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Abstract Influence Diagrams (IDs) are one of the most commonly used graphical 

and mathematical decision models for reasoning under uncertainty. In conventional 

IDs, both probabilities representing beliefs and utilities representing preferences of 

decision makers are precise point-valued parameters. However, it is usually difficult 

or even impossible to directly provide such parameters. In this paper, we extend 

conventional IDs to allow IDs with interval-valued parameters (IIDs), and develop a 

counterpart method of Copper’s evaluation method to evaluate IIDs. IIDs avoid the 

difficulties attached to the specification of precise parameters and provide the 

capability to model decision making processes in a situation that the precise 

parameters cannot be specified. The counterpart method to Copper’s evaluation 

method reduces the evaluation of IIDs into inference problems of IBNs. An algorithm 

based on the approximate inference of IBNs is proposed, extensive experiments are 

conducted. The experimental results indicate that the proposed algorithm can find the 

optimal strategies effectively in IIDs, and the interval-valued expected utilities 

obtained by proposed algorithm are contained in those obtained by exact evaluating 

algorithms. 

Keywords: Decision making; Influence diagrams; Bayesian networks; 

Interval-valued parameters. 



1 Introduction 

Influence diagrams (IDs) (Howard & Matheson 1984) are one of the most common 

graphical and mathematical decision models used for reasoning under uncertainty.  

Because IDs represent and model the relationships between decisions, uncertainties 

and preferences of decision makers, and they can be evaluated to reveal optimal 

strategies for decision making situations, IDs have become an important area for 

research and have been widely used in various applications, such as risk analysis (Liu 

et al. 2010), disease diagnosis (De Castro et al. 2011), multi-criteria decision-making 

(Sedki & Delcroix 2012), and recommender systems (Antonio et al. 2013). 

An ID has a graphical component and a numerical component. The graphical 

component is a directed acyclic graph consisting of chance, decision and value nodes. 

These nodes are connected by directed arcs that represent influences amongst nodes. 

The numerical component, i.e. parameters of IDs, consists of probability distributions 

and utility functions associated with chance nodes and value nodes respectively. They 

represent quantifiable beliefs on the uncertainties and preference of a decision maker. 

In a conventional ID, parameters are precise point-valued probabilities and utility 

values. Those parameters are typically obtained from measurement, or expert 

judgment or partially reliable data sources (Cabañas et al. 2016). However, in many 

cases, it is usually difficult to measure or for experts to provide precise point-valued 

parameters (Hu et al., 2012), especially in the situation that the values of the variables 

themselves being imprecise. Therefore, it is desirable to extend conventional IDs for 

handling situations where values of variables or parameters are imprecise. 

Extending conventional IDs with the capability to deal with interval values as 

parameters can help us to model and evaluate decision-making processes in the 

situation that the values of variables exist within a range. However, it is not a 

straightforward task. The first challenge is the extension of the probability theory that 

is the foundation of IDs. In situations that the values of variables are imprecise, we 

need considerate how to represent quantifiable beliefs and preferences with 

uncertainties for decision makers. Adopting probability intervals that are only 



composed of pairs of values between 0 and 1 (Cano & Moral 2002; Walley 1991) 

neglects theoretical probability semantics. The computation of the probability 

intervals themselves cannot be made with a theoretical basis, and the propagation of 

probability intervals during inferences cannot be guaranteed to be sound theoretically. 

Adopting interval probability instead of probability intervals can describe the 

semantics of imprecise probabilities and uncertain knowledge (Gilbert et al. 2003; 

Tanaka et al. 2004), but conventional concepts and definitions of interval probabilities, 

such as the intuitive concept and the canonical concept (Tanaka et al. 2004; 

Weichselberger 2000; Weichselberger & Augustin 2003), do not satisfy the 

conditional probability and multiplication rules for many common scenarios, thus 

cannot be used to represent and infer probabilistic causal relationships amongst 

interval-valued variables directly. However, the bound-limited weak conditional 

interval probabilities proposed by Liu & Yue (2011) satisfy the multiplication rule for 

joint probabilities and can be interpreted as interval probabilities. Therefore, beliefs 

regarding uncertainties for a decision maker can be represented quantifiably by 

bound-limited weak conditional interval probabilities. In this paper, we extend 

conventional IDs as influence diagrams with interval-valued parameters (IIDs), in 

which the probabilities associated with chance nodes are expressed via bound-limited 

weak conditional interval probabilities and the utilities associated with value nodes 

are expressed via interval values. This method avoids the difficulties attached to the 

specification of precise parameters, and provides the capability for modelling decision 

making processes in the situation where precise parameters cannot be specified, due 

to the values of the variables themselves being imprecise. In general, it is more likely 

for decision makers to specify interval-valued parameters than to provide point-valued 

parameters, therefore our approach extends the application domains for influence 

diagrams.  

The second challenge to extend conventional IDs to the situation that values of 

variables are imprecise is the evaluation of IIDs, i.e. how to select a strategy with a 

maximal expected utility. The computation of expected utilities integrates the 

inference of probabilities into decisional computations. In IIDs, how to integrate the 



inference of bound-limited weak conditional interval probabilities into decisional 

computations with interval-valued utilities is a crucial issue. As with evaluating 

conventional IDs, it is impracticable to evaluate each possible strategy directly and 

compare each expected utility, because the number of strategies grows exponentially 

in respect of the number of actions to be taken. Although researchers have developed 

a number of methods to evaluate conventional IDs, but these methods cannot be 

directly used to evaluate IIDs, thus there is a need to develop new evaluation methods 

for IIDs.  

In this paper, we propose an indirect method to evaluate IIDs. The main idea is to 

transform an IID into a Bayesian networks with interval-valued probabilities (IBNs), 

and then select the strategy with the maximal interval-valued expected utility based on 

the inference of IBNs. Furthermore, we develop an algorithm and conduct extensive 

experiments in synthetic data sets and a real world case. 

Our framework is novel and original in a way that the probabilities associated with 

chance nodes in IIDs are expressed via bound-limited weak conditional interval 

probabilities, and the evaluation of our IIDs is an indirect method based on the 

inference of IBNs. The bound-limited weak conditional interval probabilities satisfy 

the multiplication rule for joint probabilities and can be interpreted as interval 

probabilities. The indirect evaluation method avoids the computation on the cross 

product of all problem parameters, thus the efficiency of evaluation can be improved. 

