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ABSTRACT 

In the 21
st
 century, the proliferation of steer-by-wire systems has become a central issue 

in the automobile industry. With such systems there is often an objective to minimise 

vibrations on the steering wheel to increase driver comfort. Nevertheless, steering wheel 

vibration is also recognised as an important medium that assists drivers in judging the 

vehicle’s subsystems dynamics as well as to indicate important information such as the 

presence of danger. This has led to studies of the possible role of vibrational stimuli 

towards informing drivers of environment conditions such as road surface types. 

Numerous prior studies were done to identify how characteristics of steering wheel 

vibrational stimuli might influence driver road surface detection which suggested that 

there is no single, optimal, acceleration gain that could improve the detection of all road 

surface types. There is currently a lack of studies on the characteristics of transient 

vibrations of steering wheel as appear to be an important source of information to the 

driver road surface detection. Therefore, this study is design to identify the similarity 

characteristics of transient vibrations for answering the main research question: “What 

are the time-domain features of transient vibrations that can optimise driver road 

surface detection?”  

This study starts by critically reviewing the existing principles of transient vibrations 

detection to ensure that the identified transient vibrations from original steering wheel 

vibrations satisfy with the definition of transient vibrations. The study continues by 

performing the experimental activities to identify the optimal measurement signal for 

both identification process of transient vibrations and driver road surface detection 

without taking for granted the basic measurement of signal processing. The studies then 

identify the similarity of transient vibrations according to their time-domain features. 

The studies done by performing the high-dimensional reduction techniques associated 

with clustering methods. Result suggests that the time-domain features of transient 

vibrations that can optimise driver road surface detection were found to consist of 

duration (∆t), amplitude (m/s
2
), energy (r.m.s) and Kurtosis. 
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CHAPTER 1  

MOTIVATION BEHIND THE RESEARCH 

1.1 Introduction 

In the automobile industry, electronic control systems are increasingly being developed 

with integrated electronic sensors, actuators, microcomputers and information 

processing for single components, engines, drivetrains, suspension, and brake systems 

(Isermann et al., 2002). The benefits of applying electronic control systems in 

automobiles are clear, such as improved performance, safety, and reliability with 

reduced manufacturing and operating costs (Noguchi, 2002). 

The progression of electronic control systems in modern automobiles has progressed 

quite quickly from anti-lock braking system (ABS) and stability control, via brake-force 

distribution and automatic proximity braking,  to electric power steering systems (EPS) 

which allow the stability enhancing of steering tie-rod loads (Miles, 2014). These so-

called basic mechatronic systems were then overtaken by the innovation of extensive 

mechatronic systems, called drive-by-wire systems, where vehicular behaviour and 

driver feedback can be designed without mechanical links between the input and output 

(Eskandarian, 2012). For instance, instead of using cables, hydraulic pressure, and other 

means for providing the driver with direct, physical control over the speed or direction 

of a vehicle, drive-by-wire technology uses electronic controls to activate the brakes, 

control the steering, and operate other systems. Most of the mechanical control is 

replaced by electrical wires. 

The applications of drive-by-systems used in automobiles are throttle-by-wire, brake-

by-wire and steer-by-wire (Parsania and Saradava, 2012), as illustrated in Figure 1.1. 
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Figure 1.1 Automotive application of drive-by-wire systems (Source: KAIST, 2014) 

Throttle-by-wire, or accelerate-by-wire systems, were the first type of drive-by-wire 

units introduced. These systems use a pedal unit and an engine management system. 

The pedal uses sensors that measure how much or how little the driver moves the 

accelerator, and the sensors send that information to the engine management system. 

The main advantage of throttle-by-wire is that it allows the engine computer to integrate 

torque management with cruise control, traction control and stability control 

(AA1Car, 2016) 

Brake-by-wire systems involve a spectrum of technologies that range from electro-

hydraulic to electro-mechanical, and both can be designed with fail-safes in mind. These 

systems still use sensors to determine how much brake force is required, but that force 

is not transmitted via hydraulics. Instead, electro-mechanical actuators are used to 

activate the brakes located in each wheel. The main benefit of brake-by-wire systems is 

that they are able to react more quickly, resulting in shorter stopping distances and 

increased safety (Brakebywire, 2016) 

Steer-by-wire systems provide steering control of a car with fewer mechanical 

components/linkages between the steering wheel and the wheels. The control of the 

wheels' direction is established through electric motors, which are actuated by electronic 

control units monitoring the steering wheel inputs from the driver. The first production 

automobile to implement this was the Infiniti Q50 (Alex, 2014). The system in the Q50, 



3 

 

in development for more than 10 years, is relatively straightforward. Turning the 

steering wheel sends an electronic signal to the steering force actuator, which sends data 

to the electronic control unit, which forwards it to the steering angle actuator, which 

then finally turns the wheels. 

This thesis embodies research related to the steering wheel feedback system. In this very 

first chapter, the thesis will discuss the motivation behind the research, which originated 

from the limitations of steer-by-wire systems. Before an in-depth discussion is 

presented, the evolution of steer-by-wire system will be discussed. The following 

sections will provide an overview of 21
st
-century steering wheel feedback, including 

Perception Enhancement for the Steer-by-Wire System. Next in this chapter will present 

the aims, objectives and end by providing the research questions includes the details of 

which chapter organise to answer all those research questions.  

1.2 Evolution of Automobile Steer-By-Wire Systems 

In automotive steering, electronic control systems began in the form of electronically 

controlled variable assist and fully electric power assist (Peter and Gerhard, 1999; 

Amberkar et al., 2000). The basic design of automotive steering systems has changed 

little since the invention of the steering wheel whereby the driver’s steering input is 

transmitted by a shaft through some type of gear reduction mechanism. This is most 

commonly rack and pinion or recirculating ball bearings to generate steering motion at 

the front wheels. One of the most prominent developments in the history of the 

automobile occurred in the 1950s when hydraulic power steering (Figure 1.2) assist was 

first introduced (Harter et al., 2000). Since then, power assist has become a standard 

component in modern automotive steering systems. Using hydraulic pressure supplied 

by an engine-driven pump, power steering amplifies and supplements the driver-applied 

torque at the steering wheel so that steering effort is reduced. In addition to improved 

comfort, reducing steering effort has important safety implications as well, such as 

allowing a driver to more easily swerve to avoid an accident. 
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Figure 1.2 Hydraulic power steering system (Source: Harter et al., 2000) 

The recent introduction of electric power steering (Figure 1.3) in production vehicles 

eliminates the need for the hydraulic pump. Electric power steering is more efficient 

than conventional power steering, since the electric power steering motor only needs to 

provide assistance when the steering wheel is turned, whereas the hydraulic pump must 

run constantly. The assist level is also easily tuneable to the vehicle type, road speed, 

and even driver preference (Badawy et al., 1999; McCann, 2000). An added benefit is 

the elimination of environmental hazards posed by the leakage and disposal of hydraulic 

power steering fluid. 

 

Figure 1.3 Electric power steering system (Source: Harter et al., 2000)
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The next step in steering system evolution was the steering-by-wire system (SBW) 

(Figure 1.4). This is a relatively new development compared to the traditional 

mechanical, hydraulic, or electric steering systems that are currently used for motor 

vehicles. It provides the potential benefits of enhanced vehicle performance (Tajima 

et al., 1999), improved handling behaviour, and fully integrated vehicle dynamic 

control. 

 

Figure 1.4 Steering-by-wire power system (Source: Berber-Solano, 2008) 

In a steer-by-wire system, there is no mechanical coupling between the steering wheel 

and the steering mechanism. In other words, the vehicle’s steering wheel is disengaged 

from the steering mechanism during normal operation. Even though the mechanical 

linkage between the steering wheel and the road wheels is eliminated, a steer-by-wire 

steering system is expected not only to implement the same functions as a conventional 

mechanically linked steering system, but is also expected to provide advanced steering 

functions. 

Some manufacturers supplement conventional front-wheel steering with rear steer-by-

wire to improve low-speed manoeuvrability and high-speed stability (Taneda and 

Yamanaka, 1998; Bedner and Chen, 2004). Completely replacing conventional steering 

systems with steer-by-wire, while a more daunting concept than throttle- or brake-by-

wire for most drivers, holds several advantages such as larger space in the cabin, 

freedom in car interior design, no oil leaking, and less injury in case of car accidents. 

The advantages also open the possibility for an alternative to the traditional steering 

wheel (Ward and Woodgate, 2004). 
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The absence of a steering column greatly simplifies the design of car interiors. The 

steering wheel can be assembled modularly into the dashboard and located easily for 

either left- or right-hand drive. The absence of a steering shaft allows much better space 

utilization in the engine compartment. Furthermore, the entire steering mechanism can 

be designed and installed as a modular unit. Without a direct mechanical connection 

between the steering wheel and the road wheels, noise, vibration, and harshness (NVH) 

from the road no longer have a path to the driver’s hands and arms through the steering 

wheel. In addition, during a frontal crash, there is less likelihood that the impact will 

force the steering wheel to intrude into the driver’s survival space. Finally, with steer-

by-wire, previously fixed characteristics such as steering ratio and steering effort are 

now infinitely adjustable to optimize steering response and feel (Parsania and Saradava, 

2012). 

1.2.1 Projected Future Market of Automobile Steer-By-Wire System 

According to Mordor Intelligence, the global automotive power steering systems market 

was valued at USD 17.16 billion in 2015, and it is projected to reach USD 41.24 billion 

by 2020, at a CAGR of 15.73% during the forecast period of 2015 to 2020 (Mordor 

Intelligence, 2016). Meanwhile, Technavio’s market research analysts predicts that the 

global automotive steer-by-wire market will grow at a CAGR of more than 28% by 

2020 (Technavio, 2016) from a CAGR of 5.89% over the period of 2014 to 2019 

(PR Newswire Association, 2015). 

Indeed, one in three current new cars that are under development feature electronic 

steer-by-wire steering systems (Leen and Heffernan, 2002) and this led to the decision 

of JTEKT Corp., the biggest supplier of steering systems, to diversify with steer-by-

wire systems technology (Automotive news, 2016). Factors such as technological 

advancement and the customers’ demand for safer and fuel-efficient vehicles are the key 

factors driving the market growth.  
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1.3 Steering Wheel Vibration Stimuli to Automobile Drivers 

According to the definition by Griffin (1990), vibrations are a mechanical phenomenon 

whereby oscillations occur about an equilibrium point. The oscillations may be periodic, 

such as the motion of a pendulum, or random, for instance the movement of a tyre on a 

road surface. Stimuli, as defined by the Dictionary of Psychology (2015) are any event, 

agent, or influence, internal or external, that excites or is capable of exciting a sensation 

or feeling receptor and of causing a physical or psychological reaction of an organism. 

In this research context, the vibration stimuli reach automobile drivers by means of the 

pedals, the gearshift, the seat, the floor and the steering wheel; the latter is the principal 

sensory link between the driver and the automobile (Pak et al., 1991; Giacomin and 

Abrahams, 2000; Amman et al., 2001; Bianchini, 2005). 

Loomis and Lederman (1996) have suggested that touch facilitates or makes possible 

virtually all motor activity, permits the identification and interpretation of nearby 

objects, supports the understanding of spatial layout when viewing is not feasible, and 

informs about object properties such as temperature that are not accessible by means of 

the other senses. In other words, Loomis and Lederman (1996) were simplifying the 

process known as a haptic perception. According to the Dictionary of Psychology 

(2015), haptic is related to sense of touch, while perception can be defined as a process 

to characterise and understand the environment by the organisation, identification and 

interpretation of sensory information (Grunwald, 2008). 

In this research context, the haptic perception is the information that is transmitted to 

the driver by means of the steering wheel vibration stimuli. It can be assumed that 

drivers recognise the road through the mechanical link to the wheels. For example, a 

grooved pavement makes the wheels vibrate; hence the mechanical links between the 

wheels and steering wheel vibrate in turn. Similarly, the mechanical links provide a 

certain feel to the steering wheel when the driver turns it. In the case of a steer-by-wire 

system that needs to emulate the feel of a traditional mechanical steering system, it must 

use sensors on the wheel hub, suspension components and electrical motor, in order to 

produce realistic and informative steering wheel motion. This requires an active system 

that is constantly changing its response based on the road conditions. 
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1.4 The 21
st
 Century Steering System 

In the 21
st
 century, as a sector that has evolved along mainly technological lines, the 

automotive industry has not always analysed stimuli from the point of view of their 

uniqueness, ecological characteristics and information carrying potential (Giacomin, 

2005). The natural vibration, sound and other stimuli that are produced by the 

automobile as part of its normal operation are usually simply optimised in terms of 

comfort or pleasantness. While detailed comparative studies of automobile stimuli are 

now part of routine Noise, Vibration and Harshness (NVH) testing, the efforts are 

usually focused on matters of comfort, pleasantness or sensory branding, but 

unfortunately ignore a feel for the road, which in other words is a lack of information 

(Giacomin and Woo, 2005). The information from the vibration stimuli is important to 

the driver because it could help him/her to interpret information, including the type of 

road surface, the presence of water or snow, tyre slip and the dynamic state of 

subsystems such as the engine, the steering and the brakes (Giacomin and Woo, 2004). 

Given the above, the question of which information an automobile subsystem should 

transmit to the driver is not a simple one. For many years, psychologists, cognitive 

scientists, and others have established the relation between stimuli and information 

(Gibson and Gibson, 1955; Gibson, 1969; Simon, 1979; Newell, 1990; Loomis and 

Lederman, 1996; Nakayama et al., 1999). 

According to both Verhoeff et al. (2004) and Giacomin (2005), the main challenge for 

electrical steering systems and for steer-by-wire systems is achieving a steering feel 

similar or better than that of conventional systems. One means of improving the flow of 

information to the driver, thus making the driving task easier, is to incorporate a 

perception enhancement systems (PES) into the design of the automobile steering wheel 

(Giacomin and Woo, 2005; Berber-Solano and Giacomin, 2005). This is further 

expected to permit the designer to achieve perception enhancing interfaces. 
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1.4.1 Perception Enhancement of Steer-by-Wire System 

Perception Enhancement Systems (PES) can be defined as any device that optimises 

feedback to a driver regarding information about the vehicle’s interaction with the 

environment (Giacomin and Woo, 2005). Perception enhancement systems lead the 

automobiles to distribute the information to drivers and passengers in a clearer and more 

easily understood manner. In 2005, Giacomin proposed the perception enhancement of 

steer-by-wire systems, as illustrated in Figure 1.5. 

 

Figure 1.5 An approach of a perception enhancement system using by-wire steering 

(Source: Giacomin, 2005) 

The PES of the by-wire steering system comprised electronic systems that had the 

function of identifying significant vibration stimuli occurring at the tyres and 

suspension, which are required by the driver. These stimuli were then transferred and 

transformed in order to optimise detection and awareness (Giacomin and Woo, 2004). 
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1.4.2 Towards Perception Enhancement of Steer-by-Wire System Application 

Although it is clear that not all vibration must be retained to clarify to the driver the 

environmental conditions, it is probable that some of the vibration must be maintained. 

In the case of information perceived by means of the steering wheel vibration, the 

increasing vibration level felt can help to clarify the nature of the road surface or the 

vehicle’s dynamic state (Giacomin and Woo, 2004). This process could be used to 

evaluate how people assimilate the information transmitted by means of the vibrational 

stimuli occurring in automobile subsystems. 

Given the above, a methodology for quantifying the human ability to detect a road 

surface appears useful (Giacomin and Woo, 2004). This was also the conclusion of a 

questionnaire-based study (Gnanasekaran et al., 2006), which suggested that the 

respondents considered steering wheel vibration to be particularly useful in the task of 

detecting road surface types.  

Working towards this goal, several laboratory-based experiments have been performed 

in order to achieve a first methodology for identifying the parameters or features used 

by drivers to detect the road surface types. A series of studies within this context have 

been performed to date, and they suggest that the driver’s response to steering wheel 

vibration depends on factors such as the amplitude, frequency bandwidth (Giacomin 

and Woo, 2004; 2005) and frequency distribution (Berber-Solano et al., 2013) of the 

steering wheel vibration. In addition, the repetition rate of transient vibrations caused by 

road surface irregularities also plays a role (Berber-Solano and Giacomin, 2005; 

Giacomin and Berber-Solano, 2006; Berber-Solano et al., 2010). The results suggest 

that there is no single, optimal, acceleration gain that could improve the detection of all 

road surface types (Giacomin and Woo, 2005; 2004), while manipulation of the 

transient vibrations contained in the steering wheel vibration were not always 

statistically significant for all road surface types (Berber-Solano and Giacomin, 2006; 

2005; Berber-Solano et al., 2010). The experimental results are useful for both future 

steer-by-wire systems and also for current steering power systems. 

All of the previous studies mentioned seem to be consistent with the nature of the 

supernormal stimuli concept, which has been defined by the Dictionary of Psychology 
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(2015) as an exaggerated sign stimulus that evokes a stronger response than the normal 

sign stimulus. On the other hand, the concept of supernormal stimuli is also defined as a 

process of manipulating the features of an original stimuli to obtain an artificial stimuli 

(Pittenger and Shaw, 1975; Hill and Pollick, 2000; Costa and Corrazza, 2006; Goodwin 

et al., 2016) and identifying how the receiver responds to the artificial stimuli (Dawkins 

and Guilford, 1995; Drănoiu et al., 2002; ten Cate and Rowe, 2007). For instance, these 

concepts can be found in studies by Berber-Solano et al. (2010) whereby the signal was 

exaggerated by modifying the transient vibrations so that they were smaller and larger. 

The aim of this was to develop guidelines for enhancing the communication between 

the steering systems and the driver. 

Based on a review of the research performed on finding the steering wheel vibration 

feedback till date, it can be seen that there is a lack of studies and understanding on how 

the characteristics of incoming road surface data signals contribute to driver road 

surface detection (Giacomin, 2005). The time-domain features known as a basic and 

simple technique in a signal processing which can provide the behaviour of the signal 

(Inman and Singh, 2014), thus were chosen to identify the characteristics of incoming 

road surface data. This can be achieved by classifying the time-domain features of road 

surface transient vibrations, whereby transient vibrations are defined as high amplitude 

transient which can cause the overall time history to deviate from a stationary Gaussian 

model (Giacomin et al.,2000). Next, the optimal driver road surface detection measured 

by checking human subjective responses to steering wheel vibration. According to the 

Cambridge Advanced Learner’s Dictionary (2008), ‘optimise’ refers as to make 

something as good as possible. Therefore, the optimise driver road surface detection in 

this study refers to the human ability to detect various of road surface types. Therefore, 

the main question of this research is: 

“What are the time-domain features of road surface transient vibrations that can 

optimise driver road surface detection?” 
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1.5 Research Aim, Objectives and Questions 

The research aim is to classify the transient vibrations of steering wheel road surface, 

focusing on identifying the time-domain features of transient vibrations that can 

improve driver road surface detection. Therefore, in order to achieve the aim of this 

study, the following objectives were set: 

i. To critically review the existing principles of transient vibrations detection in 

order to establish a better principle for transient vibrations steering wheel road 

surface 

ii. To validate the previous guidelines related to the frequency bandwidth of 

steering wheel vibration feedback 

iii. To define the optimal approach for the detection of transient vibrations steering 

wheel road surface, according to their time-domain waveform 

iv. To classify the transient vibrations steering wheel road surface, according to the 

similarity of their time-domain features 

v. To provide a definition of design guidelines for perception-enhancing steering 

wheel vibration feedback 
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1.5.1 Research Questions 

Considering the significant need to identify the time-domain features of road surface 

transient vibrations, and the objectives set for the study, the questions aimed to be 

addressed by this research thesis were further defined to give a better understanding of 

the process carried out and the transition path of each activity. 

Figure 1.6 shows each of the research questions defined includes the details of which 

chapter aims to answer each question. 

 

 

 

 
 

Figure 1.6 Identified research questions (Left) and the approaches to answer those 

questions (Right) 

 

PRINCIPLE OF TRANSIENT 
VIBRATION 

What are the principles of transient 
vibrations detections which can 
identify the transient vibrations 
steering wheel road surface? 

SYNTHESIS ANALYSIS OF 
LITERATURE 

Comparing various of principle of 
transient vibrations detections for 

identifying transient vibrations 
steering wheel road surface 

FREQUENCY 
DISTRIBUTION 

How does the frequency distribution 
of steering wheel vibration can affect 

the driver road surface detection? 

VIBRATION TEST BENCH 
EXPERIMENT 

Identifying the effect of frequency 
distribution of steering wheel vibration 
on the driver road surface detection 

NUMERICAL ANALYSIS OF 
SIGNAL PROCESSING 

How does the numerical analysis 
signal processing can affect the 

identification and driver detection of 
transient vibrations steering wheel 

road surface? 

INTEGRATION AND 
DIFFERENTATION 

Measuring the effect of numerical 
analysis of signal processing in 

identifying and driver detecting the 
transient vibrations steering wheel 

road surface 
 
 
 
 

TIME-DOMAIN FEATURES OF 
TRANSIENT VIBRATIONS 

How does the time-domain features 
construct the similarity group of 

transient vibrations steering wheel 
road surface? 

CLUSTERING AND 
CLASSIFICATION 

Development grouping of transient 
vibrations steering wheel road surface 
in finding the similarity of time-domain 

features 
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CHAPTER 2  

HAND-ARM TRANSMITTED AUTOMOBILE STEERING WHEEL 

VIBRATION 

2.1 Introduction 

Vibrations can produce a wide variety of different effects in humans. According to the 

definition by Griffin (1990), vibrations are a mechanical phenomenon whereby 

oscillations occur about an equilibrium point. The oscillations may be periodic, such as 

the motion of a pendulum, or random, such as the movement of a tyre on a road surface. 

In practice, the human body is exposed to various kinds of vibrations, which are 

transmitted by different sensations into the body. These different sensations of 

vibrations can be separated into two principal sections – the perception of whole-body 

vibrations and the perception of hand-arm transmitted vibrations. For instance, when 

driving on an irregular road surface, drivers are exposed to whole-body vibrations 

through the backrest (Bellmann, 2002). They are also simultaneously exposed to hand-

arm transmitted vibrations that are felt by the hand and fingers as a result of contact 

with the steering wheel vibration (Griffin, 1990). 

The term hand-arm transmitted vibrations can be defined as a vibration entering the 

body directly usually through the hand or fingers (Oxford University Press, 2004). This 

is also known as vibrotactile vibration (Griffin, 1990). This definition is consistent with 

the European Directive (2002), which defines hand-arm transmitted vibrations as a 

mechanical vibration that when transmitted to the human hand-arm system, entails risks 

to the health and safety of workers, in particular vascular, bone or joint, neurological or 

muscular disorders. 
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This study focuses on hand-arm transmitted vibrations due to the high sensitivity of the 

skin’s tactile receptors on the hand, as well as the lack of intermediate structures such as 

shoes and clothing, which can attenuate the transmission of vibration to the drivers 

(Gescheider et al., 2004). For these reasons, the fundamental measurement and 

evaluation methods of hand-arm transmitted vibrations are presented in this chapter. 

Additionally, this chapter also presents an evaluation of hand-arm transmitted vibrations 

in the context of steering wheel vibration. 

2.2 Subjective Response to Hand-Arm Transmitted Vibrations 

According to Cambridge Advanced Learner’s Dictionary (2008), ‘subjective’ refers to 

something that is realised more on personal beliefs or feelings, rather than based on 

facts, while ‘response’ is judgement or reaction to something. Therefore, the term 

‘subjective response’ in this study refers to human reaction with something which varies 

dependent on an individual (Griffin, 1990). 

The subjective response to hand-arm vibrations has been found to depend on four main 

physical parameters of the vibration namely quality, intensity, locus and effect 

(Reynolds et al., 1977, Griffin, 1990). Quality is the subjective difference that capable 

to name the sensation, such as heat, cold, taste or smell. Intensity represents the size of 

energy that been perceived. Locus refers to the position of the sensation originates, and 

effect is the characteristic of the sensation that allows a subject to classify the sensation 

for instance pleasant or unpleasant. This section therefore provides an overview of the 

independent physical parameters that affect the subjective response to hand-arm 

vibrations. 

2.2.1 Vibration Contact Location 

The biodynamic of the human hand-arm system is one of the most important 

foundations for the measurement, evaluation and risk assessment of exposure to hand-

arm transmitted vibrations. The vibrotactile stimuli received by vehicle drivers are 

detected by the mechanoreceptors in the skin and mediated by the sensation channels 
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related to these mechanoreceptors. Colman (2015) defined a mechanoreceptor as a 

sensory receptor that responds to mechanical stimulation including touch, pressure and 

vibrations. Four types of mechanoreceptors are found in the glabrous skin (Bolanowski 

et al., 1988) as shown in Figure 2.1, namely Pacinian corpuscles, Meissner corpuscles, 

Merkel discs and Ruffini endings. 

 

Figure 2.1 Location four of the mechanoreceptors (Pacinian corpuscles, Meissner 

corpuscles, Merkel discs and Ruffini endings) in hairy and glabrous skin of the human 

(Source: Griffin, 1990) 

The vibrations normally activate multiple information processing channels, starting 

from different types of mechanoreceptors, and the most sensitive channel differs, 

depending on the range of the vibration frequency (Békésy, 1940; Verrillo, 1966; 

Gescheider, 1976; Verrillo, 1985; Bolanowski et al., 1988; Lamoré and Keemink, 1988; 

Hollins and Roy, 1996; Gescheider et al., 2001; Bellmann, 2002). The mechanoreceptor 

fibres are thus classified into two groups which are fast acting (FA) or slow acting (SA) 

by depending on how quickly they response to a steady stimulus. Slow-acting units will 

respond all the time of the stimulus duration, whereas the immediate response in the 

case of the fast-acting units (Johansson et al., 1982). Figure 2.2 summarises the 

adaptation properties, relative innervation densities and the typical receptive field sizes 

of the four mechanoreceptors found in the glabrous skin of the hand. 
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Figure 2.2 The adaptation properties, relative innervation densities and the typical 

receptive field sizes of the four mechanoreceptors in the glabrous skin of the hand 

(Source: Roberts, 2002) 

i. Meissner corpuscles – Non-Pacinian I (Fast Adapting I): Only respond to 

moving skin stimulus. 

ii. Pacinian corpuscles – Pacinian (Fast Adapting II): Very rapidly adapting 

sensors. 

iii. Merkel discs – Non-Pacinian III (Slow Adapting I): Produce action potentials in 

afferent fibres if a long stimulus occurs. 

iv. Ruffini endings – Non-Pacinian II (Slow Adapting II): Produce action potentials 

in afferent fibres if a long stimulus occurs. 

Morioka and Griffin (2007; 2008; 2009) suggested that a frequency greater than 

approximately 16 Hz or 20 Hz may be mediated by Pacinian corpuscles (FA-II), which 

provide sensations at high frequencies of vibration. The NP channels include the 

Meissner corpuscles, Merkel discs and Ruffini endings (i.e. FA-I, SA-I and SA-II, 

respectively), and show enhanced sensitivity with increasing stimulus gradients at 

frequencies less than around 16 Hz to 20Hz. The authors also concluded that at least 

three channels (Pacinian, NP-I and NP-II channels) may be involved in detecting hand-

arm transmitted vibrations. 
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Research by Griffin (2012) stated that the slow-adapting non-Pacinian II channel is 

likely to be most sensitive at frequencies less than about 2 Hz. The fast-adapting non-

Pacinian I channel may mediate perception at threshold levels between approximately 

2 Hz and 40 Hz, and the fast-adapting Pacinian channel often mediates perception at 

frequencies greater than about 40 Hz. The slow-adapting non-Pacinian II channel is 

sensitive in a frequency range similar to the P channel, but has a sensitivity lower than 

the P channel in most contact conditions (Figure 2.3). 

 

Figure 2.3 Four-channel psychophysical model showing the threshold frequency 

response of each channel (Source: Griffin, 2012) 

The Pacinian corpuscle is strongly implicated as the mechanoreceptor primarily 

responsible for the perception of transmitted vibration, and the limits of the vibratory 

detection at high frequencies depend on the activity in the Pacinian afferents. 

Mechanoreceptor fibres have different to respond to specific frequency ranges of 

vibratory stimuli which been proven in various of studies areas such as 

electrophysiological recordings (Talbot et al., 1968; Mountcastle et al., 1972), direct 

recordings from human nerves (Knibestol and Vallbo, 1970; Johansson et al., 1982; 

Phillips et al., 1992) and psychophysics (Verrillo, 1966; Gescheider, 1976; 

Verrillo, 1985; Bolanowski et al., 1988; Lamoré and Keemink, 1988; Hollins and 

Roy, 1996; Gescheider et al., 2001). 
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2.2.2 Vibration Magnitude 

The comfort contours strongly depend on vibration magnitude, indicating that a 

frequency weighting for predicting sensation should be dependent on vibration 

magnitude. The magnitude of the vibration to which the body is exposed can be 

expressed in terms of physical measurements (e.g. displacement, velocity or 

acceleration). For practical convenience, the magnitude of vibration is usually expressed 

in terms of acceleration, whose units are m/s
2
, normally measured by means of 

accelerometers (ISO 5349-1, 2001). The primary quantity used to describe the 

magnitude of the vibration shall be the root-mean-square (r.m.s.) frequency-weighted 

acceleration expressed in metres per second squared (m/s
2
). 

Verrillo et al. (1969) determined how subjective intensity affected by  vibration 

amplitude of sinusoidal stimuli, which were applied to the skin of the index finger by 

means of a vibrating needle. The resulting curves, shown in Figure 2.4, suggest that the 

subjective magnitude increased as the physical intensity of the vibration was increased. 

At low intensities, the subjective response was found to grow approximately linearly 

with respect to the intensity of the vibration (at frequencies from 25 Hz to 250 Hz). This 

result is consistent with Zwislocki’s theory of vibration sensitivity (Zwislocki, 1960), 

which states that sensory magnitude is approximately proportional to the stimulus 

intensity near threshold. 

 

Figure 2.4 Curve subjective response magnitude of suprathreshold vibration presented 

at the fingertip at frequencies of 25, 100, 250 and 500 Hz (Source:  Verrillo et al., 1969) 
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Adewusi et al. (2010) concluded that the magnitudes of transmitted vibration under an 

extended-arm posture were observed to be nearly twice those for the bent-arm posture 

in the low frequency region. The results further showed that variations in the grip force 

mostly affected vibration transmissibility and the characteristic frequencies of the 

forearm, while changes in the push force influenced the dynamic characteristics of the 

entire hand-arm system. The magnitudes of transmitted vibration in the vicinity of the 

characteristic frequencies were influenced by the handle vibration magnitude. 

