PC, with the processor Intel Core 

(TM)i7-4500U CPU @ 2.4GHz, and with 8 GB RAM, which runs a 64-bit 
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Windows 7 operating system and a VMware Player virtual box. The guest OS installed in the 

VM was Linux OS Ubuntu 14.04 32bit with 1GB RAM. A Mininet 2.2.1 emulator was 

installed on this VM, with a POX 2.0 controller. The aforementioned system was utilised 

with a POX controller with three different topologies: mesh topology, which 

has five switches and two hosts in each switch; Mesh topology, with also fifteen switches and 

two hosts for each switch; and finally, custom topology, which has nine switches with two 

hosts for each switch. The capacity of all the links between switches was 10Mbps) and the 

link capacity between the hosts and corresponding switches was also10Mbps.  

The experiment involved making use of the Python-based POX OpenFlow controller, 

which arose from the original NOX OpenFlow controller [100]. The POX controller was 

selected, because it is compatible with the spanning tree protocol (STP), which is essential 

when setting up a mesh topology with logical loop-free pathways. Once the network topology 

had been formulated, the POX controller needed to run on a terminal. On start-up of the POX 

controller, the OpenFlow switch was directly connected to the network in readiness for 

receiving OpenFlow messages. The module used in the present work is intended to run in 

conjunction with the POX forwarding L2_learning component. 

In order to validate the proposed scheme, the network traffic was generated using the 

latest version of the network performance and measurement tool iperf (version 2.0.5). This 

open source tool is presently available on Linux, Unix and Windows platforms with identical 

command options. It is designed to evaluate the trace performance of the Transmission 

Control Protocol (TCP) and the User Datagram Protocol (UDP) with both unicast and 

multicast transmission [101] and was selected because TCP is used in the applied program. 

The iperf tool follows the client-server model and is compatible with both IPv4 and 

IPv6[102]. The iperf tool measures a range of statistical values including datagram loss, delay 

jitter, and throughput. Its output typically contains a time stamped report of the quantity of 

data transferred. 

To make the simulation closer to the real environment and more reliable, a link 

capacity of between 10 Mbps-25 Mbps was deployed because L2 switches were used [103], 

[104]. This meant that each host in the network communicated with other hosts by sending a 

traffic rate of 10-25Mbps. On the client side, traffic was generated by means of TCP traffic, 

while on the receiver side, the incoming data size, throughput, delay, and the 

loss packets were recorded. Every 5 minutes all traffic parameters were measured and 
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recorded, with the scenario being run for a time period of 180 minutes. Traffic was 

generated from the hosts 80% of which represented clients, whilst the rest were servers.  

 

A. Design  

Due to the design of OpenFlow, flow entries were stored in the switch flow tables and 

then packets were forwarded to their destinations based on the instructions received from 

the OpenFlow controller. When the program was run, as explained above, 20% of the hosts 

were servers and the rest were clients. The server hosts received the data from all other 

clients. Starting with the first host, the remaining servers followed on from this constituting 

the designed 20% and then the rest were clients. The program was run for 180 minutes and by 

using ipef traffic generator, three lots of traffic are generated. The first traffic flow lasted 

three hours, the second was of two hours duration and the third lasted one hour. There was 

stress on the network for the first hour, medium traffic in the second and low traffic during 

the last hour. 

 

B. Development  

As previously noted, the controller makes forwarding decisions that are informed by 

the network state.  Since an ANN has the capability of generating extremely high accuracy 

predictions, the controller can make forwarding decisions based upon precise bandwidth 

utilisation values. Messages regarding the current state of each switch are passed to the 

controller at intervals of time, thus providing current values of the network state, including 

detailed statistics relating to each port, flow and queue, along with the bandwidth utilisation 

values. The specific time interval at which messages are passed must be carefully chosen, 

such that it is not too long for the controller to be able to keep up-to-date with the network 

state and not so short as to generate excessive traffic in the controller. A time interval of five 

minutes was selected for the present research programme. 

In order to create the presented design, the python programming languages was used 

as the POX OpenFlow controller is python-based. In this module, a network topology is 

developed to create traffic as well as to measure it and other network parameters.  

 

1. Run POX controller.  

2. Start the script for network simulation and performance measurement. 
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3. When the packets are transmitted over Ethernet networks, the packets 

will arrive at an ordinary Ethernet switch, which usually looks up the MAC 

address of the destination in its MAC table. In the MAC table, the information 

for mapping from the MAC address to the output switch port is stored and the 

switch will use this information to forward the frame to the specified switch 

port. For other subsequent frames, the communication rules from the source 

MAC address to the ingress port are learned and stored in the MAC table.  

4. Determine the total run time, interval measurement time and choose the 

topology including the number of switches.  

5. Collect the statistics data which include:   

- For the controller (number of packets sent to the controller, response 

time for the controller and average flow table creation, both in 

seconds);  

- For the switch (average delay in the switch);  

- Performance (RTT, throughput, total packets sent, dropped packets and 

bandwidth utilisation).  

6. For each source and destination, all possible paths with information about the 

number of hops, delay, and bandwidth will be collected.    

7. libpcap API is used in a C++ shared libraryto collect data. This list shows the 

type of protocol used to generate the traffic, source IP address, destination IP 

address and some extra information about the time interval.   

8. Finally, for each path in the network, the flow rules that represent a path must 

be saved in the database. This data will be used in the learning system to build 

the cognitive system.  

9. The program will generate three different high levels of traffic load to stress 

the network, and for monitoring all the scenarios of traffic 

load. Moreover, based on these different scenarios the cognitive agent has 

been built to study the different environments and to make correct decisions.  

3.5.2. Artificial Neural Network Simulation 

For this work, the dataset of the inputs and outputs was divided randomly into three 

subsets: 

1) Training set (70%); 
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2) Valediction set (15%); 

3) Testing set (15%). 

The first subset was for establishing the gradient as well as updating the network 

weights and biases. The error in the second subset was observed during the training 

development. 

The validation error is usually reduced in the initial training phase, as is the training 

set error. Nevertheless, when the network overfits the data, the error in the validation set 

invariably starts to rise. In the current case, the network parameters were saved at the 

minimum of the validation set error [17]. As mentioned earlier, the optimal topology giving 

the best performance was selected by conducting an exhaustive search for the number of 

neurons in both the first and second hidden layers. Figure 3-5 shows the nested loop 

architecture for choosing the optimal ANN topology. During each run, the number of neurons 

(i, j) was selected by conducting all those possible from 1 to 20 in hidden layer(s). Due to the 

random initialising of the parameters (weights and biases), the network training process (k) 

was repeated ten times with random initial weights for each single run. The ANN was trained 

in a nested loop and the recorded performance index, namely, the Mean Square Error (MSE), 

was saved in the external matrix containing all the parameters (i, j, k) gathered during the 

loop.  The optimal structure of the network was chosen depending on the best performance 

(minimum error between the predicted and actual matrix). 

The transfer function used in the hidden zone is log sigmoid, given by Eq. (3-12): 

𝑌𝑖 =
1

1+𝑒−𝑥                                               (3-12) 

where, 𝑋𝑖 represents the input for the neuron in the hidden layer, whilst 𝑌𝑖 is the 

neuron output. For calculating  𝑋𝑖 , the input values need to be normalised in the range [-1, 

1], which corresponds to the minimum and maximum actual values. Subsequently, testing the 

ANN requires a new independent set (test sets) in order to validate the generalisation capacity 

of the prediction model. 
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Figure 3-5 Exhaustive search of optimal NN topology  

3.6. Simulation Results and Discussion 

According to the selection strategy, three different scenarios were used to train the 

ANN network: 

1- Mesh SDN topology using five switches. 