The main contributions of this study can be summarised as follows: 

� The conventional IDs have been extended to as IIDs. This extension avoids the 

difficulties attached to the specification of precise parameters and provides the 

capability for modelling decision making processes in situations that the precise 

parameters are not available; 

� An indirect evaluation method has been developed for IIDs. The developed 

method is based on the interferences of IBNs. The proposed approach enables one 

to use exact or approximate inference algorithms of IBNs to efficiently evaluate 

IIDs; 

� An algorithm for evaluating IIDs is presented and extensive experiments are 



conducted. To verify the feasibility and robustness of our approach, the 

experimental results of our methods are compared with those obtained by other 

methods. We also apply our methods to a real life case.  

The remainder of this paper is organised as follows: Section 2 reviews of related 

literatures. Section 3 introduces the bound-limited weak conditional interval 

probabilities. Section 4 presents the IIDs. Section 5 introduces a method to evaluate 

IIDs. The experiments are presented in Section 6. Finally, Section 7 presents 

conclusions. 

2 Related Work 

Related literatures can be grouped into three categories: probability theory, extensions 

of conventional IDs and the methods for evaluating IDs. 

2.1 Probability theory 

Probability theory is the foundation to BNs and IDs. Interval probability theory has 

been accepted as a formal method to represent uncertainties in an imprecise manner 

by typical interval values. The intuitive concept and the canonical concept are two 

concept proposed by Weichselberger & Augustin (2003). The intuitive concept is used 

as the generalization of conditional probabilities, but it does not satisfy the 

multiplication rule for joint probability distribution. The canonical concept satisfied 

the multiplication rule, but it can not be interpreted as an interval probability in usual 

scenes. Liu & Yue (2011) defined the bound-limited weak conditional interval 

probabilities that satisfy the multiplication rule for joint probabilities and can be 

interpreted as interval probabilities in the usual scene, so these interval probabilities 

can be used to represent and infer causal relationships amongst interval-valued 

variables. Liu & Yue (2011) also gave a method for learning the BN structure from 

interval data and gave a Gibbs sampling algorithm for approximate inferences with 

interval probability parameters. This algorithm can effectively compute the 

bound-limited weak conditional interval probabilities for given the values of related 

nodes. 

2.2 The extension of conventional IDs 



In order to model more complex decision issues, the IDs proposed by Howard & 

Matheson (1984) have been extended in many different ways. For example, Lauritzen 

& Nilsson (2001) proposed limited memory IDs that relax the standard assumption in 

an ID of “no forgetting”; Garcia & Sabbadin (2008) presented possibilistic influence 

diagrams (PIDs), which allows to model sequential decision making under uncertainty, 

when only ordinal data on transitions likelihood or preferences are available. Cobb & 

Shenoy (2008) introduced MTE (Mixtures of truncated exponentials) IDs, in which all 

probability distributions and the joint utility function are represented by MTE 

potentials, and decision nodes are assumed to have discrete state spaces, thus MTE 

IDs can represent decision problems without restrictions on the relationships between 

continuous and discrete chance variables, without limitations on the distributions of 

continuous chance variables, and without limitations on the nature of utility functions. 

Zhou et al. (2013) presented game theory-based IDs (GIDs) by incorporating game 

theory into IDs. GIDs can model decision-making process in interactive scenarios 

because the choices of strategies made by other decision makers are also taken into 

account. In these studies, IDs have point-valued parameters.  

Some attempts have been made to avoid difficulties attached to the specification of 

precise beliefs and preferences, for example, Guezguez et al. (2009) suggested that it 

is easier to express uncertainty qualitatively by ranking different states of the world, 

and that it may be more flexible to provide a preferential relation between different 

consequences rather than exact numerical values. Therefore, they extended 

conventional IDs as qualitative possibilistic IDs in which beliefs are quantified 

qualitatively via possibility distributions, and utilities are represented by a preferential 

relation between different consequences. Mateou et al. (2005) proposed Fuzzy 

influence diagrams (FIDs) that express the possible values of each node as fuzzy sets 

rather than probabilities, thus the dependence on probabilistic contribution is 

eliminated. Huang et al. (2007) extended conventional IDs as rough set-based IDs in 

which causal relationships amongst the nodes were expressed using rough sets. Hu et 

al. (2012) converted intervals of probabilities assigned by a group of experts into the 

point-valued probabilities to quantify the beliefs of decision makers. Breeze & Fertig 



(1990) developed interval influence diagrams where lower bounds of probability 

intervals are stored at each node. This method preserves both the probabilistic 

soundness and the graphical nature of conventional IDs. But the probability bounds 

calculated by this method quickly degrade during the propagation, thus resulting in 

the assignment of too wide probability intervals and jeopardizing the normative 

character of their decisions (Ramoni 1995). Ramoni (1995) proposed ignorant 

influence diagrams that are able to reason on the basis of incomplete information, and 

to incrementally refine the accuracy of their decisions as more information becomes 

available. Cabañas et al. (2016) extended IDs to intervals by replacing the probability 

potentials (PPs) and utility potentials (UPs), with an equal number of interval-valued 

probability potentials (IPPs) and interval-valued utility potentials (IUPs) defined over 

the same domains. The corresponding models are called IIDs. In the study of Cabañas 

et al (2016), an IID is equivalent to a collection of precise IDs, all with the same 

graph and set of variables, with PPs and UPs taking their values from the extensions 

of the IPPs and IUPs of the IID. 

2.3 The methods for evaluating IDs 

Given an ID, a strategy defines the actions taken at each decision node, given the 

values of nodes available at that moment. Each strategy has a corresponding expected 

utility (De Campos & Ji 2008) and the strategy with the maximal expected utility can 

be the optimal one. Evaluating an ID means to select a strategy with the maximal 

expected utility.  

To evaluate conventional IDs, the direct and indirect methods have been proposed. 

The direct methods, such as arc reversal and variable elimination (Shachter 1986), 

compute directly on IDs, while the indirect methods transform IDs into other models, 

such as BNs (Cooper 1988; Shachter & Poet, 1992; Zhang 1998) or decision trees 

(Howard & Matheson 1984), and then the computations are carried out on 

transformed models. The use of decision trees for evaluation IDs does not use 

conditional independencies and direct evaluation requires a lot of probabilistic 

calculations which justify the great development of indirect methods initiated by 

Cooper (1988) for the particular case of influence diagrams with a unique value node 



(Guezguez et al. 2009). The key idea of Cooper’s method is to transform decision and 

value nodes of an ID into chance nodes to obtain a BN (Heckerman & Wellman 1995), 

and then reduce the ID evaluation problem into a BN inference one.  

