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Abstract

This thesis addresses and identifies outstanding challenges associated with the Multi

user massive Multiple-Input Multiple-Output (MU massive MIMO) transmission,

whereby various system scenarios have been considered to tackle these challenges.

First, for a single cell scenario, the uplink effective capacity under statistical

exponent constraints, the asymptotic error and outage probabilities in a multi user

massive MIMO system are provided. The proposed approach establishes closed form

expressions for the aforementioned metrics under both perfect and imperfect channel

state information (CSI) scenarios. In addition, expressions for the asymptotically

high signal-to-interference ratio (SIR) regimes are established.

Second, the statistical queueing constraints, pilot contamination phenomenon

and fractional power control in random or irregular cellular massive MIMO system

are investigated, where base station locations are modelled based on the Poisson

point process. Specifically, tractable analytical expressions are developed for the

asymptotic SIR coverage, rate coverage and the effective capacity under the quality

of service statistical exponent constraint. Laplace transform of interference is derived

with the aid of mathematical tools from stochastic geometry. Simulation outcomes

demonstrate that pilot reuse impairments can be alleviated by employing a cellular

frequency reuse scheme. For example, with unity frequency reuse factor, we see that

40% of the total users have SIR above −10.5dB, whereas, with a reuse factor of 7, the

same fraction of users have SIR above 20.5dB. In addition, for a certain parameters

setting, the coverage probability in the lower 50th percentile can be maximized by

adjusting power compensation fraction between 0.2 and 0.5. Also, for SIR threshold

of 0dB, allocating 0.25 fraction of uplink transmit power can achieve approximately

6% improvement in coverage probability in the cell edge area compared to constant

power policy and about 14% improvement compared to the full channel-inversion

policy.

Third and last, motivated by the powerful gains of incorporating small cells

with macro cells, a massive MIMO aided heterogeneous cloud radio access network

(H-CRAN) is investigated. More specific, based on Toeplitz matrix tool, tractable

formulas for the link reliability and rate coverage of a typical user in H-CRAN are

derived. Numerical outcomes confirm the powerful gain of the massive MIMO for

enhancing the throughput of the H-CRAN while small remote radio heads (RRH

cells) are capable of achieving higher energy efficiency.
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Chapter 1

Introduction

This introductory chapter begins with the description of issues currently existing in

the wireless transmission which needs to be addressed and it highlights the questions

which this research aims to answer. First, section 1.1 identifies the problem that

the thesis tries to address. Section 1.2 then, gives some details about Multiple-

Input Multiple-Output (MIMO) transmission technologies. After that, section 1.3

highlights the motivation for employing large scale antenna arrays. Next, the major

contributions of this research are highlighted in section 1.4. Finally, section 1.5

provides a description of the thesis outline.

1.1 The statement of the problem

Driven by the new applications and rapid growth in wireless communications, the

demand for the radio frequency (RF) spectrum has been increased and market is de-

manding that next generation networks should support much higher system capacity

(around 1000×) than current generation networks [1].∗

This issue motivates the search for modern techniques that will utilise more

efficiently the available resources (specifically the most expensive resource, i.e.,

radio spectrum). To this end, we need some alternative techniques to improve

the spectral efficiency (SE), either by mitigating the interference or by providing

more orthogonal channels within the same spectrum. In this aspect, a set of new-

technologies is proposed which, according to the fifth generation evolution direc-

tions, can be categorized into three dimensions: (1) Heterogeneous network (Het-

Net) with dense Base stations (BSs) deployment [2]; (2) Cognitive radio techniques

∗ It’s noteworthy that current wireless communication systems already are, in point to point
(PTP) transmissions, close to the Shannon capacity limit [1].
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Chapter_1 1.2. MIMO Transmission Mechanisms

(CR) with Spectrum extension; and (3) MIMO techniques via deployment of more

antennas at the transceivers [3]. In order to utilise the available spectrum of ra-

dio frequency (RF) more efficiently, and consequently meet this rapidly increased

traffic demand, different MIMO strategies have been proposed and identified for

fifth generation networks [4]. The features for some of these proposed strategies

are specified to enhance one of the most important metrics, i.e., spectral efficiency

(SE), since RF spectrum is an expensive and limited resource. Consequently the

throughput of the network can be improved according to the following definition

Throughput(bps) = Bandwidth(Hz) × spectralefficiency(bps/Hz). Energy effi-

ciency (EE), on the other hand, is another system crucial metric, where for a fixed

bandwidth (BW), there is always an essential trade off between SE and EE. Since

SE only grows up logarithmically with increasing signal to interference plus noise

ratio (SINR), a large increase in signal power could result in only small gains in the

channel SE, specially in high SINR regime. In addition, the SE enhancement for the

network could be restricted due to high interference contribution to other channels

when we transmit with higher power. In other words, for a multi-user MIMO trans-

mission, in order to guarantee an acceptable quality of service (QoS), not only high

throughput is required, but also a good SINR distribution or coverage performance

is fundamental [4].

1.2 MIMO Transmission Mechanisms

There are distinct operating regimes or transmission strategies for MIMO systems.

The main transmission strategies employed by MIMO technology to enhance spectral

efficiency are by (1) Improving the signal power and link reliability via coherently

processing of signals at multiple transceiver ports to achieve diversity gain [5], (2)

Achieving spatial multiplexing gain via creating spatially separated links to trans-

mit independent data-streams and providing more degrees of freedom (DoF) to the

propagation channel, or (3) Interference nulling (IN) towards other cells users [6]. In

contrast to multiplexing approach in which independent signals are sent, the main

concept of diversity is to provide a channel diversity gain by transmitting redundant,

i.e., same signals over multiple channel and the aim is to improve the reliability of

the link in terms of bit error rate in fading environments (see Fig. 1.1).

The above mentioned strategies are complementary, where in general, it is not

possible to utilise all of these MIMO technologies simultaneously due to the spatial
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DoF conflicting nature. The optimal technique in the sense of maximising SE de-

pends on multiple factors. In a cellular network scenario, where the base station

(BS) serves a multitude of users over the same resource block (RB), a spacial division

multiple access (SDMA) can be applied to serve different user terminals via spatially

separated streams. This mechanism is termed multi user MIMO (MU-MIMO) (see

Fig. 1.2) and the spectral efficiency of this approach can increase linearly with

increasing spatial DoF and the number of simultaneously served users.

There are many relationships between spatial multiplexing (SM) regimes and

multiuser (MU) communication regimes, where the basic concept is to adopt multiple

access strategies to separate channels into individual layers. However, if perfect

mutual channel orthogonality between all layers is required, then we have to scarify

some of transmit antennas and make trades off between diversity and multiplexing

[4]. For MU-MIMO approach to achieve multiplexing gain, an accurate knowledge of

the channel-state-information (CSI) for each user terminal is required to be available

at the BS. CSI is estimated over the coherence interval (limited frequency and time

interval over which we can assume stationary channel gain) by sending predefined

training symbols or pilot-sequence and observing the impact of the channel on this

training sequence at the receiver.

Figure 1.1: An illustration of single user multiple-input multiple-output (SU-MIMO)
transmission channel.
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Figure 1.2: An illustration of multi user multiple-input multiple-output (MU-
MIMO) transmission channel.

1.3 Motivation for Massive MIMO

It is found that for massive MIMO systems (when the number of antenna elements

is allowed to grow without bound), energy efficiency (EE) and the system through-

put grows dramatically. More specifically, massive MIMO, also referred to as large

scale antenna systems (LSAS), is a multi user transmission mechanism designed to

serve multi user equipment simultaneously in each time/frequency resource block

(RB) where the number of supported (active) users is scalable with the number of

antenna elements at the BS. Also, the effects of thermal noise and intra cell interfer-

ence disappear with simple linear filtering [7], and the performance, theoretically, is

only limited by the pilot contamination due to reuse of the same pilots across cells

in channel estimation process. The aforementioned potential gains of deploying

more antennas at the BS motivates the consideration and analysis of asymptotically

infinite number of antennas at the BS in different system scenarios (a single cell,

multi cell, and heterogeneous systems), and addressing of its impact on the key

performance metrics. For multiuser massive MIMO systems under composed fading

environment (Rayleigh fading and lognormal shadowing), the expressions for the

signal-to-interference-plus-noise-ratio (SINR) characteristic do not exist in a closed

form. Whereas SINR’s closed form expressions are required to compute key perfor-

mance metrics like the coverage probability and system capacity. This motivates
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our study to consider an asymptotic model instead of the general model to analysis

diverse massive MIMO scenarios. Accordingly, there are three main parts to this

thesis.

The first part considers the benefit of employing massive MIMO or large scale

MIMO (LS-MIMO) in the uplink (UL) of a single cell system by providing a statis-

tical analysis of SIR asymptotic gain. The developed framework is useful in some

scenarios, e.g., in hot spots environment such as train stations, entertainment centres

and shopping malls. In addition, single cell analysis is very helpful to understand

more complicated scenarios such as multi cell and heterogeneous networks.

The second part of this thesis quantifies the performance of LS-MIMO in cellu-

lar systems. Specifically, the second part tries to address the power control, pilot

contamination and quality of service (QoS) constraints in the uplink of non cooper-

ative cellular systems. The final part of this thesis tackles the performance issue in

LS-MIMO enabled two-tier heterogeneous cloud-Radio access networks (H-CRANs)

and explores approaches in which this scenario can bring key performance-gain.

1.4 Research Aim and Objectives

The main aim of the research presented in this thesis is to addresses and identi-

fies outstanding challenges associated with the Multiuser massive Multiple-Input

Multiple-Output (MU massive MIMO) transmission. The works have been carried

out by developing physical and mathematical models for varies system topologies

to meet the research objectives which are briefly explained and highlighted in the

following points:

1. To Derive tractable (closed form or semi closed form) expressions for the

performance metrics of massive antenna systems with different scenarios. These

expressions will replace the need for long time system level simulations.

2. To Investigate and Analyse the behaviour of the massive MIMO for different

topologies and channel scenarios.

3. To gain design insights about the impact of different setting of system param-

eters on the performance metrics of interest.
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1.5 Contributions

This section highlights the key contributions of this thesis which are related to

different massive MIMO scenarios and system architectures.

1.5.1 Multiuser massive MIMO in a single cell scenario

The uplink effective capacity is investigated in a multi user massive MIMO system

over generalized composed fading channels considering the QoS statistical exponent

constraints. In the proposed approach, a location dependent and a location indepen-

dent (averaged out) closed form expressions are derived for the effective capacities in

an asymptotically large receive antenna system with perfect and imperfect channel

state information (CSI) scenarios. Moreover, expressions for the asymptotically high

signal-to-noise ratio regimes are provided. Next, the asymptotic behaviour (error

and outage probabilities) of a single cell multiple-input multiple-output (MIMO)

system aided by a large scale antenna array is analysed. Specifically, the uplink

transmission over composite fading channel with a power scaling scheme is consid-

ered. Two assumptions are addressed: perfect channel state information (perfect

CSI) and imperfect channel state information (imperfect CSI). In both cases, closed

form expressions for error and outage probabilities in asymptotically large receive

antenna environments are derived. Moreover, users’ location impact on the system

performance is quantified for different channel information scenarios. The developed

expressions are helpful to gain a deep insight into massive MIMO systems’ design

and the impact of different parameters on the aforementioned performance metrics.

1.5.2 Multiuser massive MIMO in a multiple cell scenario

The statistical queueing constraints and pilot contamination phenomenon are stud-

ied in a random or irregular cellular massive MIMO system where base stations

are Poisson distributed. Particularly, tractable analytical expressions are provided

for the asymptotic SIR-coverage, rate coverage and the effective capacity under the

quality of service (QoS) statistical exponent constraint in uplink transmission when

each base station deploys a large number of antennas. Laplace transform of the

interference is derived with aid of mathematical tools from the stochastic geometry.

In addition, the spatial average analysis of uplink signal to interference ratio

(SIR) and throughput in massive MIMO networks with maximum ratio combining
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(MRC) are addressed. The analysis incorporates effects of fractional power control

(FPC) and other cells interference (ICI) due to the estimation error in channel

state information (CSI). Based on an asymptotic approach, tractable expressions

are presented for SIR distributions, coverage probability and average rate in poisson

topology model. Moreover, the considered approach is applicable both to random

and deterministic network topologies. The impacts of key network features such as

fractional power control, path-loss exponent and BS density are characterized.

1.5.3 Multiuser massive MIMO in a HetNet scenario

The multiple-input multiple-output (MIMO) aided heterogeneous cloud radio access

networks (H-CRANs) is analysed. In the proposed model, massive MIMO enabled

macro cells coexist with remote radio heads (RRHs) to potentially achieve high

spectral and energy efficiencies(SE and EE). Employing a Toeplitz matrix tool from

linear algebra, tractable formulas for the link reliability (signal-to-interference-ratio

(SIR) distribution) and rate coverage of a typical user in H-CRAN are established.

In this model, the macro base station tier (MBS) employs multi user MIMO policy

via space division multiple access technique (zero forcing (ZF) beamforming with

perfect channel state information (CSI)), whereas the second tier, i.e., RRH-tier

employs single user transmission via single-input single-output (SISO) strategy.

1.6 Thesis Layout

The rest of this thesis is organized as follows, Chapter 2 gives an introductory back-

ground for this research work. First, it introduces a general overview of the impor-

tance of wireless communication and how, over the last years, the cellular-networks

have developed in response to serious demands for high throughput technology.

Next, it addresses techniques and issues of multi user MIMO wireless transmission

and Time Division Duplex. Also, it discusses that enabling large scale antenna in

MIMO systems is challenging and demands a rethinking of many of the models con-

sidered in the analysis and working assumptions which is the motivation behind this

thesis. It then highlights some of the principle concepts that will guide the study of

massive MIMO throughout this thesis such as channel estimation and asymptotic

behaviour of the infinite antennas regime. This section is then followed by introduc-

ing an overview of linear precoding techniques for multi user MIMO. Finally, some

mathematical challenges of cellular networks analysis are discussed briefly.
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In Chapter 3, effective capacity for uplink of MU-massive MIMO system is inves-

tigated. The chapter starts with a simple background and literature review on the

topic, then the system and channel model for the uplink massive MIMO system sub-

ject to a composite channel environment is described. Afterwards, the asymptotic

effective capacity with the QoS statistical exponent is derived. Finally, an analysis

of effective capacity is presented for zero forcing beam forming.

In Chapter 4, the asymptotic bit error and outage probability for the uplink

of MU-massive MIMO in a single cell scenario is studied. The chapter starts with

reviewing the literature related to the topic. Next, the system model and problem

formulation are described. Afterword, closed form expressions for the asymptotic bit

error and outage probability are derived as a function of several system parameters.

Following that, a detailed analysis of the bit error and outage probabilities are

provided.

Chapter 5, with aid of mathematical tools from stochastic geometry, addresses

the statistical-queueing constraints and pilot contamination phenomenon in ran-

dom or irregular cellular massive MIMO system where base stations are Poisson

distributed. The chapter starts with a principle background and literature review

on the topic. Then, it discusses the assumptions and provides system model. After

that, it formulates the signal-to-interference ratio (SIR) model, presents the defini-

tion of the performance metrics, and presents some related aspects. Following this,

an analysis for the asymptotic SIR coverage, rate coverage and the effective capacity

under quality of service (QoS) statistical exponent constraint of a non cooperative

cellular system is provided.

Chapter 6 then studies distance based uplink power control in cellular massive

MIMO system with base stations are Poisson distributed. The chapter begins with

the literature-review related to this issue. Then, the assumptions and system model

are introduced. Next, channel estimation and the asymptotic SIR distribution are

explained. Following that, using the spatial poisson model, tractable expressions for

the coverage probability and average rate are derived for PPP Uniform and PPP

Rayleigh network models and then, concerning coverage probability of edge area,

the optimal policy for FPC is evaluated.

Chapter 7, with the help of stochastic geometry (SG) and triangular Toeplitz

matrix, develops a framework for the analysis of two tiers massive-MIMO enabled

heterogeneous CRAN (H-CRAN). The chapter starts with the literature review re-

lated to this issue. Then, the analysis and modeling for massive MIMO enabled
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H-CRANs is provided using tools from linear algebra. Next, the proposed method-

ology to characterise the performance metrics of interest is presented. Following

that, numerical studies are conducted for the sake of depicting system design guide-

lines. Finally, the thesis is concluded with significant discussion of potential future

work in Chapter 8.
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Chapter 2

Background

Since the introduction of the initial mobile systems in the 1950s, mobile communi-

cations have been developed orderly and so rapidly. The primitive-services, in the

early days, restricted the number of simultaneously supportable users to the num-

ber of channels allocated to each particular base station. In addition, aside from

mobile systems being bulky and power hungry, roaming between neighbouring BSs

was impossible due to the lack of a commonly agreed standard. The 1st-generation

(1G) of wireless networks is deployed in the early 1980’s in Europe and USA [8],

where a standardised voice traffic service over wide geographical areas was pro-

vided using analogue technology and allowing for the setting up of roaming between

different-networks. In 1990, the first specifications of Groupe Spécial Mobile (GSM)

standards were published by the European Telecommunications Standards-Institute

(ETSI) to characterize the protocols for 2nd generation (2G) digital cellular net-

works. In addition to traditional voice-traffic, due to the digital-nature of these

networks, additional services could be provided, including data services such as web

browsing, email service and Short-Message System (SMS) [8]. Where, originally,

the GSM-standard described as a circuit switched network (providing full duplex

voice services at downlink rates of up to 14.4 kbps), then expanded to include data

service by packet data transport in the later stages of the 1990s via 2.5G systems

like General Packet Radio Services (GPRS). After the turn of the millennium (in

2001), based on code division multiple access (CDMA) technology, the third genera-

tion (3G) networks started deployment with the aims of supporting data rates up to

0.348 Mbps for mobile users and 2Mbps for stationary users. To this end, an inter-

nation association comprised of multiple international standardisation bodies based

in U.S.A, Europe, and Asia, was created to be 3rd Generation Partnership Project
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(3GPP) as the development group and standardisation for worldwide 3G-UMTS Ter-

restrial Radio Access (UTRA) systems. Then High-speed downlink packet access

(HSDPA) is introduced to enhance the performance of existing 3G mobile telecom-

munication networks using the WCDMA protocols and support a speed of up to

21 Mbps. Then, a further enhanced 3GPP standard, Evolved High Speed Packet

Access, a.k.a HSPA+, is released to support bit rates of up to 34/337 Mbps in the

uplink/downlink transmission, respectively. After that, Long Term Evolution (LTE)

is introduced by 3GPP to support data rate up to 160 Mbps for the 20MHz channel

bandwidth.

This standard is based on orthogonal frequency division multiple access (OFDMA)

technique for multiple-users resources sharing (multiple access), and incorporates

some advanced technologies such as adaptive modulation, MIMO that employed up

to 8-antennas at the BS, and link adaptation [9]. Following that, LTE Advanced

(LTE-A) is adopted as the 3GPP initiative for the fourth generation (4G) commu-

nications systems to enhance system capacity and to keep-up with the increasing

demands in the sense of user data-rate and Table 2.1 shows some requirements for

LTE advanced standard [10]. The main features that make LTE-A outperforms LTE

and 3G systems are OFDMA, carrier aggregation (CA), interference management

via concept of Coordinated Multipoint (CoMP), and spectral efficiency/coverage en-

hancement through deploying heterogeneous-networks (HetNet) [10]. Furthermore,

4G systems impose the development of multi-mode user-terminals which are capable

to operate in either time division duplex (TDD) or frequency-division duplex (FDD)

mode.

On the other hand, to further enhance system-capacity, the coming generation,

i.e., 5G is envisioned to employ some novel technologies, including massive-multiple-

input multiple-output (MIMO) and millimeter wave (mmWave) communications

with the legacy or traditional techniques such as cognitive radio and heterogeneous

network [11].

2.1 MU-MIMO systems

In point to point wireless transmissions, the deployment of multiple antennas at both

transmitter and receiver sides can considerably increase link reliability as well as link

capacity compared to traditional single-input single-output (SISO) schemes. These

advantages come from spatial diversity gains which are provided by the multiple
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Table 2.1: Key technical requirements for LTE advanced cellular networks, given
that spectrum efficiency is for 4 × 2 system of antennas at the base station and user
terminal respectively [10].

Feature Value

User plane latency 0.01 sec

Control Plane latency 0.05 sec

Uplink peak data rate 500 Mbps

Downlink peak data rate 1.0 Gbps

Spectrum Allocation Up to 100 MHz

Uplink spectrum efficiency Up to 15 bps/Hz

Downlink spectrum efficiency Up to 30 bps/Hz

Cell edge Uplink spectrum efficiency 0.07 bps/Hz

Cell edge downlink spectrum efficiency 0.09 bps/Hz

antennas together with the scattering-environment surrounding both the transmitter

and the receiver.∗ The number of independent sub-channels that can be provided

by singular value decomposition (SVD) scheme is given as [12]

Nmin = min{Nt, Nr, Np}, (2.1)

where Nt Nr and Np are, respectively, the number of transmitter antennas, re-

ceiver antennas and multipath created by the scatter.† With multi user MIMO

(MU-MIMO) systems, the advantages are more attractive due to the capability to,

simultaneously, transmit to several terminals over the same RB (more efficient in the

sense of spectral resources), whereas in SU-MIMO systems the BS communicates

with many terminals only through orthogonal resources (a separate time/frequency

resources).

In 5G cellular systems, MIMO systems aided by massive antenna arrays are

promising technology to further enhance cell throughput. These systems deploy an

∗ For a rich scattering environment, a system with BS of M antenna elements and K−scheduled
single antenna users, such system can perform a multiplexing gain of min(M, K) and a spatial-
diversity of order M .

† In poor propagation environments, when the channels of different terminals share some
common scatterers, or when the numbers of the scatterers is small compared to the numbers
of terminals, the channel is said to be not favourable. Favourable propagation-environments is
required in Massive MIMO system, however, in such scenarios, distributed antenna system can be
used to tackle this issue (e.g., see [13] and the citations therein).
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order of magnitude more antenna elements at BS compared with the traditional

MU-MIMO systems (64 antennas or more) to serve, simultaneously, a dozen of user

equipment within their cells with high data rate [7].∗ In addition to the gain in cell

throughout, theoretically, (with infinite antennas) the impacts of multi path fading

vanish, as the SIR converges to a deterministic-equivalence (the random channel

vectors between the BS and users become noiseless deterministic channel). Also,

under i.i.d. Rayleigh fading channel, the useful signal channel becomes asymptoti-

cally orthogonal to inference and noise channels, i.e., the effects of thermal noise and

intra cell interference become minor. As such, a simple linear signal processing, even

with maximal ratio transmission (MRT) in the forward link or maximal ratio com-

bining (MRC) in the reverse link, achieves near optimal performance. Moreover, in

the sense of power efficiency, uplink (UL) and downlink (DL) transmit power scales

down with the number of antenna elements by an order of magnitude, or even more

(less energy to maintain certain SIR or QoS). For the UL, high array gain of coherent

combining can allow for considerable reduction in the transmit power of each termi-

nal. For the DL, the energy can be focused from the BS into the directions where

the users are located via high resolution beamforming. Due to the aforementioned

merits, the design aspect of massive MU-MIMO systems has attracted substantial

interest in the recent literature.

The above discussion inspired this thesis to consider performance bounds of

very-large MU-MIMO systems (especially the uplink transmission) under practical

constraints such as imperfect channel-state information (Imp-CSI), inter cell inter-

ference, and different channel parameters. We proposed that the massive MIMO

systems transmit signal using the Time-Division-Duplex (TDD) protocol to duplex

communication-links.† An example of this protocol is displayed in the figure. 2.1,

where Forward link is separated from Reverse link by the assigning of different sym-

bols of time in the same frequency band [7, 14]. Such transmission mode allows a

symmetric flow for downlink and uplink data transmission, and hence reciprocity be-

tween the downlink and uplink channels can be exploited to reduce channel training

∗ As an example, Marzetta in [7] proved that each user terminal can achieve a downlink link
average throughput of 17Mbps in a multi cell massive MU-MIMO environment with a bandwidth
of 20MHz and a frequency reuse factor (FRF) of 7.

† Since we need to acquire CSI between extreme numbers of service antennas and much smaller
numbers of users, therefore we emphasise on Time-Division-Duplex (TDD) rather than Frequency-
Division-Duplex (FDD). The time required for downlink pilots transmission is proportional to the
antennas number, while the time required for uplink pilots transmission is independent of the
antennas number, also UL/DL duality can be applied.
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overhead. It is worth noting that in the channel training phase the system performs

the acquisition of the channel state information (CSI) which in turn is required for

precoding vectors.

Figure 2.1: Example of TDD transmission protocol, where uplink channel training
is exploited for the UL and DL transmission.

Figure 2.1 illustrates example for a simple training process in TDD scheme, in

which uplink pilot sequences are utilised by both downlink and uplink data trans-

mission. A total of τ OFDM symbols∗ are used entirely for pilots, i.e., all scheduled

terminals in a given cell are allocated with orthogonal pilots each of length τ symbols

and for massive antennas, the same set of pilot sequences is reused in adjacent cells.

The remainder of the coherence interval is used for transmitting useful-data, either

on the forward link or the reverse link or both. If we denote the symbol duration by

Ts, then Tpilot = τTs is the time spent on sending reverse pilots. The simplest way to

send reverse link pilots would be to assign each terminal one unique time-frequency

index for its pilot (e.g., one sub-carrier within each smoothness interval and within

one OFDM time slot). More generally, orthogonal sequences of time-frequency pilots

can be assigned to the terminals.

2.2 The massive MIMO’s basics

This section, first discusses the concept of massive MIMO systems, then introduces

the asymptotic SIR of massive MIMO when the number of antenna-elements goes

to infinity.

∗ It is worth noting that in the LTE standard, if a normal Cyclic Prefix (CP) is used, a Physical
Resource Block (RB) is composed of seven symbols in time domain (with a duration of 0.5 ms)
and twelve sub-carriers in the frequency domain (with a bandwidth of 180 KHz, i.e., 12×15 KHz),
each cell of this (7 × 12) grid is called a resource element (RE).
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Chapter_2 2.3. SINR for the asymptotic regime

Figure 2.2: Example of an uplink transmission in two cells Massive MIMO network
with gk denotes the useful channel-gain from kth user to it’s serving massive MIMO
base station.

As shown in the figure.2.2, assuming the i.i.d. Rayleigh fading channel model,

the complex propagation coefficient between the BS in the ℓth cell, and the kth user

in the ℓ′th cell can be computed as [7]

g
(k)
ℓ′ℓ = h

(k)
ℓ′ℓ

√

β
(k)
ℓ′ℓ (2.2)

with h
(k)
ℓ′ℓ is complex fast fading factor represents the kth column of all users’ channel

matrix Gℓ′ℓ ∈ CM×K and βℓ′ℓ is amplitude factor that accounts for both geometric

attenuation and shadow fading, where it assumed to be constant over both frequency

and the index of the BS-antenna since the geometric attenuation and shadow fading

change very slowly with respect to spatial dimension, and can be given as [15]

β
(k)
ℓ′ℓ =

µ
(k)
ℓ′ℓ

D
(k)ν
ℓ′ℓ

k = 1, 2, ...K (2.3)

The K terminals within each cell transmit, independently, data streams to their

corresponding BS. Then the BS uses its channel information to perform a linear

detection such as the maximum ratio combining (MRC).

2.3 SINR for the asymptotic regime

In this section, we consider an asymptotic scenario for a large antenna number

M → ∞ and a finite user number K, more specific, we analyse a simple scheme in

which all the K scheduled users transmit the pilots to the BS simultaneously without

time shift to estimate channel-gains. In this case, we assume that the same set of ρ

orthogonal pilots of length τ is employed by every cell such that ρ = (ρ1, . . . , ρK)

and ρHρ = τIK .
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2.3.1 Reverse Link Pilots

Assuming that pilots are, simultaneously, sent by all terminals in the system at the

pilot transmission stage, then the ℓth BS receives the signal

yℓ =
L∑

ℓ′=1

√
ptGℓℓ′ρ′ + nℓ, (2.4)

where nℓ ∈ CM×K is the additive noise and pt is the transmit power for UL-channel

training. Without loss of generality, we assume that the entries of nℓ are i.i.d. follow

the distribution ∼ CN (0, 1) r.v. and we scale all gains accordingly. Next, utilising

matched filter detection, the BS correlates the signal yℓ with the pilots ρ in order

to obtain the channel gain observed by ℓth BS

zℓ =
√

ptGℓℓ
︸ ︷︷ ︸

useful channel
gain

+
∑

ℓ′ Ó=ℓ

√
ptGℓℓ′

︸ ︷︷ ︸

pilot contamination

+ n̂ℓ, (2.5)

with n̂ℓ = nℓρ′

τ
and follows the distribution ∼ CN (0, 1

τ
IM). Pilot contamination is

due to other cell interference coming from users which reuse the same pilot. The

kth vector of zℓ can be given as

z
(k)
ℓ =

L∑

ℓ′=1

√
ptg

(k)
ℓℓ′ + n̂

(k)
ℓ , (2.6)

and the channel estimate is computed as

ĝ
(k)
ℓℓ

(a)
= ptβ

(k)
ℓℓ IM

[

1

τ
IM +

∑

ℓ′

√
ptβ

(k)
ℓℓ′ IM

]−1

z
(k)
ℓ

(b)
=

ptβ
(k)
ℓℓ

1
τ

+ pt
∑

ℓ′

β
(k)
ℓℓ′

z
(k)
ℓ , (2.7)

wherein (a) we assume defined large scale path loss βℓℓ by ℓth BS which in turn

utilises an minimum mean square error (MMSE) estimator to evaluate the channel.