2- Mesh SDN topology using fifteen switches. 

3- Custom SDN topology using nine switches. 

When considering which Mesh SDN topologies to implement, the five switches were 

selected to be the minimum, with the maximum set to be fifteen. The reason for that is the 

limiting effect of using Mininet emulation; which restricted the maximum number of Mesh 

SDN topology implemented in this system to fifteen switches. Each topology using a POX 

controller and each switch in every topology was connected to two hosts. Every time, the 

program was run for three hours to collect the data that were used in the ANN network 

learning system. The data that were collected include the flow rule tables, which were sent 

from the controller to each switch and these were used as inputs to the ANN network, plus 

the QoS parameters for the SDN network which represented the output for this network.  
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The structure of the ANN network includes: 

1. Seven inputs parameters, which are the switch number, input port, Ethernet 

source, Ethernet destination, TCP source, TCP destination and action; 

2. One hidden layer with a symmetric sigmoid transfer function;   

3. One output layer including two parameters, throughput and round trip, as QoS 

performance.  

The collected input-output dataset was then randomly split into subsets of 70%, 15% 

and 15% for respective use in the training, validation and testing. The performance of SDN 

was evaluated by implementation of a feedforward multilayer network. The Levenberg-

Marquardt training algorithm (LMA) was run ten times for each network architecture using 

various random initial weights and biases. The exhaustive search method was used to 

evaluate the performance of various architectures under three scenarios. The optimum result 

was achieved for the best trained ANN with one hidden layer, in comparison to that with two. 

The following are the results for the three scenarios trained in the program. 

1- Mesh topology with five switches and ten hosts: 

Regarding the selection strategy, Figure 3-6 shows the results of the network 

architecture. This consists of seven input neurons in the first layer, 18 in the hidden layers 

with a logarithmic sigmoid nonlinear activation function and two output neurons in the output 

layer. The training of the network shows the best performance of the ANN structure gives 

comparably better performance of MSE, with 2.5716 × 10
−6

, as shown in Figure 3-7.  

 

 

Figure 3-6 The ANN structure for an SDN topology with five switches 
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Figure 3-7 Performance of ANN for SDN topology with five switches 

After examining the performance of different architectures according to selection 

strategy as shown in Figure 3-5, a network trained by Levenberg-Marquardt algorithm 

showed good performance indicated by a Mean Square Error of less than 10
-6

. Figure 3-8, on 

the next page, illustrates the training session for an SDN five switches mesh topology, where 

the number of iterations (epochs) is determined when the training error decreases to the target 

figure. The validation set, demonstrated in the next figure, is used to minimise overfitting. 

Usually, the network is trained with the training set in order to adjust the weights. The 

validation set must also be inputted to the network to prevent its overfitting and to calibrate 

the models. While this would also confirm if the error is within a certain range, the set is not 

directly used in adjusting the weights, but to obtain the optimal number of hidden units. The 

model’s accuracy on the test data indicates a realistic estimatation of the model performance 

on unused data to confirm the network’s predictive power. If the accuracy over the training 

data set increases but the accuracy over then validation data set remains the same or 

decreases, then the overfitting of the neural network is occurring and the training must cease.  
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Figure 3-8 Training session for an SDN five switch topology 

 

Whilst the effectiveness of the developed neural network model for the prediction of 

SDN performance must be estimated to some degree from the error in the training and/or 

testing data sets, it is frequently beneficial to examine the network behaviour more closely. 

For example, a regression analysis between the network response (predicted output) and the 

corresponding target output can provide more detail. As shown in Figure 3-9, the optimum 

linear regression relating the target to the network response in an SDN network is indicated 

by a straight line. A perfect fit, with the predicted outputs precisely matching the actual 

values, would give a straight line with a gradient of one and an intercept of zero. Figure 3-9 

indicates that the values obtained were near optimal, i.e. the response to the training sets was 

good. 
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Figure 3-9 The linear regression of the targets relative to outputs for the SDN 

performance in training set. 

Figure 3-10 and Figure 3-11 show the mean square errors between actual and 

predicted SDN output performance, which are 10
-4

 and 10
-5

 for each output, thus indicating a 

close relationship between these values.  

 

            Figure 3-10 The actual and predicted Throughput performance  
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Figure 3-11 The actual and predicted RRT performance 

 

2- Mesh topology with fifteen switches and thirty hosts: 

The ANN structure for an SDN topology with 15 switches consisting of 19 neurons in 

the hidden layer during the second interaction, as shown in Figure 3-12, gives comparably 

better performance of MSE, with 9.629e
-13

, as shown in Figure 3-13 and Figure 3-14 which 

illustrate the training session.  

The predicted and actual SDN performance for two outputs the throughput and RRT 

are compared and depicted in Figure 3-15 and Figure 3-16, while the linear regression of the 

date is shown in Figure 3-17. 

 

 

Figure 3-12 The ANN structure for an SDN topology with 15 switches 
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               Figure 3-13 Performance of an ANN for an SDN topology with 15 switches 

 

Figure 3-14 Training session for an SDN 15 switch topology 
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Figure 3-15 The actual and predicted Throughput performance 

 

 

Figure 3-16 The actual and predicted RRT performance 
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Figure 3-17 Linear regression of the targets relative to outputs for the SDN 

performance in the training set 

 

3- Custom topology with nine switches and eighteen hosts: 

In accordance with the selection strategy, Figure 3-18, show the results of the network 

architecture. This consists of seven input neurons in the first layer, 19 in the hidden layers, 

with a nonlinear activation function (logarithmical sigmoid) and two output neurons in the 

output layer. The training of the network shows the best performance of the ANN structure 

gives a comparably better performance with a MSE of 0.4660, as shown in Figure 3-19.  
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Figure 3-18 The ANN structure for an SDN topology with nine switches 

 

 

Figure 3-19 Performance of an ANN for an SDN Custom topology 

Figure 3-20 illustrates the training session for SDN custom topology, number of 

iterations (epochs) is determined by when the training error decreases desired amount.  
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          Figure 3-20 Training session for an SDN custom topology 

 Figure 3-21 illustrates a straight line representing the best linear regression relating 

the target to the network response in an SDN network. 
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Figure 3-21 Linear regression of the targets relative to the outputs for the SDN 

performance in the training set 

 

Figure 3-22 and Figure 3-23 show that the Mean Square Errors between the actual and 

predicted SDN output performance are 0.01 and 30 for each output, which indicates that there 

is a close relationship between these values.  
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Figure 3-22 The actual and predicted Throughput performance 

 

Figure 3-23 The actual and predicted Delay performance 
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3.7. Summary 

In this chapter, an ANN has been proposed to find the correlation between the most 

effective input factors and performance output, with the former being the round-trip time, 

throughput and the flow table rules for each switch as well as a POX controller and 

OpenFlow switches. The ANN can be used very efficiently as a predictor, especially in an 

SDN controller with different traffic load, when the nature of the network is complex and 

highly nonlinear. The various topologies of SDN were trained and the ANN was tested by 

applying one hidden layer with different numbers of neurons. Moreover, LMA was used as 

learning algorithm in the feed-forward ANN structure. The results have shown that the 

network with one hidden layer gives a very acceptable MSE for all topologies. The proposed 

ANN could be used efficiently to improve the performance of an SDN by selecting the best 

input parameters, which is to be the subject of future work. 