On extended IDs, Lauritzen & Nilsson (2001) selected strategies by passing 

messages in suitable junction trees. Garcia & Sabbadin (2008) proposed a dedicated 

variable elimination algorithm for solving PID. MTE IDs are solved by variable 

elimination using a fusion algorithm (Cobb & Shenoy 2008). GIDs are evaluated by 

genetic algorithm-based methods (Zhou et al. 2013). Guezguez et al. (2009) 

transformed qualitative possibilistic IDs into qualitative possibilistic networks (Ben 

Amor et al. 2003) based on possibility theory and made inference in these qualitative 

possibilistic networks. Mateou et al. (2005) employed fuzzy reasoning instead of 

probabilities, thus the need to calculate the cross product of all problem parameters is 

eliminated by using fuzzy casual relationships. Huang et al. (2007) evaluated rough 

set-based IDs based on rough sets theory. Breese & Fertig (1990), Ramoni (1995) and 

Cabañas et al. (2016) evaluated their interval IDs based on arc reversal and variable 

elimination. In the framework of Cabañas et al., the interval dominance in the 

imprecise-probability jargon is adopted as the decision criterion, which rejects all the 

decisions leading to certainly sub-optimal strategies. Both reversing an arc and 

deleting a node are based on probabilities, so they must spent much time to calculate 

the cross product of all problem parameters.  

Although existing researches (Breese & Fertig 1990; Ramoni 1995; Cabañas et al. 

2016) have extended conventional IDs to intervals, the study in this paper is different 

from the existing researches in two aspects. First of all, the probability theory used in 

this paper is the bound-limited weak conditional interval probabilities which have not 

been used in existing researches. Then, the evaluation method for IIDs in this study is 

an indirect method that reduces the IIDs evaluation problem into an IBN inference 

one, but the evaluation methods for IIDs in existing researches are direct methods that 

are based on arc reversal and variable elimination.  

 



3 The Bound-limited Weak Conditional Interval Probabilities  

Let the universe of discourse ℜ be a continuous one-dimensional space. An interval 

value a~  is defined as: ∈≤≤== ULULUL
aaaxaxaaa ,,|{],[~ ℜ}, where L

a and 

U
a  are the lower and upper bounds of a~  respectively. Especially, a~  degenerates 

as a real value if UL
aa = . Let A  and B  be random variable with interval-valued 

sample data, )(BL  and )(BU  be the lower and upper probabilities respectively, 

)]/(),/([ BAUBAL  be the conditional interval probability of A  with respect to B , 

)]/(),/([ BAEUBAEL  be the extended weak conditional interval probability, 

)]/(),/([ BACUBACL be the contracted conditional interval probability, and 

)]/(),/([ BABUBABL  be the bound-limited weak conditional interval probability. 

Liu & Yue (2011) gave the definitions of these probabilities as follows: 
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)/( BAL  and )/( BAU  do not satisfy the multiplication rule for joint probability 

distributions, and when A  and B  are mutually independent, )/()( BAELAL ≠ , 

)/()( BACLAL ≠  and )/()( BAEUAU ≠ , )/()( BACUAU ≠ . So, it is difficult to 



make inferences on a BN based on the interval probabilities given above. 

)/( BABL  and )/( BABU  are defined according to various cases of the 

relationships among )(AL ,  )(AU , )/( BAL  and )/( BAU : 

(1) If )()/()/()( AUBAUBALAL ≤≤≤ , then 

         )}(),/(max{)/( ALBAELBABL = , )}(),/(min{)/( AUBAEUBABU = ; 

(2) If )/()()()/( BAUAUALBAL ≤≤≤ , then 

         )}(),/(min{)/( ALBACLBABL = , )}(),/(max{)/( AUBACUBABU = ; 

(3) If )()/()()/( AUBAUALBAL ≤≤≤ , then 

         )}(),/(min{)/( ALBACLBABL = , )}(),/(min{)/( AUBAEUBABU = ; 

(4) If )/()()/()( BAUAUBALAL ≤≤≤ , then 

         )}(),/(max{)/( ALBAELBABL = , )}(),/(max{)/( AUBACUBABU = ; 

(5) If )/()/()()( BAUBALAUAL ≤≤≤ , then 

         )}(),/(max{)/( AUBAELBABL = , }1),/(min{)/( BAEUBABU = ; 

(6) If )()()/()/( AUALBAUBAL ≤≤≤ , then 

         )/()/( BAELBABL = , )}(),/(min{)/( ALBAEUBABU = . 

where 1)/()/()/(0 ≤≤≤≤ BABUBAPBABL , and )/( BABL  and )/( BABU  

satisfy the multiplication rules of probability distributions, i.e. : 

)/()()()( BABLALABBLABL =≈ , )/()()()( BABUAUABBUABU =≈ , where 

)(ABL ( )(ABU ) is not exactly equal to )/( BABL  ( )/( BABU ), but a certain 

approximation. If A  is independent of B , then )()/( ABLBABL = ， and 

)()/( ABUBABU = . The multiplication rules for bound-limited weak conditional 

interval joint probability imply that the joint probability distribution of the given 

random variables can be simplified on the basis of conditional independencies. This 



guarantees that the probability distributions can be represented by BNs, and the 

probabilistic computation can be done by using inference of BNs. 

4 Influence Diagrams with Interval-valued Parameters (IIDs) 

An IID consists of a graphical component and a numerical component. These two 

components are introduced in the following this section.  

4.1 The Graphical Component 

The graphical component is defined as a directed acyclic graph (DAG) denoted by 

),( AN=G , where N  contains nodes representing the variables of the decision 

problem and A  contains directed arcs representing local dependencies between 

variables. The nodes in N  are partitioned into a set of chance nodes },...,{ 1 m
CC=C , 

a set of decision nodes },...,{ 1 k
DD=D , and a value node V : 

� Chance nodes, C∈i
C , represent relevant uncertain factors for a decision problem. 

i
C  is drawn as a circle or oval. The lowercase c  denotes an instance of i

C , i.e. 

a state of i
C . All states of variable i

C  are denoted by )( iCdom . 

� Decision nodes, D∈i
D , represent actions available to a decision maker. iD  is 

drawn as a rectangle. The lowercase d  denotes an action at iD . All actions 

available at iD  are denoted by )( iDdom . 

� The value node, V , represents the integrated preference of a decision maker. V  

is drawn as a diamond. The lowercase v  denotes a preference of V , called a 

utility value. All preferences are denoted by )(Vdom . 

