
Doctoral Thesis

A Scalable Data Store and Analytic
Platform for Real-Time Monitoring of
Data-Intensive Scientific Infrastructure

A thesis submitted to Brunel University London

in accordance with the requirements

for award of the degree of Doctor of Philosophy

By

Uthayanath Suthakar

in

the Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

November 23, 2017

Declaration of Authorship

I, Uthayanath Suthakar, declare that the work in this dissertation was carried out in ac-

cordance with the requirements of the University’s Regulations and Code of Practice for

Research Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the candidate’s

own work. Work done in collaboration with, or with the assistance of, others, is indicated

as such. Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE:

(Signature of student)

“Progress is made by trial and failure; the failures are generally a hundred times more

numerous than the successes; yet they are usually left unchronicled.”

Sir William Ramsay, Chemist

Abstract

Monitoring data-intensive scientific infrastructures in real-time such as jobs, data trans-

fers, and hardware failures is vital for efficient operation. Due to the high volume and

velocity of events that are produced, traditional methods are no longer optimal. Several

techniques, as well as enabling architectures, are available to support the Big Data issue.

In this respect, this thesis complements existing survey work by contributing an extensive

literature review of both traditional and emerging Big Data architecture.

Scalability, low-latency, fault-tolerance, and intelligence are key challenges of the tra-

ditional architecture. However, Big Data technologies and approaches have become in-

creasingly popular for use cases that demand the use of scalable, data intensive processing

(parallel), and fault-tolerance (data replication) and support for low-latency computations.

In the context of a scalable data store and analytics platform for monitoring data-intensive

scientific infrastructure, Lambda Architecture was adapted and evaluated on the World-

wide LHC Computing Grid, which has been proven effective. This is especially true for

computationally and data-intensive use cases.

In this thesis, an efficient strategy for the collection and storage of large volumes of

data for computation is presented. By moving the transformation logic out from the data

pipeline and moving to analytics layers, it simplifies the architecture and overall process.

Time utilised is reduced, untampered raw data are kept at storage level for fault-tolerance,

and the required transformation can be done when needed.

An optimised Lambda Architecture (OLA), which involved modelling an efficient way

of joining batch layer and streaming layer with minimum code duplications in order to

support scalability, low-latency, and fault-tolerance is presented. A few models were eval-

uated; pure streaming layer, pure batch layer and the combination of both batch and

streaming layers. Experimental results demonstrate that OLA performed better than the

traditional architecture as well the Lambda Architecture. The OLA was also enhanced

by adding an intelligence layer for predicting data access pattern. The intelligence layer

actively adapts and updates the model built by the batch layer, which eliminates the re-

training time while providing a high level of accuracy using the Deep Learning technique.

The fundamental contribution to knowledge is a scalable, low-latency, fault-tolerant,

intelligent, and heterogeneous-based architecture for monitoring a data-intensive scientific

infrastructure, that can benefit from Big Data,technologies and approaches.

Acknowledgements

I would like to express my sincere gratitude to Dr. David Ryan Smith, who supervised my

research and guided me with great dedication throughout my time as a PhD student. His

view of research has proved valuable to my research and supporting work. His personality,

together with his high standards for research, makes him an ideal advisor. I would like to

thank Prof. Akram Khan for introducing me to the support for Distributed Computing

group, at the CERN IT department, and for providing me support and advice throughout

my time as a PhD student.

I would like to express a special thanks to Dr. Luca Magnoni for supervising me from

CERN and for sharing his extensive knowledge with me while conducting this research.

I am thankful to all the members of Support for Distributed Computing group, at the

CERN IT department for guiding me and supporting me while I was on site.

I am appreciative to the Thomas Gerald Gray Trust for funding and supporting my

research.

I would like to thank all my family members for supporting me while conducting this

research. Without them, I could not have reached this stage in my life. Finally, I have

made a few exceptional friends at Brunel University London, Nikki Berry, Rhys Gardener,

Hassan Ahmad, Asim Jan, and Sema Zahid. I would like to thank them for making my

experience enjoyable while conducting this research.

List of Publications

The following papers have been accepted / to be submitted for publication as a direct or

indirect result of the research discussed in this thesis.

Suthakar, U., Magnoni, L., Smith, D.R., Khan, A., Andreeva, J., An efficient strat-

egy for the collection and storage of large volumes of data for computation, Springer:

Journal of Big Data, (2016) [This paper corresponds to Chapter 3].

Magnoni, L., Suthakar, U., Cordeiro, C., Georgiou, M., Andreeva, J., Khan, A.,

Smith, D.R., Monitoring WLCG with lambda-architecture: a new scalable data store and

analytics platform for monitoring at petabyte scale. Journal of Physics: Conference Series

664(5), 052023 (2015) [This paper corresponds to Chapter 4].

Suthakar, U., Magnoni, L., Smith, D.R., Khan, A., Optimised lambda-architecture

for monitoring WLCG using Spark and Spark Streaming, IEEE Nuclear Science Sympo-

sium, (2016) [This paper corresponds to Chapter 5].

Suthakar, U., Magnoni, L., Smith, D.R., Khan, A., Optimised Lambda Architecture

for monitoring scientific infrastructure, IEEE Transactions on Parallel and Distributed

Systems, (2017) [This paper corresponds to Chapter 5].

Contents

1 Introduction 1

1.1 Motivations . 4

1.2 Methodology . 5

1.3 Major Contributions to Knowledge . 6

1.4 Thesis Organisation . 8

2 Review of Literature 10

2.1 Architecture . 10

2.1.1 Review . 11

2.1.2 Summary . 18

2.2 Technology . 18

2.2.1 Batch Process . 18

2.2.2 Interactive ad-hoc query engine . 22

2.2.3 Real-Time Processing . 26

2.2.4 Summary . 33

2.3 Machine Learning techniques . 33

2.3.1 Machine Learning libraries and techniques 34

2.3.2 Summary . 37

3 An efficient strategy for the collection and storage of large volumes of

data for computation 38

3.1 Introduction . 39

3.2 Background . 39

3.3 Design and methodology . 46

i

Contents

3.3.1 Implementation . 48

3.4 Results and discussion . 51

3.4.1 Performance results of data ingestion with and without data trans-

formation . 54

3.4.2 Performance results of intermediate data transformation using a

MapReduce job . 56

3.4.3 Performance results of a simple analytic computation with and with-

out data transformation . 56

3.4.4 Summary of the performance results 57

3.4.5 Evaluation of Apache Flume . 58

3.5 Summary . 59

4 Monitoring scientific infrastructure with the Lambda architecture 61

4.1 Introduction . 61

4.2 The Lambda Architecture . 62

4.2.1 Difference between common scientific use case and the classic Lambda

use case . 63

4.3 A new data store and analytics platform for monitoring scientific infras-

tructure . 63

4.3.1 Data transport: Message Broker . 64

4.3.2 Data collection: Apache Flume . 64

4.3.3 Batch processing: Apache Hadoop 65

4.3.4 Archiving: HDFS . 65

4.3.5 The common data access service layer 65

4.3.6 The serving layer: Elasticsearch . 66

4.3.7 Real-time processing: Esper . 66

4.4 Implementation of WLCG analytics on the new platform 66

4.4.1 WLCG data activities use case . 67

4.4.2 Implementation of the batch layer 67

4.4.3 Data representation . 69

4.4.4 Implementation of the real-time layer 70

4.4.5 Implementation of the serving layer 73

ii

Contents

4.5 Performance results for WDT computation on the new platform 74

4.5.1 Experiment setup . 75

4.5.2 The performance of batch computations with scaling dataset 77

4.5.3 The performance of batch computations with scaling nodes 90

4.5.4 The performance of batch computations with parallelisation 91

4.5.5 The performance of the serving layer 93

4.5.6 The performance of the real-time processing 94

4.6 Summary . 94

5 Optimised Lambda Architecture using Apache Spark technology 96

5.1 Introduction . 97

5.2 Background . 98

5.3 Architecture and design . 100

5.3.1 Merging and synchronising Optimised Lambda Architecture layers . 102

5.4 Performance evaluation of the Optimised Lambda Architecture 108

5.4.1 Experiment setup . 108

5.4.2 Illustration of the workflow . 110

5.4.3 Performance evaluation of WLCG environment and WDT use case . 113

5.4.4 Evaluating the accuracy of monitoring computations 125

5.4.5 Evaluation of scalability, on the Amazon EC2 cloud cluster 127

5.5 Summary . 130

6 Real-time processing and Machine Learning for forecasting data access

pattern 132

6.1 Introduction . 133

6.2 Data Analysis and Data Modelling . 134

6.2.1 Data Acquisition . 135

6.2.2 Data Pre-Processing . 135

6.2.3 Initial DAP dataset analysis . 135

6.2.4 Auto-regression analysis . 140

6.2.5 Comparison of auto-regression and mean forecasting model 142

6.3 Machine Learning Techniques and Algorithms 143

iii

Contents

6.3.1 Sparks K-Nearest Neighbours (KNN) 144

6.3.2 Sparkling Water (H2O) and Deep Learning 144

6.4 Design of the Data Access Pattern Intelligence Layer 147

6.4.1 Deep Learning Model for the Data Access Pattern Study 147

6.4.2 KNN Model for the Data Access Pattern Study 148

6.4.3 Batch and Online Models for the Data Access Pattern Study 149

6.4.4 Active and Adaptive Learning . 151

6.4.5 Dataset Access Pattern Training Algorithm 151

6.5 Evaluation of the Adaptive Data Access Pattern Model 152

6.5.1 Experiment setup . 152

6.5.2 Data Preparation for Evaluation . 153

6.5.3 Performance Evaluation of the DAP on a Traditional Model 153

6.5.4 Evaluation of Accuracy of DAP on a Traditional System 154

6.5.5 Performance Evaluation of the Intelligence Layer for the DAP Study 155

6.5.6 An Accuracy Evaluation of the Intelligence Layer for the DAP Study 157

6.5.7 Scalability Evaluation of the Intelligence Layer for Studying DAP . 162

6.6 Summary . 164

7 Conclusions and Future Work 166

7.1 Conclusions . 166

7.2 Future Work . 169

Bibliography 178

iv

List of Figures

1.1 Executives’ interpretation of Big Data based on an online survey [1]. 2

1.2 An example of a traditional monitoring architecture [2]. 3

2.1 The high level perspective of Lambda Architecture (adapted from Hausen-

blas and Bijnens [3]). 13

2.2 The Druid Architecture (adapted from Hausenblas and Bijnens [3]). 14

2.3 The Kappa architecture (adapted from [4]). 15

2.4 Hadoop architecture. 20

2.5 Apache Drill architecture [5]. 23

2.6 Cloudera Impala [6]. 24

2.7 Presto architecture [7]. 25

2.8 Storm topology [8]. 27

2.9 S4 architecture [9]. 28

2.10 Kinesis architecture [10]. 29

2.11 Samza architecture [11]. 30

2.12 Spark Streaming data flow [12]. 31

3.1 Size of CERN LHC experimental data sets over the past years. The total disk

and tape storage amounts aggregated for all Tier-1 locations in the CERN grid

(adapted from [13]). 41

3.2 WLCG Tier-1 and Tier-2 connections [14]. 44

3.3 Configuration of current data pipeline in WLCG (a) and the configuration of the

proposed data pipeline for WLCG (b). 53

3.4 Data ingestion from message queue to HDFS with and without data transformation. 55

v

List of Figures

3.5 Data size of the messages that were stored into HDFS with and without data

transformation. 55

3.6 Intermediate MapReduce job for data transformation. Only the raw JSON mes-

sages are transformed with the MapReduce job. 56

3.7 Performance measurements of the statistic computation were done on pre-transformed

and the raw 100,000 messages dataset. 57

3.8 Spikes of messages with a rate greater than 1 kHz. The red line is the messages

received from the broker, green denotes the messages stored in old consumers, and

blue denotes the messages stored in Apache Flume. 59

4.1 The new data analytics platform for monitoring a scientific infrastructurecture. . . 64

4.2 Daily volume of monitoring events from Federated ATLAS storage systems using

XRootD (FAX), Anytime, Anywhere CMS storage systems using XRootD (AAA),

ATLAS Distributed Data Management using Rucio (DDM rucio), ATLAS Dis-

tributed Data Management using Don Quijote (DDM DQ2) and File Transfer

Service (FTS) for WDT dashboards [15]. 68

4.3 MapReduce computations diagram. 68

4.4 HDFS data partitioning. 69

4.5 Data format comparison (Avro versus CSV versus JSON for 1 Day FAX data). . . 69

4.6 An overview of the system architecture with the Esper module [16]. 71

4.7 An example of the Map-Reduce approach on EPL statements implementation [16]. 72

4.8 WLCG Hadoop cluster workload [15]. 75

4.9 Computation of uncompressed Avro, CSV and JSON files over different date

ranges. The primary axis (a) shows the execution time that is represented by

lines, whereas the secondary axis (b) represents the input data size in MB is rep-

resented by bars. 78

4.10 Memory allocated/used for computing Avro, CSV and JSON files over scaling

dataset. 80

(a) The plot shows the allocated memory. 80

(b) The plot represents the used memory. 80

(c) The plot represents the stacked up used memory versus allocated

memory. 80

vi

List of Figures

4.11 Average memory allocated for each task for computing Avro, CSV and JSON files

over scaling dataset. The primary axis (a) shows the average allocated memory

in MB that represented by lines, whereas the secondary axis (b) represents the

number of allocated tasks represented by bars. 81

4.12 The percentage of memory used for GC from the overall used memory by the tasks.

The primary axis (a) shows the percentage of allocated memory for the job that

are represented by lines, whereas the secondary axis (b) represents the percentage

of memory used for GC represented by stacked bars. 82

4.13 CPU time used/allocated for computing Avro, CSV and JSON files over 30 day

dataset. 83

(a) The plot represents the stacked up used and allocated CPU time. . . 83

(b) The plot represents used/allocated CPU time. 83

4.14 Shuffled intermediate results from mappers to reducer nodes. 84

4.15 Computation of compressed (Snappy) Avro, CSV and JSON files over scaling

dataset. The primary axis (a) shows the execution time represented by lines,

whereas the secondary axis (b) represents the input data size in MB represented

by bars. 85

4.16 Memory allocated and memory used for computing compressed (Snappy) Avro,

CSV and JSON files over scaling dataset. 86

(a) The plot shows the allocated memory. 86

(b) The plot represents the used memory. 86

(c) The plot represents the stacked up used memory versus allocated

memory. 86

4.17 Average memory allocated for each task for computing Avro, CSV and JSON files

over scaling dataset. The primary axis (a) shows the average allocated memory

in MB that represented by lines, whereas the secondary axis (b) represents the

number of allocated tasks represented by bars. 87

4.18 The percentage of memory used for GC from the overall used memory by the

tasks for computing compressed (Snappy) dataset. The primary axis (a) shows

the percentage of allocated memory that are represented by lines, whereas the

secondary axis (b) represents the percentage of memory used for GC represented

by stacked bars. 88

vii

List of Figures

4.19 CPU time used/allocated for computing compressed (Snappy) Avro, CSV and

JSON files over scaling dataset. 89

(a) The plot represents the stacked up used and allocated CPU time. . . 89

(b) The plot represents used/allocated CPU time. 89

4.20 Shuffled intermediate results from mappers to reducer nodes 89

4.21 Execution time versus the number of worker nodes. 91

4.22 Evaluation of parallelisation of reducer tasks when computing 5 GB dataset. Ex-

ecution time versus the number of reducers. 92

4.23 Evaluation of parallelisation of reducer tasks when computing 4 million monitoring

events. Execution time versus the number of reducers. 93

5.1 WDT dataset size [14]. 97

5.2 Pure stateless batch computation. Monitoring events were sent to the HDFS

for batch computation, which can be scheduled to run at any preferred time

interval. 100

5.3 Pure stateful streaming and combination of both batch and streaming com-

putations. Monitoring events were duplicated with one sent to the HDFS

for batch computation, while the other streamed straight into the streaming

receiver for incremental computation. 102

5.4 Sequential jobs execution. Jobs were executed one at a time. 110

5.5 Parallel jobs execution. Multiple jobs were executed at a time. 111

5.6 Sequential tasks execution. 111

5.7 Overview of job stages. 112

5.8 Cached stages were reused by parallel jobs. The green circle denotes that an RDD

is cached from the previous stage. The greyed stage (cached) was skipped by the

following concurrent jobs. 112

5.9 Concurrent tasks execution. A job was split into multiple tasks and exe-

cuted in each executor CPU core concurrently. 113

5.10 Insight into Stage 2 timeline. 113

viii

List of Figures

5.11 Computation of Avro, CSV and JSON files over augmented dataset (day 1

to 30 days). The primary axis (a) shows the execution time that is being

represented by lines, whereas the secondary axis (b) represents the input

data size in Megabytes (MB) which is represented by bars. 115

5.12 Comparison of the MapReduce versus the Spark framework against various

data types. 116

5.13 Execution time versus the number of partitions of various data types. . . . 117

5.14 Comparison of parallel and sequential jobs with cached and uncached datasets.

Execution time versus parallel, sequential cached and uncached jobs. . . . 118

5.15 Comparison of various cache types. Execution time versus computation of

data cached in memory, disk, and memory and disk (also a combination of

replicated and serialised dataset). 119

5.16 Execution time versus the number of executors. 121

5.17 Execution time versus the amount of memory size. 122

5.18 Execution time versus the number of CPU cores. 123

5.19 Streaming data input rate. Streaming job receiving data at a rate of 116

events/second on average. 124

5.20 Streaming data processing time. Processing time shows that these batches

have been processed within 88 ms on average. 124

5.21 Schedule delay in processing next batch. 125

5.22 Total delay in scheduling and processing streaming data. 125

5.23 The Spark batch computations for WLCG monitoring (some statistics are

missing as highlighted). 126

5.24 The Spark batch and streaming computations for WLCG monitoring (sta-

tistical data are in near real-time as highlighted). 126

5.25 Execution time versus the memory size on the cloud infrastructure. 128

5.26 Execution time versus the number of executors on the cloud infrastructure. 129

5.27 Execution time versus the number of cores on the cloud infrastructure. . . . 130

6.1 Monthly popular dataset trends. 136

6.2 Popular dataset trends in January. It shows all datasets accessed in January

and each boxed scaled by the number of access. 137

ix

List of Figures

6.3 Evaluation of frequency for top five maximally requested datasets. 138

6.4 Mean forecasting the top 100 datasets. 140

6.5 Auto-regression on 100 datasets. 141

6.6 Auto-regression on 10,000 datasets. 141

6.7 Auto-regression on 100,000 datasets. 142

6.8 Deep Learning versus other Machine Learning techniques [17]. 145

6.9 Single neuron unit [17]. 146

6.10 Multilayer of interconnected neuron units [17]. 146

6.11 Deep Learning model for the DAP study. 147

6.12 Traditional KNN model on Orange Canvas. 148

6.13 Streaming online model. It shows that online model uses the previous seven

days of data point for prediction (a), whereas (b) shows the incremental

movement of each new day data points to the model. 150

6.14 Batch and Streaming online model. 151

6.15 Traditional KNN training and prediction time over various data instances. . 154

6.16 Traditional KNN prediction error rate. 155

6.17 Distributed batch KNN and Traditional KNN training and prediction time

over various data instances. 156

6.18 Distributed batch DL training and prediction for different sized training

datasets. 157

6.19 Distributed batch KNN and Traditional KNN prediction error rate. 158

6.20 Distributed batch DL prediction error rate. 159

6.21 Plot showing the actual against the predicted dataset accesses for Linear

Regression. 160

6.22 Plot showing the actual against the predicted dataset accesses for Decision

Tree. 161

6.23 Plot showing the actual against the predicted dataset accesses for Random

Forest. 162

6.24 Scalability of the distributed batch KNN training and prediction. 163

6.25 Scalability of the distributed batch DL training and prediction. 164

x

List of Tables

2.1 Operators comparison. 22

3.1 Summary of advantages and disadvantages of the proposed approaches. . . 49

3.2 Total sum of execution time for 100,000 messages dataset from Sections

3.4.1 , 3.4.2 and 3.4.3. 58

4.1 A mapping between Esper and the relational database model. 67

4.2 Performance of querying and creating documents (records) in Elasticsearch

and Oracle . 93

4.3 Throughput results obtained from evaluating the real-time layer. 94

5.1 Used variables and their corresponding expressions in this section. 102

6.1 Index numbers of top ten accessed datasets each day. 138

6.2 Summed error for mean model. 142

6.3 Summed error for auto-regression model. 142

6.4 An example of raw data and prepared data (in vector form) for KNN train-

ing and prediction. 149

xi

List of Abbreviations

AAA Anytime, Anywhere CMS storage systems using XRootD protocol

AI Artificial Intelligence

CEP Complex Event Processing

CERN Conseil Europen pour la Recherche Nuclaire

CPU Central Processing Unit

CSV Comma-Separated Value

DAG Directed Acyclic Graph

DAP Data Access Pattern

DDM ATLAS Distributed Data Management

DL Deep Learning

DT Decision Tree

DQ2 Distributed Data Management using Don Quijote

EC2 Amazon Elastic Compute Cloud

ED Experiment Dashboard

EPL Event Processing Language

ETL Extraction, Transformation and Loading

FAX Federated ATLAS storage systems using XRootD protocol

FTS File Transfer Service

GB Gigabyte

GBM Gradient Boosting Model

GC Garbage Collection

GFS Google File System

GUI Graphical User Interface

H2O Sparkling water Machine Learning library

xii

Chapter 0. List of Abbreviations

HDFS Hadoop Distributed File System

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JVM Java Virtual Machine

KNN K-Nearest Neighbors

LA Lambda Architecture

LHC Large Hadron Collider

LR Linear Regression

MB Megabyte

ML Machine Learning

MLLIB Apache Spark Machine Learning library

OLA Optimised Lambda Architecture

OOM Out of Memory

PB Petabyte

PD2P PanDA Dynamic Data Placement

PL/SQL Procedural Language/Structured Query Language

POJO Plain Old Java Object

R2 R-Squared

RDBMS Relational Database Management System

RDD Resilient Distributed Dataset

RDDM ATLAS Rucio Distributed Data Management

RF Random Forests

RMSE Root-Mean-Square Error

UI User Interface

WDT WLCG Data acTivities

WLCG Worldwide LHC Computing Grid

YARN Yet Another Resource Negotiator

xiii

Chapter 1

Introduction

Life-changing scientific discoveries are vital for human existence. Try to imagine life with-

out antibiotics. People would not live nearly as long without them. So, these findings

are essential. A few decades ago the speed of scientific discoveries was limited by tech-

nologies; an example would be computing power. Fortunately, things have changed in

recent years; in particular, recent developments in the field of computing have led to the

creation of a platform to support and speed up scientific discoveries. An example of such

a scientific infrastructure is located at CERN, which is one of the largest in the world

where physicists are trying to understand how the universe evolved. In order to obtain an

answer to this question, they are using the Large Hadron Collider (LHC) to accelerate and

steer billions of proton-proton collisions. The Worldwide LHC Computing Grid (WLCG)

provides the computing resources to store, distribute and analyse the ∼30 Petabytes of

data generated annually by the LHC, serving a community of more than 3,000 physicists

distributed among 170 computing centres around the world [14]. Every day, thousands

of files are transferred, and hundreds of thousands of processing jobs are executed at the

different computing sites to perform scientific analysis of LHC data. This is the case for

many other scientific infrastructures such as the Earthscope and the Fermilab experiments

to name a few. Monitoring such a distributed, geographically sparse and data-intensive

infrastructure is a core functionality and one of the greatest challenges to providing a

reliable scientific platform.

Scientific infrastructure has to cope with the increases of the volume, velocity and the

1

Chapter 1. Introduction

variety of the data being monitored; characteristics of what does become called Big Data.

Although Big Data has emerged rapidly there is still some uncertainty about the term

as is evident from the result of an online survey [1]. Figure 1.1 shows the executives’

interpretation of Big Data, and it varies. However, in the context of this thesis the ap-

propriate definition is provided by the TechAmerica foundation, which gives the definition

“Big Data is a term that describes large volumes of high velocity, complex and variable

data that require advanced techniques and technologies to enable the capture, storage,

distribution, management, and analysis of the information” [1].

Figure 1.1: Executives’ interpretation of Big Data based on an online survey [1].

The traditional architecture where relational database management systems (RDBMS)

are used to store, to process and to serve monitoring events has clear limitations and has

become inadequate for obtaining timely intelligence; an example can be seen in Figure 1.2

[2]. Scalability, the capacity of the system to accommodate heightened demands in terms

of data processing, is hard to achieve with the traditional system as the architecture cannot

handle the overwhelming amount of data that need to be processed. Fault-tolerance is the

quality of a system to remain in operation accurately with the occurrence of a malfunction

of one or more components, and high fault-tolerance is tricky to achieve. A technique,

2

Chapter 1. Introduction

like sharding, is a method of splitting up a large dataset into numerous, much smaller,

datasets that can be dispersed across multiple servers for load balancing. However, this

leverages complexity at the application level, which leads to higher maintenance, increased

operational costs and increased possibility of human error. Moreover, effective monitoring

requires low-latency read access to real-time data which is not possible using traditional

architecture.

Figure 1.2: An example of a traditional monitoring architecture [2].

In recent years, the challenge of handling big volume (referring to the size of data),

velocity (referring to the speed at which data are produced and the rate at which the

data should be interpreted) and variety (referring to the structural diversity in the data)

has been taken on by many companies, particularly in the Internet domain, leading to

a full paradigm shift in data archiving, processing and visualisation. A number of new

technologies have emerged, each one targeting specific aspects of large scale distributed

data-processing. However, all these technologies, such as a batch computation system

(which offers an efficient method of processing large volumes of data where the collection

of events is accumulated over a span of time) and unstructured databases (which sup-

port text, images, audio, and video) fall short of the structural arrangement required by

the traditional database management system. They can handle very large data volumes

with little economical cost using commodity hardware (moderately inexpensive, broadly

available and compatible with other hardware of its standard) but with serious tradeoffs.

3

Chapter 1. Introduction

For example, Hadoop is a distributed processing framework that can run large scale batch

computations on very large data volume, but with high latency [18]. Another example

is non-relational database systems such as Cassandra that can offer scalability but only

support a very limited data model with no or relaxed consistency.

1.1 Motivations

The challenges highlighted above form the basis of this research study. The aim was to

attempt to tackle a number of critical constraints with the traditional architecture in mon-

itoring scientific infrastructure with regard to developing an efficient, large-scale, real-time

and intelligent system using distributed commodity infrastructures. In doing this it was

important to prevent and minimise any system failures. The knowledge gained in the

development of a monitoring system can be used for automating or improving the infras-

tructure such as efficient job allocation, resource deployment and so forth.

The main contribution of the presented thesis work was a scalable data store and an-

alytics architecture for real-time monitoring of data-intensive heterogeneous scientific in-

frastructure, designed to profit from parallel processing on the collaborative infrastructure

provided by the WLCG group. Distributed and parallel computing methods are consid-

ered to be fundamental characteristics for handling Big Data. Although distributed and

parallel programming in dispersed environments is not a trivial task, several frameworks

and models are available that make distributed and parallel computing more convenient.

The Spark framework is one such Big Data programming framework designed to decrease

large-scale computation challenges and facilitate a development of automatic distribution

and parallelisation, which are analysed in-depth in Chapter 2. However, the examina-

tion of Big Data technology-based approaches in the context of distributed infrastructure

is not contemporary. It is a field that one can recognise as being relatively new and is

evolving rapidly with regard to capitalising its potential for application in the scientific

field. From this standpoint, Big Data technology can be used to deal with both data (e.g.

data mining for identifying patterns in unstructured data) and computationally intensive

challenges (e.g. processing data produced at high velocity) with monitoring the scientific

4

Chapter 1. Introduction

infrastructure. The fundamental aims of the thesis work were to explore the required accu-

racy, efficiency, intelligence, scalability, simplicity and cost effectiveness of the monitoring

architecture.

1.2 Methodology

The data (monitoring events in the form of metadata) for the prsented work were collected

from three major experiments carried out at CERN, which were ATLAS, CMS and LHCb.

This investigation takes the form of case studies of some of the important scenarios such

as checking jobs, data management, system failures and so forth for evaluating the pro-

posed monitoring architecture. A limitation of this study was the lack of evaluation of

the proposed architecture in a scientific infrastructure other than WLCG due to lack of

association. However, it is comforting that WLCG approved evaluation of the proposed

architecture on their experiments such as ATLAS and CMS, which are immense and iso-

lated in their own right.

An experimental Hadoop cluster with fifteen nodes was set up to evaluate the pro-

posed work presented in this thesis. The specifications and configurations of the nodes

are presented in Chapter 4. Eight nodes were assigned with 32 CPU cores, 64 GB RAM

and 500 GB hard disk storage and seven nodes was assigned with 4 CPU cores, 8 GB

RAM and 500 GB hard disk storage. The Linux-2.6 operating system was installed on all

fifteen nodes. Hadoop-2.6, Flume-1.6 and Spark-1.6 version were configured on all nodes.

A custom-made metrics application was developed for collecting the proposed architecture

statistics.

To further evaluate the work presented in this study, a virtual cluster was created in

the Amazon Elastic Cloud (EC2) using a general purpose instance “m4.2xlarge” that had

eight virtual CPUs, 32 GB of memory, and 20 GB of storage per instance. The cluster

was configured with four nodes, one name node and three data nodes. The same Hadoop,

Flume and Spark versions, and operating system were installed on each instance.

