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Abstract 

This thesis presents the development of GPU accelerated solvers for use in 

simulation of the primary atomization phenomenon. By using the open source 

continuum mechanics library, OpenFOAM, as a basis along with the NVidia CUDA 

API linear system solvers have been developed so that the multiphase solver runs in 

part on GPUs. This aims to reduce the enormous computational cost associated 

with modelling primary atomization. The modelling of such is vital to understanding 

the mechanisms that make combustion efficient. Firstly, the OpenFOAM code is 

benchmarked to assess both its suitability for atomization problems and to 

establish efficient operating parameters for comparison to GPU accelerations. This 

benchmarking then culminates in a comparison to an experimental test case, from 

the literature, dominated by surface tension, in 3D. 

Finally, a comparison is made with a primary atomizing liquid sheet as published in 

the literature. A geometric multigrid method is employed to solve the pressure 

Poisson equations, the first use of a geometric multigrid method in 3D GPU 

accelerated VOF simulation. Detailed investigations are made into the compute 

efficiency of the GPU accelerated solver, comparing memory bandwidth usage to 

hardware maximums as well as GPU idling time. In addition, the components of the 

multigrid method are also investigated, including the effect of residual scaling. 

While the GPU based multigrid method shows some improvement over the 

equivalent CPU implementation, the costs associated with running on GPU cause 

this to not be significantly greater. 
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Chapter 1 Introduction 

1.1 Motivation 

Despite recent developments in new “cleaner” fuelled modes of transport, the 

burning of fossil fuels is still dominant in most forms of transport. Even though 

fossil fuel transport has existed for over a century the detailed mechanisms that 

make it possible and efficient are still not well understood. One of these critical 

mechanisms is fuel spray. Current developments in more efficient fuel spray are 

limited to resource intensive trial and error methods. To replace this process, it is 

desirable to simulate the phenomenon from first principles. However, this requires 

enormous computing resources. Therefore, work that has been done to date 

consists of high fidelity simulation of limited spray regions e.g. (Shinjo & Umemura, 

2010). If simulation is to replace trial and error the computational cost must be 

reduced to the point where it becomes a viable alternative. One avenue to achieve 

this is alternate emerging computing platforms. These have the potential to reduce 

times to solution, power consumption and increase performance density. Or indeed 

a combination of these depending on the user’s requirements. Despite the 

potential of accelerated computing, it is still yet to be used in primary atomization 

modelling. Indeed, more generally accelerated computing is still in it’s infancy for 

much more general computational modelling approaches. Therefore, it is highly 

desireable to investigate the potentital of accelerated computing in making primary 

atomization mdeling a viable alternative to trail and error.  

1.2 Accelerated Computing 

Accelerated computing is a computing model that uses specialized processors to 

achieve some kind of performance benefit. In the quest for ever more powerful 

computing resources, accelerated computing has become the norm. Indeed, the 

two fastest supercomputers in the world employ some kind of accelerated 

computing (top500, 2015). As well as this the 32 most energy efficient 

supercomputers are configured in such a way (top500, 2015). 
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The common styles are that a standard Central processing unit (CPU) is used as a 

controller for an additional many core processor that is focused on throughput. 

These many core processors come in two distinct varieties. The first is the Co-

Processor, popularised by Intel. It generally has fewer cores, this means it’s the 

slowest performer but requires less specialist programming. Alternatively, graphics 

processing unit (GPUs) are generally considered the most mature technology. They 

offer the highest performance but require specialist programming knowledge. Their 

development has been driven by the computer games industry, often making them 

inexpensive. Manufacturers are generally AMD and NVidia, as will be explained 

later the manufacturer can dictate the software that must be used to program 

them. 

The latest co-processor, Intel Xeon Phi, has around 70 cores with high speed access 

to on board memory as well as CPU speed access to system memory. GPUs have 

many cores, in the regime of four to five thousand with higher speed access to 

onboard memory however access to system memory is generally slow. The latest 

Xeon Phis, 2016, have been made as bootable devices, blurring the line between 

accelerators and CPUs. 

1.3 Thesis Outline 

This thesis is outlined as follows. Chapter 2 introduces the concepts behind primary 

atomization of liquid spray as well as computational methods used to simulate 

them, concluding with a review of previous investigations in the field. Chapter 3 

introduces GPU computing and discusses its uses in several fields, primarily in 

computational fluid dynamics. Chapter 4 presents the computational methods 

employed and the governing equations involved. Chapter 5 presents initial test 

cases that show OpenFOAMs applicability to multiphase flows. Also shown are 

details of computational effort required. Chapter 6 investigates a test case that 

brings together the elements tested in the previous chapter to assess its use in 

primary atomization. Also discussed is accelerations to the OpenFOAM code using 
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GPUs. Chapter 7 details a much more complex test case of primary atomization. 