In this paper, the terms of both chance and decision variables can be used 

interchangeably with nodes.  

In an IID, nodes with arcs are linked into a node are called the parents of this node, 

denoted by )(•Par . DC ∪⊆)( i
DPar , specifies the variables whose values have been 

known before the action of i
D  is chosen; DC ∪⊆)( i

CPar  specifies the variables 

on which the conditional probabilities of i
C  depends, via the bound-limited weak 



conditional interval conditional probabilities ))(/(~ ii
CParCp ; DC ∪⊆)(VPar  

specifies the variables on which the preferences depends, via interval-valued utility 

))((~ VParu . While )(•par  denotes an instance of )(•Par , i.e. a configuration of the 

values of variables of )(•Par , where the symbol •  may be i
C , i

D  or V . 

4.2 The Numerical Component 

The numerical component of an IID is defined by an interval-valued conditional 

probability table (CPT) attached to each chance node and an interval-valued utility 

table attached to the value node.  

� Each entry of a CPT attached to chance node i
C  specifies a bound-limited weak 

conditional interval conditional probability ))](/()),(/([ iiii CparcBUCparcBL  to 

the instance i
c  of i

C . If i
C  is a root of the DAG, i.e. φ=)( i

CPar , the lower 

and upper probabilities )( i
cBL  and )( i

cBU  will be specified to each instance 

i
c  of i

C . 

� Each entry of a utility table attached to a value node V  specifies an 

interval-valued utility ))](()),(([ VparuVparu
UL  to an instance )(Vpar  of )(VPar .  

Decision nodes are not quantified, because decision nodes describe the 

deterministic actions of a decision maker, so it is not needed to specify the 

probabilities of decision nodes. The IIDs also need to satisfy the constraints that are 

required in conventional IDs. For example, the directed graph should not contain 

cycles, the value node cannot have children, decision variables are supposed to be 

totally ordered, according to a priori fixed ordering (this ordering should be consistent 

with any existing oriented path between decision nodes of the DAG), and IIDs satisfy 

the “no-forgetting” property, in the sense that the values of the variables that once to 

be “known” would never be "forgotten". 

4.3 An Example 

Example 1. Figure 1 (Cooper 1988) represents the graphic component of an IID, 

where A , B , and C  are chance nodes; D  is a decision node; V  is a value node. 



The arcs from A  to B  and from B  to C  show that the status of B  and C  

depend on the status of A  and B  respectively; the absence of an arc from A  to 

C  indicates that C  is conditionally independent on A  given the value of B ; the 

arc from C  to D  shows that the action is chosen at D  knowing the status of C ; 

the arcs from D  and A  to V  show that the utility values at V  depend on the 

action chosen at D  and on the status of A . 

The CPTs attached to A , B , and C  and the utility table attached to V  are 

shown in Table 1, where the probabilities of A , B , and C  are bound-limited weak 

conditional interval probabilities and the utilities of V  are interval-valued utilities. In 

the conventional ID, they are point-valued probabilities and point-valued utilities. 

From this example, we can see that for the same decision modelling problem, the IIDs 

and the conventional ID have the same graphical components but different numerical 

components. 

D 

B A 

  V 

C 

Figure 1 The graphic component of an IID 

 
 

A [BL(A),BU(A)] A B [BL(B/A),BU(B/A)] B C [BL(C/B),BU(C/B)] A D [uL(A,D),uU(A,D)]

1a  [0.4,0.6] 1a  1b  [0.8,0.9] 1b  
1c  [0.7,0.9] 1a  d1 [4,6] 

2a  [0.4,0.6] 1a  2b  [0.1,0.2] 2b  
2c  [0.1,0.3] 1a  d2 [-3,-1] 

  2a  1b  [0.1,0.2] 1b  
1c  [0.2,0.4] 2a  d1 [-1,1] 

  2a  
2b  [0.8,0.9] 2b  

2c  [0.6,0.8] 2a  d2 [7,7] 

 

Table 1 The bound-limited weak conditional interval probabilities of A, B and C  

and the interval-valued utilities of V 

 

5 Evaluating IIDs  

5.1 The Concepts on Evaluating IIDs  

Let kDD ,,1 Λ  be decision nodes in an IID, a policy for i
D  be a mapping 

)())((: ii

D
DdomDPardomi →δ . A strategy ∆  is a vector of policies, one for each 

decision node, i.e. ),,( 1 k
DD

δδ Λ=∆ . Evaluating an IID means to find the optimal 

strategy *∆ , which maximizes the interval-valued expected utility of value node V . 



Let )](),([)(~ ••=• BUBLp  be the bound-limited weak conditional interval probability, 

))](()),(([))((~ VParuVParuVParu UL=  be the interval-valued utility of value node V , 

and E  (set of evidences) be a set of chance nodes with known values and decision 

nodes whose decisions have already been made. Then, the interval-valued expected 

utility corresponding to a policy of i
D , ))((

~
Ei

D
UE δ , is defined as follow. 

Definition 1. The interval-valued expected utility corresponding to a policy of a 

decision node. Given E , for a policy of decision node i
D , the interval-valued 

expected utility ∑ ×=
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Let the temporal order of an IID be denoted by kk
DD CCC πΛπππ 110 . The 

symbol π  denotes topological precedence. iC )1,...,0( −= ki includes the chance 

nodes directly preceding 1+i
D  but not i

D . kC  includes the chance nodes that not 

having decision nodes amongst their direct successors. If a chance node is a direct 

predecessor of more than a decision node, it belongs to the set associated to the 

decision node with the smallest index i. CCCC =∪∪ k10 . The optimal policy for a 

decision node and the maximal interval-valued expected utility are defined as follows. 

Definition 2. The optimal policy. Given E , the optimal policy *
i

D
δ  for i

D  is 

defined as: ∑∑ ×=
+

)(

* ))((~))/)((~maxmaxmaxarg)(
1

Vpar
DDD

D
VparuVparp

k
i

ii
i EE
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Λδ . 

Definition 3. The maximal interval-valued expected utility UEM
~

. UEM
~

 is 

defined as: ∑∑ ×=
)(

))((~)/)((~maxmax
~

0
1

Vpar
DD

VparuVparpUEM
k

E
C

Λ . 

The strategy that can induce UEM
~

 is the optimal strategy *∆ . 



To find the optimal strategy *∆ , we first find the optimal policy *
k

D
δ , and update 

the evidence E  as }{ *
kD

δ∪E . Then recursively find the optimal policy *
1-k

D
δ ,…, *

1
D

δ  

in the same manner.  

