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Abstract

The Stroh formalism is applied to the analysis of infinitesimal surface

wave propagation in a statically, finitely and homogeneously deformed iso-

tropic half-space. The free surface is assumed to coincide with one of the

principal planes of the primary strain, but a propagating surface wave is

not restricted to a principal direction. A variant of Taziev’s technique [Sov.

Phys. Acoust. 35 (1989) 535] is used to obtain an explicit expression of the

secular equation for the surface wave speed, which possesses no restrictions

on the form of the strain energy function. Albeit powerful, this method does

not produce a unique solution and additional checks are necessary. How-

ever, a class of materials is presented for which an exact secular equation

for the surface wave speed can be formulated. This class includes the well-

known Mooney-Rivlin model. The main results are illustrated with several

numerical examples.

1 Introduction

The study of small-amplitude surface waves propagating in finitely and homoge-

neously deformed hyperelastic materials has quite a long history, dating back to

the classical paper by Hayes and Rivlin [1] in 1961. The interest in using the the-

ory of small motions superimposed on a large static deformation of a hyperelastic

half-space is manifold, for once the problem is solved the results are applicable to

various advanced topics. These, in particular, include the non-destructive evalu-

ation of solids (see Guz’ and Makhort [2] for a review), the incremental stability

analysis of the loaded surface of a deformed material (see Guz’ [3] for comprehen-
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sive review and bibliography), and the acousto-elastic effect (second-order theory

of linear elasticity) where the pre-deformation is also considered small (see Pao et

al. [4] for a review of both experimental and theoretical results).

The results of Hayes and Rivlin, valid for a compressible hyperelastic material,

have since been extended to the case of hyperelastic materials subject to incom-

pressibility [5] or to a generic isotropic internal constraint [6]. However, these works

are limited to the consideration of principal surface waves, i.e. surface waves that

propagate and attenuate along principal directions of pre-strain. We note that

Connor and Ogden [7] and Destrade and Ogden [8] considered two-partial (non-

principal) surface waves polarized in a principal plane of pre-strain. Nevertheless,

for three-partial non-principal surface waves very few explicit results exist and the

scope of their applicability is limited. Specifically, Flavin [9] considered the problem

for a Mooney-Rivlin material with one material parameter much smaller than the

other; Willson [10, 11] studied materials subject to equi-biaxial pre-deformations;

Gerard [12], Gerhart [13], and Iwashimizu and Kobori [14] worked with the lin-

earized theory of second-order acousto-elasticity; Chadwick and Jarvis [15], Mase

and Johnson [16], and Chadwick [17] used the Stroh-Barnett-Lothe integral formal-

ism; Rogerson and Sandiford [18] used numerical methods for an implicit secular

equation; etc.

This paper presents an explicit secular equation for the speed of a surface wave

propagating in a principal plane, but not in a principal direction, of a tri-axially

deformed, general hyperelastic incompressible material. This result is achieved by

using methods first developed by Taziev [19, 20] for surface waves propagating in

the symmetry plane of a crystal. Although similar, the analysis presented here
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reveals some features particular to the context of nonlinear elasticity. In general,

the surface wave consists of a linear combination of three partial modes, each

proportional to exp {ik(n · x + qαm · x− vt)}, α = 1, 2, 3, where k is the wave

number, v the wave speed, n the direction of propagation, m the normal to the

surface, and qα an attenuation coefficient. For a general strain energy function,

the qα are the roots of a bi-cubic equation with positive imaginary parts. Their

explicit analytical expressions are awkward and the method of Taziev proves useful

(Section 4), because it does not require such expressions. However, for a whole class

of hyperelastic incompressible materials, inclusive of the Mooney-Rivlin model, the

coefficients of attenuation qα are obtained analytically, for one is always equal to

i =
√−1, and so the two others are roots of a bi-quadratic (Section 3). This

property has been touched upon by Flavin but has been only recently examined

in detail (Pichugin [21]). Here, it leads to the derivation of an exact and explicit

secular equation for surface waves, which possesses no more than one root for the

speed. In the general case, the method of Taziev leads to a rationalized secular

equation (a polynomial of degree 12 in the squared wave speed), with spurious

roots to be discarded.