2.2.3 Vibration Frequency 

The perceived intensity of hand-arm transmitted vibration is dependent on the frequency 

of vibration. Frequency analysis in octave bands may appear to be quick, cheap and 

convenient, but it does not provide sufficient spectral detail. It is now becoming 

common for the frequency content of vibration signals to be determined using constant 

bandwidth analysis rather than one-third octave band analysis. When assessing hand-

arm transmitted vibrations, the frequency resolution used for constant bandwidth 

analysis should be less than 10 Hz, but normally needs to be narrower than 1 Hz. 

Research related on measuring the response of perception thresholds and annoyance 

thresholds towards stimuli of different frequencies shown that a constant vibration 

magnitude produces different intensity at all frequencies (Stevens, 1986; Griffin, 1990). 

Figure 2.5 presents a set of contours of equal sensation magnitude obtained by Verrillo 

et al. (1969) using sinusoidal vibration stimuli applied to the skin of the index finger by 

means of a vibrating needle. Each curve is the combinations of both frequency and 

amplitude that result in judgements of equal subjective intensity. At threshold, the curve 

is U-shaped, resembling the vibrotactile perception threshold of the hand (Verrillo, 

1985), and has a flattened portion in the smoother shape over the high-frequency range 

of 100 Hz to 1000 Hz. The flattening of the equal sensation curves, as the vibration 

intensity increases, is analogous to the behaviour of the well-known equal loudness 

contours for hearing (Moore, 1997), indicating that high-intensity sounds appear equally 

loud regardless of the frequency. 
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Figure 2.5 Equal sensation magnitude contours which each curve describes the 

combinations of frequency and intensity that give rise to equal sensation magnitudes 

(Source: Verrillo et al., 1969) 

Griffin (2012) showed that the frequency-dependence of discomfort caused by hand-

arm transmitted vibration, depending on vibration magnitude, is similar to absolute 

thresholds at low magnitudes, but the discomfort at higher magnitudes is similar when 

the vibration velocity is similar (at frequencies between 16 Hz and 400 Hz). Frequency 

weighting at current standards extends from 8 Hz to 1000 Hz; frequencies greater than 

400 Hz rarely increase the weighted value on tools and there is currently little 

psychophysical or physiological evidence of their effects. 

2.2.4 Vibration Direction 

British Standard 6842 (1987) and the International Organization for 

Standardization 5349-1 (2001) provide general requirements for measuring and 

reporting hand-arm transmitted vibrations exposure in three orthogonal axes. The 

directions of vibration transmitted to the hand should be reported in the appropriate 

directions of the orthogonal coordinate axes, as shown in Figure 2.6. 
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Figure 2.6 The anatomical coordinate system for the handgrip position (Source:  BS 

6842, 1987; ISO 5349-1, 2001) 

The origin of the biodynamic coordinate system is the head of the third metacarpal 

(distal extremity). The zh-axis (i.e. hand axis) is defined as the longitudinal axis of the 

third metacarpal bone and is oriented positively towards the distal end of the finger. The 

xh-axis passes through the origin, is perpendicular to the zh-axis, and is positive in the 

forwards direction when the hand is in the normal anatomical position (palm facing 

forwards). The yh-axis is perpendicular to the other two axes and is positive in the 

direction towards the fifth finger (thumb). In practice, the basicentric coordinate system 

is used: the system is generally rotated in the y-z plane so that the yh-axis is parallel to 

the handle axis. 

Morioka and Griffin (2006) studied the effect of vibration direction (fore-and-aft, lateral 

and vertical) on predicting the perception of hand-arm transmitted vibrations and the 

discomfort caused by hand-arm transmitted vibrations. The study found that thresholds 

for the perception of hand-arm transmitted vibrations in each of the three axes are U-

shaped with the greatest sensitivity to acceleration in the range 80 Hz to 160 Hz, as 

shown in Figure 2.7.  
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Figure 2.7 Median perception threshold contours overlaid between the three axes 

(Source: Morioka and Griffin, 2006) 

Figure 2.7 suggests that at frequencies less than 50 Hz, thresholds are lowest for fore-

and-aft vibration, while at frequencies greater than 125 Hz, thresholds for vertical 

vibration are lower than thresholds for lateral vibration. 

2.2.5 Vibration Duration 

Vibration exposure is dependent on the magnitude of the vibration and the duration of 

the exposure. Exposure duration can be quantified both on a daily basis and over a 

lifetime. In both cases it is necessary to recognise that exposures are non-continuous, 

that the magnitude of adverse effects may grow during exposures, that there may be 

some recovery between exposures, and that there may be some recovery after the final 

end to exposure. It may be expected that there will be different ‘time constants’ for both 

the effects and the recoveries associated with each type of injury. The daily limit 

exposure stated in the International Organization for Standardization 5349-1 (2001), 

based on eight hours energy equivalent acceleration value, is 3.4 m/s
2
. 

Previous research has suggested that the vibrotactile sensitivity at threshold (Verrillo, 

1965; Gescheider, 1976; Checkosky and Bolanowski, 1992) and at suprathreshold 

levels of stimulation (Verrillo et al., 1969; Gescheider, 1997) can be affected by 

stimulus duration. According to Verrillo (1965) and Gescheider (1976), the 

phenomenon of temporal summation or temporal integration were happened at the 
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threshold amplitude for detection has been found to decrease monotonically with 

stimulus duration when stimuli frequencies are greater than 40 Hz and stimuli durations 

shorter than approximately 1.0 seconds. Meanwhile, for stimuli frequencies greater than 

40 Hz and stimuli durations longer than approximately 1.0 seconds, the perception 

threshold was constant with increases in stimulus duration (Verrillo, 1965; Gescheider, 

1976). For vibration frequencies less than 40 Hz, no temporal summation has been 

observed (Gescheider, 1976). 

Cohen and Kirman (1986) have performed an experiment to measure the vibrotactile 

frequency discrimination at durations of 30, 50, 100 and 200 milliseconds (ms) with a 

standard frequency of 100 Hz. From the experimental results they suggested that 50 ms 

is the minimum vibratory duration for good frequency discrimination. Other research 

studies (Craig, 1985; Gescheider et al., 1990; Biggs and Srinivasan, 2002) have 

suggested that only a few ms are needed to perceive stimuli in human tactile vibration. 

2.3 Subjective Response to Hand-Arm Transmitted Steering Wheel Vibrations 

In the context of the steering wheel, many aspects of the subjective response to hand-

arm transmitted vibrations have been studied in great detail, such as detection thresholds 

and level of annoyance (Miura et al., 1959; Miwa, 1967; Reynolds et al., 1977; Verrillo, 

1985; Griffin, 1990; Giacomin et al., 2004; Morioka and Griffin, 2006; 2009), 

perception of strength and equal sensation curve (Giacomin and Onesti, 1999; 

Giacomin et al., 2004; Ajovalasit and Giacomin, 2009) the influence of grip force 

(Schröder and Zhang, 1997; Morioka and Griffin, 2007) and the influence of duration of 

the vibrotactile exposure (Miwa, 1968; Giacomin and Onesti, 1999; Giacomin et al., 

2004; Morioka, 2004; Morioka and Griffin, 2006). 

Studies by Morioka and Griffin (2006; 2009) suggested that equivalent comfort 

contours for steering wheel vibration determined over a range of frequencies (4 Hz to 

250 Hz) and magnitudes (0.1 m/s
2
 r.m.s. to 1.58 m/s

2
 r.m.s.) were strongly dependent on 

vibration magnitude. At magnitudes greater than around 1.0 m/s
2
 r.m.s., the sensitivity 

to acceleration decreased as the vibration frequency increased above 20 Hz. At 

magnitudes less than around 0.5 m/s
2
 r.m.s., the sensitivity to acceleration increased 
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with increasing frequency. The changes in the shapes of the equivalent comfort contours 

with vibration magnitude might be due to multiple channels being responsible for the 

mediation of perception at suprathreshold levels. At suprathreshold levels, the 

frequency-dependence of the equivalent comfort contours in each of the three axes was 

highly dependent on vibration magnitude. The authors also suggested that the currently 

standardised frequency weighting, Wh, does not provide a good prediction of the 

perception of steering wheel vibration at magnitudes less than approximately 

1.5 m/s
2
 r.m.s. 

Research has suggested that, when plotted in terms of acceleration amplitude, the 

human subjective response to hand-arm vibration decreases almost monotonically as a 

function of frequency (Miura et al., 1959; Miwa, 1967; Reynolds et al., 1977; Verrillo, 

1985; Griffin, 1990; Giacomin et al., 2004). Studies performed by Miwa (1967) to 

measure equal sensation and perception threshold which participant by 10 test subjects 

who holding their palm flat against a vibration plate, for vertical and horizontal 

vibration suggested that the acceleration threshold was found to reach maximum 

sensitivity at 100 Hz. Meanwhile Reynolds et al. (1977) studied the subjective response 

to vertical and axial direction translational handle vibration by measuring perception 

and annoyance threshold curves for eight test subjects. For fixed acceleration amplitude, 

their results showed a general trend of reduced sensitivity with increasing frequency. 

Giacomin and Onesti (1999) produced equal sensation curves for the frequency range of 

8 Hz to 125 Hz using a sinusoidally rotating steering wheel at reference amplitudes of 

1.86 m/s
2
 and 5.58 m/s

2
. From the results they suggested that the subjective response 

was found to be linear as a function of frequency over the frequency range considered. 

They also suggested that the grip tightness did not have a great effect on the subjective 

response. 

Giacomin et al. (2004) investigated the hand-arm perception of rotational steering wheel 

vibration by means of four equal sensation tests and one annoyance threshold test. All 

equal sensation curves showed that the human sensitivity will decrease when exposed to 

hand-arm vibration with increasing frequency. Apart from that, they also suggested that 

there were two characteristic transition points existed in the curves of equal subjective 

response which are at frequencies of 6.3 Hz and in the interval from 50 Hz to 80 Hz 
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(Refer Figure 2.8). The first transition points were suspected to be due to the 

mechanical decoupling of the hand-arm system, while another one of transition points 

was claimed to be due to the onset of Pacinian receptor output. Giacomin et al. (2004) 

also suggested that human sensitivity decreased by 6 dB and 10 dB per octave in the 

frequency ranges of 6.3 Hz to 50 Hz and 160 Hz to 315 Hz respectively, while a 0 dB 

per octave corresponding constant acceleration was observed in both frequency ranges 

of 0 Hz to 6.3 Hz and 50 Hz to 160 Hz. 

 

Figure 2.8 Equal sensation data from translational and rotational vibration studies  

(Source: Giacomin et al., 2004) 

Morioka and Griffin (2007) investigated the effect of grip force on the frequency-

dependence of the perception of steering wheel vibration applied to the hands. They 

found that the growth of sensation depended on vibration frequency, with generally the 

highest exponent at 31.5 Hz for all three grip conditions which were minimum, light 

and tight grips with a systematic decrease in exponent with increasing frequency from 

31.5 Hz to 125 Hz, as shown in Figure 2.9. 



 

27 
 

 

Figure 2.9 Effect of frequency and grip force on median of growth of sensation 

(Source: Morioka and Griffin, 2007) 

In the case of perceived intensity relative to an automobile steering wheel, Schröder and 

Zhang (1997) investigated the subjective response to steering wheel acceleration stimuli 

measured along the three orthogonal axes on a mid-sized European passenger car. This 

was done for different driving speeds, ranging from 30 km/h to 70 km/h, over three 

different road surfaces. The results suggested that the vibration along the vertical 

direction of the steering wheel correlates best with the subjective ratings of the drivers 

in the frequency range of 30 Hz to 90 H whereby the frequency range known as the 

most of the vibration energy is present at the steering wheel (Peruzzetto, 1988; Amman 

et al., 2001; Giacomin et al., 2004). 

Most of laboratory-based experiment related to the hand-arm vibration has involved 

protocols in which the test subjects judged the subjective intensity of the vibration 

duration of 2 seconds to 10 seconds (Miwa, 1968; Giacomin and Onesti, 1999; 

Giacomin et al., 2004; Morioka, 2004; Morioka and Griffin, 2006). For instance, studies 

by Miwa (1968) were asked subjects to judge the relative subjective intensity produced 

by short periods of sinusoidal vibration, and pulsed sinusoidal vibration, for signal 

durations up to 6 seconds. The test results, suggested that for vibration in the frequency 

range of 2 Hz to 60 Hz there is no further increase in sensation intensity for stimuli 

durations greater than approximately 2 seconds, whereas for vibration in the frequency 

range of 60 Hz to 200 Hz the same limit is approximately 0.8 seconds. 
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2.4 Conclusion 

This present chapter has described the fundamental measurement and evaluation 

methods of hand-arm transmitted vibrations. Hand-arm transmitted vibrations are 

caused by mechanical vibration, such as that of the steering wheel, being transferred to 

the adjacent areas of the hand, arm and shoulder. Subjective responses to the vibrations 

are varied; they may be quantified by location, direction, magnitude, frequency and 

durations. 

The subjective response appears to be best correlated with vertical direction 

(Schröder and Zhang, 1997) and an exposure duration between 2 and 10 seconds 

(Miwa, 1968; Giacomin and Onesti, 1999; Giacomin et al., 2004; Morioka, 2004; 

Morioka and Griffin, 2006) with the use of a logarithmic transformation for both 

magnitude and frequency values (Miwa, 1967; Verrillo et al., 1969; 

Reynolds et al., 1977; Giacomin and Onesti, 1999; Giacomin et al., 2004) for hand-arm 

transmitted steering wheel vibrations. 

Given the above, it is important to review and explain the questions of how humans 

acquire, interpret, select and organise the vibration information felt by the means of 

hand-arm transmitted steering wheel vibration. Therefore, the following chapter will 

focus on human information processing systems that form the basis of detection 

decision making. 
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CHAPTER 3  

HUMAN COGNITION 

3.1 Introduction 

The term cognition, also known as mental activity, refers to a group of mental processes 

that includes attention, memory, producing and understanding language, learning, 

reasoning, problem solving, and decision making (Wickens et al., 1998). The specific 

related term used in cognition is cognitive psychology, which describes a theoretical 

orientation that emphasizes human knowledge and mental processes (Matlin, 2005). 

The concept of cognition has spread to various disciplines, such as psychology (Wyer, 

1998), education (Rayner et al., 2001; Halpern and Hakel, 2002), social sciences 

(Kunda, 1999), medicine (Corrigan and Penn, 2001), and health (Brannon and 

Feist, 2000). However, the usage of the term ‘cognition’ varies across disciplines. For 

example, in psychology, cognition usually refers to an information processing view of 

an individual's psychological functions (Wyer, 1998; Matlin, 2005). Meanwhile, in 

social disciplines, the term ‘cognition’ is used to explain attitudes, attribution, and group 

dynamics (Kunda, 1999). 

In the driving context, cognition usually refers to a cognitive driving task (Hollnagel 

and Woods, 2005). The concept of a cognitive driving task always appears in the 

development of car-driving models (Hollnagel and Woods, 2005). For example, when a 

car approaches an intersection with poor visibility, the driver treats the intersection as an 

important thing, and the driver also predicts situations where people come from a street 

intersection (cognition) (Yoshida et al., 2014). Other than that, the concept of cognition 

is also used by drivers to identify the vibration transmitted to the driver via steering 
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wheel vibration (Giacomin and Woo, 2004; 2005; Berber-Solano and Giacomin, 2005; 

Giacomin and Berber-Solano, 2006; Bellet et al., 2007; Berber-Solano et al., 2013). For 

example, the vibration felt by the driver on the steering wheel helps with the 

interpretation of many things including the type of road surface, the presence of water 

or snow, tyre slip (both longitudinal and lateral) and the dynamic state of subsystems 

such as the engine, the steering and the brakes. The vibrations are perceived, compared 

to models from long-term memory and interpreted, with the consequent interpretation 

then influencing decision taking (Giacomin and Woo, 2004). Figure 3.1 shows the 

elements of the cognitive driving task that are used to discriminate the vibration 

transmitted to the driver via steering wheel vibration. 

 

Figure 3.1 Elements of the cognitive driving task (Source: Giacomin and Woo, 2004) 

According to Dror (2005), the cognitive driving task involves the processes through 

which a stimulus is detected. The stimulus can be perceived as a discrete event or as a 

stream of events and can be adjusted in terms of sensitivity thresholds, stimulus 

segmentation and other parameters (Dror and Dascal, 1997). However, the vibrational 

stimulus experienced depends on several factors such as the person’s past experiences, 

the person’s memory and on a large variety of other psychological variables (Dror, 

2005) 

After this discussion of the best measurements of the subjective response to hand-arm 

transmitted steering wheel vibrations, it is important to review and explain how humans 

acquire, interpret, a and organise the vibration information. Therefore, this chapter 

focuses on three topics. The chapter begins by outlining the information-processing 

model, which will explain the human working memory model and also emphasise its 

limitations. This will be followed by an explanation of the process through which 
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different information is assessed and selected from a number of alternatives, together 

with the factors that make this process more and less effective. A related theory that 

provides a means of analysing the critical structure of human detection decision 

processes in a given task is also examined in the final section of this chapter. 

3.2 The Information-Processing Model 

The information-processing model is a model used to represent, describe and explain 

memory, its components and processes (Matlin, 2005). Researchers have proposed a 

number of information-processing models to explain human memory, which has been 

categorised into three different classes: Sensory Memory, Short-term Memory and 

Long-term Memory (Atkinson and Shiffrin, 1968; Tulving, 1972; Anderson, 1990; 

Baddeley, 1992; Massaro and Cowan, 1993; Reed, 1997; Groome, 1999; Palmer, 1999). 

Despite this, the proposed model by Atkinson and Shiffrin (1968) has become the best 

known example within the emerging field of cognitive psychology (Squire et al., 1993) 

because the theory quickly became the standard approach to the information-processing 

model. Figure 3.2 shows the Atkinson-Shiffrin model, with arrows to indicate the 

transfer of information. 

 

Figure 3.2 Atkinson and Shiffrin’s Model of Memory 

(Source:  Atkinson  and  Shiffrin, 1968) 
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External stimuli from the environment first enter sensory memory. Sensory memory is a 

large capacity storage system that records information from each of the senses with 

reasonable accuracy. Atkinson and Shiffrin (1968) proposed that information is stored 

in sensory memory for 2 seconds or less, and then most of it is forgotten. Miller (1956) 

stated that the sensory information store has unlimited capacity, and reacts to both 

visual and auditory information. Norman (1970) assumed that sensory memory has the 

capacity to transform physical environmental stimuli into physiological representations. 

In this form information can be temporarily retained in the memory system. 

Some material from sensory memory will then pass in to the short-term memory, now 

commonly called working memory, which contains only the small amount of 

information that the human is actively using (Atkinson and Shiffrin, 1968). Memories in 

short-term memory are fragile, but not as fragile as those in sensory memory; these 

memories can be lost within about 30 seconds unless they are somehow repeated 

(Atkinson and Shiffrin, 1968; Baddeley, 1986; 1990; Cowan, 2001). 

According to the Atkinson-Shiffrin’s model, material that has been rehearsed passes 

from short-term memory to long-term memory. Long-term memory is defined as a 

system for permanently storing, managing and retrieving information for later use, 

whereby the items of information stored as long-term memory may be available for a 

lifetime (Atkinson and Shiffrin, 1968; Wickens et al., 1998 Matlin, 2005).  

This study will focus on the working memory due to the fact that most of laboratory-

based experiment related to the hand-arm vibration has involved protocols in which the 

test subjects judged the subjective intensity of the vibration duration of 2 seconds to 10 

seconds (Miwa, 1968; Giacomin and Onesti, 1999; Giacomin et al., 2004; Morioka, 

2004; Morioka and Griffin, 2006). Apart from that, previous researchers have also 

indicated that human working memory is related to poorer driving performance (Louie 

and Mouloua, 2015). In light of this, the following subtopic will discuss the 

fundamentals of human working memory and its capacity limits for processing 

information. 
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3.2.1 Human Working Memory 

The term working memory is a relatively new name for short-term memory 

(Matlin, 2005). Working memory refers to the system or systems that are assumed to be 

necessary in order to keep things in mind while performing cognitive tasks such as 

reasoning, comprehension and learning (Baddeley, 1992; 2000; Smith, 2000; 

Cowan, 2001; Engle, 2001). Figure 3.3 illustrates the working model proposed by 

Baddeley (2000), featuring the phonological loop which deals with verbal information, 

the visuospatial sketchpad concerned with visual information, the central executive 

system allowing the manipulation and control of information in working memory, and 

the episodic buffer, which enables the different components of working memory to 

interact with long-term memory (Dempere-Marco et al., 2012). 

 

Figure 3.3 Working Memory Model (Baddeley, 2000) 

In human working memory (Baddeley, 2000), the central executive is a system that 

integrates information from the phonological loop, the visuospatial sketchpad and the 

episodic buffer. The central executive system also plays a major role in attention, 

planning strategies and coordinating behaviour, as well as suppressing irrelevant 

information. The central executive directs attention and gives priority to particular 

activities. In other words, the central executive enables the working memory system to 

selectively attend to some stimuli and ignore others. For example, transients, such as the 

onset of brake lights, may orient the driver’s attention automatically (Johannsdottir and 

Herdman, 2010). 
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The phonological loop and the visuospatial sketchpad are viewed as limited-capacity 

storage and processing systems for verbal (Sebastián-Gallés, 2006; Johannsdottir and 

Herdman, 2010; Heenan et al., 2014) and visual information (Baddeley, 1986; Baddeley 

and Logie, 1999; Logie et al., 2001; Heenan et al., 2014). For example, when driving 

along a familiar route under stressful weather conditions, a phonological system 

maintaining the number and direction of the next turn can be a simple and very effective 

strategy (Baddeley, 2003). Meanwhile, the visuospatial sketchpad system is used when 

a driver tries to construct a mental map of necessary turns from a set of spoken 

navigational instructions (Wickens et al., 1998). Previous research has also found that 

drivers’ abilities to locate other vehicles and to avoid hazards were correlated with 

measures of phonological and visuospatial working memory – for instance, awareness 

of another vehicle that suddenly moved from behind the driver’s vehicle to enter the 

lane in front of it (Gugerty and Tirre, 2000; Heenan et al., 2014). 

The episodic buffer serves as a temporary capacity for gathering and combining 

information from the phonological loop, the visuospatial sketchpad and long-term 

memory (Johannsdottir and Herdman, 2010). The episodic buffer actively manipulates 

information in order interpret an earlier experience, solve new problems, and plan future 

activities (Baddeley, 2000; Matlin, 2005). The episodic buffer system is assumed to 

form a basis for the conscious awareness of drivers (Baddeley, 2003). 

3.2.2 Limitation of Working Memory 

The working memory model is a basic aspect of cognition; therefore the limitations 

have been well studied in humans (Schacter, 2002; Dempere-Marco et al., 2012). 

According to Miller (1956) and Brown (1958), as well as Peterson and Peterson (1959), 

the working memory has a very limited capacity and duration when humans are dealing 

with unfamiliar information. Likewise, McLeod (2009), Schacter (2002) and Wickens et 

al. (1998) suggested that the ability to maintain the information in working memory is 

limited in two interrelated respects, which are how much information can be kept active 

and how long information can be kept active. 
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A number of researchers have suggested that the capacity of working memory is limited 

to around 7 ± 2 chunks of information (Bellezza, 1994; Miller, 1956; Cowan, 2001; 

Yang and Fricker, 2001; Schacter, 2002). A chunk is a memory unit that consists of 

several components that are strongly associated with one another (Bellezza, 1994; 

Cowan, 2001). For example, the sequence of four unrelated letters, X F D U, consists of 

four chunks, while the four letters DOOR consist of only one chunk, because these can 

be coded into a single meaningful unit. As a result, each occupies only one ‘slot’ in 

working memory, and so our working memory could hold 7(±2) words or familiar 

dates as well as 7 ± 2 unrelated letters or digits. Yang and Fricker (2001) conducted an 

experiment to determine the amount of information that is considered to be too much 

for a driver to process, and to determine which method of conveyance is most effective. 

They used a driving simulator to simulate familiar and unfamiliar areas to the subjects. 

The responses when given twelve different information combinations for both familiar 

and unfamiliar areas were evaluated. Their findings showed that when a driver is in a 

familiar area, the need for a visual display related to the area is not necessary due to the 

fact that a driver will rely on their prior knowledge of the area. The opposite is observed 

when the driver is in an unfamiliar area. They also found that a visual display was more 

effective when accompanied with an auditory message that alerted drivers. 

The capacity limits of working memory are closely related to the second limitation of 

working memory, the limit on how long information may remain. The strength of 

information in working memory decays over time (Cowan, 2001). To help predict 

working memory decay for differing numbers of chunks, Card et al. (1986) combined 

data from several studies to determine the half-life of items in working memory. The 

half-life was estimated to be approximately 7 seconds for a memory store of three 

chunks and 70 seconds for one chunk. Meanwhile, according to Atkinson and Shiffrin 

(1971), the duration of working memory seems to be between 15 and 30 seconds if the 

chunks are repeated. In order to investigate the effect of test subjects judged the 

subjective intensity of steering wheel hand-arm vibration, (Giacomin and Fustes, 2005; 

Hacaambwa and Giacomin, 2007; Ajovalasit and Giacomin, 2009; Jeon et al., 2009; 

Ajovalasit et al., 2012) and to identify the ability of drivers to detect the road surfaces 

(Giacomin and Woo, 2004; Berber-Solano and Giacomin, 2005; Berber-Solano et al., 

2010), test signal durations of between 7 and 10 seconds were used so as to provide a 

test signal that remained within human short-term memory (Atkinson and Shiffrin, 
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1971; Sinclair and Burton 1996; Baddeley 1997) This therefore did not rely upon the 

test participants’ long-term storage of information. 

The limitation of working memory has been the subject of significant research effort in 

connection with vehicle technology in order to address operational, safety and 

environmental related issues (Osman et al., 2015). In addition, some studies have 

focused on the drivers’ behaviour and response to the existence of the technology and 

how they handle the information load in their vehicle. It has been determined that 

providing too much information in the form of multiple warnings and/or information in 

multiple displays may overwhelm and distract the driver. In fact, too much information 

being presented affects the drivers’ reaction times and may lead to inappropriate 

responses in emergency situations (Blincoe et al., 2015). 

3.3 Human Decision-Making Process 

The term decision-making was defined as the process of reducing the gap between the 

existing situation and the desired situation by solving problems and making use of 

opportunities (Medin and Ross, 1992; Saroj, 2009). Meanwhile, March (1991) and 

Weick (2012) defined decision-making as a transformation of knowledge and 

information into managerial action. The importance of the human decision-making 

process has been the subject of active research from several studies from a 

psychological and cognitive perspective (Rizun and Taranenko, 2014).  

Most initial research on the decision-making process has focused on the study of 

rational decision-making (Luce and Raiffa, 2012; Fischhoff, 1982). According to 

McCOWAN et al. (1999), the rational decision-making approach is central to the 

decision and utility theoretic frameworks widely used in the physical sciences and in the 

behavioural sciences, such as psychology and economics. Towler (2010) suggested that 

humans generally use a rational decision-making model when they want to make sure 

that they make the best choice. Rational decision makers seek relevant information, look 

carefully at future consequences, and act deliberately and logically (French et al., 1993). 

For instance, rational drivers will drive their car according to the speed limit stated by 
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the government in both urban and rural environment to avoid the fines and maintain 

safety when driving (Warner and Åberg, 2008). 

Limited cognitive resources, time pressures, and unpredictable changes often make 

rational processes unworkable (Wickens et al., 1998). Thus, later researchers became 

interested in describing the cognitive processes associated with human decision-making 

behaviour and they developed a number of descriptive models (Wickens et al., 1998). 

These models are often based on laboratory studies, which do not reflect the full range 

of decision-making situations. A decision maker is thought to act according to his or her 

understanding of the given situation such as environment and his or her profession 

(Simon, 1957); therefore, the source of any error is to be found in the person’s previous 

knowledge or in the logical process followed when reaching the decision. Often, 

decisions are said to be made based on instinct or intuition (Bannister and Remenyi, 

2000). The concepts of Simon (1957) and Bannister and Remenyi (2000) are consistent 

with studies by Perez et al. (2015) which suggest that the direction in which a driver 

will turn (left or right) is made by a driver’s preconscious prediction. 

3.3.1 Factors Affecting Decision-Making Process 

The importance of correct and effective human decision-making is very easy to 

understand, but at the same time it is difficult to achieve, because it depends on many 

different and difficult factors (Wickens et al., 1998). For both rational and cognitive 

decision-making, there exist a number of cognitive and environmental influences that 

affect the final decision.  

Significant factors affecting the decision-making process have been identified, including 

information bias (Russo et al., 1998; Juliusson et al., 2005), which occurs when a 

human is asked to choose among alternatives of which they have had previous 

experience. Russo et al. (1998) affirmed that humans unconsciously distort information. 

In his study, he found that the formation of preferences occurs without instruction, and 

this leads to subsequent pre-decisional distortion of product information. This is 

followed by cognitive bias, which can occur when the amount of information available 

exceeds a decision maker’s cognitive processing limits (Duhaime and Schwenk, 1985; 
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Stanovich and West, 2008). A decision maker is often unable to cope with all the 

information relevant to a decision, so he or she simplifies the decision-making process 

by applying cognitive filters or bias. 

According to Orasanu and Martin (1998), time constraints can have a critical influence 

on a decision process. The level of time stress within a situation dictates the level of 

mental processes incorporated into the decision process. Relative to the amount of 

information presented, Wright (1974) notes that under high time stress, decision-making 

performance deteriorates when more, rather than less, information is provided. In high 

time-stress situations, people tend to restrict their range of focus to environmental cues. 

Manipulating a large amount of data is not consistent with human information 

processing capability, especially under stress (Stokes et al., 1992). 

Another factor that could affect human decision making is the perception of risk. Miller 

(2006) defined the perception of risk as a feeling that is psychologically linked to 

emotion, and these emotions are affected by how decisions are framed. Last but not 

least, the level of uncertainty is found to be one of the factors that affects human 

decision making (Wickens et al., 1998). The level of uncertainty surrounding a decision 

creates bias that alters the way in which information is gathered and the decision is 

made. Uncertainty is the perceived gap between the information available and the 

information a decision maker desires (Buchanan and Kock, 2001). Furthermore, 

uncertainty influences both the decision maker and the outcome of the decision. 