5

Chapter 1. Introduction

1.3 Major Contributions to Knowledge

The principal contributions to knowledge by the work presented in this thesis can be sum-

marised as follows:

The thesis presents an efficient approach for the collection and storage of high volumes

of data for analytics, which is the discovery and interpretation of meaningful patterns in

data. The proposed data pipeline is responsible for processing and moving data between

different elements at specified intervals where the output of one component is the input

of the next one, and is based on custom made daemon using Hadoop framework. The

approach was also tried on a custom-Flume implementation. A custom Java daemon was

developed to read monitoring events from the message queues and write them into the

Hadoop Distributed File System (HDFS) with and without data transformation and seri-

alisation, a process of translating data into binary formats for efficiency. Also, a custom-

made Flume was developed to take advantage of the Hadoop appending mechanism to

flush data into HDFS. A simple data analytics algorithm was implemented on MapRe-

duce to process large volumes of monitoring events. The analysis was evaluated from the

aspect of execution time and scalability in comparison with the traditional method used in

the data pipeline. A working prototype based on the custom-Flume pipeline was deployed

on the WLCG Hadoop cluster and made available during the LHC second run, in a context

that reads events from multiple sources and writes them into the HDFS ready for analytics.

The thesis presents an architecture for monitoring scientific infrastructure using the

Lambda approach [19], a Big Data processing architecture. This method has been theo-

retically and practically tested on a smaller scale. While some studies have been carried

out on the Lambda approach, there have been few empirical investigations conducted on

a larger scale and also there has been little quantitative analysis conducted. Therefore, in

this thesis, the Lambda approach has been adopted, implemented and evaluated on one of

the largest scientific infrastructures for monitoring and an in-depth comparison was made

with the traditional architecture. The first objective was creation of the batch layer, to

store a constantly growing dataset providing the ability to compute arbitrary functions

on it. The second objective was creation of the serving layer, to store the batch-processed

6

Chapter 1. Introduction

views, using indexing techniques to make them efficiently queryable. The third objective

was creation of the real-time processing layer able to perform analytics on fresh data with

incremental algorithms to compensate for batch processing latency.

The evaluation of the Lambda architecture indicated that it performed well, but the

complexity of joining various types of technology together is very time consuming in im-

plementation and maintenance, which requires a dual code base for streaming and batch

analysis. The Lambda approach also relies a lot on the client side for joining the statistics

produced by both the batch and streaming processes. This thesis presents an optimised

Lambda architecture using Apache Spark technology, which involved modelling an effi-

cient way of joining batch computation and real-time computation without the need to

add complexity to the User Interface (UI). A few models were explored for WLCG Data

acTivities (WDT): pure streaming, pure batch computation and the combination of both

batch and streaming. Evaluation of these methods was conducted in a Hadoop cluster

and results are presented.

In a scientific experiment, there is usually a lot of data movement; information on

these movements can be collected for analysis. Using this information, models can be

built to forecast data popularity for efficient data management and placement. This the-

sis presents how the intelligence can be integrated into the monitoring infrastructure. It

presents some insight studies of data access pattern with the ATLAS experiment. This

study evaluated the distributed and parallel processing Machine Learning library from the

Apache Spark stack for using supervised regression algorithms for forecasting dataset pop-

ularity and the number of data replicas required for efficient resource utilisation. Based

on this information a decision can be made as to whether enough (do nothing), too few

(add) or too many (delete) replicas have been found. It also presents both a batch learning

technique, which makes predictions based on historical training data using Spark, and an

online learning technique, which dynamically adapts and make predictions as the data are

streamed in from Spark Streaming. Also, it presents a complex Deep Learning technique

using Sparking Water (H2O) library for the data access patten prediction. Accuracy and

performance are the primary properties for effective data popularity prediction for an ef-

ficient data management; hence, they were evaluated and presented.

7

Chapter 1. Introduction

The tasks presented in this thesis have been intensively evaluated on a Hadoop cluster

provided by the WLCG. Also, the optimised-Lambda architecture was assessed on the

EC2 cloud as well as on the WLCG cluster. Evaluation results are presented and analysed

extensively.

1.4 Thesis Organisation

Following this introductory chapter the thesis is organised as follows:

Chapter 2 provides a general background on Big Data architectures for batch and

real-time processing, Big Data technologies and machine learning libraries.

Chapter 3 presents the design, implementation and evaluation of an efficient strategy

for the collection and storage of large volumes of data for computation. The performance

of the strategy is evaluated from the aspects of data ingestion, with data transformation

and without data transformation, intermediate data transformation using a MapReduce

job and a simple statistical analytic computation using a MapReduce job and a Proce-

dural Language/Structured Query Language (PL/SQL) procedure with and without data

transformation.

Chapter 4 presents the design, implementation and evaluation of an architecture

using the Lambda approach for monitoring a scientific infrastructure. The architecture

models three core layers for supporting real-time monitoring. The architecture was eval-

uated from the aspects of scalability, data I/O rate, fault tolerance, real-time processing

speed, data size/partition, data format and data compression.

Chapter 5 presents the design, implementation and evaluation of an optimised Lambda

approach for monitoring the scientific infrastructure that improved upon the performance

of analytics and real-time processing using the standard Lambda Architecture.

8

Chapter 1. Introduction

Chapter 6 evaluates machine learning algorithms for forecasting dataset popularity

and the number of data replicas required for efficient resource utilisation. Also, both

a batch learning technique, which makes predictions based on historical training data,

and an online learning technique, which dynamically adapts and predicts as the data are

streamed in, are examined.

Chapter 7 concludes the thesis and discusses some limitations of the research. In ad-

dition, suggested future research is pointed out for further improvements and extensions

to the thesis work.

9

Chapter 2

Review of Literature

There have been numerous efforts to review Big Data architectures and with various scopes

such as scalability, fault-tolerance and low-latency. In the past few years, there were a

number of Big Data technologies emerged for supporting the Big Data architectures. These

technologies support the development of distributed analytics platform for solving large-

scale, low-latency and intelligent problems. This chapter provides an extensive review of

Big Data architectures, Big Data technologies and Machine Learning libraries.

2.1 Architecture

In modern times, there are numerous architectures that are used in monitoring scientific

infrastructure systems for storage of data and analysis. These range from the traditional

architectures that can only do the basic activities and functionalities in a monitoring infras-

tructure, to modern approaches that are able to support additional necessities emerging

from the monitoring infrastructure. The traditional architectures used relational database

systems for the basic purposes of storage, processing and serving the monitoring events in

an infrastructure system. On the other hand, the current and more modernised architec-

tural approaches have been able to cover these functionalities and also overcome a number

of limitations existing in the use of the traditional architectures [20].

This chapter acknowledge the presence of all the old and the new architectures in the

modern times by providing a review of their use.

10

Chapter 2. Review of Literature

2.1.1 Review

In modern times, there are numerous architectures that are used in monitoring scientific

infrastructures for storage of data, and analysis. Some of the traditional architectures

are still in use in many monitoring infrastructures, regardless of the fact that there are

numerous new and more effective approaches that have been introduced [21]. However,

these traditional approaches, are slowly being replaced with more advanced and modern

approaches. This is because while the traditional architectures use relational database

systems for the basic purposes of storage, processing and serving the monitoring events

in an infrastructure, they result in the creation of a number of limitations for the moni-

toring infrastructure. For instance, they make the system fail to cope with extension of

volume, variety of data, and velocity of the monitoring events and data. This is according

to Hellerstein, Stonebraker, and Hamilton [20] who explain that most of the current and

more modernised architectural approaches have been able to cover these functionalities

and also overcome a number of limitations existing in the use of the traditional architec-

tures.

In agreement with the above assertions, Marik, Schirrmann, Trentesaux and Vrba [22]

state that at present, monitoring infrastructure requires large volumes of heterogeneous

data to be gathered for analysis. This data normally comes from varied frameworks and

services such as data transfers, job monitoring, and site tests and it aims at providing a

flexible but rather uniform interface for use by scientists and the monitoring sites. This is

according to Martinez, Garcia, and Marin-Lopez [23] who explain that in modern times,

the architecture design used has a number of limitations. This architecture has a number

of relational database systems that are vital for the processing, storage, and servicing

of monitoring data. However, the architectural design can not cope with an increase in

volume of the data transfer, nor is it able to foresee the variety of monitoring events that

may be required.

Martinez, Garcia, and Marin-Lopez, Andreeva et al. [24] argue that the current mon-

11

Chapter 2. Review of Literature

itoring systems are able to deliver solutions that are also reliable for the purposes of

supporting the operations and functionalities of large volume datasets. However, in the

near future, monitoring systems will be forced to be more robust and able to cope with

changes likely to take place in the next generation of architectures. This is because the cur-

rent traditional architecture designs cannot provide for scalability and they are too costly

to maintain especially after implementation of techniques such as sharding (which is the

method of splitting up a large dataset into numerous, much smaller, datasets that can

be dispersed across multiple servers for load balancing). Further, traditional architecture

designs have room for possible human faults and high maintenance costs. Current archi-

tecture designs also fail to offer up-to-date monitoring of the infrastructure, therefore, it

is critical to have real-time system to access real-time data and have access to low-latency

readings. The database procedures built-in within the monitoring system should also be

able to impose constraints on the timeliness of the monitoring data, granularity, and the

format.

Lambda Architecture

In examining the performance of various traditional architectures as well as some of the

new ones introduced in modern times, Hausenblas and Bijnens [3] talk about the Lambda

architecture. They observe that the term was coined by Nathan Marz to describe a generic

scalable data processing architecture that is also fault-tolerant. They reveal that Nathan

Marz introduced this term while working on various distributed data processing systems

on social media sites such as Twitter and Backtype.

According to Hausenblas and Bijnens [3] the Lambda architecture’s basic objective is

to fulfil the requirements for any infrastructure that is fault-tolerant, robust, and prone to

human as well as hardware faults. This is because it is able to function in a wide variety

of use cases and workloads in situations where it is critical to ensure that the system has

low-latency and provide regular updates to users. Therefore, the final system developed

using the Lambda architecture is linearly mountable and it scales horizontally.

12

Chapter 2. Review of Literature

Figure 2.1: The high level perspective of Lambda Architecture (adapted from Hausenblas

and Bijnens [3]).

As shown in Figure 2.1, the Lambda architecture has five critical layers, or stages for

servicing a system. The first stage involves the entrance of raw data into the system. At

this stage, the data is dispatched to two different layers, the speed and the batch layers,

where it is processed. In the batch layer, the data is managed within the master data set

and pre-computed into batch views. Then, it is forwarded to the serving layer where the

batch views are indexed to allow for the data to be queried in low-latency. In the speed

layer, only recent data is processed and in this layer, the Lambda architecture is able to

compensate for high-latency of updates for the data in the system. Queries entering the

system are answered when the results of the batch views in the serving layer and the speed

layer are merged [3].

Druid architecture

In examining a real-time analytical data store, Yang, Teshetter, and Leaute [25] discuss

the Druid architectural approach. To them, this open source data store is able to support

faster processing of aggregated data compared to Lambda architecture and it is also flex-

ible for filtering information as well as offering low-latency data ingestion process. This

system is also able to combine a storage layer in column orientation as it is a distributed

13

Chapter 2. Review of Literature

and advanced layer for advanced indexing structures that allow exploration of numerous

row tables within sub-seconds latency.

Figure 2.2: The Druid Architecture (adapted from Hausenblas and Bijnens [3]).

In discussing the Druid architecture, Yang, Teshetter, and Leaute [25] argue that this

approach is made up of varied nodes that are designed specifically for varied functions. In

agreement with the view by Yang, Teshetter, and Leaute, Mukhopadhyay [26] notes that

the nodes are crucial for the Druid architecture as it supports the complex nature of the

entire system as well as separating the concerns of delivering queries from those of latency

issues. In any case, as shown in the Figure 2.2, there is evidently low interaction activity

between each node thus lowering the chances of encountering communication failures en-

suring high data availability [25].

With regard to the solving of complex data analysis issues, Yang, Teshetter, and Leaute

[25] note that the nodes of the Druid approach come together and thus form a complete

system that is fully functional. Then, each node is able to provide real-time information

by encapsulating the operations during ingestion and querying a stream of events. In

order to deliver queries immediately, the nodes also ensure that they index events. This

is because events that are indexed together via the nodes of any system or approach are

able to quickly respond to queries. For any modern architecture, the aspect of scalability

14

Chapter 2. Review of Literature

is very important but very hard to achieve as sharding pushes for complexity within the

systems. However, in order for effective monitoring to be achieved in any architecture,

there is a need for low-latency (real-time) support.

Kappa architecture

In agreement with the views of Chen, Yang, Teshetter, and Leaute, Forgeat [4] explains

that another approach to a real-time system and analytics platform is the Kappa architec-

ture. This approach uses software architecture approach and it avoids the implementation

of relational databases. Instead, it has an immutable log for append only. According to

a report by Uesugi [27], it is from this log that data is streamed and fed into stores for

serving via a computational system. In seconding the assertions by Uesugi, the report [28]

reveals that Kappa is a simpler architecture compared to that of Lambda approach. In

fact, it is a simpler and easier version of Lambda approach. This is because, excluding

the batch processing part of the Lambda architecture, the parts and functionality of the

Kappa architecture are very similar to those of the Lambda approach.

Figure 2.3: The Kappa architecture (adapted from [4]).

In explaining some of the benefits associated with the use of Kappa architecture, the

report [28] explains that it was initially invented in order to avoid the issue of maintain-

ing two different codes frameworks for the speed and batch layer respectively, as is the

15

Chapter 2. Review of Literature

case with the Lambda architecture. Therefore, this implies that the main idea behind the

Kappa architecture is to ensure that real-time data processing systems and the continuous

data reprocessing systems are integrated into one effective and efficient system. This is

because both parts are very critical to analytics platforms [4].

As shown in Figure 2.3, Kappa architecture only has two layers, one for stream pro-

cessing and the other one, serving layer. It also has a data section that is able to support

other basic functionalities of a real-time system by storage of results and historical data.

In this approach, the stream processing jobs are tackled first, then the data reprocessing

jobs are carried out when some stream processing jobs need to be modified, altered or

reprocessed. Kappa is mainly stream processing, reliable when coupled with tools offering

certain guarantees (e.g. Kafka), but Kafka is a temporary buffer, where the retention

policy can be hours, days at maximum. Processing an arbitrary set of historical data, a

feature which is relevant in the scientific infrastructure to handle recomputation is limited

with this architecture.

The serving layer in the Kappa architecture, just like in Lambda architecture, is used

for forwarding the queries based on the results of the processing carried out. With regard

to its application and use, Hellerstein, Stonebraker, and Hamilton [20] argue that where

the algorithms for both real-time data and historical data processing systems are different

from each other, the Lambda architecture should be used. According to Ellis [29] who

notes that the main benefit associated with Kappa architecture is the fact that it allows

developers of real-time systems to operate, test, as well as debug their systems on a single

framework for processing.

An exploration of a scientific infrastructure

In exploring how monitoring of infrastructure is carried out in modern times, the moni-

toring of the Worldwide LHC Computing Grid (WLCG) infrastructure was explored. It

is necessary for the heterogeneous data to be gathered and analysed. For instance, this

process supports data transfers, testing of sites, and monitoring of processing jobs among

16

Chapter 2. Review of Literature

other requirements of the heterogeneous infrastructure. In providing a flexible interface,

that is also unique, the monitoring process handles this data regardless of whether it is

coming from the service framework or the experiment framework. The current architec-

tural approach implemented in modern times for storing, processing, and serving data

uses relational database systems that include Structured Query Language among others.

This is for the purposes of serving monitoring data, processing the same data, and storing

the data [24].

While this architecture manages to support most of the functionalities where monitor-

ing of the infrastructure is concerned, Andreeva et al. [24] note that this is not adequate. It

has limitations in coping with higher Large Hadron Collider luminosity, new data transfer

protocols, and cloud computing among other newly introduced techniques of the WLCG

events monitoring process. Therefore, Ellis and Jung argue that there is a need for the

development of a new scalable data store and analytics platform for use in the current

times [23].

Chen [30] agrees with the views discussed above and notes that in a scientific workflow

system, it is critical to track the status of workflow in real-time while the user is being

notified of any anomalies and failures automatically. In order to add real-time monitor-

ing and troubleshooting capability to the system, an individual could seek to integrate

some monitoring infrastructure to their generic system such as the Stampede monitoring

infrastructure [31]. This infrastructure is able to address interoperable monitoring jobs

by the use of a three layer architecture. It is also useful in describing workflow and job

executions as well as delivering tools that are of high performance quality to load workflow

logs that conform to the model of the data within the data store system. Stampede is

also described as an infrastructure that offers an interface via which the user can query

events and extract data from the storage unit [32]. However, this infrastructure uses a

traditional relational database for storage.

17

Chapter 2. Review of Literature

2.1.2 Summary

Traditional architectural approaches to real-time monitoring of computing infrastructure

are slowly being replaced by modern approaches for the storage of data and data anal-

ysis. This is because these modern architectures support additional necessities such as

low-latency, fault tolerance and scalability emerging from the Big Data unlike the tradi-

tional architectures that use relational database systems for the basic purposes of storage,

processing and serving the monitoring events in an infrastructure system. In addition, the

current approaches also overcome the limitations (e.g. high-latency) existing in the use

of the traditional architectures. This section has examined the scalability of data storage

and analytics platforms and reviewed the use of the architectures, discussed a scientific

experiments and how data as well as the analytics jobs are used in the infrastructures.

2.2 Technology

The aim of this section is to review some of the state-of-the-art technologies that can

be used to design a monitoring system for storing and handling Big Data and perform

real-time analytics on them.

2.2.1 Batch Process

A batch process is required to store constantly growing Big Data and for historical data

analysis that is used to identify patterns such as job failures, popular data, busy sites

and so forth. Many individuals consider Hadoop as the de facto framework for analysing

Big Data. However, there are many technologies available for application in a distributed

system such as the Internet that go beyond MapReduce, which is a programming model

for processing big data that was introduced by Google [33]. In this section an attempt

will be made to review such technologies.

18

Chapter 2. Review of Literature

Apache Hadoop: MapReduce and HDFS

The Hadoop ecosystem has been used for many research and commercial products [34][35].

It has gone through rigorous implementation and testing, which makes it robust. There

are many Hadoop ecosystems, but the MapReduce and HDFS are most relevant as they

support parallel processing as well as a large data storage with higher data availability.

Therefore, they will be analysed in this section. MapReduce is a programming model that

was designed to remove the complexity of processing data that are geographically scattered

around a distributed infrastructure [33, 36]. It hides the complexity of computing in

parallel, load balancing and fault tolerance over a large range of inter-connected machines

from the users.

There are two simple parallel methods, map and reduce, which are predefined in the

MapReduce programming model and are user-specified methods, so users have control

over how the data should be processed [36]. Hadoop was designed to take into account

that moving computing to where the data reside is better than vice versa as it will reduce

bottlenecks in the network, especially when the data that are being transferred are at the

size of terabytes to petabytes [33]. Therefore, map and reduce jobs will be allocated to

where the data reside, which will be scheduled by a job task manager as shown in Figure

2.4. The data will be read from a local disk (file system); mapped, with all records being

independently processed and key/value pairs assigned; intermediate results stored to a

local disk and shuffled (transferred to where the reduce jobs are located); and reduced, so

that records with identical keys are processed together and the output is written back to

the disk (this output could be an input to another MapReduce job) [33]. Fault tolerance

in MapReduce is supported by periodically checking whether the worker nodes are active.

Master failures can be protected against by using check-pointing, an approach used to

enable applications to recover from failure by loading the last check pointed state at the

start-up stage.

19

Chapter 2. Review of Literature

Figure 2.4: Hadoop architecture.

The MapReduce framework is built to on run HDFS and executes I/O operations on it.

The HDFS guarantees: scalability on commodity hardware, fault tolerance, high through-

put, load balance, data integrity and portability [37]. It employs master-slave architecture,

which is prone to single point failure. However, it facilitates failover to the standby server

but this is prone to downtime. Data are replicated across disk nodes for load balancing,

fault tolerance and high availability [37].

Apache Spark

Apache Spark is an in-memory distributed computing framework [38, 39]. It provides a

general programming model supporting iterative classes of algorithms, interactive appli-

cations and algorithms containing common operators such as Map, Reduce, Join, Filter,

GroupBy, Sort, LeftOuterJoin, RightOuterJoin, Count, Union, Cross and so forth [38].

20

Chapter 2. Review of Literature

Spark allows the dataset to be kept in the memory by moulding a new memory abstrac-

tion, called Resilient Distributed Datasets (RDDs) [39]. Instead of repeated I/O opera-

tions, Spark fetches the dataset once from the file system and store it into a memory and

then directly accesses it from the memory thereafter, which improves the performance.

By storing intermediate results in the memory, it provides a mechanism for reusing the

data to perform other operations such as iterations (e.g. deriving many results from the

same data).

Comparison

MapReduce is largely a solution for batch processing [33]. However, MapReduce hardly

deals with the instances where the development of functions requires the arbitrary mixture

of a set of operations, iterative jobs and multiple inputs. Nevertheless, the above men-

tioned actions could be achieved by implementing multiple Map and Reduce operations.

On the contrary, reloading the same data multiple times from the disk will seriously down-

grade the performance. The Spark framework provided a mechanism for overcoming this

issue by using inbuilt in-memory processing and extending the MapReduce framework to

support many operators such as: Join, Group, Union and Cartesian as shown in Table 2.1.

21

Chapter 2. Review of Literature

Table 2.1: Operators comparison.

Spark MapReduce

flatMap map

map combine

mapPartition reduce

union

rightOuterJoin

leftOuterJoin

join

intersection

filter

groupByKey

sortByKey

updateByKey

reduceByKey

combineByKey

In brief, MapReduce and Spark have some common features: load balancing, and fault

tolerance. Spark provides an in-memory processing mechanism, interactive analysis and

additional operations.

2.2.2 Interactive ad-hoc query engine

Batch processing jobs are expected to run for hours, weeks, months or even years. However,

this requires the technical skills to implement these jobs. Therefore, a simpler framework

is necessary for a non-technical user, hence, an ad-hoc interactive queries engine was ex-

plored. A few commercial companies and research community have developed tools to

resolve this issue, which has been reviewed in the following section.

22

Chapter 2. Review of Literature

Apache Drill

Apache Drill is a distributed execution engine that facilitates interactive, ad-hoc querying

of heterogeneous data sources on a large scale, which was inspired by Google’s Dremel

[40, 5]. Its design goal is to scale to 10,000 servers or more and to process petabytes of

data and trillions of records in seconds [5]. As shown in Figure 2.5, Drill’s architecture is

made up of three major components: query languages, which is responsible for parsing the

users query and constructing an execution plan; a low-latency distributed execution en-

gine that provides the scalability and fault tolerance needed to efficiently query petabytes

of data; nested data formats, which are responsible for supporting various data formats

[5]. The initial goal was to support the column-based format used by Dremel [5]. Finally,

scalable data sources are responsible for supporting a variety of data sources. The initial

focus is to leverage Hadoop as a data source [5].

Figure 2.5: Apache Drill architecture [5].

From a distribution perspective, a Drillbit, a specific node instance of Drill, uses local

memory and data. Queries can be made from any such instance [5]. The co-ordination,

query planning and optimisation, scheduling, and execution are then distributed.

23

Chapter 2. Review of Literature

Cloudera Impala

Cloudera Impala is a massively parallel processing (MPP) architecture for performing

SQL-like queries on HDFS and HBase (a column-based data store built to run on top

HDFS) storage as shown in Figure 2.6, which does not employ the MapReduce model as

other alternatives such as Hive (a data warehouse tool for querying and analysing large

datasets) [6]. It leverages techniques such as columnar storage for performing really fast

scans in the order of seconds of huge amounts of data in memory. All data in HDFS or

HBase do not require Extraction, Transformation and Loading (ETL) so can be queried

directly without any data movement or predefined schemas using SQL-like commands.

Impala inherits inbuilt Hadoop security by integrating with Kerberos (a protocol for val-

idating service requests between hosts) for authentication and role-based authorisation [6].

Figure 2.6: Cloudera Impala [6].

Presto

Presto is a distributed low-latency, interactive and SQL-compliant query engine optimised

for ad-hoc analysis developed by Facebook [7]. It also supports the majority of ANSI SQL

24

Chapter 2. Review of Literature

subgroups, including complex queries, aggregations, joins, and window functions [7]. All

processing is carried out in-memory and pipelined across a network between steps, which

should reduce the read/write time to disk thus improving performance. The shortcomings

of the system are its inability to write output data back to tables as it only supports a

read-only mode. In Presto architecture as shown in Figure 2.7, there is a coordinator that

receives SQL queries from the client, which it then analyses, parses and then plans the

execution [7]. Then the scheduler connects to the execution pipeline and assigns the jobs

to worker nodes that reside closer to the data [7]. The client then fetches the results.

Figure 2.7: Presto architecture [7].

The Presto framework is extendable so that any variety of storage can be plugged in;

however, it requires a connector that provides Presto with metadata, information on which

nodes hold the data, and a way to actually fetch the data as a stream. These are a few

storage plug-ins supported by the Presto: HDFS, Hive, HBase and Scribe [7].

Comparison

Hadoop was not built for interactive ad-hoc querying; it mainly focuses on offline batch

processing. This has resulted in a need for new technologies that resolves interactive ad-

hoc querying demand. In recent years a few tools have emerged to address this issue,

which have been discussed above. In brief, Drill, Impala and Presto were developed to

take advantage of in-memory temporary data locality. Drill supports long-running queries

25

Chapter 2. Review of Literature

and ad-hoc queries, whereas Impala and Presto do not support long running queries.

No fault-tolerance is implemented in Impala or Presto; when a node fails at the execu-

tion time then the queries need to be re-executed. Impala was designed to take advantage

of the existing Hive infrastructure, which uses the same metadata. In contrast, Drill and

Presto were developed to provide distributed query abilities across various data stores.

2.2.3 Real-Time Processing

Real-time processing is required to perform real-time analytics on fresh data as they are

received. This is required to monitor an infrastructure proactively and trigger actions so

that the operation will run smoothly.

Apache Storm

Apache Storm is a distributed real-time data system [8]. It is considered as an alternative

to high-latency batch processing for processing data in low-latency near real-time. Storm

can be embedded within the queuing and database technologies. It facilitates scalability

by enabling users to determine how many worker nodes are required to execute a job and

the amount of parallelism (number of threads) required on the topology configuration. It

also uses an independent Apache technology called ZooKeeper for coordinating the cluster,

which also supports a cluster scale [8]. The architecture employs a master-slave model

[8]. The master node has a daemon called Nimbus, which is responsible for distributing

user applications to worker nodes, allocating jobs to the worker queue and monitoring the

status of the worker nodes, which on failure will restart the node or reassign the task to

other nodes [8]. The slave nodes have a daemon called supervisor, which is accountable

for checking the queue for new jobs [8].

26

Chapter 2. Review of Literature

Figure 2.8: Storm topology [8].

Storm uses tuples as its data model, which consist of a list of values. Groups of spouts

(a source of streams) and bolts (computational process) are packaged into a topology,

which is then deployed into clusters that will run infinitely, until killed manually. As

shown in Figure 2.8, the topology will consist of spouts, which are the source of streams;

bolts, which consume the stream and process them; and stream grouping, which states

how the data should flow [8]. Storm also provides a tool called Distributed Remote Proce-

dure Call (a protocol that a program can utilise to communicate with a program reside in

another system on a network), which enables developers to implement complex functions

and execute them in Storm utilising parallelism.

Simple Scalable Streaming System (S4)

The Simple Scalable Streaming System (S4) is a distributed general-purpose platform that

processes continuous unbounded streams of data [9]. S4 employs the MapReduce and Actor

(a mathematical model of concurrent computation) programming models [9]. Therefore,

27

Chapter 2. Review of Literature

S4 utilises a concurrent, decentralised and symmetric architecture, with each node sharing

the same functionality and responsibility, which is imposed by utilising Apache ZooKeeper

in order to coordinate the cluster. There are not any special nodes with special functions.

The S4 model facilitates high availability and scalability on commodity hardware, low-

latency by utilising local memory, fault-tolerance by check-pointing and summoning the

standby server to take over the failed server tasks, and a pluggable framework so that it

is more generic and new components can be plugged in [9].

Figure 2.9: S4 architecture [9].

As shown in Figure 2.9 processing nodes are the logical clusters of Processing Elements

(PE), an entity that performs computation and transmits messages between PEs by using

data events. The processing nodes are responsible for listening to events, executing func-

tions on the incoming events, transmitting events and emitting output events. An event

listener in the Processing Node (PN) passes incoming events to the processing element

container, which invokes the correct PEs corresponding to a unique key or generates new

instances of PEs [9]. An application can be defined in terms of PEs with simple process-

ing logic, and the framework instantiates one PE for each unique key in the stream. The

28

Chapter 2. Review of Literature

communication layer provides load balancing, failover management and transport man-

agement [9]. There are numerous special PEs that are available for performing tasks such

as: Count, Aggregate, Join and so forth [9].

Amazon Kinesis

Amazon Kinesis is a cloud-based service for real-time processing of high-volume stream

data [10]. Just as with any cloud service the Kinesis service is based on a metering sys-

tem, which means you pay for the amount of throughput and Hypertext Transfer Protocol

(HTTP) put transactions used [10]. Kinesis is proficient at consuming any amount of data

from any number of sources, scaling up and down as needed. The Kinesis client library

supervises load balancing, coordination and error handling automatically, so that the de-

veloper only needs to focus on processing the data as it becomes available.

Figure 2.10: Kinesis architecture [10].

As shown in Figure 2.10, Kinesis expects two components, which are the producer and

worker [10]. The producer accepts data from a source and converts them into a Kinesis

stream, which can now be as large as 1 MB data segments, then transferred into stream

using HTTP Put method [10]. The worker then takes the data from the Kinesis stream

and processes them. For scalability, the user has to take care of two things; adding or

removing shards, depending on the required throughput capacity, and using the Kinesis

29

Chapter 2. Review of Literature

client library and deploying the application into an Elastic Compute Cloud (EC2) instance

with the auto-scaling group.

