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Abstract The link between pollution and health is commonly explored by trying to identify the
dominant cause of pollution and its most significant effect on health outcomes. The use of multivariate
features to describe exposure is less explored because investigating a large domain of scenarios is
theoretically (i.e., interpretation of results) and technically (i.e., computational effort) challenging. In this
work we explore the use of Bayesian Networks with a multivariate approach to identify the probabilistic
dependence structure of the environment-health nexus. This consists of environmental factors (topography
and climate), exposure levels (concentration of outdoor air pollutants), and health outcomes (mortality
rates). The information is collated with regard to a data-rich study area: the English regions (UK), which
incorporate environmental types that are different in character from urban to rural. We implemented
a reproducible workflow in the R programming language to collate environment-health data and analyze
almost 50 millions of observations making use of a graphical model (Bayesian Network) and Big Data
technologies. Results show that for pollution and weather variables the model tests well in sample but also
has good predictive power when tested out of sample. This is facilitated by a training/testing split in the
data along time and space dimension and suggests that the model generalizes well to new regions and
time periods.

1. Introduction

There is an overwhelming body of evidence that environmental pollution, and air pollution in particular, is a
significant threat to health worldwide. The World Meteorological Organization (World Health Organization,
2006) identifies six outdoor air pollutants for which there is strong and clear evidence of major impact on
health: Ozone (O3), Particulate Matters (PM2.5 and PM10), Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), and
Carbon Monoxide (CO). In Europe, health standards and objectives have been set by the European
Commission with the introduction of the Commission of the European Communities (CEC) (2008). This
Directive was made law in England through the Air Quality Standards Regulations in 2010 and specifies con-
centration limits for each major pollutant. However, the introduction of air pollutant concentration limits is
only the first step toward the development of an air quality policy. Most importantly, in order to asses the
potential human exposure and to estimate the long-term repercussions on population health, air quality sce-
narios need to be investigated. With this in mind, the paper here aims to investigate and test a novel, flexible
framework for modeling the environment-health nexus.

According to Jerrett et al. (2005), population exposure to the above species can be modeled in various ways,
from using simple proximity measures (Buzzelli & Jerrett, 2003; Ciccone et al., 1998), geospatial interpola-
tion using kriging (Mulholland et al., 1998) and land use regression (Briggs et al., 1997; Ryan & LeMasters,
2007) models to more complex atmospheric dispersion (Caputo et al., 2003; Turner, 1979), integrated
meteorological-emission (Gaines Wilson & Zawar-Reza, 2006), and hybrid models (Cauvin et al., 2001).
De Hoogh et al. (2014) compared exposure patterns derived from land use regression models and dispersion
models and found that results from these two models correlate well for NO2, but the agreement is consider-
ably lower for Particulate Matter (for both coarse and fine particles). This suggests that in order to generate
accurate and unambiguous exposure patterns, more experiments are needed to integrate multiple model

RESEARCH ARTICLE
10.1002/2017EA000326

Key Points:
• Bayesian Networks are a convenient

type of models to investigate
different sources of information at
various temporal and spatial scales

• The methodology is scalable and can
be applied from small to very large
data sets

• For pollution and weather variables
the model tests well in sample but
also has good predictive power when
tested out of sample

Correspondence to:
C. Vitolo,
claudia.vitolo@ecmwf.int

Citation:
Vitolo C., Scutari M., Ghalaieny M.,
Tucker A., & Russell A. (2018).
Modeling air pollution, climate,
and health data using Bayesian
Networks: A case study of
the English regions. Earth
and Space Science, 5, 76–88.
https://doi.org/10.1002/2017EA000326

Received 4 AUG 2017

Accepted 22 JAN 2018

Accepted article online 26 JAN 2018

Published online 9 APR 2018

©2018. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and
distribution in any medium, provided
the original work is properly cited, the
use is non-commercial and no
modifications or adaptations are made.