Most of the laboratory studies related to judging subjective intensity (Giacomin and 

Fustes, 2005; Hacaambwa and Giacomin, 2007; Ajovalasit and Giacomin, 2009; Jeon et 

al., 2009; Ajovalasit et al., 2012) or the detection of road surfaces (Giacomin and Woo, 

2004; Berber-Solano and Giacomin, 2005; Berber-Solano et al., 2010) presented the test 

signals in a random order in order to minimise any possible bias resulting from learning 

effects. 
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3.4 Signal Detection Theory 

Signal detection theory (SDT) is a framework for understanding accuracy that makes 

the role of decision processes explicit. This facilitates the quantification of how people 

behave in detection situations (Tanner and Swets, 1954). SDT emerged as a method for 

investigating the assumption that expectancy and payoff have a significant influence on 

people in detection situations. Described in detail by Green and Swets (1966), SDT is a 

model based on the statistical decision theory and certain ideas about electronic signal 

detecting devices. The starting point for SDT is the assumption that nearly all reasoning 

and decision making takes place in the presence of some uncertainty. 

Signal detection theory is applicable in any situation that can be considered to consist of 

two discrete states of the world – signal and noise – that cannot be easily discriminated 

(Green and Swets, 1966). In a detection situation, the observer must first make an 

observation (x) and then make a decision about the observation. On each trial, the 

observer must decide whether x is due to a signal that is present in a noise background 

or due to the noise alone. According to Gescheider (1997), when the signal is weak the 

decision becomes difficult and errors are frequent. Figure 3.4 graphically represents two 

distributions, displaying the random variation of the noise and of the signal plus noise. 

Since the signal is added to the noise, the average sensory observation magnitude will 

be greater for the signal plus noise distribution than for the noise distribution. When the 

distributions are essentially the same, as seen in Figure 3.4, where the signal plus noise 

distribution is indicated by a dotted line, they greatly overlap and decision-making 

becomes difficult due to the lack of separation between the two stimuli. 

 

Figure 3.4 Theoretical probability distributions of ‘noise’ and ‘signal plus noise’ for 

two different values of signal strength (Source: Baird and Noma, 1978) 
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The theory also takes a stand on the way in which the relevant information is 

represented by the observer, identifying some aspects of the representation with 

sensitivity, or inherent accuracy, and others with response factors. The key assumption 

is that the strength of sensory and cognitive events is continuously variable. An 

observer who is trying to distinguish two stimulus types in trials, signal and noise for 

example, is faced with distributions of values for each possibility, as shown in 

Figure 3.4. Errors arise because the signal and noise distributions overlap, and the 

degree of overlap is an inverse measure of accuracy, or sensitivity. Improvements in 

sensitivity can only occur if this overlap is reduced, and such reductions are often not 

under the immediate control of the observer. By using the decision component of SDT, 

the solution can be achieved by dividing the strength axis into two regions with a 

criterion, so that high values lead to ‘yes’ responses (e.g. there was a signal), and low 

values lead to ‘no’ responses (Baird and Noma, 1978). The observer can change the 

location of the criterion and thus the way in which values of the internal dimension are 

mapped onto responses. The theory therefore provides a conceptual distinction between 

sensitivity and response bias. 

3.4.1 Ideal Observers 

Research has demonstrated that if a subject is attempting to maximise signal 

identification, the best decision strategy that he or she could employ is that of an ideal 

observer (Baird and Noma, 1978). The ideal observer derives from a mathematical 

theory of a detection task where the signal to be detected is noise degraded, and the 

observation of the signal is limited to a finite period of time. The aim of the theory is to 

determine to what extent noise limits the detection of the signal. 

In order to behave as an ideal observer, a subject must have stored in their memory the 

signal and noise distributions, or have some other way of gaining access to them. In 

particular, an ideal observer maps the external stimulus (a ‘noise’ or a ‘signal plus 

noise’) onto a value, x, on the evidence axis and determines the probability of obtaining 

x from noise distributions, and from signal plus noise distributions, independently. The 

detectability of the signals is quantified by measuring how the errors are traded off as a 

function of the subject. SDT assumes that an observer establishes a particular value as a 
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cut-off point, or criterion, and that the decision is determined by whether a particular 

observation is above or below the criterion. According to Green and Swets (1966), no 

observer can make perfect detections of a signal masked by noise if there is overlap 

between the evidence distributions associated with noise and signal plus noise events. 

An example in this context was presented in Figure 3.4, where a signal plus noise 

distribution was drawn with a dotted line. 

Peterson et al. (1954) derived the Signal Detection Theory and showed that the optimal 

observer uses the likelihood ratio decision axis, or a decision axis that is strictly 

monotonic with likelihood ratio, as a basis for decisions about the existence of the 

signal. If the signal is known to the observer exactly, and the observer can transform the 

evidence to a quantity that is monotonic with likelihood ratio, then the observer is 

considered to be an ideal Signal–Known–Exactly (SKE) observer. If the observer does 

not have an exact representation of a signal, or if the observer is unable to use 

information about some property of a deterministic signal, the observer is considered to 

be a Signal–Known–Statistically (SKS) observer. 

The early radar engineers considered the concept of the ideal observer as a 

mathematical theory that predicted the best possible performance for a particular class 

of signals, with particular restrictions on the information the observer had about the 

signals (Peterson et al., 1954). When the theory was extended to psychophysics, the 

emphasis changed. Unlike engineers, psychophysicists were not interested in designing 

detection systems, but were trying instead to understand existing biological systems that 

did not necessarily perform ideally, and whose internal processes were usually 

inaccessible. 

3.4.2 Measures of Sensitivity and Response Bias 

According to SDT, the separation of the noise and the signal plus noise distributions 

along the evidence axis is an indication of the level of sensory discrimination. The true 

sensitivity of the observer is unaffected by criterion location and is reflected instead by 

the difference between the means of the two distributions, which is denoted by d’, as 

shown in Figure 3.4. 
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When an observer is asked to choose between the two possible states (noise and signal 

plus noise) during the course of a sensory exposure, the combination of two stimulus 

and two response categories produces a 2x2 matrix (see Table 3.1). It involves four 

classes of joint events, which are labelled as hits, misses, false alarms and correct 

rejections. 

Table 3.1 The four response outcome of signal detection theory 

(Source:  Green  and  Swets, 1966) 

 

Figure 3.5 shows the relations between the presence and absence of a stimulus, random 

variability and the decision criterion. The separation between the means of the two 

standardised distributions is a measure of detectability, which indicates how well the 

subject can discriminate between the two events, and it is denoted as d'. The detection 

task is easier for cases characterised by large separations and/or small variances. 

 

Figure 3.5 The signal detection diagram (Source: Heeger, 1998) 

For experimental protocols in which observers are requested to provide a simple ‘yes’ or 

‘no’ response, the detectability index d’ can be estimated from the experimentally 

determined hit rates and false alarm rates by means of the associated Z-score values 

using the relations below (Gescheider, 1997). The Z transformation converts a hit or 
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false alarm rate to a Z (i.e. to standard deviation units). A rate of 0.5 is converted into a 

Z score of 0, larger rates into positive Z scores, and smaller rates into negative ones. 

𝑃(ℎ𝑖𝑡) =
"number of yes" 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
 

 

(3.1) 

𝑃(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚) =
"number of yes" 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑠
 

 

(3.2) 

𝑍𝑛 = 1.0 − 𝑃(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) 

 

(3.3) 

𝑍𝑠𝑛 = 1.0 − 𝑃(ℎ𝑖𝑡) 

 

(3.4) 

where 

𝑑′ = 𝑍𝑛 − 𝑍𝑠𝑛 
 

(3.5) 

Figure 3.6 presents an example of distributions of ‘noise’ and ‘signal plus noise’ 

expressed in Z-score values. Once the P(hit) and P(false alarm) are determined, the 

location of the criterion in both distributions is found by the subtraction of P(hit) and 

P(false alarm) from 1.0 and converting this value into Z scores (see Equations 3.3 and 

3.4). The value of d’, a measure of the observer’s sensitivity to the signal, is found by 

subtracting ZSN from ZN (see Equation 3.5). 
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Figure 3.6 Distributions of noise and signal plus noise expressed in Z scores 

(Source:  Gescheider, 1997) 

As shown in Figure 3.6, 1.0 minus the false alarm rate of 0.02 (i.e. 0.98) gives the 

proportion of the area under the noise distribution below the criterion. Converting 0.98 

to a Z score yields a ZN value of 2.05, which represents the location of the criterion on 

the abscissa of the noise distribution. The hit rate of 0.35 subtracted from 1.0 (i.e. 0.65) 

and gives the proportion of the area under the signal plus noise distribution below the 

criterion. When 0.65 is converted to a Z score, ZSN is found to be 0.39. This value 

represents the location of the criterion on the abscissa of the signal plus noise 

distribution. To find d’, the ZSN value of 0.39 is subtracted from the ZN value of 2.05 to 

yield a d’ value of 1.66. This value of 1.66 is the number of Z-score units between the 

mean of the noise distribution and the mean of the signal plus noise distribution. 

3.4.3 Receiver Operating Characteristics Analysis 

A receiver operating characteristics (ROC) graph is a technique for visualising, 

organising and selecting observers based on their performance. Illustrated in Figure 3.7, 

ROC graphs are two-dimensional graphs in which hit rate is plotted on the y-axis and 

false alarm rate is plotted on the x-axis. 
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Figure 3.7 Receiver operating characteristics (ROC) graph 

(Source:  Green  and  Swets,  1966) 

The ROC curve summarises the observer’s performance as a function of the observer’s 

decision criterion for all possible criteria (Green and Swets, 1966). As an example, 

Figure 3.7 shows different ROC curves in which the detectability index values range 

from 0 to 3.0. An individual ROC curve reflects the response of an observer to a single 

strength of signal. If signal strength is increased, the ROC curve will have a more 

pronounced bow, as seen in Figure 3.7. If signal strength is decreased, the ROC curve 

becomes flatter and approaches the 45-degree diagonal line. Thus the amount of bow in 

the curve serves as a measure of the perceived signal strength. 

Variations in the observer’s criterion result in different points along the ROC curve 

(see Figure 3.8). A single ROC curve is therefore a representation of detection 

performance for a situation characterised by a constant detectability index d’ between a 

noise and a signal plus noise, by changing the values of the receiver’s detection 

criterion. Figure 3.8 presents the relationship between an individual ROC data point and 

the position of noise and signal plus noise distributions. The points on the curve indicate 

the mapping of hits and false alarms for different positions of the observer’s criterion, 

while the dotted diagonal line represents the case where d’= 0, when noise and signal 

plus noise distributions are identical. 
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Figure 3.8 ROC curve for the signal plus noise and the noise distribution (d’= 1), 

obtained over different observers’ criteria (Source: Green and Swets, 1966) 

Algebraically, a ROC curve is calculated by solving Equation 3.5, which means that 

different curves represent different values of the detectability index. The prediction of 

SDT states that if a subject in a discrimination experiment produces a (false alarm, hit) 

pair which belongs on a particular ROC curve (i.e. [0.2, 0.6], d’=1), the same subject 

should be able to display any other (false alarm, hit) pair on the same curve 

(i.e. [0.4, 0.8], d’=1) (Macmillan and Creelman, 2005). 

A discrete observer is one that outputs only a class label. Each discrete observer 

produces a pair corresponding to a single point in ROC space, as shown in Figure 3.9. 

 

Figure 3.9 A basic ROC graph showing discrete observers (Source: Fawcett, 2006) 

Several points in ROC space are important to note. The lower left point (0, 0) represents 

the strategy of never issuing a positive observation; such an observer commits no false 
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positive errors but also gains no true positives. The opposite strategy, of unconditionally 

issuing positive classifications, is represented by the upper right point (1, 1). The d’s 

point (0, 1) represents perfect observation. Informally, one point in ROC space is better 

than another if it is to the northwest (hit rate is higher, false alarm rate is lower, or both) 

of the first. Observers appearing on the left-hand side of an ROC graph, near the x-axis, 

may be thought of as conservative: they make positive observations only with strong 

evidence, so they make few false positive errors, but they often have low true positive 

rates as well. Observers on the upper right-hand side of an ROC graph may be thought 

of as liberal: they make positive observations with weak evidence, so they classify 

nearly all positives correctly, but they often have high false positive rates. In Figure 3.9, 

b is more conservative than a. Many real-world domains are dominated by large 

numbers of negative instances, so performance in the far left-hand side of the ROC 

graph becomes more interesting. 

3.4.4 Signal Detection Theory in Human Subjective Response 

Researchers in many diverse areas of psychology have begun to employ the SDT to 

separate the ability of subjects to differentiate between classes of events from 

motivation effects or response bias. In addition to its extensive application in sensory 

psychophysics, signal detection has found an application in such diverse areas as vision 

perception (Tanner and Swets, 1954), vibrotactile perception (Pongrac, 2008), memory 

perception (Hermawati, 2003) and hand-transmitted vibration perception (Morioka and 

Griffin, 2006; Giacomin and Woo, 2004; 2005; Berber-Solano and Giacomin, 2005; 

2006; Berber-Solano et al., 2013). 

Tanner and Swets (1954) measured human observers' behaviour when detecting light 

signals in a uniform light background. Detection of these signals depends on 

information transmitted to cortical centres by way of the visual pathways. With a total 

of 100 experimental observations, the expected form of data collected in ‘yes–no’ 

psychophysical experiments was used. 

Pongrac (2008) applied the detection theory in vibrotactile perception studies to 

examine the coding of vibrations and the just-noticeable difference under various 
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conditions. The stimuli consisted of sinusoidal waves with 500 ms duration, with a total 

of 16 stimulus vibrations realised. Figure 3.10 shows the laboratory experiment setup 

for the studies, whereby the accelerometer with a circular contactor was directly 

attached to the vibrator. A circular piece of foam rubber was glued on to the contactor 

of the accelerometer. The vibrator with the mounted accelerometer was embedded in a 

small frame house, and the contactor was passed through a 15 mm-diameter hole in the 

frame house. 

 

Figure 3.10 Presentation of vibrations through the vibrator embedded in a small frame 

house (Source: Pongrac, 2008) 

The participants were instructed to put the pad of their index finger on the contactor 

without exerting any pressure on it. It was ensured that every participant adopted the 

same finger position during the experimental session. White noise was emitted through 

closed headphones in order to mask any sounds made by the vibrator. The participants 

had to indicate whether the presented stimulus pair consisted of two ‘same’ or two 

‘different’ vibrations. 

Hermawati (2003) aimed to investigate the main interaction effects of intermittent noise 

and random vibration in short-term memory scanning ability; the subjects were exposed 

to nine different experimental conditions. Task performance and subjective assessment 

data were collected during the experiment. Memory sets of 2, 4 or 6 letters (set size) 

were displayed for 1 second on the screen (see Figure 3.11). 
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Figure 3.11 Subject undertaking the task projected on the screen 

(Source:  Hermawati, 2003) 

After each memory set, a single probe was presented. All letters were taken from the 

English alphabet and presented in upper case. Upon presentation of the probe, the 

participants were instructed to press the corresponding button as accurately and quickly 

as possible. The subject was to press the ‘yes’ button if the probe was displayed in the 

previous memory set (positive probe), and the ‘no’ button if the probe was not displayed 

in the memory set (negative probes). A random presentation with respect to memory set 

size and positive/negative trials was used with equal probability for each memory set 

size and response type. The task in each test run consisted of 150 stimuli. The 

performance of the task was measured through reaction time on correct responses and 

the number of correct responses. 

Morioka and Griffin (2006) determined the absolute threshold of the perception of 

hand-transmitted vibration using a laboratory experiment, whereby the subjects were 

exposed to hand-transmitted vibration via a 30 mm-diameter rigid, smooth cylindrical 

wooden handle mounted on a Derritron VP30 electrodynamic vibrator (for fore-and-aft 

and lateral vibration), or a Derritron VP 4 electrodynamic vibrator (for vertical 

vibration) as shown in Figure 3.12. 
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Figure 3.12 Hand posture and axis of vibration. The lateral axis is defined as parallel to 

the handle axis (Source: Morioka and Griffin, 2006) 

A single test stimulus was presented, 2.0 s in duration. The subjects were tasked with 

indicating whether they perceived the vibration stimulus or not. They responded by 

saying ‘yes’ or ‘no’. The vibration stimulus increased in intensity by 2 dB (25.8% 

increment) after a negative (‘no’) response from a subject and decreased in intensity by 

2 dB after three consecutive positive (‘yes’) responses. 

Giacomin and Woo (2004; 2005), Berber-Solano and Giacomin (2005), Giacomin and 

Berber-Solano (2006), and Berber-Solano et al. (2013) conducted laboratory-based 

experiments to evaluate the effect of steering wheel vibration on the driver detection of 

road surface type. The studies used steering wheel tangential direction acceleration time 

histories, which had been measured in a mid-sized European automobile that was driven 

over different types of road surfaces. The photograph shown was an image similar to a 

driver’s view of the road while driving (see Figure 3.13), whereby the test participants 

were exposed to both non-manipulated and manipulated steering wheel tangential 

vibration stimuli. 
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Figure 3.13 Participant performing the road surface detection task 

(Source: Woo and Giacomin, 2006) 

3.5 Conclusion 

This chapter considered the basic mechanism by which humans perceive, think, 

remember, evaluate and decide which is generally grouped under the label of cognition 

(Wickens et al., 1998). The term cognition refers to the acquisition, storage, 

transformation, and use of knowledge, while cognitive psychology is sometimes used as 

a synonym for cognition and sometimes as a term referring to a theoretical approach to 

psychology. Within the driving situation, cognition was used to refer to a cognitive 

driving task. 

The information-processing model that explained the human working memory model 

and its limitations was covered in the first section of this chapter. The best-known 

example of an information-processing model is the Atkinson-Shiffrin (1968) model. 

The external stimuli from the environment first enter sensory memory. Some material 

from the sensory memory will then pass into the short-term memory, now called 

working memory, which contains only the small amount of information that humans are 

actively using. Finally, the material that has been rehearsed passes from short-term 

memory to long-term memory. The working memory model is a basic aspect of 

cognition; therefore its limitations have been well studied in humans. The ability to 

maintain the information in working memory is limited in two interrelated respects – 

how much information can be kept active and for how long information can be kept 

active. 
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The second topic presented how different information is assessed and how people 

choose from a number of alternatives, together with the factors that make this process 

more or less effective. Most of the initial research on the decision-making process 

focused on the study of rational decision making and later became interested in 

cognitive processes associated with human decision making. Rational decision making 

describes how humans should compare alternatives and make the best decision, while 

cognitive processes are said to be made based on instinct or intuition. The importance of 

correct and effective human decision-making is very easy to understand, but at the same 

time it is difficult to achieve, because it depends on many different and difficult factors 

including information bias, cognitive bias, time stress, perception of risk, and level of 

uncertainty. 

Together, this chapter describes the general theory of signal detectability and the 

application of the theory in a number of studies within psychophysical experiments. The 

signal detection theory provides a means of analysing the critical structure of the human 

detection decision process in a variety of situation. Furthermore, the theory allows 

sensitivity to be separated from bias, accuracy to be compared across paradigms, and 

the extrinsic limitations of an experimental design to be distinguished from intrinsic 

ones. Ideal observers are those who attempt to maximise signal identification. The 

psychophysical studies presented in this chapter employed the ‘yes-no’ procedure 

because it yields ROC curves of a monotonically decreasing slope; that is, curves of the 

general form predicted by the signal detection theory. In addition, the data are fitted 

well by theoretical curves based on normal probability distributions. 

In many ways, both the topic of human cognition and the signal detection theory 

described in this chapter can be considered as experiment protocols to be used in this 

research. Explicitly, they provide the appropriate procedures for data collection and 

analysis in terms of the human subjective response approach. 

The following chapter will discuss the method that will be employed to find 

homogeneous groups of highly similar variables related to the individual transient 

vibrations of road surfaces. This discussion provides the complete theoretical 

background that is needed before the data of the individual transient vibrations of road 

surfaces used in this research are analysed with a numerical approach. 
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CHAPTER 4  

CLUSTER ANALYSIS 

4.1 Introduction 

Cluster analysis is an activity that groups or classifies a set of objects in such a way that 

objects in the same group are more similar to each other than to those in other groups 

(Green et al., 1967; Paykel, 1971; Jain et al., 1999; Kettenring, 2006; Kashef, 2008; 

Fernández and Gómez, 2008; Amit et al., 2009). The greater the similarity of objects 

within a group and the greater the difference of objects in different groups, the better the 

results of data clustering activity (Paykel, 1971). 

A study conducted by Jain (2010) suggested that clustering activities have been used for 

three main purposes. The first purpose is to gain insight into objects, generate 

hypotheses, detect abnormalities and identify significant features of objects. Following 

these is the purpose of identifying the degree of similarity among objects. Jain (2010) 

also suggested that clustering has been used as a method for organising objects and 

summarising them through cluster prototypes. 

The applications of the data clustering approach appear in many disciplines, such as 

marketing (Green et al., 1967), image and video processing (Conway et al., 1991; 

Chatterjee and Milanfar, 2009; Yang et al., 2016), and psychology (Bruner et al., 1956; 

Rosch, 1975; 1978; Rosch et al., 1976; Barsalou, 1983; McClelland and Rumelhart, 

1985; Murphy and Medin, 1985; Niedenthal et al., 1999; Niedenthal and Halberstadt, 

2000; Brosch et al., 2010). For example, in marketing (Green et al., 1967) the clustering 

approach was adopted to group 88 cities on the basis of 14 variables, such as city size, 

newspaper circulation, per capita income and so on. Meanwhile, in radar images 
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processing (Conway et al., 1991), it is used to segment synthetic aperture radar images 

as part of a study into crop classification. Furthermore, using clustering activities, the 

structure of emotional stimuli was classified according to certain principles, such as 

perceptual similarities (Rosch, 1978), semantic rules or theories (Murphy and Medin, 

1985), implications for goal states (Barsalou, 1983) or evoked emotional responses 

(Niedenthal et al., 1999). 

Despite this, clustering activities are yet to be applied in transient vibrations steering 

wheel road surface (Berber-Solano, 2008). By classifying the structure of each transient 

vibration of road surfaces, the optimal guidelines of steering wheel feedback can be 

obtained (Giacomin, 2005; Giacomin and Woo, 2005) and, at the same time, the 

classification will provide a complete documentation of the road surface features for the 

purpose of monitoring applications (Giacomin et al., 2000). This situation suggests a 

need to review the data clustering techniques in order to define an appropriate technique 

to classify transient vibrations steering wheel road surface. Therefore, the purpose of 

this chapter is to introduce the techniques that will be considered for use in finding 

similar groups of highly significant features related to the transient vibrations steering 

wheel road surface.  

4.2 Visualising Clusters 

Clusters can be identified in one or two dimensions by looking for separate modes in the 

estimated density function of the data. Such an approach can be used on dataset where 

the number of variables is greater than two by first projecting the data into a low-

dimensional space using dimensionality reduction techniques (Everitt et al., 2001). 

The dimensionality reduction techniques transform the data from the original D-

dimensional feature space into a new d-dimensional feature space, with the latter being 

smaller than the former (Faivishevsky and Goldberger, 2012). The main objective of 

dimensionality reduction is to preserve as much of the significant structure of the high-

dimensional data as possible in the low-dimensional space (Maaten and Hinton, 2008). 

The advantages of dimensionality reduction are that it makes the data more convenient 

for humans (Everitt et al., 2001; Faivishevsky and Goldberger, 2012), for instance by 
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reducing it to a two dimensional space, and it also facilitates automatic inference 

(Faivishevsky and Goldberger, 2012), since a computationally intensive technique may 

be manageable only for low dimensional data. Furthermore, dimensional reduction can 

also reduce the quota limit of computer memory and the time required for dealing with 

large numbers of features of dataset.  

Many techniques have been proposed to perform dimensionality reduction, such as 

Principal Components Analysis (PCA). PCA is known as one of the most traditional 

and popular techniques (Faivishevsky and Goldberger, 2012; Platzer, 2013; Saadatpour 

et al., 2015) because of its straightforward and standard ways of accomplishing the 

feature transformation (Esteva et al., 2012). PCA is an unsupervised (Diana, 2016; 

Tang et al., 2016) and linear transformation of high-dimensional data (Maaten and 

Hinton, 2008; van der Maaten, 2009; Esteva et al., 2012; Mwangi et al., 2014; 

Saadatpour et al., 2015; Diana, 2016; Zhang et al., 2016; Balamurali and Melkumyan, 

2016) which works by decreasing the proportions of the total variance of the original 

dataset (Everitt et al., 2001; Platzer, 2013). 

Despite the successful application of PCA in various studies such as non-destructive 

testing and evaluation (Johnson, 2002), neural networks and learning systems (Li and 

Yang, 2016), biological processing (Platzer, 2013), because real-world data are complex 

and nonlinear, PCA seem powerless to capture nonlinear relationships in a high-

dimensional space (Amir et al., 2013; Mwangi et al., 2014; Saadatpour et al., 2015). 

Therefore, to overcome this limitation, newer techniques of non-linear dimensionality 

reduction, namely t-Distributed Stochastic Neighbor Embedding (t-SNE), were 

introduced (Maaten, and Hinton, 2008; van der Maaten, 2009). 

The t-SNE techniques are generated through an unsupervised process and are unlikely 

to have a direct physical interpretation, despite carrying important information (Maaten, 

and Hinton, 2008; van der Maaten, 2009; Faivishevsky and Goldberger, 2012; 

Balamurali and Melkumyan, 2016; Diana, 2016). Most notably, t-SNE shows a superior 

performance for visualising datasets, from high-dimensional to low-dimensional data 

(Maaten, and Hinton, 2008; van der Maaten, 2009; Esteva et al., 2012; Faivishevsky 

and Goldberger, 2012; Amir et al., 2013; Platzer, 2013; Frid and Lavner, 2014; Mwangi 

et al., 2014; Saadatpour et al., 2015; Balamurali and Melkumyan, 2016). This is due to 

the fact that the majority of dimensionality reduction techniques are not capable of 
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retaining both local and global structures of the data simultaneously during the 

dimensionality reduction process (Maaten, and Hinton, 2008; Mwangi et al., 2014; 

Balamurali and Melkumyan, 2016). Additionally, t-SNE also displays the data in a 

visual format, which is more understandable and helps to improve inferences, 

comprehension and decision making. 

Taking into account the benefits of using t-SNE over traditional dimensionality 

reduction processes such as principal component analysis, the next subsection discusses 

t-SNE techniques, with the assumption that the techniques can been applied for the 

clustering and classification of transient vibrations steering wheel road surface. 

4.2.1 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

The t-SNE algorithm transforms the original dataset from a high-dimensional space to a 

low-dimensional space by minimising the differences in all pairwise similarities 

between points in high- and low-dimensional spaces. In other words, t-SNE gathers all 

information in m components (where m is freely chosen, in case of plots m=2). The axes 

of the low-dimensional spaces are given in arbitrary units. 

The first step in the t-SNE algorithm is calculating the pairwise distance matrix in the 

high-dimensional space. The distance matrix is transformed into a similarity matrix 

using a varying Gaussian kernel so that the similarity between points xi and xj represents 

the conditional probability that xi will choose xj as its neighbour or vice versa. The 

choices are based on the Euclidean distance of xi and xj and their local density. 

Mathematically, the conditional probability of xi to xj is given by: 

𝑝(𝑗|𝑖) =
exp (− ‖𝑥𝑖 − 𝑥𝑗‖

2
2𝜎𝑖

2⁄ )

∑ exp(− ‖𝑥𝑖 − 𝑥𝑘‖2 2𝜎𝑖
2⁄ )𝑘≠𝑖

 , 

 

(4.1) 

where σi is the variance of the Gaussian that is centered on data point xi 
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𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛
 

 

(4.2) 

The bandwidth of the Gaussian kernels σi, is set in such a way that the perplexity of the 

conditional distribution equals a predefined perplexity using a binary search. The 

perplexity is defined as:  

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2𝐻(𝑃𝑖), 
 

(4.3) 

where H(Pi) is the Shannon entropy of Pi measured in bits 

𝐻(𝑃𝑖) = − ∑ 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖

𝑗

 

 

(4.4) 

The perplexity can be defined as a smooth measure of the effective number of 

neighbours. The performance of t-SNE is fairly robust but is affected by the value of 

perplexity, whereby the perplexity decreases monotonically with the variance σi. In 

another words, the lower the value of perplexity, the farther apart the data points will be 

in the low-dimensional space. 

Then, a random low-dimensional mapping is rendered and pairwise similarities are 

computed for points in the low-dimensional space. In t-SNE, a Student t-distribution is 

used in order to allow dissimilar objects to be modelled far apart in the space. Using this 

distribution, the joint probabilities are defined as: 

𝑞𝑖𝑗 =
(1 + ‖𝑦𝑖 − 𝑦𝑗‖

2
)

−1

∑ (1 + ‖𝑦𝑘 − 𝑦𝑙‖2)−1
𝑘≠𝑙

  

 

(4.5) 

Finally, gradient descent is used to minimise the Kullback-Leibler divergence between 

the two probability distributions of Student-t based joint probability distribution Q and 
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distribution P, leading to the final low-dimensional map. The Kullback-Leibler 

divergence between the two joint probability distributions P and Q is given by: 

𝐾𝐿(𝑃||𝑄) = ∑ ∑ 𝑝𝑖𝑗 log
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

  

 

(4.6) 

Silverman (1986) suggested that dimensional reduction can be used as the basis for a 

more formal approach before the clustering analysis begins. Thus, the following section 

provides the discussion related to the clustering analysis.  

4.3 Clustering Techniques 

Clustering techniques can be classified in terms of different independent dimensions. 

For instance, different starting points, methodologies, techniques, points of view, 

clustering criteria and output representations (Kashef, 2008). The different techniques 

used to cluster data can be described with the help of the hierarchy shown in Figure 4.1.  

 

Figure 4.1 Data clustering techniques (Source: Jain et al., 1999) 

Clustering techniques can be broadly divided into two groups, hierarchical and 

partitional (Jain and Dubes, 1988). Hierarchical clustering will find nested clusters 

either in agglomerative methods or in divisive methods (Jain and Dubes, 1988; Jain et 

al., 1999; Everitt et al., 2001). An agglomerative method begins with each data point in 
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its own cluster and the merging of the most similar pair of clusters successively to form 

a cluster hierarchy. On the other hand, a divisive method begins with all objects in a 

single cluster and iteratively performs splitting until a stopping criterion is met. In 

contrast to hierarchical clustering, partitional clustering will divide the data into a 

particular number of clusters at a single step (Everitt et al., 2001). In addition, 

partitional clustering has advantages in applications involving large dataset (Jain et al., 

1999; Kashef, 2008). 