The dataset was divided randomly into training, validation, and testing sets, as 70%, 

15% and 15%, respectively. The performances of the training algorithm, with different 

topologies of the network were trained to decide which structure performs better than the 

others, with Levenberg - Marquardt chosen as the training algorithm. The optimal structure of 

the network was chosen according to the best performance (minimum error between the 

predicted and actual matrix). 
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4. Chapter Four: Optimisation of a hybrid intelligent system for 

Software Defined Network 

4.1. Introduction 

Significant work has been carried out in the recent years aimed at generating systems 

demonstrating intelligence for realising optimised routing in networks. In this chapter, an 

Intelligent Agent based on two levels is proposed. At the first level, an ANN network is built 

to predict the performance of the SDN network, while at second, depending on the ANN 

output, the optimal path is explored using PSO.  

A new hybrid intelligent approach for optimising the performance of Software-

Defined Networks (SDN), based on heuristic optimisation methods integrated with the neural 

network paradigm, is presented. Evolutionary Optimisation techniques, such as Particle 

Swarm Optimisation (PSO) and Genetic Algorithms (GAs), are employed to find the best set 

of inputs that give the maximum performance of an SDN. The neural network model is 

trained and applied as an approximator of SDN behaviour. An analytical investigation has 

been conducted to distinguish the optimal optimisation approach based on SDN performance 

as an objective function as well as the computational time. After getting the general model of 

the neural network through testing it with unseen data, this model has been implemented with 

PSO and GAs to find the best performance of the SDN. The PSO approach combined with 

SDN, represented by an ANN, is identified as a comparatively better configuration regarding 

its performance index as well as its computational efficiency. The simulation has been run on 

different three topology structures. 

4.2.  Evolutionary-based Optimisation Methods 

A vital aspect of modelling and control is the optimisation tool used to ascertain the 

best or near-best solution to a given problem, based upon a predetermined criterion known as 

the objective function or fitness. During the last 40 years, a set of algorithms has been 

developed that mimic the biological processes of evolution by natural selection. This 

evolutionary-based optimisation or evolutionary computing (EC) methodology provides a set 

of generation-based optimisation tools that use a higher-level (metaheuristic) trial and error 

process to generate a partial search algorithm (heuristic) in an attempt to solve stochastic 

problems [105], [106]. 
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The original set of EC methodologies consisted of three exemplary forms, which were 

developed to tackle different problems, these being: (i) genetic algorithms (GAs) [107]; (ii) 

evolutionary programming [108]; and (iii) evolution strategies [109]. The subsequent 

generation of EC methodologies included a number of novel and outstanding forms, the most 

notable examples being those that evolved generations of data structures instead of string 

representations [110], and the GAs that advanced populations of programmes (genetic 

programming). A new generation of evolutionary-based optimisation methodologies has 

emerged in the last ten years including, for example, cultural algorithms, particle swarm 

optimisation (PSO) [111], and ant colony optimisation [112]. Every generation of EC 

optimisation tools has found a broad range of applications, particularly in conjunction with 

other intelligence-based approaches to the development of hybrid intelligent systems for 

advanced modelling and control. 

There is insufficient space in the present thesis to examine all of these optimisation 

methodologies, hence the most popular ECs have been selected for attention. These are the 

genetic algorithms (GAs) and the particle swarm optimisation algorithm (PSO) 

methodologies, which are described in the following sections. 

4.2.1. Genetic Algorithms 

Genetic algorithms (GAs) are based on the Darwinian theory of biological evolution 

by natural selection and were first introduced by Holland in 1975 [98], GAs can be defined as 

self-adjusting global optimisation search algorithms; they function by mimicking the 

biological developments that are observed to arise in nature from genetic and evolutionary 

mechanisms. By association with the concept of natural selection, GAs employ code 

procedure and reproduction methods, involving bio-inspired operators, such as mutation, 

crossover and selection, to generate solutions to convoluted problems [113]. Each potential 

solution to the problem is treated as an individual characterised by data configuration 

consisting of two parts, namely, a chromosome and an objective function. The chromosome 

consists of a set of genes, each of which is allocated values termed alleles. The set of all 

individuals is termed a generation or population. The majority of GAs uses a population size 

that remains constant over the search period. 

The objective function is used as the basis for selecting a set of individuals from the 

present generation, the parents, which are permitted to generate offspring. Hence, individuals 

with an above average objective function will have an above average likelihood of being 



88 

 

selected. Following selection, the reproduction processes of crossover and mutation are 

applied to the surviving individuals (the parents). While the crossover mechanism involves 

replication of genes from more than one parent to generate chromosomes for the offspring, 

the mutation mechanism only requires one parent. Consequently, the offspring arising by 

mutation generally displays a close resemblance to the parent, being distinguished only by a 

small number of altered genes[114]. 

The offspring (or children) are regarded as possible solutions to the problem and are 

therefore evaluated on the basis of the objective function, such that each child is assigned a 

fitness function. Individuals are eliminated on the basis of their fitness function, whereby 

those with a below average fitness function have an above average likelihood of being 

eliminated (or dying); this procedure being termed natural selection. Thus, the dead 

individuals are removed from the present generation to make room for the offspring. An 

intriguing aspect of GAs (and of ECs in general) is that the initial generation of individuals 

(possible solutions) does not need to be particularly good and in practice, it is usually made 

up of a set of arbitrarily assigned possible solutions. The search mechanism employed by 

GAs involves a number of iterations of the procedure represented by the flowchart in Figure 

4-1. 

Along with other intelligent-based approaches for the development of hybrid 

intelligent systems, GAs have been widely used for a significant variety of applications in 

modelling, estimation and control [115], [116].  
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Figure 4-1 Flowchart of the search procedure employed in GAs 

4.2.2.    Particle Swarm Optimisation Algorithm 

The Particle Swarm Optimisation (PSO) heuristic methodology was first put forward 

in 1995 and was revised in 2001  [117], [118].  As a relatively new subset of EC, PSO has 

proven extremely productive. The concerted functioning of decentralised and self-organised 

natural or artificial systems is examined by swarm intelligence (SI), generally by moving 
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towards a concession amongst individuals or particles within a population that are interacting 

in close proximity to one another as well as with others in the area. This type of simulation is 

usually drawn from examples in nature, especially biological systems, with particularly 

favoured examples being the group behaviours of ant colonies, animal herds, flocks of birds, 

schools of fish, and growing bacterial colonies [119].  

Among the most intriguing aspects of PSO, as well as SI-based algorithms, in general, 

is the process of self-organisation, whereby overall order emerges out of an initially 

stochastic system via local interactions among individuals. Rather than being regulated by 

any internal or external agency, the process occurs completely spontaneously. A number of 

researchers have suggested improvements to the established PSO algorithm by incorporating 

useful concepts from other methodologies, examples of which include: quantum-behaved 

particle swarm optimisation (QPSO), an improved version developed by Jan and his team 

[120]; which incorporates the concepts of quantum mechanics theory; Kennedy’s bare bones 

particle swarm optimisation (BBPSO) in which some of the operators have been changed 

[121]. and chaos-based particle swarm optimisation (CPSO), which combines PSO with the 

concepts of chaos theory [122]. While such attempts to enhance search performance continue, 

with more researchers suggesting novel modifications, the established PSO methodology also 

continues to find extensive application for a broad range of engineering challenges, 

particularly with regard to modelling and control [123], Consequently, the established PSO 

methodology has been applied to modelling and control in the present thesis, as detailed in 

the following chapter. 