Before these two main results are developed, we summarize in Section 2 the

basic governing equations and present the equations of motion as a first-order linear

differential system. The derivation of this system is a lengthy process and is not

obvious at all. Thanks to some shorthand notations and to the Stroh formalism, the

system can however be presented in quite a compact form. Its resolution, coupled to

the appropriate boundary conditions for surface waves (vanishing of the wave away

from the interface; no incremental traction on the interface), leads to an implicit
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secular equation, to be made explicit in the subsequent two Sections. Section 3 is

devoted to the special class of incompressible materials which is associated with

a factorized propagation condition. Numerical examples in this section involve a

Mooney-Rivlin material characterized by the same material parameters, state of tri-

axial pre-strain, and normal load as the one considered by Rogerson and Sandiford

[18]. A connection is made with their numerical results for the surface wave speed

versus the angle of propagation. Some new features are highlighted; in addition,

the attenuation coefficients for the partial displacements are presented. Section 4

covers the derivation of the secular equation for the general strain energy density of

an incompressible material, using a variant of Taziev’s technique. To illustrate the

method, we investigate numerically the case of a deformed Varga material where a

surface wave propagates in any direction in the plane of shear, with a view to the

non-destructive acoustic evaluation of a deformed rubber insulator.

2 Preliminaries

2.1 Equations of motion

Consider a half-space, composed of a homogeneous pre-stressed hyperelastic in-

compressible material with mass density ρ, characterized by strain energy function

W . Let (O, x1, x2, x3) be a fixed rectangular Cartesian coordinate system such that

the body occupies the region x2 > 0 and that the principal stretches coincide with

the Oxi directions, with corresponding stretch ratios λ1, λ2, λ3 (λ1 6= λ2 6= λ3 6= λ1

and λ1λ2λ3 = 1). The half-space is maintained in the static state of deformation
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by the application of the constant tractions σ1, σ2, σ3 at infinity, given by

σi = λiWi − p, (2.1)

(no summation assumed here) where Wi := ∂W/∂λi and p is a constant scalar,

introduced by the constraint of incompressibility.

Then consider the superposition of a small-amplitude motion u(x1, x2, x3, t)

upon the primary large deformation. The corresponding incremental nominal stress

s has the following components [22],

sij = Bijklul,k + pui,j − p∗δij, (2.2)

where p∗ is a Lagrange multiplier, corresponding to an increment in p, and the

non-zero components of the fourth-order elasticity tensor B are (no summation on

repeated i, j indexes assumed here)

Biijj = λiλjWij,

Bijij = (λiWi − λjWj)λ
2
i /(λ

2
i − λ2

j),

Bijji = Bjiij = Bijij − λiWi. (2.3)

The linearized incremental equations of motion and incompressibility condition

read

sij,i = ρuj,tt, uj,j = 0. (2.4)

We specialize our analysis to the consideration of a surface (Rayleigh) wave,

propagating in a principal plane but not in a principal direction, see Figure 1.

Specifically, it is assumed that the wave is traveling with phase velocity v and

wave number k over the surface x2 = 0 in a direction which makes an angle θ with
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Figure 1: A surface wave propagating in a principal plane but not in a principal

direction.

Ox1; it decays exponentially away from the boundary x2 = 0, and produces no

incremental traction at the boundary.

Hence we model this motion by

{u, p∗, s} = {U (kx2), ikP (kx2), ikS(kx2)}eik(cθx1+sθx3−vt), (2.5)

where cθ := cos θ, sθ := sin θ, and U , P , S are functions of kx2 alone. By

substituting these forms of the mechanical displacements and the tractions into the

incremental constitutive equation (2.2) and using (2.1), the incremental equations

of motion and the incompressibility constraint (2.4) can be cast as a homogeneous

linear system of six first-order differential equations,

ξ′ = iNξ , where ξ(kx2) := [U1, U2, U3, S21, S22, S23]
T, (2.6)

within which the prime denotes differentiation with respect to the variable kx2.