Apache Samza

Apache Samza is a distributed stream processing pluggable framework to run continuous

computation on infinite streams of data [11]. It is designed to sit on top of the Kafka (a dis-

tributed publish-subscribe messaging system) messaging queue for stream processing. It

also utilises Apache Yet Another Resource Negotiator (YARN) for resource management

and execution, which is responsible for deploying tasks in a distributed cluster, stream

processor locality, co-partitioning of streams and providing security [11]. The Samza

framework is similar to batch processing as shown in Figure 2.11.

Figure 2.11: Samza architecture [11].

Samza partitions the message, assigns the partition key and sequence ID, and orders

them in strict sequence. All messages matching the partition key go in to that particular

partition. It also facilitates a replayable mechanism so that a message can be reread when

required. The stream processing is done by Samza Job, which performs a logical trans-

formation on a set of input data and emits outputs [11]. Fault tolerances are managed

by check-pointing, which enables failure recovery, and state management. This maintains

the state of the intermediate data that need to be passed between processes; this is kept

in the local disk with each task [11].

30

Chapter 2. Review of Literature

Spark Streaming

Spark Streaming is an extension of Spark that supports continuous processing [41, 12].

As shown in Figure 2.12, Spark Streaming is inspired by a batch system, such as dividing

processes into sufficient sets so that they can be replayed, assigning failed tasks to other

nodes and decreasing batch sizes to tackle low latency [41].

Figure 2.12: Spark Streaming data flow [12].

Spark Streaming provides transformation function, which produce a new Discretized

Stream (a continuous sequence of micro RDDs) from one or more parent streams and cu-

mulative computation function, which supports cumulative computations while streaming

in new data [41]. Spark Streaming supports all operators that are supported in Spark such

as: Map, Reduce, GroupBy, Join and so forth. It also provides a mechanism to aggregate

data within a given window of time. It also allows the developer to apply Spark’s in-built

machine learning algorithms, and graph processing algorithms on data streams[12]. It

supports check pointing and fault tolerance, which it inherits from Spark.

31

Chapter 2. Review of Literature

Comparison

The existing large-scale MapReduce data-processing platforms are highly optimised for

batch processing, which typically operate on static data. Therefore, a paradigm was re-

quired to process data in real-time so that business critical decisions can be made on time.

This is what motivated the evolution of the stream processing technologies discussed above.

Storm, S4, Samza, Spark Streaming and Amazon Kinesis share the same aim, which

is to provide a distributed, scalable and fault-tolerant infrastructure for processing con-

tinuous streams of data. Storm, Kineses, Samza and S4 are fundamentally like a pipeline

where the source pushes discrete messages, which are then processed a record at a time.

On the other hand, Spark Streaming follows a batch processing model where messages

are collected and then processed at short-time intervals in a batch manner. However, this

is prone to latencies of order seconds compared with former technologies. Nevertheless,

Spark does not replicate messages as a mechanism for fault tolerance as with the other

systems, which are liable to high disk I/O, network bandwidth usage and overhead associ-

ated with the operation itself. Spark utilises in-memory storage abstraction (RDD), which

tracks the “lineage” (series of recreation instructions) steps used to build it, so in the event

of failures, it can recompute the lost data using the cached steps. Storm does not support

managing states, whereas S4, Samza and Kinesis provide tools to manage them locally or

remotely. Storm is user-oriented, as it gives full control to the users on how it should be

configured so that an external database can be used to store the states; however, this is

costly, in terms of performance. Nevertheless, Samza provides a much better mechanism

to minimise remote communication by keeping the state located locally with the tasks

and only when a state is modified will it invoke a remote method for an update. All the

stream platforms discussed above utilise an in-memory mechanism for processing, except

for Amazon Kinesis. Although in-memory processing improves low-latencies, this could

raise a new issue in terms of flushing out the memory, in particular for S4. A complex

application in utilising the S4 framework will generate a large number of unique processing

elements as it has been designed to do so, which will occupy a large portion of the memory

and could degrade performance. However, there is a mechanism called Time-to-Live that

explicitly configures how long the PE should live without any event communication before

32

Chapter 2. Review of Literature

the memory is reclaimed, but this will result in loss of the state of the PE. However, there

is a method to overcome this issue by applying priority or importance to the PE object,

which will be customised by the user.

2.2.4 Summary

This section has given a brief overview of the different technologies that support batch pro-

cessing, interactive ad-hoc queries and real-time analytics. Most of the technologies were

developed by companies concentrating on their specific use cases. For some, performance

is important, whereas for others fault tolerance and recovery are important, and only one

can be achieved by trading-off the other. So it is not practical to have a perfect technology

tailored for one requirement. Therefore, it is important to distinguish and prioritise what

is essential for the desired system and what can be compromised.

When there is a separate technologies for each layer such as batch / serving / speed

layers, it will become very difficult and complex to maintain an infrastructure. However,

the Spark stack support batch processing as well as stream processing. It uses the same

processing model and data structures for batch processing and Spark Streaming.

2.3 Machine Learning techniques

One of the problems associated with Big Data is data access and placement. Efficient data

placement strategies have a large impact on the computation speed. Data placement is

one of the reasons, along with data movement and task assignment for increasing the cost

of data centers. This problem gets worse when the data is located in a distributed data

center. Therefore, in this section, some of the machine learning libraries and techniques

are explored to understand how an adaptive data placement method can be implemented.

33

Chapter 2. Review of Literature

2.3.1 Machine Learning libraries and techniques

When Facebook suggests a new page or connects a user to new friends, or Netflix rec-

ommends a new movie to its users or Amazon suggests a new product to its customers,

all these activities involve Machine Learning (ML). ML is one of the rapidly growing sub-

fields of Artificial Intelligence (AI), with the aim of machines adopting human intelligence.

Machine learning is the intersection of computer science and statistics, which is used in

numerous real world applications; these include speech recognition, computer vision, bio

surveillance, empirical science etc. [42]. Machine learning tasks can be divided into three

major categories [43]:

• Supervised learning: Labelled input data is presented to the system with the desired

output and the goal is to train the system so that when unlabelled input data are

provided, the system should predict the desired output.

• Unsupervised learning: Where the input data are not labelled and the goal is to

discover the hidden pattern in the data.

• Reinforcement learning: Reinforcement learning enables a machine to learn from the

feedback of a specific environment, for example in game theory or in video games.

Supervised learning tackles classification and regression problems. Classification is the

task of identifying a proper class label for new data, based on a training dataset where a

number of regression algorithms are proposed for a regression problem. Regression deals

with estimating the relationship between variables for feature extraction.

The world is besieged with data. The size of data is increasing constantly. As we

can see on the Internet a huge amount of data is produced every day, which the research

community has named Big Data. There is always a need to understand that data. It is

beyond human capability to analyse Big Data and understand it. Big Data is a collection

of huge datasets and requires complex processing, which is not possible on traditional

computational systems. According to a study conducted by Dell EMC [44], the growth of

digital content doubles every two years. They predict that by 2020 digital data will reach

44 zettabytes or 44 trillion gigabytes in total size. They also recorded that 22% of the total

data in 2013 was useful and that less than 5% was analysed, and by 2020, 35% of data will

34

Chapter 2. Review of Literature

be useful. With such a large increase in data, the machine learning research community

faces the challenge of efficiently using this Big Data. Traditional machine learning toolkits

like R or WEKA are not capable of handling Big Data. Hadoop [45], a framework for the

Big Data problem, offers distributed storage and provides Big Data processing solutions.

Along with data processing there is always a need for machine learning algorithms for

implementation in analysis systems for Big Data.

A Hadoop project comprises four modules [18]: HDFS to store data; MapReduce to

process the data; YARN, a resource navigator; and Common, a set of common utilities.

Most of the machine learning tasks are performed by the processing engine. MapReduce

[46] was introduced by Google in 2004 as a programming model for processing a huge

dataset. Programs are executed in parallel on a distributed machine and the model is

responsible for partitioning input data, scheduling, inter machine communications and

machine failure. However, MapReduce does not support machine learning out of the box.

Therefore, the open-source community has implemented Map-Reduce for machine learning

on a multicore framework. It follows the approach of batch learning, where a set of train-

ing data is read off HDFS and a list of key-values pairs is written to the disk. MapReduce

has lost its importance in the machine learning community as it is very slow in terms

of processing time, requiring a lot of computational resources and network bandwidth,

although it is much better than a standalone approach. Another problem associated with

MapReduce is its fault tolerance mechanism, where intermediate data is written to disk

and replicated in case of a machine failure. Data replication and disk I/O consume 90%

of the total running time on MapReduce [46].

To overcome the above mentioned problems the University of California, Berkeley, de-

veloped a new model, named Spark [38], which is based on MapReduce but eliminates the

above problems. To resolve the problem of replication Spark provides a new storage prim-

itive, RDD [47], which lets the user store data in-memory [48]. RDD is read-only shared

memory [49], designed for iterative algorithms (machine learning and graph applications)

and interactive data mining tools. Spark performs better than MapReduce and it can also

support real-time data processing [50].

35

Chapter 2. Review of Literature

Storm [8] is another Apache open-source distributed real-time computation system.

Storm received attention in the research community and in the commercial sector for its

real-time processing but it also supports batch processing using Trident API. Storm also

supports on-line machine learning, which is of growing interest to the research community.

Spouts and bolts are the two major components of Storm architecture, where the network

of spouts and bolts are called as topologies. Flink [51] is another open source framework

for the distributed environment. Flink can process both batch and stream processing. It

can run completely independently or integrated with HDFS and YARN on Hadoop. In

terms of machine learning, Flink-ML was introduced in April, 2015 and the Scalable Ad-

vance Massive Online Analysis (SAMOA) library can also be used for applying learning

algorithms on stream data. a comparison between Spark and Flink has been performed

by [49] and it was concluded that Spark surpasses Flink in the aspect of fault tolerance,

while in terms of computation time Flink is ahead of Spark but takes a lot of time when

the required resource is not available. Sparkling water (H2O) [52] is another open source

framework providing machine learning libraries along with data processing and evaluation

tools. The H2O platform supports a different interfaces for R, Java, Scala, Python and

JSON [53]. The Graphical User Interface (GUI) has been provided by H2O while all the

above mentioned platforms do not provide any GUI.

Different ML libraries are available for Big Data analytics. Some of these are pre-

sented here. Among the most well-known ML libraries, one is Mahout, providing cluster-

ing, classification and collaborative filtering, topic modelling, text vectorisation, similarity

measuring etc. For classification purposes Mahout implements some basic algorithms in-

cluding logistic regression, multilayer perceptron, hidden Markov models, Naive Bayes

and random forest. For clustering, Mahout implements the K-Means clustering algorithm

including Fuzzy K-Mean clustering, Streaming K-Means and also supports Spectral clus-

tering. Mahout supports user-based recommendation and item-based recommendation,

when it comes to collaborative filtering. The major problem associated with Mahout is

its slow runtime due to the slow MapReduce. MLlib [54] is a Spark project for providing

machine learning experience. MLlib is built on Apache Spark, which uses the benefits of

in-memory computation for fast processing. MLlib covers all the algorithms supported

by Mahout including regression models that are not included in Mahout. For classifica-

36

Chapter 2. Review of Literature

tion MLlib supports SVM, nearest neighbour, random forest etc., for K-Means clustering,

spectral clustering etc., for regression SVR (support vector regression), ridge regression,

Lasso and logistic regression. Additionally, MLlib also supports PCA, non-negative ma-

trix factorization, independent component analysis etc.

H2O provides deep learning including clustering, classification, ensembles, statistical

analysis, deep neural networks, data processing options and optimization tools as well [53].

Deeplearning4j [55] is another tool also providing deep learning but it is used for business

purposes rather than research. SAMOA [56] was developed by Yahoo, Barcelona. SMOA

is a framework and can also be used as a library [56], providing streaming algorithms for

machine learning tasks like clustering, classification and regression, along with providing

an opportunity for the user to develop new algorithms. Flink-ML is also a machine learning

library used with the Flink processing engine, is capable of logistic regressions, K-Means

clustering and DSL for linear algebra. Other machine learning libraries for Big Data

include Oryx [57] and Vowpal Wabbit [58]. Oryx provides some basic machine learning

tasks to perform on large scale data while Vowpal Wabbit is a fast online learner, developed

by Yahoo.

2.3.2 Summary

This section has given a brief introduction to machine learning techniques and of the

different technologies that support distributed machine learning.

37

Chapter 3

An efficient strategy for the

collection and storage of large

volumes of data for computation

In recent years, there has been an increasing amount of data being produced and stored.

The social networks, internet of things, scientific experiments and commercial services play

a significant role in generating a vast amount of data. Three main factors are important

in Big Data; Volume, Velocity and Variety. One needs to consider all three factors when

designing a platform to support Big Data. The velocity of the data produced by a scien-

tific infrastructure (e.g WLCG) that are propagated will be extremely fast. Traditional

methods of collecting, storing and analysing data have become insufficient in managing the

rapidly growing volume of data. Therefore, it is essential to have an efficient strategy to

capture these data as they are produced. In this chapter, a number of models are explored

to understand what should be the best approach for collecting and storing Big Data for

analytics. An evaluation of the performance of full execution cycles of these approaches

on the monitoring of the WLCG infrastructure for collecting, storing and analysing data

is presented. Moreover, the models discussed are applied to a community driven software

solution, Apache Flume, to show how they can be integrated, seamlessly.

38

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

3.1 Introduction

The field of data science has become a widely discussed topic in recent years due to a data

explosion, especially with scientific experiments such as those that are part of the LHC

at CERN and commercial businesses keen to enhance their competitiveness by learning

about their customers to provide tailor made products and services, dramatically increas-

ing the usage of sensor devices. Traditional techniques of collecting (e.g. lightweight

Python framework), storing (e.g. Oracle) and analysing (e.g. PL/SQL) data are no longer

optimal with the overwhelming amount of data that are being generated. The challenge

of handling big volumes of data has been taken on by many companies, particularly those

in the Internet domain, leading to a full paradigm shift in methods of data archiving, pro-

cessing and visualisation. A number of new technologies have appeared, each one targeting

specific aspects of large-scale distributed data-processing. All these technologies, such as

batch computation systems (e.g. Hadoop) and non-structured databases (e.g. MongoDB),

can handle very large data volumes with little financial cost. Hence, it becomes necessary

to have a good understanding of the currently available technologies to develop a frame-

work which can support efficient data collection, storage and analytics.

The core aims of the presented study were the following:

• To propose and design efficient approaches for collecting and storing data for ana-

lytics that can also be integrated with other data pipelines seamlessly.

• To implement and test the performance of the approaches to evaluate their design.

3.2 Background

Over the past several years there has been a tremendous increase in the amount of data

being transferred between Internet users. Escalating usage of streaming multimedia and

other Internet based applications has contributed to this surge in data transmissions. An-

other facet of the increase is due to the expansion of Big Data, which refers to data sets

that are many orders of magnitude larger than the standard files transmitted via the In-

ternet. Big Data can range in size from hundreds of gigabytes to petabytes [59].

39

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Within the past decade, everything from banking transactions to medical history has

migrated to digital storage. This change from physical documents to digital files has ne-

cessitated the creation of large data sets and consequently the transfer of large amounts

of data. There is no sign that the continued increase in the amount of data being stored

and transmitted by users is slowing down. Every year Internet users are moving more and

more data through their Internet connections. With the growth of Internet based applica-

tions, cloud computing, and data mining, the amount of data being stored in distributed

systems around the world is growing rapidly. Depending on the connection bandwidth

available and the size of the data sets being transmitted, the duration of data transfers

can be measured in days or even weeks. There exists a need for an efficient transfer tech-

nique that can move large amounts of data quickly and easily without impacting other

users or applications [59].

In addition to corporate and commercial data sets, academic data are also being pro-

duced in similarly large quantities [60]. To give an example of the size of the data sets

utilised by some scientific research experiments, a recent study observed a particle physics

experiment (DZero) taking place at the Fermi Lab research center. While observing the

DZero experiment between January 2013 and May 2015, Aamnitchi et al. [60] analysed the

data usage patterns of users. They found that 561 users processed more than 5 petabytes

of data with 13 million file accesses to more than 1.3 million distinct data files. An in-

dividual file was requested by at most 45 different users during the entire analysed time

period.

There are many scientific research facilities that have similar data demands. The

most popular and well known example today is the LHC at CERN where thousands of

researchers in the fields of physics and computer science are involved with the various ex-

periments based there. The experiments being conducted at the LHC generate petabytes

of data annually [61, 62]. One experiment, ALICE, can generate data at the rate of 1.25

GB/s. Figure 3.1 illustrates the growth in the size of data sets being created and stored

by CERN. This graph shows the total amount of storage (both disk and tape) utilised by

all of the top-level servers in the CERN organisation. The amount of data stored in the

system has grown at a steady pace over the past 3 years and is expected to grow faster

40

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

now that the intensity of their experiments is increasing, which will result in more data

collected per second [13].

Geographically dispersed researchers eagerly await access to the newest datasets as

they become available. The task of providing and maintaining fast and efficient data ac-

cess to these users is a major undertaking. Also, monitoring computing behaviours in

the WLCG, such as data transfer, data access, and job processing, is crucial for efficient

resource allocation. This requires the gathering of metadata which describes the data

(e.g. transfer time) from geographically distributed sources and the processing of such

information to extract the relevant information for the WLCG group [63]. Since the LHC

experiments are so well known and many studies have been conducted on their demands

and requirements, one can use the LHC experiments as a suitable case study for this re-

search.

To meet the computing demands of experiments like those at the LHC, a specialised

distributed computing environment is needed. Grid computing fits the needs of the LHC

experiments and other similar research initiatives.

Figure 3.1: Size of CERN LHC experimental data sets over the past years. The total disk and

tape storage amounts aggregated for all Tier-1 locations in the CERN grid (adapted from [13]).

The WLCG was created by CERN in 2002 in order to facilitate the access and dissem-

41

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

ination of experimental data. The goal of the WLCG is to develop, build, and maintain a

distributed computing infrastructure for the storage and analysis of data from LHC exper-

iments [64]. The WLCG is composed of over a hundred physical computing centers with

more than 100,000 processors [14]. Since the datasets produced by the LHC are extremely

large and highly desired, the WLCG utilises replication to help meet the demands of users.

Copies of raw, processed, and simulated data are made at several locations throughout

the grid.

The WLCG utilises a four-tiered model for data dissemination. The original raw data

is acquired and stored in the Tier-0 center at CERN. This data is then forwarded in a

highly controlled fashion on dedicated network connections to all Tier-1 sites. The Tier-1

sites are located in Canada, Germany, Spain, France, Italy, Nordic countries, Netherlands,

Republic of Korea, Russian Federation, Taipei, United Kingdom and USA (Fermilab-CMS

and BNL ATLAS).

The role of the Tier-1 sites varies according to the particular experiment, but in general

they are responsible for managing permanent data storage (of raw, simulated, and pro-

cessed data) and providing computational capacity for processing and analysis [64]. The

Tier-1 centers are connected with CERN through dedicated links (Figure 3.2) to ensure

high reliability and high-bandwidth data exchange, but they are also connected to many

research networks and to the Internet [14]. The underlying components of a Tier-1 site

consist of online (disk) storage, archival (tape) storage, computing (process farms), and

structured information (database) storage. Tier-1 sites are independently managed and

have pledged specific levels of service to CERN.

The Tier-2 sites were originally used for Monte Carlo event simulation and for end-

user analysis. Any data generated at Tier-2 sites is forwarded back to Tier-1 centers for

archival storage.

Other computing facilities in universities and research laboratories are able to retrieve

data from Tier-2 sites for processing and analysis. These sites constitute the Tier-3 cen-

ters, which are outside the scope of the controlled WLCG project and are individually

42

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

maintained and governed. Tier-3 sites allow researchers to retrieve, host, and analyse

specific datasets of interest. Freed from the reprocessing and simulation responsibilities

of Tier-1 and Tier-2 centers, these Tier-3 sites can devote their resources to their own

desired analyses and are allowed more flexibility with fewer constraints [65]. As there are

thousands of researchers eagerly waiting for new data to analyse, many users will find less

competition for time and resources at Tier-3 sites than at the Tier-2 sites.

It is important to note that users connecting to either Tier-2 or Tier-3 sites will use

public, shared network connections, including the Internet. Grid traffic and normal World

Wide Web traffic will both be present on these shared links. A user will also be sharing the

site that they access with multiple other users. These factors can affect the performance

of the data transfer between the selected retrieval site and the user. Retrieving these large

data files also places a burden on shared resources and impacts other grid and non-grid

users. When it comes to retrieving data in the WLCG, a normal user (depending on their

security credentials) can access data on either Tier-2 or Tier-3 sites. Selecting a site to

utilise can be a complicated task, with the performance a user obtains being dependent

on the location chosen.

43

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Figure 3.2: WLCG Tier-1 and Tier-2 connections [14].

Grid computing has emerged as a framework for aggregating geographically distributed,

heterogeneous resources that enables secure and unified access to computing, storage and

networking resources for Big Data [66]. Grid applications have vast datasets and/or carry

out complex computations that require secure resource sharing among geographically dis-

tributed systems.

Grids offer coordinated resource sharing and problem solving in dynamic, multi-institutional

virtual organisations [67]. A virtual organisation (VO) comprises a set of individuals

and/or institutions having access to computers, software, data, and other resources for

collaborative problem-solving or other purposes [68]. A grid can also be defined as a sys-

tem that coordinates resources that are not subject to centralised control, using standard,

open, general-purpose protocols and interfaces in order to deliver nontrivial qualities of

service [69].

A number of new technologies have emerged for handling big-scale distributed data-

44

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

processing, (e.g. Hadoop), where the belief is that moving computation to where data

reside is less time consuming than moving data to a different location for computation

when dealing with Big Data. This is certainly true when the volume of data is very large

because this approach will reduce network congestion and improve the overall performance

of the system. However, a key grid principle contradicts with this as in the grid approach

computing elements (CE) and storage elements (SE) should be independent, although this

is changing in modern grid systems. Currently, a lot of scientific experiments are begin-

ning to adopt the ”new” Big Data technologies, in particular for metadata analytics at

the LHC, hence the reason for the presented study.

Parallelising is used in order to enhance computations of Big Data. The well known

MapReduce [46] framework that has been used in this chapter has been well developed in

the area of Big Data science and has the parallelisation feature. Its other key features are

its inherent data management and fault tolerant capabilities.

The Hadoop framework has also been employed in this chapter. It is an open-source

MapReduce software framework. For its functions it relies on the HDFS [70], which is a

derivative of the Google File System (GFS) [71]. In its function as a fault-tolerance and

data management system, as the user provides data to the framework, the HDFS splits

and replicates the input data across a number of cluster nodes.

The approaches for collecting and storing Big Data for analytics described in this chap-

ter were implemented on a community-driven software solution, Apache Flume, in order to

understand how the approaches can be integrated seamlessly in the data pipeline. Apache

Flume is used for effectively gathering, aggregating, and transporting large amounts of

data. It has a flexible and simple architecture, which makes it fault tolerant and robust

with tunable reliability and data recovery mechanisms. It uses a simple extensible data

model that allows online analytic applications [72].

45

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

3.3 Design and methodology

When data messages are consumed from a data transport layer and written into storage,

there will most likely be some sort of data transformation carried out before storage in

the storage layer. Such a transformation could be extracting the body from the message

and removing the header as it is not required, or serialisation or compression of the data.

The WLCG uses a Python agent, the Dashboard consumer, to collect infrastructure status

updates, transform them, and store them in the Data Repository, which is implemented in

Oracle. It uses Procedural Language/Structured Query Language (PL/SQL) procedures

for analytics. This is an example of a traditional approach that is commonly used. How-

ever, these technologies and methods are no longer optimal for data collection, storage and

analytics as they are not primarily designed for handling Big Data. There needs to be a

strategy in place to carry out the required transformation as this will play a significant role

in improving the performance of subsequent computations. In this chapter three different

approaches were explored:

1. Implement the data transformation logic within the data pipeline. Therefore, the

messages, M, will be read by the consumer, to apply the transformation 〈T 〉 and to

write the results into the storage layer, S, for analytics 〈A〉:

M
〈T 〉−−→ S → 〈A〉

(3.1)

2. Write the raw messages, M, directly into the storage layer, S, without any modifi-

cation. Then there is another intermediate transformation 〈iT 〉 that reads the raw

data from storage, transforms the data and writes the results into a new path but

to the same storage layer for analytics 〈A〉:

M → S
〈iT 〉−−→ S → 〈A〉

(3.2)

3. Write the raw messages, M, into the storage layer, S, without any modification. Let

46

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

the analytics 〈A〉 carry out the transformation 〈T 〉:

M → S → 〈〈T 〉+ 〈A〉〉

(3.3)

The first approach is the traditional way of transforming, storing and computing data

as has been already described for the WLCG use case. However, this method relies too

much on the data pipeline. If the data pipeline is replaced then the transformation logic

would need to be re-implemented. Therefore, it is an inefficient design. Nevertheless, this

method needs to be tested on the technology that supports Big Data.

The second approach has two benefits as the transformation logic is moved to a cen-

tralised location and untampered raw data are stored as well as the transformed data.

Therefore, in the case of any inaccuracy in the transformed data, the correct transformed

data can be recreated from the raw data. This is not possible with the first method be-

cause as soon as the data are transformed the raw data are discarded. Nevertheless, the

second approach is very complex as there is a requirement for a job to transform the data,

rather than the consumer carrying out the transformation, and it raises the question of

when and how this job should be scheduled. This approach also requires increased data

storage as both raw and transformed data will be kept. A transformation job could be

used here to compress the raw data and archive it to reduce the amount of storage required.

The third option is very simple and straight forward, as the raw data will be written

into the storage layer without any modification. The transformation will only take place

at the data analytics time. The transformation logic can be implemented in a shared

library, which can be imported into any analytics jobs. Therefore, the transformation will

take place as and when it is required. This way, the untempered raw data is still kept in

the storage layer and no additional job or storage is needed for data transformation. This

approach does add an extra execution time overhead to the analytics jobs and will repeat

the data transformation every time an analytics job is carried out. This should, however,

not be too much of a problem as Big Data technologies are built to enhance computation

speed by parallelising jobs. Hence, this arrangement should not significantly affect the

47

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

execution time. A summary of the advantages and disadvantages of the proposed three

approaches is given in Table 3.1.

3.3.1 Implementation

The data pipeline presented in this chapter uses the Dirq library that offers a queue sys-

tem, using the underlying file system for storage for consuming messages, which allows

concurrent read and write operations [73]. Therefore, it can support a variety of het-

erogeneous applications and services that can write messages and have multiple readers

reading the messages simultaneously. The data pipeline was developed using the Hadoop

native library that reads messages from the Dirq queue and writes them into HDFS using

an appending mechanism. The Hadoop software framework was originally designed as a

create-once-read-many system [18]. Therefore, appending was not available in the initial

software release but later versions, 2.0 onwards, supported this mechanism. Hadoop also

has the benefit of working well with a few large files but is not as efficient when working

with a large number of small files. The appending method is convenient as it allows for

the creation of a single large file.

For the first approach, the data will be consumed from the Dirq, transformed and

written into HDFS. The implementation of the second approach is similar to the first with

the exception of no transformation being carried out in the pipeline. However, it requires

chained MapReduce jobs in a centralised Hadoop cluster in order to take the raw data

that has not previously been processed, and apply the appropriate data transformation,

merge the transformed data with previously transformed data, delete the old transformed

data, update the raw data as processed and merge and compress the raw data. An issue

was encountered during testing of this second approach where it was found that data that

were not processed by the transformation job were not then available for analytics. The

third approach is again like the second approach in that no transformation is carried out

in the data pipeline, but the transformation logic is implemented in a common library

and is available to be imported into any analytics jobs. Therefore, the transformation can

be carried out as and when it is required. This approach does not have the issue of data

48

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Table 3.1: Summary of advantages and disadvantages of the proposed approaches.

Advantage Disadvantage

Approach 1

Data transformation

occurs within

the data pipeline.

- Well tested approach: typical

scenario in most data

analytics platforms.

- Complex: transformation

logic is kept in the data

pipeline so in the case of

data pipeline replacement

the transformation logic

needs to be

re-implemented.

- Lost data authenticity: the

data is transformed by the

data pipeline so the raw

data is lost.

Approach 2

Data transformation

occurs within

the storage layer.

- Easy to migrate/replace:

the transformation logic is

moved to a centralised

location so it is easier to migrate

or replace the data pipeline.

- Raw data is intact: meets

regulatory standards of

storing the raw data both

before and after transformation.

- Complex: an intermediate

job is required for

transformation.

- Large storage needed: both

raw and transformed data

are stored.

Approach 3

Data transformation

occurs within the

analytics jobs.

- Clean and simple: no

complexity added to

the data pipeline.

- Less storage needed: only

raw data is stored.

- Easy to migrate or replace:

the transformation logic is

moved to a centralised location.

- Increased execution

overhead: the analytics job will

transform the data.

- Repetition: transformation

will take place every

time an analytics job is executed

49

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

unavailability as present in the other two approaches as all written data will be picked

up by the analytics jobs and the transformation will be done as and when required. All

three approaches were implemented as a daemon that continuously ran on the WLCG test

infrastructure checking for data every 5 minutes.

In order to decrease the data aggregation delay from the data pipeline and to evaluate

how easy it is to migrate these approaches to a different data pipeline, Apache Flume was

used. Apache Flume is a community driven software solution that receives messages from

the transport layer and writes them into HDFS. There are three ways to flush consumed

data into HDFS: periodically based on the elapsed time, the size of data or the number of

events [72].

As expected, the first approach was complex as all the transformation logic was in the

custom data pipeline so the transformation logic had to be re-implemented into Apache

Flume. The second and third approach made the migration to Apache Flume extremely

simple, as all the transformation logic was implemented within the storage layer. But,

as noted before, the second approach added complexity to the storage layer, as it re-

quired a chain of actions for data transformation. The third approach was the simplest

to implement, as no transformation was carried out on the Apache Flume side and no

transformation was carried out in the storage layer, keeping the complexity low.