VITOLO ET AL. 76

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2333-5084
http://orcid.org/0000-0002-4252-1176
http://orcid.org/0000-0003-4747-3211
http://orcid.org/0000-0001-5105-3506
http://orcid.org/0000-0001-7120-8499
http://dx.doi.org/10.1002/2017EA000326
https://doi.org/10.1002/2017ea000326
http://creativecommons.org/licenses/by-nc-nd/4.0/


Earth and Space Science 10.1002/2017EA000326

strategies. Blangiardo et al. (2013) propose the use of a Bayesian approach to model spatiotemporal variability
of air pollutants. There are a number of advantages in modeling scenarios using a formal Bayesian frame-
work. First, expert opinion and literature results can be included in the analysis through the definition of a
prior. Second, probabilities can be obtained from the posterior distribution, and, lastly, it is relatively easy to
specify a hierarchical structure on data and parameters (useful to make predictions and working with miss-
ing data). Blangiardo et al. (2013), Brooks et al. (2011), and Robert and Casella (2013) seem to suggest that it
is cumbersome to preserve spatial variability in order to improve the predictive power of statistical models.
However, the authors only model a single pollutant at a time; this is a common limitation of many epidemio-
logical studies. In recent years, instead, there has been increasing interest in the combined effect of multiple
species. Therefore, the modeling work presented here will incorporate data from multiple species in an effort
to understand the more holistic nature and impact of exposure.

In addition to pollution exposure, it is also important to consider environmental factors, some of which may
have an exacerbating effect, some others a mitigating one. Extreme temperatures and ultraviolet radiation,
for instance, can exacerbate preexisting health conditions such as cardiovascular and pulmonary diseases, as
well as trigger new ones by aggravating exposure levels. Precipitation and wind can, instead, facilitate deposi-
tion and dispersion of pollutants. Basu and Samet (2002) reviewed a number of US studies on the relationship
between elevated ambient temperature and mortality and concluded that the risk is higher for people with
preexisting cardiovascular and respiratory diseases but that age and socioeconomic status can also be factors
worth considering. Bell et al. (2004) analyzed the relation between Ozone and mortality, while temperature
and other weather conditions were considered confounders. Estimating the interaction between tempera-
ture and Ozone in light of observed health outcomes is not trivial, as these are highly correlated variables.
Jhun et al. (2014) assessed Ozone-related mortality risk considering, on the one hand, the temperature as
confounder and effect modifier and, on the other hand, air conditioning prevalence in 97 cities in the United
States. They found a statistically significant increase in Ozone mortality risk during high temperature days
and also that air conditioning seemed to have a mitigating effect. As such, the present study includes certain
environmental variables beyond air pollution in an effort to capture more of the factors that combine to
influence mortality.

Zheng et al. (2013) investigated, for Beijing and Shangai, the interaction of SO2, NO2 as well as fine and coarse
Particulate Matter (PM2.5 and PM10) with hourly meteorological data and found the following to be the most
relevant: high wind speed is associated with lower concentration of PM10; and high humidity causes high con-
centration of PM10. In general, air quality is good in two cases: high temperature and low humidity; and high
pressure and low temperature. De Sario et al. (2013) showed that urban European cities are also highly vul-
nerable areas and highlighted how extreme weather patterns/events and changes in the concentration of
pollutants/aeroallergens have synergistic effects: increasingly high temperature and sunnier days are asso-
ciated with an increase in O3 and SO2, while high precipitation facilitates the sinking of Particulate Matter
but could also increase SO2 (because of the additional water vapor). These factors increase allergic reactions,
decline lung function, cause lung cancer, and even premature death.