The procedural aspects of PSO can be outlined as follows. All candidate solutions 

(particles) are assigned random locations and random routes or trajectories within the search 

field. The direction of travel of each particle then gradually alters with confidence in the 

direction of its optimum previous position, so as to seek an even better one, with respect to 

the pre-set criteria or objective function. While the initial location and velocity of each 

particle is randomly assigned, the ensuing velocities are revised according to Eq. (4-1): 

 )()( 22111 iiiii xGbRCxPbRCwVV   (4-1) 

where, V = particle velocity, x = particle position and w = inertial weight. R1 and R2 

are independent random factors uniformly distributed from 0 to 1, and C1 and C2 are 

acceleration coefficients. 
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The new position of the particle is then calculated by addition of this velocity to the 

previous position, according to Eq. (4-2):  

 

 11   iii Vxx  (4-2) 

Thus, Eq. (4-1) evaluates the new velocity of the particle with reference to its 

previous velocity and with respect to its actual position relative to both its local and global 

ideal positions (Pb and GB, respectively). The particle then moves to a new location within 

the search space, according to the formula in Eq. (4-2). This is the established PSO search 

methodology, which is presented as a flow chart in Figure 4-2. 
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Figure 4-2 Flowchart of the established PSO approach 

4.3. Simulation Test Procedure 

Significant research has been carried out in recent years to generate systems 

exhibiting intelligence for realising optimised routing in networks. 

A. SDN Simulation  

SDN simulation was performed using the Mininet platform to collect all datasets of 

inputs and outputs. Three different topologies for SDN were used, as described in the 

previous chapter. In addition, simulation experiments were carried out using a POX controller 

and monitoring of the flows was required for all events. Regarding which, in order to build 

the learning system, the SDN controller gives the orders to an SDN switch to monitor the 
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flows, and it keeps on monitoring them to detect the events. When the flows are monitored, 

the entire event, whether it occurs frequently or periodically, is stored in the database to be 

used in the ANN learning system. The flows/inputs include the rules coming from the 

controller. In turn, the output will be represented by the system throughput and the network 

delay. Consequently, the data that are collected from the ANN learning system are considered 

as being efficient inputs into optimisation algorithms. This work presents a new method for 

minimising the load of the SDN switch by the controller changing it adaptively, instead of 

waiting for the events all the time. This means that the switch will not send unmatched 

packets to the controller all the time, because the latter will be able to send the rules directly 

owing the intelligent agent that studies the behaviour of the network for optimising the 

routing rules all the time on behalf of the controller.  

  

B.  Optimise Identification for SDN performance 

This section includes the intelligent layers for identifying the SDN rule parameters so 

as to achieve the best performance for maximum throughput and reducing the delay as 

follows.   

First, the SDN network behaviour or performance is predicted using an ANN with an 

exhaustive search for selecting the optimal ANN topology and the Levenberg-Marquardt 

(LM) learning algorithm. When the ANN training started, the dataset had been pre-processed 

by normalising it into a range between -1 and 1. The dataset of the inputs and outputs was 

divided randomly into three subsets: a training set, valediction set and a testing set. The first 

subset was for establishing the gradient as well as updating the network weights and biases. 

The error regarding the second subset was observed during the training development. The 

validation error is usually reduced in the initial training phase, as is the training set error. 

Nevertheless, when the network overfits the data, the error in the validation set invariably 

starts to rise. In the current case, the network parameters were saved at the minimum of the 

validation set error. Input values need to be normalised in the range [-1, 1], which 

corresponds to the minimum and maximum actual values.  

Subsequently, testing the ANN requires a new independent set (test sets) in order to 

validate the generalisation capacity of the prediction model. A multilayer feedforward 

network was implemented to estimate the performance of the SDN. In order to obtain a 

maximum accuracy of prediction, the network was trained in different topologies. For each 
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network architecture, the training was run ten times for various random initial weights and 

biases using the Levenberg Marquardt algorithm (LMA). After investigating the performance 

of different architectures using the exhaustive search method, the best trained ANN with one 

hidden layer was found as giving the comparably better performance of MSE, as explained in 

the previous chapter. It is notable that the ANN model was efficiently accurate and hence, the 

network was accepted as a general model to be integrated, as the next step, with GA or PSO, 

so as to produce the proposed intelligent hybrid system. 

Second, there is the introduction an intelligent optimiser for the SDN network to 

maximise the throughput and minimise the delay. Two evolutionary algorithms (EA) are used 

to find the optimum rule parameter set for the OpenFlow rules. Both the EA algorithms, 

namely, PSO and GA, are compared in terms of effectiveness (finding the true global optimal 

solution) and computational efficiency. The performance comparison of the GA and PSO is 

implemented using MATLAB. 

4.4. Optimisation for SDN controller using PSO against GA  

GA and PSO were integrated separately with the trained ANN model to select the 

optimal set of inputs that make the network work as efficient as possible. The metadata of 

both optimisers were selected in a similar manner, as far as possible, in order to make a fair 

comparison. These metadata included the number of generations or particles and the number 

of iterations and so on. The metadata of the PSO are shown in Table 4-1, while those for GA 

are provided in Table 4-2. 

Table 4-1 Metadata of PSO used to optimise the SDN controller 

Parameter Value 

Number of particles (size of the swarm) 100 

Maximum number of iterations 100 

Cognitive acceleration (C1) 1.2 

Social acceleration (C2) 0.12 

Momentum or inertia (W) 0.9 

 

C1, C2 and W were chosen after conducting extensive simulation experiments. PSO 

was programmed from scratch to work as an optimiser tool in MATLAB
®

, while the default 
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of the GA metadata was implemented as provided by the Optimisation Toolbox in 

MATLAB
®
 platform. 

 

Table 4-2 Metadata of GA used to optimise the SDN controller 

Parameter Value 

Population Size 100 

Maximum number of iterations 100 

Function tolerance 0.0001 

Crossover fraction 0.8 

Migration fraction 0.2 

 

As stated earlier, because of the randomisation of the candidate solution at the initial 

stage, both optimisers, namely GA and PSO, were run 20 times to achieve the best 

performance optimisation result. In addition, it showed superiority regarding the transient 

response properties, including the rise time, overshoot, settling time and steady state errors 

for both test scenarios. Figure 4-3 shows the architecture of the system including the trained 

ANN model as well as PSO and GA as optimisers. 
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Figure 4-3 the schematic diagram of the proposed intelligent optimisation for SDN 

performance 

 

The simulation experiments were carried out by the MATLAB platform. PSO was 

employed to find the optimal structure of the network and the best operational parameters of 



97 

 

the flow table, followed by the same process for the GA algorithm with their performance 

being compared in the form of a bar chart, as shown in Figure 4-4. It is clear that PSO 

performed better that GA in 13 out of 20 runs, with the eighth run of PSO showing the best 

objective function at 96.321%. Whilst GA performed better in just 7 out of the 20 runs and its 

best objective function is 94.846% in the run number 19, as shown on the bar chart. Also, the 

average run of PSO took about 3.2 (hours), while GA took approximately 6.7 (hours) to find 

the optimal set of table flow rules. A comparison of the results of the SDN performance is 

provided in Table 4-3 and Figure 4-5. PSO outperformed GA regarding the performance and 

computational time, with the convergence being faster with fewer iterations and the obtained 

fitness was higher. The results provided were obtained after running PSO/GA 20 times.  