All three approaches did encounter a common problem: Apache Flume pushes the

events but does not flush the file until the configured file roll time is met (e.g. every 1

hour) resulting in the data being unavailable for computation between these times. While

HDFS supports appending functionality, and the custom data pipeline, Apache Flume

does not support it. The analytics jobs were able to read the data that were written by

the custom data pipeline but not those written by Apache Flume. Therefore, the ap-

pending functionality was taken from the custom pipeline and implemented into Apache

Flume, making it a custom library (see Algorithm 3.1). With this amendment, Apache

Flume was then able to write a single file and append it while at the same time analytics

jobs were able to read the data while the data were being written into HDFS.

50

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Algorithm 3.1 File appending algorithm for Apache Flume: adding a close and reopen

at every push to get the required append behaviour.

1: procedure create-global-data-file-writer

2: declare a global DataFileWriter object

3: create a file in HDFS

4: initialise the file to global DataFileWriter

1: procedure consume-messages-and-sync-flush

2: create a temp DataFileWriter refelecting(reopen) the global DataFileWriter

3: consume all messages

4: append messages using temp DataFileWriter

5: close temp DataFileWriter WHEN messages <= 0

1: procedure roll-files

2: close the global DataFileWriter

3.4 Results and discussion

The three approaches developed for the collection, storage and analytics of Big Data de-

scribed in this chapter were evaluated on the WLCG infrastructure that provides the

computing resources to store, distribute and analyse the 30 petabytes of data generated

annually by the LHC and distributed to 170 computing centres around the world [74].

Furthermore, the current method used by the WLCG group for the collection and storage

of data for analytics was evaluated for benchmarking the new approaches.

It was very complicated to carry out performance measurements on the proposed

approaches and the current approach, as they employ different methods for consuming,

writing and transforming the data in each case. Therefore, in order to get a meaningful

performance measurement, a full computation cycle was carried out, including: consuming

messages, writing to HDFS and carrying out a simple analytics job on those data. The

full cycle comprised three segments:

51

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

1. Data ingestion with data transformation and without data transformation.

2. Intermediate data transformation using a MapReduce job.

3. A simple statistical analytic computation using a MapReduce job and a PL/SQL

procedure with and without data transformation.

The configurations of the current and proposed data pipelines in the WLCG are shown

in Figure 3.3 (a) and (b) respectively. For both configurations, the monitoring events are

pushed as JavaScript Object Notation (JSON) records through the STOMP protocol to

the ActiveMQ message broker. However, the configuration varies from the consumers in

both data pipelines. The current configuration uses Python collectors for reading the mon-

itoring events, transforming and writing them into an Oracle storage database. On the

other hand, the proposed configuration uses a custom data pipeline daemon, as explained

in Section 3.3.1 that reads monitoring events and writes them into a Hadoop cluster. This

configuration can be modified to support the three proposed approaches, i.e. transform

and serialise the messages into Avro format.

52

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Figure 3.3: Configuration of current data pipeline in WLCG (a) and the configuration of the

proposed data pipeline for WLCG (b).

In order to evaluate the proposed approaches, it was decided to push messages from

the broker in batch sizes ranging from 10,000 to 100,000 messages. Data ingestion and an-

alytics were conducted ten times for each batch of messages in order to capture an average

performance time. The performance measurements were carried out on a heterogeneous

Hadoop cluster that consisted of 15 nodes (8 nodes: 32 cores/64 GB, 7 nodes: 4 cores/8

GB).

53

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

3.4.1 Performance results of data ingestion with and without data trans-

formation

The first approach had to consume all messages from Dirq, apply a simple data transfor-

mation, which involved taking the source and destination IP address from the message and

using a topology mapping file to determine the domain address and replace the IP address

with the domain, and finally, convert the data file into Avro format, which is a data seri-

alisation framework that serialises the data into a compact binary format and writes the

file into HDFS. As shown in Figure 3.4, this approach (pre-trans-avro) is slower than the

second approach (raw-json), which just reads the raw messages in JSON, an easy-to-read

format, and writes them into HDFS. The second approach is the fastest compared with

the first and third approaches (raw-avro), which read raw data, convert them into Avro

format and write them into HDFS. The third approach was faster than the first approach

because it does not do any transformation.

The current approach (pyth-traditional-plsql) used by the WLCG is similar to the

proposed first approach (pre-trans-avro) but the difference is that it uses the Python agent

for collection and the Oracle database for storing the transformed data, so no serialisation

is involved. Although the current approach is similar to the first of the three proposed

approaches the performance of the current approach was slower than all three of the newly

proposed approaches. This is due to the connection and communication limitations that

occurs between the database and collectors.

54

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

Figure 3.4: Data ingestion from message queue to HDFS with and without data transformation.

Figure 3.5 shows data representing unprocessed messages from the broker, raw JSON

messages, a pre-transformed Avro and a raw Avro file written into HDFS by the custom

data pipeline. The Avro files are smaller than the JSON file and contain unprocessed data

because they are serialised into binary format. However, the pre-transformed Avro file is

larger than the raw Avro file because transformation was applied.

Figure 3.5: Data size of the messages that were stored into HDFS with and without data trans-

formation.

55

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

3.4.2 Performance results of intermediate data transformation using a

MapReduce job

A test was designed to measure the performance of an intermediate MapReduce transfor-

mation done on a centralised Hadoop cluster. As shown in Figure 3.6, only the raw JSON

data will go through this transformation, as the pre-transformed Avro file has already

been transformed at the data pipeline level and the raw Avro data will be transformed at

the analytic time when it is required. Also, the data stored in the database by the Python

agent does not require an intermediate transformation as it has already been performed

at the data pipeline. Transforming the data using an intermediate job is very expensive

in terms of execution time, as the process is carried out by chained MapReduce jobs that

will transform, aggregate and merge the data. The majority of the execution time over-

head was used for finding resources and submitting the chained jobs to the Hadoop cluster.

Figure 3.6: Intermediate MapReduce job for data transformation. Only the raw JSON messages

are transformed with the MapReduce job.

3.4.3 Performance results of a simple analytic computation with and

without data transformation

The final step of the evaluation cycle was to carry out a simple computation on the 100,000

messages dataset and measure the performance. Two sets of analytics jobs were imple-

mented to compute a summary view of the XRootD operations, performed by the different

56

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

users for each WLCG site belonging to the XRootD federation [74]. An analytics job was

modified to include the data transformation prior to the computation. The modified job

was executed on the raw Avro data. As shown in Figure 3.7, an extra execution time over-

head was added to the modified analytics job when compared with unmodified job that

computed pre-transformed data, but the computation was seamless, as the MapReduce

framework adopts a parallel programming model. Therefore, the jobs will be split into

multiple tasks and will be sent to data nodes where the data reside. The current approach

used by the WLCG (pyth-traditional-plsql) for analytics was very slow compared with the

proposed approaches due to the constraints imposed by the database being used and its

lack of scalability.

Figure 3.7: Performance measurements of the statistic computation were done on pre-transformed

and the raw 100,000 messages dataset.

3.4.4 Summary of the performance results

In order to understand which approach performed better, the execution time of the largest

dataset of 100,000 messages was selected from Sections 3.4.1, 3.4.2 and 3.4.3 and the total

is presented in Table 3.2. It is clear that in this case writing the raw Avro data into HDFS

and allowing the analytics to execute the transformation outperforms the other two pro-

posed approaches. The slowest of the proposed approaches is the second approach where

57

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

there is an intermediate job for transformation. This is understandable as the transforma-

tion is carried out by chained MapReduce jobs, which add extra execution time overhead.

The first approach is comparable in terms of performance to the third approach but it will

be beneficial to keep a copy of the untempered raw data file in HDFS and let the analytics

job do the transformation, which is better than carrying out transformation in the data

pipeline as the authenticity is lost once the transformation is done and stored in HDFS.

Although the current approach used by the WLCG employs the same pre-transformation

approach, it performs inadequately compared with the new approaches presented in this

chapter, primarily due to database communication and scalability constraints as the cur-

rent approach cannot handle the increasing data and workload.

Table 3.2: Total sum of execution time for 100,000 messages dataset from Sections 3.4.1 ,

3.4.2 and 3.4.3.

Data

Transfor-

mation

Section

3.4.1

Execution

time (s)

Section

3.4.2

Execution

time (s)

Section

3.4.3

Execution

time (s)

Total

Execution

time (s)

pre-trans-avro-mr 100 0 43 143

raw-json-2-pre-trans-avro-mr 83 155 44 282

raw-avro-mr 80 0 51 131

pyth-traditional 166 0 224 390

3.4.5 Evaluation of Apache Flume

During the evaluation of all three proposed approaches there was still a 5 minute delay

in polling data from the message queue. In order to eliminate this polling latency, cus-

tom made Apache Flume data collectors (as explained in Section 3.3.1) that utilise an

appending mechanism were put in place of the consumer shown in Figure 3.3 (b). The

performance test results showed that the third approach is optimal. Therefore, Apache

Flume agents were configured to consume messages and flush them into HDFS directly.

Figure 3.8 shows spikes in the total number of messages propagated with a rate > 1 kHz,

58

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

and it can be seen that Apache Flume seamlessly absorbs the load on its single virtual

machine. Meanwhile, the current Python-Oracle based consumers used by the WLCG,

running on two production virtual machines, were struggling to keep up, causing a backlog

of message stored in the broker.

Figure 3.8: Spikes of messages with a rate greater than 1 kHz. The red line is the messages

received from the broker, green denotes the messages stored in old consumers, and blue denotes

the messages stored in Apache Flume.

3.5 Summary

The proposed approaches for collecting and storing Big Data for analytics presented in this

chapter show how important it is to select the correct model for efficient performance and

technology migration. It is clear from the study that keeping the main logic in a centralised

location will simplify technological and architectural migration. The performance test

results show that eliminating any transformation at the data ingestion level and moving

it to the analytics layer is beneficial as the overall process time is reduced, untempered

raw data are kept in the storage level for fault-tolerance, and the required transformation

can be done as and when required using a framework such as MapReduce. The presented

results show that this proposed approach outperformed the approach employed at the

WLCG and following this work the new approach has been adopted by the WLCG and it

has been used for collecting, storing, and analysing metadata at CERN since April 2015

[63]. This approach can be easily applied to other use cases (e.g. in commercial businesses

59

Chapter 3. An efficient strategy for the collection and storage of large volumes of data
for computation

for collecting customer interest datasets) and is not restricted to scientific applications.

60

Chapter 4

Monitoring scientific

infrastructure with the Lambda

architecture

Monitoring computing activities in a scientific infrastructure, such as job processing, data

access and transfers or site availability, requires the gathering of monitoring data from

geographically-distributed sources and the processing of such information to extract the

relevant value for scientists, computing teams and site operators. Traditional monitoring

systems have proven to be a solid and reliable solution in the past for monitoring sci-

entific infrastructure. Nevertheless, the current architecture, where relational database

systems are used to store, to process and to serve monitoring data, has limitations in

coping with the foreseen increase in the volume and the variety (e.g. new data-transfer

protocols and new resource-types, such as cloud-computing) and velocity of monitoring

events. This chapter presents a new data store and analytics platform using the Lambda

approach [19], which was evaluated with the WLCG activities monitoring use case on

WLCG infrastructure.

4.1 Introduction

In general, traditional architecture is used for monitoring scientific infrastructure (e.g.

WLCG), which relies on an Oracle database to store, to process and to serve the monitoring

61

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

data. Raw monitoring events are archived in strctured tables for several years, periodic

PL/SQL jobs run at regular interval (e.g. 10 minutes) to transform the fresh raw data

into summarised time-series statistics and feed them into dedicated tables, from where

they are exposed to the web-framework for user visualisation. For data intensive use

cases, this approach has several limitations. Scalability is difficult to achieve, PL/SQL

execution time fluctuating from tens of seconds to minutes as a consequence of the input

rate spikes, affecting user interface latency. Advanced processing algorithms are complex to

implement in PL/SQL within the dashboard 10 minutes time constraint, and reprocessing

of the full raw data can take days or weeks. Moreover, the other components involved in

data collection, pre-processing and insertion suffer from fragility and complexity, leading

to higher maintenance and operational costs and increased possibility of human error.

Considering the foreseen increase in the monitoring data volume, variety and velocity of

monitoring events, data storage and processing technologies that scale horizontally (the

capability to expand capacity by joining various hardware or software so that they work

as a single unit), have low-latency and high efficiency by design, such as Hadoop, are

suitable candidates for the evolution of the monitoring infrastructure. However, a careful

evaluation of efficient approaches that can be employed to benefit from these Big Data

technologies is required as they work totally differently to the traditional technology. The

aim of the work presented in this chapter was to architect a new data store and analytics

platform, able to cope with the scalability, flexibility and fault-tolerance requirements

foreseen in the near future of data monitoring applications.

4.2 The Lambda Architecture

In recent years, the challenge of handling a big volume of data has been taken on by many

companies, particularly in the Internet domain, leading to a full paradigm shift in data

archiving, processing and visualisation. A number of new technologies have appeared,

each one targeting specific aspects of big-scale distributed data-processing. All these tech-

nologies, such as batch computation systems and non-structured databases, can handle

very large data volumes with little time but with serious trade-offs such as high-latency.

The Lambda Architecture, presented by Marz [19], identified three main components

62

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

needed to build a scalable and reliable data processing system:

• the batch layer, to store a steadily growing dataset providing the ability to compute

arbitrary functions on it;

• the serving layer, to save the processed views, using indexing techniques to make

them efficiently query-able;

• the real-time layer able to perform analytics on fresh data with incremental algo-

rithms to compensate for batch-processing latency.

4.2.1 Difference between common scientific use case and the classic

Lambda use case

In the classic Lambda application each monitoring event only contributes to the most

recent view (e.g. a web server user access for a web analytics application only affects

the user count in the last time bin). For the scientific monitoring use case, this is not

true. A monitoring event, such as a completed file transfer lasting several hours from

site A to site B, contributes also to several time bins in the past, so that the information

about the average traffic from site A to site B has to be updated accordingly with the

new monitoring information. Without this initial hypothesis, the merging of batch and

real-time processing becomes more complex.

4.3 A new data store and analytics platform for monitoring

scientific infrastructure

The new data store and analytics platform for monitoring is presented in Figure 4.1 and it

builds on a number of existing technologies and tools. The scientific monitoring problem

has been treated as a pure analytics scenario where the driving concepts, as by the Lambda

principles, are to collect and to store the raw data, to minimise pre-processing and to

concentrate analysis and transformation on the same framework with batch and real-time

components.

63

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.1: The new data analytics platform for monitoring a scientific infrastructurecture.

4.3.1 Data transport: Message Broker

The transport layer plays a key role in the new monitoring architecture. Firstly, it decou-

ples the producer and the consumer of the monitoring data. Given that the information

is produced by a variety of heterogeneous applications and services in scientific infrastruc-

ture, this is a fundamental part of the system functionality. Secondly, it allows multiple

consumers to use the same data via on-demand public/subscribe API. This situation is

often the case for monitoring data in a scientific environment. Thirdly, the architecture

can rely on message brokers as it has durable virtual queue for recovering in the case

of failure. The broker technology used was ActiveMQ and the monitoring events were

reported as JSON records via the STOMP protocol.

4.3.2 Data collection: Apache Flume

Apache Flume is used as the data collector agent. It receives monitoring events from the

transport layer and creates HDFS files in the archive layer for later processing. It used

the custom-flume data pipeline described in Chapter 3, providing better performance and

reliability. Flume connects to the brokers using the standard JMS source and writes to

the storage layer via the standard HDFS sink.

64

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

4.3.3 Batch processing: Apache Hadoop

Hadoop is a distributed processing framework which allows the computation of large

data sets on computer clusters built from commodity hardware. Initially focused mainly

on batch-processing via MapReduce primitives [75], modern Hadoop supports multiple

processing technology (e.g. Apache Samza). MapReduce is the de-facto standard for

batch processing and its computation paradigm fits extremely well with the Lambda ap-

proach. The batch-processing was implemented as periodic MapReduce jobs running on

the Hadoop infrastructure. The job algorithm was stateless and idempotent, the full data

set which can contribute to the results (e.g. three days of data) being re-processed at

each run. Job results were written into the serving layer (i.e. Elasticsearch) in the form

of index (equivalent to RDBMS table) and documents (equivalent to RDBMS records),

which were then used to build a web visualisation.

4.3.4 Archiving: HDFS

The Hadoop framework is built on the HDFS and executes I/O operations on it. HDFS

is designed for large data files, in the order of GB in size. The data is broken into

blocks and replicated across multiple hosts in the cluster. This guarantees scalability

on commodity hardware, fault tolerance and high throughput. HDFS is data format

independent, supporting multiple data representations, from simple text to structured

binary.

4.3.5 The common data access service layer

A common drawback of the dual processing nature of the Lambda architecture is code

duplication in the real-time and the batch processing layer. In order to limit this effect a

Java data access service layer was developed to abstract the common functionalities. The

data access service layer provides data parsing, supporting marshalling and un-marshalling

in several formats, such as JSON, CSV and Avro, and also provides data validation and

compression. Most importantly, it implements the algorithm to emit key-value pairs for

each monitoring event received. The data access service layer played a major role in porting

the jobs to different processing technologies (e.g. MapReduce, Spark) with minimal code

change.

65

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

4.3.6 The serving layer: Elasticsearch

With the data archiving and processing delegated to the other components, the serv-

ing layer is solely responsible for serving the computed statistics to the web framework.

In light of this simplified requirement, the serving layer can be easily implemented via

non-relational technology. In the new data analytics platform the serving layer was im-

plemented using Elasticsearch.

4.3.7 Real-time processing: Esper

The requirement for fast in-memory computation is not unique. It is needed in several

fields such as financial analysis and wireless networks. Complex event processing (CEP)

technologies were created in order to serve this need by processing streams of events at a

high rate with low latency. The most widely adopted open source engine for this purpose

is Esper, which is the main tool used for the development of the real-time layer. Esper,

an open source event processing in-memory processing library [76], provides a streaming

API for processing a continuous flow of events. Esper analyses data with Event Processing

Language (EPL), which is SQL-like language as shown in Table 4.1, which offers much

more advanced controls in processing streams over time. In contrast to the relational

database model, Esper stores the query, which is continuously executed. It also stores

the results if necessary but not the input data. Esper has been implemented to compute

statistics on fresh monitoring events via an incremental algorithm. Being incremental

hence not idempotent, special care is required in handling event duplication and multiple

processing, leading to a more error prone computation. Esper was incorporated in the

existing workflow to allow real-time computation and visualisation of fresh data and to

speed up all the statistics generation.

4.4 Implementation of WLCG analytics on the new plat-

form

In this section an implementation of a WLCG use case is presented.

66

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Table 4.1: A mapping between Esper and the relational database model.

RDBMS Esper

SQL EPL

Rows Events

Tables Event Streams

4.4.1 WLCG data activities use case

The Experiment Dashboard (ED) [77] is a generic monitoring framework which provides

uniform and customisable web-based interfaces for scientists and sites. Monitoring events,

such as data transfers or data processing jobs reports, are collected and analysed to produce

summary time-series plots used by operators and experts to evaluate WLCG computing

activities. The WLCG Data acTivities (WDT) dashboards are a set of monitoring tools

based on the ED framework which are used to monitor data access and transfer across

WLCG sites via different protocols and services. Monitored services include the ATLAS

Distributed Data Management (DDM) system, XRootD and HTTP federations and the

File Transfer Service (FTS). The WDT use case is one of the most data intensive ED

applications. Figure 4.2 presents the daily volume of monitoring information handled by

WDT, with an overall average of more than 20 million daily monitoring events. Today,

WDT dashboards are suffering from the limitation of the current processing infrastructure.

For this reason, WDT was taken as a case study for the new analytics platform.

4.4.2 Implementation of the batch layer

The WLCG current monitoring architecture uses PL/SQL procedures for aggregating and

computing raw data into statistics with different time period granularities and stores them

into a statistics table. WLCG data servers can produce monitoring logs at 1 kHz, a rate

at which that the PL/SQL procedure cannot cope with the overwhelming amount of data,

which takes over ten minutes to process every ten minutes worth of data. The new ana-

lytics platform relies on Hadoop and its MapReduce framework, Elasticsearch and Esper

to overcome the current latency and scalability issues. MapReduce is a programming

paradigm that was designed to remove the complexity of processing data that are geo-

67

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.2: Daily volume of monitoring events from Federated ATLAS storage systems using

XRootD (FAX), Anytime, Anywhere CMS storage systems using XRootD (AAA), ATLAS Dis-

tributed Data Management using Rucio (DDM rucio), ATLAS Distributed Data Management

using Don Quijote (DDM DQ2) and File Transfer Service (FTS) for WDT dashboards [15].

graphically scattered around a distributed infrastructure [75]. It hides the complexity of

computing in parallel, load balancing and fault tolerance over an extensive range of inter-

connected machines. There are two simple parallel methods, map and reduce, which are

predefined in the MapReduce programming model and are user-specified methods that are

used to develop the analytics platform.

Figure 4.3: MapReduce computations diagram.

68

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.3 shows an how WDT MapReduce jobs are carried out by each component

within the MapReduce framework:

1. A splitter will split the monitoring data into lines and feed them into mappers.

2. A mapper will process the line; breaking them into the time bins in which they

belong and calculating the transfer matrices. Finally, it will emit key/value pairs for

each time bin.

3. A combiner will run after each map task and aggregate a map output result, de-

creasing the number of metrics sent to the reducer.

4. The output of the combiner is then shuffled and transferred to a reducer that is

responsible for processing the key and carrying out the final summing.

5. A reducer will aggregate and output the final results.

4.4.3 Data representation

In the current architecture the data are partitioned in HDFS, as shown in Figure 4.4, for

efficient processing, as this will support the processing of data by specified date ranges.

Figure 4.4: HDFS data partitioning.
Figure 4.5: Data format comparison (Avro ver-

sus CSV versus JSON for 1 Day FAX data).

Three different data formats were evaluated for storing WDT monitoring data on

HDFS:

1. Avro is a data serialisation framework that serialises the data into a compact binary

format, so that it can be transferred efficiently across the network.

2. Comma-Separated Value (CSV) is a table format that maps very well to the tabular

data.

69

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

3. JavaScript Object Notation (JSON) is primarily a way to store simple object trees.

Figure 4.5 shows data representing 1 (average) day of monitoring events for the ATLAS

XRootD federation (FAX) on HDFS which occupies 1211 MB in Avro, 1367 MB in CSV

and 2669 MB in JSON file format. As expected, the Avro format is more compact than

CSV and JSON. This is because the binary version of Avro is used, whereas CSV comprises

human readable comma-separated columns and JSON contains tree structured data. The

JSON format was the largest because it holds both column name and data, whereas CSV

format only holds the data separated by commas. This resulted in a 122.21% increase

in volume for JSON data and a 12.88% increase in volume for CSV data compared with

Avro, while there is a 96.85% increase in volume for JSON data compared with CSV. The

data were also compressed using the Snappy compression library, which is very fast but

the compaction ratio is very low compared with other libraries. Again, compressed Avro

data takes up much less storage than the CSV as there is a 20.90% increase in volume.

It can be seen that compressed data took over 5 times less space than uncompressed.

The test results, combined with the additional benefits of being schema-based and its

multi-language support, make Avro the preferred option for the WDT use case.

4.4.4 Implementation of the real-time layer

Architecture

The Esper layer architecture for monitoring scientific infrastructure is shown in Figure

4.6.

70

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.6: An overview of the system architecture with the Esper module [16].

JSON to POJO transformation

The data movement and job execution between different sites around collaborating coun-

tries is recorded into log messages [16]. These log messages store information such as the

transaction start time, end time, source site, destination site, read bytes and write bytes

to name a few [16]. Log messages distributed by the message broker were in JSON form

as shown in Figure 4.6, which are not ready to be processed by Esper [16]. Therefore,

some pre-processing is required before injecting them into the Esper engine [16]. The first

step is to extract only the parts of the message that are needed and the second step is to

transform the JSON file into a Plain Old Java Object (POJO) [16].

EPL processing

This is the module where the implemented EPL statements will continuously run. A

listener is invoked periodically in order to check for incoming events and process them

according to the EPL statements [16]. The implemented EPL procedures follow a Map-

Reduce approach [16].

71

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.7: An example of the Map-Reduce approach on EPL statements implementation [16].

Figure 4.7 shows an example of the Map-Reduce implementation. Three different

events, which represent transfers from the CERN site to two other sites (Karlsruhe Grid

computing centre (FZK) and Institut national de physique nucleaire et de physique des

particules (IN2P3) respectively), are injected into the Map statement [16]. The Map

statement splits the incoming events into smaller pieces according to the time bins that

they belong to [16]. For example, the first event belongs to the time bins 18:10, 18:20,

18:30, thus it is split into three different events, which are then injected into the Reduce

statement, which aggregates them into the final results [16].

Example of an Transfer Statistics EPL statement

1. Inject Log Message event into Map statement.

2. Split the Log Message into several Log Map Events according to the time bins the

initial event belongs.

3. Inject each of the Log Map Events into a Single Log Statistic Event and compute

the following:

(a) If writes bytes at close > 0 then we have a client domain else we have a server

domain and set it as srcDomain.

(b) If read bytes at close > 0 then we have a server domain else we have a client

domain and set it as dstDomain.

(c) If client domain=server domain set remote access 0 else set is as 1.

(d) If writes bytes at close+read bytes at close=file size set is transfer=1 else is

transfer=0.

72

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

(e) If read bytes at close > 0 then setactivity=‘r’.

(f) if write bytes at close > 0 then set activity=‘w’.

item if write bytes at close <= 0 and read bytes at close =< 0 then set activ-

ity=‘u’.

4. Aggregate all the single log statistics:

(a) If there is not already a time bin for the injected Single log statistic event then

create it and insert:

i. srcDomain

ii. dstDOmain

iii. isRemoteAccess

iv. usrProtocol

v. isTransfer

vi. Activity

vii. periodEndTime

viii. active

ix. bytes

x. activeTime

xi. updateTime

(b) Else update the existing bin:

i. active=active+newSingleLogStatistic.active

ii. bytes=bytes+newSingleLogStatistic.bytes

iii. activeTime=activeTime+newSingleLogStatistic.bytes

4.4.5 Implementation of the serving layer

The serving layer is purely used for storing and serving statistics. The documents (records)

are stored in Elasticsearch using bulk API and the UPSERT function for efficient insertion

and merging of records. The merging of computed batch and real-time results is done on

the client side to serve the computed statistics on the UI.

An example of a statistic document inserted into Elasticsearch:

73

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

{

"_index": "dashboard_xrootd_2015",

"_type": "transfer",

"_id": "ATLAS|praguelcg2|n-a|1|0|r|1433251800000",

"_score": 1,

"_source": {

"vo": "ATLAS",

"src_domain": "praguelcg2",

"dst_domain": "n/a",

"is_remote_access": 1,

"is_transfer": 0,

"activity": "r",

"period_end_time": "2015 -06-02T09:30:00-04:00",

"active": 1,

"finished": 1,

"bytes": 158387637 ,

"active_time": 34,

"update_time": "2015 -07-13T11:41:06.762 -04:00"

}

}

4.5 Performance results for WDT computation on the new

platform

The Lambda approach was evaluated and used to compare the performance of different

data types, data compression and data size with various cluster configurations such as

scaling the nodes horizontally and parallelising the tasks. The performance was evaluated

on monitoring events collected from the ATLAS FAX (which clusters Tier-1, Tier-2 and

Tier-3 storage resources together into a common namespace and allows remote accessi-

bility from geographically separated sites) and the CMS’s implementation of a generic

XrootD (protocol for accessing data) Any Data, Anytime, Anywhere (AAA) and EOS,

74

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

an XrootD managed disk pool. The data contained the information of dataset movement

(e.g. transferred bytes).

4.5.1 Experiment setup

The performance measurements were carried out on a shared heterogeneous Hadoop clus-

ter provided by WLCG, which consisted of 15 nodes of Intel(R) Xeon(R) CPU E5-2650

v2 @ 2.60GHz (8 nodes: 32 cores/64GB, 7 nodes: 4 cores/8GB). The analysis of the cur-

rent architecture was carried on a high-performance physical setup and that was a shared

service between all IT applications at WLCG, whereas the Lambda approach was run on

a 15 node cluster. The Hadoop version 2.6 was configured on all machines; one of which

is the Name Node and the rest are Data Nodes (the Name Node was also used as a Data

Node). The data block size of the HDFS was set to 256 MB and the replication level of a

given data block was set to 3. The transfer statistics computation described in the Imple-

mentation section is a CPU, Memory and IO intensive use case. Therefore, it was ideal

for this evaluation. It should be noted that the cluster was being used by other members

while the evaluation was carried out as it is a shared cluster as can been seen in Figure 4.8.

Figure 4.8: WLCG Hadoop cluster workload [15].

75

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Metrics calculation

In this section the metrics used for the evaluation are explained.

The calculation of the percentage of time spent in Garbage Collection (GC) is shown

in Equation 4.1, where Pgc was the calculated percentage of time spent in GC, Tgc was the

time (ms) spent in GC, Tmappers was the time (ms) utilised by all map tasks and Treducers

was the time utilised by all reduce tasks:

Pgc =
Tgc

(Tmappers + Treducers)
× 100 (4.1)

Calculating the memory usage by tasks from the allocated memory was complicated.

Therefore, the steps below were taken:

First, the total tasks, Ctasks, allocated to a job were calculated, which can be seen

in Equation 4.2, where Cmappers
total was the total number of allocated mapper tasks and

Creducers
total was the total count of allocated reduced tasks:

Ctasks = Cmappers
total + Creducers

total (4.2)

Then the average task memory, M tasks
avg , usage was calculated as shown in Equation

4.3, where Mphysical was how much RAM (in bytes) consumed by all the tasks and total

tasks Ctasks was multiplied by 1024 × 1024 to get the memory in MB.