Equation (b) shows that, for the i.i.d. Rayleigh fading scenario, the channel estimate

ĝ
(k)
ℓ is a scaled version of the vector z

(k)
ℓ . The estimation error in channel gain can

be expressed as g̃
(k)
ℓℓ = g

(k)
ℓℓ − ĝ

(k)
ℓℓ .
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2.3.2 Reverse Link data transmission

In the uplink data-transmission, the received signal at the ℓth BS is given as

yℓ =
√

pu

L∑

ℓ′=1

K∑

k=1

(g
(k)
ℓ′ℓ x

(k)
ℓ′ + n

(k)
ℓ ), (2.8)

where Pu is the uplink transmit-power, xℓ′ is the message bearing-symbols vector

from the users of the ℓ′th cell, nℓ is a vector of receiver-noise following the distribution

∼ CN (0, 1), i.e., distributed as zero_ mean and unit_ variance complex Gaussian

independent random variables. For the sake of simplicity, we assume MRC receiver

in which the BS employs the estimated channel ĝ
(k)
ℓℓ in detection process

x̂ℓ =
√

pu|ĝ(k)
ℓℓ |2 x

(k)
ℓ

︸ ︷︷ ︸

useful signal

+
√

puĝ
(k)∗
ℓℓ g̃

(k)
ℓℓ x

(k)
ℓ

︸ ︷︷ ︸

error in channel-estimation

+
√

pu

∑

ℓ′ Ó=ℓ

∑

iÓ=k

(ĝ
(k)∗
ℓℓ g

(i)
ℓℓ′ x

(i)
ℓ′ + ĝ

(k)∗
ℓℓ nℓ

︸ ︷︷ ︸

enter-cell interference plus noise

(2.9)

and consequently, the uplink signal-to-interference plus noise SINRul is given as

SINRul =
pu |ĝ(k)∗

ℓℓ ĝ
(k)
ℓℓ |2

pu E
g̃

(k)
ℓℓ

{|ĝ(k)∗
ℓℓ g̃

(k)
ℓℓ |2} + pu

∑

ℓÓ=ℓ

∑

iÓ=k

|ĝ(i)∗
ℓℓ ĝ

(k)
ℓℓ′ |2

︸ ︷︷ ︸

channel-estimator error

+|ĝ(k)
ℓℓ |2

(2.10)

2.3.3 Forward Link data transmission

The channel estimate is used by the BS to perform precoding towards users in the

down-link transmission mode. Here we focus on the match-filter (MF) precoding,

so the BS computes the beam-forming vector to its kth terminal as

w
(k)
ℓ =

ĝ
(k)
ℓℓ

‖ĝ
(k)
ℓℓ ‖

(2.11)

The received signal at the kth user is

x̂ℓ =
√

puE{g
(k)∗
ℓℓ w

(k)
ℓ } x

(k)
ℓ

︸ ︷︷ ︸

average-effective channel-gain

+
√

pd(g
(k)∗
ℓℓ w

(k)
ℓ − E{g

(k)∗
ℓℓ′ w

(k)
ℓ′ }) x

(k)
ℓ′

︸ ︷︷ ︸

error in channel-estimation
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+
√

pd

L∑

ℓ′=1

K∑

k=1

g
(i)∗
ℓ′ℓ w

(i)
ℓ x

(k)
ℓ′ + ĝ

(k)∗
ℓ′ℓ nℓ

︸ ︷︷ ︸

enter-cell interference plus noise

(2.12)

where x
(k)
ℓ is the transmitted symbol. The downlink signal-to-interference plus noise

SINRul is given as

SINRdl =
pd |E{g

(k)∗
ℓℓ w

(k)
ℓ }|2

pd Var{g
(k)∗
ℓℓ w

(k)
ℓ } + pd

∑

ℓ′ Ó=ℓ

∑

iÓ=k

|g(i)∗
ℓ′ℓ w

(i)
ℓ′ |2

︸ ︷︷ ︸

channel-estimator error

+1
(2.13)

2.4 Asymptotic behaviour

Now, we investigate some key features corresponding to massive MIMO, e.g., the

asymptotic orthogonality for independent Gaussian channel vectors and the pilot

contamination. The precoder equation in (2.11) is the normalized version of the

gain ĝ
(k)
ℓℓ and can be rewritten as

w
(k)
ℓ =

ĝ
(k)
ℓℓ

‖ĝ
(k)
ℓℓ ‖

(a)
=

ĝ
(k)
ℓℓ

a
(k)
ℓ

√
M

, (2.14)

with a
(k)
ℓ is scalar represents the normalization-factor

a
(k)
ℓ =

‖ĝ
(k)
ℓℓ ‖√
M

(2.15)

For asymptotically large scale antennas system, i.e., when M → ∞, the value of a
(k)
ℓ

is computed in [7] using the following lemma which can be proofed directly with the

aid of the strong law of large numbers (LLN).

Lemma 2.1. If x, y ∈ CM×1 are two independent random vectors with distribution

∼ CN (0, bIM), then in the limit of vector dimension, these vectors are asymptotic-

orthogonal to each other and the square-norm of x converges to a finite value as [7]

lim
M→∞

x†y

M
a.s.
= 0

lim
M→∞

x†x

M
a.s.
= b (2.16)
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where (a.s) denotes that the equality holds almost surely and b is a constant. Ac-

cordingly, for independent Rayleigh fading massive MIMO channels, the useful-

link becomes orthogonal to the vectors of both interfering-links and noise. Lever-

age Lemma 2.1, we can derive the SINR for reverse-link and forward link in the

asymptotic-regime.

Lemma 2.2. If the number of BS antennas goes to infinity, the expressions in

(2.10) and (2.13) converge to there asymptotic equivalence (the effective signal-to-

interference ratio) as [7]

lim
M→∞

SINRul =
β

(k)
ℓℓ

2

∑

ℓ′ Ó=ℓ β
(k)
ℓℓ′

2 (2.17)

lim
M→∞

SINRdl =
pdβ

(k)
ℓℓ

2
/αk

ℓ

pd
∑

ℓ′ Ó=ℓ β
(k)
ℓ′ℓ

2
/αk

ℓ′

, (2.18)

where the interference term in denominators is due to pilot contamination phenom-

ena. Next, we discuss some key aspects regarding large scale MIMO systems.

2.5 Linear Precoding schemes

In our study, we focus on linear precoding techniques for massive-MIMO to cancel

interference among sub-streams, as linear techniques has less complexity in im-

plementing than the non linear techniques, such as dirty paper precoding (DPC),

especially with a large number of antennas. Numerical simulations shows that the

achievable rate of linear precoding approaches the channel capacity upper bound

(suboptimal performance) when the number of antennas is very large. In this con-

text, this section briefly discusses three different techniques, namely maximum ra-

tio transmission (MRT), Zero forcing (ZF) and Signal-to-Leakage plus Noise Ratio

maximising Beamforming (SLNR_Max).∗ Fig.2.3 shows the beamforming direc-

tions with ZF, MRT, and SLNR-MAX beamforming, where ZF is orthogonal to the

channel of non-intended users, MRT-direction follows the channel of the intended

∗ The counterparts to these precoding techniques are three combining techniques, namely
maximum ratio combining (MRC), zero forcing filter (ZF), and signal-to-leakage-and-noise-ratio
maximising (SLNR-MAX) filter (also known as Wiener or linear MMSE-filter).
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user, and SLNR-MAX achieve a balance between these extremes according to the

SNR [16].

• MRT beamforming: This beamforming scheme is applied to provide the

spatial diversity gain of multiple antennas. Recall that in equation (2.11), BS

computes matched filtering or the maximum-ratio-transmission (MRT) beam-

forming vector that maximises the desired channel gain of the kth terminal

as w
(k)
ℓ =

ĝ
(k)
ℓℓ

‖ĝ
(k)
ℓℓ

‖
. As illustrated in Fig. 2.3, MRT chooses the vector that

spans the desired channel direction, therefore the two vectors inner product is

maximised.

• ZF beamforming: (Also known as channel inversion) In order to cancel out

multiple user interference, a ZF precoding vector wk for a user k is designed

to lie in the null space of all other co_users channels. Thereby, wk should be

orthogonal to all other co users channels and the null space dimension should

be non-empty space, which means that antennas number should be greater

than non-intended users M ≥ K. The ZF precoding vectors represents the

column vectors of the Moore Penrose pseudo inverse of matrix G which can

be given as [16]

W = G† = GH(GGH)−1 (2.19)

While ZF technology being heuristic or suboptimal beamforming, it is proven,

in the high SNR regime when the number of users gets very large, to be opti-

mal solution and approach, asymptotically, the performance of DPC. Where

multiuser diversity can be increased with the increase of active users, hence

plentiful channel directions will be available with good quality. Consequently,

offers an opportunity for the BS to schedule a set of terminals with better

conditions in terms of spatial-separation and channel gain.

• SLNR-Max-beamforming: This filtering terminology is equivalent to MRT

in noise-limited scenarios (i.e., when the noise is very strong compared with

the interference) and equivalent to zero-forcing in interference limited scenarios

(i.e., when the interference is very strong). SLNR for the kth user represents

the signal-to-leakage interference produced by this user to the received signal
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of other users in the same system and can be expressed as [17]

SLNRk =
‖gkwk‖

σ2
k +

∑

iÓ=k
‖giwk‖ (2.20)

where the second term in the denominator is the leakage interference con-

tributed by user k to other users. Thereby, the beamforming wk can be eval-

uated by maximising the SLNR to make a balance between maximising signal

power and suppressing interference. Accordingly, operation region of SLNR-

Max lies, from a geometric perspective, between the two extremes of MRT and

ZF,

wk =

(

IM +
K∑

i=1

P
Kσ2 gig

H
i

)−1
gk

∥
∥
∥

(

IM +
K∑

i=1

P
Kσ2 gigH

i

)−1
gk

∥
∥
∥

(2.21)

where P
K

is the average transmit power and σ2 is the noise-power.

Figure 2.3: The geometric interpretation of maximum signal (ZF) versus minimum
inter user interference trade off [16], where operation region of the suboptimal scheme
lies in between these two extremes.

To display the performance of the aforementioned linear beamforming technologies

we investigate an interference channel environment of K = 4 users and M = {4, 64}
antenna elements at the BS. Specifically, figures 2.4 and 2.5 show the average per

user information rate for transmit antennas of M = 4 and M = 64 respectively. Here

we assume full interference coordination and users channel vectors are generated as

i.i.d. Rayleigh fading distribution. The performance metric is the average, per user,

downlink information rate,
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Rdl = E{ log2

[

1 + SINRdl
]

}, bps/Hz, (2.22)

with the expectation operation E{·} is taken over different channels and noise real-

isations. Results depict that MRT is optimal in low SNR case, while ZF performs

better in high SNR case. Where in high SNR regime (multi user interference domi-

nates over thermal noise), for the sake of interference elimination by ZF, a user can

afford to lose some of its signal quality. By the contrary, in low SNR regime (ther-

mal noise dominates over multi user interference), it is more beneficial to enhance

the strength of desired signal than to eliminate the interference. More significant,

obtained results in Fig.2.5 reveal the importance of performance analysis for another

asymptotic-regime, i.e., the use of large antenna arrays (when M goes to infinity).
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Figure 2.4: The average achievable user information rate as a function of the total
per BS transmit power for traditional MIMO system (M = 4 antenna elements and
K = 4 users).
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Figure 2.5: The average achievable user information rate as a function of the total
per BS transmit power for massive MIMO environment (M = 64 antenna elements
and K = 4 users).

2.6 Cellular Networks analysis challenges

The mathematical modelling of wireless cellular-networks is often carried out through

simplified spatial models for the locations of the base stations where common strate-

gies for these models include the Wyner, the single cell interfering and the hexagonal

grid models. However, these models are either require time exhaustive numerical

computations or they are inaccurate for many operating-scenarios.

• Wyner Model: This model was supposed for uplink transmission, however, it

was applied to analyse the ideal performance of downlink transmission in multi

cell systems. The idea is proposed by A. Wyner [18], where users are assumed

to only receive signals from their own BS and the immediate adjacent BSs.

Figure 2.6 displays the linear or one dimensional version of the model, where

all BSs are located on the boundary of a large circle and it is usually proposed

that all terminals in the ℓth cell are served, jointly, by BSℓ+1, BSℓ and BSℓ−1.

Users in this model assumed to have deterministic average SINR regardless of

their location and because of its analytical tractability and simplicity, it has

been extensively employed in the literature. However, this abstraction and
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related mean value approaches are proven to be inaccurate in most cases like

the uplink of CDMA systems with heavily loaded scenarios [19], unless there

is a very large amount of, spatial, interference averaging.

Figure 2.6: An illustration of the linear Wyner Model of multi cell scenario (one-
dimensional). Terminals are served, jointly, by the closest BS and its two neighbours,
whereas only experience interference from these three BSs.

• Grid Models: Hexagonal (figure 2.7) and other grid architectures have been

widely considered to analyse and evaluate the performance of multi-cell net-

works. In this approach, locations of BSs follow deterministic grid (e.g., square

or hexagonal grid) where all cells have the same regular shape and size. In

addition, these models approximate, closely, practical cellular system topol-

ogy and they are quite easy to numerically simulate the cellular systems [20].

The hexagonal model yields the lowest perimeter-to-area ratio of any other

regular tessellation of the 2D plane. Hence, the edge effects are minimised

when applying the hexagonal model in network analysis. However, researchers

are resorted to more simplified topology to analyse multi-cell networks (e,g,

widely known Wyner Model) because of analytical complexity inherent in grid

architectures.

Figure 2.7: An example of grid architecture (Hexagonal grid) of multi cell scenario.
Obtained results for analysis of such model represent the optimistic upper bound
on system performance, whereas random model provides the lower bound.
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• Stochastic Models: Although cellular systems are usually modelled on a

regular hexagonal (or a bit more simply square) lattice, these grid models

have key limitations as well. First, these abstraction models are inaccurate

for today’s heterogeneous network elements deployment, in which the size of a

cell, considerably, varies. Where such deployments in modern networks leads

to a more irregular and flexible network layout and complicates the inter cell

interference distribution. Also, time consuming and complicated Monte Carlo

simulations are required for grid-model analysis while they rarely give insights

in network designs since the obtained SINR is still a random-variable.

Therefore, mathematical modelling is a needed task to address the challenge

of irregular-layout and to better characterise the interference distribution.

Recently, an alternative model is adopted to deal with the architectures of

cellular networks where BSs are positioned randomly, especially in modern

heterogeneous networks [21]. Intuitively, such approach provides accurate ex-

pressions for SINR-distributions and analytical tractability. A Powerful tool

from Stochastic Geometry (SG) can be efficiently employed to Mathematical

analyse these random models of cellular networks [22].∗ Stochastic geometric

models, in general, consist of introducing network structural components as

realisations of stochastic processes. Cell sizes, BS positioning, traffic demand,

mobility and other characteristics of the network are, solely, dependent on

distributions and parameters of these processes.

Figure 2.8: An example of single tier multi cell network with a random or irregular
model of base stations deployment. Such scenario yields analytical tractability, and
develops almost accurate formulas for the distributions of the SINR via stochastic
geometry (SG) tools.

∗ While regular models gives an optimistic upper bound of the performance, irregular-models
determine the lower bound e (e.g., see [21] and the references therein).
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Chapter 3

Statistical Queueing Constraints

in the Uplink of a Single Cell

Massive-MIMO

Cross-layer design is a suitable approach that can address some of the throughput

challenges for future multimedia applications. In this regard, the effective capacity

concept offers a suitable metric to assess the implications that physical layer de-

sign may have on link layer performance. However, most reported studies in this

aspect consider the case of downlink scenario for convenience multiple input mul-

tiple output (MIMO) systems. This chapter analyses the uplink effective capacity

in a multi user massive MIMO system over generalised composed fading channels

considering the QoS statistical exponent constraints. In the proposed approach, a

location dependent and a location independent (averaged out) closed form expres-

sions are derived for the effective capacities in asymptotically large receive antenna

system with perfect and imperfect channel state information (CSI) scenarios. In

addition, the analytical analysis considers the perfect and imperfect channel infor-

mation CSI effects. Moreover, expressions for the asymptotically high signal-to-noise

ratio regimes are provided. Obtained results show that the effective capacity per-

formance is a monotonically increasing function of the base station receive antennas

(Nr) and the large scale shadowing parameter. Moreover, increasing Nr by almost

74 antennas for imperfect CSI, can compensate for system capacity degradation due

to queueing delay constraint of θ = 1.9 × 10−4 per bit.
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3.1 Introduction

Most of the emerging real time applications imposed stringent constraints on

queue lengths or queuing delays of transmit buffer. As such, besides the signal-to-

interference plus noise ratio (SINR) metric in physical layer, there was a need of new

metric to deal with quality-of-service delay constraints, i.e., queueing behaviour in

the link layer of the wireless networks. Motivated by the theory of effective band-

width, the authors in [23], Wu and Negi introduced a concept of effective capacity

as a novel metric to bridge the gap and characterise system performance with dif-

ferent quality of service (QoS) limitations, e.g., data rate and the probability delay

violation. Accordingly, this metric quantifies the maximum arrival rate that can be

achieved with respect to a given service demands for the steady-state flow of data

at a buffer input.

The effective capacity for single antenna communication systems is analysed in [24].

Reference [25] considers the effective capacity of Gaussian block-fading MIMO sys-

tems. Moreover, [26], examined in detail, high and low SNR asymptotic behaviour

of MIMO and shown the relationship between the buffer-queuing constraints and

MIMO spatial-dimensions over the entire range of SNR values. Authors in [27] in-

vestigated energy efficient uplink communications for battery constrained mobile

terminals, where a heterogeneous wireless medium is considered. In [28] the effec-

tive throughput of MIMO systems is investigated over both independent identically

distributed and independent non-identically distributed κ−µ fading channels under

QoS delay constraints.

It is well known that the use of massive antenna arrays can significantly increase the

energy and spectral efficiency of wireless systems [29]. Motivated by this fact, we

seek in this chapter to address the potential benefits of massive-MIMO configura-

tion on the uplink effective capacity of a wireless system. Different from the existing

works on effective capacity, in our analysis, we exploit the asymptotic results of ran-

dom matrix theory (RMT) introduced in [29] to further analyses the uplink channel

performance of large system focusing on QoS statistical constraints. We resort to

the asymptotic formulas since the analysis of the massive MIMO system becomes

extremely difficult with the exact SINR’s expression. In addition, the analysis con-

siders the shadowing effect when zero forcing receiver is employed. Such analysis

could play a key role in 5G systems designing, in particular, vulnerable to shadowing

and path loss attenuation, mm-Wave frequencies. The specific contributions of this
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chapter can be summarised as follows,

1) We derive, in closed form expression, the uplink’s asymptotic effective capacity

when the base station (BS) deploys a large antenna-array, as well as when the

system is in high power regime for perfect and imperfect channel information.

(unique to the best of our knowledge). The derived expressions are helpful

to gain a deep insight into the system design and the impact of different

parameters on the performance.

2) The implications of user location, channel and system parameters on the uplink

performance are evaluated via numerical analysis with remarkable comments.

The provided precise approximation results can replace the need for lengthy

Monte Carlo simulations to take spatial average over different user distribu-

tions. Moreover, obtained results are of particular interest for the cross layer

design of massive MIMO systems and to characterise the effects of large scale

shadowing in next generation wireless systems (e.g. vulnerability to shadowing

mm-Wave systems).

The remainder of the chapter is organised as follows, In Section 3.2, a system and

channel model for uplink of massive MIMO system are described. Afterwards, the

asymptotic effective capacity with the QoS-statistical exponent is derived. Numeri-

cal results are presented in section 3.3. Finally, section 3.4 concludes the chapter.

3.2 System and Channel Model

We consider the uplink channel of a single cell massive antenna system, assuming

that users are equipped with a single transmitting antenna. The output of the

channel can be written as [30] y =
√

puGx + n, where G ∈ CNr×K is the complex

channel matrix between the users and the BS. Nr is the number of receiver antennas

at the BS, pu is the average power transmitted by each user, x denotes the data

signal and n ∼ CN (0, 1) denotes the AWGN noise. For individual user k, the

column vector of G will be [29], [30, eq.(2)]

gk = hk

√

βk , (3.1)
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with hk is the fast fading component of gk and βk is the large scale component which

in turn can be expressed as follows [29], [31, eq.(2)]

βk =
µk

Dν
k

k = 1, 2, ...K , (3.2)

with µk is the large scale shadowing and Dk is the distance between the BS and

the k-th user and ν is the path-loss exponent, where real measurements in wireless

channels have shown the distance dependence of the average received power.∗ It is

noteworthy to mention that in case of generalized-K composite fading channel gk,

the fast fading component hk can be characterised using Nakagami-m distribution

and Log-normal distribution can be used for the large-scale component µk [32].

Figure 3.1: System model employed in the analysis, where the scheduled users (with
locations expressed in polar coordinates as (rk, ϕk)) are uniform, independently,
distributed in a circular cell having an inner radius of Ri and outer radius of Ro,
while the BS is located at the centre (0,0) of the circle [33].

Since, in large scale MIMO systems, zero-forcing (ZF) detector† tends to be

optimal [29], thus in our work ZF is adopted and all results are derived based on

this requisite. Moreover, in massive antenna environments, just small scale fad-

ing corresponding to micro diversity can be averaged out, while large scale fading

corresponding to macro diversity environment stays active and affects system per-

formance.

Lemma 3.1. (Large-system regime Ergodic information rate approximation); The

upper bound on the uplink ergodic rate of k-th user E {Rk} can be characterised

applying RMT based large system analysis.

∗This fact led to the well-known path loss law, where the typical values of ν ranging from 2 to
6 in urban areas. It is interesting to note that, in order to cope with the singularity issue of the
path loss model when the distance is zero, one can use the function f(D, ν) = min(1, D−ν

k
) in the

path-loss model [35].
† It is worth mentioning here that for massive MIMO systems, antenna dimensions render

the ZF-matrix inversion, in the beamforming or detection formula, computationally expensive,
however, according to [36], a truncated polynomial expansion formula can be applied with nearly
similar outcome.
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Capitalising on the outcomes of [29], assuming ZF detector and perfect CSI, the

asymptotic rate of the k-th user can be written as [29, eq.(21)], [34]

Rasy
k

Nr → ∞
= log2(1 + βkpuNr), bits/s/Hz (3.3)

Next, the approximation of the ergodic sum rate is derived as follows

Rasy
k (µk, Dk) = Eµk,Dk

{

log2(1 + βkpuNr)
}

(a)

6 log2(1 + Eµk,Dk
{βkpuNr})

(b)
= log2(1 + Eµk,Dk

{

µk pu

Dν
k

Nr

}

), (3.4)

where inequality (a) follows from Jensen’s inequality since log2(·) is a concave func-

tion and (b) stems from eq.(3.2). In our analysis, for practical considerations, we

assumed that µk and Dk are two random variables with distributions given in eq.(3.5)

and eq.(3.6) respectively. Furthermore, for analytical tractability, the spatial cor-

relation of large scale fading µk due to common obstacles is not considered here.

Hence, shadowing from different users are assumed to be i.i.d r.vs.∗ In this re-

gard, gamma distribution has shown a good fit to real or practical measurements

and also it is analytically more tractable than the log-normal distribution. The

probability density function (PDF) of gamma r.vs can be given by the following

equation [29, eq.(26)]

f(x) =
xm−1

k

Γ(mk)Ωmk
k

e−x/ΩkU(0), x, mk, Ωk > 0 (3.5)

here, U(0) is the unit step function to ensure that the probability is defined over

the range 0 ≤ x < ∞ and Γ(·) represents the gamma function, see e.g., [39,

eq.(06.05.03.0001.01)]. Parameters mk ≥ 0 and Ωk ≥ 0 are the fading figure (shape)

and the average power (scale parameter) respectively, which depend on the channel

conditions. Assuming that the fading figure, mk and the average power, Ωk are the

same for all the users within the cell, henceforth, in our analysis, we are going to drop

user’s index from these parameters. Moreover, we assume the common circular-cell

system model, where there is an independent and uniform distribution of UEs in a

circular area of radius Ro and excluded from the guard-zone with a radius of Ri as

shown in Fig.3.1. So, the corresponding probability density function (PDF) of the

∗This assumption is sufficiently reasonable for distributed-antenna systems. Nevertheless, it
was recently proved, through real measurements [38], that shadowing can be i.i.d across the array
even for co-located antenna arrays.
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distance rk between users terminals and the serving base station (at the centre) can

be modelled as follows [40]∗

fR(r) =







2r

(R2
o − R2

i )
, for r ∈ (Ri, Ro]

0, others

(3.6)

Additionally, the probability density function (PDF) of the angle of the UEs loca-

tions w.r.t horizontal axis, ϕ is uniformly distributed on the range [0, 2 π] and is

given by

fφ(ϕ) =
1

2 π
, (3.7)

while the cumulative distribution functions (CDFs) of r and ϕ are, respectively,

given by

FR(r) =







(r2 − R2
i )

(R2
o − R2

i )
, for r ∈ (Ri, Ro]

0, others,

(3.8)

and

Fφ(ϕ) =
ϕ

2 π
, (3.9)

It is worth emphasising that the well known Shannon’s capacity formula used in

eq.(3.4), cannot account for the quality of service demands. So, in the following

section, a significant figure of merit, namely, effective capacity is introduced to

incorporate statistical delay QoS into the capacity formula of wireless applications.

3.2.1 Effective Capacity

In order to incorporate the status of the user buffer to our model, a new parameter

θk, relates to the asymptotic decay rate of the buffer occupancy is described as

follows [23]†

θk = − lim
x→∞

ln(Pr{L > x})

x
(3.10)

here, L is the queue length at steady state of the transmitter buffer and x is the

delay bound. The effective capacity as a function of QoS exponent can be expressed

∗For ease of notation, user index, i.e., the subscript k is omitted hereafter.
† It should be noted that θk characterises the equilibrium state delay violation probability of

the k-th user, where a smaller θk indicates a looser QoS constraint, while a larger θk imposes more
stringent constraints.
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accordingly by defining the asymptotic logarithmic moment generating function of

the service process [24]

Ceff (θk) = − lim
n→∞

1

n TθkB
log2 ERk

{

e
−T θkB

n∑

i=1

Rk[i]
}

(3.11)

where, Rk[i] is the transmission rate in time slot i, T is the block length or the total

number of data symbols in one time frame∗ and B is system bandwidth.

3.2.2 Perfect CSI Performance

Assuming uncorrelated (independent and identically distributed) stochastic service

process, Ceff in (3.11) can be simplified to [23], [24]

Ceff (θk) = − 1

TθkB
log2 ERk

{e−T θkBRk} (3.12)

where T is the block length, B is system bandwidth and the expectation is taken

w.r.t the random variable Rk. Obviously, the effective capacity coincides with the

traditional Shannon’s ergodic capacity in case there is no delay constraint i.e. θk →
0. Analytically, with the assumption of steady state of the buffer input (stationary

and ergodic process), and after substituting for rate Rk from eq.(3.3), the asymptotic

effective capacity normalised by the bandwidth, will be as follows,

Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2 E

{

(1 + βkpuNr)
−A

}

(3.13)

where A , θkTB/ln2 the subscript P refers to perfect-CSI and the expectation is

taken over all realisations of the channel (assumed to be ergodic). Using the PDF

which is given in eq.(3.5), the averaging over the SIR distribution is given by

Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2

∫ ∞

0
(1 + βkpuNr)

−Af(x)dx
︸ ︷︷ ︸

I

(3.14)

Theorem 3.1 (Perfect CSI). The asymptotic effective capacity of k-th user in uplink

of massive MIMO systems in generalised-k channels with perfect CSI is given by the

following compact form

∗In the Resource grid designing, block length must be less than or equal to the length of the
channel coherence-interval in which the channels are assumed to be invariant.
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Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2

{

2F0

[

m, A

· · ·
∣
∣
∣
∣

−puNrΩ

rν
k

]}

(3.15)

where rk is the distance between the k-th user and the BS, pFq(·) stands for the

generalized hyper geometric function [46, eq.(9.14.1)] and (· · · ) denotes coefficients

absence.

pFq

[

a1, · · ·, ap

b1, · · ·, bq

∣
∣
∣
∣z

]

=
∞∑

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, (3.16)

with, (x)n is the rising factorial or the Pochhammer polynomial, (x)n =
∏∞

i=1 (x+i),

p and q are non-negative integers.

Proof: A detailed proof is given in appendix A.1. �

Practically, users are randomly located within cell area, such that path loss for

different users are different.∗ The following corollary corresponds to this significant

fact by using distance marginal distribution function PDF given by eq.(3.6) to eval-

uate the average effective capacity over users of the entire cell area.

Corollary 3.1.1 (Spatial Average). The average asymptotic effective capacity over

all the users in the uplink of massive MIMO systems over generalised-k channels can

be parametrised as

Casy
P (A, Dk, pu, Ω, m) = − 1

A
log2

{

R2
o

(R2
o − R2

i ) 3F1





−2
ν

, m, A
(ν−2)

ν

∣
∣
∣
∣

−puNrΩ

Rν
o





− R2
i

(R2
o − R2

i ) 3F1





−2
ν

, m, A
ν−2

ν

∣
∣
∣
∣

−puNrΩ

Rν
i





}

(3.17)

Proof: see appendix A.2 �

The estimation of channel state information (CSI) is very important for multi user

MIMO systems to achieve the required performance. However, in practical scenarios,

the performance is limited as the knowledge of channel state information (CSI) is

fundamentally made employing limited number of orthogonal uplink pilot sequences

(a predefined reference or training sequences). As shown in Fig.2.1, increasing the

∗ It is worth to note that in literature, analysis corresponding to path loss attenuation and
interference from random spatial distributed users usually gets benefits of a significant approach,
namely, stochastic geometric models because of their tractability.
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number of pilots could results in more signalling overhead as we restricted to the

channel coherence time. Therefore, in the following subsection, our efforts will be

devoted to considering the limited channel information scenario, i.e. when we have

a limited number of pilot sequences.

3.2.3 Imperfect CSI Performance

As mentioned above, in realistic wireless systems, training pilots or sequences of

limited length say e.g. τ symbols, usually used in acquiring CSI. Because of limited

length of training pilots and the time varying characteristic of the fading channels,

estimation errors are unavoidable. Hence imperfect-CSI performance is of key point

in real systems analysis. For simplicity, and without loss of generality, we assume

no power control policy, i.e., an equal power transmitted by all users [44], according

to power-scaling law, pu = Eu/
√

Nr, where Eu is the total available power.

Lemma 3.2. (Uplink Rate in Infinite Antenna Regime with imperfect CSI); The

large system asymptotic uplink rate can be written as [29, eq.(37)]

Rasy
k

Nr → ∞≈ T − τ

T
log2(1 + τβ2

kE2
u),

Nr → ∞≈ log2(1 + τβ2
kE2

u), for T ≫ τ (3.18)

where the multiplying factor T − τ

T
is the ratio of time required for sending data-to-

the total time frame which accounts for the effect of the time required for channel

estimation, i.e., the overhead imposed by pilot training.

Consequently, the asymptotic uplink effective capacity for imperfect CSI can be

evaluated as follows. First, from the definition of effective capacity we have

Casy
IP, k(A, Dk, pu, Ω, m) = − 1

A
log2

∫ ∞

0
(1 + τβ2

kE2
u)−Af(x) dx

︸ ︷︷ ︸

IIP

(3.19)

where the subscript IP refers to imperfect-CSI. Next, we arrive at the following

statements for the metric.

Theorem 3.2 (Imperfect CSI). The asymptotic effective capacity of k-th user in

uplink of massive MIMO systems over generalised-k channels with imperfect CSI is

given by

Casy
IP, k(A, Dk, pu, Ω, m) = − 1

A
log2

{

3F0

[
m
2

, m+1
2

, A

−−
∣
∣
∣
∣

−4τp2
uNrΩ

2

r2ν
k

]}

(3.20)
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Proof : see appendix A.3 �

Now we can take the effect of distance distribution into account by averaging over

all the users, assuming they are independently normalised distributed.

Corollary 3.2.1 (Spacial Average). The average asymptotic effective capacity over

all the users in the uplink of massive MIMO systems over generalised-k channels is

given by the following formula

Casy
IP (A, Dk, pu, Ω, m) = − 1

A
log2

{

R2
o

(R2
o − R2

i ) 4F1





−1
ν

, m
2

, m+1
2

, A
(ν−1)

ν

∣
∣
∣
∣

−4τp2
uNrΩ

2

R2ν
o





− R2
i

(R2
o − R2

i ) 4F1





−1
ν

, m
2

, m+1
2

, A
(ν−1)

ν

∣
∣
∣
∣

−4τp2
uNrΩ

2

R2ν
i





}

(3.21)

Proof : see appendix A.4 �

3.2.4 High SNR Regime Characterisation

In order to get more insights into the implications of system and channel param-

eters on the effective capacity, we investigate the asymptotic effective capacity of

uplink MU-MIMO systems in the high SIR regime, i.e., when SIR → ∞.

Corollary 3.2.2. The high SIR asymptotic behaviour of the effective capacity for

perfect CSI can be parametrised as

C∞
P (A, Dk, pu, Ω, m) = log2(Ω puNr)

− 1

A
log2

{

Γ(m − A)

Γ(m)

2(R2+Aν
o − R2+Aν

i )

(2 + A ν)(R2
o − R2

i )

}

(3.22)

Proof: Keeping only the dominant term in eq.(3.14), the effective capacity goes

asymptotically to the following expression,

C∞
P (A, Dk, pu, Ω, m) = lim

pu→∞ − 1

A
log2

∫ ∞

0
(1 + βkpuNr)

−Af(x)dx

≈ − 1

A
log2

∫ ∞

0
(βkpuNr)

−Af(x)dx (3.23)

Taking into account user location effect, then we have
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C∞
P (A, Dk, pu, Ω, m) = − 1

A
log2

{

2

(R2
o − R2

i )

×
∫ Ro

Ri

∫ ∞

0
r

(

ΩpuNr

rν
k

)−A
xm − 1

Γ(m)Ω
e−x/Ωdx dr

}

(3.24)

Next, with the aid of integral identity [46, eq.(3.351.3)], eq.(3.22) follows immedi-

ately. �

The statement in the next corollary is a consequence of Theorem 3.2.