Modeling the effects of ambient air pollution on health taking all the relevant variables into account is rather
challenging from a theoretical point of view, as the environment-health nexus is expected to be character-
ized by a rather complex dependence structures. Computational challenges are also apparent, since analyzing
large databases requires long processing times and can only be handled with an adequate computer infras-
tructure in place. When resources are limited and/or research is driven mainly by openly available data, there is
a need for models that can intrinsically identify dependencies based on the variability of the different features
and can ingest expert knowledge to boost predictability. In this context, graphical models such as Bayesian
Networks (BNs) seem to be a perfect fit. These models are increasingly being used in computer science
(Hu et al., 2013) and business analytics problems (Duan & Xiong, 2015) as well as medicine (Wilson et al., 2015),
genetics (Scutari et al., 2014), and epidemiology (Lappenschaar et al., 2013) while relatively less explored in
environmental sciences (Aguilera et al., 2011). BNs can be inferred from data, their construction involves iden-
tifying the conditional independence structures among variables (or their joint probability distribution), and
are schematized as a Directed Acyclic Graph (DAG) in which features are represented as nodes and depen-
dencies as edges. By definition, a DAG cannot contain cycles and an edge can only have one direction. The
advantage of using such models is threefold: (1) they limit the number of possible dependencies to analyze
during the structure learning task making the network easier to inspect visually; (2) speed up computations
(the fewer dependencies, the less computational time is required); and finally (3) they allow the introduction
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of expert knowledge. The latter can be done in a number of ways, including constraints on the parameters
of the models (Friedman & Goldszmit, 1998) and by whitelisting or blacklisting specific edges in the network
(Scutari, 2010); in this work we adopted the latter approach for computational reasons.The whitelist declares
which edges are forced to be present in the DAG, while the blacklist declares edges that are excluded from
the DAG. Whitelists and blacklists are inherently subjective as they depend on the expert/modeler’s knowl-
edge of the phenomenon which can vary based on the location, scale of the analysis, and data availability
constraints. Therefore, they cannot be generalized but need to be formulated on a project-by-project basis.
Given their successful use in Big Data analyses, BNs will be used in this paper in an attempt to model aspects
of the environment-health system.

1.1. Paper Aim and Outline
The main goal and novelty of this work consists of investigating whether BNs can be used with large volumes
of heterogeneous data (in terms of spatiotemporal scale and data types) and still able to identify, interpret, and
predict the dependence structure between these predictors and health outcomes (mortality). As described
in section 1, this has significant value in understanding the complex links between environmental factors
and health outcomes as well as being used in the evidence base to inform policy interventions. To the best
knowledge of the authors, the variety and volume of information taken into account has not been previously
analyzed for the English regions and constitutes an additional novelty of this work. The remainder of the
paper is organized as follows: in section 2 we describe the case study and data availability, as well as how we
suggest to assemble the database of available information, handle missing values and build the BN for both
continuous and categorical variables. The results of the structure learning process, inference, and predictions
are discussed in section 3, while the overall results are discussed in section 4 and main conclusions and future
works are summarized in section 5.

2. Data and Methods

According to the guidelines suggested by Marcot et al. (2006) and Kalisch et al. (2012), we built and revised
the BN through a sequence of steps: (1) feature identification, (2) structure learning, and (3) validation.

2.1. Feature Identification
We take into account the air quality monitoring stations in England (UK) as location of interest and extract
the weather, geography, and health data at these locations, from 1981 to 2014. The recorded features are
summarized in Table 1. For each variable, the column named “Type” shows whether the variable is continuous
(C) or discrete (D). The table also contains the names of variables as used by the model, which is helpful for
reading the network and interpret the results. More details are given in the following subsections.
2.1.1. Pollution Data
We identified relevant features for air pollution modeling reviewing the literature in the field. In particular, the
exposure is calculated at the location of air pollution monitoring stations, taking into account temporal factors
(year, season, month, day, and time of measurements), as well as the environmental factors in terms of weather
variables (2 m temperature, 10 m wind speed and direction, total precipitation, boundary layer height, and
surface net solar radiation) and pollutant species (Ozone, fine and coarse Particulate Matter, Sulfur Dioxide,
Nitrogen Dioxide, and Carbon Monoxide). The UK Air Information Resource service hosted by the Department
for Environment, Food, and Rural Affairs (DEFRA) includes thousands of air quality monitoring stations. Many,
however, use obsolete sensors and/or have been dismissed. The most reliable measurements in England are
available from a network of 162 stations, which record hourly measurements. These stations were identified
using the rdefra R package (Vitolo et al., 2017; Vitolo et al., 2017a; Vitolo, Russell, & Tucker, 2016). The geograph-
ical distribution of data points is shown in Figure 1. The openair R package (Carslaw & Ropkins, 2012, 2016)
was used to import the related hourly time series. The temporal coverage is highly variable, with a minimum
of 4 months and a maximum of 35 years (average: 12 years). Spatially, the stations are evenly distributed across
regions but concentrated in urban areas within each region (see Figure 2). As a result some variables have
zero or near-zero variance in the BN initialization stage, in which only complete observations are taken into
account. In particular, complete observations are only recorded for the period 1998–2000 in the urban area
of the Greater London Authority (Environment Type: Background Urban Traffic). Since such variables are non-
informative under the distributional assumptions used for structure learning below (Kuhn & Johnson, 2013),
we disregard them (region, zone, type, and year) when running the EM algorithm. Individual stations usu-
ally monitor only a subset of pollutants. For instance, we obtained O3 data from 95 stations for an average
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Table 1
Data Summary Table