M tasks
avg =

Mphysical

Ctasks × 1024× 1024
(4.3)

The used memory in time, Xused
total , was calculated using Equation 4.4, where Tmappers

was the time (ms) utilised by all map tasks, Treducers was the time utilised by all reduce

tasks and M tasks
avg , was the average task memory calculation from Equation 4.3:

Xused
total = (Tmappers + Treducers)×M tasks

avg (4.4)

76

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

The total allocated memory in time, Xallocated
total , was calculated using Equation 4.5,

where Xmaps was the memory time of RAM (MB × ms) allocated to map tasks and

Xreducers was the memory time of RAM (MB × ms) allocated to reduce tasks:

Xallocated
total = (Xmaps +Xreducers) (4.5)

Finally, the percentage of memory allocation used was calculated as shown in Equation

4.6:

P allocated
used =

Xused
total

Xallocated
total

× 100 (4.6)

The CPU time used versus allocated time was calculated using Equation 4.7, where

T cpu
used was the CPU time used, T cpu

total was the total CPU time used by all tasks, T cpu
mappers

was the total virtual core time allocated for map tasks and Tcpu
reducers was the total virtual

core time allocated for reduce tasks:

T cpu
used =

T cpu
total

(T cpu
mappers + T cpu

reducers)
(4.7)

4.5.2 The performance of batch computations with scaling dataset

In order to evaluate the execution time, RAM memory, CPU, DISK and network utili-

sation of the job on the WLCG platform using the Lambda approach, it was decided to

use the dataset from November 2015, ranging from 1 day to 30 days, which were added

and incremented at each test to scale the dataset. Jobs were submitted five times for each

dataset in order to capture an average performance time.

Analysis of uncompressed dataset

The main computation result, as presented in the plot in Figure 4.9, demonstrates that

the jobs were able to successfully process all data ranges in at most just a few minutes.

This result alone satisfies the requirement of a monitoring system, in particular for the

77

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

WDT use case, where it can process 24 hours of data in under a minute when the Avro and

CSV data format was used as the traditional architecture cannot match the performance

of the proposed architecture. Moreover, it demonstrates the scalability of the system over

different data volumes as it can be seen that performance is relatively stable as the dataset

is increased beyond six days. It should be noted that difference between the execution

time on the one day dataset compared with the incremented 30 days dataset is by only

a factor of 2, while being many times bigger in size. This demonstrates the scalability of

the Hadoop system, which distributes the computation across several nodes. Nevertheless,

there is always a fixed overhead added to the job for finding appropriate resources and

submitting them.

Although Avro and CSV jobs were processed faster than JSON jobs, the Avro format

is processed fastest because the data are serialised in binary format so it is quicker to read

the data. Although the JSON data were processed the slowest, the execution time was

still better than that of the current architecture used by the WLCG group for monitoring.

Figure 4.9: Computation of uncompressed Avro, CSV and JSON files over different date ranges.

The primary axis (a) shows the execution time that is represented by lines, whereas the secondary

axis (b) represents the input data size in MB is represented by bars.

78

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.10 illustrates the memory allocation and the memory usage of the jobs. Fig-

ure 4.10 (a) shows memory allocated to tasks for each job (days). The resource manager

has allocated in total an average of 307% more memory for JSON compared with Avro.

However, Avro jobs on average were allocated 5% more memory than CSV, which is not

significant compared with JSON jobs. It is very important to understand how the memory

is used in an infrastructure by an application because it will play a huge role in efficient

and effective computations. An over-allocated memory means the resource manager does

not allocate as many tasks onto nodes as it can handle; hence, the cluster is underutilised.

Figure 4.10 (b) shows that JSON used 294% more memory than Avro and Avro used 5%

more memory than CSV. On the other hand, JSON has used 45% less of the allocated

memory and both Avro and CSV have used 44% less memory than was allocated by the

resource manager, which can be seen in the stacked plot shown in Figure 4.10 (c). All

jobs have used a lot less memory than was allocated but what is clear is that the JSON

job requires more memory compared with the other two jobs.

79

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

(a) The plot shows the allocated memory.
(b) The plot represents the used memory.

(c) The plot represents the stacked up used memory ver-

sus allocated memory.

Figure 4.10: Memory allocated/used for computing Avro, CSV and JSON files over scaling

dataset.

The average memory allocated to each task for all jobs was very consistent, which is

between 500 MB and 600 MB as seen in Figure 4.11. The JSON task was allocated less

memory on average when compared with the other two jobs but this can be explained by

the number of tasks allocated for the JSON job as 4 times more tasks were allocated so

the memory is spread out. This also explains why, overall, a lot of memory is allocated

to the JSON job as shown in Figure 4.10. The resource manager assigns a task to each

HDFS data block; each block is 256 MB so more data mean more blocks, which will result

80

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

in more tasks which is the case with the JSON job.

Figure 4.11: Average memory allocated for each task for computing Avro, CSV and JSON files

over scaling dataset. The primary axis (a) shows the average allocated memory in MB that

represented by lines, whereas the secondary axis (b) represents the number of allocated tasks

represented by bars.

In contrast to over-allocated memory, if the memory is under-allocated it causes issues

such as the distinct Out Of Memory (OOM) errors, although this failure is usually re-

coverable (supported by fault-tolerance mechanisms, however, it does have a limit on the

number of retries) and the second but serious issue caused by the lack of memory is GC.

When a Java application approaches the full heap (runtime data storage area in memory)

utilisation, often the Java Virtual Machine (JVM) will run a full GC, which will block

the other tasks in order to use the CPU (it is a CPU-intensive task). Figure 4.12 show

the percentage of memory used for GC from the total used memory by Avro, JSON and

CSV jobs respectively. All the jobs have used a tiny portion of the memory for GC. How-

ever, it appears that the Avro job used more memory for garbage collection than the other

two, which may be to do with cleaning up of the memory footprint left by the serialisation.

81

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.12: The percentage of memory used for GC from the overall used memory by the tasks.

The primary axis (a) shows the percentage of allocated memory for the job that are represented by

lines, whereas the secondary axis (b) represents the percentage of memory used for GC represented

by stacked bars.

While the resource manager strongly enforces memory limits, the CPU limit is not

affected, although this is useful in maximising total CPU utilisation. The GC process

is multi-threaded; tasks requiring fewer cores could end up using more cores due to the

dynamic method used in allocating the cores. Therefore, a rogue job can degrade the

performance of every other application on the cluster. Figure 4.13 (a) illustrates that in

general more CPU time is used than allocated. Again, JSON has been allocated 319%

more CPU time than Avro. Nevertheless, Avro has been allocated 5% more CPU time

than CSV. Figure 4.13 (b) shows that on average Avro has used 140% of the allocated

CPU time, CSV has used 130% of the allocated CPU time and JSON has used 120% of the

allocated CPU time. However, JSON has used 294% more CPU time than Avro, which,

on the other hand, used 16% more CPU than CSV.

82

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

(a) The plot represents the stacked up used and

allocated CPU time.
(b) The plot represents used/allocated CPU time.

Figure 4.13: CPU time used/allocated for computing Avro, CSV and JSON files over 30 day

dataset.

Even though the job is split into multiple map tasks and sent to data nodes where

the data reside in order to reduce the movement of large data files over the network, the

intermediate results of these tasks still need to be shuffled and shifted around to reducers

(most likely to different nodes). Figure 4.14 indicates how much of the intermediate results

(MB) from the mappers were transferred to the reducers. JSON appears to have shuffled

more data. A greater data shuffle will make the job go slower as the shuffle process utilises

network connection bandwidth in order to transfer the intermediate results from mapper

nodes to reducer nodes.

83

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.14: Shuffled intermediate results from mappers to reducer nodes.

Analysis of compressed dataset

Compressed data using the Snappy compressor were evaluated against their uncompressed

counterparts as shown in Figure 4.15. The test was identical to the one that was carried

out previously on the uncompressed data. In general, the computation time of compressed

data was slower than for the uncompressed data. It is understandable why compressed

data were slow to process as the data will need to be uncompressed before processing and

this will therefore add additional overhead to the computation time. Although uncom-

pressed Avro and CSV jobs were fast, the CSV appears to be the fastest when compared

with the uncompressed data; it is possible that processing serialised and compressed data

adds slightly more overhead than parsing a CSV dataset. Processing the compressed

JSON dataset took on average 94% more execution time than the uncompressed JSON.

In contrast, the compressed Avro dataset took 21% more execution time and CSV took

5% more execution time compared with the corresponding uncompressed Avro and CSV

respectively. However, CSV has the smallest deviation between compressed and uncom-

pressed in comparison to other two jobs.

84

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.15: Computation of compressed (Snappy) Avro, CSV and JSON files over scaling dataset.

The primary axis (a) shows the execution time represented by lines, whereas the secondary axis

(b) represents the input data size in MB represented by bars.

The resource manager has allocated less memory for computing the compressed data

than the uncompressed data. It has allocated 2% less memory for Avro, 26% less memory

for JSON and 4% less memory for CSV for computing the compressed dataset when

compared with the uncompressed dataset as shown in Figure 4.16 (a). It has used 2%

less memory for Avro, 18% less memory for JSON and 4% less memory for CSV for

computing the compressed dataset when compared with the uncompressed dataset as

shown in Figure 4.16 (b). Figure 4.16 (c) represents stacked used versus allocated memory

for the compressed dataset and it can be observed that less memory is used than allocated,

just like the uncompressed dataset. Overall less memory was allocated and used for

computing a compressed dataset compared with the corresponding uncompressed dataset.

85

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

(a) The plot shows the allocated memory. (b) The plot represents the used memory.

(c) The plot represents the stacked up used memory ver-

sus allocated memory.

Figure 4.16: Memory allocated and memory used for computing compressed (Snappy) Avro, CSV

and JSON files over scaling dataset.

On average, all three jobs have been allocated with a comparable amount of memory as

can been see in Figure 4.17. However, the JSON job has been allocated 12% more memory,

but 286% fewer tasks for the compressed dataset than the uncompressed dataset, which

is due to the decrease in the data size, hence the average memory is balanced out. The

number of tasks was identical for all three jobs because a task was allocated to each

partition (i.e. each day) of the dataset, which was compressed, so it is smaller than

the default 256 MB block size. Therefore, all three jobs had identical tasks, which were

allocated on smaller-sized partitions for processing.

86

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.17: Average memory allocated for each task for computing Avro, CSV and JSON files

over scaling dataset. The primary axis (a) shows the average allocated memory in MB that

represented by lines, whereas the secondary axis (b) represents the number of allocated tasks

represented by bars.

The compressed tasks for Avro, JSON and CSV have used a very tiny portion of the

memory for GC from the used memory, which is consistent with the uncompressed tasks

as can been see in Figure 4.18.

87

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.18: The percentage of memory used for GC from the overall used memory by the tasks for

computing compressed (Snappy) dataset. The primary axis (a) shows the percentage of allocated

memory that are represented by lines, whereas the secondary axis (b) represents the percentage of

memory used for GC represented by stacked bars.

On average, uncompressed and compressed jobs have been allocated and used a com-

parable amount of CPU time with the exception of CSV, which appeared to have slightly

more CPU time as can be seen in Figure 4.19 (a) and (b).

88

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

(a) The plot represents the stacked up used and

allocated CPU time.
(b) The plot represents used/allocated CPU time.

Figure 4.19: CPU time used/allocated for computing compressed (Snappy) Avro, CSV and JSON

files over scaling dataset.

Figure 4.20 shows the intermediate data transferred from the mappers to the reducer

nodes. The compressed Avro and CSV job shuffled the same amount of intermediate

results to reducers, but JSON has decreased the data shuffle by 23% which is due to the

decrease in mapper tasks as a result of the smaller input dataset.

Figure 4.20: Shuffled intermediate results from mappers to reducer nodes

89

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

4.5.3 The performance of batch computations with scaling nodes

In order to evaluate the scalability of the architecture, it was necessary to see whether

the workload is balanced out as the number of worker nodes were increased. However,

there were difficulties in evaluating the scalability on the WLCG cluster, due to a lack

of administrator privilege as this task requires decommissioning nodes and activating the

nodes incrementally. Therefore, this evaluation was conducted in the Azureus Cloud

infrastructure. Each node was configured to run Ubuntu version 14, with 13.5 GB of

memory and with a 4 cores CPU, which is less powerful than the WLCG cluster. However,

there was no other workload on the cluster unlike the shared cluster provided by the

WLCG. A node was incrementally activated by one at each evaluation starting from a

single node cluster. The evaluation was carried out on the same number of monitoring

events as used on the WLCG cluster (3.3 million events) but the file size varied due to

the difference in data format. Figure 4.21 shows that, in general, the execution time

was high when there was a lower number of nodes but the performance improved as

the number of nodes was increased. The execution time became stable after a certain

point as the resource manager did not allocate the job to all the nodes because it would

have to break the primary principle of Hadoop of sending the computing to where data

reside (data locality) by moving the data to the computing node. The performance would

have degraded if the number of nodes was increased further and if the resource manager

decided to use those nodes as it would have to move large datasets through the network.

The Avro and CSV jobs did not see a huge improvement in performance despite increasing

the number of nodes; however, they were performing much better when compared with

the current architecture used by the WLCG. The JSON job shows a large improvement as

the number of nodes was increased, which is due to large file size being distributed across

the computing nodes.

90

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.21: Execution time versus the number of worker nodes.

4.5.4 The performance of batch computations with parallelisation

An evaluation of the parallelisation available using Lambda approach was carried out on

the reducer tasks to understand how it impacts the performance. The evaluation was

carried out on a 5 GB dataset for each data type (Avro, CSV and JSON), but the number

of monitoring events in the dataset varied for each data type. The parallelisation of the

reducer was incremented by two at each evaluation and the results can be seen in Figure

4.22. Initially, the performance improved as the parallelisation was increased but gradually

the performance degraded due to a lot of data movement of the intermediate results from

the mapper tasks to reducer tasks. Also, additional time was added due to the resource

manager needing to find appropriate resources as the parallelisation was increased. In any

case, Avro and CSV performed better as the intermediate data size was a lot smaller than

JSON so it would have been quicker to transfer the data to the reducers.

91

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.22: Evaluation of parallelisation of reducer tasks when computing 5 GB dataset. Exe-

cution time versus the number of reducers.

Figure 4.23 shows the result of parallelisation evaluation, which is the same as the

above test but this time it was evaluated on same dataset (4 million monitoring events)

for each data types (i.e. Avro, CSV and JSON) so the dataset size varied due to different

data format. Again, the reducer was incremented by two at each evaluation. There was

a large difference in execution time between JSON and the other two data types even

though they were computing on the same dataset. However, regarding the performance

of parallelisation, there was a minor improvement at the beginning but the performance

degraded as the paratitions was increased further. In order to minimise moving larger

datasets over the network, the intermediate results were compressed, which improved the

performance slightly.

92

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

Figure 4.23: Evaluation of parallelisation of reducer tasks when computing 4 million monitoring

events. Execution time versus the number of reducers.

4.5.5 The performance of the serving layer

The Elasticsearch serving layer was evaluated in the Azureus Cloud infrastructure. The

layer was configured with three nodes and two replication factors. Each node was con-

figured to run Ubuntu version 14, with 13.5 GB memory and with a 4 core CPU. The

Elasticsearch-Hadoop library was used for reading and creating index and documents in

the Elasticsearch serving layer. A small test was performed to see how long it would take

to query and create 500,000 documents (records) in the serving layer, the results of which

can be seen in Table 4.2. Better performance was achieved with Elasticsearch than with

the current Oracle storage (with a 4 core CPU and with 32 GB memory).

Table 4.2: Performance of querying and creating documents (records) in Elasticsearch and

Oracle

Serving Layer
No.documents

(records)
Query time (s) Create time (s)

Elasticsearch 500,000 18 47

Oracle 500,000 93 485

93

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

4.5.6 The performance of the real-time processing

The streaming version of the transfer statistics algorithm described in the implementation

section was tested for the job throughput, in order to test the number of input events

processed per second by the Esper real-time layer. A single Esper node was configured to

read events from the JMS. The node was configured with 8 GB of memory and a 4 core

CPU. Many datasets of test messages were created and injected into the Esper engine. The

throughput results obtained from evaluating the real-time layer are shown in Table 4.3.

The current architecture does not support real-time computation so the result observed

from the Esper cannot be compared with it. However, the Esper performance is reasonable

for the WDT use case as it was estimated that message queues propagate on average 250

events per second but the real-time layer was able to process ∼600 events per seconds

(simulated).

Table 4.3: Throughput results obtained from evaluating the real-time layer.

Events (throughput) Processed per second (s)

∼ 600 1

4.6 Summary

The new data store and analytics platform presented in this chapter has been shown to

be a scalable, low-latency and effective solution. The performance of the serving layer

(Elasticsearch) and real-time layer also performed better in supporting low-latency in

monitoring the infrastructure, which was not viable with the existing system used by

the WLCG. The advantage of using Esper is that it can carry out incremental updates,

providing low-latency statistics computation when compared with full re-computation,

which causes high-latency. Esper by design is a single node engine, something that raises

issue regarding the scalability and potential application of this solution. Nevertheless,

Esper is designed to process thousands of events per second and in this specific use case it

processed 600 events per second (simulated), but in real case scenario this use case receives

on average 250 events per second. The Esper processor was very sluggish when several

94

Chapter 4. Monitoring scientific infrastructure with the Lambda architecture

thousands of messages were pushed in at one time.

95

Chapter 5

Optimised Lambda Architecture

using Apache Spark technology

Within scientific infrastructure scientists execute millions of computational jobs daily, re-

sulting in the movement of petabytes of data over the heterogeneous infrastructure. Mon-

itoring the computing and user activities over such a complex infrastructure is incredibly

demanding. Whereas present solutions are traditionally based on the Oracle RDBMS for

data storage and processing, recent developments evaluate the LA as shown in Chap-

ter 4. In particular these studies have evaluated data storage and batch processing for

processing large-scale monitoring datasets using Hadoop and its MapReduce framework.

Although LA performed better than the RDBMS-based architecture, it was fairly complex

to implement and maintain. This chapter presents an Optimised Lambda Architecture

(OLA) using the Apache Spark ecosystem, which involves modelling an efficient way of

joining batch computation and real-time computation transparently without the need to

add complexity. A few models were explored: pure streaming, pure batch computation,

and the combination of both batch and streaming. An evaluation of the OLA on the

CERN IT on-premises Hadoop cluster and the public Amazon cloud infrastructure for the

monitoring WDT use case are both presented, demonstrating how the new architecture

can offer benefits by combining both batch and real-time processing to compensate for

batch-processing latency.

96

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

5.1 Introduction

Monitoring a scientific experiment requires the gathering of a large volume of data that is

produced at a rapid rate. This is illustrated in Figure 5.1 that shows dataset size produced

over various days.

Scientific infrastructures can be highly distributed and heterogeneous platforms with

various middleware characteristics, job submission and execution tools, and diverse meth-

ods of transferring and accessing datasets. The high computation activity and distributed

nature of such infrastructures makes the system extremely complex. Efficient monitoring

is necessary in order to recognise and resolve any potential issues within the infrastructure

that may cause failures or inefficiencies. This is also an important determinant in the

overall effective utilisation of the resources.

Figure 5.1: WDT dataset size [14].

There are already a few architectures that have been introduced to support Big Data

as reviewed in Chapter 2. However, the main objective of the scientific use case is the need

to process an arbitrary set of historical data, and handle recomputation or an old backlog

of data injected by producers. In the scientific realm it is normal to have jobs running

for a long period of time. Old backlog injection is therefore very common when a long

running job is completed. It is necessary to have both a batch layer as well as a streaming

layer (real-time) as presented in Chapter 4. However, this requires better mechanisms in

place to simplify the system. In this current chapter an OLA has been presented, and

evaluated.

97

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

5.2 Background

Monitoring events, metadata about the jobs, and information on data transfers are col-

lected and analysed to produce summary plots used by operators and experts to evaluate

computing activities [77]. Due to the high volume and velocity of the events that are pro-

duced, the traditional methods are not optimal. Therefore, the LA [19], an architecture

leveraging many different technologies for supporting Big Data, was employed to support

the WDT use case. However, by combining and synchronising many technologies, the

issue of high complexity became a significant concern.

The LA that is presented in Chapter 4 demonstrated that it has the ability to work

well for monitoring. Most notably, the WDT use case has shown that it outperforms

the traditional architecture. However, with the complexity of a three-layer structure that

includes various technologies, comes a price when integrating all three layers together to

serve several main goals (monitoring infrastructure in real-time, supporting scalability,

ease of implementation, maintenance and migration). Having different technologies for

each layer would be difficult to integrate, implement, and maintain. There is a pressing

need to identify a single solution that can accommodate and integrate the batch layer

as well as the streaming layer for monitoring events seamlessly. Apache Spark [38] is a

new parallel processing paradigm similar to MapReduce [18], but with improved analytical

performance. By exercising in-memory computation, it has the ability to support iterative

computation [39][48]. It can also support data streaming, which is useful in optimising the

LA to limit code differences between the batch and streaming layers. It can also support

SQL-like commands, interactive command line, machine learning, and Graphx [78]. Hav-

ing Spark batch and streaming under a stack is useful in optimising the LA. The Spark

streaming and batch computations adapt the RDD, an abstract data collection that is

distributed across nodes for parallel processing [78],[79]. Transformation and computation

logics can therefore be reused between batch and streaming layers.

Spark processes are ‘lazy’ [78], and no action is carried out until it is required. An

example would be the RDD, which does not physically hold data. It contains instructions

on what to do when an action is called. The RDDs support two types of operations: trans-

98

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

formations, which create a new dataset from an existing one, and actions, which return

values to the driver program after running a computation on the dataset. For example;

the mapPartition is a transformation that passes each dataset element to a partition level

through a function and returns a new RDD representing the results. Counter to this,

reduceByKey is an action that aggregates all the items of the RDD using a function and

returns the final result to the driver program.

By default, each transformed RDD may be recomputed every time it is put into action.

It is also possible to persist an RDD in memory using the persist (or cache) method, in

which case Spark would keep the computed data in memory for expedited access the next

time it is queried. There is also support for persisting RDDs on disk, or replicated across

multiple nodes [79]. When monitoring a scientific infrastructure it is typical that various

statistics are derived from the same monitoring events. In-memory storage and computa-

tions are profitable as multiple yet distinct computations can be carried out by a job on

the cached data. This will make it easier to maintain the job as well. The LA evaluated in

Chapter 4 employs MapReduce framework which does not support in-memory persistence

[18], so data cannot be shared. In order to implement a complex algorithm in MapReduce

framework it requires the creation of chained MapReduce jobs. Essentially, the output of

a job will need to be directly connected to the input of the next job. Spark does not re-

quire this due to in-memory processing. Spark can also support global data sharing using

Tachyon (licensed under Apache), which is a memory-centric distributed storage system

that can be used for data sharing.

Spark Streaming supports three notable functions:

1. Cumulative Computations, which supports cumulative statistics computation

while streaming in new data (incremental calculations). Spark Streaming supports

maintenance of the state (which is stored information at a given instant in time) for

those statistics. The Spark Streaming library has a function called updateStateByKey

for maintaining and manipulating the state [78].

2. Windowed Computations, which is useful when the data received in the last n

amount of time is non-trivial. Spark Streaming readily splits the input data into the

99

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

desired time windows for easy processing, using the window function of the streaming

library [78]. A function such as forEachRDD allows access to the RDDs created at

each time interval.

3. Transformation, which returns a new DStream (stream of events) by applying an

RDD to RDD function for every RDD of the source DStream [78]. This is where

the code can be reused between batch and streaming layers using the transform()

function as both frameworks support RDD as the core component. This feature also

supports merging (i.e. joining) the batch RDDs with the streaming RDDs, which

optimises the LA.

5.3 Architecture and design

The core part of the OLA inherits the technologies and approaches from Chapters 3 and

4 such as a message broker, data pipeline (Flume), storage (HDFS), and serving layer

(Elasticsearch). This is outlined in Figures 5.2 and 5.3.

Figure 5.2: Pure stateless batch computation. Monitoring events were sent to the HDFS

for batch computation, which can be scheduled to run at any preferred time interval.

The main requirement of any monitoring architecture is that it be able to provide

information about the infrastructure in near-real-time so appropriate action can be taken.

Therefore, the following approaches were designed and implemented:

1. Pure stateless batch computation as seen in Figure 5.2, which can be scheduled to

100

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

run at a preferred interval. The system will not have any knowledge of the previous

jobs. This does not support real-time computation, but Spark framework provides

in-memory computations. Therefore, the execution time can be compared with the

MapReduce framework that was used in Chapter 4. The batch computation can also

be used for historical computation (i.e. high-latency).

2. Pure stateful streaming computation as seen in Figure 5.3, will carry out incremental

computation on continuously streaming data 24 hours/7 days a week. From this, it

can maintain the state of the computed statistics. It also has a checkpoint mechanism

to dump the state to the disk; in case of job failure it can pick up from where it

stopped. This method on it is own is enough for real-time computation. This allows

the complexities of merging multiple technologies, as in the LA, to be eliminated.

3. A combination of batch and streaming computation is also shown in Figure 5.3.

Pure streaming is enough, but the potential of getting duplicate events from the

message brokers due to failure is prevalent. Having pure streaming computation

cannot address this issue, as the raw events are dropped once they are processed.

The state of the streaming job cannot keep the unique ID of the events once they

are aggregated by a key (e.g. sites). Incorporating batch computation can correct

the inaccurate statistics as it will recompute whole datasets from the storage layer,

eliminating duplicate events. Having a streaming layer do continuous calculation,

while scheduling the batch layer to run at specified intervals in order to override the

results ultimately validating the statistics seems most appropriate. As pointed out

previously, historical computation is necessary in scientific domains, so it is impor-

tant to incorporate a batch layer in the architecture. To support this approach, the

monitoring events were duplicated with one being sent to the HDFS for batch compu-

tation, while the other was streamed straight into the streaming receiver. However,

there are a variety of complexities that need to be addressed in synchronising these

approaches together including: informing the streaming job about newly available

data (computed by batch job) so that it may utilise it to override the streaming state

as well as the serving layer that is used for storing computed statistics for serving

the UI, and a mechanism to eliminate the network communication bottleneck at the

serving layer to make sure only the newly streamed data are updated/inserted into

101

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

the serving layer. This is discussed further in Section 5.3.1.

Figure 5.3: Pure stateful streaming and combination of both batch and streaming com-

putations. Monitoring events were duplicated with one sent to the HDFS for batch com-

putation, while the other streamed straight into the streaming receiver for incremental

computation.

5.3.1 Merging and synchronising Optimised Lambda Architecture layers

This section explores how the batch, serving, and streaming layers are merged and syn-

chronised. Table 5.1 denes the variables used in the equations below.

Table 5.1: Used variables and their corresponding expressions in this section.

Variables Expressions

B Batch

D Dataset

F Function

K Key

M Memory

S Storage

T Time

V Value

102

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Batch Layer

The batch layer is a high-latency mechanism, so computing an enormous volume of data

would result in a delay which would be reflected in monitoring statistics. It is important

that the batch should discard some input data, a certain amount of data which is linked

to how often the batch process is executed and how big the dataset is. These ‘missing

statistics’ can be accommodated by the streaming layer.

Dfiltered = Fdiscard (Draw∃ (Btime 	Binterval)) (5.1)

In Equation 5.1, how the monitoring events should be discarded from the computation

is represented by a formula expression. In this equation Fdiscard() is the function for

discarding events, Draw is the number of raw events prior to event selection (filter), Btime is

the batch execution time, Binterval is the time interval for discarding events from the batch

and (Btime 	 Binterval) calculates the time frame for selecting events and for emitting all

existing, ∃, events that match the condition. Assuming a batch job runs at Btime, specified

Binterval 1 hour, a batch should discard all the events in a time > (Btime 	 Binterval).

This will prevent having partially computed results, which will be compensated by the

streaming layer.

Dbatch = Dfiltered
Fmap(K,V)→ Freduce(K,V)→ → Sdata

batch (5.2)

Equation 5.2 describes how the selected (filtered) events, Dfiltered, will go through

a mapping process, Fmap(), to generate (K)ey (a unique ID for the statistics)/(V)alues

(matrices values associated with the key) pairs. Subsequently, it will go through the reduce

process, Freduce(), to aggregate the values by the key from all distributed nodes, which are

then stored in a designated storage, Sdata
batch, folder. The batch process will write the result

(i.e. a new file) into a known folder on HDFS (this can be replaced by any storage layer,

e.g. Tachyon).

103

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Streaming Layer

In the consolidated streaming and batch layers, previously computed statistics (if they

exist) need to be loaded from the serving layer, which can be represented by Equation 5.3.

Serving Layer process

Dstorage
stats = F storage

load (Tcurrent, Tfrom)

=
{
Dstorage

filtered =
(
Dstorage

input > (Tcurrent 	 Tfrom)
) (5.3)

where Dstorage
stats are the loaded pre-computed monitoring statistics from the serving

layer, Tcurrent is current the timestamp, Tfrom is the timestamp that statistics will be

loaded from and F storage
load () is the loading function for loading data from the serving layer.

If input data, Dstorage
input , which are all statistics from the serving layer to the DB load func-

tion, are greater than (Tcurrent 	 Tfrom) then select, and return the statistics Dstorage
filtered.

Dstorage
processed = Dstorage

stats

Fmap(K,V)→ →M storage
stats (5.4)

Equation 5.4 is an expression for Dstorage
processed, the mapped and stored statistics selected

from the serving layer Dstorage
stats into the memory, which goes through a mapping process,

Fmap(), generates (K)ey/(V)alues pairs, which are then stored into memory and/or disk,

M storage
stats for later usage (i.e. for merging with other layers).