5.2 The Approach for Evaluating IIDs 

Amongst existing indirect methods for evaluating IDs, Cooper’s method (1988) is a 

well known method. It represents the basis of existing indirect methods (Guezguez et 

al. 2009). The key idea of Cooper’s method is to transform an ID into a BN and then 

to compute maximal expected utilities via the inference of the BN. Using a BN 

instead of a decision tree as a secondary structure to determine the optimal policy can 

use conditional independencies amongst variables. Moreover, it avoids heavy 

probabilistic computations required by a direct evaluation method. Guezguez et al. 

(2009) developed a possibilistic counterpart of Cooper’s method (1988) for evaluating 

qualitative possibilistic IDs. This method transforms a qualitative possibilistic ID into 

a qualitative possibilistic network (Ben Amor et al., 2001), and makes inference in 

this qualitative possibilistic network using the appropriate propagation algorithms. 

Guezguez et al.’s method in qualitative possibilistic IDs inspired us to extend 

Cooper’s method (1988) to evaluate IIDs. Our choice is reinforced by the fact that 

IBNs have been developed as well as their propagation algorithms (Liu & Yue 2011). 

Therefore, to evaluate IIDs, we first transform IIDs into IBNs, and then compute 

interval-valued expected utilities based on the inferences of IBNs. This approach can 

be regarded as the counterpart of Cooper’s method (1988) for evaluating IIDs. 

Transforming IIDs into IBNs consists of transforming the decision nodes and the 

value node into chance nodes. 

� Transforming decision nodes into chance nodes 

The decision node i
D  is presented as a circular node whose lower and upper 

probabilities are defined by Equation (1). 

kiDdomd
Ddom

dBUdBL
i

iDD
ii ,...,1),(,|

|)(|

1
)()( =∈∀==== δδ                (1) 

Where |)(| i
Ddom  is the number of possible actions that can be taken at i

D . The 



arcs into i
D  will be ignored. 

� Transforming the value node into a chance node 

The value node V  is presented as a circular node with two states v  and v¬ , 

representing the desired and undesired outcomes respectively. The bound-limited 

weak conditional interval conditional probabilities of V  are defined by Equation (2).  
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After transforming all decision nodes and the value node V  into chance nodes, the 

IIDs becomes an IBN. 

Based on Equation (2), the interval-valued expected utility ))((
~

EiD
UE δ , defined in 

Definition 1, can be presented as Equation (3): 
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Equation (3) implies that ))((
~

Ei
D

UE δ  can be computed based on 

))(,/(~ EE iD
vVp δ= , which can be obtained by the inference of IBNs. 

Example 2. The IBN transformed from the IID shown in Example 1 of Section 4.3 

is shown in Figure 2.  

If the evidence E  is 
1cC = , then ]7693.0,5.0[))(,/(~

1 === dvVp D EE δ ,  

]61.0,3846.0[))(,/(~
2 === dvVp D EE δ . According to Equation (3), we have 

]693.4,2[))((
~

1 == dUE D Eδ , ]1.3,843.0[))((
~

2 == dUE D Eδ . Because 

))((
~

))((
~

21 dUEdUE DD =>= EE δδ , thus 
11

* )( dcCD ==δ . 



[BL(B/A),BU(B/A)] 1aA =  
2aA =  

1bB =  [0.8,0.9] [0.1,0.2] 

2bB =  [0.1,0.2] [0.8,0.9] 

 
A [BL(A), BU(A)] 

1aA =  [0.4,0.6] 

2aA =  [0.4,0.6] 

 

[BL(C/B),BU(C/B)] 1bB =  
2bB =  

1cC =  [0.7,0.9] [0.2,0.4] 

2cC =  [0.1,0.3] [0.6,0.8] 

 
B A C 

V D 

k1=10 

k2=3 

k3=-7 

Figure 2 The IBN transformed from the IID shown in Example 1 

D [BL(D), BU(D)] 

1dD =  [0.5,0.5] 

1dD =  [0.5,0.5] 

 

[BL(V/D,A),BU(V/D,A)] 
1aA = ,

1dD =  
2aA = ,

1dD =  
1aA = ,

2dD =  
2aA = ,

2dD =  

vV =  [0.7,0.9] [0,0.2] [0.2,0.4] [1.0,1,0] 

vV ¬=  [0.1,0.3] [0.8,1.0] [0.6,0.8] [0,0] 

 

 

5.3 The Algorithm for Evaluating IIDs 

In this section, we introduce the algorithm EAIID for evaluating IIDs, where the 

Algorithm 5.1 (proposed by Liu & Yue (2011)), an approximate inference algorithm 

for IBNs, is used to obtain the bound-limited weak conditional interval conditional 

probabilities of the value node V  with respect to a policy i
D

δ . Alternatively, it can 

be obtained by calling an exact inference algorithm for IBNs. 

Algorithm EAIID. 

Input: an IID, the set of evidence nodes E , and the configuration of values of the 

evidence nodes e . 

Output: the optimal strategy *∆  and maximal interval-valued expected utility 

UEM
~

. 

(1) Initialization: 
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(2) For 1=i  to k    // k  is the number of the decision nodes 

   Transforming decision nodes into chance nodes according to Equation (1) 

(3) Transforming the value node into a chance node according to Equation (2) 

(4) IBN←IID 

(5) For ki =  to 1 

(5.1) For each )( i
Ddomd ∈  
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(6) Output ∆  and UEM
~

. 

 The time complexity of the algorithm EAIID is mainly determined by Step (5). 

The time complexity of Algorithm 5.1 is )( nmO × , where || N=n  is the number of 

nodes in an IID, m is the times of iterations that Algorithm 5.1 arrives at the 

convergence; the time complexity of step (5.2) is ))|)((max(| 2iDdomO  ),,2,1( ki Λ= ; 

so the time complexity of algorithm EAIID is 

),,2,1()))|)(max(||)))(max(|((( 2
kiDdomDdomnmkO

ii Λ=+××× , , where k  is the 

number of decision nodes. Usually, mk << , mDdom
i <<|)(| . 