 

 

Figure 4-4 Different number of runs of GA and PSO to tune the PID-like fuzzy 

controllers vs. the objective function 
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Table 4-3 Performance and computation time comparisons for GA and PSO 

 

Optimisation method  The best objective 

function %  

The average 

Computation Time 

PSO  96.321  3.23 

GA  94.846  6.75 

 

 

Figure 4-5 Convergence comparison of GA and PSO 

 

This leads to adoption of PSO as the optimiser in the SDN network due to its high 

performance, as shown in Figure 4-5. The measurements of the operative network serve as 

inputs to the ANN network to predict the performance of the SDN network represented by 

the throughput and the delay which are the significant QoS parameters in the network. The 

optimisation techniques represented by PSO are used to achieve high throughput and 

minimum delay. The PSO algorithm provides the optimal Flow Rules parameters for 

achieving these two goals. The measurements program captures the existing load on the 
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network as well as the performance of the current topology, whereas the ANN model predicts 

the outcome of the path-selection process running on the switches for a given setting of the 

SDN network topology. 

The optimisation techniques have been used to be allow for identifying the parameter 

settings of the flow rules in the switches that satisfy the network's performance goals. Once 

good performance has been identified by the optimiser, the cognitive system can change the 

configuration of the flow table parameters, depending on the previous knowledge of the 

network. Then, the program will change or produce new parameter values fof the flow rules 

to compute new paths for forwarding data packets through the SDN network, as predicted by 

the model. Finally, the SDN controller receives changes in the flow table parameters from the 

intelligent agent, which means it can to send these directly to the switches instead of having 

to waiting for the first packet to react to this action.  

4.5. Summary 

In this chapter, a hybrid intelligent system has been proposed for modeling and 

optimising a Software-Defined Network (SDN). An artificial neural network (ANN) with a 

single layer in the hidden zone has been trained to map the inputs and the performance of the 

network. The results have shown that the network gives a very acceptable MSE. The 

generality of the trained ANN model has been checked by applying unseen data as a test set 

and subsequently, this general ANN model has been synergised with evolutionary algorithms 

(EAs) to produce the proposed intelligent hybrid system That is, GA and PSO have been 

employed as EA optimisers to find the optimal set of inputs to the SDN based on the 

maximum performance as a fitness function. According to the obtained results, PSO 

outperforms GA regarding performance, convergence and computational time. PSO showing 

the best objective function at 96.321%, whilst GA shows its best objective function at 

94.846%. Finally, the average run of PSO took about 3.2 (hours), while GA took 

approximately 6.7 (hours) to find the optimal set of table flow rules. 
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5. Chapter Five: Smart Flow Steering Agent in Software Defined 

Networks 

5.1. Introduction 

To ensure fault tolerance and distributed management, distributed protocols are 

employed as one of the major architectural concepts underlying the Internet. Moreover, 

inefficiency, instability and fragility could be potentially overcome with the help of the novel 

networking architecture called Software Defined Networking. The main property of this 

architecture is the separation of the control and data planes. To reduce congestion and thus, 

improve latency and throughput, there must be homogeneous distribution of the traffic load 

over the different network paths. This chapter presents new Intelligent Agent we call it smart 

flow steering agent (SFSA) for data flow routing based on current network conditions.  

To enhance throughput and minimise latency, the SFSA distributes network traffic to 

suitable paths, in addition to supervising link and path loads. A scenario with a minimum 

spanning tree (MST) routing algorithm and another with open shortest path first (OSPF) 

routing algorithms were employed to assess the SFSA. In comparison to these two routing 

algorithms, the suggested SFSA strategy produced a reduction of 28-31% in the packets 

dropped ratio (PDR), a reduction of 36% in packets send to controller according to the traffic 

produced, as well as a reduction of 23% in round trip time (RTT). The Mininet emulator and 

POX controller were employed to conduct the simulation. Another advantage of the SFSA 

over MST and OSPF is that its implementation and recovery time do not exhibit fluctuations. 

The smart flow steering agent will open a new horizon for deploying new smart agents in 

Software Defined Networks that enhance network programmability and management. 

5.2. Traffic Engineering and Routing Mechanism 

Improvement of network performance and traffic delivery relies greatly on traffic 

engineering, which in turn depends on route optimisation, involving the discovery of routes 

that could help attain the target network performance [124][125]. Important elements of 

traffic engineering in IP networks are the quality of service (QoS) and resilience mechanisms. 

Alongside bandwidth requirements, QoS assurance (i.e. end-to-end delay, jitter, likelihood of 

packet loss, and energy efficiency) is also important in many of the novel multimedia 

applications. Meanwhile, IP networks are often affected by various kinds of failures, 

including node or link failure, and rapid resilience mechanisms are needed to address these 
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[126][127][47]. Under such circumstances, preventing failures from disrupting network 

performance and resource usage is the main objective of traffic engineering solutions. Basic 

routing models, consisting of shortest path and load-balancing strategies with traffic divided 

evenly into a specific number of paths of equal cost, represent the cornerstone of the majority 

of IP-based traffic engineering solutions [47].  

In the following part, several popular routing algorithms and their impact on network 

traffic performance are discussed.  

5.2.1. Open Shortest Path First (OSPF) 

An OpenFlow interface is included in numerous new Internet routers, which are also 

compatible with a hybrid OpenFlow/OSPF mode. For optimal forwarding of packets, the 

distributed legacy routing protocol is usually applied by hybrid control plane frameworks and 

is augmented with high-priority rules by the SDN controller to allow for more elaborate 

routing configurations [128]. In the case of IP networks, the OSPF algorithm frequently 

serves as an interior gateway protocol (IGP) based on the link state. A network topology 

graph is created by OSPF, with information about the link state derived from existing routers. 

Furthermore, it applies a hop-counts technique to determine the shortest path for packet 

routing.  

 

5.2.2. Minimum Spanning Tree (MST) 

To prevent the issue of packet broadcast storm in a legacy network with loops, a 

spanning tree is created with the IEEE 802.11d distributed spanning tree protocol. The same 

issue can be addressed in an SDN network through the central creation of a spanning tree 

based on the overall information of network topology gathered by the SDN controller [129]. 

The basic bridge protocol that was initially devised for loop prevention in a bridge network is 

known as the Spanning Tree Protocol. Data are disseminated through the tree constructed by 

this protocol and encompass all network bridges, with only the links included in the tree 

being allowed. If the bridged network breaks down, it can repair itself through activation of 

the links that have been previously blocked. However, the algorithm presents limitations in 

that recovery in the event of failure does not occur fast enough and backup links can only be 

used for forwarding under conditions of failure [124]. 
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5.2.3.    Proposed SmartFlow Steering Mechanism 

Quality deterioration is mainly caused by network congestion, which occurs when the 

traffic is not distributed homogeneously or network resources are insufficient. This issue is 

compounded by the fact that current routing algorithms are designed to detect just the shortest 

paths from a source to a destination, and that routing and congestion control do not work 

together [130]. Packet drop ratio (PDR), latency (end-to-end delay) and error rate are all 

heightened by the rise in queuing delay due to congestion. Building on the intelligent agent, 

the approach put forth in this study is aimed at identifying the best path from a source to a 

destination in an SDN with the best throughput and shortest delay. The information collected 

by the OpenFlow switches is used by the SDN controller to create a general network 

topology.  