Streaming Layer process

In the streaming layer, the computation is defined as:

Dstream
processed = F data

transformation(Dstream)
Fmap(K,V)→ Freduce(K,V)→ (5.5)

104

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

where Dstream
processed is the mapped, aggregated, and computed statistics from streaming

monitoring events, Dstream is the number of streaming monitoring events, F data
transformation()

is the function filtering and transforming events, wich then go through the mapping pro-

cess, Fmap(), which generates (K)ey/(V)alues pairs. Finally, it goes through the reduce

process, Freduce(), to aggregate the values by the key.

Batch Layer process

The batch reading implementation is defined as:

Dbatch
loaded = F load

batch (Dbatch)
Fmap(K,V)→ (5.6)

where Dbatch
loaded are the statistics read from storage and mapped, Dbatch is the pre-

computed statistics from Equations 5.1 and 5.2, F load
batch() is a function to load only the

“new” pre-computed batch statistics and flag the file as “old” once it is loaded success-

fully which then goes through mapping process, Fmap(). The mapping process does not

require any reduction in the statistics as it has already been done by the batch process.

Synchronise and update

The implementation of joining, merging and synchronising statistics from all three

layers is defined as:

Djoined =
(
Dstorage

processed

⋃
Dbatch

loaded

⋃
Dstream

processed

)
(5.7)

where Dstorage
processed are the statistics loaded from the serving layer, Dbatch

loaded are the data

loaded from batch computations, Dstream
processed are the data computed from streaming data,

which are unioned (joined) and returned as a new dataset Djoined.

105

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

The implementation of the statistics state is defined as:

Dmemory
state = F update

state (Djoined) =


insert, if storage=1 ∧ state′ (5.8)

overwrite, if batch=1 (5.9)

update ∨ insert, if storage′ ∨ batch′ (5.10)

where Dmemory
state is where the state of new and old statistics are kept in the memory for

incremental calculation, Djoined are the joined Dstorage
processed, Dbatch

loaded, and Dstream
processed statis-

tics. The F update
state () is the state update function for updating the statistics and keeping

them in the memory. If the statistics are from the serving layer, storage, and if it is not

already in the state, state′, then it should insert the statistics into state memory. If the

data are from the batch layer, batch, then it should over-write the state memory with the

batch statistics. If the statistics are not from serving layer, storage′, or batch layer, batch′,

then they are from the streaming layer (relatively new statistics) so they should be ag-

gregated with the statistics in the state memory, and updated if they already exists (or it

should insert the statistics into state memory if they do not exist (totally fresh statistics)).

Update serving layer

Only the new and altered statistics are inserted/updated into the serving layer which is

defined as:

(
Dstream

processed

⋃
Dbatch

loaded

)
Dmemory

state ∀ F upsert
serving layer (5.11)

The expression in Equation 5.11 says join the Dstream
processed and Dbatch

loaded and then leftjoin,

, with the Dmemory
state , to insert/update only the new and updated statistics from the batch

(if Dbatch exists in the spooling location) and streamed statistics into the serving layer.

Statistics from Dstorage
processed are not required because they are already in the serving layer.

For each, ∀, statistics partition, establish a connection to the serving layer and bulk upsert,

update the records if it already exists in the serving layer, otherwise insert new records.

106

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Finally, set up a checkpoint at a specified interval for recovery in case of any failure.

Summary

In short, the functions explained above are:

1. The batch layer will write the result in a known folder on HDFS (this can be replaced

by any storage layer e.g. Tachyon). The streaming layer will initially load specified

data from the serving layer to start incremental calculations from old statistics.

Then, at each micro-batch loop, and at the end of the statistics computation, it will

check if there are any data in the “batch” folder. If yes, load the computed data, join

with its last computed results from history, and insert the newly computed results

into the serving layer while updating the history.

2. The batch layer should discard some statistics, certain data which are linked to how

often the batch process is executed and the expected delay in processing the ever

growing dataset. Assuming a batch run at time t, discard the last hour of data, the

batch should discard all the statistics referring to time interval > t −1 hour, this

will prevent having a partially computed result.

3. The streaming layer will run forever, and the batch process can be executed reg-

ularly, or on-demand. Broker queues can be used for ingesting messages from the

data pipeline so that if the streaming fails, the data will be retained on the broker

indefinitely.

4. The serving layer insertion time will be reasonably short due to micro-batch com-

putation. When the streaming iteration reads the full batch, and inserts it into the

serving layer, it will stop processing new data. This has the potential of being no-

ticeable on the UI. This would only be a short-lived temporary glitch. Data would

still be present and it would quickly (scaling nodes and paralleling the tasks would

improve performance) recover when insertion is over.

107

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

5.4 Performance evaluation of the Optimised Lambda Ar-

chitecture

5.4.1 Experiment setup

For the evaluation of the OLA, the same CERN IT on-premises Hadoop cluster that was

used in Chapter 4 for evaluating LA was used. The cluster consisted of 15 nodes of Intel(R)

Xeon(R) CPU E5-2650 v2 @ 2.60 GHz (8 nodes: 32 cores/64 GB, 7 nodes: 4 cores/8 GB).

Hadoop-2.6 and Spark-1.6.0 were configured on all machines. The OLA was also evaluated

on the EC2 cloud infrastructure [80], as described in Section 5.4.5.

Three different computing and data intensive algorithms from the WDT use case were

used for evaluating the OLA:

Access Pattern - This algorithm works out what are the hot (popular) and cold (un-

popular) data. Hot data is very popular among physicists, so they need to be replicated

and distributed across many nodes for load balancing, and better accessibility.

1. Inject Log Message event into Map statement.

2. Split the Log Message into several Log Map Events according to the time bins the

initial event belongs.

3. Inject each of the Log Map Events into a single Log Statistic Event and compute

the following:

(a) If (client domain == server domain) then remote access = 1 else 0

(b) If (read bytes + write bytes == file size) then is transfer = 1 else 0

4. Aggregate all the single log statistics:

(a) If user domain == null then replace it with server username. In case that server

username is also null replace it with “n/a”

(b) If file name == null then replace it with “n/a”

(c) AVG(file size)

(d) If (read bytes > 0) then number of read = 1 else is 0

108

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

(e) SUM(read bytes)

(f) If (read bytes > 0) then sum(end time - start time) else read time = 0

(g) If (write bytes > 0) then number of write = 1 else is 0

(h) SUM(write bytes)

(i) If (write bytes > 0) then sum(end time - start time) else write time = 0.

5. Aggregate and Reduce all the log statistics:

(a) If there is not already a time bin for the injected log statistic events then create

it and insert (establish connection to Elasticsearch and Bulk insert):

(b) Else update the existing bin (update the Elasticsearch document version):

Transfer Statistics - This algorithm has already been used in LA evaluation (Section

4.4.4) and works out the average data transfer rate from site A to B. A completed file

transfer lasting several hours from site A to site B, also contributes to several time bins in

the past. Information about the average traffic from site A to site B has to be updated.

User Statistics - This algorithm works out the number of active users, and how much

data they have downloaded within a specified time interval.

1. Inject Log Message event into Map statement.

2. Split the Log Message into several Log Map Events according to the time bins the

initial event belongs.

3. Inject each of the Log Map Events into a Single Log Statistic Event and compute

the following:

(a) If (client domain == server domain) then remote access = 1 else 0

(b) If (read bytes + write bytes == file size) then is transfer = 1 else 0

(c) If if user domain == null then replace it with server username

4. Aggregate all the single log statistics:

(a) SUM(read single bytes)

(b) SUM(read vector bytes)

109

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

(c) SUM(file size)

5. Aggregate and Reduce all the log statistics:

(a) If there is not already a time bin for the injected log statistic events then create

it and insert (establish connection to Elasticsearch and Bulk insert):

(b) Else update the existing bin (update the Elasticsearch document version):

5.4.2 Illustration of the workflow

An evaluation of the workflow in the OLA is presented in this section.

The timeline in Figure 5.4 shows sequential job execution, where jobs were performed

one at a time. The next job will only be initiated once the previous job has been completed.

This workflow is useful when the later job is dependent on the previous job, e.g. when

the second job relies on the results computed by the previous (similar to the MapReduce

framework).

Figure 5.4: Sequential jobs execution. Jobs were executed one at a time.

Figure 5.5 shows parallel job execution, where multiple concurrent jobs are executed

at the same time. This is not achievable with the MapReduce framework presented in

Chapter 4. This is the workflow that is beneficial for carrying out in-memory computation,

meaning data can be loaded into memory, and used by concurrent jobs rather than having

each job load data from the storage layer.

110

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.5: Parallel jobs execution. Multiple jobs were executed at a time.

The course of action shown in Figure 5.6 is reasonably straight forward. After all

executors required for a job have been registered, the job commences execution. The

executors were removed when the job was complete, in order to make resources available

for other jobs.

Figure 5.6: Sequential tasks execution.

In Spark, a job is joined with a chain of RDD dependencies arranged in a direct

acyclic graph (DAG) as can be seen in Figure 5.7. From the DAG, it can be seen that

the evaluated WDT use case (i.e. transfer statistics) first executed a textFile operation to

read data from the HDFS, then called the mapPartitions operation to transform the data

into Java Objects, calling another mapPartitions operation to extract the required data

and to carry out an initial transformation. Subsequently, it then called a reduceByKey

function (in the second stage, which is dependent on the first stage) to aggregate the final

results, and finally the saveAsTextFile operation was used to save the data into HDFS. It

can be seen that each executor immediately applied the subsequent mapPartitions action

to the dataset partition after reading it from HDFS in the same task, minimising the

111

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

data shuffles between nodes. The black dots in the boxes represent RDDs created by the

corresponding actions [81].

Figure 5.7: Overview of job stages.

Spark supports caching stages into memory so that data may be reused, rather than

recomputed. Figure 5.8 illustrates that Stage 3 reads data from HDFS and carries out

initial transformation as discussed in Chapter 3, caching into memory (shown greyed out).

The subsequent jobs can easily recover the stage from memory, therefore, reducing re-

computation time.

Figure 5.8: Cached stages were reused by parallel jobs. The green circle denotes that an RDD is

cached from the previous stage. The greyed stage (cached) was skipped by the following concurrent

jobs.

Figure 8 shows an insight into Stage 3 of the event timeline from Figure 6.

Figure 5.9 shows an insight into Stage 3 of the event timeline from Figure 5.8. It

shows that tasks are distributed to two worker nodes. Most of the execution time was

112

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

spent on computing the statistics rather than scheduler delay, network or I/O overheads.

This is not unexpected since the job involves shuffling very little data. Each executor is

performing three tasks concurrently, due to the CPU cores which are explicitly configured

with the job submission. The parallelism can be increased or decreased in direct relation

to the number of cores, which would have an effect on performance.

Figure 5.9: Concurrent tasks execution. A job was split into multiple tasks and executed

in each executor CPU core concurrently.

Figure 5.10 shows an insight into the Stage 1 event timeline which aggregates the

results, and writes them into the HDFS. It can be seen that there is only one task in

Stage 1, which spent most time on computation. There is a noticeable delay in task

deserialisation, which is used for deserialising the result sent from the mapper node.

Figure 5.10: Insight into Stage 2 timeline.

5.4.3 Performance evaluation of WLCG environment and WDT use case

In this section the batch computation, as well as the real-time computation of the OLA,

were evaluated.

113

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Evaluation of Spark’s batch computation

In this section, an evaluation of Spark batch computation over increasing dataset size

was carried out that was similar to the evaluation detailed in Chapter 4. This evaluation

was carried out on the same dataset so that it could be compared with the MapReduce

framework computation. Although Spark supports in-memory computation, it was not

used in this evaluation as the job consisted of a single algorithm (transfer statistics). It

was unnecessary to persist the dataset into memory as there were no follow-up jobs that

could benefit from it. The evaluation results are shown in Figure 5.11. It can be seen that

computing 30 days of the dataset overall was completed in ∼2 minutes by the Avro, CSV

and JSON jobs. It can also be seen that execution time linearly increases as the dataset

size is increased. Nevertheless, the performance was improved when compared with the

current approach used by the WDT, which occasionally took longer than 10 minutes.

Again the performance pattern of the data types are similar to the MapReduce job, as

Avro performed better overall compared to the other jobs. On the other hand, JSON

performed poorly when compared with the other jobs. In total, the JSON and CSV jobs

took an average of 64% and 14% more execution time compared with Avro, respectively.

114

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.11: Computation of Avro, CSV and JSON files over augmented dataset (day 1

to 30 days). The primary axis (a) shows the execution time that is being represented by

lines, whereas the secondary axis (b) represents the input data size in Megabytes (MB)

which is represented by bars.

A comparison of the job execution time using MapReduce framework in Chapter 4 and

using Spark is presented in Figure 5.12. It can be observed that Spark jobs performed

much better when compared with the MapReduce jobs, although data persistence was

not used in both frameworks. The first day dataset (smallest) took a lot less time for

computing using Spark, whereas computing using MapReduce took significantly more.

From this observation it can be concluded that Spark took less overhead time in allocating

resources when compared with the MapReduce. Nevertheless, MapReduce job execution

time stablised as the dataset size was were increased further as only minor oscillations

were seen. Comparatively the Spark execution time increased linearly when the dataset

size was increased. This can be explained by the computing limitation of the cluster

due to its heterogeneous setup. The Spark-Avro job total execution time on average was

43% less than the MR-Avro job, whereas the Spark-CSV performance improved by 38%

when compared to the counterpart, and the Spark-JSON improved 23% compared to its

counterpart. All Spark jobs appeared to have performed better than their counterpart,

but the most improvement can be seen with the Spark-Avro computation.

115

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.12: Comparison of the MapReduce versus the Spark framework against various

data types.

Figure 5.13 shows the execution time over various data partition sizes (i.e. paral-

lelisation, which is the process of splitting the dataset into a number of partitions, and

allocating tasks to process each of those split portions). It can be seen that the execution

time improved as the number of partitions was increased (execution time decreased). It

can also be observed that after the job met a certain number of partitions, the execution

time stabilised. This can be explained by the fact that more partitions would require an

equal share of tasks, requiring finding resources, allocating, and garbage collections. This

would also require shuffling data over the network. It can be observed that the Avro job

performed better compared to the other two jobs.

116

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.13: Execution time versus the number of partitions of various data types.

In the previous evaluation, only a single job (algorithm) was evaluated, so persisting the

dataset into memory was not trivial. In order to benefit from the in-memory computation,

it was necessary to evaluate multiple jobs (multiple statistics algorithms) on the same

dataset (i.e. derive various statistics from the same dataset). The single job assessed

previously only parallelises the tasks, but as multiple jobs may be deployed to profit

from in-memory computation, it was essential to evaluate parallel job execution versus

sequential job execution. Figure 5.14 illustrates parallel jobs performed better than the

sequential jobs; in particular, the cached job performed exceptionally well. However, when

comparing the uncached parallel job with the cached sequential job, it is evident that the

parallel job performed better, which could only be explained by the simultaneous job

execution. The sequential job requires submitting one job at a time so that the next one

in the queue can only be submitted when the previous job has been completed. This is

not the case for the parallel job as it would submit all jobs at one time. This should not

be a problem in the OLA, as it can scale dynamically when there are more demands for

resources.

117

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.14: Comparison of parallel and sequential jobs with cached and uncached

datasets. Execution time versus parallel, sequential cached and uncached jobs.

Figure 5.15 shows the evaluation of execution time over various types of data persis-

tence used in parallel jobs submission. The persistence options are:

• Memory only (MEMORY ONLY), which only uses the memory for caching the

dataset. In the case of a dataset being larger than the memory capacity, it will

use the disk for dumping the remaining dataset.

• Memory only with two replications (MEMORY ONLY 2), which is similar to MEM-

ORY ONLY but it replicates the dataset two times for improved data availability.

• Memory only with serialisation (MEMORY ONLY SER), which is similar to MEM-

ORY ONLY, but it uses serialisation to compact the data so that more information

can be stored into memory as memory spaces are very limited. However, serialising

and deserialisation will add computation overhead to the job.

• Memory only with two serialised replications (MEMORY ONLY SER 2), which is

similar to MEMORY ONLY SER but replicates the dataset two times.

• Disk only (DISK ONLY), which spills the dataset onto the disk.

118

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

• Disk only with two replications (DISK ONLY 2), which is similar to DISK ONLY

but it replicate the dataset two times.

• Memory and disk (MEMORY AND DISK), which uses both memory and disk for

storage, but some data that need to be persisted into memory are configurable at

execution time.

• Memory and disk with two replications (MEMORY AND DISK 2), which is similar

to the MEMORY AND DISK but with two replications of the dataset.

• Memory and disk with serialisation (MEMORY AND DISK SER), which is analo-

gous to the MEMORY AND DISK but it uses serialisation to compact the data so

that more data can be stored in memory.

• Memory and disk with two serialised replications (MEMORY AND DISK SER 2),

which is similar to MEMORY AND DISK SER but with two replications of the

dataset.

Figure 5.15: Comparison of various cache types. Execution time versus computation of

data cached in memory, disk, and memory and disk (also a combination of replicated and

serialised dataset).

As shown in Figure 5.15, it is evident that in-memory persistence outperformed the

119

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

other methods. Having two replications of the dataset into memory did not improve the

performance compared to the single dataset. In general, serialisation did not perform well,

which is understandable as extra overhead is required for serialising and deserialising the

dataset. Using memory and disk performed better than the pure disk option. It was bet-

ter to recompute from the source rather than reading the cached data from disk. When

clustered and compared the execution time of all memory only, disk only, and disk and

memory, the disk only options took 104% more execution time than the memory only

options, whereas the memory and disk options took 83% more execution time than the

memory only options.

The scalability was evaluated by incrementing the number of executor nodes. Executor

were incremented one at a time. The memory size was fixed to 1024 MB. The evaluated

dataset size was 7.5 GB, which was used for the following evaluations unless otherwise

stated. The total amount of memory allocated for the jobs can be calculated by multiplying

the number of executors by amount of allocated memory for each executor (i.e. 1024 MB).

The previous evaluations showed that the Avro job performed better compared with the

CSV and JSON jobs. Therefore, it was used for the node scalability analysis. Figure 5.16

shows that execution time improved as the number of executors was increased. However,

there was a dramatic improvement in performance in increasing up to three executors.

With more than three executors, there was not a significant further improvement. The

execution time decreased by 64% when three executors were used compared to the initial

single executor execution time. However, when nine more executors were used, compared

with the single executor, the performance improved by 84%. This shows an only 20%

improvement using nine executors over three executors. Over allocating resources (in this

case executors) can be wasteful, displacing resources that could have been used for other

jobs.

120

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.16: Execution time versus the number of executors.

For the evaluation of memory usage, the number of executors was fixed at four (for

comparison to the former analysis), the number of CPU cores was fixed at one, and

memory was increased by 1024 MB at each evaluation. The total amount of memory

allocated for the jobs can be calculated by multiplying the amount of allocated memory

for each executor by the number of executors (i.e. 4). The allocated memory for each core

would be the same as the executors as the core was fixed at 1. Therefore, it does not need

to share the memory. The dataset size was the same as in the previous evaluation, which

was 7.5 GB. The performance improved rapidly as the memory was increased, as seen in

Figure 5.17. What was indisputable from the results, was that memory plays a significant

role in performance. With four executors a better result was achieved by just increasing

the memory, rather than using ten executors as can be seen from the previous analysis.

121

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.17: Execution time versus the amount of memory size.

In order to evaluate the CPU core utilisation in optimising the performance, the num-

ber of executors was fixed at four, and the memory was fixed at 2048 MB. The number

of cores was increased by one at each execution. Each executor was allocated 2048 MB

memory, but there were four executors so the total amount of memory allocated to these

jobs was 8192 MB. The amount of memory allocated to each core was calculated by di-

viding the memory allocated to each executor (i.e. 2048 MB), by the total number of

cores allocated to each executor. Again, the performance was improved as the number

of cores was increased as seen in Figure 5.18. The performance improved steadily as the

number of cores increased. The observed improvement in the performance was caused by

the parallelisation of the tasks.

122

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.18: Execution time versus the number of CPU cores.

Evaluation of Spark’s Streaming computation

In Chapter 4, Esper was used for carrying out real-time computation, which did not

support scalability. However, Spark Streaming supports scalability just as it supports

batch computation. The performance observed with Esper was reasonable for the WDT as

it computed the events as soon as they were received. Nevertheless, to support the foreseen

explosion of volume and speed of the data, scalability is required, so Spark Streaming was

investigated. Despite this, it needs to be evaluated to see how it performs on a real life

scientific application, which was the same algorithm that was used for evaluating batch

computation (i.e. transfer statistics). A few metrics are important in evaluating the

streaming layer. One such is the event input rate at which data is being received, while

the other is the processing time of each micro-batch. The streaming layer was deployed

with three executors, each with 2048 MB memory and three cores. The streaming layer

was evaluated on the last 1000 batches of streamed data. The streaming layer was run

for ∼15 hours at a two seconds batch interval prior to the evaluation. At the time of the

evaluation, the streaming layer had completed ∼27 thousand batches and computed ∼5

million records.

123

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.19: Streaming data input rate. Streaming job receiving data at a rate of 116

events/second on average.

Figure 5.19 shows that the streaming layer was receiving data at a rate of about 116

events/second on average across all its sources. The streaming layer is capable of handling

a much larger rate than the one shown in Figure 5.19. However, the source was sending a

relatively low load of events at the time of evaluation.

Figure 5.20: Streaming data processing time. Processing time shows that these batches

have been processed within 88 ms on average.

Figure 5.20 presents processing time which shows that these micro-batches were pro-

cessed within 88 ms of being received on average. Displaying a reduced processing time

compared to the batch interval means that the scheduling delay (which is the time a batch

waits for previous batches to complete [81]) was almost zero as seen in Figure 5.21. It can

also be noted that there were a few spikes on the schedule delay, including when there

was a sudden peak in data input rate which increased the schedule delay by 16 ms. The

scheduling delay is the key indicator of whether the streaming layer is stable or not [81].

In this particular evaluation it indicated the streaming layer was very steady.

124

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.21: Schedule delay in processing next batch.

Figure 5.22 shows that the total delay in scheduling and processing the batches was

105 ms on average. This means the transfer statistics can be presented to the end user

within a second.

Figure 5.22: Total delay in scheduling and processing streaming data.

5.4.4 Evaluating the accuracy of monitoring computations

To evaluate how accurately the architecture was able to compute the WLCG sites through-

put in time-series, all three OLA approaches were tested. As shown in Figure 5.23, the

stateless batch job was scheduled to run every five minutes and carry out batch compu-

tations on the data stored in HDFS. However, the plot highlighted in Figure 5.23 shows

that some data is missing. This is due to the latency of the batch computation and the

unavailability of the data when the job started.

125

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.23: The Spark batch computations for WLCG monitoring (some statistics are

missing as highlighted).

Figure 5.24 represents the combination of batch and streaming approach. This ap-

proach shows the computation in real-time as highlighted in the plot. This shows that the

combination of batch and streaming approach is capable of providing up-to-date statistics

that are beneficial to the users in comparison with the pure batch computation approach.

The Spark batch computation performed better than the MapReduce job presented in

Chapter 4 due to the use of in-memory processing. The intermediate results were cached

into memory in comparison with the former approach, which utilises the disk for reading

and writing.

Figure 5.24: The Spark batch and streaming computations for WLCG monitoring (statis-

tical data are in near real-time as highlighted).

126

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

5.4.5 Evaluation of scalability, on the Amazon EC2 cloud cluster

In the previous section, the OLA was evaluated on the CERN IT on-premises Hadoop an-

alytics infrastructure (shared). The architecture was also evaluated on a public cloud in-

frastructure to understand how portable the architecture is. The purpose of the evaluation

was not to compare the performance of the on-premises Hadoop analytics infrastructure

and the cloud infrastructure, but solely to understand the flexibility of the OLA model.

The metadata from the ATLAS datasets were used for the evaluation of the on-premises

Hadoop analytics infrastructure, whereas metadata from the CMS datasets were used for

the evaluation of cloud infrastructure. In this section, various scalability properties were

evaluated on the Amazon cloud cluster such as the number of cores, memory size, and

the number of executors. All three algorithms discussed in the previous sections of this

Chapter were used to evaluate the parallelism. Taking this into account, the performance

on the cloud may vary in comparison with the CERN IT Hadoop cluster.

Cloud computing is an approach that enables sharing of computer resources over the

Internet. The resources are shared among the consumers, and they can be dynamically

allocated and de-allocated on demand. Consumers obtain the resources from cloud ser-

vice providers based on a metering system. The consumers only will be charged for the

resources that are utilised (pay-as-you-go model). To assess the portability aspect of the

OLA presented in this chapter, a virtual cluster was created in the Amazon Elastic Cloud

(EC2) using a general purpose instance “m4.2xlarge” that had eight virtual CPUs, 32 GB

of memory, and 20 GB of storage per instance. The cluster was configured with four nodes,

one name node and three data nodes. The same Hadoop, Flume and Spark versions, and

operating system were installed on each instance. The OLA was ported into the EC2

cluster with ease as it is a software architecture that is happy to run on any cluster that

supports Hadoop. For conducting the tests, the job was submitted with various scalability

properties. At each execution, a parameter was changed, and the rest remained fixed.

Executor memory

Although there were 32 GB of memory available in each node, it is possible to limit how

much memory should be allocated to a job. For this evaluation, the number of executors

127

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

was fixed at four. Then, the jobs were submitted with varying memory sizes, such as 2

GB, 4 GB, 6 GB, 8 GB, and 20 GB for each executor. Since there were four executors

running, the total memory used for each test was 8 GB, 16 GB, 24 GB, 32 GB and 80 GB.

In general, the performance was improved as the memory was increased. In particular,

the performance from 2 GB to 8 GB in the execution time was improved by 48%. What

is evident from the Figure 5.25 was that the difference in execution time is not substantial

when increasing from 8 GB to 20 GB; in fact, it varies by just 10 seconds. This difference

can be explained by the fact that when 8 GB per node is used, the total available memory

for the jobs is 32 GB; more than enough to accommodate 24 GB of data that is required to

be processed. Any additional memory would not have a huge impact on job performance,

as it would mostly remain unused.

Figure 5.25: Execution time versus the memory size on the cloud infrastructure.

Executor instances

The evaluation of the executors was carried out in order to measure how performance

would be impacted when changing the number of executors. For this test, the amount of

memory used for each executor was fixed at 4 GB. The number of cores per executors was

fixed at two. As seen in Figure 5.26, the execution time was improved by 76% using four

128

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

executors, when compared with just one. The execution time was seven seconds slower

when five executors were used in comparison to four. This was in part due to there only

being four virtual nodes available in the cluster. When there were five executors, one of

the nodes would run more than one executor, contributing to an uneven distribution of

the job. Ultimately, this would cause an overloaded node.

Figure 5.26: Execution time versus the number of executors on the cloud infrastructure.

Executor cores

The executor cores parameter defines the number of tasks that each executor can run

concurrently. In this test, the number of cores per executor was analysed as shown in

Figure 5.27. The amount of memory used for each executor was fixed at 4 GB, and the

number of executors was fixed at four, so all nodes would be utilised. The performance

improvement of using eight cores over 2 cores was 69%. No difference was observed between

using eight or ten cores. This is due to the fact that the maximum number of virtual CPU

cores available in each node is eight.

129

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

Figure 5.27: Execution time versus the number of cores on the cloud infrastructure.

5.5 Summary

The three data monitoring approaches presented in this chapter outperform the RDBMS

based system and the Lambda Architecture that is used by the WDT in terms of execution

time, low-latency, maintenance, and scalability. In particular, the streaming approach pro-

vides the up-to-date state of the infrastructure. The evaluation also shows that Optimised

Lambda Architecture can be ported into other computing infrastructures with ease, as it

was demonstrated in the CERN IT on-premises Hadoop cluster and a cloud infrastruc-

ture. On completion of the work described in this chapter the WLCG monitoring group

has adopted the Optimised Lambda Architecture, a combined batch and streaming ap-

proach, and has been using this approach for monitoring the monitoring the WLCG data

activities since October 2015 [82]. Since the deployment of the Optimised Lambda Archi-

tecture, the WDT tools have been able to monitor infrastructures (e.g. EOS data storage)

that it was once assumed would have been impractical. It has also saved operational

time as well as computation time in comparison to the traditional architecture formerly

used. With the traditional workflow consisting of local filesystems (dirq) and local collec-

tors, PL/SQL computations had several hours of operational time per week dedicated to

130

Chapter 5. Optimised Lambda Architecture using Apache Spark technology

cleaning up the partition of the machines and maintaining services. With the Optimised

Lambda Architecture now implemented the corresponding operational time has reduced to

almost zero. An estimated 0.5 days/week is saved through use of the Optimised Lambda

Architecture. In terms of computation time, the Optimised Lambda Architecture utilises

real-time computation, whereas the traditional architecture required recomputation at a

regular intervals. The Optimised Lambda Architecture batch layer reduced computation

time by a factor of five when compared with the traditional PL/SQL system, and by a

factor of two when compared with the original Lambda architecture.

131

Chapter 6

Real-time processing and Machine

Learning for forecasting data

access pattern

In most data-intensive experiments it is normal to collect, replicate, distribute, and store

petabytes of data on a heterogeneous computing infrastructure. Data management sys-

tems are designed to handle the demand of users for a wide range of scientific analyses.

Typically, data movement and accesses are recorded in the form of metadata by a collec-

tion system. Using this information, a model can be built to forecast data access patterns

for efficient data management and placement. This chapter presents some insight into

studies on data popularity and access pattern evaluating the Machine Learning Library

from the Apache Spark stack using a supervised K-Nearest Neighbours algorithms for fore-

casting data access pattern. In recent years there has been an explosion of Deep Learning

techniques, and there has been a lot interest from the scientific community as well as the

commercial sectors. Based on the data access pattern prediction, the number of data repli-

cas required for efficient resource utilisation can be calculated, and a decision can be made

as to whether enough (do nothing), too few (add), or too many (delete) replicas have been

found. This chapter presents both a batch learning technique, which makes predictions

based on historical training data using Spark, and a technique combination of a batch

and online learning technique, actively adapting and updating the model as new data are

streamed in from Spark Streaming for prediction. The techniques will be evaluated as an

132

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

additional layer of the OLA, which was presented in Chapter 5. This intelligence layer

(data access pattern model) is the final addition required for the building of a modern

state-of-the-art monitoring system for scientific infrastructure.