Category Feature Name Type Time step Unit Temporal coverage Spatial coverage

Health outcomes Mortality rates CVD60 C 1 day — 35 years English regions

Air pollution Ozone O3 C 1 h μg/m3 14 years 95 stations

Particulate Matter with d < 2.5μm PM2.5 C 1 h μg/m3 6 years 64 stations

Particulate Matter with d < 10μm PM10 C 1 h μg/m3 11 years 83 stations

Sulfur dioxide SO2 C 1 h μg/m3 12 years 85 stations

Nitrogen dioxide NO2 C 1 h μg/m3 12 years 146 stations

Carbon monoxide CO C 1 h μg/m3 11 years 80 stations

Weather Wind speed WS C 3 h m/s 35 years 162 stations

Wind direction WD C 3 h Degrees 35 years 162 stations

Temperature T2 M C 3 h K 35 years 162 stations

Total precipitation TP C 3 h mm 35 years 162 stations

Boundary layer height BLH C 3 h m 35 years 162 stations

Surface solar net radiation SSR C 3 h W/m2s 35 years 162 stations

Time of Year YEAR D — — — —

pollution Season SEA D — — — —

measurement Month MON D — — — —

Day DAY D — — — —

Hour HOUR D — — — —

Geography Longitude LON C — Degrees — 162 stations

Latitude LAT C — Degrees — 162 stations

Altitude ALT C — mAOD — 162 stations

Region REG D — — — —

Zone ZONE D — — — —

Environmental type TYPE D — — — —

Note. Features can be of two types: continuous (C) or discrete/categorical (D).

of 14 years, while PM2.5 was measured in only 64 stations for an average of 6 years. From the same source, we
also obtained the exact location (latitude, longitude, and altitude) and environmental type of each station.
Missing altitude values were imputed by point inspection of the Ordnance Survey Terrain 50, a Digital Terrain
Model characterized by a spatial resolution of 50 m.
2.1.2. Weather Data
Weather information was obtained from ERA-interim (Dee et al., 2011), a reanalysis data product developed
by the European Centre for Medium-range Weather Forecasts. This is available in a gridded format with a
spatial resolution of about 80 km and a temporal resolution of up to 3 h. ERA-interim data were retrieved via
the ECMWF-MARS web service, imported using the ncdf4 R package (Pierce, 2015), and the climate variables
at each station were extracted by point inspection using the raster R package (Hijmans, 2016). The script used
to generate the results is based on the kehra R package (Vitolo, Tucker, & Russell, 2016).
2.1.3. Health Data
Health outcomes are described in terms of mortality rates. These are obtained from mortality counts per
thousand individuals split by region, age, and day of occurrence. Data are provided by the Office for National
Statistics and cumulated within each region of England (Office of the National Statistics, 2016a, 2016b). The
data on mortality were filtered for the over 60 age demographic in order to focus on a vulnerable population
group. The choice of this age bracket further necessitated the aggregation of data on the larger scale of the
English regions because the use of any smaller geographical scale could have resulted in the identification of
individuals, which is not permitted with this data set.