According to Jain et al. (1999), the best-known hierarchical algorithms are single-link 

and complete-link. In the single-link method, the distance between two clusters is the 

minimum of the distances between all pairs of patterns drawn from the two clusters (one 

pattern from the first cluster, the other from the second). In the complete-link method, 

the distance between two clusters is the maximum of all pairwise distances between 

patterns in the two clusters. Furthermore, Jain et al. (1999) concluded that single-link 

and complete-link methods differ in the way they characterise the similarity between a 

pair of clusters. 

Jain et al. (1999) further suggested that the most popular and simplest partitional 

algorithm is k-means. The k-means algorithm is popular because it is easy to implement 

(Jain et al., 1999). Apart from that, the k-means algorithm is considered an effective 

clustering algorithm in producing good clustering results for many practical 

applications, such as psychiatry (Paykel, 1971; Pilowsky et al., 1969), archaeology 

(Dellaportas, 1998; Mallory-Greenough et al., 1998; Hodson, 1971), market research 

(Green et al., 1967) and EEG medical imaging (Orhan et al., 2011; Güneş et al., 2011) 

in biomedical fields. Another factor that makes the k-means algorithm popular and the 

preferred technique of previous researchers is the ability to apply k-means directly to 

environments without the need for training with the data measured or known as 

unsupervised technique (Yiakopoulos et al., 2011). It can also be applied without prior 

information about the associations of data points with clusters (Faraoun and Boukelif, 

2007; Hekim and Orhan, 2011; Mwasiagi et al., 2009; Orhan and Hekim, 2007; Orhan 

et al., 2008). 
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4.3.1 Choosing Clustering Techniques 

As highlighted by Jain and Dubes (1988) and Jain (2010), even though there have been 

many successful applications of clustering in a number of different studies, defining 

appropriate clustering techniques remains a difficult problem. In order to minimise this 

difficulty, therefore, the selection criteria is first predetermined to ensure the clustering 

techniques for transient vibrations steering wheel road surface can be done easily and 

are manageable. 

As stated in the Introduction (Section 4.1), clustering has not yet been used in the 

classification of transient vibrations steering wheel road surface (Berber-Solano, 2008), 

and therefore promising techniques are required. The techniques must be the simplest 

methods which offer an effective clustering algorithm in producing good clustering 

results for many practical applications. Clustering techniques do not require sets of prior 

data to be trained – as in this research situation where there are no dataset of feature 

information related to the transient vibrations steering wheel road surface available. In a 

study performed by Berber-Solano (2008), the total number of transient vibrations 

steering wheel road surface which exceeded the threshold trigger level (TTL) value of 

2.6 and were distributed in the frequency band of 20 Hz – 60 Hz, which is known both 

as a critical trigger level and frequency band for a driver to detect the road surface 

types, was found to be approximately 600 dataset. Thus, the technique to be used in this 

research must not only be effective in producing good clustering results, but also needs 

to be compatible with the larger dataset without prior features information of the 

dataset. 

Refer to selection criteria stated and the discussion on the various techniques of 

clustering analysis in the previous section of 4.3, it shows that the k-means meets all the 

selection criteria and an appropriate clustering technique to adapt in this research. 

Therefore, in the following subsection will present an in-depth review of k-means 

clustering. 
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4.3.2 k-means Clustering Algorithm 

As stated by Rabiner and Juang (1993), the k-means clustering algorithm was developed 

by Steinhaus in 1957, following which Lloyd proposed a standard algorithm for k-

means in 1982. Pierson et al. (2015) defined the k-means clustering as algorithms to 

subdivide data points of a dataset into clusters based on the nearest mean values. Further 

explained was the term of k-means, where k denotes the number of clusters in the data 

that need to be given a priori. The initial partitioning is randomly generated, that is, the 

centroids are randomly initialised to some points in the region of the space. The k-

means partitions the dataset into k non-overlapping regions identified by their centroids 

based on an objective function criterion, where objects are assigned to the closest 

centroid. The most widely used objective function criterion is the distance criterion, 

namely Euclidean distance (Jain et al., 1999; Everitt et al., 2001; Jain, 2010). 

Referring to the Concise Oxford Dictionary of Mathematics (2014), Euclidean distance 

can be defined as the straight-line distance between two points, which can be measured 

using the following equation (Jain et al., 1999; Everitt et al., 2001; Jain, 2010): 

𝐽 = ∑ ∑‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 

 

(4.7) 

where ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

 is a chosen distance measure between a data point 𝑥𝑖
(𝑗)

 and the 

cluster centre 𝑐𝑗 is an indicator of the distance of the 𝑛 data points from respective 

cluster centres. Figure 4.2 depicts the process of the standard k-means clustering 

algorithm where k = 3. 
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Figure 4.2 Demonstration of k-means clustering process 

Figure 4.2 shows that the essential steps in the k-means algorithm will be iterated until 

convergence or a stopping criterion is met (Everitt et al., 2001). The algorithm 

converges when re-computing the partitions does not result in a change in the 

partitioning. 

Other that application of k-means in various number of studies of classification objects, 

the literature reveals that association between dimensionality reduction techniques such 

as t-SNE with clustering technique will lead to organising large dataset to be more 

easily understood and information retrieved more efficiently (Faivishevsky and 

Goldberger, 2012; Saadatpour et al., 2015; Balamurali and Melkumyan, 2016) whereby 

the k-means techniques is implemented as a clustering evaluation (Platzer, 2013; 

Mwangi et al., 2014).  

4.4 Conclusion 

This chapter has presented the theory of cluster analysis and it starts by describing the 

projection of the high-dimensional data into a low-dimensional space using 

dimensionality reduction techniques. The t-SNE algorithm provided promising results 

as the technique was capable of retaining the local and global structures of the data 

simultaneously during the dimensionality reduction process. Following that, the 

background of clustering techniques in general was discussed. Clustering is a process of 

grouping data items based on a measure of similarity; the data can be broadly divided 

into two groups, hierarchical and partitional. As the clustering activities are yet to be 
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applied in steering wheel road surface vibrations, not only should the technique that is 

used in this research be effective in producing good clustering results, but it must also 

be compatible with the larger dataset without requiring prior feature information of the 

dataset. Therefore, the t-SNE and the k-means technique were chosen to be used for the 

classification of transient vibrations steering wheel road surface. 

Moving forwards, before the proposed classification methods can be implemented in 

this current research, the choice of road surface types to be used throughout this study 

must also be considered. It is very important as a research approach, in order to ensure 

that the objectives can be achieved. Therefore, in the next chapter, the characteristics of 

the road surface types as well as the laboratory facilities will be presented. 
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CHAPTER 5  

LABORATORY ROAD SURFACES STIMULI AND FACILITIES 

5.1 Introduction 

Chapter 5 is divided into two main sections. The first section will describe the road 

surfaces signals that will be used as a laboratory test stimuli. Following this is an 

explanation related to the laboratory facilities used during this research; the accuracy of 

the signal reproduction of the laboratory facilities is also presented at the end of this 

chapter. 

5.2 Laboratory Road Surfaces Stimuli 

Laboratory road surfaces stimuli are the stimuli used to perform any laboratory tests of 

human ability to detect road surface type, or of human sensitivity to changes in the 

statistical properties of the steering acceleration signals. In the process of choosing the 

laboratory road surface stimuli, the stimuli should satisfy three logical conditions of the 

selection criteria. 

Firstly, the stimuli should be produced by commonly encountered road surfaces, so as to 

be representative of regular driving conditions (Giacomin and Gnanasekaran, 2005), 

such as city asphalt, pavé, potholes, bumps, country asphalt and smooth motorway 

surfaces. Secondly, the automobile test speeds should be reasonable values which are 

commonly used during driving over each specific type of surface (Department of 

Transport, 2006). Finally, the steering acceleration signals, if possible, should produce 

the widest operational envelope of test stimuli which can be achieved in terms of the 
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steering wheel acceleration root mean square (r.m.s.), kurtosis value, crest factor (CF) 

value and power spectral density (PSD) function. 

In this following subtopic, the description of road surface types used during this 

research is presented, followed by the statistical analysis of each road surface. 

5.2.1 Description of Road Surfaces 

The laboratory road surfaces signal was selected from an extensive database of previous 

road test measurements made by the Perception Enhancement Research Group 

(Gnanasekaran et al., 2006; Ajovalasit et al., 2013; Berber-Solano, 2008; Jeon, 2010; 

Berber-Solano et al., 2010). The road surfaces signal was provided by MIRA (Motor 

Industry Research Association), and the Michelin Group, including the directly 

measured tests over road surfaces in and around Uxbridge, West London, UK (Berber-

Solano, 2008). A two-minute recording of road surfaces was measured by steering 

wheel acceleration using an accelerometer. The accelerometer was clamped tightly at 

the 60° position (two o’clock position) with respect to the top-centre of the steering 

wheel, as shown in Figure 5.1. This location corresponds with the typical grip position 

of the driver’s hand when holding an automotive steering wheel (Giacomin and 

Gnanasekaran, 2005). 

 

Figure 5.1 Position of steering wheel measurement point 

(Source: Berber-Solano, 2008)
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Figure 5.2 (a) to (j) presents the road surfaces as viewed from directly above and as seen 

from a distance when driving, along with the automobile velocity at which they were 

measured. 

 
(a) Broken road; 

Vehicle speed: 40km/h 

 
(b) Broken Concrete; 

Vehicle speed: 50km/h 

 
(c) Broken Lane; 

Vehicle speed: 50km/h 

 
(d) Cobblestone; 

Vehicle speed: 30km/h 

 
(e) Concrete; 

Vehicle speed: 96km/h 

 
(f) Country Lane; 

Vehicle speed: 40km/h 

 
(g) Harsh; 

Vehicle speed: 40km/h 

 
(h) Low Bump; 

Vehicle speed: 50km/h 

 
(i) Noise; 

Vehicle speed: 80km/h 

 
(j) Tarmac; 

Vehicle speed: 96km/h 

Figure 5.2 Road surfaces and vehicle speeds, whose stimuli were used for 

laboratory tests
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In Figure 5.2 there are four steering wheel acceleration signals provided by MIRA, 

namely Cobblestone surface, Concrete surface, Low Bump and a Tarmac surface. The 

road surfaces were measured at MIRA’s proving ground in Nuneaton, Warwickshire, 

UK, which has a comprehensive range of circuits and facilities used to carry out a wide 

range of tests. The automobile used by MIRA during the experimental vibrational test 

was an Audi A4 model, year 2000, type 4/5S SAL (4 doors, 5-speed manual 

transmission, saloon sedan). Meanwhile, for Harsh and Noise surfaces, the steering 

wheel acceleration signals were provided by the Michelin Group, whose measurements 

were performed at the Claremont-Ferrand proving ground in the province of Auvergne, 

France using a Renault Megane 1.9 dTi model, year 1996, type 2+2 FHC (Fixed-Head 

Coupé), with 3 doors and a 5-speed manual transmission. The remaining road surfaces 

such as Broken surface, Broken Concrete surface, Broken Lane surface and a Country 

Lane surface were measured using a VW Golf 1.9 TDI model, year 2005, type 5/5S 

HBK (5 doors, 5-speed manual transmission, Hatchback) in and around Uxbridge, West 

London, UK. 

Furthermore, all ten road surfaces presented in Figure 5.2 can be divided into two major 

categories. The first category includes the Harsh and Low Bump surfaces. Both surfaces 

contained significant transient vibrations, which greatly exceeded the magnitude when 

compared to the previous and future sections’ magnitude (Ajovalasit et al., 2013). The 

Harsh and Low Bump surfaces were basically obstacles placed across a surface in the 

path of the automobile. According to the Department of Transport (2006), in the UK 

this kind of obstacle is used in urban areas such as town centres, high streets, residential 

roads and in the vicinity of schools; therefore, the automobile speed should be less than 

40 km/h when driving over the obstacle. 

The remaining eight road surfaces were measured with a random vibration process with 

a stable magnitude throughout the overall acceleration recording, but containing a few 

high peaks due to short duration transients, which can be broadly classified as mildly 

non-stationary signals (Giacomin et al., 2000). The Broken road, Broken Concrete and 

Broken Lane were damaged surfaces, which are commonly found in many areas in the 

UK. Speeds to drive over damaged surfaces can reach levels of up to 50 km/h 

(Department of Transport, 2006). The cobblestone surface is formed by rectangular 

stones such as those found in many Italian and French cities or in the city centre road 

surfaces in the UK. The Department of Transport (2006) in the UK establishes a speed 
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of less than 40 km/h to drive over such surfaces; the aim of this limit is to reduce 

vehicle speed due to the possible presence of vulnerable road users such as cyclists, 

children or the elderly. The concrete surface is formed by pieces of plain concrete which 

are coupled by means of expansion joints. The Tarmac surface, properly referred to as 

bituminous macadam, or "Bitmac" for brevity, has the characteristic of being a smooth 

surface which is widely used to surface pavements, highways and even internal floors. 

Both concrete and tarmac surfaces are predominantly used in non-built-up areas or in 

built-up areas where a higher speed is both safe and appropriate. Speeds above 90 km/h 

are common for these two types of road surfaces (Department of Transport, 2006). The 

country lane surface, which is commonly found in rural areas, is a type of road where 

stones and pieces of wood can be found across the asphalt surface. According to the 

Department of Transport, in the UK the speed limit in rural areas can vary from 32 km/h 

to 50 km/h. The Noise surface is a form of asphalt road which is widely encountered on 

pavements and highways. Speeds above 90km/h are common for this kind of road 

surface. 

5.2.2 Vibration Signal Analysis of Road Surfaces 

Vibration signal analysis has always been a crucial part of many vibration practical 

applications (Peng et al., 2005). In the context of road surfaces, the main purpose of the 

vibration signal analysis is to provide the road profile data of different surface types to 

describe the irregularities of the road (Bruscella et al., 1999; Rouillard et al., 2001; 

Eriksson et al., 2008; Hu-ming et al., 2010), as well as the testing and monitoring of 

applications (Giacomin et al., 2000). 

The possible methods used to analyse a vibration signal are in the time-domain 

(Erdreich, 1986; Bendat and Piersol, 2011) or the frequency-domain (Bruscella et al., 

1999). In the time-domain, Bellmann (2002) suggested the most relevant statistical 

parameters to quantify the vibration signal, as shown in Table 5.1. Moreover, Bellmann 

(2002) also suggested that analysis in the frequency-domain can be done by a Fast 

Fourier Transformation (FFT) or in the power spectral density (PSD). 
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Table 5.1 Most relevant parameters for vibration signal analysis 

(Source: Bellmann, 2002) 

Parameter Mathematical Notation Descriptions 

Mean 

�̅� =
1

𝑁
∑ 𝑥𝑗

𝑁

𝑗=1

 

Considered as the first statistical 

‘moment’ of the random process to 

quantify the overall energy of a signal. 

Standard deviation 

𝜎 = {
1

𝑁
∑[𝑥(𝑖) − �̅�]2

𝑁

𝑖=1

}

1
2

 

Considered as the second statistical 

‘moment’ of the random process to 

quantify the overall energy of a signal. 

Root-mean-square 

𝑟. 𝑚. 𝑠 = {
1

𝑁
∑ 𝑥𝑗

2

𝑁

𝑗=1

}

1
2

 

Quantifies and characterises the 

strength of energy content in a signal. 

Skewness 

𝜆 =
1

𝑁
∑ (

𝑥𝑗 − �̅�

𝜎
)

3𝑁

𝑗=1

 

Characterises the degree of 

asymmetry of a distribution around its 

mean value. 

Kurtosis 

𝛾 =
1

𝑁
∑ (

𝑥𝑗 − �̅�

𝜎
)

4𝑁

𝑗=1

 

Characterises the relative peakedness 

or flatness of a distribution in relation 

to the normal Gaussian distribution. 

Crest factor 

𝐶𝐹 =
𝑥𝑗𝑚𝑎𝑥

𝑟. 𝑚. 𝑠
 

Quantifies the severity of peaks in a 

waveform. The higher the peaks, the 

greater the crest factor. 

Vibration Dose 

Value 𝑉𝐷𝑉 = [
𝑇𝑆

𝑁
∑ 𝑥4(𝑡)

𝑁

𝑗=1

] 1/4 

Quantifies the severity of exposure of 

a human to vibration. 

5.2.2.1 Vibration Signal Analysis in the Time-Domain 

Vibration signal analysis in the time-domain will provide the behaviour of the signal 

over time, which allows predictions and regression models for the signal (Inman and 

Singh, 2014). Therefore, a ten-second data segment was chosen to serve as a test 

stimulus, as presented in Figure 5.3, used to perform the time-domain analysis.  
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Figure 5.3 The time history segments extracted from the road test recordings for 

laboratory tests 

The segment length was selected so that the root mean square values, the kurtosis, crest 

factor value and the power spectra density were close and statistically representative to 

those of the complete time history (Giacomin et al., 2000). Additionally, the ten-second 

duration of data segments was chosen so as to remain within human short-term memory 

(Atkinson and Shiffrin, 1971). 

Furthermore, the time-domain analysis was calculated based on the most relevant 

statistical parameters for vibration signal analysis, described in Table 5.1. However, in 

this thesis all the data calculation has been performed by using the Time Monitoring (T-

MON) module of the LMS
® 

CADA-X 3.5E software (LMS International, 2002). The 

results of vibration time-domain analysis of each road surface are presented in 

Table 5.2. The value of each parameter is presented in two decimal places as suggested 

by rule of thumb of statistics in presenting the decimal places by Spatz (2008) for the 

accuracy of calculation results. 
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Table 5.2 The vibration time-domain analysis of road surfaces 

 

Table 5.2 suggested that vibration signals of road surfaces achieved root mean square 

(r.m.s.) acceleration levels from a minimum of 0.06 m/s
2
 (for the Tarmac surface) to a 

maximum of 2.05 m/s
2
 (for the Country Lane surface). Maximum crest factor (CF) was 

obtained in the case of the Harsh surface, which produced a value of 7.28, while the 

minimum CF was found for the Broken Concrete surface with a value of 3.36. Results 

for the vibration dose value (VDV) varied from 0.13 m/s
1.75

 for the Tarmac surface to 

4.90 m/s
1.75 

for the Country Lane surface. 

The results in Table 5.2 also suggested that all road surfaces, except for Low Bump and 

Harsh, have a stable magnitude throughout the overall acceleration recording, but 

containing a few high peaks due to short duration transients which, indeed, can be 

broadly classified as mildly non-stationary signals (Giacomin et al., 2000) where it is 

shown that the acceleration data were Gaussian distributed, with a kurtosis value close 

to 3.0 and a skewness value close to 0.00. 

5.2.2.2 Vibration Signal Analysis in the Frequency-Domain  

Vibration signal analysis in the frequency-domain can be done by a Fast Fourier 

Transformation (FFT) or in the power spectral density (PSD). FFT is a method that 

capable to transforming a signal in the time-domain into the frequency-domain, while 

PSD is common technique for analysing the frequency content of signals for human 

vibration (Mansfield, 2005). However, both methods provided the characteristic 

distribution of vibration energy to be identified (Inman and Singh, 2014). By using the 

Time Monitoring (T-MON) module of the LMS
® 

CADA-X 3.5E software, the vibration 
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signal analysis of road surfaces in the frequency-domain by PSD can be achieved and 

the results are presented in Figure 5.4 (i) to (x), accordingly. 

    

    

    

 

Figure 5.4 The vibration frequency-domain analysis of road surfaces by PSD 

As can be observed in Figure 5.4, the results suggest that the principal frequency 

content is mostly in the range from 0 Hz to 80 Hz for all road surfaces. The highest 

peaks in the vibrational energy were found for the Broken Concrete surface, while the 

lowest peaks were found for the Tarmac surface. Moreover, the frequency distributions 

suggest that the higher peaks of energy correspond to the typical automobile resonance 

frequencies, which can be divided into four main regions (Pottinger et al., 1986; 

Giacomin et al., 1999; Hamilton, 2000; Kulkarni and Thyagarajan, 2001). 

The first region of frequency distribution, which is from 20 Hz to 60 Hz, is mostly 

defined by higher frequency modes of the chassis and by tire resonances (Pottinger et 

al., 1986; Giacomin et al., 1999). Meanwhile, the vibration energy distributed in the 

range of 13 Hz and 20 Hz may reflect low frequency flexible body modes of the chassis. 
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This is followed by the regions which can be related to the behaviour of suspension 

units separately or with the rigid body motion of the engine/transmission unit 

distributed within 5 Hz and 13 Hz. Finally, the region between 0 Hz and 5 Hz is 

associated with the rigid body motion of the automobile chassis on the main suspension. 

5.2.3 Evaluation Selection of Road Surfaces 

At the beginning of this chapter (Section 5.2), the road surfaces to serve as laboratory 

test stimuli were stated, satisfying three logical conditions of selection criteria. 

Description of the road surfaces (in Section 5.3) explained that most of the road surfaces 

can be easily found around the UK, including both rural and urban areas. For instance, 

Cobblestone surface can be found in urban areas, and Country Lane in rural areas. Other 

than that, from Figure 5.2 (a) to (j), it can be seen that all the road surfaces were 

encountered with ordinary driving conditions, with both smooth surfaces, such as 

Tarmac, and damaged road, including Broken road, Broken Concrete and Broken Lane. 

During the measurement of road surfaces by MIRA Group, the Michelin Group, and 

direct measurements by Berber-Solano (2008), it was found that the automobile test 

speeds were comparable and followed the prescribed speed limit of the Department of 

Transport (2006).  

As presented in Table 5.2, most of the road surfaces were classified as mildly non-

stationary signals, where the acceleration data were Gaussian distributed, with a kurtosis 

value close to 3.0 and a skewness value close to 0.00. These results were comparable 

with the study done by Giacomin et al. (2000), which showed that 65 % of the recorded 

road surface data around the UK were mildly nonstationary vibration data signals. 

Moreover, the results suggested that the road surfaces differ significantly in terms of the 

r.m.s. and the VDV(𝑝 = 0.01 < 0.05). Therefore, the comparative scatter plotting of 

r.m.s and VDV are illustrated in Figure 5.5 to identify the distribution pattern of the 

road surfaces. 
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Figure 5.5 Distribution of r.m.s and VDV for all ten road surfaces 

As can be seen in Figure 5.5, the distribution of the ten road surfaces suggested that the 

acceleration road surfaces may provide a wide statistical base of steering wheel 

magnitudes when compared to the vibration acceleration magnitude ranges from the 

previous research studies (Giacomin and Woo, 2004; Giacomin and Berber-Solano, 

2005; Ajovalasit et al., 2013; Berber-Solano et al., 2013). 

The studies of both Giacomin and Woo (2004), and Giacomin and Berber-Solano 

(2005) performed psychophysical laboratory experimental tests using steering wheel 

vibration stimuli with the acceleration magnitude range of 0.05 m/s
2
 r.m.s to 0.27 m/s

2
 

r.m.s. Meanwhile, Ajovalasit et al. (2013) used the acceleration magnitude range of 

0.06 m/s
2
 r.m.s to 1.97 m/s

2
 r.m.s to quantify the human responses towards the steering 

wheel vibration stimuli. The psychophysical laboratory experimental tests by Berber-

Solano (2013) applied the steering wheel vibration stimuli with the acceleration 

magnitude range of 1.15 m/s
2
 r.m.s to 2.36 m/s

2
 r.m.s. 

From the comparison of vibration acceleration magnitude ranges, the acceleration data 

from the road surfaces described in Section 5.2.1 can be considered a wide and 

representative operating envelope for use in laboratory-based experiments of 

automotive steering wheel vibration. 
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5.3 Laboratory Facilities 

The laboratory facility used during this research for applying rotational vibration to 

seated test participants was the existing steering wheel simulator shown in Figure 5.6 

(a), which was built in the Human Centred Design Lab, Brunel University. A schematic 

of the steering wheel simulator and the associated signal conditioning and data 

acquisition system is shown in Figure 5.6 (b). 

 

(a)     (b) 

Figure 5.6 Facility used for laboratory tests, available at Human Centred Design Lab, 

Brunel University 

The rotational system consisted of a 325 mm-diameter aluminium steering wheel 

attached to a steel shaft. The shaft was connected to the electro-dynamic shaker head by 

means of a copper stinger-rod. Rotational vibration was applied by means of a G&W 

V20 electro dynamic shaker driven by PA100 amplifier. The steering wheel tangential 

acceleration was measured by means of an Entran EGAS-FS-25 accelerometer attached 

to the top-left side of the wheel. The accelerometer signal was amplified by means of an 

Entran MSC6 signal conditioning unit. Control and data acquisition are performed using 

the Time Monitoring (T-MON) module of the LMS
® 

CADA-X 3.5E software coupled 

with a DIFA SCADASIII unit (LMS International, 2002). 

Table 5.3 details the main geometric dimensions of the steering simulator, which were 

based on the average data taken from a small European automobile, and the car seat was 

directly taken from a 1997 Fiat Punto. 
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Table 5.3 Geometric simulator parameters of the steering wheel rotational vibration  

 

The simulator has been designed to incorporate the maximum vibration limit levels felt 

every day by the participants in their cars. These features are to avoid and minimise the 

discomfort or pain felt by the participants. Apart from that, these features also allow 

participants to release their grip immediately from the steering simulator, whenever they 

feel discomfort or at any time they wish to do so during the test. In addition, the 

simulator also incorporates an emergency stop shutdown in case the excessive vibration 

limit is reached. These features are to avoid any harm to the participants. Furthermore, 

the car seat is fully adjustable, similar to those in actual cars, without any obstruction 

(e.g. no seat belts built-in), which permits the participants to get up and leave at any 

time. The safety features of the steering wheel simulator and the acceleration levels used 

conform to the health and safety recommendations outlined by British Standard 7085 

(1989). 

5.3.1 Accuracy of Signal Reproduction 

The Oxford University Press (2013) defined accuracy as the degree of correctness of a 

measurement, for instance, the values produced are close to the true value of a measured 

quantity. In order to determine the accuracy of the steering wheel rotational vibration 

simulator when reproducing the test stimuli, hence an accuracy test needs to be 

performed. 
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5.3.1.1 Test Stimuli 

All of the ten road surfaces base stimuli described in Section 5.2.1 were used as the 

target signals. The r.m.s. values of the target stimuli ranged from a minimum of 

0.06 m/s
2
 r.m.s to a maximum 2.05 m/s

2
 r.m.s (see Table 5.2). Referring to the figure of 

PSDs presented in Figure 5.4, none of the steering wheel acceleration time histories 

contained significant vibrational energy at frequencies greater than 125 Hz. Therefore, 

the decision was taken to apply a bandpass digital Butterworth filter to limit the 

vibrational energy in the frequency range from 3 Hz to 125 Hz; the lower cut-off value 

of 3 Hz was chosen in recognition of the frequency response limitations of the 

electrodynamic shaker unit of the laboratory steering wheel rotational vibration 

simulator. 

Pretesting discovered that both time history (Figure 5.7a) and Power Spectral Density 

(Figure 5.7c) of the reproduced stimuli did not match the target values, due to the 

frequency response of the shaker and the bench mechanical components. Compensated 

drive voltage signals were therefore applied, which included the effect of the frequency 

response of the shaker. The compensated drive signals were created by scaling the FFT 

amplitudes of the carrier and the sideband frequencies of the test signals, and by 

subsequently applying the inverse FFT to obtain the drive signal in the time-domain. 

The compensatory process was iterated so as to equalise the harmonic sidebands to the 

desired target values. 

To illustrate the example of the compensator process, Figure 5.7 presents the Country 

Lane, which recorded the highest energy level among the ten road surfaces studied 

before and after applying the compensatory process. 
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(a)     (b) 

 

(c)     (d) 

Figure 5.7 Comparison between target and bench response of time history and PSD 

before (a & c) and after (b & d) the compensation process. 

5.3.1.2 Test Protocol 

The test procedure evaluated the ensemble of the LMS software, the front end 

electronics unit, the shaker, the accelerometer and the signal conditioning units. The 

participant used in the accuracy signal reproduction so as to consider also the possible 

differences in bench response which are caused by differences in impedance loading on 

the steering wheel from people of different size. All participants were volunteers and 

they have the right to withdraw from the experiment at any time. 

Before commencing testing, each of the participants was presented with a short 

questionnaire to gather information regarding their anthropometry, health and history of 

previous vibration exposures. Prior to the experiment, each participant was given 

instructions pertaining to the experimental method, as well as to the laboratory’s health 

and safety procedures. They were required to remove any articles of heavy clothing 

such as coats as well as any watches or jewellery. They were then asked to adjust the 
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position of the seat and the angle of the backrest to simulate a driving posture that was 

as realistic as possible. 

In the experiment, the participants were only asked to load their hands during the 

actuated acceleration stimulus transmitted to them. The maximum and minimum 

response r.m.s. acceleration values were obtained. The response r.m.s values were then 

expressed as a percentage of the target r.m.s. value. 

5.3.1.3 Test Participants 

Seven participants, consisting of 3 males and 4 females, were used in the accuracy 

signal reproduction process. The physical characteristics of the test participants are 

summarised in Table 5.4. 

Table 5.4 Physical characteristics of participants for accuracy signal reproduction 

 

It can be seen from the data in Table 5.4 that the mean values and standard deviations of 

the height and mass of the test participants were approximately at the 50
th

 percentile 

value for the UK population (Pheasant and Haslegrave, 2005). Therefore, the degree of 

accuracy of the test signal reproduction is the maximum possible, caused by the 

impedance loading on the steering wheel from people of average size. 
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5.3.1.4 Result and Analysis 

The accuracy of the target stimuli reproduction was quantified by measuring the r.m.s. 

difference between the actuated signal and the target signal, and the results are shown in 

Table 5.5. The value of each parameter is presented in two decimal places as suggested 

by rule of thumb of statistics in presenting the decimal places by Spatz (2008) for the 

accuracy of calculation results. 

Table 5.5 Absolute maximum percent error of signal reproduction 

 

The results of the signal reproduction of the bench response signal, shown in Table 5.5, 

varied between 1 % and 17 % with respect to their target signal value. The absolute 

maximum percent error is found comparable with the just-noticeable-difference value 

for human perception of hand-arm vibration of 15 % to 18 %, determined by Morioka 

(1998). 