Here the 6 × 6 real matrix N follows the usual block decomposition [23] of
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linear anisotropic elasticity,

N =


 N 1 N 2

N 3 + X1 NT
1


 , X := ρv2, (2.7)

where N 1, N 2 ≡ NT
2 , and N 3 ≡ NT

3 are 3×3 matrices. However, the components

of the N i are specific to the theory of small motions superposed on large static

deformations [17]. To present them in a compact form, we introduce the short-hand

notations

γij := (λiWi − λjWj)λ
2
i /(λ

2
i − λ2

j) ≡ γji + λiWi − λjWj,

2βij := λ2
i Wii − 2λiλjWij + λ2

jWjj + 2(λiWj − λjWi)λiλj/(λ
2
i − λ2

j) ≡ 2βji. (2.8)

Then −N 1 and N 2 are given by



0 cθ(γ21 − σ2)/γ21 0

cθ 0 sθ

0 sθ(γ23 − σ2)/γ23 0




,




1/γ21 0 0

0 0 0

0 0 1/γ23




, (2.9)

respectively, and

−N 3 =




η 0 −κ

0 ν 0

−κ 0 µ




, (2.10)

where

η := 2c2
θ(β12 + γ21 − σ2) + s2

θγ31,

ν := c2
θ[γ12 − (γ21 − σ2)

2/γ21] + s2
θ[γ32 − (γ23 − σ2)

2/γ23],

µ := c2
θγ13 + 2s2

θ(β23 + γ23 − σ2),

κ := cθsθ(β13 − β12 − β23 − γ21 − γ23 + 2σ2), (2.11)
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(see Destrade [24] for the case σ2 = 0, and Destrade and Ogden [8] for the case of

a wave polarized in the symmetry plane of a stretched and sheared material).

2.2 Propagation condition

Now the requirement of exponential decay away from the surface x2 = 0 is ex-

pressed by choosing the following form for the wave,

ξ(kx2) = ξoeikqx2 , =(q) > 0, (2.12)

where ξo is a constant vector and q is an attenuation coefficient. Then the equa-

tions of motion (2.6) become the eigenvalue problem: Nξo = qξo. The associated

characteristic equation det(N − q1) = 0, is the propagation condition. This equa-

tion is a cubic in q2, as demonstrated by Rogerson and Sandiford [18]:

γ21γ23q
6− [(γ21 +γ23)X−c1] q

4 +(X2−c2X +c3) q2 +(X−c4)(X−c5) = 0, (2.13)

with

c1 := (γ21γ13 + 2β12γ23)c
2
θ + (γ23γ31 + 2β23γ21)s

2
θ,

c2 := (γ23 + γ13 + 2β12)c
2
θ + (γ21 + γ31 + 2β23)s

2
θ,

c3 := (γ12γ23 + 2β12γ13)c
4
θ + (γ21γ32 + 2β23γ31)s

4
θ

+ [γ12γ21 + γ13γ31 + γ23γ32 − (β13 − β12 − β23)
2 + 4β12β23]c

2
θs

2
θ,

c4 := γ12c
2
θ + γ32s

2
θ,

c5 := γ13c
4
θ + 2β13c

2
θs

2
θ + γ31s

4
θ. (2.14)

9



Note that the roots q2
1, q2

2, q2
3 of the bicubic are such that

q2
1 + q2

2 + q2
3 = [(γ21 + γ23)X − c1]/(γ21γ23),

q2
1q

2
2 + q2

2q
2
3 + q2

3q
2
1 = (X2 − c2X + c3)/(γ21γ23),

q2
1q

2
2q

2
3 = −(X − c4)(X − c5)/(γ21γ23). (2.15)

2.3 Implicit secular equation for surface waves

For the three roots q1, q2, q3 of the propagation condition (2.13) with positive

imaginary parts, the corresponding eigenvalue problems yield three linearly inde-

pendent eigenvectors ξ1, ξ2, ξ3, respectively. Then the general solution to the

equations of motion (2.6) may be written as

ξ(kx2) = γ1e
iq1kx2ξ1 + γ2e

iq2kx2ξ2 + γ3e
iq3kx2ξ3, (2.16)

for some constants γ1, γ2, γ3. Explicitly, ξi are given by columns of the matrix

adjoint to N − qi1. Taking, for example, the second such column gives ξi in the

form:

ξi =




a4q
4
i + a2q

2
i + a0

−q5
i + b3q

3
i + b1qi

d4q
4
i + d2q

2
i + d0

h3q
3
i + h1qi

(ν −X)(q4
i + mq2

i + n)

g3q
3
i + g1qi




, (2.17)
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where expressions for the constants ai, bi, di, hi, and gi are too lengthy to be

reproduced here and

m =

(
1

γ21

+
(γ21 − σ2)

2

γ2
21(ν −X)

c2
θ

)
[η −X] +

(
1

γ23

+
(γ23 − σ2)

2

γ2
23(ν −X)

s2
θ

)
[µ−X]

− 2κ
(γ21 − σ2)(γ23 − σ2)

γ21γ23(ν −X)
cθsθ,

n =

{
1 +

[
(γ21 − σ2)

2

γ21

c2
θ +

(γ23 − σ2)
2

γ23

s2
θ

]
(ν −X)−1

}

× [(µ−X)(η −X)− κ2]/(γ21γ23). (2.18)

The boundary condition of zero incremental tractions at the plane surface x2 = 0

means that

ξ(0) = [U1(0), U2(0), U3(0), 0, 0, 0]T. (2.19)

By comparing this expression with (2.16) evaluated for x2 = 0, we conclude that

γ1, γ2, γ3 are solutions to a homogeneous linear system of three equations. The

corresponding secular equation is given by

(ν −X)

∣∣∣∣∣∣∣∣∣∣

h3q
3
1 + h1q1 h3q

3
2 + h1q2 h3q

3
3 + h1q3

q4
1 + mq2

1 + n q4
2 + mq2

2 + n q4
3 + mq2

3 + n

g3q
3
1 + g1q1 g3q

3
2 + g1q2 g3q

3
3 + g1q3

∣∣∣∣∣∣∣∣∣∣

= 0. (2.20)

As noted by Taziev [19] in the context of linear anisotropic elasticity, this deter-

minant factorizes greatly. By omitting the factors ν −X, qi − qj and h1g3 − h3g1,

we are left with

nωI = ωIII(m− ωII), (2.21)

where

ωI := −(q1 + q2 + q3), ωII := q1q2 + q2q3 + q3q1, ωIII := −q1q2q3. (2.22)
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Eq. (2.21) is the secular equation for surface waves in deformed incompressible

materials; it remains implicit as long as the explicit expressions for the ωα are not

known.

3 Factorization of the propagation condition

Before moving on to the derivation of an explicit secular equation, a special case

must be treated separately. A simple analysis shows that, for a certain class of

incompressible hyperelastic materials maintained in a state of large homogeneous

deformation (strain-induced anisotropy), the propagation condition (2.13) factor-

izes into the product of a term linear in q2 and a term quadratic in q2, thus leading

to simple explicit expressions for the qα and eventually, for the secular equation.

This class of materials includes the well-known Mooney-Rivlin model, often used

to describe finite deformations of rubber. The described factorization does not in

general occur for linear elastic materials such as crystals (intrinsic anisotropy).

3.1 Conditions on the strain energy function and explicit

secular equation for surface waves

Following Pichugin [21], we seek a solution to the propagation condition (2.13)

of the form q2 = C, where C is a constant independent of v. By substituting

q2 = C into (2.15), we obtain three equations for the two quantities S and P , the
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respective sum and product of the remaining q2
α, namely,

S + C = [(γ21 + γ23)X − c1]/(γ21γ23),

CS + P = (X2 − c2X + c3)/(γ21γ23), (3.1)

CP = −(X − c4)(X − c5)/(γ21γ23).