In terms of causes of death, we only take into consideration cardiovascular-pulmonary diseases (CVD) and
cancer for which the International Classification for Diseases (ICD) codes are as follows:

1. ICD10 codes for CVD: I00-I99, J00-J99 (period 2001–2014);
2. ICD9 codes for CVD: 390-459, 460-519 (period pre-2001);
3. ICD10 codes for cancer: C30-39, C45;
4. ICD10 codes for cancer: 160-165.
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Figure 1. Air quality monitoring stations in England.

Lastly, mortality rates are calculated by dividing the mortality counts by yearly regional population estimates
obtained from the MYEDE data set (Office for National Statistics, 2015). The population estimates are consid-
ered constant over the year and the mortality rates constant over each region.

2.2. Structure Learning
A BN is built to identify the dependence structure among exposure and outcome variables. To learn the model
structure, we used the Hill Climbing (HC) algorithm (Russell & Norvig, 2016) as implemented in the bnlearn
package (Scutari, 2010). HC performs a greedy search starting from an initial DAG, which in our case contains
no arcs, and evaluates different DAGs by iteratively adding/removing/reversing each possible arc and then
keeping the DAG that fits the data best in each step. We estimate goodness of fit using the Bayesian Information
Criterion (Schwarz, 1978), which approximates the posterior probability of the DAG.

Since we decided to include both discrete and continuous features in the analysis, we assume that the BN
follows the Conditional Linear Gaussian distributional assumptions (Lauritzen & Wermuth, 1989). In particular,
we assume that discrete features are categorical (i.e., their values are not ordered) and that continuous features
can depend on discrete variables but not vice versa. The distribution of continuous features conditional on
the respective parents is assumed to take the form of a set of classic linear regression models (one for each
combination of the possible values of the discrete parents) in which the continuous parents take the role of
explanatory variables.

In order to avoid inadvertently introducing bias in the BN, we decided not to declare any whitelist but only a
blacklist marking some edges as unrealistic. In particular, topographic variables (latitude, longitude, and alti-
tude) can influence weather and pollutants but not vice versa; pollutants can influence weather and mortality
but not vice versa; and mortality rates cannot influence any of the other variables.

2.3. Imputation and Learning
The assembled data set consists of almost 50 million records with 24 features. We split it into a training and
testing set, comprising the records in 1981–2005 (74%) and in 2006–2014 (26%), respectively. Training and
testing data sets are publicly available (Vitolo et al., 2017b).
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Figure 2. Distribution of pollution measurements, regions are overall homogeneously represented (top chart), while the
environmental type is biased toward urban areas (bottom chart).

The gaps between each pair of consecutive weather observations in the training set are filled in using linear
interpolation. The missing values in pollution measurements, on the other hand, are incorporated in model
estimation using the Structural Expectation-Maximization algorithm (Friedman, 1997):

1. Define any blacklist/whitelist.
2. Initialize using the empty graph and complete observations.
3. Fit the parameters for the empty structure using their maximum likelihood estimates.
4. Repeat the following until convergence:

a. Expectation step: replace missing values with their posterior expectations conditional on the
observed values, using the predict() function.

b. Maximization step: learn the model that maximizes the score with the current data, using the HC
algorithm to learn the DAG and the bn.fit() function to learn the parameters of the related DAG.

This is initialized using an empty graph and the blacklist. Then missing values in each observation are imputed
with their maximum a posteriori estimates from the variables that are observed, and a new graph is learned
from the now complete data. These two steps, imputation and learning, are repeated until the learned DAG
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Table 2
Comparison of Successive Iterations of the EM Algorithm, Where Every Iteration i is Compared
With Iteration i+1

Common arcs Arcs added Arcs removed

Iterations # # from to # from to

1–2 68 1 BLH O3 0 — —

2–3 69 0 — — 0 — —

3–4 69 0 — — 0 — —

4–5 68 1 CO NO2 1 NO2 CO

5–6 68 1 NO2 CO 1 CO NO2

6–7 68 2 SO2 SSR 1 NO2 CO

CO NO2 — —

7–8 70 1 BLH NO2 0 — —

Note. The number of common arcs are those arcs that are unchanged from iteration i to
iteration i + 1 . The number of arcs added corresponds to the number of arcs in iteration
i + 1 not present in iteration i. The number of arcs removed corresponds to the number
of arcs not in iteration i + 1 but present in iteration i.

and the imputed data are stable (i.e., they do not change significantly). Final BN model and related DAG, which
are the same for all the English regions, are publicly available (Vitolo et al., 2017b).