6.1 Introduction

Many things are vital for monitoring scientific infrastructure. This includes following spe-

cific analysis jobs and tasks, identifying and investigating inefficiencies and failures, and

identifying trends while predicting future requirements. This information can be used for

efficient resource allocation. Although real-time monitoring of scientific infrastructure is

a stepping stone towards a more effective monitoring system, it is not entirely a complete

solution. Without an auto-adaptive mechanism human interference is required, which is

not ideal as outlined in this section. The OLA presented in Chapter 5 has demonstrated

that batch and streaming layers can be synchronised to perform real-time analytics on

monitoring events. It will be beneficial to add an intelligence mechanism into this archi-

tecture to understand how easily an adaptive model could be implemented. Various use

cases can be studied for an adaptive model, such as adopting a classical pattern matching

approach to promptly detect errors and failures in the streaming of monitoring events

including unauthorised access detection. However, since the research presented in this

thesis is related to Big Data, the focus will be on managing the large volume of data.

In scientific experiments, large volumes of data are generated, transferred, stored, and

analysed. Efficient data placement is critical when dealing with large scale infrastructure

as it plays a significant role in efficient resource allocation and deployment. An efficient

data placement strategy, also known as Data Access Pattern (DAP), was implemented on

the batch and streaming layers. This is of great importance, given that the scale of the

computing problem will increase far faster than the resources available to the experiments.

In the modern distributed scientic community it is common that accessing raw data

and simulated data via analysis jobs takes place at computing sites. The details of this

can be collected and saved for analytics (e.g. the timestamp of the access, the name of

the site hosting the data, the number of existing replicas, the location of such replicas on

133

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

the computing infrastructure, and the amount of CPU time used to access such datasets).

The basic idea is to profit from the experience that can be gained from studying the DAP

in the past and present to perform prediction on data accesses in the future.

To date, no studies has been carried out to understand the use of DAP on streaming

data. However, there are a few studies already exists with the DAP using traditional

data mining techniques [83], which are single node models. These patterns, if understood,

can be used as input to the simulation of computing models to optimise existing systems,

and to explore next-generation CPU/storage/network co-scheduling solutions. This study

aims to use the information coming from DAP studies to improve the use of computing

resources (i.e. optimising disk occupancy, minimising the number of dataset replicas, etc.).

The motive behind this modelling is to be proactive, as well as adaptive since past models

cannot be applied to future prediction for an extended amount of time. Only adaptive

models would equip scientific experiments with up-to-date predictive power in the long

term. The DAP, despite being relatively simple in definition, is a complex use case once

it is deeply investigated.

6.2 Data Analysis and Data Modelling

The DAP study was conducted on a data-intensive data management system known as

the ATLAS Rucio Distributed Data Management (RDDM) system [84]. The RDDM

operates on files, which usually contain many events. Events taken under the same detector

conditions can be distributed over multiple files, necessitating some sort of aggregation.

For this, RDDM has the concept of datasets. Datasets consists of one or more files [84] and

they are the operational unit for the RDDM. Only datasets can be transferred between

sites, files cannot.

The copies of a dataset on a given site are called replicas. To create a new replica all

files in a dataset are copied to a site in the grid network and registered as a new replica in

the system. A dataset in the RDDM can have multiple physical replicas. The distribution

of datasets is based on policies defined by the Computing Resource Management system

[84], guided by the ATLAS computing model and operational constraints. For each type

134

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

of dataset, a minimum number of replicas is defined. To run an analysis on this data, users

send their jobs to a workload management system called PanDA [85]. PanDA takes the

user jobs and schedules them to run on a site that hosts a replica of the dataset needed

for analysis, based on availability and the workload of the site as well as the jobs’ priority.

Each time PanDA accesses a file in the dataset it sends a report to the RDDM tracer

system [84]. This report includes information about the corresponding dataset, the site it

was accessed on, the user, the starting and ending time, and the download status.

6.2.1 Data Acquisition

The raw data for the DAP study was acquired from the ATLAS experiment that was used

for both training and testing the DAP model. As the dataset was in a raw form it needed

to be pre-processed.

6.2.2 Data Pre-Processing

A number of pre-processing methods were applied to handle noisy and missing data which

might disrupt the decision-making process. The pre-processing method involved convert-

ing raw data into a machine-understandable vector format and removing data that did not

have required features. Low-quality data will produce poor quality results. It is important

that the quality of the training data could not be compromised.

6.2.3 Initial DAP dataset analysis

The aim of this study was to demonstrate and evaluate how an intelligence layer can be

deployed on the OLA. However, the OLA is a distributed architecture leading to a com-

plex and time-consuming process to build a DAP prediction model without understanding

the DAP dataset. It was first evaluated on a traditional machine learning library (Orange

Canvas [86] and R [87]) in place of a distributed machine learning library. This analysis

assisted in determining the features for independent and dependent variables for the DAP

model.

Figure 6.1 illustrates the most popular datasets each month in 2016 from January to

135

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

June. It is notable that most of the popular data consistently remains as top accessed

data at each month. Figure 6.2 details dataset access in January. It is apparent that

many datasets were not accessed frequently, but would become popular due to seasonal or

sudden interest which happens consistently in the scientific domain. This plot is useful in

determining which datasets are popular, but does not assist in determining how popular

these datasets will become. It is important to use a regression algorithm to forecast the

DAP. Therefore, the prediction output would be a continuous number instead of a binary

option such as popular or unpopular.

Figure 6.1: Monthly popular dataset trends.

The predicted DAP gained from the analysis can be used to add and remove dataset

136

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

replicas to enhance data distribution. Normally, data arrangements consist of two chains

that have to operate hand-in-hand; the reclaiming of disk space at sites (i.e. clear disk

space), and the creation of new replicas. For the creation of replica datasets, the sys-

tem must rely on the results of the dataset access prediction, which can be used to place

replicas evenly across the available computing resources. This would enable jobs to be

executed simultaneously on dierent data nodes instead of having to wait for the other

occupied job to be completed. By adding new replicas the number of job slots able to

process a particular dataset becomes manageable, and the workload management system

has more options for where to put jobs. Ideally, this would lead to lower overall waiting

times for the user and better resource utilisation.

Figure 6.2: Popular dataset trends in January. It shows all datasets accessed in January

and each boxed scaled by the number of access.

In order to understand the DAP dataset and trends, the following studies were con-

ducted: using mean calculation on dataset access history, and a simple auto-regression

model.

137

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Mean Analysis: Five Days of Data Points

In order to find the top ten maximum requested datasets (indexes) for each day an aggre-

gation was carried out which is shown in Table 6.1.

Table 6.1: Index numbers of top ten accessed datasets each day.

Day 1 259953 179873 232440 47193 101738 52285 164062 30944 174116 234065

Day 2 259953 179873 101738 232440 47193 52285 164062 30944 174116 140942

Day 3 259953 179873 101738 232440 47193 52285 164062 30944 174116 140942

Day 4 259953 179873 232440 101738 47193 52285 164062 30944 174116 140942

Day 5 259953 179873 232440 101738 47193 52285 164062 30944 174116 140942

A pattern can be identified in the frequency of dataset access, though some of them

were in different orders. The plot in Figure 6.3 shows the evaluation of frequency of data

access for the top five maximally requested datasets for five days from the list found above.

These datasets were mostly stable with little oscillation.

Figure 6.3: Evaluation of frequency for top five maximally requested datasets.

It cannot be concluded that there was a stable frequency of data access by just inspect-

ing the top ten datasets due to the small amount of data points (five days). Possibly a

wider time range (more days data points) analysis was required to extract further informa-

tion about the patterns which can be found in Section 6.2.3. If it were to be assumed that

138

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

behaviour will be the same for other days (small oscillation upon some stable level) then

these “stable datasets” would not need a prognostic model as frequency of data access is

constant.

Mean Analysis: Thirty Days of Data Points

Stability across a wider time range (30 days) was analysed in order to further understand

the DAP. To assess the quality of the prediction the Sum of the Squared Errors (SSE) was

used.

SSE equation:

SSE =

N∑
i=1

(xi − x̂i)
2 (6.1)

where xi is the actual observations and x̂i is the forecasted values.

The mean was calculated for the first 15 days, while the SSE for the remaining days

was predicted/calculated as well. The plot in Figure 6.4 shows the SSE for the mean

prediction for 100 datasets. The idea was that if the behaviour was the same, then the use

of mean frequency for forecasting would be appropriate. However, the plot demonstrates

that the predictions were not great as there were high error rates.

139

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.4: Mean forecasting the top 100 datasets.

6.2.4 Auto-regression analysis

An auto-regression model functions under the assumption that past values have an effect

on current values. This suggests that the past DAP might predict the current DAP.

In auto-regression model, the future values are estimated based on a weighted sum of

past values as shown in Equation 6.2. The φ1yt−1, . . . , φpyt−p are the past observation

parameters of the model, µ is a constant, and ut is the error terms.

Yt = µ+

p∑
i=1

φ1yt−1 + ut (6.2)

An auto-regression analysis was performed on the DAP dataset. Results of auto-

regression for 100, 10,000 and 100,000 most accessed datasets are shown in Figures 6.5,

6.6 and 6.7 respectively. The left plot in each figure highlights the application of the

auto-regression model to the study set (the set of data that was used to study the model),

140

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

while the right plot in each figure shows the application of the auto-regression model to

the testing set (the set of data that was not used to study the model). It is notable that

some of the data forecasting is good as goodness of fit of the auto-regression model in

Figures 6.5 and 6.7 shows it fits well on the test datsets based on the model built by the

training datasets, while Figure 6.6 shows a poor goodness of fit.

Figure 6.5: Auto-regression on 100 datasets.

Figure 6.6: Auto-regression on 10,000 datasets.

141

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.7: Auto-regression on 100,000 datasets.

6.2.5 Comparison of auto-regression and mean forecasting model

To compare the results of the mean forecasting model and auto-regression model, the SSE

for all the datasets presented in Figure 6.1-6.2 are presented in Tables 6.2 and 6.3. From

the results, it can be noted that both prediction models were poor as the error rate was

very high.

Table 6.2: Summed error for mean model.

Dataset index SUM(err d mean)

1-100 74.3357

10000-10100 134.2859

1000000-1000100 118.5729

Table 6.3: Summed error for auto-regression model.

Dataset index SUM(err d mean)

1-100 58.0791

10000-10100 203.3239

1000000-1000100 324.8026

From this analysis it was apparent that time-series analysis was required. The idea

142

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

for the DAP study was to aggregate accesses for each dataset by year, month, week,

day, or hour (time-series) and subsequently feed this to a machine learning algorithm in

order to get an access prediction for the next year, month, week, day, or hour. A regression

algorithm was required for forecasting the DAP. However, an appropriate machine learning

technique was also required, as the mean and auto-regression models did not provide

good predictions. A suitable algorithm needed to be selected that could identify deep

connections with independent variables, which was not apparent in the analysis presented

in Section 6.2. Additional independent variables were required for finding coherent pattern.

6.3 Machine Learning Techniques and Algorithms

It was important that chosen Machine Learning algorithms supported the underlying tech-

nology used by the OLA, which was Apache Spark. Therefore, the Machine Learning

Library (MLlib) from the Apache Spark ecosystem [54] and the Sparkling Water (H2O)

[52] framework were used in the DAP study. These frameworks were expected to reduce

DAP training time significantly while assuring the needed level of accuracy. The adaptive

model does not require retraining as the model will be actively updated. The Spark batch

offline learning of DAP should reduce the training time and handle the large volume of

data, which has been an issue with the traditional solution as it was limited by the ma-

chine specification (disk space, memory, and CPU). Online training for the DAP, on the

other hand, introduces the concept of incremental prediction and updates of the model.

The main distinction between the two approaches is that while the batch approach sup-

ports historical DAP analysis, the streaming approach supports current trend study which

has reduced training time requirements. The online method avoids retraining, which is

accomplished by utilising an incremental update approach by using new training samples

as they become available. Newly acquired training samples are used in conjunction with

the batch model for presenting an adaptive model which not only looks at the past, but

also the present in order to create predictions. This approach fits harmoniously with the

OLA, while maintaining an up-to-date model.

Many distributed machine learning methods exist that can be utilised for the DAP

study. Supervised machine learning techniques such as Naive Bayesian, Random Forest,

143

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Gradient-Boosted Trees, and Decision Trees are well-used regression techniques [88]. How-

ever, the supervised K-Nearest Neighbour (KNN) algorithm is a simple technique which

does not generalise the model, but instead uses available data to make a decision [89].

The Deep Learning (DL) technique was also utilised in the DAP study as it is capable

of identifying hidden interconnection between variables [17]. These qualities justified the

decision to use it as a supervised machine learning regression technique for this research

work, especially, in terms of guaranteeing that the volume and velocity perspectives of the

data access pattern challenge were tackled.

6.3.1 Sparks K-Nearest Neighbours (KNN)

The Spark KNN is very simple yet works well in practice. The KNN algorithm is a

learning algorithm that is non-parametric (it does not involve any assumptions about

the underlying data distribution) and lazy (it does not use the training dataset to make

any generalisations) [89]. The non-parametric characteristic is very useful in real world

applications as frequently the practical data do not obey typical theoretical assumptions

[89]. The KNN algorithm makes a decision based on the entire training data set. Therefore,

it needs more processing time to predict as it must go through whole datasets and more

memory is required for storing whole datasets for processing. Each of the training datasets

consists of a set of vectors (features) and their corresponding labels (expected prediction).

There is also the “K” parameter (numeric value) in KNN which needs to be passed. This

parameter decides how many neighbours (neighbours is defined based on a distance metric

which is used to identify nearest neighbors to the test datapoint) influence the regression

[89].

6.3.2 Sparkling Water (H2O) and Deep Learning

DL is a evolving technique that models high-level patterns in data as complex multi-

layered networks. DL can resolve most challenging prediction difficulties as it employs

general modelling [17]. Alternative deep neural network techniques apply artificial neural

network as the baseline with multiple hidden layers [17]. Traditional neural networks are

very challenging to train and usually do not perform better than other machine learning

144

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

techniques [17]. DL, on the other hand, provides an optimisation framework to improve

performance and accuracy as compared with the other available techniques as shown in

Figure 6.8.

Figure 6.8: Deep Learning versus other Machine Learning techniques [17].

The four diagrams in Figure 6.8 illustrate how different techniques were used to model

a complicated scenario. The Generalised Linear Model (GLM) fits a straight line through

the data. Tree-based ensemble methods such as Distributed Random Forests (DRF) and

Gradient Boosted Machines (GBM), perform better than GLM as these methods fit many

straight lines through the data, improving model “fit”. DL creates complex curves to the

data, delivering the most accurate model [17].

In DL the essential unit in the model is the neuron as shown in Figure 6.9 [17]. In this

model, the weighted combination α =
∑n

i=1wixi + b of the input is aggregated, and then

145

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

an output f(α) is transmitted by the connected neuron. Each neuron has a set of inputs

xi, each of which is given a specific weight wi. The function f() represents the non-linear

activation function (defined as an output of a neuron given an input or set of inputs)

utilised throughout the neuron network, and the bias b depicts the neuron’s activation

threshold (i.e. error threshold) [17].

Figure 6.9: Single neuron unit [17].

Figure 6.10: Multilayer of interconnected

neuron units [17].

Multilayer, feed-forward, neural networks contain many layers of interconnected neu-

rone units as shown in Figure 6.10 [17]. They consist of an input layer, multiple layers

of non-linearity, and a linear regression (or classification layer) to match the output. The

inputs and outputs of the Multilayer model’s units obey the fundamental logic of the single

neuron shown in Figure 6.9.

DL can recognise hidden intercommunication between features, study low-level features

from basic processed raw data, work with a lot of features and unlabelled data. Therefore,

it can be used to build more accurate predictive models. DL detects interactions among

features (two or more variables acting in combination) automatically, so it improves the

model. Traditional predictive modelling techniques can detect these interactions, but only

with manual interference. However, a DL model is very complex to understand as it can

have many layers and nodes and utilise a computationally intensive technique. Due to the

high volume of data and computing requirements however, machine learning techniques are

being developed to support distributed computing frameworks. The computing issue with

DL can be handled with such a framework. Sparking Water (H2O) is such a framework that

supports scalable machine learning and DL techniques on a distributed computing cluster.

H2O supports in-memory computation and is designed to run on a Hadoop cluster (i.e. it

supports Spark Cluster), hence it can be deployed on the OLA architecture. H2O’s DL

146

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

is based on a multilayer feed-forward artificial neural network, the data flows in the only

forward direction, is trained with stochastic gradient descent (an iterative optimisation

algorithm) using backpropagation, so it repeatedly processes data to enhance the efficiency

of predictions [17].

6.4 Design of the Data Access Pattern Intelligence Layer

This section demonstrates a few important components of the intelligence layer for the

DAP study.

6.4.1 Deep Learning Model for the Data Access Pattern Study

Figure 6.11 shows the DL model for the DAP. The method adopted was to train the DL

model with each dataset individually. Each variable (i.e. day, week, month or year) will

be represented by a neuron for the selected dataset for prediction. The following features

will be passed into each input neurons; eventType, userID, typeOfDay, dayGroup, day,

month, year and timeInTerms. Providing as many input neurons as possible will improve

the knowledge of each dataset in the model. The hidden layers are used for learning the

interconnections between neurons that are not visible at high-level. A prediction will be

made based on the learned patterns. This process will be carried out on each individual

input dataset. The training time will be very long if the model were to train each dataset

individually. With the help of streaming online learning, the training time can be reduced

as the model will be updated when new data become available.

Figure 6.11: Deep Learning model for the DAP study.

147

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

6.4.2 KNN Model for the Data Access Pattern Study

Figure 6.12 shows a higher overview of the KNN model for DAP. The selected and pre-

processed training data instances are passed into the KNN algorithm, and sample data

are extracted and used for prediction and model validation.

Figure 6.12: Traditional KNN model on Orange Canvas.

Table 6.4 shows the raw data and their corresponding ML features, which was converted

into a format supported by the KNN model. The KNN model uses the following features;

user ID (usrIn), Event Type (eventTypeIn) and dataset ID (datasetIn) in training and

prediction as shown in Table 6.4. The count column shows the number of access for each

dataset, which was used as a labeled point in supervised training.

148

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Table 6.4: An example of raw data and prepared data (in vector form) for KNN training

and prediction.

Raw data labeled point

ML features

corresponding to

the raw data

Features

vector

dataset eventType usr count datasetIn eventTypeIn usrIn features

panda.um.user.tik... put sm a b30926ba0a47ea7fb... 1.0 199.0 0.0 14.0 [199.0 0.0 14.0]

user.dfreebor.117... put sm a d41d8cd98f00b204e... 1.0 156.0 0.0 0.0 [156.0 0.0 0.0]

hc test.gangarbt.... put sm d41d8cd98f00b204e... 1.0 121.0 2.0 0.0 [121.0 2.0 0.0]

mc12 8TeV.206751.... put sm d41d8cd98f00b204e... 1.0 42.0 2.0 0.0 [42.0 2.0 0.0]

mc15 13TeV:mc15 1... get sm f876cbbf7bd93659a... 1.0 10.0 3.0 10.0 [10.0 3.0 10.0]

panda.um.user.mak... put sm a d41d8cd98f00b204e... 1.0 5.0 0.0 0.0 [5.0 0.0 0.0]

panda.um.user.mak... put sm a a42a65c5e4dff8422... 1.0 111.0 0.0 1.0 [111.0 0.0 1.0]

data11 7TeV:data1... get sm a fc987d5e531046f1a... 1.0 248.0 1.0 2.0 [248.0 1.0 2.0]

user.gangarbt.hc2... put sm a d41d8cd98f00b204e... 1.0 219.0 0.0 0.0 [219.0 0.0 0.0]

data15 13TeV:data... get sm a 76bcbb8d6fed0b7e1... 1.0 200.0 1.0 33.0 [200.0 1.0 33.0]

panda.0228214916.... get sm a a42a65c5e4dff8422... 1.0 8.0 1.0 1.0 [8.0 1.0 1.0]

mc15 13TeV.361824... put sm d41d8cd98f00b204e... 1.0 208.0 2.0 0.0 [208.0 2.0 0.0]

mc12 8TeV:mc12 8T... get sm a 6284a2a2697608593... 55.0 239.0 1.0 16.0 [239.0 1.0 16.0]

mc15 13TeV:mc15 1... get sm 84850d67f30bee551... 4.0 187.0 3.0 4.0 [187.0 3.0 4.0]

mc15 13TeV:mc15 1... get sm 84850d67f30bee551... 25.0 10.0 3.0 4.0 [10.0 3.0 4.0]

panda.0228154359.... get sm a a42a65c5e4dff8422... 7.0 43.0 1.0 1.0 [43.0 1.0 1.0]

user.dfreebor.117... put sm a d41d8cd98f00b204e... 1.0 236.0 0.0 0.0 [236.0 0.0 0.0]

mc15 13TeV.361800... put sm d41d8cd98f00b204e... 1.0 21.0 2.0 0.0 [21.0 2.0 0.0]

panda.0227074942.... get sm a 6284a2a2697608593... 5.0 215.0 1.0 16.0 [215.0 1.0 16.0]

6.4.3 Batch and Online Models for the Data Access Pattern Study

As the intelligence layer adapts the OLA, it inherits the pure streaming, pure batch, and

combination of batch and streaming layers. Therefore, streaming was used for developing

a pure online model for access prediction. For example, Figure 6.13 (a) shows that online

model uses the previous seven days of data points (D1...Dn) for training and predicting

the eighth day. In order to be an active and adaptive online model, the streaming job

incrementally moves each new day to the model while removing the oldest day from the

model as shown in Figure 6.13 (b) at the end of each day. The principle of this model is

that it be a long lived online prediction which will continuously train, predict, and produce

reports on streaming events. Although used for daily prediction in this study, this model

can be used for hourly prediction on a rapidly changing environment or monthly prediction

which is a more slow changing environment.

149

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.13: Streaming online model. It shows that online model uses the previous seven

days of data point for prediction (a), whereas (b) shows the incremental movement of each

new day data points to the model.

Figure 6.14 shows the combination of batch and online active adaptive prediction

models. The batch training uses historical data to build a model. Then the streaming

online prediction job loads the batch model, stores it into the state, updates the model as

the new events are streamed, and then makes prediction. Regular batch training is not

required as the model is actively shaped as new events arrive eliminating the time required

for retraining. This model was built in such a way that it can support year, month, week,

day, or hour predictions, and the D1...Dn range can be anything based on the application

scenario.

150

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.14: Batch and Streaming online model.

6.4.4 Active and Adaptive Learning

An active and adaptive learning algorithm collects new examples streamed in to update

the model rather than only using the initial batch processing training model. This model

takes raw data as input and preprocesses it to remove unnecessary parts of the data (e.g.

IP address) as there are more than 50 elements in each instance of the DAP metadata.

Then it converts the selected features into a vector with a labelled point. At a regular

interval, it updates the access pattern model using an online process.

6.4.5 Dataset Access Pattern Training Algorithm

Each compute node in the cluster trains a copy of the global model parameters on its local

DAP dataset concurrently, and regularly shares the weights to the global model through

model averaging across all the nodes in the network (as shown in Algorithm 6.1).

151

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Algorithm 6.1 Training the DAP model

1: Initialise a global model

2: Access the DAP training dataset from distributed nodes

3: Iterate over the DAP dataset in parallel and do:

4: Get a copy of the global model

5: Select sample data from each iteration

6: train and update all weights locally

7: Update the global model by combining and average the local weights across all nodes

6.5 Evaluation of the Adaptive Data Access Pattern Model

In this section an evaluation of the proposed adaptive DAP model is presented.

6.5.1 Experiment setup

The following quality matrices were used to evaluate the prediction model:

1. The Root Mean Squared Error (RMSE) show how close a fitted line is to a set of

data points. The calculation is done by taking the distances from the data point to

the regression line and squaring them. These distances are referred to as “errors”.

The squaring is done to prevent negative values cancelling positive values. It then

finds the average of the set of errors and calculate the square root of it. The smaller

the RMSE, the closer the fit is to the data [90]. In equation 6.3 the yi is the actual

value for a given input i, the N is the total number of fitted data points, and ŷi is

the fitted forecast value for the input i.

RMSE =

√∑N−1
i=0 (yi − ŷi)2

N
(6.3)

2. The coefficient of determination (R2) is applied in order to analyse how variations in

one variable can be described by a difference in a second variable. The coefficient of

determination is similar to the correlation coefficient (R), which will illustrate how

strong the linear relationship between two variables. The R2 is the square of the

correlation coefficient [91]. It can be used estimate how many data points fall within

152

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

the fitted regression line by the model. In equation 6.4, the yi is the actual value

for a given input i and the ȳ is the mean value of the actual values.

R2 = 1−
∑N−1

i=0 (yi − ŷi)
2∑N−1

i=0 (yi − ȳ)2
(6.4)

6.5.2 Data Preparation for Evaluation

On average five million data access event logs are recorded each day (approximately 1.5

GB data size after compression). Due to this volume, using the whole dataset for traning

with the traditional data mining tool is impossible, and sampling of the dataset is neces-

sary. However, sampling is not required with the proposed intelligence layer as it inherits

the OLA, so it can support processing of large volumes of data by splitting the dataset and

distributing it to multiple nodes while executing the training algorithm on that portion of

the data concurrently. The formulated dataset has a series of independent variables such

as dataset ID and event Type, etc. It also contains a continuous label (actual access value

i.e. access count) which is a dependent variable.

Many experiments were carried out to identify the accuracy and efficiency of the DAP

prediction. The Orange Canvas [86], a data mining toolbox, was used to evaluate the

DAP on a traditional model. For this test the training dataset had to be sampled, so a

dataset for training as well as a separate dataset for testing and validating the technique

was required. A random sampling of the data was carried out for the traditional model

training and prediction. The same training dataset was used for predictions on both the

traditional model and on the distributed intelligence layer.

6.5.3 Performance Evaluation of the DAP on a Traditional Model

Orange Canvas’s KNN regression algorithm was employed for the performance and accu-

racy evaluation of the traditional model. The same dataset used for training the model was

used to test the prediction, however, the label used in supervised learning was removed.

Figure 6.15 shows the training and testing times of the traditional KNN regression algo-

rithm. It can be observed that the number of training data instances varied from 1000 to

150,000 with the training time ranging from one second to 2750 seconds. The traditional

153

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

machine was struggling (freezing) as the number of training and testing instances was

increased.

Figure 6.15: Traditional KNN training and prediction time over various data instances.

6.5.4 Evaluation of Accuracy of DAP on a Traditional System

Figure 6.16 shows the prediction error rate (RMSE) ranging from a lower error rate of

0.26 to a higher error rate of 0.37. It was evaluated on the same dataset used for the

performance evaluation. It also shows that the error rate dropped as a high coefficient of

determination (R2) was identified.

154

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.16: Traditional KNN prediction error rate.

6.5.5 Performance Evaluation of the Intelligence Layer for the DAP

Study

This section presents a performance evaluation of the pure batch model, and the combi-

nation of batch and online model.

Evaluation of the batch training

A KNN algorithm and DL algorithm for the DAP study were developed as described in

Section 6.4 to support the distributed nature of the OLA. Figure 6.17 shows the training

and prediction time of the distributed batch KNN. The amount of time it took to train

and test the DAP on the traditional KNN model using 100,000 data instances on a single

node was 1981 seconds, while the distributed batch KNN took ∼541 seconds using four

executors, two cores and 4096 MB memory for each executor (i.e. 4096 × 4 = 16384 MB).

The distributed batch KNN was able to train and predict 3x faster than the traditional

KNN. However, the traditional KNN took less time to train and predict compared to

distributed batch KNN when the number of data instances was less than 5,000. This

is due to the overhead added to the distributed batch KNN in finding, and allocating,

155

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

resources.

Figure 6.17: Distributed batch KNN and Traditional KNN training and prediction time

over various data instances.

In order to evaluate the DL approach, the training data was split by day for each

dataset and subsequently fed into the model. The training data ranged from seven days

to 48 days. For example, for the seven day evaluation the DL model was trained with

seven days, and predicted the 8th day. As expected 48 days of events was large (62 GB),

and it took a long time to pre-process the data for input to the DL model. The data were

pre-processed before conducting the performance evaluation (so pre-processing time has

been discarded in this evaluation). The prepared training data of 48 days was reduced to

1.1 GB (2.8 million instances). Figure 6.18 shows the performance of the training. Eight

executors were used to train the DL model and each executor was allocated with 12 GB

memory, and with four CPU cores. The DL model has to train each dataset individually,

and it must train many instances so it is a resource depleting process. Training the DL

model was expensive in terms of execution time although large computing resources were

allocated.

156

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.18: Distributed batch DL training and prediction for different sized training

datasets.

Assessment of the adaptive model training

The training of the distributed batch KNN and DL model was faster than the traditional

model, particularly, in the case of KNN. However, distributed batch training requires

human interaction for updating the model. It is a time consuming process as all historical

data are needed to be used for retraining. With the adaptation of the OLA, the streaming

layer was able to process the incoming events and update the model as it was streaming,

eliminating the retraining time.

6.5.6 An Accuracy Evaluation of the Intelligence Layer for the DAP

Study

This section presents an evaluation of the accuracy of the pure batch and the combination

of batch and online models. Accuracy comparisons were made between the simplest KNN

method and the advanced DL approach.

157

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Evaluation of the batch training

Figure 6.19 demonstrates that the accuracy of the distributed batch KNN is comparable to

that of the traditional KNN. However, the distributed batch KNN has a slightly higher er-

ror rate (lowest: 0.29 and highest: 0.39) and lower variance than that of traditional model.