An agent is a computer system that is capable of independent (Autonomous) action on 

behalf of its user or owner. An intelligent agent contains an architecture, which includes the 

device that it executes on, and a program that gives it the ability to improve the behaviour of 

this architecture. As mentioned earlier, in this thesis the SDN network represent the 

architecture, the performance of which is to be improved using an intelligent agent. The 

intelligent agent consisting of two parts, namely, an ANN prediction system integrated with a 

GA or PSO.  

The intelligent agent has four main features [131]: 

 Percepts: the inputs of the system, Actions: The outputs of the system, Goals: What 

the agent is expected to achieve and finally the Environment: What the agent is interacting 

with. 

In the proposed system, as shown in Figure 5-1, the SFSA percepts the SDN network 

parameters, which include the flow table rules and the performance parameters and it then 

sends a new flow table to the controller as an action.  The environment is the entire SDN 

network topology and the performance parameters. Finally, the goal of the SFSA is to 

enhance the performance of the SDN network, as described in the following sections. 
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Figure 5-1 The proposed architecture of a smart flow steering agent 

 

The detection information sent by every switch to the SDN controller enables the 

latter to construct a general network topology. Flow table entries are generated by an agent 

application with a smart flow steering mechanism working within the SDN controller and 

subsequently, the flow tables are sent to the OpenFlow switches. Applying a technique 

underpinned by the intelligent agent, the smart flow steering mechanism determines the 

shortest path for every route, thus achieving packet routing. For routing to be considered 

optimal, it must prevent network congestion by employing existing network resources for 

effective traffic distribution. In SDN, the SFSA can achieve significant improvement in PDR 

and end-to-end delay, reduce packets sent to the controller and enhance the throughput in the 

network.  
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5.3. Evaluation and results Simulation Analysis  

In this section, the simulation parameters, simulation screenshots and evaluation of 

SFSA with other routing protocols are covered. A VMware Player virtual box and MATLAB 

software for the Mininet emulator and algorithm analysis were employed, respectively, to 

perform the simulation scenarios. There are two sequential procedures undertaken by the 

SDN controller. Prior to selection of a routing algorithm, it conducts network discovery to 

uncover the network topology. The identification of the OpenFlow switches is followed by 

application of the SFSA in the SDN controller and provision of optimum flow tables to the 

OpenFlow switches for storage and the initiation of data routing. Three scenarios concerned 

with end-to-end delay, packets sent to the controller, throughput and PDR are explored in this 

study via the following steps: 

 Creation of the general network topology and execution of the default routing 

algorithm OSPF or MST in a POX controller by the Mininet; 

 Collecting all the data set from the SDN network topology, which include the 

flow table, the throughput and the latency;  

 Analysing the collected data and pre-processing it prior to the first stage of the 

intelligent agent, which includes the ANN. The data set is divided randomly 

into three subsets: (70%) representing the training subset, (15%) being the 

testing subset and (15%) representing the validation subset; 

 Training the designed ANN using the collected dataset and testing for the best 

topology of the network (the number of nodes in the hidden layer);  

 Employing PSO to find the best set of flow table rules by integrating it with 

the trained ANN. 

. 

Figure 5-2 shows the first stage of the intelligent agent, which includes percepts of the 

input from SDN environment. The inputs include the flow table rules for the network after 

running for 180 minutes, the flow table set containing the switch number, input port, Ethernet 

source, Ethernet destination, TCP source, TCP destination and action. They also include the 

performance parameters for every rule, including the throughput and the delay, these two 

parameters were collected all the time and registered every five minutes. After building the 

prediction system with an ANN network, the agent will have a global picture about the next 

performance of the SDN network.  
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The second stage of the SFSA agent is to choose the optimal flow table rules set to 

achieve the best performance of the SDN network. This stage includes the PSO algorithm 

after having compared it with GA in the previous chapter and finding that it delivers superior 

performance. Since the range of the SDN performance indexes (throughput and delay) varies 

widely, objective functions will not work properly without pre-processing, such as 

normalisation. A normalisation process has been used to rescale the range of the two indexes 

onto a scale ranging between 0 and 1, which is also called feature scaling [132], as presented 

in the following formula:  

�́� =
𝑥−min (𝑥)

min(𝑥)−max (𝑥)
                                          (5-1) 

where, x are the original data and  �́� are the normalised data. So, the objective function used 

in PSO for optimising the performance of the SDN network to find the best throughput and 

shortest delay can be expressed as: 

𝑂𝐹 =
1

2
 (Throupghput – Delay)                   (5-2) 

Figure 5-3 shows the Optimal OpemFlow rule table selection set scheme of the SDN 

network. The optimiser suggests that the OpenFlow rules table should be set to reach the 

maximum throughput and minimum delay. The OpenFlow rules table set was fed into the 

ANN as input in, while the outputs were throughput and delay. As detailed earlier in this part, 

the ANN was trained in order to predict the actual output and to prepare the data for the 

optimisation stage. The objective function aims to to obtain the optimised openFlow rules 

table set that gives maximum throughput with minimum delay for a given node number. 
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Figure 5-2 First stage of SFSA percept; the input from SDN environment 
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Figure 5-3 OpenFlow Rule Table Set optimisation technique  

 

A. Mesh Topology Scenario 

For the Mininet simulation, as shown in Figure 5-4 and Figure 5-5, the mesh topology 

was made up of five OpenFlow switches with ten links, and fifteen switches with thirty links, 

thus ensuring their connection.  

Figure 5-6 illustrates the round-trip comparison and it can be seen that in contrast to 

the default Mininet routing algorithms, the SFSA is associated with less delay, constituting a 

23% decrease in packet round trip time (RTT) even when the generated packets across the 
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network have been increased.  Moreover, Figure 5-7 presents the algorithm execution time 

and failure recovery time, indicating that, when compared with the other algorithm, the SFSA 

can identify the optimal path from all possible paths much faster in the event of network 

failure. 

 

Figure 5-4 Mesh topology simulation run with five switches 

 

 

Figure 5-5 Mesh topology simulation run with fifteen switches 
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Figure 5-6 Mesh topology round-trip comparison 

 

 

 

Figure 5-7 Mesh topology scenario for SFSA execution and recovery time 
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The values associated with the worst-case scenario in mesh topology are listed in 

Table 5-1. It can be seen that in the selection of the optimal path between two nodes, the 

SFSA successfully balances path length and congestion cost. As a result, the end-to-end delay 

is 15-30% lower than in the case of the default Mininet routing algorithm, which is 

influenced by the traffic load and node position. 