After solving (3.1)1 for S and then (3.1)3 for P , the substitutions of S and P into

(3.1)2 allow for the identification of like-powers of X and c2
θ on both sides of the

resulting equation. Since the identity must hold for all X and θ we obtain that

C = −1, provided the following relationships are satisfied

γij + γji = 2βij. (3.2)

Then the associated propagation condition factorizes into

(q2 + 1)(q4 − Sq2 + P ) = 0, (3.3)

where

S =

(
1

γ21

+
1

γ23

)
X −

(
γ12

γ21

+
γ13

γ23

)
c2
θ −

(
γ31

γ21

+
γ32

γ23

)
s2

θ,

P = (X − γ12c
2
θ − γ32s

2
θ)(X − γ13c

2
θ − γ31s

2
θ)/(γ21γ23). (3.4)

To sum up, if the conditions (3.2) on the strain energy function are satisfied,

then the bi-cubic (2.13) factorizes into the product of a term linear in q2 and a

term quadratic in q2. It follows that the roots qα with positive imaginary parts and

hence the corresponding ωI, ωII, and ωIII defined in (2.22), can be found explicitly:

q1 = i, q2q3 = −√P , q2 + q3 = i
√

2
√

P − S, so that

ωI = −i (1 +

√
2
√

P − S), −ωII =
√

P +

√
2
√

P − S, ωIII = i
√

P . (3.5)
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The end result is that equation (2.21) is now an explicit secular equation for surface

waves in deformed incompressible materials satisfying (3.2), namely

n
(
1 +

√
2
√

P − S
)

+
√

P
(
m +

√
P +

√
2
√

P − S
)

= 0. (3.6)

Note that the conditions (3.2) impose restrictions upon the strain energy func-

tion of the incompressible material. Explicitly, they read (i 6= j)

(λ2
i +3λ2

j)λiWi−(3λ2
i +λ2

j)λjWj−(λ2
i −λ2

j)(λ
2
i Wii−2λiλjWij +λ2

jWjj) = 0. (3.7)

For example, the Mooney-Rivlin strain energy function,

W = D1(λ
2
1 + λ2

2 + λ2
3 − 3)/2 +D2(λ

2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3)/2, (3.8)

where D1 and D2 are constants, satisfies this condition. This case is treated in the

following subsection.

Note also that Pichugin [21] finds conditions under which the propagation con-

dition (2.13) admits roots of the form q2 = CX + D, where C, D are constants. It

turns out this possibility arises when the half-space is subject to an equi-biaxial pre-

deformation, whatever the strain energy function may be. Another simplification

occurs when the bi-quadratic in (3.3) admits a double root (then S2 = 4P ); such is

the case for the neo-Hookean form of strain energy function (D2 = 0 in (3.8)). The

secular equations for surface waves in bi-axially deformed generic incompressible

materials and in tri-axially deformed neo-Hookean materials were established by

Willson [10] and Flavin [9], respectively, and are not investigated further here.

3.2 Example: Mooney-Rivlin materials

Now the case of Mooney-Rivlin materials is dealt with in such a way that a con-

nection is made with the numerical results of Rogerson and Sandiford [18]. For the
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Figure 2: Scaled speeds of bulk and surface waves near the direction of greatest

stretch in a Mooney-Rivlin material.

Mooney-Rivlin strain energy function (3.8) the quantities γij, βij, defined in (2.8),

yield the following forms,

γij = (D1 +D2λ
2
k)λ

2
i , 2βij = (D1 +D2λ

2
k)(λ

2
i + λ2

j) = γij + γji, (3.9)

where k 6= i, j.

Using these expressions, together with the material parameters [18] D1 = 2,

D2 = 0.8, the stretch ratios given by λ2
1 = 3.695, λ2

2 = 0.7, λ2
3 = 0.387, and the

normal load σ2 = 0.8, the secular equation (3.6) is solved numerically to give the

variation of the surface wave speed with θ, and the graph of Rogerson and Sandiford

[18] is reproduced with little effort. We take this opportunity to comment on their

statement that “the surface wave degenerates into a shear wave as θ approaches 0

and π/2”.