2.4. Validation
The training data set is used to generate the graph model. After learning the structure and parameters of the
BN, we assess its accuracy through the analysis of residuals and validate it by comparing predicted variables
under unobserved conditions provided by the testing data set.

2.5. A Note on Managing Big Data
The method described above produces data sets whose size depends on the number of monitoring stations
and temporal coverage of the network. The more data-rich the area, the larger the data set becomes. This has
a strong impact on the performance of the analysis, which can take a long time (if it is possible at all) for a data
set made of several millions of records and tens of features, using an average desktop machine.

Determining the most appropriate technologies to employ, both in terms of hardware and software, is crucial
in this respect. We decided to speed-up the learning process by distributing the calculations over multiple
cores via the parallel R package (R Core Team, 2016) and relying on a high-end server designed for high-
performance computing, see Appendix B. Without going into much detail on the parallelization, which is
beyond the scope of this paper, horizontal scaling was essential to build the database and run the Struc-
tural EM algorithm, while vertical scaling was used for both exploratory analysis and verification of results. We
developed this analysis pipeline in the R programming language because of the availability of libraries imple-
menting most of the required algorithms. These libraries have been thoroughly tested and, in most cases, are
considered the reference implementations of the methods they implement.

3. Results

Imposing a wall time of 2 months, the EM algorithm iterated eight times. The calculation did not fully converge;
however, for every successive iteration the structures showed a maximum of three different arcs only, while
at least 68 arcs were in common (see Table 2).

3.1. Network Structure
The DAG obtained from the last iteration (Figure 3) was used for the subsequent analysis. This structure clearly
detects the hierarchical structure of the different scales of observation, with the mortality over the age of
60 (CVD60, observed at regional scale) related to the geographical location (Region) and variable with time
(year, season, and month). Within each region, the proximity to urban areas (encoded in the TYPE and ZONE
variables) and the time of the year affect the concentration of pollutants. These, in turn, influence the weather.

3.2. Analysis of Residuals and Network Validation
The accuracy of the model is assessed by analyzing the residuals between the observed variables and those
predicted by the model. In Table 3, the root mean square error (RMSE) is used to summarize the average
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Figure 3. DAG describing dependence structure.

Table 3
RMSE for the Continuous Features in the Training and Testing Data Sets

Training Testing

Feature Normalized RMSE Feature Normalized RMSE

O3 0.05 O3 0.12

PM2.5 0.02 PM2.5 0.03

PM10 0.00 PM10 0.03

SO2 0.01 SO2 0.03

NO2 0.01 NO2 0.08

CO 0.03 CO 0.06

Longitude 0.25 Longitude 0.40

Latitude 0.21 Latitude 0.49

Altitude 0.10 Altitude 0.94

Wind speed 0.04 Wind speed 0.19

Wind direction 0.14 Wind direction 0.34

Temperature 0.05 Temperature 0.09

Rainfall 0.03 Rainfall 0.06

Boundary layer height 0.07 Boundary layer height 0.10

Solar radiation 0.11 Solar radiation 0.13

Mortality rates 0.04 Mortality rates 0.27
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deviation of the estimates from the actual values. The RMSE here is normalized to make it comparable across
variables. As the training and testing data sets were split based on the Year, we disregarded this information
when predicting using the testing data set.

The table shows that RMSE for pollution and weather variables in the training and testing sets are generally
very similar. This suggests that the model tests well in sample but also has good predictive power when tested
out of sample. Clear exceptions are the geographical variables longitude, latitude, and altitude for which errors
increase from 0.25–0.21–0.10 to 0.40–0.49–0.94, respectively. The error associated to the mortality rates also
increases considerably, from 0.04 to 0.27. This is most likely an overfitting issue, whereby the model seems
to capture the underlying relationship among features as well as noise and spurious patterns in the training
set. This could be a sign that the model is excessively complex and/or the database was not split in the ideal
proportions (74% training set and 26% test set).