Corollary 3.2.3. The high SIR asymptotic behaviour of the effective capacity for

imperfect CSI is given by

C∞
IP (A, Dk, pu, Ω, m) = log2(τΩ2 p2

uNr)

− 1

A
log2

{

Γ(m − 2A)

Γ(m)

2(R2+2Aν
o − R2+2Aν

i )

(2 + 2A ν)(R2
o − R2

i )

}

(3.25)

Proof: One can pursue a similar analysis for the approximated effective capacity

of perfect CSI case in corollary 3.2.2. �

3.3 Numerical Results

This section investigates the utility function of interest, i.e., the effective capacity

in [bps/Hz] as a function of the number of the receive antenna, transmit power,

shadowing parameter m and QoS exponent. Our simulation model is based on the

uplink of a single cell with the following parameters, unless otherwise specified, the

minimum or guard radius is Ri = 0.1 Km, the maximum or cell coverage radius’

is Ro = 1 Km, system bandwidth is 1 × 106 Hz, block length is T = 1 × 10−3 sec,

total number of symbols of data and pilots per block is 20 symbols and length of

pilot symbols is τ = 3. Gamma distribution is used for large scale fading channel

with scale parameter Ω = 1/m to ensure unity mean value i.e. E{γ} = Ω · m = 1.

Path loss attenuation exponent is set to ν = 4.0 unless otherwise specified in figure

captions.

a) Impact of Transmit Power: Fig.3.2, demonstrates the effective capacity versus

transmit power via Monte Carlo simulations, high SNR approximation eq.(3.22) and
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Table 3.1: Numerical parameters used in the simulation.

PARAMETERS VALUES

BS coverage radius Ro 1000 m

Number of users per resource block K = 3 users

Long term fading (Shadowing) Gamma distribution

User locations Uniform distribution

Shadowing parameter m ∈ [0.5, 3.5]

Path loss exponent ν ∈ [3.3, 4.0]

Channel bandwidth 1.0 MHz

Total Monte Carlo trials 105 system geometric realizations

OFDM frame duration Tslot = 1 ms, LTE standard [7]

Pilot length τ = K symbols

Pilot training overhead Tov (Tslot − τ Tsymbol/Tslot) = 3/7, [7]

analytical expression provided in eq.(3.17). The analysis is carried out for perfect

CSI with fixed shadowing parameter m and different values of the QoS exponents

θk. The outputs of a Monte Carlo is obtained through the generation of 104 gamma

random realisations for the large scale fading matrix. The validation of the derived

closed form expressions can be observed where the simulation results agree very

well with the analytical results. Moreover, the high SNR approximations become

sufficiently tight when SNR is high around 20 dB for θk = 10−5. As expected, the

effective capacity increases with the delay constraint θk decreasing.

b) Impact of Queueing Constraints: Fig.3.3 and Fig.3.4 investigate, more deeply,

the impact of delay QoS constraints on the effective capacity with fixed number of

the receive antenna, fixed shadowing parameter and different values of transmitting

power. Clearly, effective capacity approach Shannon capacity as θk goes toward

zero,i.e., the case when no constraints are imposed by the application on the queueing

delay, on the other hand, effective capacity is almost zero when θk approach infinity,

i.e., the case of highly delay constraint. We observe that more stringent delay QoS

requirements can be supported with higher transmit power. As expected, imperfect

CSI decays the performance of the system while perfect CSI scenario experiences a

superior capacity performance.

c) Impact of Adding more Receive Antenna: Fig.3.5, considers the implications

of increasing the number of receive antenna on the effective capacity with fixed
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transmit power pu, fixed shadowing parameter m and different QoS exponent θk,

i.e., different delay QoS constraints using (3.17) and (3.21). It is shown that the

effective rate, logarithmically, improves with increasing Nr for both cases, perfect

CSI (solid curves) and imperfect CSI (dashed curves) due to the large array-gain of

the system. This fact indicates that large antenna arrays carry more data traffic.

The relative difference between the curves gets steadily larger, see eq.(3.18).

d) Impact of Large-scale Shadowing: Fig.3.6 introduces the asymptotic perfor-

mance provided by very large MIMO for different shadowing parameters. As ex-

pected, higher values of large-fading shape parameter m > 2, usually correspond to

rural-scenario, tend to result in a higher effective capacity due to a weaker shad-

owing condition, while lower values of shape parameter m < 2, usually correspond

to urban-scenario (heavy-shadowing), tend to result in a lower effective capacity

for both perfect and imperfect CSI scenarios. Moreover, the effective_capacity de-

creases monotonically with the exponent θk increasing.
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Figure 3.2: Monte Carlo Simulated, Analytical, and high-SNR approximated effec-
tive capacity with perfect CSI, different values of delay QoS constraints, antenna
elements Nr = 300, path loss ν = 4.0, and sadowing parameter m = 3.5.
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3.4 Conclusion

This chapter quantifies the implications of channel and system parameters (e.g.

shadowing parameter m, the number of receive antennas Nr and delay constraints

θk) on the effective capacity in uplink transmission of asymptotically large receive

antennas system. Closed form analytical expressions are obtained for a single user.

These expressions are subsequently used to get the average effective capacity over

the entire cell users. Furthermore, closed form expressions for the high SNR regime

for both perfect and imperfect channel information are derived.

The conclusions from the obtained results are twofold. First, the proposed ap-

proach is a valid analysis approximation and the tractable analytical results of ef-

fective capacity can eliminate the need for time intensive Monte Carlo simulations.

Second, random shadowing degrades the QoS and stringent delay constraints can

affect considerably the achieved effective capacity as θk gets larger. Importantly,

user location impacts on the effective capacity can be extended to different channel

models. Here, the study focuses on the uplink multiple access channel for simplicity.

However, as future work, we aim to address these challenges in more general channel

models like the interference channels in large-scale systems.
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P = 10 dB, and pilots τ = 6.
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Chapter 4

Average Error and Outage

Probabilities in the Uplink of a

Single Cell Massive MIMO

This chapter investigates the asymptotic behaviour (error and outage probabili-

ties) of a single cell multiple-input multiple-output (MIMO) system aided by a large

scale antenna array. Specifically, the uplink transmission over composite fading

channel with a power scaling scheme is considered. Where most reported studies in

this respect discuss the case of downlink scenario for convenience MIMO systems.

Two assumptions are addressed: perfect channel information (CSI) and imperfect-

CSI. In both cases, closed form expressions for error and outage probabilities in

asymptotically large receive antenna environments are derived.

Moreover, users’ location impact on the system performance is investigated for differ-

ent channel information scenarios. Numerical outcomes, validated by Monte Carlo

simulations, shed light on how different parameters and conditions can affect the

aforementioned performance metrics. Numerical results, for some cases, indicate

that bit error probability (BEP) decreases from about 10−3 to 10−5 when shadowing

shape parameter increases from 2.5 to 4.5. Interestingly, increasing the number of

receiving antennas by 200 elements (i.e., from 50 to 250) achieves approximately

87% (i.e., from 0.9 to 0.12) improvement in outage probability for rate threshold

of 5 bps/Hz and certain system parameters. Finally, these findings reveal that the

performance improvements achieved by large scale antenna arrays over the conve-

nience MIMO (non-massive MIMO with less than 64 antenna elements [29]) can be

considered to tackle some channel and system impairments.
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4.1 Introduction

Fading and shadowing are great challenges for reliable transmission in wireless en-

vironment [45]. In particular, the challenges are obvious for real time applications,

over slow fading environment, when the desired transmission delay constraint is on

the order of the channel coherent time. Two important metrics have been proposed

in the literature to characterise system performance with different quality of service

(QoS) and data rate limitations. These metrics are the average error and the out-

age probabilities. Where outage event occurs if instantaneous signal-to-noise-ratio

(SNR) drops below the minimal desired threshold value.

The uplink error and outage analysis for MIMO channels have been addressed

over multiple studies. The uplink of a multi cell multi user single-input multiple-

output system (MU-SIMO) has been considered in [7]. In their work, authors derived

exact analytical expressions for the symbol error rate, the uplink rate, and the

outage probability per user for linear zero forcing receiver and perfect channel state

information. In [53], authors investigated the uplink and downlink of multi cellular

massive MIMO systems. Their adopted system model accounts for error in channel-

estimation, pilot_contamination, antenna correlation and path-loss for each link.

The work in [54], addresses the uplink of a multicell MU-SIMO system when the

channel experiences small and large-scale fading. The detection is done by using

linear ZF scheme and the base station has perfect CSI of all users in its own cell. L.

Zhao et al. in [55], derived both the outage probability and bit error rate expressions

corresponding to the degrees of freedom (the difference between the number of the

user terminal and BS antennas) in downlink transmission of massive-MIMO.

Power scaling law for uplink massive MIMO systems with different rank channel

has been considered in [15]. Delayed CSI due to user mobility has been addressed

in [56], where authors considered an uplink model and each BS employs zero forcing

decoder. The implications of channel aging on the performance of uplink massive

MIMO systems have been investigated by the authors in [57]. In [58], the authors

introduced tight closed form lower bounds for the rate performance of maximal ratio

combining and zero forcing detectors over aged CSI. Recently, the authors in [59]

introduced approximate closed-form formulas for the uplink outage probability of a

user with maximal ratio combining (MRC) at the BS.

It is well known that the use of massive antenna arrays can significantly alleviate

the effect of small scale fading (through micro diversity) and intra cell interference,
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and consequently, increase the energy and spectral efficiencies of wireless systems

[29]. Motivated by this fact, this chapter seeks to address the potential benefits of

massive MIMO configuration on the uplink error and outage performance of wireless

systems. Different from the existing studies, this work exploits the asymptotic

results of random matrix theory introduced in [29] to further analysis the impacts

of user location and shadowing parameter on the performance of large antenna

system with different modulation schemes. Such analysis could play a key role in

5G systems designing, in particular, vulnerable to shadowing and path-loss, mm-

Wave frequencies. The specific contributions of this chapter can be summarised as

follows,

1) Closed form expressions are derived for the uplink’s asymptotic error and

outage probabilities when the BS deploys a large antenna array with power

scaling policy (unique to the best of our knowledge). The results enable us to

explicitly study the impacts of the shadowing parameter, number of BS receive

antennas and the transmit power on the system performance.

2) The implications of channel and system parameters on the uplink performance

are investigated via analytical analysis with numerical validation. The pro-

vided precise approximation results can replace the need for lengthy or time

exhausting Monte Carlo simulations.

The remainder of the chapter is organised as follows, In Section 4.2, the system-

model and problem-formulation are described. Afterwards, in section 4.4, closed

form expressions for the asymptotic bit error and outage probability are derived as

a function of several system parameters. Numerical results are presented in section

4.5. followed by Section 4.6 where the work is concluded.
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4.2 System and Channel Model

The system under study considers the uplink of single cell scenario consisting of

a massive antenna base station as shown in Fig.(4.1). Assuming that users are

equipped with a single transmitting antenna, as previously stated, the output of the

uplink channel can be given as [30] y =
√

puGx+n, where G ∈ CNr×K is the complex

channel matrix between the base station and its associated user terminals. Nr is

the number of receive antennas at the BS, pu is the average power transmitted by

each user, x denotes the data signal and n ∼ CN (0, 1) is the AWGN noise. For the

generalized-K composite fading channel model, the fast fading component can be

characterised by Nakagami-m distribution, while the large scale component can be

characterised using Log-normal distribution [45]. For individual user k, the column

vector of G will be [29], [30, eq. 2] gk = hk

√
βk, given that hk is the fast fading

component of gk and βk is the large scale component which can be given as [15]

βk = µk D−ν
k , where µk is the log-normal distributed shadowing, Dk is the distance

between the BS and the k-th user and ν is the path loss exponent.∗

Figure 4.1: MU-MIMO system model, where users are assumed to be deployed
uniformly within the area of shaded region and multiplexed via the zero forcing
linear detector.

As previously mentioned in chapter 3, in large scale MIMO systems zero-forcing

(ZF) linear detector tends to be sub-optimal and strikes a balance between system’s

complexity and performance [29]. Thus, in our work ZF is adopted and all results

are derived based on this requisite. It is worth mentioning that in massive antenna

environments, just small scale fading corresponding to micro diversity can be av-

eraged out, while large scale fading corresponding to macro diversity environment

stays active and affects system performance. As such, with ZF detector and perfect

CSI, capitalising on the outcomes of [29], asymptotic power scaling data-rate of the

∗The typical values of ν ranging from 2 to 6 in urban areas, however, in high density small
coverage cells analysis (interference is dominated) it is required that ν > 2 to ensure that the
aggregate interference is finite [60].
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k-th user can be written as [29, [eq. 21)], [34] Rasy
k (µk, Dk) ≈ log2(1 + βkpuNr).

According to lemma (3.1), the upper bound on the uplink ergodic rate of k-th user

follows from Jensen’s inequality and can be expressed as follows

Rasy
k (µk, Dk) ≈ log2

[

1 + E

{

µk pu

Dν
k

Nr

}
]

bits/s/Hz (4.1)

where the expectation operation E{·} is over two random variables, i.e., channel

realisations and terminal locations. In our analysis, µk and Dk distributions are,

respectively, Gamma, ∼ Γ(m, Ω) and Uniform, ∼ U(Ri, Ro) as shown on the next

page. It’s noteworthy that gamma distribution has shown a good fit to real channel

measurements and also it is analytically more tractable than the log-normal distri-

bution. The probability density function (PDF) of gamma distributed r.vs can be

written as [29, eq.26], f(x) = xmk−1 e−x/Ωk

Γ(mk)Ω
mk
k

, x, mk, Ωk > 0, where the parameters

0 ≤ mk and 0 ≤ Ωk are the fading figure (or shape) and the average power (or

scale) parameters of the gamma distribution, respectively. Γ(·) denotes the gamma

function. The values of these parameters are affected by the communication environ-

ments and the expectation Ωk = E{γk}/mk, is usually chosen to be one. Moreover,

we assume an independent and uniform distribution of users on disc formed by two

rings Ri and Ro in the cell coverage area as shown in Fig.4.1. So, the correspond-

ing PDF of the distance between users terminals and base station can be modelled

as, [40], [55, eq.9], fd(x) = 1
(R2

o−R2
i )

2x.

4.3 Error and Outage probability

In this section, first, a closed-form expression is derived for the error probability as

a function of several important system parameters for a general k-th user. After

this, the behaviour of user with a spatial averaging is addressed. Next a closed form

expression for the outage probability is provided for both full and limited knowledge

of the channel information.

4.3.1 Average error probability

A. Perfect CSI

For binary signals in AWGN environments, the bit error probability (BEP) of co-

herent, differentially coherent, and non-coherent detection is given by the generic
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expression [45, eq.(8.100)]

Pe(a, b, γk) =
Γ(b, aγk)

2Γ(b)
=

1

2
Qb(0,

√
2aγk), (4.2)

where the parameters a and b are given in Table 4.1 for different (orthogonal/non-

orthogonal) modulation/ (coherent-non-coherent) detection combinations and the

generalized Marcum-Q function Qb(·, ·) is defined as [45, eq.(4.33)]

Qb(q1, q2) =

∞∫

q2

xb

ab−1
exp

[

− q2
1 + x2

2

]

Ib−1(q1x) dx (4.3)

where q1 > 0 and q2 ≥ 0, are real parameters and Ib−1(·) is the m-th order modified-

Bessel function of the first kind. The order-index b is an integer and typically b ≥ 0.

Employing scale law for the transmit power [29], then the approximated uplink SNR

γk in eq.(4.1) for the k-th user at the receiver end (BS serving a finite number of

users K) with perfect CSI will achieve the following

γk − puNr

Dν

a.s−→
Nr → ∞

0 (4.4)

where a.s. means almost sure convergence. Equation (4.2) can be written in term

of lower incomplete gamma function using the identity [133, eq.(6.5.2)],

γ(b, x) = Γ(b) − Γ(b, x). Consequently, the error probability is immediate, and can

be given as

Pe(γk) =
1

2

{

1 − γ(b, aγk)

Γ(b)

}

(4.5)

Table 4.1: Values of the parameters a and b for different combinations of Modula-
tion/Detection schemes.

Modulation or Detection type
Parameters values

a b

Orthogonal-coherent BFSK 1/2 1/2

Antipodal coherent BPSK 1 1/2

Differentially coherent DPSK 1 1

Orthogonal noncoherent BFSK 1/2 1

47



Chapter_4 4.3. Error and Outage probability

Proposition 4.1 (Perfect CSI). In the regime of large Nr with linear ZF re-

ceiver, the asymptotic uplink average bit error probability of the k-th user under

generalised-k channels, with full channel information, can be expressed in the fol-

lowing compact form

P(P )
ek

(D, Nr, pu, m) =

1

2
− (apuNrΩ/Dν)bΓ(m + b)

2Γ(b + 1)Γ(m)
2F1

[

b, b + m

b + 1

∣
∣
∣
∣ − apuNrΩ

Dν

]

, (4.6)

where 2F1(·) stands for qauss hyper geometric function [46, eq.(9.14.2)],

pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, given that, (x)n is the rising factorial or the

Pochhammer polynomial, (x)n =
∏∞

i=1 (x + i), p and q are non-negative integers.

Proof: A detailed proof is given in Appendix B.1 �

Remark 4.1. The asymptotic uplink average bit error probability can be expressed

in term of the upper incomplete beta function, Bx(a, b) =
∫ x

0 ta−1(1 − t)b−1dt, which,

in many cases, can be calculated more efficiently than the gauss hyper geometric

function (using e.g., MATLAB® software). Then, with aid of the identity Bx(a, b) =

xa

a 2F1(a, 1 − b; a + 1; x), eq.(4.6) can be rewritten as follows

P(P )
ek

(D, Nr, pu, m) =
1

2
− (−1)b b Γ(m + b)

2Γ(b + 1)Γ(m)
B−apuNrΩ

Dν

(b, 1 − b − m) , (4.7)

Spatial Average Analysis Under Imperfect CSI

Next, error probability analysis derived in the previous proposition is pursued for

more practical case where users are randomly located within cell area, and conse-

quently experiencing a different path loss. The following theorem corresponds to this

significant fact by using the aforementioned distance marginal distribution-function

PDF to evaluate the average error probability over users of the entire cell area.

Theorem 4.1 (Perfect CSI Spatial Average). The asymptotic average error proba-

bility over all the users in the uplink of large Nr regimes for generalised-k channels

is given by eq.(4.8)

P(P )
e (D, Nr, pu, m) =

1

2
− Γ(m + b)

(2 − bν)Γ(b + 1)Γ(m)

{

abR2
o(puNrΩ/Rν

o)b

(R2
o − R2

i ) 3F2




b, b + m, b − 2

ν

b + 1, b − 2
ν

+ 1

∣
∣
∣
∣

−puNrΩ

Rν
o




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− abR2
i (puNrΩ/Rν

i )b

(R2
o − R2

i ) 3F2




b, b + m, b − 2

ν

b + 1, b − 2
ν

+ 1

∣
∣
∣
∣ − apuNrΩ

Rν
i





}

(4.8)

Proof: The proof of this theorem is shown in appendix B.2 �

B. Imperfect CSI

In realistic wireless systems, training pilots or sequences of limited length say e.g. τ

symbols, usually used in acquiring CSI. Because of limited length of training pilots

and the time varying characteristic of the fading channels, estimation errors are

unavoidable and this effect is termed as channel information imperfection. Hence

imperfect CSI performance is of a key point in real systems analysis. For simplicity,

we assume no power control policy or equal power scale transmitting for all users [44],

pu = Eu/
√

M , where Eu is the total available power. In this case, invoking the law of

large numbers, the large system asymptotic uplink rate can be written as [29, eq.37]

Rasy ≈ T − τ

T
log2(1 + τβ2

kE2
u), for Nr −→ ∞ and τ ≫ K

≈ log2(1 + τβ2
kE2

u), for T ≫ τ (4.9)

where T is the total number of symbols in one time frame and K is the total number

of users. Consequently, the approximated uplink SNR γk for the k-th user at the

receiver end (BS) for imperfect CSI with the power scaling law [29], will satisfy the

following

γk − τp2
uNr

D2ν

a.s−→
Nr → ∞

0 for fixed K (4.10)

Proposition 4.2 (Imperfect CSI). For large scale MIMO systems with linear ZF

receiver, the asymptotic uplink average bit error probability of the k-th user under

generalised-k channels with perfect CSI can be expressed by the following equation

P(IP )
ek

(D, Nr, pu, m) =

1

2
−

(aρ)bΓ(b +
m

2
)Γ(b +

(m + 1)

2
)

22−m
√

πΓ(b + 1)Γ(m) 3F1






b, b +
m

2
, b +

m + 1

2
b + 1

∣
∣
∣
∣ − aρ




 (4.11)
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with ρ = 4τp2
uNrΩ/D2ν

Proof: A detailed proof is given in Appendix B.3 �

Spatial Average Analysis Under Imperfect CSI

Now, we pursue an error probability analysis, which is limited by the performance

of the worst user, by taking into account the impacts of randomness of users’ loca-

tion as well as the imperfect CSI. To this end, we invoking the aforementioned user

distance distribution function PDF once more in the following theorem.

Theorem 4.2 (Spatial Average). The average asymptotic error probability over all

the users in the uplink of massive MIMO systems over generalised-k channels and

an imperfect channel information is given by eq.(4.12)

P(IP )
e (D, Nr, pu, m) =

1

2
−

Γ(b +
m

2
)Γ(b +

(m + 1)

2
)

22−m
√

πΓ(b + 1)Γ(m)(b − 1/ν)

×
{

abR2
o(4τp2

uNrΩ
2/R2ν

o )b

(R2
o − R2

i ) 3F2






b, b +
m

2
, b +

m + 1

2
, b − 1

ν

b + 1, b + 1 − 1

ν

∣
∣
∣
∣ − 4aτp2

uNrΩ
2

R2ν
o






− abR2
i (4τp2

uNrΩ
2/R2ν

i )b

(R2
o − R2

i ) 3F2






b, b +
m

2
, b +

m + 1

2
, b − 1

ν

b + 1, b + 1 − 1

ν

∣
∣
∣
∣ − 4aτp2

uNrΩ
2

R2ν
i






}

(4.12)

Proof: Using the same methodology used in appendix B.2, the theorem can

be easily proofed. �

Intuitively, error probability (Pe) increases when it’s averaged over entire cell area,

due to the worst case corresponding to cell edge users.

4.3.2 Rate outage probability

The rate outage probability can be defined as the probability that the user rate

Rk (as a random variable) drops under a particular rate threshold Rth which is the

achievable or desired transmission data rate for the specific k-th user. Hence the

outage probability is given by

Poutk
, Pr

[

Rk < Rth

]

= Pr
[

γk < (2Rth − 1)
]

, (4.13)
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where the second line follows from Shannon capacity definition i.e. the tight upper

bound on information rate of the channel.

Proposition 4.3 (Perfect CSI). For large scale MIMO systems with linear ZF re-

ceiver, the asymptotic uplink rate outage probability of the k-th user under generalised-

k channels with perfect CSI can be expressed in the following compact form

P(P )
outk

(D, Nr, pu, m) =
(Dν (2Rth − 1)/puNrΩ)m

m Γ(m)

× 1F1

[

m

m + 1

∣
∣
∣
∣ − Dν (2Rth − 1)

puNrΩ

]

(4.14)

Proof: see appendix B.4 �

Next, we pursue an outage analysis for the case with limited knowledge of the CSI.

Proposition 4.4 (Imperfect CSI). For large scale MIMO systems with linear ZF re-

ceiver, the asymptotic uplink rate outage probability of the k-th user under generalised-

k channels with imperfect CSI can be expressed as follows

P(IP )
outk

(D, Nr, pu, m) =

(D2ν (2Rth − 1)/τp2
uNrΩ)(m+2)

(m + 2) Γ(m + 2)
1F1

[

m + 2

m + 3

∣
∣
∣
∣ − D2ν (2Rth − 1)

τp2
uNrΩ

]

(4.15)

Proof: see appendix B.5 �

4.4 Numerical results

In this section, we present simulated performance results, corresponding to the up-

link of a single cell with a coverage area ranges between two rings of radii Ri = 100

m and Ro = 1 Km from the BS. In our simulation, power is normalised to the

distance of Ri for all scenarios. Gamma distribution is used for large scale fading

channel with a scale value of Ω = 1/m. We used some specific parameters, e.g. the

path loss exponent is set to ν = 2.0 and the length of pilot symbols are set to τ = 4

unless otherwise specified.

a) Impact of Transmit Power: In Fig.4.2, two popular modulation schemes,

namely, Binary Phase Shift King (BPSK) and Binary deferential Phase Shift Keying

(BDPSK) are considered. For both techniques, bit error probability versus transmit-

ting power ( via Monte Carlo simulations and analytical expression ) are provided
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using equations (4.20), (4.22) for a single user and spatial averaging, respectively.

The analysis is carried out for perfect and imperfect CSI with a fixed shadowing

parameter m. The outputs of the Monte Carlo is obtained through generation of

104 gamma random realizations for the large scale fading matrix. The validation

of the derived closed form expressions can be observed where the simulation results

agrees very well with the analytical results. As expected, the channel imperfection

increases error probability compared to the case of the full channel knowledge. Also,

the figure shows the impact of user location on the uplink bit error probability. It

can be seen that a spatial averaging (red curves) causes in performance degradation

compared to a single user at distance of 600m i.e., cell interior user (blue curves).

Where the spatial averaging takes into account the worst-case i.e., cell-edge users.

b) Impact of Pilot Length: Fig.4.3, demonstrates the impact of the pilot length used

in the channel estimation on the rate outage probability of a user located at distance

of R = 600m from the base station with two values of the channel shape parameter

and two modulation schemes. It is seen that the performance gets better with a

high shadowing parameter m as well as with the increasing number of symbols used

for channel estimation τ .

c) Impact of Adding more Receiver Antenna: Fig.4.4, reveals the interesting impli-

cations of increasing the number of receive antenna on the error performance with a

fixed and normalised transmit power pu. In addition, the figure compares results for

two shadowing parameter values m and two modulation techniques (dashed curves

for BPSK and solid curves for BDPSK). Note that any increase in the number of an-

tennas Nr tends to increase the performance logarithmically, for both cases, perfect

and imperfect CSI. The relative difference between the curves gets steadily larger

because of the squaring effect, see (eq. 4.9) and this can quantify the total informa-

tion loss due to imperfect CSI.

d) Impact of large scale Fading: Fig.4.5, jointly compares the functionality among

error probability, the shadowing shape parameter m and the size of the receive

antenna array. Here, we recall that lower shadow fading parameter means more

severity channel and this is why bit error performance gets worse as we move from

suburban scenario (m = 4.5) into nearly urban scenario (m = 2.5).

e) Rate-Profile: Fig.4.6, considers the uplink outage performance. It is interesting to

observe the effect of adding more receive antennas on rate CDF, where almost 87%

outage advantage can be achieved for Rth = 5 bps/Hz as Nr is increased from 50 to

250 elements. Also, for perfect channel information and QoS constraint of 4 bps/Hz,
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almost 50% of the users are satisfied with their service in case of Nt = 50, while

more than 98% of the users are covered when the deployed antennas are Nt = 250

for the same rate constraint. Moreover, the figure depicts the impact of channel

imperfection, especially at the high outage probability regime, on the achievable

user data rate threshold.

f) Impact of User Distance: Finally, Fig.4.7, clearly shows the impact of user dis-

tance on the rate outage probability for different values of the shadowing parameter

m and path loss exponent ν at a rate threshold of Rth = 2.5 bit/s/Hz. As expected,

increasing ν causes curves divergence with distance increasing. On the other hand,

decreasing m causes constant outage increasing for all user radii.
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Figure 4.2: Average bit error probability for a single user located at Rk = 600m
compared with a spatial averaged user (entire cell) with perfect/imperfect CSI, dif-
ferent modulation, path loss ν = 3.3, sadowing parameter m = 3.0, pilots τ = 4,
and antenna elements Nr = 250.

4.5 Conclusion

This chapter studies the asymptotic power-scaling performance (average error prob-

ability and rate outage) of the uplink transmission in large antennas regime. Specif-

ically, closed-form formulas are derived for the aforementioned performance metrics

when BS uses linear ZF detector. In addition, impact of user location on the average
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Figure 4.3: Average bit error probability for a single user-terminal located at Rk =
600m versus the number of symbols used in training sequence of channel estimation
for antenna elements Nr = 150, path loss ν = 2.0, and shadowing parameter of
m = {2.5, 4.5}.

error probability is characterised, where the derived formulas take into consideration

the inevitable statistical-spatial-randomness of users distribution. The findings of

this chapter point out that imperfect CSI degrades both the corresponding error

probability and rate outage. However, results reveal that increasing the number

of received antennas at the base station can significantly compensate for this de-

terioration and improve error and outage probabilities performance. For instance,

increasing the number of BS-antennas by 200 elements gives about 87% improvement

in outage_probability for rate threshold of 5 bps/Hz at certain system parameters.
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Chapter 5

QoS-Constraints in the Uplink of

Cellular Massive-MIMO

While large scale multiple input multiple output (MIMO) cellular system is a

promising strategy to enhance energy and spectral efficiencies of the next generation

wireless networks, pilot sequences reusing in adjacent cells causes inter cell interfer-

ence due to pilot contamination. Therefore, this chapter investigates the statistical

queueing constraints and pilot contamination phenomenon in random or irregular

cellular massive MIMO system where base stations are Poisson distributed. Specifi-

cally, tractable analytical expressions are provided for the asymptotic SIR coverage,

rate coverage and the effective capacity under quality of service (QoS) statistical

exponent constraint in uplink transmission when each base station deploys a large

number of antennas. Laplace transform of interference is derived with aid of mathe-

matical tools from stochastic geometry. We show that the QoS constrained capacity

is proportional to the path loss exponent and inversely proportional to the pilot

reusing probability which in turn is a function of cell load.

Our simulation results prove that pilot reuse impairments can be alleviated by

employing a cellular frequency reuse scheme. For example, with unity frequency

reuse factor, we see that 40% of the total users have signal to interference ratio

(SIR) above −10.5 dB, whereas, with frequency reuse factor of Ω = 7, the same

fraction of users has SIR above 20.5 dB. However, this can reduce the effective

bandwidth of the overall system, e.g., for 15% level, the rate drop is almost 10Mbps

due to using reuse factor of Ω = 7.
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5.1 Introduction

The large scale multi user MIMO technique is introduced as a promising tech-

nique for the fifth generation (5G) radio systems [61]. Where recent researches

validate that BSs, deploy an order of magnitude more antennas than scheduled

users, have great capability to enhance the spectral efficiency (SE) in cellular sys-

tems and consequently, meet the fast growth in wireless-traffic of various multimedia-

applications [62]. It is worth noting that, feedback burden of channel state reporting

can be avoided by exploiting the channel reciprocity in time division duplex (TDD)

transmission mode [63]. Moreover, in order to minimise training overhead in channel

estimation, massive MIMO system exploits the reuse of pilot sequences. However,

the major challenge is the contamination of channel-estimate due to reusing the

same pilots in nearby cells and this impairment is termed as pilot-contamination.