Table 5-1 

MESH TOPOLOGY WORST CASE SCENARIO 

Source Destination Hops Count Delay Cost Algorithm 

1 4 N/A N/A OSPF 

1 4 1 4.24 SFSA 

1 4 2 5.77 MST 

3 4 N/A N/A OSPF 

3 4 2 3.41 SFSA 

3 4 2 3.41 MST 

 

 

In SDN architecture, control messages go between the controller and the forwarding 

devices to form communication networks. If there is only one centralised controller with 

global network visibility, then there will be excessive control traffic overhead. In addition, 

the overhead will be further increased by the SDN controller when the events as well as the 

application specific control traffic are increased.  If the overhead is not controlled properly, it 

can cause various scalability problems for the networking devices, controllers, and the 

network itself, including slow message processing, potential message drop, delayed root 

cause analysis, and late response against urgent problems. In the proposed system the control 

messages are reduced in both topologies by about 35%  as shown in Figure 5-8 and Figure 5-

9. 
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Figure 5-8 Number of messages sent to the controller from the switches in a five switch 

topology 

 

 

 

Figure 5-9 number of messages sent from controller to switches in 15 switches 

topology 
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Iperf was used as a network bandwidth measurement tool to test the TCP bandwidth 

performance, with the testing time set to 180 minutes. The two path finding algorithms, MST 

and SFSA, were executed one after the other in a POX Controller with the two different 

topologies. The Iperf tool provided the bandwidth usage in the two scenarios where the 

algorithms were executed by the POX Controller. The results are shown in Figure 5-10 and 

Figure 5-11. 

The maximum throughput was found to be for the SFSA based algorithm rather than 

the MST. When both are compared, with throughput enhancement of approximately 10 %, it 

is evident that the SFSA based algorithm performs better than both the other chosen 

algorithms.  

 

Figure 5-10 The maximum throughput for both algorithms in a five switch topology  
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Figure 5-11 The maximum throughput for both algorithms in a 15 switch topology 

 

The simulation results clearly demonstrate the effectiveness of the SFSA based 

algorithm in finding the optimal path. Another point to be considered is that the dropped 

packets ratio, as can be seen in Figure 5-12 and Figure 5-13, demonstrates that with the SFSA 

algorithm the number decreases by about 28% in both topologies. For all the above scenarios, 

the SFSA algorithm enhances the performance of the SDN network plus giving more reliable 

network performance by preventing congestion and the bottleneck problem. The SFSA 

algorithm also provides the network with new intelligent controller such that if the main 

controller fails, all the network information could retrieved from the learning system and that 

will save the cost of adding a new controller to the network. 
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Figure 5-12 Dropped packet numbers in a five switch topology 

 

Figure 5-13 Dropped packet numbers in a 15 switch topology 

 

B. Custom Topology Scenario 

For the Mininet simulation, as shown in Figure 5-14, the custom topology was made 

up of nine OpenFlow switches with eleven links, thereby ensuring their connection Figure 5-

15 presents the algorithm execution and recovery times indicating that, in comparison to the 

other algorithms, the SFSA can identify the optimal path from all possible one much faster. 



115 

 

Figure 5-16, illustrates the PDR comparison and it can be seen that, in contrast to the 

default Mininet routing algorithms, MST and OSPF, SFSA achieves a 31% decrease in this 

ratio. The capacity of a control plane to prevent additional traffic loss in the event of a 

network failure by finding a feasible alternative routing with no routing loops or black holes 

is known as failure recovery. 

 

 

Figure 5-14 Custom topology simulation run for the Mininet 
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Figure 5-15 Custom topology scenario for SFSA execution and recovery time 

 

 

Figure 5-16 Packet Drop Ratio (PDR %) for the custom topology scenario 

 

In the process of optimal path identification, an important factor considered by SFSA 

is the determination of the congestion of every network link. To achieve route optimisation, it 

is not the shortest path that is chosen, but that with minimal congestion and delay, this 

selection process being undertaken by the multi-objective routing algorithm. The values 

associated with the worst case scenario in custom topology are listed in Table 5-2. 
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It can be seen that, when selecting the optimal path between two nodes, SFSA 

successfully balances path length and congestion cost. As a result, the end-to-end delay is 15-

45% lower than in the case of the default Mininet routing algorithm, which is influenced by 

the traffic load of the switches. 

 

Table 5-2  

                     CUSTOM TOPOLOGY WORST CASE SCENARIO 

Source Destination Hops Count Delay Cost Algorithm 

1 2 1 10.75 OSPF 

1 2 1 10.75 SFSA 

1 2 3 19.83 MST 

1 4 3 22.38 OSPF 

1 4 4 16.61 SFSA 

1 4 4 16.61 MST 

 

Also, the bottleneck problem has been solved by reducing the number of packets that 

were sent to the controller by 36%, as seen in Figure 5-17 and the throughput performance 

was enhanced by at least 10.50% compared with the other algorithms, as shown in Figure 5-

18. 
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Figure 5-17 Number of messages sent to the controller from switches in a 9 switch 

topology 

 

 

Figure 5-18 The maximum throughput for the normal and intelligent algorithms in a 9 

switch topology 

5.4. Summary 

This chapter has reviewed major research related to SDN and a promising approach 

involving incorporation of a smart agent into the SDN controller has been proposed. SDN is 

of significant benefit to network and flow management, but it is not without its limitations, 
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which need further investigation, one major problem being the stability of the control plane. 

Numerous strategies have been suggested to address this problem, all of which involve 

measuring the performance of the control plane stability in relation to certain parameters of 

network QoS (i.e. throughput and latency). In contrast to these strategies, the proposed SFSA 

approach is geared towards improvement of end-to-end delay, PDR, number of packets sent 

to the controller and throughput. According to the findings of this study, as the number of 

requests rose at high traffic, SFSA ensures the stability of the execution and recovery time in 

the two scenarios employed. In addition, by transferring knowledge to an external agent, it is 

possible to diminish the number of flow entries in the switches. Reliability of the SDN 

controller has also been solved by depending on the agent program when the controller fails, 

whereby it can retrieve all the knowledge about the network. Finally, the results of a 

simulation confirm that, in comparison to the MST and OSPF algorithms, the SFSA approach 

performs much better. The Smart Flow Steering Agent SFSA distributes network traffic to 

suitable paths, in addition to supervising link and path loads. A scenario with a minimum 

spanning tree (MST) routing algorithm and another with the open shortest path first (OSPF) 

routing algorithms were employed to assess the SFSA. In comparison to these two routing 

algorithms, the suggested SFSA strategy produced a reduction of 22-31% in the packets 

dropped ratio (PDR), a reduction of up to 36% in packets sent to the controller depending on 

the traffic produced, as well as a reduction of 23% in round-trip time (RTT) and with 

throughput enhancement of approximately 10 %.  
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6. Chapter Six: Conclusions and Future works  

6.1. Conclusions 

For this thesis, different challenges regarding SDN network performance have been 

investigated. The main purpose has been the proposal of new intelligent agent based 

approaches to address these issues, with the aim of improving the performance and reliability 

of SDN networks.  

The first approach involved using techniques that rely on an Artificial Neural 

Network for predicting the performance of a Software Defined Network, according to 

sensitive traffic parameters. Those used in this study are round-trip time, throughput and the 

flow table rules for each switch. A POX controller and OpenFlow switches (which 

characterise the behaviour of the Software Defined Network) have been modelled and 

simulated via Mininet and Matlab platforms. Three different topologies were used in this 

study, namely, mesh topology with five switches and fifteen switches along with custom 

topology with along switches. All these topologies were connected to one POX controller and 

each switch was connected to two hosts. The network program ran for 180 minutes with three 

different traffic loads to study the behaviour of the network, namely, when it was low, 

medium and high. 