6 Experimental Studies and Results 

In this section, we test the EAIID algorithm on four influence diagrams with 

different features: an ID with interval-valued probabilities and interval-valued utilities 

(denoted as “ID-BcBv”), an ID with point-valued probabilities and point-valued 

utilities (denoted as “ID-PcPv”), an ID with point-valued probabilities and 

interval-valued utilities (denoted as “ID-PcBv”), and an ID with interval-valued 

probabilities and point-valued utilities (denoted as “ID-BcPv”). First, we evaluate the 

ID-BcBv to test whether the EAIID algorithm can find the optimal strategy, then we 

evaluate the ID-PcPv, the ID-PcBv and the ID-BcPv by representing each precise 

point-valued parameter (probability or utility) as an interval-valued parameter, such as 

[a, a] for the purpose of testing the effectiveness of the EAIID algorithm. The graphic 

components of four IDs used in all experiments are shown in Figure 1 of Section 4.3, 



the numerical components of the four IDs used in experiments are different as shown 

in Tables 1, 4, 6 and 8. 

Each evaluation is repeated 10 times, each of which consists of 100 iterations 

(because Algorithm 5.1 used in EAIID is a sample algorithm), and then the average 

lower and upper expected utilities in 100 iterations are taken as the evaluation results 

of each time. We further compute the average lower and upper expected utilities for 

10 evaluation results (denoted as “EAIID”), and compare them with those obtained by 

other methods.  

Variable elimination (VE) (Zhang & Poole 1996) and arc reversal (AR) (Shachter 

1986) are two standard approaches to IDs evaluation. Cabañas et al. (2016) adopted 

VE and AR schemes for IIDs evaluation by replacing the operations over point-valued 

potentials with the analogous operations for interval-valued potentials. In VE scheme, 

the procedure to eliminate a variable is based on the potentials including the variable 

to eliminate in their arguments are combined and the elimination is performed on the 

combined potential. When cope with IIDs, the last combination together with the 

elimination are performed. In AR scheme, IIDs are evaluated by performing 

elimination of chance and decision variables and arc reversal. These extensions are 

achieved by local optimization tasks, reduced to linear programs. To avoid the 

unnecessarily large outer approximations produced in extended VE, Cabañas et al. 

(2016) also proposed a faster but less accurate procedure, which does not require 

linear programming. The latter approach gives an outer approximation analogous to 

the generalization of the AR algorithm proposed by Breeze & Fertig (1990). In this 

section, we compare our method with the variable elimination by linear programming 

(denoted as “VElp”), the faster outer approximation of VElp (denoted as “VEouter”) and 

the arc reversal by linear programming (denoted as “ARlp”) (Cabañas et al. 2016). 

In the following, Figure 3, 4, 5 and 6 present the expected utilities of EAIID in 10 

experiments. In Figure (a) and (b), the evidence E  is 
1cC = , while 

2cC =  in Figure 

(c) and (d). In Figure (a) and (c), the action taken at decision node D  is 
1d , while 

2dD =  in Figure (b) and (d). Table 3, 5, 7 and 9 show the comparison amongst results 



obtained by EAIID and VElp, VEouter, and ARlp. Each bold entry in these Tables is the 

maximal expect utility corresponding to the optimal strategy. 

6.1 Results for ID-BcBv 

First, we evaluate the ID-BcBv, the parameters are shown in Table 1 of Section 4.3. 
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Figure 3 The evaluation results of the EAIID on the ID-BcBv 
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In Figure 3(a), the average lower and upper expected utilities are 820.2=
L

EAIIDEU  

and 6.4=
U

EAIIDEU  respectively, ))(( 11
*

dcCDEAIID ===∆ δ  in 10 evaluations, and the 

maximal errors between expected utility and the average of expected utility are 

073.0|)max(| =−
L

EAIIDEAIID
L

EUEU  and 041.0|)max(| =−
U

EAIIDEAIID
U

EUEU  respectively. It 

indicates that both the fluctuations of lower and upper expected utilities are gentle. 

The results in Figure 3(b), (c) and (d) are similar. Thus, the EAIID algorithm is stable.  

Table 3 indicates that the optimal strategies found by EAIID are same with those by 

other algorithms, but the expected utilities obtained by EAIID have narrower interval 

than those obtained by VElp , VEouter and ARlp, i.e. ],[],[ U
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 EAIID VElp VEouter ARlp 

 1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1cC =  [2.08,4.60] [0.84,1.25] [ 1.05,6.400] [-1.52,4.15] [ 1.05,5.26] [-1.52,3.72] [ 1.42,6.340] [-0.29,3.87] 

2cC =  [0.32,2.56] [4.38,4.52] [-0.42,5.02] [ 1.32,6.52] [-0.42,3.84] [ 1.32,6.07] [-0.05,5.02] [ 2.57,6.24] 

 

Table 3 The comparison amongst results obtained by the EAIID and other methods on the ID-BcBv 

6.2 Results for ID-PcPv 

In the second test, we use the EAIID algorithm to evaluate the ID-PcPv, the 

parameters are shown in Table 4.  

 

A P(A) A B P(B/A) B C P(C/B) A D u(A,D) 

a1 0.4 a1 b1 0.8 b1 c1 0.7 a1 d1 4 

a2 0.6 a1 b2 0.2 b1 c2 0.3 a1 d2 -3 

  a2 b1 0.1 b2 c1 0.2 a2 d1 -1 

  a2 b2 0.9 b2 c2 0.8 a2 d2 7 

 

Table 4 The point-valued probabilities and point-valued utilities 

 
 

Figure 4 The evaluation results of the EAIID on the ID-PcPv 
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Figure 4(a)~(d) also indicate that both the lower and upper expected utilities have 

gentle fluctuations and the EAIID algorithm is stable.  

Table 5 indicates that the optimal strategies found by EAIID are same with those by 

other algorithms, and the upper bounds of the expected utilities are very close to the 

lower bounds. It shows that the interval-valued results are converged to the precise 



pointed-valued ones. This demonstrates the feasibility and suitability of our method 

for evaluating directly conventional IDs that is a special case of IIDs. 

 EAIID VElp VEouter ARlp 

 1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1cC =  [2.04,2.10] [0.83,0.86] [2.08,2.08] [0.85,0.85] [2.08,2.08] [0.85,0.85] [2.08,2.08] [0.85,0.85] 

2cC =  [0.30,0.34] [4.35,4.39] [0.31,0.31] [4.38,4.38] [0.31,0.31] [4.38,4.38] [0.31,0.31] [4.38,4.38] 

 

Table 5 The comparison amongst results obtained by the EAIID and other methods on the ID-PcPv 

6.3 Results for ID-PcBv  

In the third test, we evaluate the ID-PcBv whose parameters are shown in Table 6.  