Firstly, we find that at, and close to, the direction Ox1 (also the direction of
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greatest stretch), the surface wave speed v =
√

X/ρ is distinct from the bulk shear

wave
√

c4/ρ, i.e. c5 > c4 in the neighborhood of θ = 0. For instance, at θ = 0 the

principal surface wave propagation speed
√

X0/ρ, where
√

X0 = 2.917, is found

from Dowaikh and Ogden’s [5] formula X0 = γ12 − γ21ζ
2, where

ζ3 + ζ2 +
2(β12 + γ21 − σ2)− γ12

γ21

ζ − (γ21 − σ2)
2

γ21

= 0 , (3.10)

(or equivalently, is found from (3.6)), while the bulk shear waves propagate at

speeds
√

c5/ρ and
√

c4/ρ where
√

c5 =
√

γ13 = 3.076 and
√

c5 =
√

γ12 = 2.921.

Figure 2 shows the variations of these speeds in the (0◦ − 20◦) range. The top

(dashed) curve is the graph of
√

c5, the middle (dotted) curve is the graph of
√

c4,

and the bottom (solid) curve is the graph of
√

X.

Secondly, we find that, as the direction of propagation approaches the Ox3 di-

rection (direction of least stretch, θ = 90◦ here), the surface wave speed v =
√

X/ρ

is indeed tending to the bulk shear wave speed
√

c5/ρ, so that the correspond-

ing graphs are indistinguishable one from another in the approximative range

(82◦−90◦). However, at θ = 90◦ exactly, there exists a two-partial principal surface

wave whose speed is intermediate between the bulk shear wave speeds
√

c5/ρ and
√

c4/ρ. Numerically, when θ = 90◦,
√

c5 = 0.995,
√

c4 = 1.384, and this two-partial

principal surface wave propagates with speed
√

X90/ρ say, where
√

X90 = 1.327,

the value found from Dowaikh and Ogden’s [5] formula X90 = γ32−γ23ζ
2, in which

ζ3 + ζ2 +
2(β23 + γ23 − σ2)− γ32

γ23

ζ − (γ23 − σ2)
2

γ23

= 0 . (3.11)

This peculiar situation is also encountered in cubic crystals with strong anisotropy,

such as nickel [25]. In short, the subsonic two-partial surface wave must be slower

than any in-plane bulk wave (such as the one propagating with speed
√

c5/ρ), but
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is indifferent to the anti-plane wave propagating with speed
√

c4/ρ. This principal

two-partial surface wave is singular because it exists only in the direction θ = 90◦,

although “pseudo-surface waves” may be found in its neighborhood.

Once X = ρv2 is known, the attenuation coefficients qi are computed from (3.3)

and the depth profiles follow naturally from (2.16). Figure 3 displays the imaginary

part of the qi, indicative of the penetration depth, as a function of θ. The horizontal

straight top (dashed) line is for q1 = i. The two other curves (dotted and solid) are

for the imaginary parts of q2 and q3. At θ = 0, there are only two partial modes,

one corresponding to q1 = i, the other corresponding to q3 = 0.119i. At θ & 0, a

third partial mode appears, corresponding to a q2 of the form q2 = iβ2, β2 . 0.52.

In the approximate ranges (0◦−23◦) and (68◦−90◦), the attenuation factors are of

the form q1 = i, q2 = iβ2, q3 = iβ3 with β2 > 0, β3 > 0. In the approximate range

(23◦ − 68◦), they are of the form q1 = i, q2 = α + iβ, q3 = −α + iβ with β > 0.

As θ approaches 90◦, and X approaches c5, the imaginary part of the attenuation

factor q3 tends to zero, indicating a deeply penetrating quasi-bulk surface wave

[26]. Finally at θ = 90◦, a singular two-partial principal surface wave exists, with

one mode corresponding to q1 = i and the other corresponding to q2 = 0.212i (this

latter value corresponds to a discontinuity in the representation of q2 as a function

of θ and cannot be represented on the graph).
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Figure 3: Imaginary part of the attenuation coefficients for a surface wave in a

deformed Mooney-Rivlin material.