4. Discussion

This work presents a data-driven application in which we use BNs to model the statistical dependencies
between environmental parameters, air pollution variables, and health outcomes. The input data are highly
heterogeneous both in space and time. Although the outcome variable is associated to the English regions,
we decided not to aggregate the environmental data at regional level because this would have caused a loss
of information. We used, instead, the air quality monitoring stations as location of interest and extracted the
weather, geography, and health data at these locations. This is based on the assumption that the depen-
dence structure should be able to show different behaviors from one region to another, even though data are
collated for a limited number of points.

As the air pollution data set was not complete, an expectation-maximization algorithm was used to make use
of partial observations with missing values as part of the bnlearn implementation which generated the DAG.
The process iterated eight times under an imposed time limit and was deemed to have effectively converged
on the basis of the definition in Hand et al. (2001) which bases convergence on the lack of “appreciable differ-
ence between the final few iterations” of the process, and as Table 2 demonstrates, the number of different
arcs in the final few iterations is less than two. The successful application of an EM algorithm is of great poten-
tial to this type of environmental health analysis as the availability of input data, particularly, on air pollution
is often sparse. Therefore, with the aid of an EM algorithm, BN can be used to predict health outcomes with
a degree of confidence despite the lack of total coverage for air pollution and other data. The ability of a BN
model to make public health predictions with incomplete data is a major advantage; yet it should be noted
that there is scope for further enhancement by either increased in situ air pollution measurements (e.g., using
low-cost sensor technology) or by using satellite measurements of air quality and, therefore, improving the
predictive power of the BN model.

A comparison between the DAG structure and known interrelations in atmospheric chemistry, meteorology,
and health is a logical means of probing how well the BN model represents the real-world data it describes.
The key outcome to be predicted is CVD60, and this is shown to be influenced by air pollution and meteorolog-
ical variables as is well established in the literature (World Health Organization, 2006). However, the effect on
CVD60 by air pollutants (O3, NO2, SO2, PM10, PM2.5, and CO) and weather variables (WS, SSR, BLH, T2M, WD, and
TP) appears to be mediated by the variables Year, Region, and Month. This is understandable as the pollution
and weather variables naturally exhibit temporal and spatial variations. Nonetheless, it would be interesting
to investigate the strength of direct arcs linking CVD60 and the pollution and weather variables by removing
the intermediate variables in future work.

The model represents known processes in atmospheric chemistry with a good degree of accuracy. The arcs
in the DAG connecting NO2 (Nitrogen Dioxide), O3 (Ozone), and SSR (surface solar radiation) indicate that the
model captures the importance of photochemistry of Nitrogen Dioxide for the production of Ozone at ground
level (Finlayson-Pitts & Pitts, 2000).

The direct arcs in the DAG from the variable CO (Carbon Monoxide) to SO2 (Sulfur Dioxide) and NO2 (Nitrogen
Dioxide) are as expected for these primary pollutants that result directly from combustion (Finlayson-Pitts &
Pitts, 2000). It would be interesting to explore whether the almost 95% reduction in sulfur emissions from
coal burning during the period covered by the data set (NAEI, undated) would weaken the strength of that
arc between CO and SO2.
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Although the DAG does not show any direct arcs from PM10 (Particulate Matter under 10 μm) and PM2.5

(Particulate Matter under 2.5 μm) to CO, this relationship is mediated by NO2 suggesting that the model may
be showing primary aerosol production mediated by NO2 as well as capturing secondary aerosol production
(Finlayson-Pitts & Pitts, 2000) (e.g., in the form of ammonium nitrate aerosols), in addition to the influence
of Nitrogen Dioxide on secondary organic aerosol production (Kroll et al., 2006). While these shortcomings
do not have bearing on the predictive power of the model for health outcomes, which was assessed by an
analysis of the differences between RMSE in the training and testing sets, they would benefit from further
examination in future work to assess the overall predictive capacity of the model.