 

A P(A) A B P(B/A) B C P(C/B) A D ),(~ DAu   

1a  0.4 1a  
1b  0.8 1b  

1c  0.7 1a  d1 [4,6] 

2a  0.6 1a  
2b  0.2 1b  

2c  0.3 1a  d2 [-3,-1] 

  2a  
1b  0.1 2b  

1c  0.2 2a  d1 [-1,1] 

  2a  
2b  0.9 2b  

2c  0.8 2a  d2 [7,7] 

 

Table 6 The point-valued probabilities and interval-valued utilities  
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Figure 5 The evaluation results of the EAIID on the ID-PcBv 
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Figure 5(a)~(d) also indicate that both the lower and upper expected utilities have 

gentle fluctuations and the EAIID algorithm is stable.  

Table 7 indicates that the optimal strategies found by EAIID are same with those by 

other algorithms, and the expected utilities obtained by EAIID are very close to those 



by other algorithms. It indicates that our method can evaluate directly the ID-PcBv, 

the second special case of IIDs. 

 EAIID VElp VEouter ARlp 

 1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1cC =  [2.10,4.05] [0.83,2.11] [2.08,4.08] [0.85,2.08] [2.08,4.08] [0.85,2.08] [2.08,4.08] [0.85,2.08] 

2cC =  [0.31,2.31] [4.38,4.91] [0.31,2.31] [4.38,4.90] [0.31,2.31] [4.38,4.90] [0.31,2.31] [4.38,4.90] 

 

Table 7 The comparison amongst results obtained by the EAIID and other methods on the ID-PcBv 

6.4 Results for ID-BcPv 

In the last test, we evaluate the ID-BcPv whose parameters are shown in Table 8.  

 

A [BL(A),BU(A)] A B [BL(B/A),BU(B/A)] B C [BL(C/B),BU(C/B)] A D u(A,D) 

1a  [0.4,0.6] 1a  1b  [0.8,0.9] 1b  
1c  [0.7,0.9] 1a  d1 4 

2a  [0.4,0.6] 1a  2b  [0.1,0.2] 2b  
2c  [0.1,0.3] 1a  d2 -3 

  2a  
1b  [0.1,0.2] 1b  

1c  [0.2,0.4] 2a  d1 -1 

  2a  
2b  [0.8,0.9] 2b  

2c  [0.6,0.8] 2a  d2 7 

 

Table 8 The bound-limited weak conditional interval probabilities and the point-valued utilities 
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Figure 6 The evaluation results of the EAIID on the ID-BcPv 
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Figure 6(a)~(d) also indicate that both the lower and upper expected utilities have 

gentle fluctuations and the EAIID algorithm is stable.  

Similar to the results for ID-BcBv, the optimal strategies found by EAIID are same 

with those by other algorithms, but the expected utilities obtained by EAIID have 



narrower interval than those obtained by VElp and VEouter and ARlp, 

 EAIID VElp VEouter ARlp 

 1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1dD =  
2dD =  

1cC =  [2.08,2.72] [-0.43,0.84] [ 1.05,3.26] [-1.52,2.90] [ 1.42,3.12] [-0.29,1.97] [ 1.05,3.39] [-1.52,2.90] 

2cC =  [0.31,1.17] [ 2.64,4.36] [-0.42,1.84] [ 1.32,5.84] [-0.05,1.70] [ 2.57,4.90] [-0.42,1.98] [ 1.32,5.84] 

 

Table 9 The comparison amongst results obtained by the EAIID and other methods on the ID-BcPv 

 

Based on the above results, we can find that the IIDs proposed in this study and 

associated algorithms performed well under different circumstances. Thus IIDs 

provide a technical solution to model decision making processes in uncertain 

situations, such as where values of variables are represented by interval values. 

6.5 A Case Study 

When Tangshan Smokeless Coal Mining Plc makes mining decisions (Liu 2007), it 

needs to analyse the different factors of risks involved and quantify the degrees of 

risks that are significant for the enterprise to avoid loss and obtain sustained gain. 

However, the risk analysis of a mining decision is a complex decision process. In 

general, the risks come from three aspects: 

(1) The uncertainty of the natural conditions of mining, such as geological 

conditions, ore grades and ore reserves; 

(2) The uncertainty of the social environment, such as market requirements, 

environment protection regulations and international competitions; 

(3) The uncertainty of the mining technique factors, such as mining condition 

assessment information and related experience. 

The factors that affect the mining risk analysis of mining decisions and the 

relationship amongst factors are represented by Figure 7. 



  

Figure 7 Mining risk factors analysis   
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It is a common practice for Tangshan Plc to make assessments based on the 

estimated range values of these factors for risk analysis, because it is difficult to 

estimate precise values for these factors. Assume that each factor is represented by an 

interval-valued variable with two statuses. For example, the Geological conditions is 

represented by GC whose status gc1=[a1,a2] means acceptable range and gc2=[a3,a4] 

means unacceptable range. The interval data of the mining risk factors is shown in 

Table 10. 

 Because the values of the variables themselves are imprecise, the influences 

amongst variables need to be represented by interval conditional probabilities. In a 

similar way, the outcome of decision making is also represented by interval values.  

Overall, the decision process of Tangshan are modelled by the IIDs shown in Figure 

8, where 12 ovals are chance nodes, the rectangle (DE) is the decision node, and the 

diamond (OC) is the value node representing the outcome of decision making. The 

bound-limited weak conditional interval probabilities calculated from Table 10 are 

shown in Tables 11–16. Table 17 shows the utilities of investment under different 

statuses of the Mining risk analysis (RA): the minimum and maximum revenue of 

investment are $700 and $750 million respectively when the status of risk is ra1 

(acceptable range), but the minimum and maximum loss of investment are $500 and 



$600 million respectively when the status of risk is ra2 (unacceptable range). 