4 General case

4.1 Explicit secular equation for surface waves

In the general case, where no factorization of the propagation condition occurs, a

different treatment is required. The “method of the polarization vector”, intro-

duced by Currie [27], refined by Taziev [20], and recently revisited by Ting [28],

proves to be a most effective mean for deriving the secular equation as a polynomial

in X = ρv2. It relies on the equations

U (0) ·K(n)U (0) = 0, (4.1)

where K(n) is the symmetric 3× 3 lower left submatrix of the Nn matrix and n is

an integer. Hence K(1) = N 3 + X1, K(2) = K(1)N 1 + NT
1 K(1), etc.
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Also, for a wave propagating in the symmetry plane of a monoclinic crystal,

Ting [28] showed that U (0) is of the form

U (0) = U1(0)[1, iα2, β1]
T, (4.2)

where α2, β1 are real numbers. We checked that U (0) is also of this form in

the present case of a surface wave propagating in a principal plane of a deformed

material.

Computing N−1 and N 3, we find that K
(n)
12 = K

(n)
23 = 0, for n = −1, 1, 3.

It follows that the equations (4.1) written for n = −1, 1, 3 reduce to the non-

homogeneous system




K
(−1)
13 K

(−1)
33 K

(−1)
22

K
(1)
13 K

(1)
33 K

(1)
22

K
(3)
13 K

(3)
33 K

(3)
22







2β1

β2
1

α2
2




=




−K
(−1)
11

−K
(1)
11

−K
(3)
11




. (4.3)

By Cramer’s rule, we find 2β1 = ∆1/∆, β2
1 = ∆2/∆ where

∆ =

∣∣∣∣∣∣∣∣∣∣

K
(−1)
13 K

(−1)
33 K

(−1)
22

K
(1)
13 K

(1)
33 K

(1)
22

K
(3)
13 K

(3)
33 K

(3)
22

∣∣∣∣∣∣∣∣∣∣

,

∆1 =

∣∣∣∣∣∣∣∣∣∣

−K
(−1)
11 K

(−1)
33 K

(−1)
22

−K
(1)
11 K

(1)
33 K

(1)
22

−K
(3)
11 K

(3)
33 K

(3)
22

∣∣∣∣∣∣∣∣∣∣

,

∆2 =

∣∣∣∣∣∣∣∣∣∣

K
(−1)
13 −K

(−1)
11 K

(−1)
22

K
(1)
13 −K

(1)
11 K

(1)
22

K
(3)
13 −K

(3)
11 K

(3)
22

∣∣∣∣∣∣∣∣∣∣

, (4.4)
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so that

∆2
1 − 4∆∆2 = 0, (4.5)

which is the explicit secular equation for non-principal surface waves in deformed

incompressible materials.

Upon inspection of (2.7) and (2.10), we find that K
(1)
13 = κ, K

(1)
33 = X − µ,

K
(1)
22 = X − ν, K

(1)
11 = X − η. Computing N−1, we find that up to a common

disposable factor, K
(−1)
13 , K

(−1)
33 , K

(−1)
22 , K

(−1)
11 are proportional to polynomials of

degree 1, 2, 3, 2 in X, respectively. Similarly, computing N 3, we find that K
(3)
13 ,

K
(3)
33 , K

(3)
22 , K

(3)
11 are polynomials of degree 1, 2, 1, 2, respectively. We conclude from

the definitions (4.4) of ∆, ∆1, ∆2 that the secular equation (4.5) is a polynomial of

degree 12 in X = ρv2, just as for monoclinic crystals in linear anisotropic elasticity

[19]. It is too long to reproduce here but it was obtained in a formal manner with

Maple and with Mathematica.

The numerical resolution of the polynomial (4.5) yields a priori 12 roots for X.

From these, we discard at once the complex roots, the negative real roots, and the

roots corresponding to supersonic surface waves (faster than bulk waves). Out of

the remaining roots, at most one will yield attenuation coefficients q1, q2, q3 (with

a positive imaginary part) from the propagation condition (2.13), such that the

exact secular equation (2.21) is satisfied.