5.4 Conclusion 

This chapter was divided into two sections. The first section presented all ten chosen 

road surfaces, namely Broken, Broken Concrete, Broken Lane, Cobblestone, Country 

Lane, Concrete, Harsh, Low Bump, Noise and Tarmac. Based on the vibration signal 

analysis of road surfaces both in the time-domain and frequency-domain, together with 

the comparison of vibration acceleration magnitude ranges from the previous studies, all 

ten road surfaces met the selection criterion to serve as laboratory test stimuli. 
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In the second section, the laboratory facilities of the Human Centred Design Lab, 

Brunel University were discussed. The safety features of the steering wheel simulator 

and the acceleration levels used conform to the health and safety recommendations 

outlined by British Standard 7085 (1989), and the accuracy of signal reproductions was 

comparable with the just-noticeable-difference value for human perception of hand-arm 

vibration, hence, the facilities were appropriate for use in this research. 

In the next chapter, the critical review of principles in identifying the transient 

vibrations from various areas of study will be presents. The main objective is to ensure 

that the principle use in the current research in order to identify the transient vibrations 

contained in road surfaces data signals is the best principle. 
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CHAPTER 6  

PRINCIPLES OF TRANSIENT VIBRATIONS ROAD SURFACE 

DETECTION 

6.1 Introduction 

In signal processing, the transient signal is generally defined as a signal whose duration 

is short compared to the observation interval. Transients can be either deterministic or 

random, and in the latter case they are nonstationary (Friedlander and Porat, 1989). The 

transient detection analysis is considered highly useful in different areas of study, such 

as in early earthquake detection in the seismology field, cardiac disease diagnosis in the 

biomedical field, defects detection in the machinery field, and fatigue analysis as well as 

human comfort analysis in the automotive field. 

The purpose of this chapter is to explore the potential alternatives for identifying the 

transient vibrations contained in road surfaces data signals. The chapter begins with the 

current Mildly Nonstationary Mission Synthesis (MNMS) algorithm used for 

identification of transient vibrations in road surfaces. We provide an overview of the 

MNMS algorithm and the limitations in identification of transient vibrations processes. 

This is followed by a selective and critical review of alternative principles in identifying 

the transient vibrations from various areas of study. Before the final remarks are 

presented at the end of this chapter, the potential principle, based on the critical review, 

is applied to all of the ten road surfaces base stimuli described in previous Chapter 5. 
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6.2 MNMS Algorithm for Road Surfaces Transient Vibrations 

The Mildly Nonstationary Mission Synthesis (MNMS) algorithm developed by 

Giacomin et al. (2000) is a method of summarising mildly nonstationary vibration 

records to obtain short mission signals that can be used for experimental or numerical 

testing purposes.  

The MNMS algorithm is based on well-known signal processing algorithms and the use 

of simple peak correcting. The signal processing algorithms used are the Discrete 

Fourier Transform (DFT), the Orthogonal Wavelet Transform (OWT) and correlation 

functions.  

The MNMS algorithm consists of three processing stages, which begin with the 

application of the Discrete Fourier Transform, which is widely used in digital random 

controllers for shakers and similar test benches (Vandeurzen et al., 1988). In the signal 

processing, the DFT known as a mathematical technique to decompose a signal into 

sinusoidal  components of various frequencies ranging from 0 frequency up to the 

maximum frequency of sampling rate (Sinha, 2012). The DFT was applied to the road 

surfaces data to determine the overall Power Spectral Density function, and, next, the 

results of spectral function were used to contrast a short artificial basis signal. This 

approach guarantees that the short test signal precisely reproduces the PSD of road 

surfaces data prescribed (Giacomin et al., 2000). 

In the second stage of the MNMS algorithm, the process starts with the application of 

Orthogonal Wavelet Transform to the road data, followed by grouping of wavelet level 

into a small number of filter banks, which subdivide the vibrational energy. The mildly 

non-stationary mission synthesis algorithm splits an original signal into wavelet levels 

(Chui, 1992; Daubechies, 1992). The OWT used when the wavelet form a set of 

orthonormal functions (Burrus et al., 1998). Twelfth order Daubechies wavelets have 

been used in the analysis performed to date (Giacomin et al., 2000) because of its 

successful application in several previous studies involving automotive road data 

(Abdullah et al., 2006). Wavelet levels consist of time histories which are obtained from 

the wavelet decomposition, and contain the signal energy which is specific to a 

particular frequency band. MNMS uses the orthogonal wavelet transform to divide the 
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overall energy into individual signals, in a manner analogous to a parallel bank of band-

pass filters. A feature which is specific to MNMS is a wavelet grouping stage which 

permits the user to group individual wavelet levels into larger regions of significant 

energy. 

Stage 3 of the MNMS algorithm consists of two processes. Firstly, the transient 

vibrations for each wavelet group in both the original road data and the synthetic 

Fourier signal is counted. The wavelet group of the road surfaces data is analysed 

separately to locate and count all transient vibrations. 

For the purpose of the MNMS, transient vibrations are defined as high amplitude 

transient which can cause the overall time history to deviate from a stationary Gaussian 

model. Formally, a point is considered a transient vibrations if the road data signal is at 

a local maximum or minimum, and the wavelet group time history exceeds the trigger 

level prescribed (for each wavelet group) by the user in terms of standard deviations. 

Experience suggests that wavelet group trigger levels at 3.5 standard deviations have 

been found to produce accurate vibration missions for most road data signals analysed 

to date (Giacomin et al., 2000). Once an event is identified which exceeds the trigger 

level, the time duration of the transient vibrations is determined, as shown in Figure 6.1. 

 

Figure 6.1 Possible trigger level values of the transient vibration 

(Source: Giacomin and Berber-Solano, 2006) 

To determine the time extent of individual transient vibrations, it is assumed that the 

event represents the system response to a single isolated impulse. The algorithm checks 

the monotonic decay envelope of the signal on either side of the peak value and 
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identifies the points where the signal amplitude begins, again, to increase. The inversion 

points at which the monotonic decay process ends are taken to signal the time duration 

of the transient vibrations. The transient start and end points are then taken to be a fixed 

distance (in data points) from the points of envelope inversion, as shown in Figure 6.2. 

 

Figure 6.2 Decay envelope of the transient vibrations 

(Source: Giacomin and Berber-Solano, 2006) 

The second process in stage 3 is peak correction of the artificial basis signal to introduce 

necessary transient vibrations. If all transient vibrations extracted from long road data 

records were introduced into the short mission signal, the correction would be 

excessive, and the final mission signal would deviate from the original data in several 

statistics. Therefore, it was decided to introduce a number of transient vibrations, 

selected to be in direct proportion to the signal compression ratio. 

During the process of transient vibrations counting, a ranking based on the size of the 

maximum peak value is performed for the events found in the particular wavelet group 

of the original road data. All identified transients are ranked in descending order 

according to their peak value. Having ranked all transient vibrations, and having 

specified a compression ratio of n, transient vibrations are selected by moving down the 

ranking list with a step equal to n. In order to reduce the impact of bump correction on 

the PSD of the synthetic Fourier basis signal, each selected transient vibrations are 

introduced at a location in time where the synthetic signal most closely resembles the 

bump event. This location is determined by means of a correlation procedure in which 

the transient vibrations are moved along the whole time history of the synthetic signal 

and compared with it in terms of r.m.s. difference at each position. 
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When all required transient vibrations are introduced, the synthetic Fourier signal can be 

considered to be upgraded to mission signal status, and the total sum of all wavelet 

group time histories produces the final mission signal. The final output mission signals 

replicate the fundamental vibration characteristics of the input signal in terms of the 

fundamental global signal statistics such as r.m.s., skewness, kurtosis, crest factor and 

the power spectral density. 

6.2.1 Evaluation of the MNMS Algorithm for Transient Vibrations 

Apart from acting as a compression tool to produce a shortened stimuli sequence, the 

purpose of the MNMS algorithm was to aid engineers in defining vibration mission 

signals for vehicle components, such as comfort testing of automotive seats (Giacomin 

et al., 2000). 

The proliferation of the MNMS algorithm can be found in the studied to facilitate 

driver-road detection (Berber-Solano et al., 2010). The outcome from the study was to 

provide the guideline for the optimisation of the steering wheel acceleration signal, 

which was unfortunately not universally optimal to all road surface types. Apart from 

the lack of acoustical stimuli in a laboratory task, the process of transient vibrations 

identification and extraction from road data signals is also suspected to be a contributing 

factor leading to the results. 

As this MNMS algorithm has, to date, been used for road surfaces signals, the technique 

of transient vibrations identification and extraction in road surfaces data signals based 

on the MNMS algorithm needs to be evaluated. The main purpose of evaluation is to 

ensure that the classification of transient vibrations in this current research can be 

performed without any doubt – for instance, to ensure that the shape of the transient 

vibrations identified and extracted fulfils the definition and criteria of transient 

vibrations stated by the MNMS algorithm. 

The Lowbump road surface data signal has been applied with MNMS for the purpose of 

transient vibrations identification and extraction evaluation. The MNMS algorithm is 

currently written in MATLAB R2014a software, and runs on Windows-compatible PCs. 
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Using the MNMS algorithm, the Lowbump road surface data signal was decomposed 

into 12 wavelet levels in the frequency range from 0 to 60 Hz, which were grouped 

according to the natural frequency energy distribution of the signal into four wavelet 

groups (see Figure 5.4). Next, the transient vibrations are identified and extracted within 

the target frequency interval of 20 to 60 Hz, as the frequency range plays a key role in 

human cognitive detection of the road surface type and signal threshold trigger level 

value of 2.6 (Berber-Solano et al., 2010). Figure 6.3 (a) to (c) presents examples of the 

results for transient vibrations in the Lowbump road surface data signal that have been 

identified and extracted together with the details of the criteria. 

 

(a) Start or end points not at 0     (b) Monotonic decay but more cycles 

 

(c) Not monotonic decay 

Figure 6.3 Transient vibrations of Lowbump identified and extracted within the target 

frequency interval of 20 to 60 Hz 

As shown in Figure 6.3, the transient vibrations identified and extracted did not fulfil 

the definition and criteria of transient vibrations stated by the MNMS algorithm. This 

result may cause conflict in the current research, which is the classification of transient 

vibrations of road surfaces data signals. 

The following section presents the possible potential or alternative principles that can 

provide the better results in identify the transient vibrations steering wheel road surface. 

To investigate the possibilities, hence the literature review survey was conducted. 
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6.3 Towards Better Principles of Transient Vibrations Road Surface 

In this section, the possible processes to identify the transient vibrations to be applied in 

the steering wheel vibration road surfaces data signals will be described. In conjunction 

with that, the literature survey has been conducted, which focused on the description of 

the principles. Prior to the literature survey, the criteria of selection for alternative 

principles of transient vibrations detection are first predetermined in order to ensure that 

the survey can be easily manageable. Apart from that, the search criteria were also very 

important to ensure that the alternative algorithm was compatible with the transient 

vibrations of road data signals, and can also provide better results in identifying the 

transient vibrations of road surfaces data signals. The alternative principles of transient 

vibrations are determined by applying two criteria. 

The main search criterion chosen was the nature of transient vibrations in signal 

processing. The transient vibrations of road surfaces data signals are defined as high 

amplitude transient vibrations which can cause the overall time history to deviate from a 

stationary Gaussian model, which exceeds a prescribed trigger level. Other than that, the 

transient vibrations in the road surfaces data signals were assumed to occur repeatedly, 

corresponding to the vehicle moving over irregular road surfaces until arriving at the 

destination. Therefore, the nature of transient vibrations in signal processing must be 

that of transient vibrations which deviate from the normal background and also need to 

be repetitive events. 

The second search criterion was the principles of transient vibrations detection. In the 

MNMS algorithm, the principle of wavelet transform has been used to identify the 

transient vibrations of road surfaces data signals, and the results did not really fulfil the 

definition and criteria of transient vibrations. For that reason, during the literature 

survey, an alternative principle of wavelet transform was found in order to gather better 

results in identifying the transient vibrations of road surfaces data signals. However, 

although the principles were not directly applied to the transient vibrations of road 

surfaces data signals, the principles may be useful in both the processing and post-

processing stages of the transient vibrations of road surfaces data signals. 
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6.3.1 Criterion 1: Nature of Transient Vibrations 

Firstly, the literature survey started with a search using the first criterion, resulting in 

the discovery of a total of 23 pieces of literature, consisting of 6 pieces from biomedical 

studies, 9 pieces from machinery and 5 pieces from seismology studies. The remaining 

pieces were from radar echo studies (2 pieces) and a fatigue automotive study. 

In the 1980s to 2010s, the analysis of transient vibrations to detect large earthquakes 

proved effective in estimating the expected amount of ground shaking (Nakamura, 

1988; Bouchon et al., 2001; Botella, 2003; Horiuchi et al., 2005; Satriano et al., 2011). 

Moreover, the value of social wellbeing was also improved by decreasing the number of 

deaths, injuries and level of economic loss, as well as preventing the construction from 

collapsing as a result of the earthquake. 

In the 1980s to 1990s, the studies on QRS shape detection in Electrocardiogram (ECG) 

waveforms show that detection was important to diagnose cardiac disease, and also 

represents the different heart functions (Chu and Delp, 1989; Trahanias, 1993; Li et al., 

1995; Köhler et al., 2002; Raphisak et al., 2004; Song et al., 2010) 

In the 1990s to 2000s, the application of transients detection analysis in ultrasonic flaw 

detection was used, whereby the analysis was performed by isolating the flaw echo 

from noise background and estimating the exact location of the flaw. Laterally, 

ultrasonic flaw detection assures the quality of materials non-destructively (Saniie and 

Mohamed, 1994; Hu et al., 2006; Song and Que, 2006). 

In the 2000s, inrush current detection in transformers had proven to have great practical 

importance to operators, as it permits the scheduled shutdown and repair of a system, as 

well as monitoring the life cycles of machines to avoid faulty replacement of 

components (Jiang et al., 2000; Zhang et al., 2002; Cheng et al., 2004, Sedighi and 

Haghifam, 2005; Jing et al., 2006; Wu et al., 2013a; 2013b). 

In the 2000s, radar detection within the underwater acoustic was performed and proved 

that detection strengthens coastal security, improves navigational safety and helps in 
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environmental monitoring (Davidson and Griffiths, 2002; Panagopoulos and Soraghan, 

2004). 

Again, in the 2000s, the analysis of transient detection spread widely in automotive 

study fields regarding fatigue damage in variable amplitude ground vehicles 

(S. Abdullah et al., 2006). As one of the key stages in the design of vehicle structure, 

the analysis proved that manufacturers can produce better components in the vehicle. 

While, for the purpose of NVH testing or for human comfort, the detection of transient 

analysis led to the algorithm development of the Mildly Nonstationary Mission 

Synthesis (MNMS). 

All the 23 literatures were weighted first by the nature of transient vibrations occurring 

in the particular study areas. As stated previously, the transient vibrations of road 

surfaces data signals were assumed to be occurring repeatedly, hence, the studies of 

early earthquake and inrush current detection were eliminated, as the possible 

alternative of nature was to be considered. Even though early earthquake detection 

provides very important information to people and several previous studies suggested an 

algorithm for detection of the events that was very comprehensive, unfortunately the 

nature of the early earthquake detection was not the same as bump events detection, 

because the P-wave only happened once within a period of time before the real wave 

came, the S-wave. Meanwhile, inrush currents are instantaneous input currents drawn by 

an electrical device when first turned on. 

After the elimination of two areas of study which do not satisfy the first criterion, the 

remaining areas of study, such as biomedical, radar echo and fatigue studies, are 

considered further in terms of the next criterion in the process of searching for better 

principles of transient vibrations steering wheel road surface. 

6.3.2 Criterion 2: Measurement of Transient Vibrations 

The remaining 9 literature surveys considered in this second criterion suggested two 

different principles, namely wavelet transform and mathematical morphology. As in the 

MNMS algorithm, the principle of wavelet transform has been used to identify the 
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transient vibrations of road surfaces data signals, and the results did not really fulfil the 

definition and criteria of transient vibrations, hence, the wavelet transform was omitted 

and mathematical morphology will be further explored. 

Mathematical morphology is widely used in studies by Chu and Delp (1989), Trahanias 

(1993), Saniie and Mohamed (1994), Zhang et al. (2002), Panagopoulos and Soraghan 

(2004), Jing et al. (2006) and Wu et al. (2013a; 2013b). Wu et al. (2013a; 2013b) used 

mathematical morphology because the application of the technique involved the 

processes of the shape of a signal waveform in the time-domain, which means it can 

avoid the influence of phase shifting and amplitude decaying. Besides using a much 

shorter data window for calculation, mathematical morphology seems a more 

appropriate technique with better performance in treating sudden changes and the 

transient process compared with the wavelet transform (Zhang et al., 2002; Jing et al., 

2006). In addition, morphology filters have better performance because of their 

flexibility in changing the shape of the structuring elements to preserve certain patterns 

of the original signal (Saniie and Mohamed, 1994). Provided with the wider use of 

mathematical morphology and the advantages offered in transient detection analysis, 

this technique has been chosen to be studied in depth, in order to assess how this 

technique can contribute to solving the current problem of transient vibrations road 

surfaces data signals. 

6.3.3 Mathematical Morphology for Transient Vibrations 

Mathematical morphology (MM) is a set of nonlinear signal transformation tools that 

transform the shape of signals, which is based on set operation signals of dilation and 

erosion as fundamental operators, as shown in Figure 6.4(c) and Figure 6.4(d), 

respectively, and was originally introduced by Matheron and Serra in the late 1970s 

(Panagopoulos and Soraghan, 2004). 

Mathematical morphology has been used in the field of image processing, and is known 

for its robust performance in preserving the shape of a signal (Chu and Delp, 1989) 

while rejecting the white noise and pulse noise. In another words, MM filters unwanted 
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shapes of the signal while leaving the other parts of the signal unchanged (Raphisak et 

al., 2004). 

 

(a) Original signal        (b) Structure element 

 

   (c) Dilation transformation    (d) Erosion transformation 

Figure 6.4 Morphological approach to signals using a flat structuring element 

(Source:  Jing et al., 2006) 

The concepts of dilation and erosion in mathematical morphology are the expansion and 

shrinking of a particular shape into another shape (Jing et al., 2006); therefore, this 

technique was chosen to solve the problems of start and end points for transient 

vibrations which were not at zero (see Figure 6.3a). The hypothesis was that by using 

the dilation and erosion concepts in mathematical morphology, both the start and end 

points of each transient vibration can be closer to zero. 

The morphology filter program was written in MATLAB R2014a software by referring 

to the concept diagram suggested by Raphisak et al. (2004), as shown in Figure 6.5 

below. The concept used the derivation operation of erosion and dilation, namely 

opening and closing (Saniie and Mohamed 1994). Opening is defined as erosion 

followed by dilation, while closing is vice versa. In most applications, opening is used 

to suppress peaks, while closing is used to suppress pits (Chu and Delp, 1989). 
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Figure 6.5 Diagram of morphological filter (Raphisak et al., 2004) 

Apart from dilation and erosion, Structure Element (SE) is also a key element in 

mathematical morphology (Panagopoulos and Soraghan, 2004), which will interact with 

the signal and extract information (Chu and Delp, 1989; Saniie and Mohamed, 1994). 

Mathematical morphology is a time-domain tool and does not quantify the frequency 

content of a signal (Gautam and Brahma, 2012), hence, the structuring element interacts 

with the signal under study and transforms it into a new signal, which is, in some way, 

more expressive than the original. Other than that, SE also acts as a lowpass filter; 

therefore, the effects of the width of flat structuring elements can influence the results of 

the shapes (Saniie and Mohamed, 1994). 

To identify the optimal width of flat structuring elements that can be compatible for all 

ten road surface data signals used in this research, the random suggested values of the 

width of flat structuring elements from 1 to 10 were tested as the number is the best 

values to preserve the original shape without severe distortion (Saniie and Mohamed, 

1994). Figure 6.6 presents the post-processed transient vibrations results using flat 

structuring elements with different widths. 
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(a) SE, w=1    (b) SE, w=2 

 

(c) SE, w=3    (d) SE, w=4 

 

(e) SE, w=5    (f) SE, w=6 

 

(g) SE, w=7    (h) SE, w=8 

 

(i) SE, w=9    (j) SE, w=10 

Figure 6.6 Post-processed transient vibrations results using flat structuring elements 

with different widths 

As shown in Figure 6.6, the start and end points for the transient vibrations were close 

to the zero, as the width of structure elements is larger, however the transient vibrations 

become smaller and the original shape was missing. From the post-processed results, it 
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is suggests that the width of flat structuring elements can influence the results of the 

transient vibrations shapes. 

6.3.4 Discussion 

In the test of mathematical morphology for road surfaces transient vibrations detection 

it was shown that the shapes of transient vibrations were missing, as the width of flat 

structuring elements becomes bigger. Moreover, the post-processed results displayed 

how the start and end points for transient vibrations did not show any changes, which 

suggested that the mathematical morphology operation of dilation and erosion did not 

solve the problems of expanding and shrinking both the start and end points of bump 

events closer to zero. 

This result may be explained by the fact that the mathematical morphology operation 

provides techniques that can potentially be used to suppress noise, and therefore the 

increasing value of width of structuring elements can possibly suppress noise 

excessively, which laterally removes the important information contained in transient 

vibrations (Chu and Delp, 1989; Trahanias, 1993). Other than that, the performance of 

the mathematical morphology is dependent on three factors, which are amount of noise, 

choice of structuring elements, and sampling rate of the signal (Panagopoulos and 

Soraghan, 2004). 

6.4 Conclusion 

The main goal of the current chapter was to determine alternative opportunities to 

identify and extract the transient vibrations steering wheel road surface. As shown in 

Figure 6.3, the transient vibrations identified and extracted did not really fulfil the 

definition and criteria of transient vibrations stated in the MNMS algorithm. 

Furthermore, the results shown in Figure 6.3 may also present conflict with the next 

step, which is classification based on the similarity of information content in transient 

vibrations steering wheel road surface. 
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To address the issue, the literature review survey, related to the principle of transient 

vibrations detection, was conducted to gather better results in identifying the transient 

vibrations steering wheel road surface. The survey on transient vibrations detection 

analysis included various areas of study, such as seismology studies, biomedical studies 

and also machinery studies. The alternative principle was measured based on two 

selection criteria. Firstly, the nature of transient vibrations in signal processing must be 

the transient vibrations that deviate from the normal background, and also need to be 

repetitive events before an alternative technique can be found. 

Results from the literature review survey suggested that mathematical morphology can 

be used as an alternative technique to identify and measure the transient vibrations 

steering wheel road surface. The technique has been used as a post-processing technique 

to solve the problems of transient vibrations, whereby the start and end points were not 

at zero. The different widths of structuring elements in mathematical morphology were 

tested on transient vibrations, but unfortunately the results showed that mathematical 

morphology does not solve the current problems, and the decision was made to proceed 

with the MNMS algorithm in identifying the transient vibrations of road surfaces data 

signals. 

The next chapter will present the first study in this research, in which the aim is to 

perform validation of previous guidelines related to the frequency bandwidth of steering 

wheel vibration feedback to driver road surface detection. 
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CHAPTER 7  

VIBRATION ENERGY DISTRIBUTION ON DRIVER ROAD 

SURFACE DETECTION 

7.1 Introduction 

In 2013, Berber-Solano et al. identified drivers’ detection of road surface types. They 

measured the sensitivity of this detection by eliminating regions of vibrational energy 

from the original power spectral density of the steering wheel acceleration signal. In 

their experiment, the power spectral density analysis of time histories suggested the 

presence of five important frequency bands within 0 Hz to 150 Hz, which were 

characterised by their significant vibrational energy. They hypothesised that eliminating 

the energy from any of the five regions might cause driver detection of the road surface 

type to be more difficult, due to the elimination of vital vibrational cues. Therefore, in 

order to test this hypothesis, each time history was manipulated so as to eliminate, in 

turn, each of the five frequency bands (0 Hz – 6 Hz, 6 Hz – 13 Hz, 13 Hz – 27 Hz, 

27 Hz – 60 Hz, 60 Hz – 150 Hz). 

An ensemble composed of both the original and modified steering wheel acceleration 

stimuli was used to perform detection of road surface type via a laboratory-based 

experiment. The participants’ task was to detect the road surface type by considering 

whether the stimulus transmitted by the steering test bench originated from the road 

surface that was displayed in front of them by means of a large photograph on a board. 

The confidence of the detection was indicated by the participants using a binary 

response procedure of ‘yes’ or ‘no’. 
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The results of Berber-Solano et al.’s study (2013) suggested that the elimination of 

vibrational energy in the frequency band of 20 Hz to 60 Hz was highly detrimental to 

the task of detecting road surface types. This in turn suggested that this specific 

frequency range has a significant impact on the steering wheel feel and on the drivers’ 

situation awareness. 

However, the frequency band suggested was too large, as in automotive terms the 

frequency range of 20 Hz to 60 Hz is known to contain the resonance behaviours of 

numerous chassis and steering systems (Giacomin et al., 2000). Moreover, during 

driving, steering wheel power spectral densities can reach up to 350 Hz, with vibrational 

energy mostly present in the range between 10 Hz and 60 Hz (Fujikawi, 1998). This is 

typically characterised by low-frequency excitation in the range of 8 Hz to 20 Hz, due to 

first-order tyre non-uniformity forces and tyre-wheel unbalance, and due to second-

order engine and mechanical imbalance in the frequency range between 20 Hz and 

200 Hz (Ajovalasit and Giacomin, 2003). 

Furthermore, the alternative procedure in which detection is indicated using a 

continuum, rather than a binary response procedure, might prove beneficial. It may 

improve the detection accuracy and resolution because there is no absolute judgement 

when it comes to human responses because all responses are based on an individual’s 

restricted opinions and past experiences (Laming, 2003). Additionally, and individual 

tend to have a preference for giving feedback in greater detail than a binary response in 

order to measure the quality of human judgement (Gescheider et al., 1971; Green and 

Swets, 1966). 

The primary objective of the study, as described in this chapter, was to identify a more 

specific frequency band (within 20 Hz to 60 Hz) that contains the most vibrational 

energy that corresponds closely to steering wheel feedback. This was done by 

measuring the effect of vibrational energy distribution (within 20 Hz to 60 Hz) on the 

human cognitive detection of road surface types based on steering wheel vibration. The 

secondary objective was to measure the quality and accuracy of the detection results 

when adopting a more fine-grained and continuum-based procedure, as it was 

hypothesised that this can improve the quality of data gathered as well as yield better 

statistical results. In addition, this study is also an exposure exercise for the researcher 
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due to the lack of information in this field; it was considered important to perform a 

check and validation of the previous results. 

7.2 Test Stimuli 

All of the ten road surface base stimuli described in Section 5.2.1 were used as test 

stimuli whereby four different frequency bands within 20 Hz to 60 Hz were eliminated. 

The selection of the bands to be eliminated was based on the estimated locations of the 

higher peaks of vibrational energy, which is mostly defined by higher frequency modes 

of the chassis and by tyre resonances (Pottinger et al., 1986; Giacomin et al., 1999). The 

assumption was made that the elimination of information from one of the most 

important subsystems might limit the driver as it would deprive him/her of an important 

source of information about the road surfaces (Berber-Solano et al., 2013). 

The calculation steps to identify which frequency bands to eliminate within the range of 

20 Hz to 60 Hz were adopted from the studies by Bau et al. (2010). In the study 

performed by Bau et al. (2010), the participants were requested to identify test stimuli 

that were different to the two identical reference stimuli. Five reference frequencies 

equally spaced on a logarithmic scale (80, 120, 180, 270, and 400 Hz) were selected, 

and their magnitudes were adjusted to equal intensities (approximately 15 dB above the 

threshold). Bau et al. (2010) used the Weber fraction to differentiate the test stimuli 

from the frequency of the reference stimuli, as shown below: 

𝐽𝑁𝐷𝐹 =
∆𝑓

𝑓
 

 

(7.1) 

Further, Morioka and Griffin (2000) suggested that vibration intensity needs to be 

reduced by at least 10 per cent for the changes to be detected by a person; hence 

Equation 7.1 can be simplified to: 



 

100 
 

𝐽𝑁𝐷𝐹 =
𝑓𝑛+1−𝑓𝑛

0.1𝑓𝑛
, 𝑛 = 1,2,3,4 

 

(7.2) 

Where n is the total number of the frequency bands that were eliminated. Since f1 = 20 

and f4 = 60, by simplifying Equation 7.2, the value for the frequency bands interval was 

found as a logarithmic scale of 3.1610. After all values were substituted, the general 

formula to determine the frequency band intervals was identified as follows: 

𝐽𝑁𝐷𝐹 = 20(1.31610)𝑛−1, 𝑛 = 1,2,3,4 
 

(7.3) 

Therefore, from Equation 7.3, the frequency bands to be eliminated were 20 to 26.32 

Hz, 26.32 to 34.64 Hz, 34.64 to 45.59 Hz and 45.59 to 60 Hz. The elimination process 

for each of the frequency bands successfully applied high-pass filters and band-pass 

filters by means of digital Butterworth filters, which were constructed in the LMS
®

 

TMON software (LMS TMON, 2002). 

As described in Table 5.1, the r.m.s. acceleration value (m/s
2
) was quantified to show 

the strength of the energy content in a signal. Therefore, the r.m.s. values for each of the 

ten test stimuli obtained after the elimination of the chosen frequency bands are shown 

in Table 7.1. Further, Figure 7.1 presents an example of the power spectral density 

(PSD) data of the manipulated high-pass filter and band-pass filter for Country Lane 

and Tarmac, which recorded the highest and the lowest energy levels among the ten 

road surface studied, respectively. 

Table 7.1 The r.m.s. values (m/s
2
) for original and manipulated Butterworth filters used 

to produce the laboratory test stimuli 
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(a) Eliminated PSD within 20 Hz – 26.32 Hz 

 

(b) Eliminated PSD within 26.32 Hz – 34.64 Hz 

 

(c) Eliminated PSD within 34.64 Hz – 45.59 Hz 

 

(d) Eliminated PSD within 45.59 Hz – 60 Hz 

Figure 7.1 Example of original and manipulated Butterworth filter of Country Lane 

(left) and Tarmac (right) road surfaces used in the laboratory test stimuli 
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7.3 Test Protocol 

Following an email invitation sent to the students’ general mailing list of the College of 

Engineering, Design and Physical Sciences, Brunel University, London, the potential 

participants were approached by the researcher. Each potential participant was given an 

information sheet and a consent form describing the purpose, procedures, risks and time 

commitment entailed in their participation. Next, an appointment was made to carry out 

the experiment with those who declared an interest in participating, and who met the 

primary requirements of the study (details described in Section 7.4). All participants 

were volunteers and they have the right to withdraw from the experiment at any time. 