 

RA … GC … RE Count 

ra1=[1,3] … gc1=[2,5] … re1=[3,6] 20 

ra2=[5,7] … gc1=[2,5] … re2=[2,5] 5 

… … … … … … 

 

Table 10 The interval data of the mining risk factors 

 

 

NC SE 

RA 

  OC 

TF 

DE 

MC RE MR EP IC GC OG OR 

Figure 8 The graphic component of the IID for the decision making of mining 

investment  

GC OG OR MR 

gc1 gc2 og1 og2 or1 or2 mr1 mr2 

[0.85,0.90] [0.14,0.28] [0.53,0.63] [0.37,0.47] [0.10,0.15] [0.85,0.90] [0.20,0.30] [0.70,0.80] 

 

Table 11 The [BL(GC),BU(GC)], [BL(OG),BU(OG)], [BL(OR),BU(OR)], [BL(MR),BU(MR)] 

 

Table 12 The [BL(EP),BU(EP)], [BL(IC),BU(IC)], [BL(MC),BU(MC)], [BL(RE),BU(RE)] 

 
EP IC MC RE 

ep1  ep2  ic1 ic2 mc1 mc2 re1 re2 

[0.10,0.20] [0.80,0.90] [0.45,0.51] [0.49,0.55] [0.20,0.30] [0.70,0.80] [0.5,0.5] [0.5,0.5] 

 

OR or1 or2 

OG og1 og2 og1 og2 

GC gc1 gc2 gc1 gc2 gc1 gc2 gc1 gc2 

nc1 [0.69,0,71] [0.10,0.15] [0.80,0.88] [0.21,0.25] [0.75,0.85] [0.23,0.30] [0.25,0.35] [0.35,0.38] 
NC 

nc2 [0,27,0.30] [0.70,0.90] [0.12,0.20] [0.70,0.80] [0.15,0.25] [0.65,0.75] [0.65,0.75] [0.60,0.75] 

 

Table 13 The [BL(NC/GC,OG,OR),BU(NC/GC,OG,OR)] 

 

IC ic1 ic2 

EP ep1 ep2 ep1 ep2 

MR mr1 mr2 mr1 mr2 mr1 mr2 mr1 mr2 

se1 [0.85,0.92] [0.65,0.75] [0.65,0.78] [0.25,0.30] [0.55,0.65] [0.35,0.45] [0.5,0.6] [0.12,0.2] 
SE 

se2 [0.08,0.15] [0.25,0.35] [0.22,0.35] [0.70,0.75] [0.35,0.45] [0.55,0.65] [0.4,0.5] [0.8,0.88] 

 

Table 14 The [BL(SE/MR,EP,IC),BU(SE/MR,EP,IC)] 
 



MC mc1 mc2 

RE re1 re2 re1 re2 

tf1 [0.7,0.88] [0.45,0.55] [0.35,0.45] [0.15,0.25] 
TF 

tf2 [0.12,0.3] [0.45,0.55] [0.55,0.65] [0.75,0.85] 

 

Table 15 The [BL(TF/MC,RE),BU(TF/MC,RE)] 
 

 

DE de1 

SE se1 se2 

TF tf1 tf2 tf1 tf2 

NC nc1 nc2 nc1 nc2 nc1 nc2 nc1 nc2 

ra1 [0.90,0.99] [0.80,0.90] [0.75,0.85] [0.20,0.30] [0.65,0.75] [0.16,0.22] [0.25,0.35] [0.08,0.15] 
RA 

ra2 [0.01,0.10] [0.10,0.20] [0.15,0.25] [0.70,0.80] [0.25,0.35] [0.78,0.84] [0.65,0.75] [0.85,0.92] 

 

Table 16 The [BL(RA/NC,SE,TF,DE=de1),BU(RA/NC,SE,TF,DE)] 

 

DE de2 

SE se1 se2 

TF tf1 tf2 tf1 tf2 

NC nc1 nc2 nc1 nc2 nc1 nc2 nc1 nc2 

ra1 [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] 
RA 

ra2 [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] [0.45,0.55] 

 

RA ra1 ra2 

Invest (de1) [700,750] [-600,-500]  
DE 

Not invest (de2) [-350,-180] [0,0] 

 

Table 17 The utility [uL(RA,DE), uU(RA,DE)] at the node OC 
 

    

Based on the constructed IID, the optimal strategy that can result in the maximal 

interval-valued expected utility can be found by using the EAIID algorithm. For 

example, given the state of Geological conditions (GC) in Table 11, interval-valued 

expected utility obtained by EAIID and VE algorithm (Cabañas et al. 2016) are shown 

in Table 18. 

 EAIID VElp 

 DE = de1 (Invest) DE= de2 (Not Invest) DE = de1 (Invest) DE= de2 (Not Invest) 

1gcGC =  [107.4,330.2] [-157.0,-99.0] [198.54,246.82] [-134.12,-107.48] 

2gcGC =  [-293.0,-139.27] [-157.0,-99.0] [-202.32,-152.69] [-128.92,-110.42] 

Table 18 The comparison amongst results obtained by the EAIID and VElp on the IID of Figure 8 

 

Table 18 indicates that the optimal strategies is ))(( 11

**
degcGCDE ===∆ δ , i.e. 

Tangshan Plc should invest (de1) under the evidence of GC=gc1, while the optimal 

strategies is ))(( 22

** degcGCDE ===∆ δ , i.e. Tangshan Plc should not invest (de2) 



under the evidence of GC=gc2 

From this case, we can see that the strategy making decision makers to obtain the 

maximal expect utility can be found, although variables related to the decision making 

have imprecise values. Thus the application areas of influence diagrams are expanded. 

7 Conclusions 

It has been recognized that one of the three main approaches to describe 

uncertainties is interval analysis (Elishakoff & Ohsaki 2010). Moreover, interval 

analysis has been considered as the most widely adopted analytic tool among 

non-probabilistic analysts. Extending influence diagrams with ability to process 

interval data provides a promising approach for decision making under uncertainty. 

In this paper, IDs with point-valued parameters are extended as IDs with 

interval-valued parameters in which bound-limited weak conditional interval 

probabilities are used to represent beliefs, and interval values are used to represent the 

preferences of decision makers. This extension avoids the difficulties attached to the 

specification of precise parameter values, and provides a capability for modelling 

decision making processes in the situation that the precise parameter values cannot be 

obtained. Thus, the IIDs introduced in this paper can support decision making in more 

uncertain and complex situations. 

In this paper, the task of evaluating of IIDs is converted into inference problems of 

IBNs. This conversion enables one to use exact or approximate inference algorithms 

of BNs to efficiently evaluate IIDs. We developed an indirect method and an 

algorithm to evaluate the IIDs. The developed method is a counterpart method of 

Cooper’s evaluation method, and the developed algorithm can select strategies select 

with the maximal expected utility for decision makers. The comparative experiments 

with other methods and the application in a real life case verify the feasibility and 

robustness of our extended model and evaluation method. 

There are a number of issues still require further investigation. A direct 

improvement of our approach is to extend our model and the proposed evaluation 

methods to deal with more than one value node in order to treat multi-objective 



decision problems. Also, integrating game theory into IIDs, in order to provide more 

rational decision making in uncertain and interactive situations, is another direction 

requires further studies. 
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