5.1.1 Related works

Quality of Service (QoS): Most of the emerging real time applications imposed strin-

gent constraints on queue lengths or queuing delays of transmit buffer. The effective

capacity quantifies the maximum arrival rate that can be achieved w.r.t a given ser-

vice demands with a steady state flow of data at buffer input. In this concern,

authors in [24] analysed the effective capacity in single antenna communication sys-

tems. In [25], the effective capacity of Gaussian block fading MIMO systems is inves-

tigated. Moreover, [26] examined in detail, high and low SNR asymptotic behaviour

of MIMO and illustrated the relationship between the buffer queuing constraints

and MIMO spatial dimensions over the entire range of SNR values. M. Ismail et

al. in [27] investigated energy efficient uplink communications for heterogeneous

wireless medium. In [28] the effective throughput of MIMO systems is investigated

over both independent identically distributed and independent non-identically dis-

tributed κ − µ fading channels under the quality of service (QoS) delay constraints.

Pilot contamination: In the planning and performance evaluation of a wireless

network, one of the crucial aspects is the statistics of the co-channel interference.

Many studies have been conducted to address the impact of pilot contamination on

statistical distribution of signal to interference ratio (SIR) in forward and reverse

radio links. The authors in [64], studied the impact of pilot contamination on the

asymptotic distribution of SIR. M. Debbah et al, in [53], characterized the mini-

mum mean squared error (MMSE) channel estimation in wireless systems. Thomas
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L. Marzetta, in [7] considered regular hexagonal cell topology and uniformly dis-

tributed users. He addressed the performance limitations of the non-cooperative

cellular multi user MIMO system due to the phenomenon of pilot contamination.

Furthermore, he demonstrated that in massive regimes, the effects of uncorrelated

noise and fast fading vanish, spectral efficiency(SE) is independent of bandwidth and

the desired per bit transmitted energy vanishes. Inter cellular interference (ICI), is

the only remaining impairment due to reuse of the pilot sequences in other cells

which is known as pilot contamination and does not vanish with large number of

BS antennas.

W. Heath et al, in [65], analyzed the performance of massive MIMO cellular

networks with random topology. They provided analytical expressions for rate and

the asymptotic coverage probability for downlink and uplink transmissions when

BSs have Poisson distributions. They proved that, though bounded by pilot con-

tamination, large scale MIMO systems can provide significantly higher performance

than the systems with single antenna. In reference [66], the authors investigated the

uplink of a multi cell multi user single input multiple output (MU-SIMO) system

with zero forcing detection technique and perfect channel information(CSI). They

derived user outage probability in exact analytical form. Moreover, they demon-

strated that, while maintaining a required quality of service in massive antenna

arrays, user transmit-power can be made proportional to the reciprocal of the num-

ber of BS-antennas.

The authors in [67], focused on the uplink of multi cell massive MIMO systems

with linear detection. They proposed a novel pilot allocation scheme to mitigate the

effect of Pilot contamination known as fractional pilot reuse (FPR) scheme. The

key-idea is to improve cell spectral efficiency, where cell center users in neighbouring

cells are allowed to reuse the same pilot sequences. Yuehao Zhou et al, in [68],

considered the uplink of massive MIMO systems with dual-antenna users. Where

closed form expressions have been derived for the achievable sum rate of several

transmission schemes with power scaling law.

In [69], the authors examined different pilot reuse factors and different interfer-

ence scenarios in large antenna regimes. P. Herath et al, in [70], employed stochastic

geometry tools to derive an expression for the coverage probability of uplink mode

in a massive-MIMO cellular network over path-loss and log-normal shadowing.
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5.1.2 Contributions

Uplink SIR analysis is of primary concern compared to the downlink analysis, since

signals in the downlink scenario all come from the centre of the cells, whereas in

uplink scenario signals may come from the boundaries of the cells [71]. Moreover,

due to the irregular deployment of modern networks, and with non-orthogonal pi-

lots, uplink interference from other users (UEs) can be stronger than the useful

signal at the serving base station although highest SIR is depended in users sched-

ule. Motivated by these reasons, and the fact that Pilot-contamination is the main

limiting factor in large antenna regimes [29], we seek in this chapter to address these

challenges as well as the statistical queueing constraints in uplink massive-MIMO

wireless systems and investigate some key metrics such as SIR outage, rate-outage

and effective capacity. Unlike the regular topology considered in prior work [7], we

examine irregular topology of cellular massive MIMO which is known to be closer to

the practical demand-based deployment of BSs [72]. Moreover, different from [65],

we consider the QoS constraints and the effective capacity performance which offers

a suitable metric to assess the implications that physical layer design may have on

link layer performance. Such cross layer analysis could play a key role in 5G systems

designing. The specific contributions of this work can be summarised as follows,

1) We characterise the uplink’s asymptotic SIR coverage probability, rate cov-

erage and effective capacity of a large antenna-array regime when the BSs

are deployed according to poison point process (PPP) distribution. Crucial

expressions are obtained (closed form or analytical formula) in the sense of

benchmarking the performance of a randomly selected user (typical user)in

the cellular network.

2) We evaluate the implications of channel and system parameters on the uplink

performance via numerical analysis with remarkable comments. The provided

precise approximation results can replace the need for lengthy Monte Carlo

simulations in designing of large scale MIMO systems.

5.1.3 Notations and Paper Organization

The notation Ex{·} represents the expectation operator over the random variable x,

P{X} stands for the probability of event X [73], Γ(x) denotes the gamma function
∫ ∞

0 tx−1e−tdt [43], Lx(s) is Laplace transform (L.T) of x at specific value s, fx(·) is
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probability density function of random variable x PDF, CCDF is the complemen-

tary cumulative distribution function, ‖ · ‖ is the Euclidean-norm. The remainder

of the chapter is structured as follows, Section 5.2 discusses the assumptions and

provides system model. Afterwards, section 5.3 formulates the signal-to-interference

ratio (SIR) model, presents the definition of the performance metrics, and presents

some related aspects. Section 5.4 shows our numerical results. Finally, section 5.5

concludes the work.

5.2 Assumptions and System Model

We consider the uplink of a non-cooperative cellular multi-user massive-MIMO sys-

tem. In our mathematical-formulation, we leverage the following assumptions,

1) Time division-duplex (TDD) protocol is assumed with channel reciprocity.

Where the BSs exploit the UL orthogonal-pilot-sequences to estimate the DL-

channel of the served UEs.

2) For the BSs layout or deployment model, we assume homogeneous Poisson

Point Process (PPP) Φb of density λb on the plane which provides further

tractability from stochastic geometry tools (homogeneity of Φb, imposes sym-

metric traits and a constant BS density λb over all the plane R2). Hence, Cell

boundaries will form a Voronoi-tessellation∗ as shown in Fig.5.1 which depicts

a sample of user deployment snapshot in the cellular network. Each BS is

equipped with M antennas and randomly allocated (with equal probability)

one of Ω different frequency bands.

3) The number of, one antenna, UEs associated with a BS follow a homogeneous

PPP Φu with an intensity of λu. The UEs’ locations are assumed to follow uni-

form distribution in a disc of radius Ro and uncorrelated with the distribution

of other cells users.

∗Consequently, concentric-circles around the BSs will no longer describe the constant SIR
contours and the geographical interpretation of users classification (interior or edge users) may
defers from cell to another. Thus, performance analysis corresponds to spatial PPP model provides
lower-bound compared to the deterministic models that reflect upper-bound of system performance.
Consult [74] for further details.
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Figure 5.1: Illustration of a PPP model for the BS-locations and the corresponding
Voronoi tessellation cell boundaries. Dashed lines are the ICI for case of unity
frequency reuse factor(FRF), when all BSs use the same frequency bands with full
load assumption i.e., there is at least one user in each cell share the same pilot
sequence with the typical user.

5.2.1 Estimating Uplink-Channel

For acquiring channel state information (CSI), we consider pilot based channel esti-

mation in which all the users send pre-assigned training sequences (from orthonormal

pilot set {Φp}P
p=1 ) each of length τ to their BSs as shown in Fig.5.2. The pilot set

is assumed to be reused among all cells. Leveraging channel estimates, BSs apply

a maximum ratio combining (MRC) to recover received uplink data. The received

pilot signals at the serving base station (BSb) can be written as

Yb =
√

pu

∞∑

l=1

P∑

p=1

αblGblpS
H
l χlp + nb (5.1)

where, M is the number of BS antennas, b is the typical or serving BS index, l

is the cell index, p is the pilot index, pu is signal to noise ratio (SNR) of the pi-

lot, Gblp = hblp

√

βblp/rν
blp, Gblp ∈ CM×1 is the channel vector from interfering user

(UElp) to BSb hblp ∈ CM×1 models the small scale fading vector with i.i.d. zero

mean and unit-variance entries, rblp denotes the distance between UElp and BSb, ν

is the path-loss-exponent, βblp ∼ LogNormal(0, σ2
dB) is the long term shadow fading

coefficients, Sl is the pilot symbol transmitted by UElp, the superscript H denotes

conjugate-transpose and nb ∼ CN (0, 1) denotes the AWGN-noise received at BSb’s

antennas. The factor αbl accounts for the frequency reuse probability between the

typical and interfering BSs
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αbl =







1 if BSb and BSl employ the same frequency band.

0 Otherwise .
(5.2)

The factor χlp in 5.1 accounts for pilot reuse probability by a particular interfering

BSl,

χlp =







1 if BSl uses the p-th pilot sequence.

0 Otherwise .
(5.3)

According to the received signal (5.1), BSb estimates the channel gain of the terminal

transmitting the p-th pilot sequence as follows

Ĝbbp =
1√
pu

YbSb

(a)
=GbbpS

H
b Sb +

∞∑

l=1

P∑

p=1

αblGblpS
H
b Sbχlp +

nbSb√
pu

(b)
=Gbbp +

∞∑

l=1

P∑

p=1

αblGblpχlp +
nbSb√

pu

, (5.4)

where Gbbp is the required or desired channel, (a) follows by substituting for Yb from

(5.1), (b) follows due to employing orthogonal pilot sequences. The second term

in (b) is the contamination due to pilot reusing by the users associated with other

cells∗ and the last term represents the background noise.

5.2.2 Reverse link Signal

The estimation phase is followed by uplink data transmission phase, where all the

UEs transmit useful data_symbols to their BSs. The reverse-link baseband signal

at BSb can be expressed as

yb =
√

pb

∞∑

l=1

P∑

p=1

αblGblpu
H
l χlp + n′

b, (5.5)

where, pb is the signal SNR, ul represents uplink data symbols of cell-l and n′
b ∼

CN (0, 1) denotes the AWGN-noise. Uplink data can be recovered by left multiplying

the received signal (5.5) by the conjugate transpose of the channel-estimate (5.4) of

∗Kindly note that since the same set of pilot sequences are reused among all the BSs, so index
subscript can be dropped from the symbol Sb.
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the required terminal, i.e., passing through MRC-detector yields

ûlb = lim
M→∞

Ĝ
H

bbp yb

M
√

pb

(a)
= lim

M→∞

1

M
√

pb



Gbbp +
∞∑

l=1

P∑

p=1

αblGblpχlp +
nbSb√

pu





H

·



√

pb

∞∑

m=1

P∑

n=1

αblGbmnuH
l χmn + n′

b



 , (5.6)

where (a) follows due to substituting for Ĝbbp and yb, from (5.4) and (5.5) respec-

tively. Now, we can simplify the expression in (5.6), leveraging the fact that entries

of nb and hblp are i.i.d. random variables with zero-mean and unit-variance. Hence,

exploiting the strong law of large-numbers (SLLN), only the products of identical-

quantities in (5.6) remain significant, e.g see [7], [65], [75]. So, for identical-quantities

we have

lim
M→∞

GH
blp Gbmn

M
√

pu

=
(βblpβbmn)1/2

(rblprbmn)ν/2
lim

M→∞

hH
blp hbmn

M
√

pu

=
αbl βblp

rν
blp

δ(lm), (5.7)

where δ(x) is the Dirac-delta function. On the other hand, for non-identical-

quantities we have∗

lim
M→∞

nH
b hbmn

M
√

pu

= lim
M→∞

nH
b n′

b

M
√

pu

= lim
M→∞

hH
blp n′

b

M
√

pu

= 0 (5.8)

Using (5.7) and (5.8), we can express (5.6) as

ûbp =
βbbp

rν
bbp

ubp +
∞∑

l=1

P∑

p=1
l Ó=b

αbl βblp χlp

rν
blp

ulp (5.9)

The simplified expression in (5.9) compared with (5.6) reveals the typical and ap-

pealing traits of massive-MIMO systems.

∗Thermal noise in most urban wireless networks is negligible compared to the background
interference from the adjacent base stations and such networks are termed as interference limited
networks. The corresponding uplink performance metric is the signal to interference ratio (SIR)
at the required BS, which defined as the ratio of the received signal-power from the serving UE to
the aggregated powers from all interfering UEs.
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Figure 5.2: Uplink Training sequence allocation, each user assigned a specific pilot,
each pilot sequence is a τ length normalised-vector, orthogonal to all sequences
within the same cell. T represents the number of symbols or duration over which
the channel is constant.

5.3 Asymptotic interference distribution

The significant step in analysing the performance of the system is to characterise

the interference statistical distribution. With no loss of generality, and since we

have a homogeneous PPP, the typical BSb in consideration is assumed to be at the

origin of the plane, i.e., the centre of R2 [76] as shown in Fig.5.3. UEs are uniformly

distributed in each cell and the locations of all the interfering users sharing the

same pilot sequence are assumed to form an independent poison point process on

the two-dimensional Euclidean space R2.

Figure 5.3: System parameters of the adopted reverse link model. Where Ylp ∈ R2

are the cartesian coordinates location of the interfering user UElp w.r.t its basesta-
tion BSlp, Xl ∈ R2 are the cartesian coordinates location of basestation BSlp w.r.t
BSbp, rlbp is the polar coordinates representation of the distance ‖Xl + Ylp‖.

Assuming that all BSs perform channel information acquiring at the same in-

stant∗(almost the worst scenario), then Laplace transform (L.T) of the interference

∗It’s worthwhile to remark that the pilot decontamination can be performed using a time shift
of the training phase in adjacent cells, see, e.g., [77] or [75, and references therein] for more details
about the mechanism.
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contributions of all the users employ pth pilot sequence into BSb can be obtained as

follows.

Lemma 5.1. (Interference Characteristic); Invoking the basic formula of L.T [76],

the uplink interference at the typical BS can be characterised as follows

LIbp
(s) =EIbp

{e−sIbp}
(a)
= Eβblp,rblp

{

exp

[

−s
∑

l∈B\{b}

αbl β2
blp χlp

r2ν
blp

]}

(b)
= Eβblp,rblp

{
∏

l∈B\{b}
exp

[

−s
αbl β2

blp χlp

r2ν
blp

]}

(c)
= exp

[

−2πλb χ̄

Ω
Eβblp

{
∫

r∈R+
r

(

1 − e−s β2
blpr−2ν

)

dr

}]

(d)
= exp

[

−πλb E{χlp} s
1

ν

Ω

× E

{

β
2

ν
blp

}
∫

x∈R+

(

e−x−ν − 1
)

dx
︸ ︷︷ ︸

I1

]

(5.10)

where, (a) is obtained by substituting for Ibp which is the inter cell interference

ICI, i.e., the sum of powers from all interfering users of other cells except cell-b

(orthogonal pilot sequences assumption implies no intra-cell interference), αbl ∈
{0, 1} is a Bernoulli random variable with mean 1/Ω, i.e., αbl ∼ Bernoulli( 1

Ω
)

[78]. Which implies that αbl takes a value of one if the serving BSb and inter-

fering BSl share the specified frequency sub-band∗ and B is the set of all the

cells in the cellular system. (b) follows since exponential of a sum is a prod-

uct of exponential. (c) follows from probability generating functional of the Pois-

son point process (PGFL) [76], given that E{∏

x∈Φ v(x)} = exp
[

− λb

∫

R2

(

1 −
v(x)

)

dx
]

, converting into polar coordinates gives

E{∏

x∈Φ v(x)} = exp
[

−2πλb

∫

R+

(

1−v(r)
)

dr
]

and then averaging out the Bernoulli

r.v. αbl, where each cell is randomly-allocated one of the Ω sub-bands (frequency

reuse factor), hence the interference is thinned with a reuse-factor of Ω. Finally,

(d) is obtained by setting x = s−1/νβ
−2/ν
b r2, evaluating the expectation over βblp,

assuming {βi}∞
i=0 is a set of i.i.d. unit mean exponential random variables with

moment of E[β
2/ν
blp ] < ∞ [80], and the expectation over the random variable, χlp can

∗It’s noteworthy that incorporating frequency-reuse to the model introduces correlation among
the BSs using the same sub_bands, however, authors in [74] claim that employing frequency reuse
is equivalent to employing independent-thinning to the entire set of interfering base stations.
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be performed using the same approach used in [81]

Remark 5.1. (Pilot Reuse Probability): The expectation over the probability of

pilot reusing χlp can be obtained as follows

E{χlp} =
Ek ≥ P [k]

P
P{k < P} + P{k ≥ P} (5.11)

where, k is the number of active users associated with base station BSl. The first

term accounts for the case when {k < P} hence, there exists a probability that the

interfering base station BSl doesn’t use the kth pilot-sequence. The second term

stands for the case when {k ≥ P}, i.e., all the available pilot sequences will be used

by the interfering base station. It’s worthwhile to note that k is a r.v. associated

with the size-distribution of Voronoi cell corresponding to BSl which has no known

accurate distributions. However, the distribution has been approximated in [82]

using gamma distribution ∼ Γ(m, µ) with pdf of f(x) = 1

µm (m − 1)!
xm−1 e−x/µ, where

m, µ are, respectively, the shape and scale parameters. Accordingly, (5.11) can be

re-written as follows

E{χlp} =
P −1∑

k=1

1

P

(λuπR2
o)k

(k − 1)!
e−λuπR2

o +
∞∑

k=P

(λuπR2
o)k

(k)!
e−λuπR2

o (5.12)

Next, we evaluate the integration I1 in (5.10-d) with the help of the following iden-

tities, { Γ(1 + z) = z Γ(z)}, {Γ(1 − z) = 1/Γ(1 + z) sinc(πz)} and {∫ ∞
0 xν−1(1 −

e−µxp
) dx = − 1

|p| µ−ν/p Γ(ν

p
)} (eq. 3.478) [46], which results in

I1 =
∫

R+

(

e−x−ν − 1
)

dx =
1

Γ(1 + 1

ν
) sinc(π

ν
)

, (5.13)

plugging again into (5.10-d) yields

LIbp
(s) = exp



−π λb E[β
2/ν
blp ] χ̄ s1/ν

Ω Γ(1 + 1

ν
) sinc(π

ν
)



 (5.14)

where, χ̄ = E{χlp} is the 1st moment or mean of the r.v χ which can be set to

one if we consider a scenario of interfering UEs with a full buffer such that all the

interferers are always active. In our approach of interference analysis, arbitrary

distribution for large scale shadowing βblp can be handled as long as E[β
2/ν
blp ] < ∞,

in the same manner as [83], [72].
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Remark 5.2. (Displacement Theorem [83]): According to the displacement Theo-

rem, for some constant ν, the propagation effects (shadow fading in this case) can

be represented as independent random transformation of a given homogeneous-PPP

(Φ) of density λ, where the resulting point-process is also a PPP (thinned-PPP Φe)

with equivalent density λe = λE[β2/ν ].

The common assumption for the distribution of shadowing is the log-normal one,

in which βblp = 10Xblp/10, given that Xblp ∼ N (µblp, σ2
blp) and µblp, σ2

blp are, respectively,

the "mean" and "standard deviation" of the large scale channel gain. In this case, the

2/νth moment can be found, employing the moment-generating function (MGF) of

Gaussian distribution, which is [83] E[β
2/ν
blp ] = exp[ ln(10)

5

µblp

ν
+

1

2
(
ln(10)

5

σblp

ν
)2] and it is finite

for {µblp, σblp} < ∞. For exponential-distribution approximation, β2
blp ∼ exp(µblp)

we have from table I in [72], E[β
2/ν
blp ] = µ

−2/ν
blp Γ(2

ν
+ 1) and Γ(2

ν
+ 1) is the 2/νth

moment of unit-mean exponential random variables. Plugging in (5.14) we obtain

L.T of the interference for exponential approximation shadowing as an immediate

consequence of applying independent-thinning on Φb (Remark 5.2), and yields

LIbp
(s) = exp



−π λb χ̄ s1/ν

Ω sinc(π

ν
)



 (5.15)

This expression can be used for further system analysis in the next section.

5.4 Performance metrics

In this section, we are going to derive the mathematical expression for some key

metrics that characterised system performance.

5.4.1 Probability of coverage

This subsection considers the link reliability or the coverage probability of uplink

massive MIMO systems. This metric is a significant performance metric to analyse

since it can have a big effect on the quality of service of cell edge user and hence

can give an overall picture of the system capacity when incorporated into resource

efficiency. According to [83], the probability of coverage can be thought as being

the average area or the average fraction of users in coverage. It can also be formally

defined as the complementary cumulative distribution function (CCDF) of SIR, i.e.,
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the probability that the uplink SIRUL
b at the tagged base station BSb is greater than

the threshold (or target) SIRUL
th , P

{

SIRUL
b > SIRUL

th

}

.

Theorem 5.1 (Coverage Probability). For massive antenna BS’s with a homo-

geneous ppp distribution of density λb and unit mean exponential shadowing, the

tail probability of uplink SIR of a typical user UE for SIR threshold of T1 can be

mathematically expressed as

Pcov(T1, λb, ν) =
1

C1(T1, λb, ν) R2
o

[

1 − exp(−C1(T1, λb, ν) R2
o)

]

, (5.16)

with

C1(T1, λ, ν) =
π λb χ̄ T

1/ν
1

Ω sinc(π

ν
)

, (5.17)

and T1 is the target or level that the SIR must exceed in order to establish a con-

nection. Proof : see appendix C.1 �

5.4.2 Rate coverage probability

Rate coverage (Rcov) for a typical user UE can be defined as the probability that

the data rate of this user is larger than a predefined threshold value (lowest rate)

required for a given application. This metric is useful for applications with QoS

constraint requirements, e.g., video services. It completely characterizes the rate

distribution since it represents the complementary cumulative distribution function

of the rate (e.g., see [83] and the references therein).

Theorem 5.2 (Rate Coverage Probability). For massive antenna BS’s with a ho-

mogeneous ppp distribution of density λb and unit mean exponential shadowing, the

tail probability of the uplink-rate of a typical user, UE for rate threshold of T2 can

be given by the following expression

RUL
cov(T2, λb, ν) =

1

C2(T2, λb, ν) R2
o

[

1 − exp (−C2(T2, λb, ν) R2
o)

]

(5.18)

with

C2(T2, λb, ν) =
π λb χ̄ (e

ln(2) Ω T2

ϑ B − 1)1/ν

Ω sinc(π

ν
)

, (5.19)
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and the factor ϑ stands for the pilot and cyclic prefix (CP) overheads [7].

Proof : see appendix C.2. �

5.4.3 Effective Capacity

It is easy to notice that the well known Shannon’s capacity formula for wireless

transmission, cannot account for the quality of service demands. So, a significant

figure of merit, namely, effective capacity is introduced to incorporate statistical

delay QoS into capacity formula of wireless applications [23]. In this regard, as pre-

viously mentioned, a new parameter θ, relates to the asymptotic decay rate of the

buffer-occupancy is introduced, θ = − lim
x→∞

ln(P r{L>x}
x

, with L is the queue length at a

steady-state flow of the transmitter buffer, x is the delay bound, and Φ is determined

by the arrival state and service processes [42]. According to this equation, θk quan-

tities the equilibrium state delay violation probability of the k-th user. It should be

noted that a smaller θ indicates a looser QoS constraint whereas a larger θ imposes

a more stringent constraints. And here we recall the effective capacity formula given

by eq.(3.11) Ceff (θ) = − lim
n→∞

1
n T θB

log2 ER

{

e
−T θB

n∑

i=1

R[i]}

, where T is frame duration

and Rk[i] is the information rate for the ith time slot. With no loss of generality, we

assume that the fading process over wireless channels is independent of each other

and holds invariant within a block length T and the service process is uncorrelated

stochastic process (independent and identically distributed). Therefore, Ceff can

be simplified to [23], [24] Ceff (θ) = − 1
T θB

log2 ER{e−T θBR}, with B is system band-

width and the expectation is taken w.r.t the random variable Rk. Obviously, the

effective capacity coincides with the traditional Shannon’s ergodic capacity in case

there is no delay constraint i.e. θ → 0. Analytically, with the assumption of steady

state of the buffer input (stationary and ergodic process), and after substituting for

rate R from Shannon’s formula, the effective capacity normalised by the bandwidth

will be as follows, CUL
eff(t, λb, ν, θ) = − 1

A
log2 E

{

(1 + SIR)−A
}

, with A , θ T B
Ω ln(2)

and

the expectation is taken over the distribution of SIR.

Theorem 5.3 (Effective Capacity). For massive antenna BS’s with a homogeneous

ppp distribution of density λb and unit mean exponential shadowing, the asymptotic

uplink effective capacity of a typical user UE for a threshold of t and QoS exponent
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θ, can be found as

CUL
eff(t, λb, ν, θ) = − 1

A
log2

[

1 −
N∑

i=1

ωi V (xi)

]

+ ON , (5.20)

where, V (xi) is the coverage probability (5.16) replacing T1 by
(

t−1/A − 1
)

, the

factor N is an integer, represents the number of terms used in the approximation

and determines the accuracy of integration. ωi, xi are respectively, the weights and

abscissas which are determined by Hermite polynomial according to the selected

value of N . A simple MATLAB® code can be used to compute the weights and

abscissas or by a specific using lookup table (LUT) [51]. The symbol ON is a

remainder term, which decreases to zero as terms number N increases.

Proof : see appendix C.3 �

5.5 Numerical Results and Discussion

This section presents the details of numerical validation for the derived analytical

results of section (5.4) and gives insights into how the various parameters impact the

distribution of the performance metrics in the cellular system. Theoretical results

,using the proposed analytical framework, and simulation results are respectively

depicted by solid/markers and dashed/markers lines. Table-5.1 summarises the

specific parameters used in the simulations unless otherwise specified.

a) Impact of Ω on SIR Profile: First, Fig.5.4-(a) compares the log-normal Monte

Carlo simulated uplink coverage ( Flowchart of simulation platform in fig 5.11 indi-

cates the steps used in the simulation study ) with the corresponding exponential-

analytical formula given in (5.16) under various frequency reuse factor Ω. We can

see that the analytical results almost matches the simulation ones, particularly at

large threshold SIR. Average interferer distance in the wireless cellular system in-

creases as Ω increases, this helps establish an intuition of why a higher frequency

reuse factor has a better SIR tail probability than lower ones. For instance, we see

that 40% of the users have SIR above −10.5 dB with unity frequency reuse factor,

whereas the same fraction of users has SIR above 20.5 dB with frequency reuse fac-

tor of Ω = 7. The SIR gain drops when we consider lower or higher SIR users but is

again significant. It is noteworthy that low percentile levels are for cell-edge users
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while high percentile levels are for cell center users.

b) Impact of Cell Load: Fig.5.4-(b) analyses different scenarios based on cells

load. It is noticeable that the complementary cumulative distributions of the uplink

SIR degrade in the case of fully loaded cells when each BS serving its maximum

capacity of users, χ̄ = 1 for K = P (high contamination scenario). This is consistent

with simple intuition, since increasing the number of served users K means increasing

in the pilot reuse probability between the typical and interfering BSs according to the

formula in (5.11). Consequently, this will decrease the average interferer distance,

i.e., increases aggregated interference power. In contrast, best coverage performance

is for χ̄ = 0.25 (low contamination scenario). On the other hand, the marginal-gain

in coverage performance increases with decreasing in cell load.

c) Pilot-reusing Probability: Fig.5.5 considers the impact of pilot number P used

in channel training phase on the probability of reusing the same sequence between

the serving and interfering BSs for different cell coverage radius Ro. The figure

shows that for fixed user density λu, the probability of pilot reusing is relatively

large for less number of pilot sequences or larger cell coverage radius, e.g., when

P = 8 pilots, coverage radius extension from 0.5 km to 1.0 km leads to nearly 50%

increment in pilot-reuse probability χ̄.

d) Impact of Ω on Rate Profile: The effect of Ω on the uplink rate coverage is

investigated in Fig.5.6-(a). Unlike the SIR tail probability, here the story is different,

where the average achievable rate doesn’t definitely increase with Ω increasing. Table

5.2 gives some insight into the rate profile and the implications of reuse factor. In

the high reliability regime∗, when the rate outage probability goes to zero, the rate

coverage gains increase with Ω increasing. In contrast, in the high spectral efficiency

regime, when the rate threshold goes to infinity, increasing Ω will decrease the rate

coverage gains. Although, larger Ω means less average interference power, but also

it means smaller cell effective bandwidth, hence, for Rth > 7 Mbps increasing Ω has

a negative effect on the rate performance, e.g., we see that, for 15% level the rate

drop is roughly 10 Mbps due to using reuse factor of 7.

e) Impact of χ̄ on Rate Profile: Fig.5.6-(b), depicts the effect of the pilot reuse

probability on the rate tail probability, which is nearly the same effect as for the

∗It is noteworthy that the high reliability regime refers to the limit where the typical UE is,
almost surely, covered.
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Table 5.1: Numerical parameters used in the simulation.

PARAMETERS SETTING

BS coverage-radius Ro 1,500 m

Cellular area radius R 40 Km

Density of BSs λb 1/π R2
o

Frequency reuse factors Ω 1, 3 and 7

Path-loss-exponent ν 4.0

Large scale shadowing βblp

∼ Log-normal(µ, σ2) for simulation

∼ exp(1) for analytical analysis

Log-normal shadowing µ, σ2
dB 0, 7 dB respectively

Channel bandwidth 20 MHz

Monte Carlo trials 105 system realizations.

OFDM symbol duration Ts 500/7 ≈ 71.4 us, LTE standard [7]

Pilot training overhead Tov (Tslot − τ Ts)/Tslot = 3/7, [7].

Useful symbol duration Tu 1/∆f = 1/15 kHz≈ 66.7 us, LTE standard [7]

SIR coverage performance. As an example, for the 20th percentile users, the rate

performance drops by almost 75% for pilot reuse probability of χ̄ = 1.0 as compared

to the χ̄ = 0.25 scenario. Similar to the SIR coverage performance, the marginal

gain in average rate increases with decreasing in cell load. The impact of path

loss exponent (PLE), ν is investigated in more detail in Fig.5.7 for SIR and rate

coverages. As ν decreases, the UEs farther away from the typical BS have a greater

contribution to the aggregated interference power at the BS, and this leads to a less

uplink SIR and consequently a smaller SIR and rate-tail probability.

f) Effective Capacity: Fig.5.8-(a) simulates the normalised effective capacity

w.r.t different pilot reuse probability, as expected, Ceff decreases with χ̄ increasing.

Fig.5.8-(b), according to the analysis of Theorem 3, compares the effective capacities

for various path-loss-exponent ν, where a better Ceff performance is for larger val-

ues of ν for the same reasons mentioned before. Moreover, fig.5.9 demonstrates the

functional-relationship among uplink normalised effective capacity CUL
eff , path-loss

exponent ν and the QoS exponent θ.

g) Shannon Capacity: Finally, the comparison of the effective capacity with

Shannon capacity, θ −→ 0 is illustrated in Fig.5.10 for various PLE values. As

expected, for all cases, the effective capacity decreases monotonically with the in-
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crease of the QoS statistical exponent θ (more stringent delay QoS requirements),

while the curves tend to flatten and saturate to the Shannon capacity CSH when θ

becomes small enough.