To conclude this Section, we check that the rationalized secular equation (4.5)

is consistent with the known secular equation for principal surface waves. When

θ = 0, it is easy to see that K
(−1)
13 = K

(1)
13 = K

(3)
13 = 0, therefore ∆ = ∆2 = 0.

Thus, (4.5) reduces to ∆1 = 0. By substituting X = γ12 − γ21ζ
2, we find that ∆1

factorizes into the product of a quadratic in ζ2 and two cubics in ζ, one of which
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is indeed Dowaikh and Ogden’s [5] equation (3.10).

4.2 Example: Varga materials

The standard Varga strain energy function [29, 30] is defined as

W = C(λ1 + λ2 + λ3 − 3), (4.6)

where the material parameter C is constant. This strain energy function has been

introduced to describe natural rubber vulcanizates. It leads to the following ex-

pressions for the quantities γij and βij, defined in (2.8),

γij = Cλ2
i /(λi + λj), βij = Cλiλj/(λi + λj). (4.7)

X1

X2

X3

tan−1 γ

Figure 4: An elastic material under simple shear; the dashed lines represent the

body at rest.

Simple shear plays an important role in the experimental determination of a

strain energy function [22]. Consider now a half-space made of Varga material,

subject to an amount of shear γ along X3, see Figure 4. With a view to the
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possible non-destructive evaluation of sheared rubber, we are interested in the

propagation of a surface wave in any direction in the plane of shear OX1X3. We

assume that this plane is free of normal load, thus σ2 = 0.

The principal stretches associated with the amount of shear γ may be deter-

mined using the following equations [7],

λ1 − λ−1
1 = γ , λ1 > 1 , λ2 = 1 , λ3 = λ−1

1 λ−1
2 . (4.8)

We substitute the parameters (4.7) into the secular equation (4.5), and then solve

that equation numerically for the amounts of shear: γ = 0.5, 1.0, 1.5, corresponding

to the angles of shear: tan−1 γ = 26.56◦, 45◦, 56.31◦, respectively. We obtain the

velocity of the surface wave propagating in a direction making an angle θ +ψ with

OX1, where ψ = (1/2) tan−1(2/γ) = 37.98◦, 31.72◦, 26.56◦, respectively. Note that

here OX1 is not a principal axis, for the two principal axes Ox1 and Ox3 in the

plane of shear are at an angle ψ with OX1 and with OX3, respectively.

For the selection of the relevant root of the secular equation out of the 12

possible ones, we followed the checking procedure described at the end of the

previous Section. For example, at γ = 1 and θ + ψ = 0, the rationalized secular

equation (4.5) has only 2 real roots, giving
√

ρv2/C = 0.848 or
√

ρv2/C = 0.884.

Both roots yield three attenuation factors with a positive imaginary part from

the propagation condition (2.13). However, the exact secular equation (2.21) is

satisfied only with the first root. Hence, with a 32 digit precision, Maple finds that

|nωI/[ωIII(m − ωII)] − 1| < 10−22 when
√

ρv2/C = 0.848, indicating that (2.21) is

satisfied; on the other hand, |nωI/[ωIII(m−ωII)]−1| > 1.96 when
√

ρv2/C = 0.884,

indicating that (2.21) is not satisfied then.

Figure 5 displays the dependence of
√

ρv2/C on the angle θ + ψ over the range

22



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20 40 60 80 100 120 140 160 180

γ = 1.5
γ = 1.0
γ = 0.5

θ + ψ,◦

√
ρv2

C

Figure 5: Scaled surface wave speed as a function of θ + ψ for a Varga material

subjected to simple shear deformations.

[0◦−180◦]. The solid, dot, and dash-dot curves correspond to an amount of shear of

0.5, 1.0, 1.5, respectively. The figure confirms what is to be expected intuitively: as

the half-space is more and more sheared, the strain-induced anisotropy increases,

and its influence on the surface wave speed is more and more marked. It also shows

that the surface wave travels at its fastest (slowest) speed along the direction of

greatest (least) stretch, thus allowing for an acoustic determination of the directions

of the principal stretches in sheared rubber.
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