Upon their arrival at the laboratory, each of the participants was presented with a short 

questionnaire to gather information regarding their anthropometry, health and history of 

previous vibration exposures. Prior to the experiment, each participant was given 

instructions pertaining to the experimental method, as well as to the laboratory’s health 

and safety procedures. They were required to remove any articles of heavy clothing 

such as coats as well as any watches or jewellery. They were then asked to adjust the 

position of the seat and the angle of the backrest to simulate a driving posture that was 

as realistic as possible. An example of the participants’ posture during the experiment is 

shown in Figure 7.2. 

 

Figure 7.2 Posture of participant at the steering wheel simulator 

Since the grip force applied to the steering wheel has been known to affect the 

transmission of vibrations to the hand-arm system (Morioka and Griffin, 2009), the 

participants were required to keep a constant palm grip on the steering wheel using both 
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hands. Finally, they were asked to fix their eyes on a board placed directly in front of 

the steering wheel simulator, which displayed a photograph of the road surface being 

studied (see Figure 5.2). The room temperature in the laboratory was maintained within 

the range of 20 to 25°C to avoid any significant environmental effects on the 

participants’ skin sensitivities (ISO13091-1, 2001). 

Each of the ten road surfaces studied consisted of three repetitions for each of the four 

manipulated and the original base stimulus from the displayed road surface plus a 

further 25 stimuli chosen randomly from other stimuli sets of the other nine road 

surfaces used as background noise stimuli. Five different series of eight acceleration 

stimuli were applied to evaluate each road surface type. The duration of each individual 

test stimulus was ten seconds. Prior to commencing formal testing, the 20 seconds 

exposure stimuli of each of the four stimuli types which would be used later were 

provided to participant in order to become acquainted with the detection task. Figure 7.3 

illustrate the experiment design adapted during this experiment. 

 

Figure 7.3 Experiment design 

During the experiment, the participants were asked to judge whether the actuated 

acceleration stimulus transmitted to them through the steering wheel was coming from 

the road surface shown on the photograph on the board directly in front of the test 

bench. They were also asked to rate the confidence of their judgement on a five-point 

scale. They were instructed to report “one” if they were very sure it was not the same 

signal, “two” if they were fairly sure it was not the same signal, “three” if they were not 

sure either way, “four” if they were fairly sure that it was the corresponding signal, and 

“five” if they were very sure it was the same signal. Each series of stimuli was separated 

by a five-second gap to allow participants enough time to indicate their detection 

responses to the stimuli directed at them. 
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Each participant performed 40 detections for each road surface studied, with a total of 

400 detections over the course of the one and half hours allocated to complete the 

experiment. Due to the large total number of stimuli detection and the time required, the 

experiment was designed to take into consideration learning (Giacomin and Woo, 2004) 

and fatigue effects (Giacomin and Abrahams, 2000; Giacomin and Screti, 2005). Hence 

the order of stimuli arrangements in each series was fully randomised for each 

participant, and the participants were asked to attend on two separate sessions to 

complete the experiment, with 200 detections in each session. 

The facility and the protocol of the experiment was approved by the College of 

Engineering, Design and Physical Sciences Research Ethics Committee, Brunel 

University (Ref No: EC/507). 

7.4 Test Participants 

In order to minimise the margin of error in the detection tasks, driving experience was 

identified as one of the main factors considered in this experiment. A study performed 

by Zhao et al. (2014) identified the capability of performance in a change detection task 

of both experienced and novice drivers. Their findings suggested that experienced 

drivers were better able to identify changes in a detection task and they had more 

knowledge of the road than novice drivers. According to the Department of Transport 

(2013), a person is a novice driver until they have held a driver's licence for at least two 

years or periods adding up to two years. Meanwhile, an experienced driver is a person 

who has held a driver’s licence for more than ten years (Craen et al., 2011). 

According to Kumar (2005), sampling strategies can be categorised into probability and 

non-probability designs. He also stated that probability sampling design is used when 

the sample is representative of the population, while non-probability sampling is 

suitable when the number of elements in a population is either unknown or cannot be 

individually identified. Additionally, the most commonly used non-probability sampling 

strategies are convenience, accidental, purposive and snowball sampling 

(Coolican, 2009). 
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Therefore, the current study described here used a non-probability purposive sampling 

strategy (Coolican, 2009) with participants who had driving experience of a minimum 

of two years as primary characteristic for sample selection and also were served as 

controlled parameter. Meanwhile, parameters relating to gender and physical body mass 

(weight and height) were not controlled in the current study, as previous research 

suggested that there were no significant differences between genders in the subjective 

experience of hand-arm vibration (Mansfield and Griffin, 2000; Neely and Burström, 

2006; Jeon et al., 2009). 

Apart from the controlled and uncontrolled parameters in this experiment, the chosen 

minimum number of participants followed the statistical rule of thumb guiding sample 

size for detecting differences, as suggested by VanVoorhis and Morgan (2007). They 

suggested that participant numbers need to be between 14 and 30 in order to maintain 

the adequate power of 80 per cent when using statistics designed to detect differences 

between variables. 

A total of twenty (n=20) university students participated in this experiment. Both 

controlled and uncontrolled parameters of the participants are summarised in Table 7.2 

below. 

Table 7.2 Anthropometrics and driving experience of test participants 

 

The mean values and standard deviations of the height and mass of the test participants 

were close to the 50
th

 percentile values for the UK population (Pheasant and 

Haslegrave, 2005). The average driving experience of participants in Table 7.2 is over 8 

years, which means they can be categorised as experienced drivers, comparable with 

studies done by Borowsky et al. (2010) who suggested that novice drivers had an 

average of 2.7 months of driving experience, experienced drivers had an average of 7.3 

years, and older drivers had an average of 37.5 years. 
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7.5 Results and Analysis 

The results of the experimental tests were analysed using the Theory of Signal 

Detection of Rating Procedure (Green and Swets, 1966) as the analytical framework. 

They were summarised by the Hit Rate (%), Detectability Index (d’) and Receiver 

Operating Curve (ROC) points. 

The reduction of the rating procedure matrix to a binary response was used in the 

analysis of this study (Green and Swets, 1966). For each frequency bands analysed in 

this study, the hit rate, P(S|s) was taken based on the proportion of “four and five” scale 

responses which were obtained from the stimuli of the road surfaces that was shown on 

the board while the false alarm, P(S|n) was taken from the proportion of “one, two and 

three” scale responses. 

Figure 7.4 illustrates the results obtained from the experiment, which investigates how 

changes in vibrational energy cause changes in the human cognitive detection of road 

surfaces, based on steering wheel vibration. The results are presented in the line graph 

format which following Spatz (2008) who suggested that line graphs are suitable for 

comparing changes over the same period of time for more than one group. The hit rate 

percentage is presented along the ordinate, while the five different frequency bands for 

each road are presented along the abscissa. 

 

 

Figure 7.4 Rate of hit detection for all ten road surfaces studied 
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Figure 7.4 (continued) Rate of hit detection for all ten road surfaces studied 

Refer the results in Figure 7.4 shown that the hit rates for the original base stimuli for 

Broken, Broken Lane, Cobblestone, Country Lane, Concrete, Low Bump, Harsh, Noise 

and Tarmac were higher than 50 per cent in each case. Broken Concrete was lower, as 

the hit rate was 37.6 per cent. Qualitatively, the results from the Broken Concrete 

showed a very different behaviour from that of the other nine test stimuli, suggesting 

important differences in the underlying energy content. 

Next, when the participants were exposed to the frequency band of 20 to 26.32 Hz, 

which was eliminated from the original time histories, it was found that the hit rates 

decreased by 12 to 25 per cent for Broken, Broken Lane, Country Lane, Concrete and 

Harsh surfaces. In contrast, there was a slight increase for Broken Concrete, 

Cobblestone, Low Bump, Noise and Tarmac surfaces of 5 to 19 per cent. From the hit 

rates reported, it can be claimed that the detection ability increased sharply in the 

frequency band of 26.32 to 34.64 Hz for all the ten road surfaces except for Low Bump, 

Noise and Tarmac. 

The data can also be quantified in terms of signal detection sensitivity. Figure 7.5 

illustrates detectability index as a function of the frequency bands eliminated. In signal 

detection theory, the sensitive of the observer is denoted as d’ and the higher the d’ 

value, the higher the hit rate and lower the number of false alarms (Woo and Giacomin, 

2006). In other words, the greater the d’ value, the more sensitive is the observer’s 

reaction to the particular signal. 
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Figure 7.5 Observer sensitivity, d’ for all ten road surfaces studied 

Figure 7.5 indicates that the highest value rate of changes of d’ in the elimination of 

frequency bands was between 26.32 and 34.64 Hz for most of the road surfaces studied, 

for instance, Broken, Broken Lane, Country Lane, Concrete and Harsh.  

The pattern of the curve and the qualitative human responses for both hit rate 

(Figure 7.4) and d’ (Figure 7.5) value showed similarities. It can be concluded that the 

frequency band of 26.32 to 34.64 Hz in this experiment played an important role in the 

participants’ cognitive detection of the road surface for all the road surfaces studied. 
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Further analyses were conducted by means of ROC distribution points to verify which 

frequency bands contain vibrational information that can prevent human cognitive 

detection of the road surface (Green and Swets, 1966). Figure 7.6 presents the receiver 

operating characteristic points obtained for each of the 20 test participants for each of 

the frequency bands elimination, as well as for the original stimulus of the road surfaces 

studied. The plots contain less than 20 individual points due to the occasional outcome 

of more than one subject producing identical hit and false alarm rates. 

  

(a) Broken road    (b) Broken Concrete 

  

(c) Broken Lane    (d) Cobblestone 

Figure 7.6 ROC points (n=20) for the experiment on the effect of vibration energy 

distribution 
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(e) Concrete    (f) Country Lane 

 

(g) Harsh    (h) Lowbump 

 

(i) Noise    (j) Tarmac 

Figure 7.6 (continued) ROC points (n=20) for the experiment on the effect of vibration 

energy distribution 
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From Figure 7.6, there is a large number of ROC points located in the region of 26.32 to 

34.64 Hz. The results shows that the elimination of this frequency band made it 

impossible to correctly detect smooth surfaces, namely, Tarmac, Cobblestone and 

Concrete. On the other hand, it caused noticeably sensitive levels of human cognitive 

detection for uneven surfaces, namely, Broken, Broken Concrete, Broken Lane, Country 

Lane, Noise, Harsh and Low Bump surfaces. The results suggest that the long-term 

memory model used by average drivers to judge road surface type contains information 

about oscillatory frequencies between 26.32 and 34.64 Hz. 

Based on the similarities in the results of the hit rate percentages (Figure 7.4), the 

detectability value d’ (Figure 7.5) and the ROC point distributions (Figure 7.6), it can be 

noted that all of the results suggest that the elimination of the frequency band 26.32 to 

34.64 Hz made it almost possible for the participants to make correct detections of the 

road surfaces. This was imperative in increasing the sensitivity of the human cognitive 

ability to detect road surface conditions 

7.6 Discussion 

The study discussed in this chapter was designed to measure the effect of vibrational 

energy distribution on the human ability to detect road surfaces based on steering wheel 

vibration. This study was inspired by previous research carried out by Berber-Solano et 

al. (2013) who investigated drivers’ detection of road surface types by measuring the 

sensitivity of this detection by eliminating regions of vibrational energy from the power 

spectral density of the steering wheel acceleration signal. 

As illustrated in Figure 7.4, the percentage hit rate of less than 100 per cent for all ten 

road surfaces suggests the difficulty of achieving fully accurate detection through a 

laboratory task. A possible explanation for these results may be the lack of the presence 

of several key stimuli such as acoustical stimuli (Berber-Solano et al., 2013). Other 

possible causes of low detection include the signal reproduction up to 18% as shown in 

Table 5.5 due to the signal distortion, which is defined as an error phenomenon that 

causes the appearance of extraneous signals in the output of test equipment (BS 6840-2, 

1993). Moreover, the road surface detection problem that appears to emerge from the 
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current findings is a complex human detection mechanism. The measured human 

responses to changing stimuli bandwidth suggest that the long-term memory model (or 

cognitive interpretation mechanism) differed for different road surfaces (Giacomin and 

Woo, 2005). 

This study aims to measure how changes in the vibrational energy within the frequency 

band of 20 Hz to 60 Hz may affect human cognitive detection of road surface types 

based on steering wheel vibration. The results in Figure 7.4 and Figure 7.5 suggest that 

the elimination of the frequency band of 26.32 Hz to 34.64 Hz from the original stimuli 

played a key role in the human cognitive detection of the relevant road surface. These 

relationships may be partly explained by the fact that the elimination of this frequency 

band appeared to produce the highest peaks of vibrational energy resulting from the 

resonance in the vehicle’s dynamic systems such as tyres and steering wheel (Berber-

Solano et al., 2013). Moreover, these results are also consistent with those reported by 

Fujikawi (1998), Pak et al. (1991) and Giacomin et al. (2000), who suggested that a 

frequency band of 23 Hz to 58 Hz is the largest range of frequency that contributes to 

vehicle dynamics, whereas the band of 20 Hz to 35 Hz is defined by steering wheel 

resonance (Kulkarni and Thyagarajan, 2001). 

The distribution of the ROC points presented in Figure 7.6 shown that the distributions 

were scattered which was not consistent with the theory pertaining to the advantages of 

applying more binary procedures proposed by Swets et al. (1961). The theory suggested 

that the distribution data points of more binary procedures were less scattered than those 

from binary procedures. This result may be explained by the fact that the requirement of 

a minimum of two years’ driving experience was not sufficient to help the participants 

detect the vibrations in the different road surface types based on the steering wheel 

vibrations. Zhao et al. (2014) suggested that experience interacts with the location of the 

change and the relevance of the change to driving. It is also in line with Patten et al. 

(2006) which claimed that drivers with an average driving experience of five to ten 

years have more knowledge about the road and changing cognitive tasks than the novice 

drivers. 
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7.7 Conclusion 

This study involved twenty participants who were exposed to vertical steering wheel 

vibration stimuli in a laboratory test bench from ten different road surfaces, namely, 

Broken, Broken Concrete, Broken Lane, Cobblestone, Country Lane, Concrete, Low 

Bump, Harsh, Noise and Tarmac. The objective was to establish the most pertinent 

frequency band from 20 Hz to 60 Hz which, if eliminated from the vibrational energy, 

might affect the level of driver road surface detection. 

The responses given by the participants were collected using the more binary response 

scale from one to five to indicate whether the signal perceived matched the road surface 

shown in front of them. Next, the Theory of Signal Detection Rating Procedure was 

applied to analyse the results. For each frequency bands analysed in this experiment, the 

hit rate, P(S|s) was taken at the proportion of “four and five” scale responses obtained 

from the stimuli which were actually derived from the road surface shown on the board 

while the false alarm, P(S|n) was taken at the proportion of “one, two and three” scale 

responses. 

The findings suggested that the elimination of vibrational energy in the frequency band 

of 26.32 Hz to 34.64 Hz can be highly detrimental to human cognitive detection of road 

surface types. The findings also demonstrate that the frequency band of 26.32 to 34.64 

compromises steering wheel feedback the most, and that the elimination of these 

frequency bands can lead to the correct detection of road surfaces. Meanwhile as the 

results of distribution of the ROC points were scattered, therefore in the next studies 

suggested to just remain the binary response procedure. 

The next chapter will define the optimal approach for the detection transient vibration of 

steering wheel road surface in the frequency band of 20 Hz to 60 Hz according to their 

time-domain waveform. The study will start by applying the signal transformations of 

steering wheel vibration level based on Trapezium numerical integration rules of signal 

processing to measures the process of identification steering wheel vibration road 

surfaces transient vibrations. Next, the study continue by determine the effects of signal 

transformations of steering wheel vibration level based on centred differentiation filter 

of signal processing towards driver road surface detection. 
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CHAPTER 8  

INTEGRATION AND DIFFERENTIATION OF STEERING 

WHEEL VIBRATION SIGNALS 

8.1 Introduction 

Integration and differentiation are basic numerical analysis with a wide range of 

applications in many areas of science including signal processing. Three well-known 

measured data that interrelated through differentiation and integration are acceleration, 

velocity and displacement (Marchesiello and Fasana, 2001; Kerschen et al., 2001; Ding 

et al., 2011) which is often needed when it comes to the application of vibration signal 

data especially in conjunction with numerical modelling systems (Mercer, 2011). 

As concluded in Chapter 6, in order to identify the transient vibrations of road surface 

data signals it has been decided to follow the procedure stated in the Mildly 

Nonstationary Mission Synthesis algorithm. Next, the data will be used as the input for 

automation machine learning to classify the transient vibrations into their similarity 

groups. However, before the classification process begins, it is crucial to ensure that the 

pre-processing data provided is appropriate and simple, as the automation machine will 

be very sensitive while performing the task learning (Everitt et al., 2001; Hair, 2006). 

Previous studies carried out by S. Abdullah et al. (2006) and Berber-Solano et al. 

(2010) used an MNMS algorithm to identify and extract the transient vibrations of 

steering wheel vibration. In both studies, they used the original steering wheel vibration 

that had been measured by an accelerometer in an acceleration quantities unit. Similarly, 

from literature related to the human subjective response to steering wheel vibrations, 

reveals that the human subjective response is very sensitive to acceleration (Miura et al., 
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1959; Miwa, 1967; Reynolds et al., 1977; Verrillo, 1985; Griffin, 1990; Morioka and 

Griffin, 2006; 2009). The effects of steering wheel acceleration signals on driver road 

surface detection have also been discussed in the previous chapter. In fact, the 

International Organization for Standardization 5349-1 (2001) also suggested that for 

practical convenience, the magnitude of vibration needs to be measured by means of an 

accelerometer in terms of acceleration units. 

In spite of that, the question arises as to what would happen if we consider two other 

measurement data of velocity and displacement, as a steering wheel vibration signal 

measurement data? Would these measurements facilitate the MNMS algorithm to 

identify the transient vibrations of steering wheel vibration? Also, would another two 

measurement types facilitate the human subjective response to steering wheel vibration 

for detection of road surfaces? 

In the context of this thesis, the original steering wheel acceleration vibration will be 

integrated twice to give velocity and displacement. It was performed based on the 

assumption that the original steering wheel acceleration vibration contained a great deal 

of noise, whereas the numerical integration analysis applied to the signal, which 

functions as a filter (Worden, 1990), will reduce the noise and consequently allow the 

MNMS algorithm to easily identify the transient vibrations road surface signals. 

Meanwhile, the differentiation numerical analysis will be used to compare both test 

stimuli of original steering wheel acceleration measured by accelerometer, and steering 

wheel acceleration measured by double time-domain differentiation of displacement to 

identify the optimal approach used by humans to detect the road surface type. 

Therefore, without taking for granted of velocity and displacement, this chapter 

describes a set of experimental testing activities performed in order to measure the 

effect of integration and differentiation of steering wheel vibration road surface signals, 

for the identification of transient vibrations by MNMS algorithm and humans’ ability to 

detect the road surface type. This chapter has been divided into three sections. The first 

will be concerned with determining which signal measurement should be used to 

perform the identification of transient vibrations contained in steering wheel vibration 

road surface signals. Following this, the effect of the signal will be measured with 

different approaches in order to assess the ability of humans to detect the road surface 
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type. Finally, the conclusion provides a summary and critique of the findings related to 

the optimal measurement signal for both the identification process of transient 

vibrations and driver road surface detection. 

8.2 The Effect of Time-domain Integration on Transient Vibrations Steering 

Wheel Road Surface  

The time-domain integration of steering wheel vibration road surface signals was 

performed based on the assumption that the original steering wheel acceleration 

vibration contained a great deal of noise. The numerical integration analysis applied to 

the signal, which functions as a filter, will reduce the noise and consequently allow the 

MNMS algorithm to easily identify the transient vibrations road surface signals. To 

investigate how time-domain integration makes the identification of transient vibrations 

waveforms easier or harder, the objectives of this experiment are: 

i. To identify the number of transient vibrations from the different measured 

signals of steering wheel vibration road surfaces based on time-domain 

integration. 

ii. To perform the evaluation of the identified transient vibrations from the different 

measured signals of steering wheel vibration road surfaces based on time-

domain integration with the criteria of transient vibrations stated in the MNMS 

algorithm. 

iii. To conclude which measured signal of steering wheel vibration road surfaces 

will be used to identify the transient vibrations of steering wheel vibration road 

surfaces. 
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8.2.1 Numerical Data Sampling 

Various methods for achieving integration exist, such as the Trapezium rule, Simpson’s 

rule, Tick’s Rule and 3rd Order Corrector (Smyth and Pei, 2000). To examine the 

accuracy of an integrator, the transfer function of the output of the integrator versus the 

exact signal expected can be used (Worden, 1990). The comparison magnitude for each 

transfer function of integration rule is shown in Figure 8.1: 

 

Figure 8.1 The comparison of the magnitudes of the accuracy transfer function 

(Source: Worden, 1990; Smyth and Pei, 2000) 

In the application of signal processing, integration analysis exposes two main problems, 

which are the introduction of low- and high-frequency components (Worden, 1990). 

From Figure 8.1 it can be seen that the Simpson’s and Tick’s rules behave rather poorly 

in the higher frequency ranges by going to infinity. In contrast, the Trapezium rule 

greatly reduces the higher frequency content in the estimated signal and only suffers 

from the introduction of low frequency components, and does not require the use of a 

low-pass filter (Smyth and Pei, 2000; Kerschen et al., 2001; Marchesiello and 

Fasana, 2001). Generally, the Trapezium rule is also very useful for a wide range of 

numerical integration scenarios because of the easy conceptualisation of derivation 

(Wicklin, 2011), and it offers a considerable saving in time (Kerschen et al., 2001; 

Marchesiello and Fasana, 2001). Therefore, for these reasons, the Trapezium rule is 

considered in this research. 
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The numerical-based experiment starts by applying the time-domain integration of the 

Trapezium rule to all ten original steering wheel acceleration vibration signals described 

in Section 5.2, where the steering vibration velocity will be obtained. Furthermore, the 

double time-domain integration analysis is performed to obtain the steering vibration 

displacement. 

The time-domain integration of the Trapezium rule calculation has been performed by 

using both the Time Monitoring (T-MON) module of the LMS
® 

CADA-X 3.5E 

software and MATLAB R2014a software to ensure the signals produced were correct. 

To illustrate an example of the time-domain integration of the Trapezium rule process, 

Figure 8.2 presents the Country Lane and Tarmac, which respectively recorded the 

highest and lowest energy levels among the ten road surfaces studied after applying first 

and double time-domain integration of the Trapezium rule. 

 

(a) Country Lane 

 

(b) Tarmac 

Figure 8.2 Comparison time histories between first (left) and double (right) time-

domain integration of steering wheel acceleration by LMS® CADA-X 3.5E software 

and MATLAB R2014a software 

From the comparison between LMS
® 

CADA-X 3.5E and MATLAB R2014a software in 

producing first and double time-domain integration of steering wheel acceleration in 

Figure 8.2, it is apparent that there are no errors or differences. Hence, since the MNMS 
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algorithm has also been written in MATLAB R2014a software, and runs on Windows-

compatible PCs, in this research the first and double time-domain integration signals 

produced by MATLAB R2014a software have been chosen to minimise computational 

errors when associated with the MNMS algorithm later. 

After all ten original steering wheel acceleration vibration signals have been 

transformed to the velocity and displacement signals, the total number of signals used in 

this experiment is 30 vibration road surface signals and subsequently the MNMS 

algorithm is applied to each signals for the purpose of transient vibrations identification 

and extraction. 

By using the MNMS algorithm, all 30 vibration road surface signals were decomposed 

into twelfth order Daubechies wavelets (Giacomin et al., 2000) in the frequency range 

of 0 to 60 Hz. These were grouped, according to the natural frequency energy 

distribution of the signal, into four wavelet groups. 

Figure 8.3 presents the power spectral density (PSD) of first (left) and double (right) 

time-domain integration for Country Lane and Tarmac, which recorded the highest and 

the lowest energy levels among the ten road surfaces studied, respectively, showing the 

wavelet group distribution. 

 

(a) Country Lane 

Figure 8.3 Comparison PSD showing the four wavelet groups distribution between first 

(left) and double time-domain integration (right) of steering wheel acceleration by 

LMS® CADA-X 3.5E software and MATLAB R2014a software 
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(b) Tarmac 

Figure 8.3 (continued) Comparison PSD showing the four wavelet groups distribution 

between first (left) and double time-domain integration (right) of steering wheel 

acceleration by LMS® CADA-X 3.5E software and MATLAB R2014a software 

The first region of frequency distribution, which is from 20 Hz to 60 Hz, is mostly 

defined by higher frequency modes of the chassis and by tyre resonances (Pottinger et 

al., 1986; Giacomin et al., 1999). Meanwhile, the vibration energy distributed in the 

range of 13 Hz to 20 Hz may reflect the low frequency flexible body modes of the 

chassis. This is followed by the regions that can be related to the behaviour of 

suspension units, separately or with the rigid body motion of the engine/transmission 

unit, distributed within 5 Hz and 13 Hz. Finally, the region between 0 Hz and 5 Hz is 

associated with the rigid body motion of the automobile chassis on the main suspension. 

8.2.2 Results and Analysis 

In the MNMS algorithm, transient vibrations identification is achieved in each wavelet 

group time history by means of a threshold trigger level that is specific to the wavelet 

group. In this numerical-based experiment, a threshold trigger level (TTL) value of 2.6 

is chosen, which is known as a critical trigger level for a driver to detect the road 

surface types (Berber-Solano et al., 2010). Table 8.1 presents the number of transient 

vibrations identified in each wavelet group for all 30 vibration road surface signals. 
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Table 8.1 Number of transient vibrations identified in each wavelet group (WG) from 

different measures of steering wheel road surface signals  

 

The comparative table above intends to show the effect between the signal produced by 

the time-domain integration of Trapezium rules of original steering wheel acceleration 

vibration signals and the number of identified transient vibrations. From Table 8.1 it can 

be observed that the identification of transient vibrations is decreased up to 38% when 

steering wheel acceleration vibration is applied by the first time-domain integration for 

the Country Lane surfaces and decreased another 2% after second time-domain 

integration. Therefore, it is apparent from Table 8.1 that the total number of transient 

vibrations decreased when time-domain integration was applied to the original steering 

wheel acceleration vibration. It seems possible that, while producing velocity and 

displacement signals, the level of noise contained in the signal has reduced. 



 

122 
 

Consequently, the important peaks which exceed the TTL value of 2.6 have also been 

removed. 

The transient vibrations distributed in wavelet group 1 for the frequency band of 20 Hz 

to 60 Hz was then been extracted. The process used to compares the transient vibrations 

waveforms produced between original acceleration and both signals produced by the 

first and second time-domain integration. Figure 8.4 presents examples of the results for 

the first five extracted transient vibrations of the Tarmac road surface. The first five 

extracted transient vibrations were ordered from the highest amplitude to the lowest 

amplitude. 

 

Figure 8.4 Transient vibrations of Tarmac surface identified and extracted within the 

target frequency interval of 20 to 60 Hz for original steering wheel acceleration 

vibration 
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Figure 8.4 (continued) Transient vibrations of Tarmac surface identified and extracted 

within the target frequency interval of 20 to 60 Hz for the first (b) and double time-

domain integration (c) of steering wheel acceleration vibration 

In Figure 8.4 there is a clear trend of decreasing value of amplitude for highest 

amplitude. For instance, the highest amplitude value for transient vibrations of 

acceleration is 1.06 m/s
2
, 0.35 m/s

2
 for velocity and keeps decreasing to 0.05 m/s

2
 for 

displacement. Other than that, it shows that the first transient vibrations for both 
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acceleration and displacement are at the same start and end position in the time-domain, 

starting at 0.80 seconds and ending at 0.85 seconds. Furthermore, both shape and 

oscillation for all the identified transient vibrations become smoother after applying 

time-domain integration to the original steering wheel acceleration vibration, whereby 

transient vibrations of displacement provided the better results both in shape and 

oscillation, which are closer to the definition of transient vibrations identified by the 

MNMS algorithm. 

Considering the effect of the signal produced by the time-domain integration of 

Trapezium rules of the original steering wheel acceleration vibration signals on both the 

number and the waveforms of identified transient vibrations, it can be noted that all of 

the results suggest that displacement was better at identifying the transient vibrations of 

steering wheel vibration road surfaces. 

8.2.3 Discussion 

The present numerical-based experiment was designed to determine the effect of time-

domain integration on steering wheel vibration road surfaces in identifying and 

extracting the transient vibrations. The original steering wheel acceleration vibration 

was integrated twice to give velocity and displacement. The comparison of results of 

this numerical-based experiment shows that the total number of transient vibrations 

(Table 8.1) becomes smaller when time-domain integration is applied, and both shape 

and oscillation (Figure 8.4) are closer to the definition of transient vibrations stated by 

the MNMS algorithm. This result may be explained by the fact that the functioning of 

integration process acts as a filter to the signal, as Worden (1990) suggested that in the 

Trapezium rules a low-pass Butterworth filter was used on the input to produce a signal 

in the range 0 to 200 Hz, which will reduce the noise in steering wheel vibration and 

consequently the MNMS algorithm can easily identify and extract the transient 

vibrations. These results also seem to be consistent with assumptions stated earlier 

(Section 8.2) – that the original steering wheel acceleration vibration contained a 

significant amount of noise, whereas the numerical integration analysis applied to the 

signal, which functions as a filter, will reduce the noise and consequently make it easy 

for the MNMS algorithm to identify and extract the transient vibrations. 
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However, the results still cannot promise that displacement steering wheel vibration is 

the best measurement signal for a human to detect the road surfaces. Other than that, the 

main issue is the limitations of the laboratory facility used during this research 

(previously discussed in Section 4.3), which pertained to the control and data 

acquisition being measured in the acceleration measurement (LMS International, 2002). 

Therefore, the displacement signal of steering wheel road surface vibration needs to be 

transformed back to the acceleration signal. The transformation of the signal will be 

compared with original signal in order to identify the optimal approach for driver road 

surface detection – either the test stimuli that originated measured from the 

accelerometer, as discussed in Chapter 5, or the test stimuli that were produced by the 

numerical processes. To obtain the answer, therefore, the theory of numerical 

differentiation of time-domain needs to be explored and applied to the research test 

stimuli; consequently, both original acceleration by accelerometer (AA) and 

acceleration by double differentiation of displacement (AD) processes will be tested by 

humans. 