Table 5.2: Rate-profile for different frequency reuse factor Ω

Rate
threshold

(b/s/Hz)
Rate

cov
%

Ω = 1 Ω = 7

30.0 11.41 00.22

1.00 61.91 88.39

0.01 76.11 93.47
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band reuse factor. (b) Different pilot reuse probability. For the sake of benchmark-
ing, this figure also shows the performance of traditional hexagonal BSs topology [7],
which can be cosidered as a system performance upper bound.
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Generate independent channel power gains from all deployed UEs to the typical BS. 

Associate the nearest UE to the typical BS of which provides the 

strongest received signal power, so, finding the desired signal power. 

Compute the post-processing aggregate network interference on the 

serving UE using the sum of received signal powers from all remaining 

interfering-links. Hence calculate the SIR of the serving UE. 
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Set loop and successful-link counters,  �� = 0,  ���� = 0. 

Initialise the set of parameters for the system from Table 1 

including deployment density, path-loss exponent, radius of BS’s 

coverage, radius of cellular area, Monte-Carlo trials (MC), etc.�

Post-process the results 
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For each Monte-Carlo trial, generate the statistical-number of BSs from Poisson distribution 

��� # �$%&''%()*�+,�-, then deploy uniformly-distributed heterogeneous nodes within the 

circular region of area *�+. 

Figure 5.11: Flowchart describes Monte Carlo simulation platform for evaluating the
SIR coverage probability of a typical UE in massive MIMO cellular networks. In
our case, the trials were conducted for 100k times (geometric drops) over a cellular
radius of 40 km in order to obtain typical simulation curves.
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5.6 Conclusion

In this chapter, we provided tractable expressions for the asymptotic SIR coverage,

rate coverage and effective capacity in the uplink of the interference limited cellu-

lar massive MIMO. The expressions are based on a Poisson point process topology

using stochastic geometry tools. The presented results provide valuable insight into

the impacts of key system features such as path loss attenuation, shadowing and

pilot contamination on the statistical distributions of various system metrics. Sim-

ulations clearly illustrate that the SIR coverage performance improves as frequency

reuse factor Ω increases due to the increases of distances between the typical and

interfering UEs.

However, a trade off is required in Ω selection when a guaranteed minimum-rate

is required since increasing Ω will decrease the effective bandwidth. Furthermore,

we investigated the impacts of path loss exponent and the pilot reusing probability,

which is a function of the cell load, on the effective capacity at a typical BS. In

this aspect, results show that path loss in the cellular system plays a key role in

mitigating the system overall interference and the effective capacity is in proportion

to the path loss attenuation. More practical issues, like uplink power control and

dynamic frequency reuse scheme, are expected to be addressed in the future analysis.
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Chapter 6

Fractional Power Control in the

Uplink of a Cellular

Massive-MIMO

This chapter addresses the spatial average analysis of the uplink signal to in-

terference ratio (SIR) and throughput in massive MIMO networks with maximum

ratio combining (MRC). The analysis incorporates effects of fractional power con-

trol (also known as channel inversion policy) and other cells interference (ICI) due

to estimation error in channel state information (CSI). Fractional Power Control

(FPC) is an open loop uplink power control in cellular networks and it is so called

because it allows the user terminal to partially compensate for the attenuation or

the geometric path loss. So, far away edge users will transmit with full power, while

interior users transmit with low power.

Based on an asymptotic approach, tractable expressions are presented for SIR

distributions and specific performance metrics (coverage probability and average

rate) in poisson topology model. Moreover, the considered approach is applicable

both to random and deterministic network topologies. The impacts of key network

features such as fractional power control, path loss exponent and BS density are

characterised. Numerical results validate the model and show that the coverage

probability in the lower 50th percentile can be maximised by adjusting FPC com-

pensation fraction between 0.2 and 0.5 depending on the system parameters. Also,

for SIR threshold of 0 dB, allocating ǫ = 0.25 of uplink transmit power can achieve

approximately 6% improvement in coverage probability in cell edge area compared to

constant power policy (ǫ = 0) and about 14% improvement compared to full channel
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inversion policy (ǫ = 1). The provided approximation results can replace the need

for lengthy Monte Carlo simulations in designing of large scale MIMO systems and

quantify the trade off between improved cell edge SIR for low and moderate values

of FPC.

6.1 Introduction

Massive multiple-input multiple-output (massive MIMO) technology achieves a key

breakthroughs in the multiple access domain and brings benefits to the efficient-

usage of both energy and spectrum in wireless communication [84].∗ By deploying

arrays with large scale antenna elements, BSs can use the available degree of freedom

in the spatial domain to serve simultaneously a large number of user equipments

(UEs). This chapter addresses the effect of fractional power control (FPC) and inter

cell interference on the uplink transmission (UL) of massive MIMO in time division

duplex (TDD) systems. Where pilot aided channel estimation is executed in the

uplink, and pilots are reused across different cells to reduce the training-overhead.†

It is worth mentioning that in cellular uplink, the basic motivations for FPC

are to introduce beneficial coverage improvements for the cell edge users (lowest

percentile), also to maintain energy in battery powered mobile equipments (reduce

battery draining speed). Most prior work in this concern considered the performance

of down link mode of massive MIMO systems using a simplified regular topology,

e.g. studying only a few base stations (BSs) in a hexagonal grid [7], [53]. For

cellular networks with a large number of BSs (dense networks), it is of interest to

consider irregular topologies, where BSs are randomly located. J. G. Andrews et al

in [74] introduced a simple expressions for the signal to interference ratio (SIR) and

the throughput in dense networks based on stochastic geometry (SG) using poisson

point process (PPP).

Authors in [65] applied SG to analyse the asymptotic SIR and rate in a mas-

sive MIMO systems. In [70], Herath et al. considered power control for uplink-

transmission in a random topology network operating over path loss and Rayleigh/log-

normal composite channel. They observed that at low SINR thresholds, complete

∗It is worth emphasising that improving spectral efficiency (SE) and energy efficiency (EE) is
the fundamental-requirement for 5G wireless networks.

†However, in general, pilot contamination is the key factor that limits the performance of
systems that rely on pilot reuse schemes to acquire CSI at BSs (e.g., see [7] and the references
therein for more details).
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channel inversion improves uplink coverage, while at high SINR thresholds inverting

only the impact of shadowing gives a higher uplink coverage.

In reference [85], the authors investigated the uplink SIR distribution (exact

and asymptotic) in a large scale MIMO system using maximum ratio combining

(MRC) receiver. The proposed model accounts for exponential correlated multipath

fading and FPC which compensates for a fraction of the path loss. Additionally,

they obtained a scaling law between the BS antennas and scheduled users per cell

required to keep the same SIR distribution for uplink and downlink.

6.1.1 Contributions

Uplink SIR analysis is of primary concern compared to the downlink analysis, since

signals in the downlink scenario all come from the centre of the cells, whereas in

uplink scenario signals may come from the boundaries of the cells [71]. Moreover,

due to the irregular deployment of modern networks, and with non-orthogonal pilots,

uplink interference from other user equipments can be stronger than the useful signal

at the serving base station. So, for scenarios wherein the UE may be able to connect

and decode the downlink transmission, but unable to establish the uplink connection

will effect hand-off algorithms between adjacent BSs.

Inspired by the analytical tractability of the pioneering work on Poisson model

[74], we seek in this chapter to tackle the potential benefits of massive MIMO con-

figuration in wireless systems in the sense of uplink SIR and related metrics such

as SIR coverage and average rate using FPC policy. Unlike the regular topology

considered in [7], we examine irregular topology of cellular massive MIMO which is

known to be closer to the practical demand-based deployment of BSs [72].

Besides, different from [85], this work considers a general framework that can

be applied to networks where BSs are distributed according to irregular as well as

regular topologies. This work has presented tractable expressions for the coverage

probability and average rate in the cellular uplink, which are applicable both to

deterministic and random networks.

First, we derive an analytical formula for the uplink’s asymptotic SIR∗ coverage

probability and the average rate of a large antenna array regime based on poisson

∗ It is not always easy to evaluate the main performance metrics such as coverage probability
and user rate in closed form when general models is adopted, Hence, to facilitate analysis, we
consider an asymptotic model for the system that results in simple analytical expressions for the
metrics of interest (upper-bound on the coverage probability).
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model. The transmit power of a user depends on the distance to its associated BS,

i.e., using fractional path loss compensation as a power control policy.

Next, we evaluate the implications of channel and system parameters on the

uplink performance via numerical analysis with remarkable comments. Obtained

results confirm that the coverage probability in the 50th percentile can be maximised

by adjusting the compensation-fraction in the FPC between 0.2 and 0.5 depending

on the system parameters.

Additionally, applying a fraction of full transmit power of ǫ = 0.25 can achieve

approximately 6% improvement in coverage probability in the cell edge area for 0 dB

SIR threshold compared to constant power policy (ǫ = 0) and 14% improvement

compared to full channel inversion policy (ǫ = 1). The provided approximation

results can replace the need for lengthy Monte Carlo simulations in designing of the

large scale MIMO systems and quantify the trade off between improved cell edge

SIR for low and moderate values of the FPC.

6.1.2 Notations and Chapter Organization

Throughout this work we use the following notation, Ex{·} refers to the expectation

operator over the random variable x, P{X} stands for the probability of event X [73],

Γ(x) denotes the gamma function, i.e., the integration
∫ ∞

0 tx−1e−tdt [43], Lx(s) is

Laplace transform (L.T) of x at specific value s, fx(·) is probability density function

(PDF) of random variable x, CCDF is the complementary cumulative distribution

function. The remainder of the chapter is structured as follows, Section 6.2 discusses

the assumptions and provides system model. Afterwards, section 6.3 formulates the

signal-to-interference ratio (SIR) model, presents the definition of the performance

metrics, and presents some related aspects. Section 6.4 shows our numerical results.

Finally, section 6.5 concludes the work.

6.2 Assumptions and System Model

The proposed network topology considers a simple uplink massive MIMO system,

where the SIR expression can be analysed using tools from stochastic geometry.

The BSs are assumed to have a PPP distribution with density λb. A user equipment

(UE) is assumed to be associated with the BS that provides the signal with minimum

path loss. Also, UEs are independent identically distributed (i.i.d) of uniform profile
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in two-dimensional Euclidean plane R2 with sufficiently high density in their cells

enough for potential scheduling.

For simplicity’s sake, we assume that each base station has a single active uplink-

UE scheduled for a given resource block (RB) which is randomly chosen from all the

UEs deployed in its cell area. Hence, the UE PPP deployment density λu can be

thinned in order to obtain a point process which describes the spatial locations of the

active UEs (λa). Since only one UE per base station can be selected among all UEs

situated in that BS’s cell area, the thinning process is not independent causes main

complications for the uplink analysis. So for tractability’s sake, we assume that

the active UEs also form a poisson point process even after associating only one

UE per each BS∗. Without loss of generality, a typical base station BSo is located

at the origin and will be used as a probe to investigate the SIR-distribution and

rate-performance. It is worth noting that allocating of the unique pilots within a

cell results in correlations in the scheduled UEs’ locations even though the UEs are

located as a PPP on the plane R2. Which in turn makes the analysis intractable

unless using some approximations and assumptions. Thus, we assume that the

distribution of the scheduled UEs to be i.i.d.

6.2.1 Estimating Uplink-Channel

For acquiring channel state information (CSI), we consider pilot based channel es-

timation in which all the users send pre assigned training sequences. The pilot set

is assumed to be reused among all cells. Leveraging channel estimates, BSs then

applies a maximum ratio combining (MRC) to recover received uplink data by cor-

relating the received training signal with the corresponding pilot. Similar to that

used in long term evolution (LTE) systems [86], in both the uplink-training and

uplink-data stages, FPC policy is assumed in order to compensate for a fraction of

the channel path loss.

For notational simplicity, let Z denote the set of all interfering users. As shown

in Fig.6.1, Dz, (z ∈ Z) denotes the distance of an interfering user (UEz) to the

serving base station (BSo), Do is the distance between serving user (UEo) and BSo

and Rz indicates the distance of UEz to its associated base station (BSz). In the

∗Simulations show that this approximation does not affect the coverage probability result too
much. Since there is just one active UE per cell, the thinned points density of active UEs λa should
be set equal to the density of BSs λb [79].
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channel estimation stage∗, BSo estimates the channel gain of the terminal UEo using

a specific pilot sequence as follows

ĝo = D−ǫ�2
0 go +

∑

z∈Z
R−ǫ�2

z gz (6.1)

where, go = ho

√

βo/Dν
o is the channel-gain from scheduled user UEo to BSo (desired

link), gz = hz

√

βz Dνǫ
z /Rν

z is the channel gain from interfering user UEz to BSo,

(ho, hz) model the small-scale fading vectors with i.i.d. zero mean and unit variance

entries, ν is the path loss exponent and (βo, βz) are the long-term shadow fading

coefficients. The second term in (6.1) is the contamination due to the pilot reusing

by the UEs associated with the other cells (estimation error). Additionally, ther-

mal noise is ignored, as massive MIMO cellular networks are generally interference

limited, and the effect of noise vanishes [7]. Assuming M-antenna BSs and one an-

tenna UEs, then channel gain vectors are of dimension {go, gz, ho, hz} ∈ CM×1 . In

the uplink stage, to decode the uplink data, the serving BS is assumed to use the

estimated channel ĝo to perform MRC. Therefore, the uplink SIR for a typical UE

with FPC can be written as follows

SIR =
Dǫ

o ||ĝ∗
o go||2

∑

z∈Z Rǫ
z ||ĝ∗

o gz||2
(6.2)

Lemma 6.1 (Asymptotic Behaviour). The expression in (6.2) can be simplified

leveraging the fact that entries of ho and hz are i.i.d. random variables with zero

mean and unit variance. Hence, exploiting the strong law of large numbers (SLLN),

only the products of identical quantities in (6.2) remain significant, e.g see [7], [65]

or [75] for more details.

Consequently, the SIR distribution can equivalently be represented by a simple

massive MIMO model [85]

SIR
d−→ β2

o/D2ν (1−ǫ)
o

∑

z∈Z β2
z R2νǫ

z /D2ν
z

, (6.3)

∗A time division duplex (TDD) protocol is assumed with channel reciprocity. Where the BSs
exploit the UL orthogonal pilot sequences (no intra cell interference) to estimate the DL channel
of the served UEs.
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where
d−→ denotes a distribution equivalence. The following sections, study the

uplink SIR-distribution using tools from stochastic-geometry.

6.3 Asymptotic Performance with an Uplink FPC

Mechanism

6.3.1 Fractional Power Control

In this subsection we consider a cellular network utilising FPC policy and focus

on the uplink received SIR at a randomly chosen BS. It is worth emphasising that

the random variables {Rz}z∈Z are, in general, identically distributed but not in-

dependent∗ [76]. However, the weak dependence motivates a helpful independence

assumption, that is the random variables {Rz}z∈Z are assumed to be i.i.d. Fig.6.1

gives a relationship between system parameters and provides a visual representation

of the model.

Figure 6.1: System model of the adopted UL cellular system. ǫ is the FPC, ac-
cordingly, the received signal-power at the target BS (located at the centre of the

plane R2.) from serving user at distance R0 is given by β0 R
ν(ǫ−1)
0 . The received

interference-power from UE at distance Rz is given by βz Dνǫ
z R−ν

z , where Dz is the
distance from one interfering UE to its serving-BS.

6.3.2 User Distribution Do

The locations of UE are assumed to form a realisation of a homogeneous spatial-

PPP in R2 [76]. The baseline assumption is that the spatial-PPP corresponds to a

uniform-distribution of UEs in the cellular system and that a user is connected to

∗Kindly note that this dependence is caused by the restriction that only one BS can lie in each
Poisson Voronoi cell.
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the closest BS.∗ Consequently, we can consider that each BS is uniformly-distributed

in the Voronoi cell of its interesting UE.† In this case, Rayleigh distribution can be

used to characterise the random variable Do which follows from Lemma 6.2,

Lemma 6.2 (Null-probability of a PPP in R2 [76]). The probability that no user

in a circle of area πλbr
2
z can be expressed as

P{Do > r} = e−πλbr
2
z

From which the probability density function (PDF) of Do follows

fDo(do) = 2πλbdoe
−πλbd

2
o, do ≥ 0. (6.4)

Lemma 6.3 (Interference Characteristic). Based on the basic formula of Laplace

Transform (L.T) [74], the uplink interference at a probe or a typical BS can be

characterised as follows

LIz(s) =EIz{e−sIz}
(a)
= Eβz ,Dz

{

exp

[

−s
∑

z∈Z

β2
z R2νǫ

z

D2ν
z

]}

(b)
= Eβz ,Dz

{
∏

z∈Z
exp

[

−s
β2

z R2νǫ
z

D2ν
z

]}

(c)
= exp[ −2πλb

∫ ∞

y=r
y

(

1 − Eβz ,Rz{e−s β2
z y−2ν R2νǫ

z }
)

dy ]

(d)
= exp[ −2πλb Eβz ,Rz

{

s1/ν R2ǫ
z β2/ν

z

ν

∫ to

0
t−1/ν −1 (1 − e−t)

}

dt ]

(e)
= exp

[

πλb r2(1 − Eβz ,Rz{s1/νR2ǫ
z r−2β2/ν

z

ν
γ(−1

ν
, sR2ǫν

z r−2νβ2
z )})

]

(f)
= exp

[

πλb r2(1 − ERz{ sRνǫ
z

r−ν(2−ǫ) 2F1




1, 1 + 2/ν

2 + 2/ν

∣
∣
∣
∣

−sRνǫ
z r−ν(2−ǫ)

ν + 2



})
]

(6.5)

where, (a) is obtained by substituting for Iz which is the inter cell interference ICI,

i.e., the sum of powers from all interfering users, (b) follows since exponential of a

sum is a product of exponential, (c) follows from probability generating functional of

the Poisson point process (PGFL), given that E{∏

x∈Φ v(x)} = exp
[

− λb

∫

R2

(

1 −
∗We assumed that each BS has always an active uplink UE scheduled according to the associ-

ation metric of max-average SIR
†One BS is assumed to fall in the Voronoi cell of each user which is a point uniformly chosen

on R2 i.e. just one active user is assumed per cell per resource block, so thinning density of active
users is equal to λb.
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v(x)
)

dx
]

, converting into polar coordinates gives

E{∏

x∈Φ v(x)} = exp
[

− 2πλb

∫

R+

(

1 − v(r)
)

dr
]

, (d) follows by variable changing

t = s y−2ν R2ν ǫ
z β2

z , to = s r−2ν R2ν ǫ
z β2

z , (e) follows using the definition of γ(a, z)

which is the lower incomplete Gamma-function identity γ(a, z) =
∫ z

0 ta−1e−tdt =

Γ(a) − Γ(a, z) [43] and (f) follows using the integration formula [46, eq.(6.455.2)],

∫ ∞
0 xµ−1 e−β xγ(ν, αx) dx =

αν Γ(µ + ν)

µ(α + β)µ+ν 2F1

[

1,µ+ν
1+µ

∣
∣
∣
∣

β

α + β

]

with the identity [39, eq.(07.23.17.0055.01)],

2F1

[

a, b
c

∣
∣
∣
∣z

]

= (1 − z)−a
2F1

[

a,c−b
c

∣
∣
∣
∣

z

1 − z

]

to average out the large scale fading β2
z ∼ exp(1), where pFq(·) stands for the gener-

alised hyper geometric function [46, eq.(9.14.1)], pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
,

(x)n is the rising factorial or the Pochhammer polynomial, (x)n =
∏∞

i=1 (x + i), p

and q are non-negative integers.

6.3.3 Interferers Distribution Rz

Two approximation approaches can be used to model the random variable Rz in

(6.5) corresponding to deterministic and random topologies.

A. Regular BS Deployment Model: Uniformly distributed over a circle of

fixed radius from its centre when we approximate hexagon cells as circles with area

of 1/λb (regular deployment of BSs), in this case, Rz can be described as

fRz(rz) = 2πλb rz, rz ∈
[

0,
1√
πλb

]

(6.6)

B. Irregular BS Deployment Model: For non-uniform coverage regions, Rz

can be approximated as the distance of a randomly chosen point on two dimension

plane to its closest BS which is Rayleigh distribution (motivated by the same null

probability discussed in Lemma 6.2), and the probability density function is

fRz(rz) = 2πλbrze−πλbr
2
z , rz ≥ 0 (6.7)

Next, these probability distribution functions can be used to characterise the per-

formance of the system.
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6.3.4 Probability of Coverage

The coverage formulas for deterministic and random models are derived in theorems

6.1 and 6.2 respectively.

Theorem 6.1 (Regular Topology). The asymptotic uplink coverage probability of a

typical UE with i.i.d. Uniform distributed interfering users Rz (PPP-Uniform model

under FPC policy) can be approximated as follows

Pcov(T1, λb,ν, ǫ) = 2πλb

∫ ∞

0
r e−2πλbr2 Υ1(T1,λb,ν,ǫ)dr (6.8)

where

Υ1(T1, λb, ν, ǫ) =
∫ 1/

√
πλb

x=0

2πλbx C1

ν + 2 2F1

[

1, 1 + 2/ν

2 + 2/ν

∣
∣
∣
∣ − C1

]

dx

C1 = T1 r−νǫxνǫ (6.9)

Proof : First, we are going to characterise the statistical distribution of SIR condi-

tioned on user location Do

P
{

SIR > T1

} (a)
=P

{

β2
o > T1 D2ν(1−ǫ)

o

∑

z∈Z

β2
z Rνǫ

z

D2ν
z

}

(b)
=EIz ,βz

{

exp

[

−T1 D2ν(1−ǫ)
o

∑

z∈Z

β2
z Rνǫ

z

D2ν
z

]}

(c)
=EIz ,βz ,Do

{

e−T1 D
2ν(1−ǫ)
o Iz

}

(d)
=EIz ,βz

{

e−s Iz

}

(e)
=LIz(s) , (6.10)

where, (a) is obtained by substituting for the signal-to-interference ratio and re-

arrange the inequality variables, (b) follows since {β2
i }∞

i=0 is assumed to be a set

of i.i.d. unit-mean exponential random variables (∼ exp(1)), (c) is obtained by

denoting the inter cell interference as Iz which is the sum of the powers from all the

interfering UEs placed farther than Do (no intra-cell interference with orthogonal

pilot sequences assumption), (d) follows assuming s = T1 D2ν(1−ǫ)
o as a constant in

Laplace equation and (e) is, by definition, the Laplacian of interference w.r.t the
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constant s. Next, substitute for LIz(s) from (6.5-f) yields

P
{

SIR > T1

}

= exp
[

πλb r2(1 − ERz{T1 r−νǫRνǫ
z

ν + 2 2F1

[

1, 1 + 2/ν

2 + 2/ν

∣
∣
∣
∣

−T1 Rνǫ
z

rνǫ

]

)
]

(6.11)

Based on (6.11), the coverage probability is calculated as

Pcov(T1, λb, ν, ǫ) =Er

[

P
{

SIR > T1

}]

(a)
=

∫ ∞

0
P

{

SIR > T1

}

fDo(r)dr

(b)
= 2πλb

∫ ∞

0
r e−π λb r2

exp
[

πλb r2

× (1 −
∫ 1/

√
πλb

x=0

2πλbx C1

ν + 2 2F1

[

1, 1 + 2/ν

2 + 2/ν

∣
∣
∣
∣ − C1

]

dx)
]

dr (6.12)

where (b) follows by using (6.4) and averaging out the random variable Rz employing

(6.6). Then, one deduces the proof after simple algebraic manipulations. �

It is worthwhile to mention that the inner integral in (6.12-b) can be evalu-

ated using change of variables t = sβ2
z r−2νx2νǫ and the identity [132, eq.(1.15.1.1)],

while the outer one can be easily evaluated by recalling Gauss Laguerre quadrature,
∫ ∞

0 e−x f(x) dx =
∑n

j=1 ωif(xi), with n is the number of terms used in the approx-

imation, xi, ωi are, respectively, the corresponding abscissas and weights. Now we

state the coverage for the case of a random model as Theorem 6.2.

Theorem 6.2 (Irregular Topology). The asymptotic uplink coverage for a typical

random located user with i.i.d. Rayleigh distributed interfering users Rz (PPP-

Rayleigh model under FPC policy) is given by

Pcov(T1, λb,ν, ǫ) = 2πλb

∫ ∞

0
r e−2πλbr2 Υ2(T1,λb,ν,ǫ)dr (6.13)

where

Υ2(T1, λb, ν, ǫ) =
∫ ∞

x=0

2πλbx C1

ν + 2 2F1

[

1, 1 + 2/ν

2 + 2/ν

∣
∣
∣
∣ − C1

]

e−πλb x2

dx

C1 = T1 r−νǫxνǫ (6.14)

Proof : The same approach used in the previous theorem can be used here. However,

in this case, the PDF given in (6.7) can be used to average out Rz. �

In short, (6.8) and (6.13) give, with fairly easy to compute integrals, general results

for the coverage probability.
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6.3.5 Optimal Fractional Power Control

One advantage of having a coverage framework for the uplink transmission is the

ability to optimise the performance as a function of the relevant network parameters.

Also, to investigate trade offs between user coverage enhancements and BS spectral

efficiency. The value of FPC that achieves optimal coverage for a given system

parameters can be obtained according to

ǫ∗(T1, λb, ν) = arg max
ǫ∈[0,1]

2πλb

∫ ∞

0
r e−πλb r2

[

LIz(T1r
2ν(1−ǫ))

]

dr (6.15)

which reveals that the system parameters, e.g., deployment density λb and path-loss

exponent ν, impact optimal FPC value.

6.3.6 Average Rate

In the modern cellular network, link-adaptive algorithms are very useful in improv-

ing the overall performance. Where the average SIR is directly associated to users

average data-rate [76]. The obtained analytical expressions for Laplace transform is

useful in the analysis of user-rate under different stochastic power control strategies

and gain insight into the system uplink design, something previously very difficult

with deterministic deployment models. Here, we focus on the PPP Rayleigh sce-

nario (non-uniform topology), where the BS is located uniformly in the Voronoi cell

of its corresponding UE and the distance to the nearest BS is Rayleigh distributed.

However, a similar analysis could be performed for regular topology networks.

Theorem 6.3 (Average Rate for Irregular Topology). The asymptotic uplink average

rate of a randomly chosen user for i.i.d. Rayleigh distributed interfering users Rz,

is given by

Ravg(λb, ν, ǫ) = 2πλ
∫ ∞

0
r e−πλ r2

∫ ∞

0

[

LIz(
eln(2) t − 1

r2ν(ǫ−1)
)

]

dt dr (6.16)

where LIz(s) is given by (6.5-e).

Proof : Starting from the definition of Ravg,

Ravg(λb, ν, ǫ) = E
{

log2(1 + SIR)
}
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(a)
=

∫ ∞

0
fR(r)

∫ ∞

0
P

{
[

log2(1 + SIR) > t|r
]

dt

}

dr

(b)
=

∫ ∞

0
fR(r)

∫ ∞

0
P

{
[

SIR >
(

eln(2) t − 1
)

|r
]

︸ ︷︷ ︸

SIR-ccdf

dt

}

dr

(c)
=

∫ ∞

0
fR(r)

∫ ∞

0

[

LIz(s)

]

dt dr , (6.17)

the first line in (6.17) follows from the definition of the average data rate based upon

the Shannon capacity expression, (a) follows by integrating over the distribution

of SIR and employing the identity E[X] =
∫

t>0 P(X > t) dt since power is non

negative, (b) is obtained after re-arrange the inequality variables and (c) follows by

substituting for Laplace transform from (6.10) given that s =
eln(2) t − 1

r2ν(ǫ−1)
, which in

turn concludes the proof. �

6.4 Numerical-Results and Discussions

This section presents the details of numerical and analytical results for the design

parameters given in Table-6.1. Results give insights into how the various parameters

impact the performance metrics in the system.

a) Model Validation: First, Fig.(6.2) plots the uplink coverage probability us-

ing different expressions of the Laplace transform (6.8), (6.13) and compares them

with the simulated hexagonal topology (Hex grid) under actual power control which

can be used as a baseline model (upper performance bound).∗ Note that the ana-

lytical result derived under the PPP-Uniform assumption closely approximates the

true power control results for the simulation of the hex grid model with regular

deployment of BSs for the entire range of SIR-threshold values.

Additionally, significant performance gap can be observed between PPP Uniform

and PPP Rayleigh cases over the SIR entire range and slightly larger for full channel

inversion policy ǫ = 1.0, where the disparity becomes more noticeable. This confirms

the fact that the PPP topology represents the worst case of BSs deployment (Lower

performance bound). Also at the high SIR threshold values, the use of larger ǫ values,

∗ Irregular or random layout of BSs gives a lower bound on the coverage performance. This
is due to the fact that in PPP topology the distances between BSs are random, no constraints
on minimum distance, and therefore users associated with nearby BSs may contribute to high
uplink interference levels at the typical BS. On the other hand, hex grid layout obviously is more
optimistic and provides the upper bound on coverage performance. The reason is that regular or
deterministic topologies have optimal geometric structure, resulting in constraints on minimum
distance between adjacent BSs.
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for both topologies, negatively impacts the probability of coverage since users closest

to their corresponding BSs (interior users) greatly reduce their transmitting power

compared to the users at the cell edge (exterior users). In the following plot, the

effect of FPC, ǫ is addressed in further detail.

b) SIR Profile: Now, the discussion is concentrated on the effect of power control

techniques on coverage performance in both regular and irregular schemes. Constant

power or no-power control with ǫ = 0 is considered as the reference or baseline of

comparison. Fig.(6.3) displays the uplink coverage performance for a PPP Rayleigh

network versus a range of SIR threshold values under stochastic fractional power

control. It can be clearly observed that the constant power allocation almost shows

comparable coverage performance in low SIR threshold regimes, whereas, in high

SIR values, outperforming all other power control policies. The largest coverage

probability in the lower 50th percentile is provided by ǫ = 0.25 power control policy

before crossing below ǫ = 0 cases at 12 dB. In the low SIR-thresholds, the coverage

difference for ǫ = 0.5 and ǫ = 0.25 is almost negligible.

As ǫ increases towards unity, i.e., full channel inversion, the coverage decreases

accordingly. Where, across the entire range of SIR thresholds, full channel inversion

experiences the lowest coverage performance. FPC impact can be fully interpreted

by focusing on the trade off between the performance of cell center and cell edge

users. Constant power is the optimal power policy for cell interior users due to the

fact that users in cell center enjoy , usually, good environment and are not experi-

encing too strong interference (noise limited scenario). So reducing their transmit

power definitely reduces their SIR. Cell exterior users (users with large path loss),

on the other hand, are more vulnerable to high interference from users in neigh-

bouring cells (interference limited scenario). Therefore, using high power control

factors absolutely leads to an increase in their SIR, whereas relatively reducing the

interference power transmitted by adjacent cell center users. Accordingly, there is

a subtle trade off between reducing interference contributed by adjacent cell centre

users and increasing interference experienced by cell edge users. This fact leads to

employ fractional values of ǫ (less than one) in order to improve the overall coverage

probabilities for the majority of users.

c) Optimal Fractional Power Control: Fig.(6.4) plots the value of the optimal

FPC ǫ∗ at a given SIR threshold for different ν using (6.15). The plot gives insight

into the chosen of FPC that maximise coverage probability. Here, two distinct

regions can be observed (dual regime behaviour), for low SIR users a moderate
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value of FPC (ǫ = 0.2 to 0.5) provides the greatest gains while for high SIR users,

the coverage is maximised by transmitting with no power control (ǫ = 0, i.e. all

users transmit with the same constant power). Noticeable that for the different path

loss exponent ν, the transition from one region to another occurs on steep slopes,

with less than 5 dB range.

d) Average Rate Profile: In Fig.(6.5), using the Rayleigh distribution assumption

for interferers (PPP Rayleigh model), we plot the normalised average data rate

versus fractional power control ǫ and path loss exponent ν. It is shown that the

average rate increases with path-loss exponent over all values of fractional power

control.