An ANN has been proposed to find the correlation between the most effective input 

factors and performance output, with the former being the round-trip time, throughput and the 

flow table rules for each switch as well as a POX controller and OpenFlow switches. The 

ANN can be used very efficiently as a predictor, especially in an SDN controller, with 

different traffic loads, when nature of the network is complex and highly nonlinear. The 

various topologies of the ANN were tested by applying one or two hidden layers with 

different numbers of neurons. Moreover, LMA was used as a learning algorithm in the feed-

forward ANN structure. The results have shown that the network with one hidden layer gives 

a very acceptable MSE, with a figure of less than 2.466 × 10−8. The proposed ANN could be 

used efficiently to improve the performance of an SDN by selecting the best input 

parameters, which is to be the subject of future work.  

For the second approach, the use of a new hybrid intelligent approach for optimising 

the performance of Software-Defined Networks (SDN) was introduced, based on heuristic 

optimisation methods integrated with a neural network paradigm. Evolutionary optimisation 
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techniques, including particle swarm optimisation (PSO) and genetic algorithms (GA), were 

employed to find the best set of inputs that give the maximum performance of an SDN. The 

neural network model was trained and applied as an approximator of SDN behaviour. An 

analytical investigation was conducted to distinguish the optimal optimisation approach based 

on SDN performance as an objective function as well as the computational time. After getting 

the general model of the neural network through testing it with unseen data, the model was 

implemented with PSO and GAs to find the best performance of the SDN. The PSO approach 

combined with SDN, represented by an ANN, was identified as having comparatively better 

configuration regarding its performance index as well as its computational efficiency. 

After building the intelligent agent program, (which includes two parts: the ANN 

predictor and the PSO optimiser) the SDN network showed enhancement in its performance, 

thereby solving several of the challenges faced. Congestion is a major hindrance to 

performance in existing communication networks; thus, one of the most significant 

achievements of this thesis is reducing this, along with delays, the number of packets sent to 

the controller and packet loss. When the intelligent agent program runs, it depends on the 

previous learning of the network, so the first packet does not have to go to the controller 

every time. This is because the intelligent program has already sent the flow table, which 

includes the path for this packet. In this case, the number of packets that are send to the 

controller is reduced. This method prevented the bottleneck problem in the controller, thus 

enhancing the control performance. QoS is also affected by End to End (E2E) Delay, another 

characteristic of network-related performance that needs to be minimised in the context of 

real-time communications. Throughput can also affect SDN performance if many packets are 

lost during communication. Another common network-related performance consideration is 

packet loss, which can be assessed either per-flow or network-wide. It can be the 

consequence of crashes in the network (similar to congestion) which may be triggered by 

forwarding links and devices. 

SDN architecture is ultimately reliant on one controller, which commands every 

network. This can be problematic, as in the event of a malfunction in the central controller, 

the entire network fails owing to the lack of a replacement controller. 

This study has provided robust solutions based on artificial intelligence (AI) 

techniques, as a means to enhance the performance of data transmission in SDN. This has 

been achieved by eliciting a global network view of SDN. A third unit, a knowledge analysis 

server (cluster) has been appended to the SDN network in order to deposit the application 
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information, as well as for predicting and evaluating traffic patterns. A hybridised 

intelligence system with an ANN has been proposed as a method of demonstrating and 

improving the functionalities of SDN. The evolutionary algorithm (EV) optimisers deployed 

are particle swarm optimisation (PSO) and genetic algorithms (GAs), because they allow the 

network operator to identify the ideal arrangement of inputs for SDN, according to the 

uppermost level of performance as a fitness function. Ultimately, the outcomes show that GA 

is less efficient than PSO, with the latter offering more in terms of convergence, 

computational response, and overall performance. To map the inputs and efficiency of the 

system, the ANN was implemented with a single layer positioned in the hidden zone and the 

outcome is very satisfactory. The network produced a reasonable MSE. In addition, the 

applicability of the trained ANN was tested by introducing unfamiliar data. As a result, the 

system was synergised with the use of evolutionary algorithms and the aforementioned 

hybridised model was formed.  

To enhance throughput and minimise latency, the Smart Flow Steering Agent SFSA 

distributed network traffic to suitable paths, in addition to supervising link and path loads. A 

scenario with a minimum spanning tree (MST) routing algorithm and another with the open 

shortest path first (OSPF) routing algorithms were employed to assess the SFSA. In 

comparison to these two routing algorithms, the suggested SFSA strategy produced a 

reduction of 22-31% in the packets dropped ratio (PDR), a reduction of up to 36% in packets 

sent to the controller depending on the traffic produced, as well as a reduction of 23% in 

round-trip time (RTT). A Mininet emulator and POX controller were employed to conduct 

the simulation. Another advantage of the SFSA over MST and OSPF is that its 

implementation and recovery time do not exhibit fluctuations. The smart flow steering agent 

will open a new horizon for deploying new smart agents in Software Defined Networks that 

enhance network programmability and management.  

Although the Smart Flow Steering Agent (SFSA) has reached its aim, there were 

some unavoidable limitations such as the absence of unified simulation environments to 

undertake the experiment on SDN. Mininet was employed to design and obtain the dataset of 

SDN, while MATLAB was used to design the intelligent agent due to the ready-to-use 

libraries provided by the Mathworks. In addition, although using ANNs has showen to be a 

very powerful and interesting tool for approximation and modelling, this use cannot be 

retrained. If data is later added, it is intolerable to complement to an existing ANN. 
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6.2. Future works  

There are a number of recommendations for future study directions for using an intelligent 

agent in an SDN network with the proposed ANN prediction concept and optimisation technique. The 

future investigations recommended are as follows: 

• The first direction is to use the Application Optimisation program: This prioritises and 

changes the behaviour of the network based on applications behaviour by analysing 

the type of the application. By using this, the SDN controller can classify the traffic 

load depending on the application type, such as video, audio or data, which can also 

help to assess the amount data according to the application type. This will reduce the 

amount of information shared in the network and reduce the traffic load. Another AI 

technique could be used such as fuzzy logic, which could process packets quickly and make 

the selecting of next forwarding node decisions easier. 

• Intelligent Cloud Controller: cloud organisation needs take into account how to utilise 

the main controller functions in an intelligent controller efficiently, thereby increasing 

network reliability. In this case, any SDN controller could connect to the intelligent 

controller to study the network environment on an ongoing basis so that the latter can 

report back to the former in real time. 

• Predict Network Size program: Study and analyse the behaviour of the network 

environment with an intelligent program and predict the number of controllers the 

network needs as determined by the previous results and also decide upon the best 

place for the new controller.   

• Intelligent Attacks Detection: Attacks detection based on an intelligent security 

program could be built in the controller. When the first packet arrives in the network 

it will be sent directly to the controller, it might be malicious, and could be cause huge 

harm to the whole system. In order to solve this potential problem, an intelligent 

attacks detection program could be used to mitigate this by detecting and denying the 

malicious packets. To this end, intelligent attacks detection program would study the 

type of packet depending on its source or payload and when the program found that 

the packet was abnormal it could discard it and all the data coming from that source. 

• Design a Simulink model:  undertake the experiments of design and implement it in a 

unified simulation environment for intelligent agent to improve the SDN 
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performance. The Simulink model can be designed to simulate different network 

topologies. Moreover, it will be relatively easy to create an intelligent solution to 

interact with such model through reading the data and proposing an optimal set of 

inputs that would enable the SDN of performing as ideally as possible.  
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