8.3 The Effect of Time-domain Differentiation on Drivers’ Steering Wheel 

Transient Vibrations Detection 

Further experiments from the previous numerical-based experiment are required to 

overcome the limitations of the laboratory facility used during this research, which was 

built in the Human Centred Design Lab, Brunel University whereby the control and data 

acquisition being measured in the acceleration measurement (LMS International, 2002). 

This laboratory-based experiment will compare both test stimuli of steering wheel 

acceleration measured by accelerometer, as discussed in Section 5.2.1, and the double 

time-domain differentiation of displacement. 

In order to identify the optimal measurement signal for driver road surface detection, the 

objectives of this experiment are: 

i. To measure both the percentage of hit rate and the detectability index of the 

detection of transient vibrations steering wheel road surface based on steering 

wheel acceleration vibration by accelerometer (AA). 
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ii. To measure both the percentage of hit rate and the detectability index of the 

detection of transient vibrations steering wheel road surface based on steering 

wheel acceleration vibration by double differentiation of displacement (AD). 

iii. To define the optimal approach for the detection of transient vibrations steering 

wheel road surface. 

8.3.1 Test Stimuli 

Three common approaches of the difference formula are the backward difference, 

forward difference and the centred difference. Among the three approaches, centred 

differences are the most stable because the errors for the forward difference and 

backward difference tend to have opposite signs, while the centred difference will 

average the other two approaches, which would give a better result than either alone 

(Worden or Tomlinson, 2000). Additionally, centred difference formulae also 

implement the differentiation as a digital filter or recursion relation. In the most 

practical applications which needed to reduce high frequency components of the signal, 

suggested that the five-point centred difference is often very useful (Worden, 1990; 

Worden and Tomlinson, 2000). Therefore, for these reasons, the five-point centred 

difference is considered in this research. 

Firstly, the laboratory-based experiment starts by applying the double time-domain of 

five-point centred differences to all ten steering vibration displacement signals produced 

previously by double time-domain integration analysis, described in section 8.2. 

The double time-domain of five-point centred differences calculation has been 

performed by using both the Time Monitoring (T-MON) module of the LMS
® 

CADA-X 

3.5E software and MATLAB R2014a software to ensure the signals produced were 

correct. To illustrate the example, Figure 8.5 presents the Country Lane and Tarmac, 

after applying the double time-domain of five-point centred differences. 
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(a) Country Lane 

 

(b) Tarmac 

Figure 8.5 Comparison of time histories and PSD of acceleration by double time-

domain differentiation of displacement process by LMS® CADA-X 3.5E software and 

MATLAB R2014a software 

From the comparison between LMS
® 

CADA-X 3.5E and MATLAB R2014a software in 

producing the signals of acceleration by double time-domain differentiation of 

displacement in Figure 8.5, it is apparent that there are no errors or differences. Hence, 

since the MNMS algorithm has also been written in MATLAB R2014a software, and 

runs on Windows-compatible PCs, the signal of acceleration by double time-domain 

differentiation of displacement produced by MATLAB R2014a software has been 

chosen to minimise computational errors when associated with the MNMS algorithm 

later. 

Figure 8.6 shows the comparison of time histories and PSD between the original 

acceleration by accelerometer (AA) and acceleration by double time-domain 

differentiation of displacement (AD).  
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(a) Country Lane 

 

(b) Tarmac 

Figure 8.6 Comparison of time histories and PSD between original acceleration by 

accelerometer and acceleration by double time-domain differentiation of displacement 

Meanwhile, the accuracy of the signal produced was quantified by measuring the r.m.s. 

difference between the original acceleration by accelerometer and acceleration by 

double time-domain differentiation of displacement, and the results are shown in Table 

8.2. 

Table 8.2 Absolute maximum percent errors between acceleration by accelerometer and 

acceleration by double time-domain differentiation of displacement 
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The value of absolute maximum percent error is presented to two decimal places, as 

suggested by the rule of thumb of statistics in presenting decimal places by Spatz (2008) 

for the accuracy of calculation results. The results of the acceleration signals produced 

by double time-domain differentiation of displacement, as shown in Table 8.2, varied 

between 4% and 17% with respect to the original acceleration by accelerometer. The 

absolute maximum percent error between AA and AD was consistent with the studies 

by Worden and Tomlinson (2000) who suggested that the range error between measured 

and estimated data of the 3.4% to 17% is remarkably good. 

Next, in the same manner described in Section 8.2.1, the MNMS algorithm was applied 

to all the signals of acceleration by double time-domain differentiation of displacement, 

which were decomposed into 12 wavelet levels in the frequency range of 0 to 60 Hz. 

The transient vibrations are identified and extracted within the target frequency interval 

of 20 to 60 Hz, as the frequency range plays a key role in human cognitive detection of 

the road surface type and signal threshold trigger level value of 2.6 (Berber-Solano et 

al., 2010). Table 8.3 presents the number of transient vibrations identified and extracted 

in each wavelet group for the signals of acceleration by double time-domain 

differentiation of displacement. 

Table 8.3 Number of transient vibrations identified in each wavelet group (WG) for the 

signal of acceleration by double time-domain differentiation of displacement 

 

Data from Table 8.3 can be compared with the data in Table 8.1 by focusing on wavelet 

group 1, which is known as the frequency range that plays a key role in human 

cognitive detection of the road surface type. As shown in Table 8.3, the number of 

transient vibrations for Broken Concrete, Cobblestone and Noise are the same as in the 
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original acceleration signal by accelerometer presented in Table 8.1. The number of 

transient vibrations of Broken and Tarmac identified and extracted in wavelet group 1 

for the signal of acceleration by double time-domain differentiation of displacement 

were decreased, in contrast with Broken, Country Lane, Concrete, Harsh and Low 

bump. 

From the total number of transient vibrations identified and extracted for both 

acceleration by accelerometer and the double time-domain differentiation of 

displacement, it is apparent that the total number of transient vibrations identified and 

extracted from the signal of acceleration by double time-domain differentiation of 

displacement was decreased with respect to the number of transient vibrations of 

original acceleration by accelerometer. The results seem consistent with the theory of 

numerical differentiation processes, whereby the five-point centred difference is capable 

of reducing high frequency components of the signal (Worden, 1990), which are able to 

remove the important peak of transient vibrations contained in acceleration by double 

time-domain differentiation of displacement, which leads to a decreasing number of 

transient vibrations. 

Figure 8.7 presents examples of the results for the first five extracted transient 

vibrations of the Tarmac road surface. The first five extracted transient vibrations were 

ordered from the highest amplitude to the lowest amplitude. 
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Figure 8.7 Transient vibrations of Tarmac surface identified and extracted within the 

target frequency interval of 20 to 60 Hz for the acceleration by double time-domain 

differentiation of displacement 

Transient vibrations identified and extracted from the acceleration by double time-

domain differentiation of displacement shown in Figure 8.7 can be compared with the 

transient vibrations in Figure 8.4(a), which show some similar characteristics, such as 

the same position of transient vibrations in time-domain. For instance, the first transient 

vibrations in Figure 8.7 have the same position in time-domain with the first transient 

vibrations in Figure 8.4(a). Meanwhile, some transient vibrations have the same 

position in time-domain but differ according to the order of their amplitude. For 

instance, transient vibrations number 2 in Figure 8.7 and transient vibrations number 3 

in Figure 8.4(a) have the same position time-domain, but the amplitude of transient 

vibrations number 2 in Figure 8.7 is higher than transient vibrations number 3 in Figure 

8.4(a). 

From a comparison of Figure 8.7 and Figure 8.4(a), it is suggested that the transient 

vibrations identified and extracted from both acceleration by double time-domain 

differentiation of displacement and accelerometer will lead to different positions in both 

time-domain and order of amplitude. 
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The differences in characteristics between transient vibrations identified and extracted 

from the acceleration by accelerometer and double time-domain differentiation of 

displacement explained above are used as selection criteria for these test stimuli of the 

laboratory-based experiment. The stimuli which have less same number of transient 

vibrations for both position in time-domain and the order of amplitude will be chosen as 

the test stimuli, namely Country Lane, Broken Lane, Noise and Tarmac. 

Meanwhile, Broken road surfaces will be used as a baseline signal because the transient 

vibrations identified and extracted for both accelerometer and double time-domain 

differentiation of displacement does not meet with any of the selection criteria stated, as 

illustrated in Figure 8.8 below: 

 

Figure 8.8 Transient vibrations of Broken surface identified and extracted within the 

target frequency interval of 20 to 60 Hz for the acceleration by double time-domain 

differentiation of steering wheel displacement vibration 
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Figure 8.8 (continued) Transient vibrations of Broken surface identified and extracted 

within the target frequency interval of 20 to 60 Hz for the acceleration by double time-

domain differentiation of steering wheel displacement vibration 

From Figure 8.8 it is apparent that two transient vibrations numbers have the same 

position in time-domain and order of amplitude for both of acceleration by 

accelerometer and double time-domain differentiation of displacement, these being 

transient vibrations numbers 2 and 3. 

Therefore, the test stimuli used in this laboratory-based experiment will consist of five 

types of road surfaces for each acceleration vibration signal by accelerometer and 

double time-domain differentiation of displacement, which is ten test stimuli in total. 

For each of the ten test stimuli, their first ten transient vibrations have been used to 

manipulate the signal whereby the transient vibrations were eliminated from the 

vibration signal. The elimination process for each of the transient vibrations 

successfully applied high-pass filters and band-pass filters by means of digital 

Butterworth filters, which were constructed in the LMS
®
 TMON software (LMS 

TMON, 2002). 
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8.3.2 Test Protocol 

Following an advertisement related to the experiment on the “Get Involved” section of 

the intraBrunel home page, any interested participants were approached by the 

researcher via email. Each potential participant was given an information sheet and a 

consent form describing the purpose, procedures, risks and time commitment entailed in 

their participation. Next, an appointment was made to carry out the experiment with 

those who declared an interest in participating, and who met the primary requirements 

of the study (details described in Section 6.4). All participants were volunteers and they 

had the right to withdraw from the experiment at any time. 

Upon their arrival at the laboratory, each of the participants was presented with a short 

questionnaire to gather information regarding their anthropometry, health and history of 

previous vibration exposures. Prior to the experiment, each participant was given 

instructions pertaining to the experimental method, as well as to the laboratory’s health 

and safety procedures. They were required to remove any articles of heavy clothing 

such as coats, along with any watches or jewellery. They were then asked to adjust the 

position of the seat and the angle of the backrest to simulate a driving posture that was 

as realistic as possible. An example of the participants’ posture during the experiment 

was shown in Figure 6.2. 

Since the grip force applied to the steering wheel has been known to affect the 

transmission of vibrations to the hand-arm system (Morioka and Griffin, 2009), the 

participants were required to keep a constant palm grip on the steering wheel using both 

hands. Finally, they were asked to fix their eyes on a board placed directly in front of 

the steering wheel simulator, which displayed a photograph of the road surface being 

studied (see Figure 4.2). The room temperature in the laboratory was maintained within 

the range of 20 to 25°C to avoid any significant environmental effects on the 

participants’ skin sensitivities (ISO13091-1, 2001). 

Each of the five road surfaces studied consisted of ten manipulated stimuli for both 

original acceleration vibration by accelerometer and acceleration vibration by double 

time-domain differentiation of displacement, plus a further ten stimuli chosen randomly 

from other stimuli sets of the other four road surfaces used as background noise stimuli. 
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The duration of each individual test stimulus was 10 seconds. Prior to commencing 

formal testing, the 20-second exposure stimuli of each of the four stimuli types, which 

would be used later, were provided to participants in order that they could become 

acquainted with the detection task. Each participant performed 30 detections with 

approximately 8 minutes for each road surface studied, with a total of 150 detections 

over the course of the 40 minutes allocated to complete the experiment. Figure 8.9 

illustrates the experiment design adapted during this experiment. 

 

Figure 8.9 Experiment design 

During the experiment, the participants were asked to judge the actuated acceleration 

stimulus transmitted to them through the steering wheel. They were instructed to report 

“yes” if actuated acceleration stimulus transmitted to them through the steering wheel 

was coming from the road surface shown on the photograph on the board directly in 

front of the test bench, and “no” if otherwise. Each series of stimuli was separated by a 

5-second gap to allow participants enough time to indicate their detection responses to 

the stimuli directed at them. Due to the large total number of stimuli detected and the 

time required, the experiment was designed to take into consideration learning 

(Giacomin and Woo, 2004) and fatigue effects (Giacomin and Abrahams, 2000; 

Giacomin and Screti, 2005), and therefore, the order of stimuli arrangements in each 

series was fully randomised for each participant. 

The facility and the protocol of the experiment was approved by the College of 

Engineering, Design and Physical Sciences Research Ethics Committee, Brunel 

University (Ref No: 4407-MHR-Nov/2016- 4522-2). 
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8.3.3 Test Participants 

In order to minimise the margin of error in the detection tasks, the laboratory-based 

experiment described here used a non-probability purposive sampling strategy 

(Coolican, 2009), with participants who had driving experience of a minimum of two 

years as a primary characteristic for sample selection, which also served as a controlled 

parameter because it suggested that they were able to identify changes in a detection 

task and had more knowledge related to road surfaces (Zhao et al., 2014). Meanwhile, 

parameters relating to gender and physical body mass (weight and height) were not 

controlled, as previous research suggested that there were no significant differences 

between genders in the subjective experience of hand-arm vibration (Mansfield and 

Griffin, 2000; Neely and Burström, 2006; Jeon et al., 2009). 

A total of twenty (n=20) university students participated in this experiment. Both 

controlled and uncontrolled parameters of the participants are summarised in Table 8.4 

below: 

Table 8.4 Anthropometrics and driving experience of test participants 

 

The mean values and standard deviations of the height and mass of the test participants 

were close to the 50
th

 percentile values for the UK population (Pheasant and 

Haslegrave, 2005). The average driving experience of participants in Table 8.4 is over 8 

years, which means they can be categorised as experienced drivers, comparable with 

studies done by Borowsky et al., (2010) who suggested that novice drivers had an 

average of 2.7 months of driving experience, experienced drivers had an average of 7.3 

years, and older drivers had an average of 37.5 years. 
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8.3.4 Results and Analysis 

The results of the experimental tests were analysed using the Theory of Signal 

Detection of Rating Procedure (Green and Swets, 1966) as the analytical framework. 

They were summarised by the Hit Rate (%), Detectability Index (d’) and Receiver 

Operating Curve (ROC) points. 

Figure 8.10 presents a bar chart containing the percentage of correct detection from both 

the original steering wheel acceleration vibration by accelerometer and double time-

domain differentiation of displacement for each of the five road surfaces investigated in 

the experiment. A bar chart, or bar graph, is a chart that uses either horizontal or vertical 

bars to show comparisons among categories (Coolican, 2009). The percentage of correct 

detection is presented along the ordinate, while the name of the road surface is 

presented along the abscissa. For each acceleration vibration by accelerometer or 

acceleration vibration by double time-domain differentiation of displacement road 

surface stimulus the hit rate was taken to be the proportion of “yes” responses obtained 

from the stimuli that were actually from the presented road surface. The false alarm rate 

was taken to be the proportion of “yes” responses obtained from the stimuli that were 

not derived from the road surface which was being presented. 

 

Figure 8.10 Bar chart showing the rate of hit detection for different approaches of 

steering wheel acceleration vibration 
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From Figure 8.10 it can be noted that the percentage of correct detection relative to the 

acceleration vibration by accelerometer was found to be systematically higher than that 

of the acceleration vibration by double time-domain differentiation of displacement. A 

two-tailed normally distributed t-test performed between the correct detection response 

results of the two acceleration vibration approaches suggested that the differences were 

statistically significant at a 95% confidence level (𝑝 =  0.04 <  0.05) for all five road 

surfaces. The results in Figure 8.10 suggest that the correct detection of road surfaces 

was higher when the original steering wheel acceleration vibration by accelerometer 

was used as a measurement for the laboratory-based experiment. It seems that these 

results might be related to the unstable numerical processes that produced a significant 

amount of noise to the signal produced during the double time-domain differentiation of 

displacement (Anderssen and Bloomfield, 1974). 

Further analysis continues, which is quantified in terms of signal detection sensitivity. 

Figure 8.11 illustrates the detectability index as a function of the steering wheel 

acceleration vibration by accelerometer and double time-domain differentiation of 

displacement. In signal detection theory, the sensitivity of the observer is denoted as d’, 

and the higher the d’ value, the higher the hit rate and lower the number of false alarms 

(Woo and Giacomin, 2006). In other words, the greater the d’ value, the more sensitive 

is the observer’s reaction to the particular signal. 

 

Figure 8.11 Observer sensitivity, d’ for different approaches of steering wheel 

acceleration vibration 
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Figure 8.11 indicates that acceleration vibration by accelerometer mostly contributes to 

driver sensitivity in detecting the road surface type. A two-tailed normally distributed t-

test performed between the signal detection sensitivity of the two acceleration vibration 

approaches suggested that the differences were statistically significant at a 95% 

confidence level (𝑝 =  0.005 <  0.05) for all five road surfaces. Apart from the 

unstable signal produced from the double time-domain differentiation processes, these 

results suggest that the sensitivity of driver road surface detection is affected by the 

mechanoreceptors in the skin, namely the Pacinian corpuscle receptor.  

The pattern of the curve and the qualitative human responses for both hit rate and d’ 

value showed similarities. It can be concluded that the original steering wheel 

acceleration vibration by accelerometer is the optimal approach for the detection of 

transient vibrations steering wheel road surface. 

Further analyses were conducted by means of ROC distribution points to verify which 

approaches of steering wheel acceleration vibration can optimise human cognitive 

detection of the road surface (Green and Swets, 1966). 

Figure 8.12 presents the receiver operating characteristic points obtained for each of the 

20 test participants for both steering wheel acceleration vibration by accelerometer (●) 

and double time-domain differentiation of displacement () for each of the five road 

surfaces studied. The plots contain less than 20 individual points due to the occasional 

outcome of more than one subject producing identical hit and false alarm rates. 
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Figure 8.12 ROC points (n=20) for different approaches of steering wheel 

acceleration vibration 

In Figure 8.12, the ROC points are distributed closer to the y-axis, which represents a 

perfect observer (Fawcett, 2006) for both approaches of steering wheel vibration. The 

experienced drivers who participated in this experiment showed that they were capable 

of detecting the road surfaces either when vibrations were produced from the original 

measured by the accelerometer or signals was produced from the double time-domain 

differentiation of displacement processes. 

Taking into account similarities in the results of the hit rate percentages, the 

detectability index d’ and the ROC point distributions, it can be noted that all of the 

results suggest that the original steering wheel acceleration vibration by accelerometer 

made it possible for the participants to make correct detections of the road surfaces.  
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8.3.5 Discussion 

This laboratory-based experiment set out to determine which approach of acceleration 

steering wheel vibration is optimal regarding driver road surface detection. Taking into 

account the similarities of the results, the findings from this study suggest that 

acceleration by the accelerometer is the optimal approach for humans to detect road 

surfaces. In general, the findings of the current study met the general requirement for 

practical convenience provided by the International Organization for 

Standardization 5349-1 (2001), by which the magnitude of vibration is measured by 

means of accelerometers. 

According to the biodynamic of the human hand-arm system, the subjective response 

will increase when the magnitude of the vibration increases (Morioka and Griffin, 2006; 

2009), which is affected by the well-known response of the Pacinian mechanoreceptors 

(Verrillo, 1966; Reynolds et al., 1977). With reference to Table 8.2, the magnitude of 

vibration for the acceleration by double time-domain differentiation of displacement is 

higher than that by accelerometer; however, in this laboratory-based experiment it 

suggests that the higher magnitude of the vibration is not used for driver road surface 

judgement. A possible explanation of this situation is the numerical differentiation 

procedures known to lead to unstable processes (Anderssen and Bloomfield, 1974) 

because the measurements yield intrinsic errors, which are often much less accurate 

than the limit of the machine used, and there exists the effect of loss of significance 

(Worden, 1990; Ahnert and Abel, 2007). The unstable processes also contributed to 

more noises to the signal produced (Worden, 1990), which will lead to excessive 

artificial stimuli. Therefore, the results are consistent with the nature of the supernormal 

stimuli concept suggesting that excessive artificial stimuli will eventually lead to a 

negative response (Dawkins and Guilford, 1995; Drănoiu et al., 2002; ten Cate and 

Rowe, 2007) to the receiver. 

Regarding the excessive artificial stimuli, which in this study is stimuli produced by the 

double time-domain differentiation of displacement, the experienced drivers who 

participated in this experiment successfully differentiated between that and the original 

acceleration by accelerometer. The average driving experience of participants in this 

experiment is over 8 years, which means they can be generally categorised as 
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experienced drivers; therefore, it is consistent with previous results suggested by Zhao 

et al. (2014) and Patten et al. (2006) stating that those with average driving experience 

of five to ten years have more knowledge about the road and changing cognitive tasks 

than novice drivers. 

8.4 Conclusion 

This chapter described a set of experimental testing activities performed in order to 

measure the effect of integration and differentiation of steering wheel vibration signals 

on the identification of transient vibrations and the ability of humans to detect the road 

surface type. 

The first section of this chapter is concerned with determining which signal 

measurement should be used to perform the identification of transient vibrations 

contained in steering wheel vibration signals. The numerical-based experiment was 

designed to determine the effect of time-domain integration on steering wheel vibration 

road in identifying and extracting the transient vibrations. The original steering wheel 

acceleration vibration was integrated twice to give velocity and displacement. The 

comparison of results of this numerical-based experiment shows that the total number of 

transient vibrations becomes smaller when the time-domain integration is applied, and 

both shape and oscillation are closer to the definition of transient vibrations stated by 

the MNMS algorithm. 

However, concerning the limitations of the laboratory facility used during this research 

and for practical convenience, those displacement vibration signals were applied to the 

double differentiation to produce the acceleration vibration signal. Therefore, the 

laboratory-based experiment was designed to compare both test stimuli of steering 

wheel acceleration measured by accelerometer and double time-domain differentiation 

of displacement, which eventually suggested that the acceleration steering wheel 

vibration by accelerometer is the optimal approach to be used by humans to detect the 

road surface type. 
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Taking into account the findings from both the numerical and laboratory-based 

experiments in this chapter, the transient vibrations identified and extracted from the 

original steering wheel acceleration by accelerometer will be used to explain the main 

time-domain features of steering wheel vibration road surface transient vibrations. An 

activity to classify the transient vibrations into the same group will bring the research to 

the answer, which will be discussed in the next chapter. 
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CHAPTER 9  

CLUSTERING CLASSIFICATION ON HIGH-DIMENSIONAL OF 

TRANSIENT VIBRATIONS 

9.1 Introduction 

The classification of high-dimensional data is an important problem in many different 

areas and deals with data of widely varying dimensionality (Maaten and Hinton; 2008) 

such as difficult to classify such high numbers of dimensional in a meaningful manner 

(Amir et al., 2013). According to Banchoff (1990), high-dimensional data are known 

whenever the dataset contains more than four features to describe the dataset itself. 

In 2014, Mwangi et al. has performed the classification of high-dimensional data to 

identify hidden population patterns of healthy brain dataset. A dimensionality reduction 

techniques as a proposed method was able to classify 93 study subjects into two very 

distinct groups which corresponded to subjects’ gender labels. The application of 

dimensionality reduction techniques can be also found broadly in Geological domain 

(Balamurali and Melkumyan, 2016) to detect the quality of mineral resources. Since the 

dimensionality reduction technique allows to easily see the patterns of the dataset, the 

most significant information within the dataset can be well captured. 

Studies that align with the classification of vibrations used different features of time-

domain to describe and represent their dataset. For example, Jiang et al., (2014) used 

twelve features of time-domain to measure the sensitivity of fault diagnosis of rotating 

machinery which included a most relevant vibrational statistics, namely mean, standard 

deviation, root mean square, skewness, kurtosis crest factor and Vibration Dose Value 

(Bellmann, 2002). Those vibrational statistics of time-domain features also have been 
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used in few studies related to the vibrations data previously such as Güneş et al. (2011), 

Yiakopoulos et al. (2011), Soualhi, et al. (2014) and Hanus et al. (2016). 

In spite of that, some questions still remain to be answered such as could the vibrational 

statistics of time-domain features in previous studies be used to describe the transient 

vibrations of steering wheel road surface scenarios? What are the possible time-domain 

features that help to describe the transient vibrations of steering wheel road surface? 

What are the similarities within the identified transient vibrations of steering wheel road 

surface?  

In this chapter, the high-dimensional reduction techniques associated with clustering 

methods were used to identifying the possible time-domain features to describe the 

transient vibrations of steering wheel road surface. It will then go on to the classification 

process which describing the similarities characteristics of transient vibrations 

according to their time-domain features. 

9.2 Clustering Classification of Steering Wheel Transient Vibrations 

Towards Perception Enhancement of steer-by-wire system, several previous studies 

have put their main objective of studies to determine the optimal steering wheel 

feedback to drivers (Giacomin and Woo, 2004; 2005; Berber-Solano and Giacomin, 

2005; Giacomin and Berber-Solano, 2006; Berber-Solano et al., 2010; Berber-Solano et 

al., 2013) by quantifying the sensitivity and ability of driver to detect a road surface 

types. However, the optimal steering wheel vibration feedback gain could not be 

defined without considerate the features of transient vibrations of road surface. The 

proposed process is important because the transient vibrations of road surface might 

comprises the similar features of vibration stimuli which hence bring the similar 

information and consequently influence sensitivity and ability of driver to detect road 

surface types. 
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Thus, the objectives of this numerical-based experiment describes in this chapter are: 

i. To identify the possible time-domain features that can describe the transient 

vibrations steering wheel road surface 

ii. To cluster the high dimensionality of time-domain features of the transient 

vibrations steering wheel road surface dataset 

iii. To classify the transient vibrations steering wheel road surface according to their 

similarity of time-domain features 

9.2.1 Pre-processing and Features Extraction of Transient Vibrations 

In this numerical-based experiment, the first step is to identify and extract the transient 

vibrations of steering wheel road surface by using the MNMS algorithm. A total of 256 

transient vibrations that been found previously discussed in Chapter 8 (Refer Table 8.1) 

will be used for classification process. The transient vibrations are deviated from the 

normal time-domain condition (Giacomin et al., 2000) which abundant importance 

transient information (Jiang Jiang et al., 2014), hence can be used to describe and 

represent the dataset to describe the similarities within the identified transient vibrations 

of road surface.  

As till the date, the time-domain features in the context of transient vibrations steering 

wheel road surface is not yet been fully discussed anywhere, thus, as many as possible 

features that can be indicate and describe the transient vibrations will be used. However, 

it is difficult to cluster such high numbers of dimensions in a meaningful manner (Amir 

et al., 2013). Therefore, t-Distributed Stochastic Neighbor Embedding (t-SNE) is 

applied to reduce the high numbers of dimensions of transient vibrations dataset into a 

possible two-dimensional space.  

There are two parameters for the implementation of t-SNE namely initial dimensions 

and perplexity value. Initial dimensions are a preprocessing reduction with PCA to 

eliminate the most likely noise with skipping components with virtually no variance 
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which makes the computation faster. In this numerical-based experiment, the initial 

dimension is set to be seven vibrational statistics of time-domain features, namely 

mean, standard deviation, root mean square, skewness, kurtosis crest factor and 

Vibration Dose Value (Bellmann, 2002) since most previous studies used this parameter 

to describe their vibrations dataset (Güneş et al., 2011; Yiakopoulos et al., 2011; 

Soualhi et al., 2014; Jiang et al., 2014; Hanus et al., 2016). 

Whereas, perplexity value is define as a smooth measure of the effective number of 

neighbours. According to Maaten and Hinton (2008) typical values of perplexity 

parameter vary between 5 and 50. The perplexity parameter values of 5, 10, 30 and 50 

have been used in this numerical-based experiment. The value of 30 defined as a default 

value of the Gaussian kernel (Maaten and Hinton, 2008) while 10 is most used in the 

literatures (Frid and Lavner, 2014; Mwangi et al., 2014). 

An implementation of t-SNE algorithm in this study been written in MATLAB R2014a 

software, and runs on Windows-compatible PCs which provided elsewhere at Maaten 

and Hinton (2008) used to reduce the seven-dimensionality of time-domain features of 

transient vibrations to a two-dimensional space and the results shows in Figure 9.1. As 

suggested by Maaten and Hinton (2008), the minimum times to run the t-SNE was ten 

times and selects the solution with the lowest Kullback-Leibler divergence of the 

objective function as a final visualisation. Notably, the axes of the low-dimensional 

spaces are given in arbitrary units (Maaten and Hinton, 2008) while the label represents 

the total number of road surfaces (n=10). 
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(a) Perplexity value, p = 5   (b) Perplexity value, p = 10

 

(c) Perplexity value, p = 30   (d) Perplexity value, p = 50 

Figure 9.1 Results of seven-dimensional mapping into two-dimensional visualisation of 

transient vibrations data sets with different perplexity parameter values 

In Figure 9.1, the visualisation of the seven-dimensional time-domain features of 

transient vibrations dataset were constructed by transforming the datasets using 

different perplexity value to two-dimensional space which clearly shows two different 

situations of results. 

The first situation is the perplexity value 30 and 50, construct a “ball” (Maaten and 

Hinton, 2008) in which the structure of transient vibrations data is too complex to be 

captured well in two-dimensional space. In particular, the perplexity values of 30 and 50 

are very chaotic which is almost without any class information. Meanwhile, for lowest 

perplexity value of 5 and 10 outperforms perplexity value of 30 and 50 whereby they 

reveal that much of the local structure of the datasets is captured however the 

boundaries of the cluster are ambiguous of which are difficult to identify and 

interpreted. 
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From Figure 9.1, the results created two assumptions. In the context of machine 

learning method performance, the dimensionality reduction techniques can be seen as a 

loss of information, which could be described by how much these methods lose in 

constructing models (Platzer, 2013). Hence the first assumption created from the result 

is by increasing the number of time-domain features to describe transient vibrations 

dataset, the possibility of information loss will reduced eventually the dataset can be 

capture and structure well in two-dimensional space. 