Additionally, as ǫ increases, the average rate decreases as a result of the loss

in the rate of some users (interior users) whose transmitted power is reduced by

FPC, which is not compensated on average by the interference lowering and rate

increasing for other users (cell edge users). Where the impacts of fractional power

control on the throughput of different users (in low, medium and high SIR regimes)

is lumped into a single value since the calculated average rates are for a user chosen

randomly through the entire network.

6.5 Conclusion

This chapter studied the coverage performance and the average rate in massive

MIMO uplink cellular networks applying distance based power control. Employing

the spatial poisson model, the coverage probability and the average rate are estab-

lished via tractable expressions for PPP Uniform and PPP Rayleigh network models

and then, concerning coverage of edge area, the optimal policy for FPC is evaluated.

Simulation result validates the PPP approximation model of ICI in hexagonal cellu-

lar networks. Hence, the framework eliminates the necessity of system level Monte

Carlo realisations, which are time intensive simulations.

Besides, numerical and analytical results draw several key network-design in-

sights regarding the SIR-coverage and the average rate in uplink massive MIMO

systems. First, depending on network features, the coverage probability in lower

50th percentile can be maximized by setting FPC compensation fraction between

0.2 and 0.5. Second, for SIR threshold of 0 dB, applying ǫ = 0.25 of maximum

uplink transmit power can achieve approximately 6% (from 0.78 to 0.84) improve-

94



Chapter_6 6.5. Conclusion

−10 −5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SIR −Threshold (dB)

S
IR

−
C

C
D

F

−4 −3 −2 −1

0.76

0.78

0.8

0.82

0.84

0.86

PPP−Rayleigh, ε = 1.0

PPP−Uniform, ε = 1.0

PPP−Rayleigh, ε = 0.5

PPP−Uniform, ε = 0.5

Hex−Simulation, ε = 0.5

ε = 0.5

ε = 1.0

Figure 6.2: A comparison of the complementary cumulative distribution function
(CCDF) of the asymptotic uplink SIR for the proposed model with simulation of
the hexagonal grid and the PPP models (Rayleigh and Uniform) for different power
control strategies ǫ = {0.5, 1.0}, path loss ν = 3.3 and cell density λb = 0.24 per
km2.

ment in coverage probability in cell edge area compared to constant-power policy,

i.e., ǫ = 0 and about 14% (from 0.70 to 0.84) improvement compared to full chan-

nel inversion policy, i.e., ǫ = 1. For future work, the framework can be extended

to address the performance of further advanced detection schemes, e.g. zero forc-

ing detectors. Also, to incorporate some system issues such as antennas’ spatial

correlation into the analysis.
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Figure 6.3: A comparision of the complementary cumulative distribution function
(CCDF) for the asymptotic uplink SIR with different strategies of power control
ǫ = {0, 0.25, 0.5, 1.0}, path loss ν = 3.3 and cell density λ = 0.24 per km2.

Table 6.1: Numerical parameters used in the simulation, otherwise specified in fig-
ures caption.

PARAMETERS SETTING

Density of BSs λb 0.24 per square Km

BS coverage_radius 1/
√

π λb = 1.1519 Km

Fractional power control ǫ 0.25, 0.5 and 1.0

Path-loss (dB) 37 log(r), r is distance in meter

Large scale shadowing βz ∼ exp(1)

User distribution uniform

Hex grid simulation 25 regularly deployed BSs

Channel bandwidth 20 MHz

Monte Carlo realizations 105 geometry drops
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Chapter 7

Performance Analysis of

Massive-MIMO Enabled

Heterogeneous C-RANs

This chapter addresses the multiple-input multiple-output (MIMO) aided het-

erogeneous cloud radio access networks (H-CRANs), where massive MIMO enabled

macro cells coexist with remote radio heads (RRHs) to potentially achieve high

spectral and energy efficiencies. We derive tractable formulas for the link_reliability

(or signal-to-interference-ratio distribution) and rate coverage of a typical user in

H-CRANs by employing a Toeplitz matrix tool from linear algebra. Macro base

station tier (MBS) is proposed to apply multi user MIMO policy via space divi-

sion multiple access technique (zeroforcing beamforming (ZF) with perfect channel

state information). The second tier, i.e., RRH-tier employs single user transmission

via single-input single-output (SISO) strategy. Our obtained findings confirm the

powerful gain of the massive MIMO for enhancing the throughput of the H-CRAN

while small RRH-cells are capable of achieving higher energy efficiency. In addi-

tion, the number of users served, simultaneously, with ZF-precoding by an MBS can

significantly affect the link reliability of the different tier.

7.1 Introduction

It is widely accepted that fifth generation (5G) systems should achieve a 1000× ca-

pacity increase and a 10× energy/spectrum efficiencies increase compared to fourth

generation systems (see, e.g., [105] and the references therein for more details). To
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fulfil the aforementioned requirements, a new promising paradigm has been pro-

posed as an integration of emerging-techniques from the information technology

and the wireless industries, where this new architecture known as cloud radio access

networks (C-RANs) [88]. C-RAN networks can deal, efficiently, with large-scale pro-

cessing for both data and control signals, where baseband processing is centralised

and coordinated among remote radio heads (RRHs) in a centralised pool (cloud

server), which in turn, provides flexible management of the spectrum and reduces

the capital/operating expenditures of the networks. Further, the distributed remote

radio heads (RRHs) are installed in C-RAN networks to provide seamless coverage

and support high capacity in hot spots [89].

Besides, massive multiple-input multiple-output (massive MIMO) and heteroge-

neous networks are another key enablers for 5G [90] and, recently, incorporation of

multiple antenna techniques into traditional HetNets, has received enormous mo-

mentum in academic research with the introduction of the large scale-MIMO con-

cept [91–94].∗ In this context, the cost effective method, of BSs’ dense deployment,

is to install a low power BSs (RRHs-tier) within the coverage areas of high power

macro-tier [112]. Driven by their large degrees of freedom (DoF) in the spatial do-

main and high array gain, massive MIMO can be used in allowing multiple users

to be served simultaneously on the same time/frequency resource block (RB) [113].

Motivated by these merits, a considerable attention has been paid in literature on

the massive MIMO [97] and numerous studies have emphasised the significance of

massive MIMO enabled heterogeneous network (HetNet) [98–100]. However, deploy-

ing a large number of antennas at the macro base stations (BSs) complicates the

analysis and will be difficult to gain insight into impacts of system design parameters

on the overall performance.

7.1.1 Related Works

In reference [101], Poor et al. considered the outage probability in a cluster of sin-

gle antenna RRHs (a distributed antenna array) with two transmission techniques

namely distributed beamforming and best RRH selection. In [102], C-RAN down-

link transmission with multiple antenna RRHs is examined. Both tiers, the RRHs

and the MBSs are proposed to apply maximal ratio transmission or transmit an-

tenna selection. The outage performance of different schemes is addressed. In the

∗ In this work, the terms ‘massive MIMO’, ‘large scale MIMO’ and ‘large scale antenna array’
are interchangeable.
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first transmission scheme, the RRH or the MBS with the best-channel is chosen

for signal transmission, whereas in the second scheme, all the RRHs take part in

serving the target user and, in the third scheme, a minimal number of RRHs, to

achieve a required information rate, take part in signal transmission. Imran et

al. [103] proposed a multiple tiers C-RAN with user centric selection for the RRH

with the highest signal to noise ratio (SNR) to serve the typical user. References [104]

and [105] addressed heterogeneous networks which are integrated with cloud com-

puting to form heterogeneous C-RAN (H-CRAN). The work of [105] proposed a

heterogeneous CRAN to integrating traditional heterogeneous networks (HetNets)

with cloud computing. Where, the challenges, the opportunities and the appropriate

MBSs/RRHs densities for massive MIMO enabled H-CRAN are addressed. In [104]

soft fractional frequency reuse in the H-CRAN is considered, where Lagrange dual

decomposition is employed to allocate the transmit power and resource block (RB).

The work of [106] employed soft fractional frequency reuse to mitigate the inter-tier

interference in the H-CRAN, where a tractable-approach is developed to calculate

the throughput and energy efficiency of the network.

In [107], using stochastic orders tools, the performance of single-input single-

output scheme, space division multiple access (SDMA) and single user beamform-

ing (SUBF) in HetNets are considered. Specifically, addressing interference-limited

scenario, bounded closed-form formulas for the area spectral efficiency (ASE) for

these different transmission strategies are derived. In [108], the interference statistic

distribution was characterised for MU-MISO HetNet systems with a hybrid network-

topology, where simplified expressions for the ergodic-rate and coverage probability

are provided using moment matching of the interference-statistics with the Gamma

distribution. On the other hand, in [109], the performance of the SDMA-scheme

with multiple antennas users and single tier cellular MIMO networks for minimum

mean square estimation (MMSE) and linear ZF receivers is evaluated. An equiv-

alent in distribution (EiD) based technique is utilised in [110] for the performance

evaluation of single tier cellular networks in different MIMO structures.

It’s worth to mention that in multiple-user multiple-antennas transmission envi-

ronment the main analysis difficulty arises from the gamma distributed of the serving

and interfering links (instead of exponential one in SISO system) where higher or-

der derivations for the Laplace transform are needed. To deal with such derivations,

e.g., in [95] the Faà di Bruno formula is employed. However, in this approach, the

complexity of the derived equations make it very difficult to get any important in-
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sight for the design parameters. With the aid of the equivalent in distribution (EiD)

approach, the Gil-Pelaez inversion theorem is employed to deal with coverage and

rate analyses of multiple antennas scheme of the homogeneous network in [119].

Also, the work in [118] addressed coverage and rate in the homogeneous network

with Gamma distributed channel-gains using the theorem of Gil-Pelaez. On the

other hand, in [96], the problem of multi-antenna in a single tier cellular system has

been solved via a more tractable technique using triangular Toeplitz matrix. A new

and simple expression of the SINR distribution is established, which is particularly

helpful with multiple antenna transmissions and is, analytically, tractable. The new

expression is then used to drive the system throughput and energy efficiency. In ad-

dition, it is proved, analytically, that deploying more base stations or more antenna

elements at the BS can significantly improve the system_throughput, however this

performance gain depends, critically, on the ratio of the base station to the user

density and the number of antenna elements at the BS.

In this chapter, motivated by the afore mentioned merits of combining HetNet

and MIMO techniques, we extend the analysis applied in [96] into two-tier heteroge-

neous CRAN (H-CRAN). Accordingly, we characterise SIR and rate distribution for

the entire network employing tools from stochastic geometry (SG) and triangular

Toeplitz matrix. Different from [106], in this work we leverage tools from linear

algebra in our approach and we consider the impacts of RRHs’ density and number

of users served by macro-BSs per each block of resource elements (REs) of the time

/frequency grid. The developed framework helps to get a better understanding of

the effects of key parameters on the performance behaviour of the system.

7.1.2 Contributions and Outcomes

We can summarise the main contributions of this chapter as follows

1. A tractable framework to analyse the Success Probability (SIR distribution

profile) for the downlink of MU massive MIMO two-tier HetNets is developed using

tools from stochastic geometry. Consequently, based on the SIR distribution, Rate

distribution is characterised.

2. Leverage the obtained semi closed form expressions, we investigate the impacts

of the RRH tier density, number of deployed antennas and number of served users

on the rate and link reliability. We prove that increasing RRHs deployment density

provides better user rate coverage for some system parameters setting. In addition,
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the coverage probability is a function of the different tier densities and the number of

users multiplexed by the system, i.e., transmission strategy employed in the MIMO

scheme of the macro BSs tier.

3. Our findings provide several useful insights about system design. First, ob-

tained results show that there is an inherent trade off between signal power en-

hancement (small users number S in each resource block) and achieving more mul-

tiplexing gain (large users number S in each resource block). Also, massive MIMO

aided macro cells can significantly enhance the performance of the entire H-CRAN

network while SISO scheme adopted in RRH-cells provides higher gain in term of

energy efficiency.

The rest of this chapter is organised as follows. The analysis and modelling

for massive MIMO enabled H-CRAN is provided in Section 7.2. The proposed

methodology to characterise the Performance Metrics of interest are presented in

Section 7.3 , first we establish the per-tier formulas and then we introduce the overall

expression for the HetNet system. In Section 7.4, comprehensive theoretical and

numerical studies are conducted for the sake of depicting system design guidelines.

Finally, Section 7.5 summarises the chapter.

7.2 System Model

First, we will describe a stochastic model for the position of base stations and then

we introduce the channel model, cell association strategy and the key performance

metrics that adopted in this work. We consider a downlink transmission in a het-

erogeneous cloud radio access network (H-CRAN) with two classes of base stations,

as illustrated in Fig.7.1. The first-class, without loss of generality, represents the

tier of macro-base stations (MBSs) with a massive antenna array. Owing to its high

number of antennas, each MBS employs linear-zero forcing beamforming (ZFBF)

to serve multiple-users simultaneously over each resource block (RB). This tier is

overlaid with a second class of small-cell tier with single antenna remote radio heads

(RRHs), each head serves one user per RB. Both tiers are, independently, distributed

on the R2 plane as a homogeneous spatial Poisson point process (HPPP) such that

the Euclidean-plane is divided into cells of a Poisson Voronoi tessellation.

In our analysis, we adopt an open access scenario, perfect downlink channel-

information and universal frequency reuse (MBS and RRH tiers share the same
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Table 7.1: Summery of symbols and Notations.

Notation Description

j = {m, r} indices of the macro and RRH tiers, respectively

φm, φr a PPP modelling of massive BSs and RRHs

locations, respectively

Pm, P r MBS and RHH total transmission power, respectively

φj a point process modeling the locations of j-th tier BSs

Nt, S, ∆m number of MBS transmit antennas, number of

users served over each resource-block by a MBS and

available spatial DoF at a MBS, respectively

gxjx channel power of the interfering link from a jth tier BS

located at y to a typical user, gxjx ∼ Γ(1, 1)

hxjx channel power of the direct link from a j-th tier BS located at x

to a typical user, hxjx ∼ Γ(∆j, 1) with ∆j = Nt − S + 1

Aj, Bj cell association probability and tier biasing, respectively

B(o, xj) an exclusion region around the typical user represents a ball

with radius xj centred at the origin of the R2 plane

γ̂, Sj, Rj threshold SIR, coverage probability and

rate coverage probability, respectively

G, W the channel and beamforming matrices, respectively

λm, λr density of macro BSs and density of RRHs, respectively

R BS coverage radius

ǫ, α fractional frequency control and path-loss (dB), respectively

Q∆ a ∆ × ∆ Toeplitz matrix

Φm
u , Φr

u the set of users associated with the MBS

and RRH tiers, respectively

ηm, ηr the macro BS’s and RRH’s power amplifier

efficiencies, respectively

P o
m, P o

r the macro BS’s and RRH’s static hardware power

consumption, respectively

Qm, Qr the rate coverage probability for the macro BS’s

and RRH’s tiers, respectively

Qhet the rate coverage probability for the overall H-CRAN network
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spectrum). The analysis, without loss of generality, is performed at a typical user,

i.e., a user located at the origin. We indicate it’s jth tier corresponded BS, located at

xj , as the serving BS or tagged BS. Hence, the geometric propagation loss is ‖xj‖−αj

where αj > 2 represents the path loss exponent. All the multi path fading channel

is assumed to be independent and identically distributed (i.i.d.) Rayleigh fading

channels. In addition, we assume that for the macro tier zero forcing beamforming

(ZFBF) with perfect channel state information (CSI) is employed, i.e., intra cell

interference mitigation scheme.∗ The ZFBF matrix at an MBS is W = G(GHG)
−1

with the channel matrix G, where (.)H denotes the Hermitian transpose. Therefore,

as demonstrated in [126], power gain distribution of the effective channel between the

typical user and the serving BS and the interferer BS, i.e., the direct and interfering

links follow the Gamma distribution (see Table 7.1). In the following sub-section,

we introduce the criterion of cell selection in H-CRAN.

Figure 7.1: Poisson’s spatial realisation of the 2-tier
massive MIMO enabled H-CRAN system.

7.2.1 Tier Association Probability

We assume an open access scenario with the cell selection policy is based on the

largest average-power, i.e, a user corresponds to the BS that ensures the maximum

average-power. Owning to it’s large array gains, an MBS in the macro cell has a

higher coverage probability and consequently, has an impact on the user-association.

∗ It’s worth noting that HetNets are diverse in the sense of BSs coordination degree, however,
we assumed the worst case, i.e., there is no across tiers or across cell interference coordination and
the system utilise an aggressive frequency reuse policy where different BSs can access the same
system resources.
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Beside, the higher power of the macro BSs can result in problem of load imbalance

if cell selection is carried out just depending on the received power. Therefore, to

offload users from the heavily loaded macro tier to the lightly loaded RRH-tier, cell

selection bias term Bj, j ∈ {m, r} is adopted∗ and according to the ratio between

Bm and Br, a typical user selects the nearest BS of jth tier if

j = arg max
j∈{m,r}

BjPj∆j‖xj‖−α (7.1)

where xj is the distance between the typical-user and its nearest-BS in the jth tier.

The introducing of the biasing Bj results in exclusion-regions around the typical

user and all the interfering-BSs lie outside of this region. The values of biasing can

be optimised depending on the metric that is being maximised. The normalised bi-

asing factor w.r.t the MBS serving tier is B̂ = Br

Bm
. It is noteworthy that the array

gain for zero forcing beam-forming (ZFBF), i.e., the available DoF per stream can

be given as ∆m = Nt − Sm + 1 and transmitting power is scaled down by Sm which

is the number of MBS users. The following lemma introduces asymptotic-analysis

of association probability when employing Large-Antenna Arrays.

Lemma 7.1 (Massive antenna analysis). For large antenna system with power scal-

ing law and in the case of equal path-loss exponents, the association probabilities

for MBS and RRH tiers can be given, respectively, as

Am =
λm − λr (ρ B̂)

2
α

λm

, Ar =
λr

λr + λm ρ
2
α

, (7.2)

given that P̂j ,
Pj

Pk
, B̂j ,

Bj

Bk
, α̂j ,

αj

αk
, and ρ = ( PrBr

PmBm
)−1/α.

Proof: see appendix D.1. �

7.2.2 Channel Model and Precoding Vectors

For multi antenna systems, the distribution of useful and interference channel gains

for a typical user with single antenna depends upon the transmission strategy em-

ployed at the BSs. For each MBS, we adopt MU-MIMO transmission strategy to

∗ The policy of long term average biased received power cell association is commonly employed
in the existing relevant literature [126] since it is practical and very simple offloading strategy.
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transmit S data streams under equal power allocation. If we consider that macro

and RRH BS tiers are indexed, respectively, by {m, r}, the channel power for the

useful link from a serving BS located at xo in R2 to a typical user located at origin

is denoted by gxo,j, j ∈ {m, r} and for the interfering link from an interferer BS

located at xj in R2 is denoted by gxj ,j, j ∈ {m, r}.

For Rayleigh fading assumption∗, it can be claimed that the distributions of

channel gain for the interfering and the direct links follow the Gamma distribution

[117]. Therefore, for zero-forcing (ZF) precoding with perfect CSI, we have gxo,j ∼
Γ(∆j, 1), j ∈ {m, r} and gxj ,j ∼ Γ(Sj, 1), j ∈ {m, r}, where ∆j = Nj − Sj + 1, j ∈
{m, r}. On the other hand, for RRH tier there is no precoding (SISO transmission

technique) and therefore we have the same channel gains hxjj and gxjj from any

RRH to a typical user and under Rayleigh fading assumption both are exponential

distribution† exp(1), i.e., gxr,j ∼ Γ(1, 1).

Now, we can describe the received-signal and the aggregated interference for the

typical-user u0 ∈ Uj, j ∈ {m, r}. In this context, the received power at a typical-user

located at origin from the BS located at xj ∈ φj as Pjgxjj‖xj‖−α, j ∈ {m, r} where

‖xj‖−α is a standard power-law path-loss with exponent α. With universal-frequency

reuse assumption, the user suffer interference from all the other BSs except home

BS, so the resulting signal-to-interference ratio‡ (SIR) of the typical user, served by

a home BS in the j-th tier is given by

SIRj =

PjBj

Sj
gx0,j

∥
∥
∥xj

∥
∥
∥

−α

∑

j∈{m,r} Ij

(7.3)

with the aggregate interference from jth tier is

Ij =
∑

x∈Ψj\{x0}

PjBj

Sj

gx,j

∥
∥
∥xj

∥
∥
∥

−α
, (7.4)

given that the factor 1
Sj

is due to the equal power allocation for all the users over

the Rayleigh fading channel, and α is the geometric attenuation constant. All the

aggregate-interference from j-th tier are due to the interfering BSs located outside

∗ It is noticeable that this analysis can be used for other distributions of fading links, rather
than Rayleigh, that follows Gamma profile after precoding, e.g., Nakagami-m, and reference [116]
provide some approaches that can be used to obtain the shape and the scale parameters for the
Gamma random variables corresponding to the gains of the interfering and desired channels.

†Other precoding techniques, such as minimum mean square error (MMSE), are left for future
work.

‡ We hereby assume interference limited network for simplicity of notation, however, thermal
noise can be included in the analysis with some extra work.
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of an exclusion region around the typical user denoted by the ball B(o, xj) with

radius xj. In this model, although we don’t adopt shadow fading, but it can be

easily considered by employing BSs’ density scaling with a constant according to

proposed distribution of the shadow effect.

7.2.3 Distance Distribution

Since MBSs and RRHs are deployed as a poisson point process(PPP), the distances

between the serving BS and a typical user Zj, j ∈ {m, r} is a Rayleigh random

variable [125], and the following lemma characterises it’s corresponding PDF.

Lemma 7.2 (Distance Distribution). The PDF fZm of the distance Zm between the

serving macro BS and a typical user u when u ∈ Φm
u is given by

fZm(z) =
2πλm

Am

z exp(−π(λm + λr/ρ2)z2), (7.5)

and the PDF fZr(z) of the distance Zr between the serving RRH and a typical user

u when u ∈ Φr
u is given by

fZr(z) =
2πλr

Ar

z exp(−π(λmρ2 + λr)z
2), (7.6)

with ρ = ( PrBr

PmBm
)−1/α, and Am, Ar are access probability for MBS and RRH tiers,

respectively.

Proof:

Given that u ∈ Φj
u is the target user, Zm is the distance to the nearest macro

BS from u, then the cumulative distribution function (CDF), FZm(z) = P(Zm ≤ z),

can be expressed as

FZm(z) = P(Zm ≤ z|u ∈ Φm
u ) =

P(Zm ≤ z, u ∈ Φm
u )

P(u ∈ Φm
u )

=
1

Am

∫ Zm

0
P

(

Zm >
y

ρ

)

fYm(y)dy, (7.7)

where fYm(y) = 2πλmye−πλmy2
. The PDF fZm(z) in (7.5) is obtained by differen-

tiating (7.7) with respect to z and then applying the probability distributions of

Rayleigh r.v.s Zm for the null probability in the serving area i.e. the ball B(o, y/ρ),

P
(

Zm > y
ρ

)

= e−πyZ2
m/ρ . �

For the derivation of the PDF fZr(z), as the approach is similar, the proof is omitted.
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7.3 Performance Metrics

In this section, we introduce key-metrics to measure H-CRAN performance such as

the link_connectivity, the rate coverage and the area spectral_efficiency.

7.3.1 The SIR Coverage Analysis

Coverage or link success probability Sj, j ∈ {m, r} is the probability that a serving

BS provides a typical-user with downlink SIRj above a certain threshold γ̂. The

mathematical expression for the overall network coverage can be given as [114],

[115], [127]

SH−CRAN(γ̂) =
∑

j∈{m,r}
P[SIRj > γ̂|j = associated tier]

(a)
=

∑

j∈{m,r}
Aj P[SIRj > γ̂] (7.8)

with Aj in (a), is the j-th tier access probability and the term of probability rep-

resents CCDF of the SIRj which depends on the transmission policy employed in

the jth tier. As we mentioned before, in the multiple user multiple-antennas trans-

mission scheme the main difficulty of dealing with the SIR expression is the gamma

distribution of the direct and interfering channels which require higher order Laplace

transform (LT) derivations beside evaluation of LT of the aggregated interference.

The following theorems compute the CCDF of the SIR term (eq.7.8) for the MBS

and RRH tiers, respectively, using triangular Toeplitz matrix from a linear alge-

bra for the macro BSs tier analysis. First, for the multiple antennas environment in

the macro tier the following theorem gives the equation for the coverage probability.

Theorem 7.1 (Macro tier SIR coverage). The success probability of a typical user

served by a MBS cell, assuming an interference limited scenario, is given by

SM(γ̂) = κ
∥
∥
∥

[

(k0 + κ)I + Q∆

]−1
∥
∥
∥

1
, (7.9)

wherein, κ =
∑

j∈{m,r} λj(PjBj)
−2/α, ‖ · ‖1 is the L1 induced matrix norm (i.e.,

‖a‖1 = max1≤j≤n
∑m

i=1 |aij| for a ∈ Rm×n, I is a ∆ × ∆ identity matrix, Q∆ is a
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∆ × ∆ Toeplitz matrix which can be given as

Q∆ =

















0

k1 0

k2 k1 0
...

. . .

k∆−1 k∆−2 · · · k1 0

















, (7.10)

with

k0 =
∑

j∈{m,r}
λj(PjBj)

−2/α






2F1




Sj,

−2
α

1 − 2
α

∣
∣
∣
∣

−γ̂SmBm

SjBj



 − 1






(7.11)

ki =
∑

j∈{m,r}
λj(PjBj)

−2/α Γ(Sj+i)

Γ(Sj)Γ(1+i)

(
−γ̂SmBm

SjBj
)i

1− α
2

i

× 2F1




i + Sj, i − 2

α

i + 1 − 2
α

∣
∣
∣
∣

−γ̂SmBm

SjBj



, (7.12)

and 2F1(·|·) is the ordinary or Gaussian hyper geometric function.

Proof; See appendix D.2. �

On the other hand, for a single-input single-output (SISO) environment in the RRH

tier the following theorem provides the coverage equation.

Theorem 7.2 (RRH-tier SIR coverage). The success probability of a typical user

served by a RRH cell is given by

SRRH(γ) = κ

[

2F1




1, − 2

α

1 − 2
α

∣
∣
∣
∣ − γ̂



 + κo 2F1




Sj, − 2

α

1 − 2
α

∣
∣
∣
∣ − γ̂ Br

SmBm





]−1

(7.13)

where κo = λm

λr
(PmBm

PrBr
)2/α

Proof; See appendix D.3. �

The total coverage for a typical user can be computed in the following corollary

according to the total probability theory.
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Corollary 7.2.1 (Entire Network SIR coverage). The total success probability of

a typical user in the H-CRAN network is given by

SH−CRAN(γ̂) = AmSMBS(γ̂) + ArSRRH(γ̂) (7.14)

where SMBS(γ̂) and SRRH(γ̂) are according to theorems (7.1) and (7.2), respectively.

These theorems can be used to characterise the distribution of the data rate for the

system as we will see in the next subsection.

7.3.2 The Rate Coverage Analysis

In this section, we derive the complementary cumulative distributive function (CCDF)

of the downlink rate (also defined as the rate coverage) and then we analyse the

achievable average downlink rate of a typical user associated to different tiers. A

typical user in an open access scheme is said to be in rate coverage if its effective

downlink-rate is higher than the corresponding target. If we denote the target-

rate for a j-th tier BS as τ , then the rate distribution of a typical user u can be

mathematically given as

Qhet(τ) = P(Qhet > τ)

(a)
= P






⋃

j∈{m,r}
max
x∈Φj

Aj log2(1 + SIR(xj)) > τ






(b)
=

⋃

j∈{m,r}
Aj P

(

SIR(xj)) > 2τ − 1
)

(c)
=

⋃

j∈{m,r}
Aj Sj(2

τ − 1 ) (7.15)

where, (a) is the total rate distribution of the typical user u ∈ Φj
u and follows since

the rate equation is Qj = SjW log2(1 + SIRj), j ∈ {m, r} with Aj = P(u ∈ Φj
u)

is the tier association probability, (b) follows after rearranging the inequality term

and (c) follows due to the definition of the success probability.

7.3.3 The Area Spectral Efficiency

The Area Spectral Efficiency (ASE) evaluates the overall data-rate (transmitted bits

per second) of the network per unit-area normalized by the available bandwidth

and therefore, it’s a fundamental-metric to measure the capacity and spatial-reuse
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efficiency of the network where more users can be served when the network has a

higher-ASE. The ASE, mathematically, can be defined as [124]

ASE = log2(1 + γ̂) [SλmSm + λrSr] (7.16)

where the unit is (bps/Hz/m2). Note that the formula of ASE in (7.16) is a function

of the success probability Sj, j ∈ {m, r}, and the number of data streams S, i.e., the

MBS spatial multiplexing gain. Since ASE depends on the density of BSs λj, j ∈
{m, r}, hence it can tell the capacity gain achieved by cell intensification.

7.3.4 The Rate Analysis

Beside the link-quality metric which characterized in term of SIR, the user average

achievable-rate is another key metric of interest for the performance evaluation of

H-CRANs, it also depends upon the effective resources-allocated to each user. Here,

for tractability, we assume that all BSs within the same tier have an equal number

of users and resource allocation. Therefore, in an interference-limited scenario, the

downlink rate of a typical user u served by the jth tier BS located at xk ∈ Φj

(assuming adaptive transmission scheme such that the Shannon limit is supported),

can be calculated as [123]

Qj = BWSj log2

[

1 + SIR(xj)
]

, j ∈ {m, r}
(a)
=

BW Sj

ln 2

∫ ∞

0

Sj (t)

1 + t
dt, (7.17)

Next, we can compute the downlink data rate of the overall H-CRAN network as

Qhet = AmS Qm + ArQr (7.18)

As it’s mentioned previously in section 7.1, the 5G systems should achieve about 10×
energy/spectrum efficiencies increase compared to the 4G systems [105]. Therefore,

the following subsection will consider the system performance in terms of SE and

EE.
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7.3.5 The Spectral and Energy Analysis

A. Spectrum Efficiency; Another principal performance metric in the hetero-

geneous network is the SE, where higher SE denotes lower spectrum-consumption.

The Spectrum-efficiency for the overall system can be expressed as follows

SEH−CRAN = Am SEMBS · S + ArSERRH (7.19)

Obviously, in this equation, SE is directly proportional with the number of the mul-

tiplexed users in the MBS tier.

B. Energy Efficiency; The energy_efficiency (bits/Joules) is one of the key

performance metrics in 5G emerged Het-Nets and the key point in the sense of

green_ communications due to the increasing circuit power consumption especially

with densely deployed BSs (higher EE denotes lower energy consumption). There-

fore, this section focuses on the energy consumption aspect in the massive aided

H-CRANs, where the energy_efficiency for the overall system can be defined as the

ratio of the network throughput to the total consumed power, namely

EEH−CRAN =
Throughput

P total

(a)
= AmS EEMBS + ArEERRH (7.20)

where P total accounts for the total power-consumption for both MBS and RRH tiers

and can be given by P total = P total
m + P total

r , (a) follows using EE of the individual

tiers and the total probability theorem. The total power consumption at the RRH

can be calculated as [128]

P total
r =

K Pr

ηr

+ P o
r + Pfh (7.21)

with, P o
r is is the RRH’s static hardware power-consumption, ηr is the RRH’s power

amplifier efficiency, K is the number of t/f RBs and Pfh is the fronthaul link’s power

consumption. The total power consumption at the macro-BS, based on [128], can

be calculated by the following formula

P total
m =

K Pm

ηm

+ K
3∑

i=1

{Si Ci,0 + Si−1Nt Ci,1} + P o
m + Pbh (7.22)
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where, ηm is the MBS’s power amplifier efficiency, P o
m is the macro BS’s static hard-

ware power-consumption∗, Pbh is the backhaul link’s power consumption, Ci,0, Ci,1

are the coefficients of circuit power terms and depends on the number of users and/or

number of MBS antenna, precoding, coding decoding, transceiver chains, etc.(Table

7.2 presents the coefficients values under Zero forcing precoding).