We also note that the time-related variables could have been encoded in more useable form. Year was mis-
takenly encoded as a categorical variable, thus introducing a limitation on the production of temporal trends.
Furthermore, the mistaken treatment of Day, Month, and Hour as individual, categorical variables may have
hampered the exploration of the results when in fact, it would have been more informative to encode all the
time variables as a single variable using the Coordinated Universal Time format.

Results show that for pollution and weather variables the model tests well in sample (using the training set)
but also has good predictive power when tested out of sample (using the testing set). The errors arising from
the test data sets are, as expected, higher than errors arising from train data. As the difference is often sub-
stantial, the issue is probably due to overfitting. This could be addressed in future works by splitting the data
so that 70% is used for training the model and the remaining 30% for testing.

To the best knowledge of the authors, a statistical analysis of the variety and volume of information taken into
account has not been previously attempted, at least for the English regions, and constitutes the main novelty
of this work. The closest attempt to investigate the effect of air pollution on mortality rates was made in a
recent data science competition (Kaggle inClass competition on “Predict impact of air quality on mortality
rates”: https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates), but the data set consisted of
fewer features and spanned a shorter time range (2007–2014), also the air quality information was generated
by averaging gridded data from the Copernicus Atmosphere Monitoring Service rather than looking at point-
based information from the UK-Air Information Resource, as done in this study. The winning modeling
approach was based on the eXtreme Gradient Boosting algorithm and resulted into an RMSE of 0.29 on the
testing data set which is only slightly worse than the 0.27 scored by the BN in this work. We think, however,
that the BN approach is more flexible (using a mixture of point-based and gridded data) and has the potential
to further improve if fed by more detailed mortality rates. This model is also a valuable scenario exploration
tool that can be used to support decision and policy makers. It can be used, for instance, to assess changes in
mortality due to more extreme weather condition, concentration of pollutants, or a combination of the two
by simulating the conditions the model would expect to observe in those adverse scenarios.

5. Conclusions

This work set out to determine whether a BN graphical probabilistic model could be used to identify and pre-
dict dependencies between variables that predict exposure to pollutants and population health outcomes.
The analysis of residuals confirmed that BNs are a promising method for the use of multivariate environ-
mental and air pollution data to predict health problems. Despite a few shortcomings, discussed above, the
DAG structure accurately represents known linkages between the environment and health and also known
processes within the environment.

We can conclude that this application of BN graphical predictive modeling offers great potential when explor-
ing the environment-public health nexus as the model was able to process and analyze the multitude of
variables involved, in addition to utilizing an EM algorithm to compensate for missing values. The ability
to effectively deal with missing measurements would be of particular importance if the model were to be
applied to environmental problems where the data availability is even more lacking and this work could be
an extremely useful tool to provide statistically sound evidence to aid in public health policy decision making.

Future work to build upon this research includes the implementation of simulated scenario modeling to assess
the effects of environmental change on CVD60 and to test the accuracy and effectiveness of model predictions
of the environmental and weather variables. A series of comparisons between this machine learned BN model
and models constructed from expert knowledge in addition to a model that is a hybrid of a machine learning
and expert knowledge. Finally, this BN model was trained on data with good spatial coverage and relatively
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high temporal resolution. It would be informative to check whether the same model could be used to predict
CVD60 from air pollution and weather data sets in areas where data quality is not as good.

Appendix A: Hardware and Software Specifications

Hardware:

1. System: PowerEdge R815 (x3)
2. Processor: AMD Opteron(tm) Processor 6378 (64 cores)
3. Memory: 256GiB System Memory
4. Disk: 4998GB PERC H700

Software:

1. Platform: x86_64-pc-linux-gnu (64-bit)
2. Operating System: Ubuntu 14.04.4 LTS
3. R version 3.3.0 (2016-05-03)

Acronyms
BN Bayesian Network

CVD Cardiovascular-pulmonary diseases
DAG Direct acyclic graph

DEFRA Department for Environment Food and Rural Affairs (UK)
ECMWF European Centre for Medium-Range Weather Forecasts

EM Expectation Maximization
HC Hill Climbing

ICD International Classification of Diseases
RMSE Root Mean Square Error
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