In the fact that, the selection value of perplexity effect the robustness of performance in 

mapping the high-dimensional into low-dimensional space (Maaten and Hinton, 2008) 

whereby the lower the value of perplexity, the farther apart the data points will be in the 

low-dimensional space. Hence, the second assumptions created from Figure 9.1 is by 

decreasing the perplexity value within the range of 5 and 10 the performance of datasets 

mapping two-dimensional space will increase. The transient vibrations dataset will able 

to fit separate and distribute in the two-dimensional space and concurrently allows to 

easily see the cluster boundaries. 

To answer both assumptions, the perplexity value of seven was chosen, while for the 

initial dimension of transient vibrations dataset will be increase by attempted to use the 

original time-domain features. Throughout this activity, the original time-domain 

features are both maximum of the length of transient vibrations (∆t) and the amplitude 

for each data points. The maximum length of transient that been identified and extracted 

from steering wheel road surface vibration was 88 data points, hence the initial 

dimension of transient vibrations according to the original time-domain vibration bring 

up to 89 features (1∆t, 88amplitudes). 

With the purpose of identifying possible time-domain features in describing the 

similarity of transient vibrations, other than vibrational statistics and original time-

domain features, the input of original time-domain features has also be added one by 

one with the r.m.s and the kurtosis of transient vibrations to measure the stability of 

classification process. The r.m.s will describe the overall energy content of the 

oscillatory signal, while the kurtosis is used to describe the peak phenomena of the 

transient vibrations. Therefore, the following section will present the comparison of 1) 7 

vibrational statistics of time-domain features; 2) 89 original time-domain features (1∆t, 
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88amplitudes); 3) 90 time-domain features which consists of (1∆t, 88amplitudes, 1 

r.m.s); 4) 91 time-domain features which consists of (1∆t, 88amplitudes, 1 r.m.s, 1 

Kurtosis) with perplexity value of seven. 

9.2.2 Clustering of Transient Vibrations Using Various of Time-Domain Features 

The experiment begins by all possible four time-domain features of transient vibrations 

as stated previously which are 1) 7 vibrational statistics of time-domain features; 2) 89 

original time-domain features (1∆t, 88amplitudes); 3) 90 time-domain features which 

consists of (1∆t, 88amplitudes, 1 r.m.s); 4) 91 time-domain features which consists of 

(1∆t, 88amplitudes, 1 r.m.s, 1 Kurtosis) with perplexity value of seven being input into 

the t-SNE algorithm. After that, the algorithm returned a new set of variables for each 

transient vibration in a ‘reduced’ 2D space. 

Figure 9.2 compares the results of two-dimensional space based on 7, 89, 90 and 91-

dimensionality of transient vibrations dataset by using t-SNE algorithm with value of 

perplexity of 7. 
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(a) Initial dimension = 7   (b) Initial dimension = 89 

  

(c) Initial dimension = 90   (d) Initial dimension = 91 

Figure 9.2 Comparing results of 7, 89, 90 and 91-dimensional mapping into 2-

dimensional visualisation of transient vibrations data sets with perplexity values of 7 

From Figure 9.2, result shown that the 89, 90 and 91 of original time-domain features 

provided a better clustering in two-dimensional space compared to 7 vibrational 

statistics of time-domain features. It can be seen from the Figure, the transient 

vibrations were farther apart in the low-dimensional space. Furthermore, the transient 

vibrations were able to fit separate and distribute in the two-dimensional space and 

concurrently allows to easily see the cluster boundaries. These results may suggest that 

the transient vibrations were well described by the original time-domain features. 
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9.2.3 Evaluation on 2D Clustering of Time-Domain Features of Transient 

Vibrations 

The evaluation on 2D clustering transient vibrations was done to measuring the 

consistency of clustering produced by t-SNE algorithm. One approach to measuring the 

consistency of the clustering structure is by silhouette width index value (Platzer, 2013; 

Mwangi et al., 2014). The silhouette index value is used to assessing the quality of a 

cluster solution, enabling to identifying misclassified objects and so distinguishing 

clear-cut clusters from weak ones (Everitt et al., 2001). The value of silhouette index is 

range between -1 to 1 whereby the higher value of silhouette index associated with well-

defined clusters (Everitt et al., 2001; Mwangi et al., 2014). 

Figure 9.3 and 9.4 shows the silhouette index plotting which reveal the number of 

cluster of the transformed data of 7, 89, 90 and 91-dimensionality of transient vibrations 

mapping into 2-dimensional visualisation by using t-SNE algorithm with value of 

perplexity of 7. 

  

(a) Initial dimension = 7   (b) Initial dimension = 89 

Figure 9.3 Silhouette index plotting shows the number of cluster of 7 and 89-

dimensional mapping into 2-dimensional visualisation of transient vibrations data sets 

with perplexity values of 7 
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(c) Initial dimension = 90   (d) Initial dimension = 91 

Figure 9.4 Silhouette index plotting shows the number of cluster of 90 and 91-

dimensional mapping into 2-dimensional visualisation of transient vibrations data sets 

with perplexity values of 7 

Following that, the k-means algorithm written in MATLAB R2014a software, and runs 

on Windows-compatible PCs was used to partition the new 2D variables output from t-

SNE into cluster (Mwangi et al., 2014). Figure 9.5 and 9.6 below shows the results of 

the partition process. Notably, the axes of the low-dimensional spaces are given in 

arbitrary units (Maaten and Hinton, 2008) while the label represents the total number of 

cluster. 

  

(a) Initial dimension = 7   (b) Initial dimension = 89 

Figure 9.5 Implementation of k-means algorithm to partition the new 2D variables 

output of 7 and 89-dimensional into cluster 
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(c) Initial dimension = 90   (d) Initial dimension = 91 

Figure 9.6 Implementation of k-means algorithm to partition the new 2D variables 

output of 90 and 91-dimensional into cluster 

From both silhouette index plotting partition of 2D t-SNE mapped were clearly shown 

that the number of cluster become stable when the original time-domain features were 

used to describe the transient vibrations dataset. Table 9.1 presents the number of 

transient vibrations in each cluster of 7, 89, 90 and 91-dimensional. 

Table 9.1 Number of transient vibrations in each cluster of t-SNE mapped 

 

Further, a classification error of transient vibrations was measured for each cluster by 

comparing the Kullback-Leibler (KL) divergences (Maaten and Hinton, 2008). Table 

9.2 will shows the classification error of each of 7 89, 90 and 91-dimensional t-SNE 

mapped clustering. Notably, the figures in the parenthesis are the similar number and 

percentage of transient vibrations in corresponding cluster. 
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Table 9.2 Classification error of each of 7 89, 90-dimensional t-SNE mapped 
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The classification error of transient vibrations measured by calculated the distribution of 

transient vibration when t-SNE algorithm been run several time. The lowest value of 

KL been compared with another two lowest values. For example, refer to the table that 

presented the classification error on transient vibrations of 91 time-domain features, for 

instance all the 38 transient vibration Cluster 7 (KL = 0.44) was been in the same cluster 

even if the t-SNE algorithm been run several times. Meanwhile for Cluster 6 

(KL=0.44), the transient vibrations separated into three different cluster (1 transient 

vibration in Cluster 1, 19 transient vibration in Cluster 2, 4 transient vibration in Cluster 

4) and two different cluster (3 transient vibration in Cluster 1, 30 transient vibration in 

Cluster 2) for KL divergence value of 0.4634 and 0.4654, respectively. Consistency of 

transient vibrations in Cluster 7 is more that 90% which can be categorise as an accurate 

membership of cluster (Subasi, 2007). 

Apart from the classification error, the important information that can be extracted was 

the value of KL divergences. From the Table shown that the value of KL divergences 

becomes smaller when the total features of transient vibrations was increase. As 

mentioned previous, the smaller number of KL divergences describe the best 

classification of the high-dimensional dataset. Therefore, the result can be suggested 

that the value of 91 time-domains features (1∆t, 88ampltudes, 1r.m.s, 1 Kurtosis) 

provided the possible time-domain features that can describe the transient of steering 

wheel vibrations. 

9.2.4 Similarity Characteristics of Transient Vibrations 

In the previous section, it can be seen that by using t-SNE algorithm and 91 time-

domain features (1∆t, 88amplitudes, 1r.m.s, 1 Kurtosis) was able to clustered the 

transient vibrations of steering wheel. However, is also important to measure at what 

level the features can separate the transient vibrations in terms of shape. The shape of 

transient vibrations is assumed to be important in order to identify the phenomena of 

driving situation. 

Figure 9.7 to 9.10 illustrates the graphic of transient vibrations for each 7 vibrational 

statistics of time-domain features; 89 original time-domain features (1∆t, 
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88amplitudes); 90 time-domain features which consists of (1∆t, 88amplitudes, 1r.m.s); 

4) 91 time-domain features which consists of (1∆t, 88amplitudes, 1r.m.s, 1Kurtosis). 

Because of space limitation, both figure and explanation can be found out at the next 

few pages. 
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Figure 9.7 Classification of transient vibrations of 7 vibrational statistics of time-domain features
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Figure 9.8 Classification of transient vibrations of 89 original time-domain features (1∆t, 88amplitudes)



 

160 
 

 

Figure 9.9 Classification of transient vibrations of 90 time-domain features (1∆t, 88amplitudes, 1r.m.s)
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Figure 9.10 Classification of transient vibrations of 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1Kurtosis).
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From the graphics mapping of transient vibrations clustering shown in Figure 9.7 to 

9.10, it can be see that the 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 

1Kurtosis) able to separate the transient vibrations significantly more than the other 

three features (7, 80, 90 time-domain features). By adding the energy (r.m.s) and 

Kurtosis in the original time-domain features, we can see that the transient vibrations 

started moving and separated well. For example, transient vibrations in Cluster 1 (89 

original time-domain features) mixed up the energy of transient vibration, however after 

the new features adding up constantly the transient vibrations separated to new Cluster 

of 1, 2 and 6 for both 90 and 91 time-domain features. 

Table 9.3 and Table 9.4 summarise the characteristics of transient vibrations for each 

cluster resulted by 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1Kurtosis) 

which shown the best graphic mapping amongst others features (7, 80, 91 time-domain 

features). 

Table 9.3 Vibrational statistics of transient steering wheel vibrations in each cluster for 

the 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1Kurtosis) 

 

Table 9.3 shown that Cluster 1 is contains of transient vibrations with the higher number 

of cycles and the longest transient, while the Cluster 7 is belongs to transient vibrations 

with shortest transient. Inaccurate cluster which is Cluster 2, 5 and 6 lies with those 

transient vibrations which have lowest energy. The higher kurtosis of transient vibration 

is the membership of Cluster 1. From Table 9.3 can be suggested that Cluster 1 which 

categorise as accurate cluster membership contained with the transient vibrations which 

have higher number of duration, cycles, r.m.s and kurtosis. 
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Table 9.4 Number of transient vibrations of steering wheel road surface contained in 

each cluster for the 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1Kurtosis) 

 

It can be seen from the data in Table 9.4 that, for accurate cluster (cluster 1,3,4,7), the 

transient vibrations were most from the Broken Concrete road surfaces value of 25, 

while the lowest is eight transient vibrations of Broken road surfaces. The results 

suggest that, the accurate cluster lies with road surfaces which can be broadly classified 

as mildly non-stationary signals (Giacomin et al., 2000). In additions, Cluster 1, 3, 4 

and 7 contained with damaged surfaces, which are commonly found in many areas in 

the UK. Speeds to drive over damaged surfaces can reach levels of up to 50 km/h 

(Department of Transport, 2006). 

Meanwhile, for inaccurate cluster (cluster 2, 5 and 6) contained significant transient 

vibrations which greatly exceeded the magnitude when compared to the previous and 

future sections’ magnitude (Ajovalasit et al., 2013) such as Low bump. Low Bump 

surfaces were basically obstacles placed across a surface in the path of the automobile. 

According to the Department of Transport (2006), in the UK this kind of obstacle is 

used in urban areas such as town centres, high streets, residential roads and in the 

vicinity of schools; therefore, the automobile speed should be less than 40 km/h when 

driving over the obstacle. 
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9.3 Discussion 

The purpose of the current study discussed in this chapter was to determine the possible 

features that can be used to clustering and classify the transient vibrations of steering 

wheel road surface into the similarity of group based on the time-domain features. 

Notably, t-SNE algorithm provided the 91 time-domains features (1∆t, 88amplitudes, 

1r.m.s, 1Kurtosis) with perplexity value of 7 managed to cluster the transient vibrations 

of steering wheel road surface into their similarity of groups.  

The results from the correct classification rate presented in Table 9.1 shows that the 

accurate classification rate was more than 90% comparable with the classification rate 

used in the evaluation of EEG signal classification, 94% (Subasi, 2007), audio 

classification, 90% (Lambrou et al.,1998), and image classification, 85% (Foody, 2005). 

From the results provided, an accurate cluster of 91 time-domain features such as 

Cluster 1 contained the minimum transient vibrations up to 6 cycles. According to 

Parsons and Griffin (1988), the perception of vibration for human will be increase when 

exposed to the multi oscillation of vibration in the range of 0.25 to 0.5-second. 

Accurate clusters are mostly contained the damage road surfaces, while inaccurate 

cluster consists of the significant transient vibrations of the road surfaces signal. These 

finding are consistent with studies by Yiakopoulos et al. (2011), Soualhi, et al. (2014) 

and Hanus et al. (2016) which used Kurtosis to distinguish between damaged and 

healthy transient vibrations of bearing. Moreover, the transient vibrations than been 

identified and extracted from Broken Concrete using MNMS algorithm which 

categorise as the most detectable by drivers (Berber-Solano, 2008; Berber-Solano et al., 

2010) is also lies in the accurate cluster. 
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9.4 Conclusion 

This chapter has presented the capability of t-SNE algorithm in uncovering relevant 

natural grouping of transient vibration of steering wheel using high-dimensional time-

domain features. 

This study was performed in order to identify the possible time-domain features that can 

describe the transient of steering wheel vibrations. Four different type of features have 

been compared which were 1) 7 vibrational statistics of time-domain features; 2) 89 

original time-domain features (1∆t, 88amplitudes); 3) 90 time-domain features (1∆t, 

88amplitudes, 1r.m.s); 4) 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1 

Kurtosis) being input into the t-SNE algorithm with perplexity value of seven. The 

algorithm returned a new set of transient vibrations in a ‘reduced’ 2D space. The 

silhouette index, k-means clustering algorithm and classification error rate were used to 

evaluate the cluster membership presented in the new 2D space. The results of this 

study suggest that the transient vibrations of steering wheel road surface can be 

separated into seven different of groups by using t-SNE algorithm. The possible time-

domain of 91 features which contained both original and two most vibrational statistics 

(1∆t, 88amplitudes, 1r.m.s, 1 Kurtosis) with perplexity value of 7 managed to cluster 

the transient vibrations of steering wheel road surface into their similarity of groups. 

Furthermore, the characteristics of transient vibrations in accurate clusters might be able 

to increase the driver road surface detection. 

In the next final chapter, this thesis is summarised by revisiting the objectives of this 

research in order to examine the extent to which they have been achieved. The thesis 

concludes by highlighting the contributions to the knowledge, discussing the limitations 

and future research directions. 
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CHAPTER 10  

CONCLUSIONS AND FUTURE RESEARCH 

10.1 Introduction 

This chapter summarises the main findings and attempts to provide an answer to the 

research questions posed in the Figure 1.6, Chapter 1. Research activities described 

from Chapter 6 to Chapter 9 of this thesis were performed in order to answer the 

research questions and to use the findings to define the time-domain features of road 

surface transient vibrations that can optimise driver road surface detection. Finally, the 

research limitations are presented and, accordingly, further research is recommended. 

10.2 Key Conclusions of Research Findings 

This section presents a summary of the research findings organised in relation to the 

research questions presented in Section 1.5.1, divided into subsections that address each 

of the four research questions. Together in this section presents the answer for the main 

research question constructed for this research. 
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10.2.1 Research Question 1 

 

The main goal of Chapter 6 was to critically review the existing principles of transient 

vibrations in order to establish a better principle for transient vibrations of steering 

wheel road surfaces (Objective 1). 

Firstly, the transient vibrations of steering wheel road surfaces were identified and 

extracted by using MNMS algorithm which the results did not really fulfil the definition 

and criteria of transient vibrations stated in the MNMS algorithm. 

To address the issue, the literature review survey related to the principle of transient 

vibrations detection was conducted to gather better results in identifying the transient 

vibrations steering wheel road surface. The survey on transient detection analysis 

included various areas of study, such as seismology studies, biomedical studies and also 

machinery studies. The alternative principle was measured based on two selection 

criteria. First, the nature of transient vibrations in signal processing should be the 

transient vibrations that deviate from the normal background, and also need to be 

repetitive events before an alternative technique can be found. 

Results from the literature review survey suggested that mathematical morphology can 

be used as an alternative technique to identify and measure the transient vibrations 

steering wheel road surface. The technique has been used as a post-processing technique 

to solve the problems of transient vibrations, whereby the start and end points were not 

at zero. The different widths of structuring elements in mathematical morphology were 

tested on transient vibrations, but unfortunately the results showed that mathematical 

morphology does not solve the current problems, and the decision was made to proceed 

with the MNMS algorithm in identifying the transient vibrations of road surfaces data 

signals. 

What are the principles of transient vibrations detections which can identify the 

transient vibrations steering wheel road surface? 
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10.2.2 Research Question 2 

 

The main goal of Chapter 7 was to validate the previous guidelines related to the 

frequency bandwidth of steering wheel vibration feedback. The study has been also 

ideated as an exposure exercise for the researcher due to the lack of information in this 

field; therefore it was considered important to perform a check and validation of the 

previous results. 

This study aimed to measure how changes in the vibrational energy within the 

frequency band of 20 Hz to 60 Hz may affect human cognitive detection of road surface 

types based on steering wheel vibration. The results suggested that the elimination of 

the frequency band of 26.32 Hz to 34.64 Hz from the original stimuli played a key role 

in the human cognitive detection of the relevant road surface. These relationships may 

be partly explained by the fact that the elimination of this frequency band appeared to 

produce the highest peaks of vibrational energy resulting from the resonance in the 

vehicle’s dynamic systems such as tyres and steering wheel. Moreover, these results are 

also consistent with those reported by Fujikawi (1998), Pak et al. (1991) and Giacomin 

et al. (2000), who suggested that a frequency band of 23 Hz to 58 Hz is the largest 

range of frequency that contributes to vehicle dynamics, whereas the band of 20 Hz to 

35 Hz is defined by steering wheel resonance (Kulkarni and Thyagarajan, 2001). 

Therefore, steering feel may be compromised by any reductions or elimination in 

vibrational energy at the steering wheel in this interval which meet and satisfied with 

the previous guidelines related to the frequency bandwidth of steering wheel vibration 

feedback. 

The results of ROC points were found scattered which was not consistent with the 

theory pertaining to the advantages of applying more binary procedures proposed by 

Swets et al. (1961). This result may be explained by the fact that the requirement of a 

minimum of two years’ driving experience was not sufficient to help the participants 

How does the frequency distribution of steering wheel vibration can affect the driver 

road surface detection? 
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detect the vibrations in the different road surface types based on the steering wheel 

vibrations. 

10.2.3 Research Question 3 

 

Both numerical and laboratory-based experiment were conducted and discussed in 

Chapter 8 whereby the objective for both studies were to define the optimal approach 

for the transient vibrations detection of steering wheel vibration road surface, according 

to their time-domain waveform (Objective 3). Without taking for granted of the basic 

numerical analysis of signal processing measurement such as velocity and displacement, 

hence a set of experimental testing activities performed in order to measure the effect of 

integration and differentiation of steering wheel vibration signals on the identification of 

transient vibrations and the ability of humans to detect the road surface type. 

The first section of this chapter is concerned with determining which signal 

measurement should be used to perform the identification of transient vibrations 

contained in steering wheel vibration signals. The numerical-based experiment was 

designed to determine the effect of time-domain integration on steering wheel vibration 

road surface in identifying and extracting the transient vibrations. The original steering 

wheel acceleration vibration was integrated twice to give velocity and displacement. 

The comparison of results of this numerical-based experiment shows that the total 

number of transient vibrations becomes smaller when the time-domain integration is 

applied, and both shape and oscillation are closer to the definition of transient vibrations 

stated by the MNMS algorithm. 

However, concerning the limitations of the laboratory facility used during this research 

and for practical convenience, those displacement vibration signals were applied to the 

double differentiation to produce the acceleration vibration signal. Therefore, the 

laboratory-based experiment was designed to compare both test stimuli of steering 

How does the numerical analysis signal processing can affect the identification and 

driver detection of transient vibrations steering wheel road surface? 
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wheel acceleration measured by accelerometer and double time-domain differentiation 

of displacement, which eventually suggested that the acceleration steering wheel 

vibration by accelerometer is the optimal approach to be used by humans to detect the 

road surface type. 

Taking into account the findings from both the numerical and laboratory-based 

experiments, the transient vibrations identified and extracted from the original steering 

wheel acceleration by accelerometer will be used to explain the main time-domain 

features of transient vibrations steering wheel road surface. 

10.2.4 Research Question 4 

 

The final questions addressed in this research involved with the high-dimensional 

reduction technique to cluster the transient vibrations steering wheel road surface, 

according to the similarity of their time-domain features (Objective 4). 

In this study, in order to identify the possible time-domain features that can describe the 

transient of steering wheel vibrations, four different type of features have been 

compared which were 1) 7 vibrational statistics of time-domain features; 2) 89 original 

time-domain features (1∆t, 88amplitudes); 3) 90 time-domain features (1∆t, 

88amplitudes, 1r.m.s); 4) 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 1 

Kurtosis) being input into the t-SNE algorithm with perplexity value of seven. The 

algorithm returned a new set of transient vibrations in a ‘reduced’ 2D space. The 

silhouette index, k-means clustering algorithm and classification error rate were used to 

evaluate the cluster membership presented in the new 2D space. 

From Figure 9.2, result shown that the 89, 90 and 91 of original time-domain features 

provided a better clustering in two-dimensional space compared to 7 vibrational 

statistics of time-domain features. It can be seen from the Figure, the transient 

How does the time-domain features construct the similarity group of transient 

vibrations steering wheel road surface? 
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vibrations were farther apart in the low-dimensional space. Furthermore, the transient 

vibrations were able to fit separate and distribute in the two-dimensional space and 

concurrently allows to easily see the cluster boundaries. These results may suggest that 

the transient vibrations were well described by the original time-domain features which 

can be separated into seven different of groups by using t-SNE algorithm.  

 10.2.5 Main Research Question 

 

In Chapter 9 also presented characteristics of time-domain features that can describe the 

transient vibrations steering wheel road surface whereby eventually provide a definition 

of design guidelines for perception-enhancing steering wheel vibration feedback 

(Objective 5). 

From the graphics mapping of transient vibrations clustering shown in Figure 9.7 to 

9.10, it can be see that the 91 time-domain features (1∆t, 88amplitudes, 1r.m.s, 

1Kurtosis) able to separate the transient vibrations significantly more than the other 

three features (7, 80, 90 time-domain features). By adding the energy (r.m.s) and 

Kurtosis in the original time-domain features, we can see that the transient vibrations 

started moving and separated well. 

Moreover, the results from the correct classification rate presented in Table 9.1 shows 

that the accurate classification rate of 91 time-domain features was more than 90% 

comparable with the classification rate used in the evaluation of EEG signal 

classification, 94% (Subasi, 2007), audio classification, 90% (Lambrou et al.,1998), and 

image classification, 85% (Foody, 2005). From the results provided, an accurate cluster 

of 91 time-domain features such as Cluster 1 contained the minimum transient 

vibrations up to 6 cycles. According to Parsons and Griffin (1988), the perception of 

vibration for human will be increase when exposed to the multi oscillation of vibration 

in the range of 0.25 to 0.5-second. Apart from that, accurate clusters are mostly 

What are the time-domain features of road surface transient vibrations that can 

optimise driver road surface detection? 
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contained the damage road surfaces such as Broken Concrete using MNMS algorithm 

which categorise as the most detectable by drivers (Berber-Solano, 2008; Berber-Solano 

et al., 2010) is also lies in the accurate cluster. 

Therefore, result suggests that the time-domain features of transient vibrations that can 

optimise driver road surface detection were found to consist of duration (∆t), amplitude 

(m/s
2
), energy (r.m.s) and Kurtosis. 

10.3 Research Limitations 

As with all research, there are limitations and sources of error which should be 

considered, the following is a discussion of some of the main issues: 

i. The first significant limitation was due to the lack of scientific literature 

concerning the non-linear classification of transient vibrations, which made this 

study a real challenge. The fact of being one of the first studies to describe the 

similarity of transient vibrations in the context of steering wheel road surfaces 

gives the opportunity to be the first to state the first findings in this field, but it 

also leads to difficulties in time-domain features selection and statistical analysis 

due to the lack of analogous studies. However, there are few studies in the 

literature which can be used to substantiate the choices which were made 

(Mwangi et al., 2014; Maaten, and Hinton, 2008). 

ii. The number and selection of the steering vibration stimuli used to perform 

the experimental test activities of the thesis (described in the Chapter 5) can be 

considered a research limitation. The researcher knows that there are several 

factors which cause a change in the dynamics of the automobile, consequently 

there are several factors which also cause changes in the steering wheel stimuli 

such as the type of the automobile (i.e. sport, luxury, compact, lorry), the type of 

engine (i.e. diesel, gasoline), the suspension type, the tyres pressure, the driving 

speeds, the type of road surface and the environmental conditions. 
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iii. In the laboratory-based experiment where humans are the test subjects, there 

are few possible source of error that might affect the results and finding of the 

research. In order to minimise the sources of error happened, hence the 

calibration of the test facilities, the accuracy of the test stimuli reproduction and 

the test protocol employed during the test activity, which includes: instructions 

given to the participant, posture of the participant during the test, the number of 

repetitions of the test stimuli, the duration of each test stimulus, the way to judge 

each test stimulus and the environmental conditions. A significant effort was 

made to achieve the greatest possible repeatability in these parameters, thus the 

results should be considered reliable. 

Apart from that, the driving experience of test subjects can be considered a 

source of error and a limitation of the research. It is happened because of the 

environment of driving a real car is interlinked and can affect in the perception 

of what is seen, heard or felt. Nevertheless, the isolation of the steering wheel 

vibration in this research was necessary in order to determine more clearly how 

much information of the steering feel is store in the human memory and which 

are the features carrying the main part of the road surface information to the 

driver. 

iv. In the numerical-based experiment, the computational error, memory spaces 

and processor speed can be considered a source of error and a limitation of the 

research. As increased the features of transient vibrations and perplexity value, 

the time required for t-SNE algorithm to provide the results are also increased. 

Apart from that, the results needed a bigger space to save all the visualisation 

results. However, since the computational memory capacity and the processer 

speed were limited therefore the analysis was needed to be terminated if the time 

to solve taken too long (ie: 10-min per test). In addition, to overcome any 

computational error, the activities of clustering were use the same computer. 
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10.4 Research Contributions 

Figure 10.1 summarises the multiple categories of groups that can potentially beneficial 

from the research described in this thesis:  

 

Figure 10.1 Groups that could benefit from the research  

For the academia group, this research will enhance the current Mildly Nonstationary 

Mission Synthesis (MNMS) algorithm. By adding the classification stages in the 

MNMS algorithm to analyse the structure of each transient vibrations road surface, the 

complete documentation of road features can be achieved. The combination of transient 

vibrations analysis and mission synthesis would serve as an intelligent black- box 

recorder for testing and monitoring applications. Moreover, since the classification 

process described in this research is the very first work in the context of steering wheel 

vibration road surfaces, it can be used as a clustering automated method for future work 

on transient vibration road surface. 

Meanwhile, the automotive companies will benefit from this research as it will enable 

them to provide sophisticated automation steering systems that incorporate both comfort 

and information from vibration stimuli, in future steer-by-wire systems and also in 

current steering power systems. By utilising the characteristics of accurate transient 

vibrations clustered, the real time research development can proposed the production of 

car body control which able to read the road surfaces such as pothole, big bumps and 

eventually adjust the suspension system accordingly. 
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The last group that will potentially benefit from this research are drivers. After the 

automotive companies have provided steering wheel feedback that incorporates the 

information transmitted from the steering wheel vibration, the driver will be able to 

distinguish the vibration stimuli – either the vibration related to the environment or to 

problems with the vehicle’s components. This can achieve by removing the range of 20 

– 60 Hz which the range of transient vibrations of road surfaces been identified and 

extracted from the original road surfaces vibrations. 

10.5 Future Research 

In this research work, the necessary process to classify the transient vibrations of 

steering wheel such as algorithm to identified and extracted the transient vibrations, a 

better approach human to detected the road surface vibrations and time-domain features 

to describe the similarity of transient vibrations were wisely been done, further 

investigation and test experiments are required in order to define the system 

specifications for a steering perception enhancement system for automobiles. A few 

important areas in which further research would be beneficial are listened below: 

i. Completing the documentation of road surfaces: By adding a classification 

stage to the MNMS algorithm to analyse the structure of each transient 

vibrations, hence can provides a complete documentation of the road features. 

The combination of transient vibrations analysis and mission synthesis would 

serve as an intelligent black- box recorder for testing and monitoring 

applications. 

ii. Human perception on the similarity of transient vibrations: Despite of 

successful t-SNE algorithm to distinct the transient vibrations according the 

time-domain features, human perception should also be consider in the loop of 

clustering validation to ensure that the machine that been build are suit to user’s 

subjective viewpoint. The validation is expected to be achieved by means of 

paired-comparison methods. The criteria of choosing the transient vibrations to 

be compared need to consider the perceptual moments of vibrations in order to 

ensure that the vibrations can be perceived by human. Other than that, the pair-
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comparison needs to include both within and between the clusters provided by t-

SNE algorithm. 
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Appendix 1.1 (continued) Participants information sheet for Experiment 1 (Chapter 7) 
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Appendix 1.2 Participants information sheet for Experiment 2 (Chapter 8) 
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Appendix 1.2 (continued) Participants information sheet for Experiment 2 (Chapter 8) 
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Appendix 1.3 Test procedure for Experiment 1 (Chapter 7) 
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Appendix 1.3 (continued) Test procedure for Experiment 1 (Chapter 7) 
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Appendix 1.4 Test procedure for Experiment 2 (Chapter 8) 
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Appendix 1.4 (continued) Test procedure for Experiment 2 (Chapter 8) 
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Appendix 1.5 Participants consent form for Experiment 1 (Chapter 7) 
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Appendix 1.6 Participants consent form for Experiment 2 (Chapter 8) 
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