7.4 Numerical results

In this section, theoretical results obtained by Theorems 7.1, 7.2 and Corollary

7.2.1 are presented and validated via Monte Carlo trials † which conducted on a

square window of 19 × 19 Km2 with Gamma distributed desired/interfering channel

power-gains. In addition, a numerical analysis is introduced to provide insights into

impacts of key design parameters. Unless otherwise stated in figures caption, we set

these parameters as given in Table 7.2. First, in Fig.7.2, we analyse the impact of

deployment massive antennas array on the tiers association probability. This figure

suggests that with a high number of antennas Nt, a typical user is much more likely

to correspond with the macro tier than with the RRH tier, owning to the high array

gain of the massive scheme.‡

The link reliability (SIR coverage) for both the MBS and RRH tiers are validated

via Monte Carlo simulations for different configurations of the system in Fig.7.3 and

the overall SIR-distribution of a typical user also is shown. We can observe that the

theoretical and numerical simulation curves match well with each other. In addition,

this figure highlights some important trends of SIR distribution, where SIR success

probability decreases when we increase the number of active users per resource

block in each MBS cell due to the increase in interference power and the decrease

in direct channel gain (serving link), as discussed before in section 7.2 regarding

the transmission strategies in MIMO system, and the variety is more explicit in

medium SIR operating regimes. For example, when S increases from 5 to 15 users

∗ As the static power is a function of the number of MBSs, RRHs and antenna elements,
therefore from an EE perspective, it makes sense to put inactive antenna elements and BSs into
sleep mode. However, an adaptive sleep/active switching mode requires complicated techniques
in the sense of user mobility and transient behaviour [131], which are outside the scope of our
research. Instead, we will characterise EE versus densities of MBS, RRH, number of Nt, and S.

† It should be highlighted here, that the results obtained by stochastic geometry (SG) theory
are proved to be worst case descriptions compared to those given by system level simulations that
consider the overall transceiver processing chain (e.g., see [49] and the references therein).

‡ Consequently, we can reduce the number of RRHs deployed in the network as massive antenna
arrays BSs have the potential to sport more number of users, i.e., achieve higher multiplexing gain
due to the increase in the available spatial DoF.
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per RB, the average-fraction of covered users drops from 98% to 80% if the target

SIR value for a typical-user to be under coverage is −17dB, However, at higher SIR

threshold levels, the users under coverage are essentially those in the cell interior,

therefore increasing S may not significantly affect the SIR of RRH cell interior users.

By contrast, at lower SIR threshold levels, it is preferred to multiplex fewer users

to achieve better SIR coverage since it can mitigate the dominating interference

to other MUEs and RUEs. It’s worth mentioning that the validation of Theorems

7.1, 7.2 and Corollary 7.2.1 (for the MBS, RRH tiers and H-CRAN, respectively)

naturally, validates the rate distributions derived in subsection 7.3.2.

Next, Fig.7.4 investigates the impact of RRHs density on the rate coverage prob-

ability Qr, i.e., the percentage number of users who are satisfied with their QoS.

Here, some important trends can be extracted, where we can observe that Qr in-

creases with the increase in RRHs density λr (dense RRHs deployment provides the

best user rate coverage), the reason is that the averaged distance between the typi-

cal user and its serving RRH is shortened, such that the received signal is stronger

(lower path loss). For example, if we consider target rate of 0.5 bps-per-Hz, we see

that a sparse macro BSs and dense RRHs system achieves almost 20.0% percentage

coverage gain (from 35.0% to 55.0%) for the system setting indicated in the figure.

To gain a clear understanding of the rate distribution of the RRHs tier and the

impact of the number of multiplexed users in MBS tier on the rate coverage of the

RRH cells, next plot focuses on the rate coverage of RRHs users.

Fig.7.5, presents the RRHs 5-th percentile rate coverage, i.e., when 95% of RRHs

users fulfil data rate higher than the predefined target( Qr = 0.95 ). Clearly, the plot

reveals that the cell edge data rate degrades from 2×104 bits/sec to 0.5×104 bits/sec

as the number of multiplexed MBS users S increased from 2 to 4. The degradation

can be interpreted according to the traits of channel gain of serving/interfering links

of different transmission strategies for MIMO system where multiplexing more users

results in increasing of interference power and reducing the useful power, i.e., higher

inter/intra tier interference from the macro BSs tier.

Fig.7.6, illustrates the throughput versus number of MBS antennas Nt for dif-

ferent number of multiplexed users S. The figure shows the following performance-

trend: (i) We see that multiplexing more users in the macro-BS cell can signifi-

cantly enhance the throughput of the H-CRAN. For example, the performance-gain
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in throughput for the setting Nt = 250, S = 15 is almost 1.2× higher than that for

Nt = 250, S = 5; (ii) The throughput of the macro-tier increases logarithmically

with higher number of transmit-antennas given higher array gain and more users

can be supported simultaneously whilst intra-cell interference is mitigated through

ZFBF; and (iii) Increasing the transmit antennas of the MBS-tier has negligible

impact on the RRHs-tier throughput.

In Fig.7.7, clearly, we observe that the RRHs-tier presents higher gain than the

MBSs-tier in terms of EE since they use smaller transmit power also they need

lower power for baseband processing. In addition, EE of the RRHs-tier increases

with deploying more RRHs in the network λr, where serving more users in the RRH-

tier can significantly escalate the throughput and consequently increase linearly the

EE of the RRHs tier.

Fig.7.8 illustrates the impacts of massive-MIMO on the energy efficiency. We

see that EE of the MBSs-tier decreases with increasing the MBS antennas, which

is attributed to the fact that more power is required for the precoding process. On

the other hand, multiplexing more users in the macro cell can significantly enhance

the EE, where higher throughput can be achieved. Also, results demonstrate that,

deploying more MBS antennas has a negligible impact on the EE of the RRHs-tier.

Fig.7.9, presents the EE and SE for different degree of MBS-users multiplexing S.

First, figure 7.9-(a), indicates that increasing S will increase the EE of MBS-cell, due

to increasing SE while the power-consumption is the same. Fig.7.9-(b) indicates that

MBS-tier’s SE significantly increases as we increase the user’s number of the MBS.

Accordingly, the SE of the H-CRAN also improves with increasing S. Meanwhile,

this increment has a negligible impact on the RRH’s SE.

7.5 Conclusion

This chapter develops a tractable framework for two-tier heterogeneous CRAN,

where massive MIMO enabled macro cells coexist with single antenna RRHs. The

macro tier performs multi user zero forcing beamforming (ZFBF) scheme to serve

it’s associated users assuming perfect channel state information (CSI). Whereas, the

RRH tier applies SISO strategy to serve a single user per each RB. We analyse the

success probability and rate distribution of the entire system and address the effect

of massive MIMO deployment and RRH-tier density on these metrics.
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Table 7.2: Numerical parameters used in the simulation, otherwise specified in fig-
ures caption.

PARAMETERS SETTING

Density of MBSs λm 1/(5002 × π) per square m

The macro BS and RRH static hardware

power consumption P o
m = 10W , P o

r = 0.1W

Power amplifier efficiency

coefficients ηm = 0.3, ηr = 0.3

The fronthaul/backhaul links

power consumption PF H = 0.2W , PBH = 0.2W

The ZFBF precoding power Ci,0 = {4.8, 0, 2.08 × 10−8},

consumption coefficients Ci,1 = {1, 9.5 × 10−8, 6.25 × 10−8}
Number of RBs K = 25

Tiers Biasing Bm = 1 dBm, Br = 10 dBm

Path loss (dB) 4.0 log(r), r is distance in meter

Large scale shadowing i.i.d. Log-normal ∼ Log_N(µ, σ2)

multi path fading i.i.d. Rayleigh distribution ∼ exp(1)

Log-normal shadowing parameters

µ and σ2
dB 0 and 8dB, respectively [134]

Transmit power Pm = 45 dBm, Pr = 30 dBm

Channel bandwidth 1.0 MHz

Monte Carlo realizations 105 geometry-drops
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According to the network configuration and the adopted performance metrics, the

number of users S and RRHs density λr should be carefully designed to achieve

the optimal performance otherwise a complex enter tier interference coordination is

required. Results show that in a multi user MIMO HetNets scenario the spectral

efficiency is always higher than the single user HetNets, whereas the success proba-

bility is always smaller due to a limited direct link gain as compared to single user

HetNets.
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Figure 7.2: The macro/RRH tiers association probability for RRH transmit power
Pr = 30dbm, and MBS’s density λm = (5002 × π)−1m−2.
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loss α = 3.5, and MBS’s density λm = (5002 × π)−1m−2.
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Figure 7.6: The throughput versus number of MBS antennas Nt for different number
of multiplexed users S.

119



Chapter_7 7.5. Conclusion

0.5 1 1.5 2 2.5 3

x 10
−5

0

1

2

3

4

RRHs deployment density λ
r
 (Head/m

2
)

E
n
e
re

g
y
 E

ff
ic

ie
n
c
y

 E
E

 (
b
it
s
/H

z
/J

o
u
le

)

(a)

0.5 1 1.5 2 2.5 3

x 10
−5

0

1

2

3

4

RRHs deployment density λ
r
 (Head/m

2
)

E
n
e
re

g
y
 E

ff
ic

ie
n
c
y
 

E
E

 (
b
it
s
/H

z
/J

o
u
le

)

(b)

Macro−BS

RRH cell

Het−CRAN

Macro−BS

RRH cell

Het−CRAN
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Chapter 8

Conclusion and future directions

The rapid growth in wireless communications has led to unprecedented demand for

the radio frequency (RF) spectrum. This issue motivates the search for modern

techniques that will use more efficiently the available radio resources. To this end,

we need some alternative technologies to improve the spectral efficiency, either by

suppression the co-channels interference or by providing more orthogonal channels

within the same spectrum. A set of new technologies is proposed such as dense de-

ployment of BSs and aggressive frequency reuse to efficiently manage the data-traffic

demands. However, the proposed techniques create strong across cell interference

that greatly degrades overall system performance. Therefore, it is important to con-

sider multiple access strategies that can support a large number of users over same

time/frequency resources while contributing less cross users interference. Massive

multiple users MIMO is one of the promising technologies in this context due to

its’ appealing traits. In this thesis, the massive MU-MIMO has been analysed in

different scenarios and system architectures. This concluding chapter summarises

the principal findings of the thesis and proposes some possible directions for future

research.

8.1 Conclusion

The main conclusions of this thesis can be summarised as follows: Chapter 3 has

analysed the effective capacity in uplink transmission of an asymptotically large

receive antennas system over generalised composed fading channels considering the

QoS statistical exponent constraints. In the proposed approach, a location depen-

dent and a location independent (averaged out) closed form expressions are derived
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for the effective capacities in an asymptotically large receive antenna system with

perfect and imperfect channel state information (CSI) scenarios. In addition, the an-

alytical analysis considers the perfect and imperfect channel information CSI effects.

Moreover, expressions for the asymptotically high signal-to-noise ratio regimes, also

,have been established. The conclusions from the obtained results of chapter 3

are twofold. First, proposed approach is a valid analysis approximation and the

tractable analytical results of effective capacity can eliminate the need for time-

intensive Monte Carlo simulations. Second, random shadowing degrades the QoS

and stringent delay constraints can affect considerably the achieved effective capacity

as the user’s buffer delay constraints gets larger. Importantly, user location impacts

on the effective capacity can be extended to different channel models. Chapter 4

has studied the asymptotic behaviour (error and outage probabilities) of a single cell

multiple-input multiple-output (MIMO) system aided by a large scale antenna array.

Specifically, the uplink transmission over composite fading channel with the power

scaling scheme is considered. Where most reported studies in this respect discuss

the case of downlink scenario for convenience MIMO systems. Two assumptions are

addressed: perfect channel information (CSI) and imperfect- CSI. In both cases,

closed form expressions for error and outage probabilities in asymptotically large re-

ceive antenna environments are derived. Moreover, users’ location impact on system

performance is investigated for different channel information scenarios. The findings

of chapter 4 reveal that imperfect CSI degrades both the corresponding error prob-

ability and rate outage. However, results point out that increasing the number of

received antennas at the BS can significantly compensate for this deterioration and

improve error and outage probabilities performance. For instance, increasing the

number of BS’s antennas by 200 elements gives about 87% improvement in outage

probability for rate threshold of 5 bps/Hz and certain system parameters.

Chapter 5 has investigated the statistical queueing constraints and pilot contam-

ination phenomenon in random or irregular cellular massive MIMO system where

base stations are Poisson distributed. Specifically, tractable analytical expressions

are provided for the asymptotic SIR-coverage, rate coverage and the effective ca-

pacity under the quality of service (QoS) statistical exponent constraint in uplink

transmission when each base station deploys a large number of antennas. Laplace

transform of interference is derived with aid of mathematical tools from stochastic

geometry. The presented results provide valuable insight into the impacts of key

system features mentioned above on the statistical distributions of various system

123



Chapter_8 8.1. Conclusion

metrics. Simulations clearly illustrate that the SIR-coverage performance improves

as frequency reuse factor increases due to the increases of distances between the typ-

ical and interfering UEs. However, a trade off is required in selection FRF when a

guaranteed minimum rate is required since increasing FRF will decrease the effective

bandwidth. In addition, we show that the QoS constrained capacity is proportional

to the path loss exponent and inversely proportional to the pilot reusing probability

which in turn is a function of the cell load.

Chapter 6 has addressed the spatial average analysis of the uplink signal to in-

terference ratio (SIR) and throughput in massive MIMO networks with maximum

ratio combining (MRC). The analysis incorporates effects of fractional power control

(FPC) and other cells interference (ICI) due to the estimation error in channel state

information (CSI). Based on an asymptotic approach, tractable expressions are pre-

sented for SIR-distributions and specific performance metrics (coverage probability

and average rate) in poisson topology model. Moreover, the considered approach

is applicable both to random and deterministic network topologies. The impacts of

key network features such as fractional power control, path loss exponent and BS

density are characterised. More specific, numerical and analytical results draw sev-

eral key network design insights regarding the SIR-coverage and the average rate in

uplink massive MIMO systems. First, depending on network features, the coverage

probability in lower 50 th percentile can be maximized by setting FPC compensation

fraction between 0.2 and 0.5. Second, for SIR threshold of 0 dB, applying 25% of

maximum uplink transmit power can achieve approximately 6% (from 0.78 to 0.84)

improvement in coverage probability in cell edge area compared to constant-power

policy, i.e., FPC = 0 and about 14% (from 0.70 to 0.84) improvement compared to

full channel inversion policy, i.e., FPC = 1.

Chapter 7 has addressed the multiple-input multiple-output (MIMO) aided het-

erogeneous cloud radio access network (H-CRAN), where massive MIMO enabled

macro cells coexist with remote radio heads (RRHs) to potentially achieve high spec-

tral and energy efficiencies. Tractable formulas are established for the link reliability

or signal-to-interference-ratio (SIR) distribution and rate coverage of a typical user

in H-CRANs, employing a Toeplitz matrix tool from a linear algebra. The macro

base station tier (MBS) is assumed to employ a multi user MIMO policy via space

division multiple access technique (ZF beamforming with perfect CSI), whereas the

second tier, i.e., RRH-tier employs a single user transmission via SISO strategy.

According to the network configuration and the adopted performance metrics, the

124



Chapter_8 8.2. Future Work

number of served users and RRHs density should be carefully designed to achieve

the optimal performance otherwise a complex enter tier interference coordination is

required. Results show that in a multi user MIMO HetNets scenario the spectral

efficiency is always higher than the single user HetNets, whereas the success proba-

bility is always smaller due to a limited direct link gain as compared to single user

HetNets. To conclude, our obtained findings confirm the powerful gain of the mas-

sive MIMO for enhancing the throughput of the H-CRANs while small RRH cells

are capable of achieving a higher energy efficiency. In addition, the number of the

users served, simultaneously (with ZF beamforming) by an MBS can significantly

affects the link reliability of the different tiers.

8.2 Future Work

We suggest, as possible future directions of this research, the following:

For the effective capacity in the uplink transmission of a multiuser massive environ-

ment, this research has only focused on the zero-forcing (ZF) detector to address

the challenges of the QoS statistical exponent constraints. However, it is worth

addressing different beamforming techniques, such as the minimum mean square

error (MMSE) detector. In addition, the shadow fading has been modelled utilising

gamma-distribution to approximate the fading profile. It’s worth to quantify the

log-normal distribution, where in a wide variety of propagation environments, the

shadow fading has been observed, empirically, to obey a log-normal distribution.

For the error and outage probabilities of a single cell multiple-input multiple-output

(MIMO) system aided by a large scale antenna array we study the uncorrelated

gamma fading scenario. This study can motivate a future research toward addressing

the scenario of correlated gamma-channel gain (i.e. non-i.i.d.) instead of i.i.d.

gamma fading- environment only.

For the statistical queueing constraints and pilot contamination phenomenon in a

random or irregular cellular massive MIMO system, an interesting research-direction

is to consider the impact of equipping the user terminals with a different number

of receive-antennas, where due to the great development in antenna technology, it

is possible to equip the users’ terminals with multiple antennas to conduct multiple

streams transmission mode. It is also important to consider the impact of fractional

power control on the system performance.

For the analysis that considers the impact of uplink fractional power control (FPC)
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and other cells interference (ICI), a maximum ratio combining (MRC) strategy has

been addressed in this study. It’s interesting to address the uplink SIR and the

throughput performance of massive MIMO cellular-networks over ZF and MMSE

filters as well, while considering the estimation error in CSI acquiring.

For the MIMO aided heterogeneous cloud radio-access networks (H-CRANs), the

rate and link reliability formulas are established for both massive MIMO enabled

macro cells and remote radio heads (RRHs) in a non-cooperative environment. Since

CRANs architectures have fully centralized baseband deployment, theretofore it’s

worth to think about different type of H-CRANs cooperation strategies such as

coordinated multi point processing (CoMP) and multi point transmission (joint

transmission (CoMP-JT)) schemes. The former scheme is a coordination mechanism

which aims to achieve an optimal SE/EE balance while the latter scheme is a cellular

networking cooperation mechanism that allows multiple BSs to jointly serve the same

terminal. In addition, the study of optimal cell biasing under different settings

of system parameters is an appealing research direction. Also, in this study, we

assumed a fully loaded network (fixed number of users per cell), while, practically,

each BS will randomly choose a certain number of users to serve at each time slot

according to their channel conditions. Thereby, a promising future direction is to

consider the analysis of the non fully loaded network (variable number of active users,

typical in the realistic scenarios) together with more sophisticated mechanisms such

as load balancing and interference coordination.

In the aforementioned analysis we assume that user terminals are uniformly dis-

tributed within the cell coverage area, however, it is an appealing trend to consider

a scenario of highly non-homogeneous user density which is also referred to as "hot

spots". In similar cases of dense irregularly deployed users, it will be important to

adopt approaches for cell association that ensure efficient usage of the available wire-

less infrastructure, i.e., establish an optimal cell association mechanism. Besides, in

our analysis, the considered power consumption model assumed that all the MBSs,

RRHs and antenna elements are in active mode. However, it is worth addressing,

from an EE perspective, a more practical scenario in which inactive MBSs, RRHs

and antenna elements are put into sleep mode by adopting, e.g., adaptive sleep mode

techniques.
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Proofs for Ch.3

A.1

Proof of Theorem 3.1.

First, we have to evaluate the following integral

I =
∫ ∞

0
(1 + ρx)νx−αe−βxdx (A.1)

Substitute for the first term, employing series representation with binomial coeffi-

cient [46, Eq.(1.110)] yields

(1 + ρx)ν =
∞∑

n=0

ρnxn

(

ν

n

)

=
∞∑

n=0

ρnxn Γ(ν + 1)

Γ(n + 1)Γ(ν − n + 1)
(A.2)

Substitute in (A.1), then with help of [46, eq.(3.326.2)]
∫ ∞

0 xm exp −βndx =
Γ(m+1

n
)

n β
m+1

n

,

we arrive at the following

I =
∞∑

n=0

ρn

βα+n+1

Γ(ν + 1)Γ(α + n + 1)

Γ(n + 1)Γ(ν − n + 1)
(A.3)

Coefficients and parameters mapping from eq.(3.14) into eq.(A.3) yields

I =
∞∑

n=0

(puNrΩ)n Γ(1 − A)Γ(m + n)

Γ(n + 1)Γ(1 − A − n)
, (A.4)
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with, ν is the geometric path loss attenuation, m is the channel shadowing factor,

A is defined by A , θkTB/ln2, T is the block length and B is system bandwidth.

Now, using [46, eq.(3.326.2)] we obtain the following

I =
∞∑

n=0

(−ρΩ)n Γ(m + n)

n! Γ(m)

Γ(A + n)

Γ(A)
, (A.5)

In term of pochhammer symbol expression [39, eq.(06.10.02.0001.01)], i.e. using the

definition (α)n =
Γ(α + n)

Γ(α)
, the integration becomes

I =
∞∑

n=0

(m)n (A)n

n!
(−ρΩ)n (A.6)

One can evaluate I, with aid of the primary definition of the generalized hyper

geometric function [39, eq.(07.31.02.0001.01)], i.e.,

pFq

[

a1, · · ·, ap

b1, · · ·, bq

∣
∣
∣
∣z

]

=
∞∑

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, (A.7)

with, (x)n is the rising factorial or the Pochhammer polynomial, (x)n =
∏∞

i=1 (x+i),

p and q are non-negative integers. Substituting in eq.(3.14), we arrive at

Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2

{

2F0

[

m, A

· · ·
∣
∣
∣
∣

−puNrΩ

rν
k

]}

, (A.8)

which completes the proof. It is noteworthy that I can be expressed in term of

Tricomi confluent hyper geometric function using the identity [39]

∫ ∞

0
(1 + ρx)νx−αe−βxdx = ρα−1 Γ(1 − α) U(1 − α, 2 + α + ν |β

ρ
), (A.9)

and the effective capacity will be

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2((

rν
k

puNrΩ
)m U(m, m + 1 − A | rν

k

puNrΩ
)), (A.10)

where the function U
(·, ·|·) represents the Tricomi confluent hyper geometric function

[39, eq.(07.33.02.0001.01)], [43, eq.(13.2.20)] U(a, b, z) = Γ(1−b)
Γ(a−b+1)

+ O
(

z1−Rb
)

, Rb is

the real part of the coefficient b.
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A.2

Proof of Corollary 3.1.1.

Corollary 3.1.1 can be proved as follows. First, from the definition of effective

capacity, we have

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2 E

{

(1 + βkpuNr)
−A

}

(A.11)

Next, averaging eq.(A.11) over all users yields

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2

{

1

K

K∑

k=1

∫ ∞

0
(1 + βkpuN)−Af(x)
︸ ︷︷ ︸

I2

dx

}

(A.12)

With the aid of eq.(3.6) FR(r) =







(r2 − R2
i )

(R2
o − R2

i )
, for r ∈ (Ri, Ro]

0, others,

that describes the random distribution of users, we get

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2

{

2

(R2
o − R2

i )

×
∫ Ro

Ri

∫ ∞

0

(

r (1 + βkpuN)−Af(x)
︸ ︷︷ ︸

I2

dx dr

)}

(A.13)

Next, the integration I2 can be evaluated employing same approach used in the

(A.8), then effective capacity equation becomes

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2

{

2

(R2
o − R2

i )

∫ Ro

Ri

(

r 2F0

[

m, A

· · ·
∣
∣
∣
∣

−puNrΩ

rν

]

dr

)}

(A.14)

Changing of variables with z = −ρ Ω/rν , (· · · ) denotes coefficients absence and

using the integral identity that involve power and hypergeometric function [39,

eq.(07.31.21.0002.01)] with some straightforward manipulation we conclude the proof.
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A.3

Proof of Theorem 3.2.

The integral in eq.(3.19) can be re-written as

IIP =
∫ ∞

0

{

1 + τ
Ω2p2

uNr

r2ν
k

}−A
xm − 1

Γ(m)Ω
e−x/Ωdx (A.15)

Employing similar approach used in Appendix-A, with help of [46, eq.(3.326.2)]
∫ ∞

0 xm exp −βndx =
Γ(m+1

n
)

n β
m+1

n

, we arrive at the following equation

IIP =
∞∑

n=0

{

−τp2
uNrΩ

2

r2ν
k

}n
Γ(m + 2n)

Γ(n + 1)

Γ(A + n)

Γ(A)
(A.16)

Using multiple argument property of gamma function [39, eq.(06.05.16.0006.01)]

Γ(m + 2n) = Γ(2(m

2
+ n))

=
2m−1/2

√
2π

22n Γ(m

2
+ n) Γ(m + 1

2
+ n)

After some simple manipulation and employing pochhammer symbol definition, the

expression in eq.(A.16) becomes

IIP =
∞∑

n=0

(m

2
)n (m + 1

2
)n (A)n

n!

{

−τp2
uNrΩ

2

r2ν
k

}n

(A.17)

With aid of the primary definition of the generalized hyper geometric function [39,

eq.(07.31.02.0001.01)], i.e., pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, , we can eval-

uate IIP . Finally, plugging again into eq.3.14

Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2

∫ ∞
0 (1 + βkpuNr)

−Af(x)dx
︸ ︷︷ ︸

I

,

we arrive at

Casy
IP, k(A, Dk, pu, Ω, m) = − 1

A
log2

{

3F0

[
m
2

, m+1
2

, A

−−
∣
∣
∣
∣

−4τp2
uNrΩ

2

r2ν
k

]}

, (A.18)

which concludes the proof.
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A.4

Proof of Corollary 3.2.1.

Thanks to the analysis used in Appendix-A.2, employing similar methodology, we

get the following

Casy
P, k(A, D, pu, Ω, m) = − 1

A
log2

{

2

(R2
o − R2

i )

×
∫ Ro

Ri

r 3F0

[
m
2

, m+1
2

, A

· · ·
∣
∣
∣
∣

−τp2
uNrΩ

2

r2ν
k

]

dr

}

(A.19)

Changing of variables by setting z = −τp2
uNrΩ

2/r2ν
k , and using the integral identity

that involve power and hyper geometric function [39, eq.(07.31.21.0002.01)]

∫

zα−1
pFq

[

a1, · · ·, ap

b1, · · ·, bq

∣
∣
∣
∣z

]

dz =
zα

α
p+1Fq+1

[

α, a1, · · ·, ap

α + 1, b1, · · ·, bq

∣
∣
∣
∣z

]

(A.20)

and after some basic algebra, we straightforwardly arrive at proof of eq.(3.21), i.e.,

Casy
IP (A, Dk, pu, Ω, m) = − 1

A
log2

{

R2
o

(R2
o − R2

i ) 4F1





−1
ν

, m
2

, m+1
2

, A
(ν−1)

ν

∣
∣
∣
∣

−4τp2
uNrΩ

2

R2ν
o





− R2
i

(R2
o − R2

i ) 4F1





−1
ν

, m
2

, m+1
2

, A
(ν−1)

ν

∣
∣
∣
∣

−4τp2
uNrΩ

2

R2ν
i





}

(A.21)
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Proofs for Ch.4

B.1

Proof of Proposition 4.1.

To obtain the unconditional average bit error probability (BEP), first we invoke the

conditional error probability given by eq.(4.5)

Pe(γk) =
1

2

{

1 − γ(b, aγk)

Γ(b)

}

, (B.1)

which then, can be averaged over the statistical distribution of the SNR (eq.(4.4))

γk − puNr

Dν

a.s−→
Nr → ∞

0, that means finding the expectation over the shadowing distri-

bution, [29, eq.26] as follows

P(P )
ek

(D, Nr, pu, m) = Eµk

{

1

2
− (aγk)b

2Γ(b + 1)
1F1

[

b

b + 1

∣
∣
∣
∣ − aγk

]}

=

∞∫

0

{

1

2
− (axpuNr/Dν)b

2Γ(b + 1)
1F1

[

b

b + 1

∣
∣
∣
∣ − axpuNr

Dν

]

xm−1e−x/Ω

ΩmΓ(m)

}

dx (B.2)

where first line of eq.(B.2) follows by using hyper geometric identity of incomplete

gamma function [46, eq.(8.351)]

Γ(α, z) =
(z)α

α
1F1

[

α

α + 1

∣
∣
∣
∣ − z

]

, (B.3)

and E(·) is the expectation operator over the random variable µk, i.e., large scale

shadowing In term of pochhammer symbol expression [39, eq.(06.10.02.0001.01)],
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i.e. using the definition (α)n =
Γ(α + n)

Γ(α)
, the integration B.2 becomes

P(P )
ek

(D, Nr, pu, m) =

∞∫

0

{

1

2
− (axpuNr/Dν)b

2Γ(b + 1)

×
∞∑

n=0

(b)n

n! (b + 1)n

(−axpuNr

Dν
)n xm−1e−x/Ω

Ωm Γ(m)

}

dx

(B.4)

Interchanging summation symbol with integration and re-arranging terms yields

P(P )
ek

(D, Nr, pu, m) =
Ωm

2
− (apuNr/Dν)b

2ΩmΓ(m) Γ(b + 1)

×
∞∑

n=0

(b)n

n! (b + 1)n

(

− apuNr

Dν

)n ∞∫

0

(

xn+b+m−1 e−x/Ω
︸ ︷︷ ︸

I

)

dx

(B.5)

Since we set Ω = 1/m, so the mean Ωm is equal to one (a unit mean gamma r.v.)

and henceforth, we will use this normalisation. Now, invoking the primary definition

of gamma function [46, eq.(3.326.2)],
∫ ∞

0 xm exp −βndx =
Γ(m+1

n
)

n β
m+1

n

, the integration I can be evaluated as

I = Ωn+b+mΓ(n + b + m)

= Ωn+b+m Γ(b + m) (b + m)n (B.6)

where the second line in (B.6) follows from the identity for gamma function given

by [39, eq.(06.05.16.0003.01)] Γ(α + n) = Γ(α) (α)n

Next, substitution for I in eq.(B.5) gives

P(P )
ek

(D, Nr, pu, m) =
1

2
− (apuNr/Dν)b Γ(b + m)

2Ωm Γ(m) Γ(b + 1)

×
∞∑

n=0

(b)n, (b + m)n

n! (b + 1)n

(

− apuNr

Dν

)n

(B.7)

Now, by invoking [39, eq.(07.31.02.0001.01)], i.e., the definition of the generalized

hyper geometric function pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, the proof will
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be straightforwardly completed and we arrive at

Casy
IP, k(A, Dk, pu, Ω, m) = − 1

A
log2

{

3F0

[
m
2

, m+1
2

, A

−−
∣
∣
∣
∣

−4τp2
uNrΩ

2

r2ν
k

]}

(B.8)

B.2

Proof of Theorem 4.1.

Assuming uniform distributed users given in eq.(3.6)

FR(r) =







(r2 − R2
i )

(R2
o − R2

i )
, for r ∈ (Ri, Ro]

0, others,

(B.9)

then the spatial averaging of asymptotical error probability eq.(B.4) can be expressed

as

P(P )
e (D, Nr, pu, m) =

1

2
− 1

(R2
o − R2

i )

∫ Ro

Ri

[

r

{

(apuNr/rν)b Γ(b + m)

Ωm Γ(m) Γ(b + 1)

×
∞∑

n=0

(b)n, (b + m)n

n! (b + 1)n

(

− apuNr

rν

)n} ]

dr

(B.10)

Using the basic definite integral identity
∫

radr =
ra+1

a + 1
result in

P(P )
e (D, Nr, pu, m) =

1

2
− 1

(R2
o − R2

i )

∣
∣
∣
∣
∣

[

r2 (apuNr/rν)b Γ(b + m)

Ωm Γ(m) Γ(b + 1)

×
∞∑

n=0

(b)n, (b + m)n

n! (b + 1)n

(

− apuNr

rν

)n ] ∣
∣
∣
∣
∣

Ro

Ri

(B.11)

Then, after the substitution of integration limits we conclude the proof using the

definition of the generalized hyper geometric function [39, eq.(07.31.02.0001.01)],

i.e., pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
.
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B.3

Proof of Proposition 4.2.