It also shows that the error rate (RMSE) dropped as high coefficient of determination R2

was identified.

Figure 6.19: Distributed batch KNN and Traditional KNN prediction error rate.

Figure 6.20 shows the prediction accuracy of the DL model. In general, the DL model

predicted well with a lower error rate of .095 in comparison to other models though it

is expensive in terms of resources and time. The DL model also found a high variance

between variables. It is understandable why this model had the lowest error rate, as each

dataset was trained and predicted individually.

158

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.20: Distributed batch DL prediction error rate.

In addition to the KNN and DL techniques, the Linear Regression (LR), Decision Tree

(DT), and Random Forest (RF) methods were evaluated in batch processing for the DAP

study, using 100,000 training data instances.

LR is a very basic method used for predictive analysis. Regression ratings are applied

to describe data, and to describe the relationship between a dependent variable and one

or more independent variables. The LR analysis consists of three main stages; analysing

the correlation and directionality of the data, computing the model (i.e. fitting the line)

and evaluating the validity and usefulness of the model [88]. Figure 6.21 shows the actual

number of data accesses against the predicted number of data accesses for a random sam-

ple of data using LR. The RMSE for the LR prediction was 0.51 which clearly has a high

error rate.

159

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.21: Plot showing the actual against the predicted dataset accesses for Linear

Regression.

A DT is a structure that uses a branching approach in order to demonstrate every

potential outcome of a decision including a root node, branches, and leaf nodes. In a DT,

each regional node signifies a test on an attribute, each branch signifies the outcome of a

test and each leaf node holds a continuous value (regression) or class label (classification)

[88]. Figure 6.22 shows the actual data access against the predicted access for a random

sample of data using DT. The RMSE for the DT prediction was 0.32 which has a better

error compared to the LR. The plot presents that the predicted access pattern is much

better than the LR prediction.

160

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.22: Plot showing the actual against the predicted dataset accesses for Decision

Tree.

A RF approach consists of a great number of DTs and is known as an ensemble ap-

proach. All information is supplied to every DT. The most frequent outcome for each piece

of information is accepted as the final output. The RF corrects the DTs overfitting issue

by discarding random noises in the data and by picking up the underlying relationship

between the data. The principal behind an ensemble approach is that a collection of weak

models can put together to form a strong model [88]. Figure 6.23 shows the actual data

access against the predicted access for a random sample of data using RF. The RMSE for

the RF prediction was 0.26 which is a better error compared to the LR and DT. The plot

shows that the predicted access pattern is much better than the LR and DT predictions.

The prediction is well aligned with the actual number of data accesses.

161

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.23: Plot showing the actual against the predicted dataset accesses for Random

Forest.

Assessment of the adaptive model training

The pure streaming model of both KNN and DL did not give a good prediction as it had

to build a model purely based on streaming events. With time, however, it was able to

improve the model. A pure online model can be used when there is no historical data

available. It is best to use the OLA model for prediction, which is the combination of

both batch and streaming layers. As already demonstrated, a distributed batch model

provides good predictions, particularly when using the DL technique. Therefore, the role

of the streaming layer was to load the batch model and to actively adapt the model as

new events were streamed in. The observation of the OLA based model prediction showed

it was comparable to the pure batch based model, though minor difference were present

due to dynamic training.

6.5.7 Scalability Evaluation of the Intelligence Layer for Studying DAP

The OLA evaluation presented in Chapter 5 has already demonstrated that it scales well.

Therefore, deploying distributed batch algorithms will inherit the characteristics of the

OLA. Allocating an appropriate number of processing executors, parallel tasks, and mem-

ory, reduces the training and prediction time considerably for the proposed approaches.

162

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.24 shows the basic throughput of the distributed batch KNN, in terms of the

number of data instances trained and predicted per second and the total execution time

as the number of processing executors was increased. The evaluation was carried out with

100,000 data instances.

Figure 6.24: Scalability of the distributed batch KNN training and prediction.

Figure 6.25 shows the scalability of the DL training. The plot shows how changing the

number of executors impacts the performance. For this test, the amount of memory used

for each executor was fixed at 4 GB and with 2 CPU cores. The evaluation was carried

out using 14 days of training data. The plot demonstrates that performance improves

roughly linearly as the number of executors was increased. However, between 8 nodes

and 10 nodes the performance stabilised due to resource allocation and intermediate data

distribution between executors.

163

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

Figure 6.25: Scalability of the distributed batch DL training and prediction.

6.6 Summary

To distribute data more efficiently across a network for analysis prediction of the future

data access pattern is needed. The underlying assumption was that historic user behaviour

could be used to make predictions about future data access patterns. This chapter pre-

sented a data access pattern study using an intelligence layer which employs an active

and adaptive model for prediction. The batch model was built using historical training

data and was then actively adapted and updated using an online model as new events

were streamed in. The built model was deployed on the Optimised Lambda Architecture

for evaluating data from the ATLAS distributed data management system. The model

was explored with a simple algorithm, K-Nearest Neighbour, and an advanced technique,

Deep Learning. The data access pattern model was developed with the Spark and Spark

Streaming stack with the intention of inheriting the parallelism, scalability, low-latency

computation, and performance properties. The performance and accuracy of the proposed

prediction models show that they can be used to provide efficient data distribution deci-

sions. Deep Learning prediction presented a lower error rate in comparison to the other

models studied. The ATLAS group’s current prediction model error rate is 0.24 (RMSE)

164

Chapter 6. Real-time processing and Machine Learning for forecasting data access
pattern

[83], whereas the proposed Deep Learning model demonstrated that it was able to predict

with 0.095 error rate. However, the proposed model did not use the same training dataset

as that used by the ATLAS group.

165

Chapter 7

Conclusions and Future Work

In this chapter, a summary of the foremost contributions and limitations of the research

carried out for this thesis is presented. Opportunities for future work are highlighted.

7.1 Conclusions

Scientific infrastructures are highly distributed and heterogeneous platforms with various

middleware characteristics, job submissions, and execution tools, and have diverse meth-

ods of transferring and accessing datasets. The high level of computation activity and the

distributed nature of the infrastructure makes the system extremely complex. Taking this

into consideration, the probability of failures or inefficiencies is high compared with more

traditional systems. Efficient monitoring is necessary in order to present a comprehensive

strategy to recognise and resolve any issues within the infrastructure. This is an important

determinant in the overall effective utilisation of resources.

In this research an investigation into evolving approaches in architecting a scalable data

store and analytics platform for real-time monitoring of data intensive scientific infrastruc-

ture was conducted. Various methods were studied and developed into a state-of-the-art

monitoring system. While numerous techniques exist, Lambda Architecture drew sub-

stantial interest and was adopted on a smaller scale.

In real world scientific settings monitoring systems traditionally use a relational database

166

Chapter 7. Conclusions and Future Work

for storage and analytics. However, the traditional method is no longer optimal due to

foreseen characteristics of the Big Data. The use of Big Data technologies and approaches,

such as distributed computing and parallel frameworks for a large scale real-time moni-

toring system for scientific infrastructure, in these scenarios is considered an innovative

research area.

In this thesis, the Lambda Architecture (LA) has been recognised as an empowering

approach for a monitoring system that supports scalability and real-time operation. This

was deemed an essential baseline for research work performed towards optimising, estab-

lishing, presenting, and evaluating, a flexible, collaborative, distributed, scalable, real-time

monitoring system. This architecture is designed to be able to scale at the rate mandated

by the continuously evolving volume, velocity, and variety of monitoring events. However,

the LA was complex to implement, maintain, and synchronise the layers in order to serve

the computed statistics. To mitigate this complexity, the presented thesis proposes and

evaluates an Optimised Lambda Architecture (OLA); a scalable distributed monitoring

system supporting the real-time Spark ecosystem. This was achieved by utilising Spark

batch computation and a Spark streaming layer, which enables reusable codes between

each layer. Streaming was used for incremental calculation to serve the real-time state of

the infrastructure, while batch computation was scheduled to run to correct any inaccura-

cies caused by the real-time computations. The performance improvements of the OLA,

when compared to the traditional counterpart, included a x5 improvement in speed and

x2 improvement in speed compared with the LA.

Parts of the infrastructure could not be monitored by the conventional system due to

the high volume and velocity of the data. However, the OLA demonstrated that it had

no issue with accommodating and processing large datasets at high speed while the data

were propagated. While monitoring scientific infrastructure is a computationally intensive

process, the parallel processing framework and in-memory computation of the OLA allows

for faster computation, with execution times that were not feasible with the traditional

system.

The OLA is highly efficient in the case of supporting a data-intensive use case, and it

167

Chapter 7. Conclusions and Future Work

scales well with increasing dataset size. The OLA has saved operational time as well as

computation time in comparison to the traditional architecture used by the WLCG. With

the traditional workflow consisting of local filesystems (dirq), local collectors, PL/SQL

computations had several hours per week dedicated to clean up the partition of the ma-

chines and to maintain services. However, with the OLA resiliency, stability, low-latency

and ease of recovering and recomputing it has reduced the operation time to almost zero.

An estimated 0.5 days/week is saved with the OLA now implemented by the WLCG. In

terms of performance, the OLA does not require recomputation by utilising real-time com-

putation, whereas the traditional architecture recomputes at a regular interval. The OLA

batch layer reduced computation time by a factor of 5 in comparison with the traditional

PL/SQL system.

In order to further improve the OLA, with the intention of coming up with an intelli-

gence layer, a data access pattern prediction study utilising an active and adaptive model

was presented. A data access pattern study was selected solely based on its ability to com-

plement Big Data characteristics. This study should open avenues to automating other

use cases such as the detection of failures and anomalous accesses. The intelligence layer

for studying the data access pattern provides a heterogeneous machine learning technique

on an offline dataset (batch layer) and an online dataset (streaming layer). The intelli-

gence layer has been incorporated into the OLA and it tries to achieve a balance between

maximising resources, minimising economical costs, and performance for predicting the

dataset access pattern with high accuracy.

The combination of the proposed efficient data acquisition techniques, the OLA, and

the intelligence layer designed and evaluated are believed to contribute a unified approach

towards a scalable, low-latency, intelligent, high-performance, and commodity-based moni-

toring architecture for data-intensive scientific infrastructures. The outputs of this research

will be applicable to any scientific infrastructure as well as any commercial infrastructure,

as it was demonstrated with the Amazon Cloud System.

168

Chapter 7. Conclusions and Future Work

7.2 Future Work

In this thesis, a single scientific infrastructure was evaluated, though the evaluation was

carried out on two independent experiment datasets (CMS and ATLAS). For a further

understanding of the proposed architecture, it would be interesting to evaluate another

scientific or commercial infrastructure, for example, a smart grid for which Big Data has

become a significant concern due to the rapid deployment and use of digital devices such as

smart meters (electronic devices that register consumption of electric energy) and phasor

measurement units (devices that measure electrical waves).

Further research opportunities also exists in terms of the financial perspective of the

architecture, especially with regard to the use of a cloud system where a pay per use me-

tering system could be employed. Evaluation of the architecture to see whether deploying

the architecture into a cloud is better in comparison to building the architecture on an

in-house cluster could be carried out. This study would require detailed evaluation of

current requirements as well as future needs.

The intelligence layer could be enhanced by using an alerting mechanism to notify users

when it predicts there will be a sudden demand for a dataset, automatically replicating

the dataset in demand.

169

Bibliography

[1] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts, methods,

and analytics. International Journal of Information Management, 35(2):137–144,

2015.

[2] Julia Andreeva, Max Boehm, Benjamin Gaidioz, Edward Karavakis, Lukasz

Kokoszkiewicz, Elisa Lanciotti, Gerhild Maier, William Ollivier, Ricardo Rocha,

Pablo Saiz, et al. Experiment dashboard for monitoring computing activities of the

lhc virtual organizations. Journal of Grid Computing, 8(2):323–339, 2010.

[3] Michael Hausenblas and Nathan Bijnens. Lambda architecture. URL: http://lambda-

architecture. net/. Luettu, 6:2015, 2014.

[4] J Forgeat. Data processing architectures lambda and

kappa. http://www.ericsson.com/research-blog/data-knowledge/

data-processing-architectures-lambda-and-kappa, 2015. [Online; accessed

25-05-2016].

[5] Apache. Drill. http://drill.apache.org, 2015. [Online; accessed 25-05-2014].

[6] Cloudera. Impala. http://www.cloudera.com/content/cloudera/en/

products-and-services/cdh/impala.html, 2015. [Online; accessed 25-05-2014].

[7] Facebook. Presto. http://prestodb.io, 2015. [Online; accessed 25-05-2014].

[8] Apache. Apache storm. https://storm.apache.org, 2012. [Online; accessed 12-04-

2016].

170

http://www.ericsson.com/research-blog/data-knowledge/data-processing-architectures-lambda-and-kappa
http://www.ericsson.com/research-blog/data-knowledge/data-processing-architectures-lambda-and-kappa
http://drill.apache.org
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
 http://prestodb.io
https://storm.apache.org

Bibliography

[9] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed

stream computing platform. In Data Mining Workshops (ICDMW), 2010 IEEE In-

ternational Conference on, pages 170–177. IEEE, 2010.

[10] Amazon. Kinesis. 2014. [Online; accessed 25-05-2014].

[11] Apache. Samza. 2014. [Online; accessed 25-05-2014].

[12] Apache. Spark streaming. 2014. [Online; accessed 25-05-2014].

[13] CERN. LHC physics data taking gets underway at new record collision energy of

8TeV. http://press.web.cern.ch, 2012. [Online; accessed 18-12-2015].

[14] WLCG. Worldwide LHC Computing Grid. http://wlcg.web.cern.ch. [Online;

accessed 20-12-2015].

[15] WLCG. WLCG Experiment Dashboard. http://dashboard.cern.ch, 2012. [Online;

accessed 01-10-2016].

[16] M.V Georgiou and L. Magnoni. Real-time statistic analytics for the WLCG Transfers

Dashboard with Esper. Technical report, CERN, Geneva, Sept 2014.

[17] Arno Candel, Viraj Parmar, Erin LeDell, and Anisha Arora. Deep learning with h2o.

H2O. ai Inc.,, 2016.

[18] T. White. Hadoop: The Definitive Guide, 3rd ed. Yahoo press, 2012.

[19] Nathan Marz and James Warren. Big Data. Principles and best practices of scalable

realtime data systems. Manning Publications, 2015.

[20] Joseph M Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of a

database system. Now Publishers Inc, 2007.

[21] Jim Brandt, Karen Devine, and Ann Gentile. Infrastructure for in situ system moni-

toring and application data analysis. In Proceedings of the First Workshop on In Situ

Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pages 36–40.

ACM, 2015.

171

 http://press.web.cern.ch
http://wlcg.web.cern.ch
http://dashboard.cern.ch

Bibliography

[22] Vladimı́r Maŕık, JL Martinez Lastra, and Petr Skobelev. Industrial applications

of holonic and multi-agent systems. In 6th International Conference, HoloMAS.

Springer, 2013.

[23] Fernando P. Garcia Martinez, Antonio R and Rafael Marin-Lopez. Architectures and

protocols for secure information technology infrastructures, 2014.

[24] J Andreeva, A Beche, S Belov, I Dzhunov, I Kadochnikov, E Karavakis, P Saiz,

J Schovancova, and D Tuckett. Processing of the wlcg monitoring data using nosql.

In Journal of Physics: Conference Series, volume 513, page 032048. IOP Publishing,

2014.

[25] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep

Ganguli. Druid: a real-time analytical data store. In Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pages 157–168. ACM,

2014.

[26] Subhas Chandra Mukhopadhyay. New Developments in Sensing Technology for Struc-

tural Health Monitoring. Springer, 2011.

[27] S Uesugi. What is kappa architecture? http://www.ericsson.com/research-blog/

data-knowledge/data-processing-architectures-lambda-and-kappa, 2015.

[Online; accessed 25-05-2016].

[28] Who’s who in technology, 2005.

[29] Byron Ellis. Real-time analytics: Techniques to analyze and visualize streaming data.

John Wiley & Sons, 2014.

[30] Hesheng Chen. Large Research Infrastructures Development in China: A Roadmap

to 2050. Springer, 2011.

[31] Karan Vahi, Ian Harvey, Taghrid Samak, Dan Gunter, Kim Evans, David Rogers, Ian

Taylor, Monte Goode, Francisco Silva, Eddie Al-Shakarchi, et al. A general approach

to real-time workflow monitoring. In High Performance Computing, Networking,

Storage and Analysis (SCC), 2012 SC Companion:, pages 108–118. IEEE, 2012.

172

http://www.ericsson.com/research-blog/data-knowledge/data-processing-architectures-lambda-and-kappa
http://www.ericsson.com/research-blog/data-knowledge/data-processing-architectures-lambda-and-kappa

Bibliography

[32] Pethuru Raj. Handbook of research on cloud infrastructures for big data analytics.

IGI Global, 2014.

[33] Bent J Mackey G, Sehrish S. Introducing map-reduce to high end computing. petas-

cale data storage. PDSW, 2008.

[34] Ronald C Taylor. An overview of the hadoop/mapreduce/hbase framework and its

current applications in bioinformatics. BMC bioinformatics, 11(12):S1, 2010.

[35] Gang-Hoon Kim, Silvana Trimi, and Ji-Hyong Chung. Big-data applications in the

government sector. Communications of the ACM, 57(3):78–85, 2014.

[36] Fox G. Ekanayake J, Pallickara S. Mapreduce for data intensive scientific analyses.

IEEE, 2008.

[37] et al. Attebury G, Baranovski A. Hadoop distributed file system for the grid. IEEE,

2009.

[38] Apache. Apache spark. https://spark.apache.org. [Online; accessed 12-04-2016].

[39] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster computing with working sets. HotCloud, 10:10–10, 2010.

[40] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,

Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets.

Communications of the ACM, 54(6):114–123, 2011.

[41] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion

Stoica. Discretized streams: A fault-tolerant model for scalable stream processing.

Technical report, DTIC Document, 2012.

[42] T. M. Mitchell. The Discipline of Machine Learning. Technical Report 9, Carnegie

Mellon University, School of Computer Science, Machine Learning Department, 2006.

[43] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 3rd edition,

volume 9. Pearson, 2009.

173

https://spark.apache.org

Bibliography

[44] EMC Digital Universe with Research Analysis by IDC. The digital uni-

verse of opportunities: Rich data and the increasing value of the inter-

net of things. http://www.emc.com/leadership/digital-universe/2014iview/

executive-summary.htm, 2014. [Online; accessed 11-04-2016].

[45] Apache. Apache hadoop. https://hadoop.apache.org, 2008. [Online; accessed

11-04-2016].

[46] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

Communications of the ACM, 51, 1:107–113, 2008.

[47] S. Shenker, I. Stoica, T. Hunter, M. Zaharia, T. Das, and H. Li. Resilient distributed

datasets: A fault-tolerant abstraction for in-memory cluster computing. Usenix, 37,

4:45–51, 2012.

[48] M. Zaharia, M. Chowdhury, T. Das, and A. Dave. Fast and interactive analytics over

hadoop data with spark. Usenix, 37, 4:45–51, 2012.

[49] Z. Ni. Comparative evaluation of spark and stratosphere. KTH Information and

Communication Technology, 2013.

[50] S. Shenker and I. Stoica and T. Hunter and M. Zaharia and T. Das and H. Li. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

Technical Report UCB/EECS-2012-259, Univ. California, Berkeley, Apr 2012.

[51] Apache. Apache flink. https://flink.apache.org, 2014. [Online; accessed 12-04-

2016].

[52] Apache. Apache h2o. http://www.h2o.ai, 2014. [Online; accessed 12-04-2016].

[53] Anisha Arora, Arno Candel, Jessica Lanford, Erin LeDell, and Viraj Parmar. Deep

learning with h2o, 2015.

[54] Apache. Apache spark machine learning library. http://spark.apache.org/mllib,

2014. [Online; accessed 12-05-2016].

[55] skymind. Deeplearning4j. http://deeplearning4j.org, 2014. [Online; accessed

14-05-2016].

174

http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm
https://hadoop.apache.org
https://flink.apache.org
http://www.h2o.ai
http://spark.apache.org/mllib
http://deeplearning4j.org

Bibliography

[56] Gianmarco De Francisci Morales and Albert Bifet. Samoa: Scalable advanced massive

online analysis. The Journal of Machine Learning Research, 16(1):149–153, 2015.

[57] Cloudera. Cloudera oryx. https://github.com/cloudera/oryx, 2014. [Online;

accessed 18-05-2016].

[58] John Langford, L Li, and A Strehl. Vowpal wabbit. URL

https://github.com/JohnLangford/vowpalwabbit/wiki, 2011.

[59] C. Snijders, U. Matzat, and U.-D Reips. Big Data: Big Gaps of Knowledge in the

Field of Internet Science. International Journal of Internet Science, 7, 1:1–5, 2012.

[60] A. Aamnitchi, S. Doraimani, and G. Garzoglio. Filecules in highenergy physics:

Characteristics and impact on resource management. High Performance Distributed

Computing, pages 69–80, 2016.

[61] D. Minoli. A Networking Approach to Grid Computing. John Wiley & Sons, Inc.,

2015.

[62] C. Nicholson and et al. Dynamic data replication in LCG 2008. Concurrency and

Computation: Practice and Experience, 20, 11:1259–1271, 2008.

[63] L. Magnoni, U. Suthakar, C. Cordeiro, M. Georgiou, J. Andreeva, A. Khan, and D.R

Smith. Monitoring WLCG with lambda-architecture: a new scalable data store and

analytics platform for monitoring at petabyte scale. Journal of Physics: Conference

Series, 664(5):052023, 2015.

[64] J. Knobloch and L. Robertson. LHC Computing Grid:Technical Design Report-LCG-

TDR-001, 2005.

[65] K. Grim. Tier-3 computing centers expand options for physicists, International

Science Grid This Week (iSGTW), 2009.

[66] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2013.

[67] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable

virtual organizations. The International Journal of High Performance Computing

Applications, 15, 3:200–222, 2011.

175

https://github.com/cloudera/oryx

Bibliography

[68] E. Laure, S.M Fisher, A. Frohner, C. Grandi, P.Z Kunszt, A. Krenek, O. Mulmo,

F. Pacini, F. Prelz, J. White, M. Barroso, P. Buncic, F. Hemmer, A. Di Meglio, and

A. Edlund. Programming the Grid with gLite. Computational Methods in Science

and Technology, 12, 1:33–45, 2006.

[69] I. Foster. What is the grid? A three point checklist, GRIDToday, 2011.

[70] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Distributed File

System. IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),

pages 1–10, 2010.

[71] S. Ghemawat, H. Gobioff, and S.T Leung. The google file system. ACM SIGOPS

Operating Systems Review, 37, 5:29–43, 2003.

[72] Apache Flume project. https://flume.apache.org, 2012. [Online; accessed 02-01-

2016].

[73] K. Skaburska. The Dirq project. http://dirq.readthedocs.org, 2013. [Online;

accessed 27-12-2015].

[74] R. Gardner, S. Campana, G. Duckeck, J. Elmsheuser, A. Hanushevsky, F.G Hnig,

J. Iven, F. Legger, I. Vukotic, W. Yang, and the Atlas Collaboration. Data feder-

ation strategies for ATLAS using XRootD. Journal of Physics: Conference Series,

513(4):042049, 2014.

[75] Jeffrey Dean and Sanjay Ghemawat. In MapReduce: simplified data processing on

large clusters. OSDI04: Proceedings of the 6th conference on symposium on operating

systems design and implementation - USENIX Association, 2004.

[76] Thomas Bernhardt. The Esper project, http://www.espertech.com/esper.

[77] Julia Andreeva, Benjamin Gaidioz, Juha Herrala, Gerhild Maier, Ricardo Rocha,

Pablo Saiz, and Irina Sidorova. Dashboard for the LHC experiments. In International

Symposium on Grid Computing, ISGC 2007, pages 131–139, 2009.

[78] Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia. Learning spark:

lightning-fast big data analysis. ” O’Reilly Media, Inc.”, 2015.

176

https://flume.apache.org
http://dirq.readthedocs.org

Bibliography

[79] Zaharia, Matei et all. In Resilient Distributed Datasets: A Fault-tolerant Abstrac-

tion for In-memory Cluster Computing, NSDI’12, pages 2–2, Berkeley, CA, USA,

2012. Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation - USENIX Association.

[80] Amazon. https://aws.amazon.com, 2012. [Online; accessed 12-04-2016].

[81] Databricks. https://databricks.com. [Online; accessed 12-04-2016].

[82] WLCG. WLCG Data acTivities dashboard. http://dashb-wdt-xrootd.cern.ch/

ui, 2014. [Online; accessed 27-04-2016].

[83] T Beermann, P Maettig, G Stewart, M Lassnig, V Garonne, M Barisits, R Vigne,

C Serfon, L Goossens, A Nairz, et al. Popularity prediction tool for atlas distributed

data management. In Journal of Physics: Conference Series, volume 513, page

042004. IOP Publishing, 2014.

[84] Vincent Garonne, R Vigne, G Stewart, M Barisits, M Lassnig, C Serfon, L Goossens,

A Nairz, Atlas Collaboration, et al. Rucio–the next generation of large scale dis-

tributed system for atlas data management. In Journal of Physics: Conference Series,

volume 513, page 042021. IOP Publishing, 2014.

[85] Tadashi Maeno. Panda: distributed production and distributed analysis system for

atlas. In Journal of Physics: Conference Series, volume 119, page 062036. IOP

Publishing, 2008.

[86] Janez Demšar, Blaž Zupan, Gregor Leban, and Tomaz Curk. Orange: From exper-

imental machine learning to interactive data mining. In European Conference on

Principles of Data Mining and Knowledge Discovery, pages 537–539. Springer, 2004.

[87] Brian D Ripley. The r project in statistical computing. MSOR Connections. The

newsletter of the LTSN Maths, Stats & OR Network, 1(1):23–25, 2001.

[88] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised

learning algorithms. In Proceedings of the 23rd international conference on Machine

learning, pages 161–168. ACM, 2006.

177

 https://aws.amazon.com
https://databricks.com
http://dashb-wdt-xrootd.cern.ch/ui
http://dashb-wdt-xrootd.cern.ch/ui

Bibliography

[89] Florent Burba, Frédéric Ferraty, and Philippe Vieu. k-nearest neighbour method in

functional nonparametric regression. Journal of Nonparametric Statistics, 21(4):453–

469, 2009.

[90] Cort J Willmott. Some comments on the evaluation of model performance. Bulletin

of the American Meteorological Society, 63(11):1309–1313, 1982.

[91] A Colin Cameron and Frank AG Windmeijer. An r-squared measure of goodness of fit

for some common nonlinear regression models. Journal of Econometrics, 77(2):329–

342, 1997.

178

	Introduction
	Motivations
	Methodology
	Major Contributions to Knowledge
	Thesis Organisation

	Review of Literature
	Architecture
	Review
	Summary

	Technology
	Batch Process
	Interactive ad-hoc query engine
	Real-Time Processing
	Summary

	Machine Learning techniques
	Machine Learning libraries and techniques
	Summary

	An efficient strategy for the collection and storage of large volumes of data for computation
	Introduction
	Background
	Design and methodology
	Implementation

	Results and discussion
	Performance results of data ingestion with and without data transformation
	Performance results of intermediate data transformation using a MapReduce job
	Performance results of a simple analytic computation with and without data transformation
	Summary of the performance results
	Evaluation of Apache Flume

	Summary

	Monitoring scientific infrastructure with the Lambda architecture
	Introduction
	The Lambda Architecture
	Difference between common scientific use case and the classic Lambda use case

	A new data store and analytics platform for monitoring scientific infrastructure
	Data transport: Message Broker
	Data collection: Apache Flume
	Batch processing: Apache Hadoop
	Archiving: HDFS
	The common data access service layer
	The serving layer: Elasticsearch
	Real-time processing: Esper

	Implementation of WLCG analytics on the new platform
	WLCG data activities use case
	Implementation of the batch layer
	Data representation
	Implementation of the real-time layer
	Implementation of the serving layer

	Performance results for WDT computation on the new platform
	Experiment setup
	The performance of batch computations with scaling dataset
	The performance of batch computations with scaling nodes
	The performance of batch computations with parallelisation
	The performance of the serving layer
	The performance of the real-time processing

	Summary

	Optimised Lambda Architecture using Apache Spark technology
	Introduction
	Background
	Architecture and design
	Merging and synchronising Optimised Lambda Architecture layers

	Performance evaluation of the Optimised Lambda Architecture
	Experiment setup
	Illustration of the workflow
	Performance evaluation of WLCG environment and WDT use case
	Evaluating the accuracy of monitoring computations
	Evaluation of scalability, on the Amazon EC2 cloud cluster

	Summary

	Real-time processing and Machine Learning for forecasting data access pattern
	Introduction
	Data Analysis and Data Modelling
	Data Acquisition
	Data Pre-Processing
	Initial DAP dataset analysis
	Auto-regression analysis
	Comparison of auto-regression and mean forecasting model

	Machine Learning Techniques and Algorithms
	Sparks K-Nearest Neighbours (KNN)
	Sparkling Water (H2O) and Deep Learning

	Design of the Data Access Pattern Intelligence Layer
	Deep Learning Model for the Data Access Pattern Study
	KNN Model for the Data Access Pattern Study
	Batch and Online Models for the Data Access Pattern Study
	Active and Adaptive Learning
	Dataset Access Pattern Training Algorithm

	Evaluation of the Adaptive Data Access Pattern Model
	Experiment setup
	Data Preparation for Evaluation
	Performance Evaluation of the DAP on a Traditional Model
	Evaluation of Accuracy of DAP on a Traditional System
	Performance Evaluation of the Intelligence Layer for the DAP Study
	An Accuracy Evaluation of the Intelligence Layer for the DAP Study
	Scalability Evaluation of the Intelligence Layer for Studying DAP

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