Invoking eq.(4.10) for the SNR

γk − τp2
uNr

D2ν

a.s−→
Nr → ∞

0 for fixed K (B.12)

and eq.(3.5) for the channel distribution

f(x) =
xm−1

k

Γ(mk)Ωmk
k

e−x/ΩkU(0), x, mk, Ωk > 0, (B.13)

and with help of eq.( [46, eq.(3.351)])

Γ(α, z) =
(z)α

α
1F1

[

α

α + 1

∣
∣
∣
∣ − z

]

, (B.14)

the average bit probability (BEP) in eq.(4.5) Pe(γk) = 1
2

{

1 − γ(b,aγk)
Γ(b)

}

, can be

expressed as follows

P(IP )
ek

(D, Nr, pu, m) =
∞∫

0

{

1

2
− (aτx2p2

uNr/D2ν)b

2Γ(b + 1)
1F1

[

b

b + 1

∣
∣
∣
∣ − aτx2p2

uNr

D2ν

]

xm−1e−x/Ω

ΩmΓ(m)

}

dx

(B.15)

Similar to Appendix B.1, we have

P(IP )
ek

(D, Nr, pu, m) =
1

2
− (aτp2

uNr/D2ν)b

2ΩmΓ(m)Γ(b + 1

∞∑

n=0

{

(b)n

n! (b + 1)n

×
(

− aτp2
uNr

D2ν

)n ∞∫

0

[

x2n+2b+m−1e−x/Ω
︸ ︷︷ ︸

I2

]

dx

}

(B.16)

With the aid of the identity [46, eq.(3.326.2)]
∫ ∞

0 xm exp −βndx =
Γ(m+1

n
)

n β
m+1

n

, the

integration I2 can be evaluated as

I2 = Ω2n+2b+m Γ(2n + 2b + m) (B.17)

Now, using multiplication theorem of gamma function [39, eq.(06.05.16.0006.01)]
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or [46, eq.(8.335)]

Γ(2n + 2b + m) = Γ(2(
2b + m

2
+ n))

=
22b+m−1/2

√
2π

22n Γ(
2b + m

2
+ n) Γ(2b + m + 1

2
+ n)

Plugging it again into eq.(B.16) yields

P(IP )
ek

(D, Nr, pu, m) =
1

2
−

(
4aτp2

uNr

D2ν
)b Γ(

2b + m

2
)

Ωm Γ(m) Γ(b + 1)

Γ(
2b + m + 1

2
)

22−m
√

π

×
∞∑

n=0

(b)n (
2b + m

2
)n (

2b + m + 1

2
)n

n! (b + 1)n

[

− 4aτp2
uNr

D2ν

]n

(B.18)

Finally, with the aid of the generalized hypergeometric function definition [39,

eq.(07.31.02.0001.01)], i.e., pFq

[

a1, ···, ap

b1, ···, bq

∣
∣
∣
∣z

]

=
∑∞

n=0

(a1)n, · · ·, (ap)n

(b1)n, · · ·, (bq)n

zn

n!
, we straight-

forwardly conclude the proof.

B.4

Proof of Proposition 4.3.

Simple observation of equations (4.9) and (4.10), i.e., Rasy ≈ log2(1 + τβ2
kE2

u), and

γk − τp2
uNr

D2ν

a.s−→
Nr → ∞

0, one may deduce the following expression for the rate outage

probability

Poutk
(D, Nr, pu, m) = Pr

[

puNrµk

Dν
< 2Rth − 1

]

(B.19)

Since µk is random variable (channel is random variable (r.v.) with gamma dis-

tribution), therefore, the probability of this inequality is simply the commutative

distribution function (CDF) for this r.v.

Poutk
(D, Nr, pu, m) =

χ∫

0

{

xpuNr

Dν

xm−1e−x/Ω

ΩmΓ(m)

}

dx, (B.20)
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given that χ = (2Rth − 1). Setting new variable z = x/Ω, we obtain

Poutk
(D, Nr, pu, m) =

χ∫

0

{

zΩpuNr

Dν

zm−1e−z

Γ(m)

}

dz (B.21)

Now, invoking the identity [39, eq.(06.06.02.0001.01)] for lower incomplete gamma

function, i.e., Γ(a, z) =
∫ ∞

a ta−1 exp(−t) dt and then express gamma function in

term of confluent hyper geometric function [43, eq.(8.5.3)], [46, eq.(3.351)]

γ(a, z) =
za

a
1F1

[

a

a + 1

∣
∣
∣
∣ − z

]

, (B.22)

after simple parameters and coefficients mapping, we arrive at

P(P )
outk

(D, Nr, pu, m) =
(Dν (2Rth − 1)/puNrΩ)m

m Γ(m)

× 1F1

[

m

m + 1

∣
∣
∣
∣ − Dν (2Rth − 1)

puNrΩ

]

,

and this concludes the proof.

B.5

Proof of Proposition 4.4.

From equations (4.8) and (4.11), i.e.,

P(P )
e (D, Nr, pu, m) =

1

2
− Γ(m + b)

(2 − bν)Γ(b + 1)Γ(m)

{

abR2
o(puNrΩ/Rν

o)b

(R2
o − R2

i ) 3F2




b, b + m, b − 2

ν

b + 1, b − 2
ν

+ 1

∣
∣
∣
∣

−puNrΩ

Rν
o





− abR2
i (puNrΩ/Rν

i )b

(R2
o − R2

i ) 3F2




b, b + m, b − 2

ν

b + 1, b − 2
ν

+ 1

∣
∣
∣
∣ − apuNrΩ

Rν
i





}

and

P(IP )
ek

(D, Nr, pu, m) =

1

2
−

(aρ)bΓ(b +
m

2
)Γ(b +

(m + 1)

2
)

22−m
√

πΓ(b + 1)Γ(m) 3F1






b, b +
m

2
, b +

m + 1

2
b + 1

∣
∣
∣
∣ − aρ




,
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we obtain the following rate outage probability expression

Poutk
(D, Nr, pu, m) = Pr

[

τp2
uµ2

kNr

D2ν
< 2Rth − 1

]

(B.23)

Employing similar procedure used in Appendix-B.4, we get the following

P(IP )
outk

(D, Nr, pu, m) =

χ∫

0

{

τ(zΩpu)2Nr

D2ν

zm−1e−z

Γ(m)

}

dz (B.24)

The proof can be completed by exploiting once more the identity given by [39,

eq.(06.06.02.0001.01)], i.e., Γ(a, z) =
∫ ∞

a ta−1 exp(−t) dt and then express gamma

function in term of confluent hyper geometric function [43, eq.(8.5.3)], [46, eq.(3.351)]

γ(a, z) =
za

a
1F1

[

a

a + 1

∣
∣
∣
∣ − z

]

, (B.25)

with some straightforward algebraic manipulation, we arrive at the final equation

P(IP )
outk

(D, Nr, pu, m) =

(D2ν (2Rth − 1)/τp2
uNrΩ)(m+2)

(m + 2) Γ(m + 2)
1F1

[

m + 2

m + 3

∣
∣
∣
∣ − D2ν (2Rth − 1)

τp2
uNrΩ

]

(B.26)

.
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Proofs for Ch.5

C.1

Proof of Theorem 5.1.

Starting with the formal definition of coverage probability, as the tail Probability of

SIR, i.e., CCDF of SIR averaged over the distribution of the users, we have

Pcov(T1, λb, ν) =Er

[

P
{

SIR > T1

}
]

(a)
=

∫ Ro

0
P

{

SIR > T1

}

fRo(r)dr (C.1)

Now, we are going to characterize the statistical distribution of SIR in (C.1) condi-

tioned on user location rbbp (where rbbp denotes the distance between the user which

employs pth pilot sequence, i.e., UEbp and base station BSb), namely

P
{

SIR > T1

} (a)
= P

{

β2
bbp > T1 r2ν

bbp

∑

l∈B\{b}

αbl β2
blp χlp

r2ν
blp

}

(b)
=EIbp,β2

{

exp

[

−T1 r2ν
bbp

∑

l∈B\{b}

αbl β2
blp χlp

r2ν
blp

]}

(c)
=EIbp,β2,r

{

e
−T1 r2ν

bbp
Ibp

}

(d)
=EIbp,β2

{

e−s Ibp

}

(e)
=LIbp

(s), (C.2)
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where, (a) is obtained by substituting for inter-cell interference Ibp which is the

sum of the powers from all the interfering UEs placed farther than Ro (no intra-cell

interference with orthogonal pilot sequences assumption) and re-arrange the inequal-

ity variables, (b) follows assuming {βi}∞
i=0 is a set of i.i.d. unit-mean exponential

random-variables, i.e. β2 ∼ exp(1), (c) follows assuming s = T1 r2ν
bbp as a constant in

Laplace equation and (d) is, by definition, the Laplacian of interference w.r.t to the

constant s. Next, substitute for LIbp
(s) from (5.15), we obtain expression for the

probability

P
{

SIR > T1

}

= exp




−π λb χ̄ s1/ν

Ω sinc(π

ν
)



 (C.3)

Re-setting s = T1 r2ν
bbp, averaging out the random variable rbbp and then plugging

again into (C.1) we obtain

Pcov(T1, λb, ν) =Erbbp

{

exp




−π λb χ̄ (T1 r2ν

bbp)
1/ν

Ω sinc(π

ν
)





}

(a)
=

∫ Ro

0

{

e
−C1(T1,λb,ν) r2

bbp

}

fR(r)dr

(b)
=

∫ Ro

0

{

2rbbp

R2
o

e
−C1(T1,λb,ν) r2

bbp

}

dr (C.4)

In (a), the expectation w.r.t the random variable rbbp expressed in integral form,

where C1(T1, λb, ν) =
π λb χ̄ T

1/ν
1

Ω sinc(π

ν
)

, (b) follows from substituting for fR(r), in our

scenario, we have uniform user-distribution within disc of radius Ro such that

fR(r) = (2r/R2
o) for r ∈ (0, Ro]. Finally, setting x = r2 and evaluating the in-

tegration we straightforwardly arrive at (5.16), i.e.,

Pcov(T1, λb, ν) =
1

C1(T1, λb, ν) R2
o

[

1 − exp(−C1(T1, λb, ν) R2
o)

]

,

with C1(T1, λ, ν) =
π λb χ̄ T

1/ν
1

Ω sinc(π

ν
)

, which completes the proof.
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C.2

Proof of Theorem 5.2.

Starting from the definition of the normalized average-rate we have [7]

RUL
cov(T2, λb, ν) = E

{

B Tov Tu

Ω Ts

log2(1 + SIR),

}

(C.5)

given that B is the bandwidth, Ts is the orthogonal-frequency division-multiplexing

(OFDM) symbol duration Ts = slot duration/# of symbole per slot, Tov is the pilot

overhead or training efficiency, Tov =
(Tslot − Tpilot)

Tslot

=
(Tslot − τ Ts)

Tslot

, Tu is the useful

symbol duration Tu = 1/subcarrier spacing = 1/∆f , and Ω is the frequency reuse

factor (FRF). It’s worth pointing out that the pre-log percentage factor (
B Tov Tu

Ω Ts

)

implies that the useful data transmission only occupies a fraction of the coherence-

slot. The expectation in (C.5) can be expressed in term of integration as following

(averaging over the SIR distribution)

RUL
cov(T2, λb, ν) =

∫ Ro

r=0

∫ T2

0
P

{[

ϑ B

Ω
log2(1 + SIR) > t|r

]

dt fR(r)

}

dr

(a)
=

∫ Ro

r=0

∫ T2

0
P

{ [

SIR >
(

e

ln(2) Ω t

ϑ B − 1
)

|r
]

︸ ︷︷ ︸

SIR-ccdf

dt fR(r)

}

dr

(b)
=

1

C2(T2, λb, ν) R2
o

[

1 − exp(−C2(T2, λb, ν) R2
o),

]

(C.6)

where, ϑ = Tov · Tu/Ts accounts for both pilot and cyclic prefix (CP) overheads,

the first equality follows exploiting the fact that power is non negative, so for a

positive r.v. X, data rate in this case, we have E[X] =
∫

t>0 P(X > t) dt, (a) is

obtained after re-arrange the inequality variables and (b) follows by substituting for

ccdf of SIR from appendix-A, setting T1 = exp(
ln(2) Ω T2

ϑB
) − 1, substitute for fR(r)

and changing of variables with x = r2, note that C2(T2, λb, ν) is given by (5.19)

C2(T2, λb, ν) =
π λb χ̄ (e

ln(2) Ω T2

ϑ B − 1)1/ν

Ω sinc(π

ν
)

, which concludes the proof.
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C.3

Proof of Theorem 5.3.

The normalised effective capacity in (3.13)

Casy
P, k(A, Dk, pu, Ω, m) = − 1

A
log2 E

{

(1 + βkpuNr)
−A

}

, can be expressed in term of

the SIR distribution as follows

CUL
eff(t, λb, ν, θ) =

− 1

A
log2

∫ Ro

0

∫ 1

0
P

{
[

(1 + SIR)−A > t|r
]

dt
︸ ︷︷ ︸

I2

fR(r)

}

dr (C.7)

Next, I2 after a simple manipulation will be

I2 =
∫ 1

0
P

{[

SIR <
(

t−1/A − 1
)]

dt
}

(a)
=1 −

∫ 1

0
P

{[

SIR ≥
(

t−1/A − 1
)

|r
]

︸ ︷︷ ︸

CCDF of the SIR

dt
}

, (C.8)

where (a) follows since CDF = 1 − CCDF. Now, substituting for CCDF term from

eq.(C.4) with T1 =
(

t−1/A − 1
)

, we end-up with the following expression

CUL
eff(t, λb, ν, θ) =

− 1

A
log2

[

1 −
∫ 1

0

( 1

C3(t, λb, ν, θ) R2
o

[

1 − e−C3(t,λb,ν,θ) R2
o

])

dt

]

, (C.9)

with C3(t, λb, ν, θ) =
−π λb χ̄ (t−1/A − 1)1/ν

Ω sinc(
π

ν
)

.

Finally, employing the Hermite approximation for the integral in (C.9), yields

CUL
eff(t, λb, ν, θ) = − 1

A
log2

[

1 − ∑N
i=1 ωi V (xi)

]

+ ON , which concludes the proof.
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Proofs for Ch.7

D.1

proof of Lemma 7.1.

Tracking the same approach utilised in [124], ∗ if we denote the tier associating the

typical user using an index j, then we have macro-tier association, i.e., j = m iff

Pm > Pr. Consequently, Am can be derived as follows

Am , P[n = j]

= P(Pm Z−αm
m > Pr

Br

Bm

Z−αr
r )

(a)
= EZm

{

P(Zr >

(

Pr

Pm

Br

Bm

)1/αr

z−αr/αm)
}

(b)
= EZm

{

P(Zr > (P̂r B̂r)
1/αr z−α̃r)

}

(c)
=

∫ ∞

0
P(Zr > (P̂r B̂r)

1/αr z−α̃r fZm(z) dz (D.1)

where (a) follows after re-arranging the parameters in the inequality, in (b) we used

the normalised expression of parameters (P̂j ,
Pj

Pk
, B̂j ,

Bj

Bk
, α = αr/αm ) and (c)

follows from the definition of expectation operator over the distribution of the r.v.

Zm. For this probability to be solved we need to find the probability distribution

functions (PDF) of Zm and Zr which in turn can be derived employing the null-

probability of a Poisson-process with density of λj, which is e−λjA) for an area of

A.

∗ According to Slivnyak’s theorem this analysis is valid for any randomly chosen user since it’s
conducted on a typical-user located at the origin [124].
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P[No BS closer than (P̂jB̂j)
1/αj zα̂j ] = e−πλj(P̂jB̂j)2/αj z2/α̂j

(D.2)

We know that for a circle of radius z, centred at the origin, the null probability, i.e,

the probability that no points of φm or φr lie within this circle can be described using

the complementary cumulative distribution function (CCDF) (the tail distribution)

F̂Zj
(z) = P(Zj > z) = P(φj ∩ b(0, z) = {∅})

(a)
= exp(−π λj z2) (D.3)

where, j ∈ {m, r}, b(0, z) is the Euclidean ball of radius z centered at origin and

(a) stems since φm and φr are a PPP with densities of λm and λr, respectively. The

cumulative distribution function (CDF) of Zj is

FZj
(z) = P(Zj 6 z) = 1 − exp(−πλjz

2). The probability density function (PDF)

of Zℓ can then be obtained as fZj
(z) = d

dz
(FZj

(z)) = 2πλjz exp(−πλjz
2). Using

(D.1) and (D.3) with Pj = 1, Bj = 1, and αj = 1 for j = k, we obtain

Am = 2πλm

∫ ∞

0
z e

−πλr(P̂rB̂r)2/αr z2/α̂r −πλmz2

dz

(a)
= 2πλm

∫ ∞

0
z exp







−π
∑

j∈{m,r}
λj(P̂jB̂j)

2/αj z2/α̂j







dz

(b)
= 2πλm

∫ ∞

0
z exp







−π
∑

j∈{m,r}
λj(P̂jB̂j)

2/αz2







dz

(c)
=

λm
∑

j∈{m,r} λj(P̂jB̂j)2/α

(d)
=

λm

λm + λr(P̂rB̂r)2/α
(D.4)

where (b) follows assuming αm = αr. Similarly, by using these distributions, Ar

can be obtained as

Ar = P(Pr Z−αr
r > Pm z−α̃m)

= EZr

{

P(Zm > (P̂m)1/αm z−α̃m)
}
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=
∫ ∞

0
P

(

Zm > (P̂m)1/αm z−α̃m

)

fZr(z) dz (D.5)

or according to the total probability theory, the RRH users probability is

Ar= 1 − Am (D.6)

Now, for asymptotic model (massive array antennas), from Lemma 3- [95] we have

Am
Nt→∞≈ 2πλm

∫ ∞

0
z exp

{

− π λm z2
}

dz

× 2πλm

∫ ∞

0
exp

{

− π λr (ρB̂)
2

αr z1+ αm
λr

}

dz

(a)
=

(πλm)
αm
αr − π λr (αm

αr
) ! (ρ B̂)

2
αr

(πλm)
αm
αr

(b)
=

λm − λr (ρ B̂)
2
α

λm

(D.7)

where the first term of (a) stems with aid of the identity,
∫ ∞

0 ze−bz2
dz = 1

2b
, Re(b) > 0

, the notation (.) ! stand for the factorial operation, the second term of (a) follows

since for Nt → ∞ we have 1
ρ

→ ∞ and invoking the approximation e−1
z

z→∞≈ 1 − z,

then with the aid of the following identity

∫ ∞

0
z1+ae−bz2

dz =
(a

2
) ! b−1− a

2

2
, Re(b) > 0, (D.8)

we arrive at (a), and (b) stems assuming equal path loss exponents, i.e., αm = αr =

α, ρ = ( PrBr

PmBm
)−1/α

D.2

Proof of Theorem 7.1.

By conditioning on the distance to the nearest macro-BS, the success probability

for the macro-BS-tier can be written as follows

SM(γ̂) = P(SIR ≥ γ̄|u ∈ Um, Xm = x)

(a)
= P(

Pmgx0,mz−α/Sm
∑

j∈{m,r}
∑

x∈Ψj\{x0} Pjgx,j ‖x‖−α /Sj

> γ̂)}

(b)
= P(gx0,m ≥ zα

mγ̂
∑

j∈{m,r}
Im,j)
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(c)
= Es





∆−1∑

n=0

EIM

[

(sIM)n

n!
e−sIM

]



(d)
= Es





∆−1∑

n=0

(−s)n

n!
L(n)

IM
(s)





(e)
= Es





∆−1∑

n=0

Ezm [an]



 , (D.9)

where (a) results from substituting for SIR, (b) from re-arranging the inequality

given that,

I
∆
=

∑

x∈Ψj\{x0} PjSmgx,j ‖x‖−α /PmSj and IM = Im,m + Im,r, (b) stems since

gx0,m ∼ Γ(∆, 1), ∆ = Nt − Sm + 1 is array gain when ZF-beamforming is employed

and Sm is the multiplexing gain for the MBS. Denote s
∆
=zα

0 then (c)stems when

using sequence representation of gamma lower incomplete function due the the fact

that gx0,m is gamma random variable and its cumulative-distribution function is the

regularized gamma-function, which is P(Z < z) = γ(N,z)
Γ(N)

. Therefore, its CCDF is

given as, P(Z > z) =
∑k−1

n=0
zn

n !
e−z, where the inner expectation is with respect

to the r.v. IM . Following the property of the Laplace transform, we have (d) in

which L(n)
I (s) is the n−th derivative of L.T., i.e., L(n)

I (s) = dn

dsn LI(s) where Laplace

derivative property states that EI(e−s I (sI)n) = (−s)n dn LI(s)
dsn we finally arrive at

(d), (e) follows from denoting a sequence an as, an = sn(−1)n

n!
L(n)

I (s). To derive

SM(γ̂) based on (D.9), we start from the expression of Laplace transform of IM for

a fixed s, as follows

LIM
(s) =Es






exp




−s

∑

j∈{m,r}

∑

x∈Ψj\{x0}
gx,jβj ‖x‖−α












(a)
=

∏

j∈{m,r}
EΨj ,gx






∏

x∈Ψj\{x0}

(

exp
[

−sgx,jβj ‖x‖−α
])






(b)
=

∏

j∈{m,r}
EΨj







∏

x∈Ψj\{x0}

1
(

1 + sβj ‖x‖−α
)Sj







(c)
=exp







−π

∑

j∈{m,r}
λj

∫

r≥z2
j







1− 1
(

1+ sβjr
− α

2

)Sj







dr








, (D.10)

where, βj = PjSm

PmSj
, j ∈ {m, r}, the equality (a) follows since {Ψj} and {gx,j} are
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independent, (b) follows due to gamma distribution of gx,j ∼ Γ(Sj, 1), (c) is derived

using the probability generating functional (PGFL) of PPP [74] with integration

limit start from the minimal-distance between the interfering RRH or MBS and the

typical-user, Then, the nth derivative of LIM
(s) w.r.t, s can be expressed in the

following formula that recursively defines the sequence L(n)
I (s)

L(n)
I (s) = π

n−1∑

i=0






n−1

i




 (−1)n−i

∑

j∈{m,r}
λj

Γ(Sj + n − i)

Γ(Sj)

×
∫

r≥z2
j

(

βjr
− α

2

)n−i

(

1 + sβjr
− α

2

)Sj+n−i dr L(i)
I (s), (D.11)

By substituting s = γ̂ zα
m into (D.11) and denoting an = (−s)n

Γ(n+1)
L(n)

I (s), then we

arrive at the following equation for n = 0,

a0 = LIM
(s) |s=γ̂ zα

j

(a)
= exp








−π
∑

j∈{m,r}
λj

∫

r ≥ z2
j







1− 1
(

1+ γ̂zα
mβjr

−α
2

) Sj







dr








(b)
= exp

[

−πz2
m(PmBm)−2/αk0

]

, (D.12)

where the distance between the nearest interferer BS and the typical user is given

by z2
j ≥ z2

m ( PjBj

PmBm
)2/α due to the association criteria of PmBmz−α

m ≥ PjBjz
−α
j and

expression in (b) implies that , k0 has the form of eq.(7.11). Now, for n > 0 we get

the following sequence

an= π
n−1∑

i=0

n−i

n
ai

∑

j∈{m,r}
λj

Γ(Sj + n − i)

Γ(Sj)Γ(1 + n − i)

×
∫

r≥z2
j

(

βjr
− α

2

)n−i

(

1 + sβjr
− α

2

)Sj+n−i dr

(a)
=πz2

m(PmBm)−2/α
n−1∑

i=0

(n−i) kn−i

n
ai (D.13)
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given that

k0 =
∑

j∈{m,r}
λj(PjBj)

−2/α






2F1




Sj,

−2
α

1 − 2
α

∣
∣
∣
∣

−γ̂SmBm

SjBj



 − 1






(D.14)

ki =
∑

j∈{m,r}
λj(PjBj)

−2/α Γ(Sj+n−i)

Γ(Sj)Γ(1+n−i)

(
−γ̂SmBm

SjBj
)i

1− α
2

i

× 2F1




i + Sj, i − 2

α

i + 1 − 2
α

∣
∣
∣
∣

−γ̂SmBm

SjBj



, (D.15)

The sequence an which is defined by a linear-recurrence equation (D.13), can be

solved in explicit-expression via linear-algebra. Now, by introducing a ∆×∆ matrix:

G∆ =

















0

1
2
k1 0

2
3
k2

1
3
k1 0

...
. . .

1− 1
∆

k∆−1 1− 2
∆

k∆−2 · · · 1
∆

k1 0

















, (D.16)

and the following two vectors:

a∆ = [a1, a2, . . . a∆]T ,

k∆ = [k1, k2, . . . , k∆]T ,

consequently we can represent an (eq.D.13), in a matrix form as

a∆ = c a0k∆ + c G∆a∆, (D.17)

with c = πz2
m(PmBm)−2/α.

This linear recursive equation of an can be expressed as a finite sequence formula

since, for n > ∆, we have Gn
∆ = 0 ( G∆ is a lower triangular-matrix):

a∆ = a0

∆∑

n=1

cnGn−1
∆ k∆

(a)
= a0

∆∑

n=1

cn

n!
Qn

∆+1(2 : ∆ + 1, 1) (D.18)

By the equation in first line, we have obtained a solution for (D.17), however, in (a)

we progress further to obtain more explicit expression where we define the following
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Toeplitz matrix ( diagonal constant matrix, where each descending diagonal from

left to right is constant):

Q∆+1 =

















0

k1 0

k2 k1 0
...

. . .

k∆−1 k∆ · · · k1 0

















, (D.19)

and for ∆ ≥ 1 we have the following equality Gn−1
∆ k∆ = 1

n!
Qn

∆+1(2 : ∆+1, 1) for n ∈
N+. Now, a∆ can be substituted to (D.9) and using the matrix norm induced by

the vector norm L1 yields

SM(γ̂) = Es





∆−1∑

n=0

Ezm [an]





(a)
= Es

[

Ezm [a0 + ‖a∆−1‖1]
]

(b)
= Ezm






∥
∥
∥
∥
∥
∥

a0

∆−1∑

n=0

cn

n!
Qn

∆

∥
∥
∥
∥
∥
∥

1






(c)
=

κ

κ + k0

∆−1∑

n=0

(

1

κ + k0

)n

‖Qn
∆‖1

(d)
=

κ

κ + k0

∥
∥
∥
∥
∥
∥

∆−1∑

n=0

[

(
1

κ + k0

)Q∆

]n
∥
∥
∥
∥
∥
∥

1

(e)
=

κ

κ + k0

∥
∥
∥
∥
∥
∥
∥



I −
(

1

κ + k0

)

Q∆





−1
∥
∥
∥
∥
∥
∥
∥

1

(f)
= κ

∥
∥
∥

[

(k0 + κ)I + Q∆

]−1
∥
∥
∥

1
, (D.20)

where (c) follows by averaging out the r.v. zm which is the distance between a typical

terminal to its closest MBS (the complementary CDF of zm is obtained using the

null probability of a PPP), κ =
∑

j∈{m,r} λj(PjBj)
−2/α, (d) is equivalent to (c) due

to the property of the L1 induced matrix norm ( ‖A‖1 = max1≤j≤n
∑m

i=1 |aij|), (e)

stems using the Taylor expansion and step (f) completes the proof via a simple

algebraic manipulation.
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D.3

Proof of Theorem 7.2

By conditioning on the distance to the nearest RRH, the success probability for the

RRH-tier is given by

SRRH(γ̂) = P(SIR ≥ γ̄|u ∈ Ur, Xr = x)

(a)
= P(

Prgx0,rz
−α

∑

j∈{m,r}
∑

x∈Ψj\{x0} Pjgx,j ‖x‖−α /Sj

> γ̂)}

(b)
= P(gx0,r ≥ zα

r γ̂
∑

j∈{m,r}
Ir,j)

(c)
= E

[

exp(−Prz
−αγ̂{

∑

j∈{m,r}
Ir,j})

]

(d)
=

∏

j∈{m,r}
EIr,j

[

exp(−Prz
−αγ̂Ir,j

]

(e)
=

∏

j∈{m,r}
LIR

(s) , (D.21)

where (a) results from substituting for SIR, (b) from re-arranging the inequality

given that, Ir,j
∆
=

∑

x∈Ψj\{x0} Pjgx,j ‖x‖−α /PrSj and IR = Ir,m + Ir,r, (c) stems since

gx0,r ∼ Γ(1, 1) is the channel gain for the RRHs links,(d) follows from the inde-

pendence of Ir,j and (e) from the definition of L.T. Now, to derive SRRH(γ̂) based

on (D.21), we start from the expression of Laplace transform of IR for a fixed s as

follows

LIR
(s) =E

[

e−sIR

]

(a)
=E






exp




−s

∑

j∈{m,r}

∑

x∈Ψj\{x0}
gx,jβj ‖x‖−α












(a)
=

∏

j∈{m,r}
EΨj ,gx






∏

x∈Ψj\{x0}

(

exp
[

−sgx,jβj ‖x‖−α
])






(b)
=

∏

j∈{m,r}
EΨj







∏

x∈Ψj\{x0}

1
(

1 + sβj ‖x‖−α
)Sj






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(c)
=exp







−π

∑

j∈{m,r}
λj

∫

r≥z2
j







1− 1
(

1+ sβjr
− α

2

)Sj







dr








(d)
= exp(−π

∑

j∈{m,r}
λj

Sj∑

n=1

(

Sj

n

)
∫

r≥z2
j

(

(

sβjr
− α

2

)n

(

1+ sβjr
− α

2

)Sj
)dr), (D.22)

where, βj = PjSm

PmSj
, j ∈ {m, r}, the equality (a) follows since {Ψj} and {gx,j} are

independent, (b) follows from gamma distribution of gx,j ∼ Γ(Sj, 1), (c) is derived

utilising the probability generating-functional (PGFL) of PPP [74] with integration

limit start from the minimal-distance between the interfering RRH or MBS and the

typical-user, (d) follows due to binomial-expansion. Now perform the integration

in (D.22) using change of variables, 1/
(

1+ sβjr
− α

2

)

−→ v, then substitute again in

(D.21) gives the success probability of typical user served by RRH cell as

SRRH(γ) = EZr

{

exp

[

− Υ2(
γ̂Szα

r

PrC
)

]}

, (D.23)

given that

Υ2(s) = 2πλm

S∑

i=1

(

S

i

)

(s
Pm

S
)i (−s

Pm

S
)

2
α

−i 1

α
B(−s

PrC
Szα

r

; i − 2

α
, 1 − S)

+ 2πλr
Pr z2−α

r s

(α − 2)
2F1




1, 1 − 2

α

2 − 2
α

∣
∣
∣
∣ − s

Pr

zα
r



, (D.24)

and B(x; a, b) is the incomplete Beta function which can be given by the following

formula

B(z; a, b) =
za

a
2F1

[

a, 1 − b

1 + a

∣
∣
∣
∣z

]

(D.25)

Finally, using the statistical distribution of zr given by (7.6) to average out this r.v.

will straightforwardly complete the proof of (7.13).
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