Chapter 8 explores an improved GPU accelerated method and its application to the 

case described in Chapter 7. Finally, some conclusions are made along with 

suggestions for further work.  
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Chapter 2 Review of Spray Atomization 

2.1 Breakup Regimes of round jets 

A liquid jet emanating from an orifice into stagnant air has been investigated since 

the 1800s. As a result of various investigations there is a common consensus of a 

group of regimes defined by three dimensionless numbers (Lefebvre, 1989). All are 

normalised by a characteristic length 𝑙, usually the nozzle diameter for round jets 

and the sheet thickness for sheets. The first, the Weber number (equation 1), is the 

ratio between the fluid’s inertia and surface tension. 

 𝑊𝑒 =  
𝜌𝑈ଶ𝑙

𝜎
 (1) 

Second is the Reynolds number (equation 2), which is the ratio of inertial to viscous 

forces: 

 𝑅𝑒 =  
𝜌𝑈𝑙

𝜇
 (2) 

Thirdly, the Ohnesorge number (equation 3), relates viscous forces to surface 

tension forces: 

 𝑂ℎ =  
𝜇

ඥ𝜌𝜎𝑙
 (3) 

In each of these 𝜌 is the fluid density, 𝑈 the liquid velocity, 𝜎 the surface tension 

coefficient and 𝜇 the liquid viscosity. In addition, the Eötvös number (or Bond 

number) can also be used to describe the flow conditions, this is a relationship 

between gravitational forces and surface tension, shown in equation 4.  

 𝐸𝑜 =  
𝜌𝑔ଶ𝑙

𝜎
 (4) 
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Where 𝑔 is is the acceleration due to gravity, 𝑙 is the characteristic length, 𝜌 is the 

fluid density and 𝜎 is the surface tension coefficient. Finally, the Capillary number is 

the relationship between viscous and surface tension forces across an interface. 

 𝐶𝑎 =  
𝜇𝑈

𝜎
 (5) 

 

Figure 1: Breakup regime characterization (Lefebvre, 1989) 
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Figure 2: Flow patterns of breakup regimes in Figure 1  (Faeth, 1991) 

The relationship of the Ohnesorge and Reynolds numbers, which are named in 

Figure 1, gives a characterization of the breakup patterns that are visualised in 

Figure 2. In the Rayleigh regime surface tension forces are responsible for the jet 

breakup. Droplets in this regime are greater in diameter than the nozzle and the 

onset of breakup is many diameters after the nozzle exit, described by Rayleigh in 

(Rayleigh, 1879). In the 1st wind regime aerodynamic forces start to take over from 

surface tension as the driver of breakup. Droplets of about the nozzle diameter are 

formed and the point of breakup is reduced. In the 2nd wind induced regime greater 

aerodynamic forces cause ligaments and droplets to be broken off the liquid core 

even earlier, these liquid structures will then further breakup into droplets smaller 

than the nozzle. Finally, in the atomization regime the jet is fully turbulent and 

breakup begins at the exit of the nozzle. Eventually droplets many times smaller 

than the nozzle diameter will be produced. When applied to fuel sprays, which 

generally are injected into the combustion chamber at high velocity, the 

characteristic dimensionless numbers place the spray in the atomization regime. 
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The atomization of a spray is a complex multiscale problem and is commonly split 

into two distinct phases. The first is primary atomization, which takes place near to 

the nozzle exit. In this section the liquid core is generally intact with smaller 

ligaments or droplets emanating from the core, shown in blue in Figure 3. The next 

phase is secondary atomization where generally little or none of the liquid core is 

intact. The common forms of breakup in this region are the drops and ligaments 

that have detached from the liquid core breaking into yet smaller drops, shown in 

Figure 3 in green. Secondary atomization can be further divided into additional 

regimes. Using the classification shown in Figure 3 the dense regime will contain 

larger liquid structures that aren’t of regular sizes. Following this in the 

intermediate regime the liquid structures have broken down into more regular 

spherical droplets. Finally, in the dilute regime these spherical droplets now 

sparsely populate the gas phase.   

 

Figure 3: Illustration of breakup regimes (Sun, 2016)  

2.2 Breakup of a liquid sheet 

In a sheet configuration, the liquid phase is injected through a slit generally several 

times as wide as it is thick. This kind of injection configuration can be found in many 

applications but most commonly in aerospace engines. Early investigations into the 

instability of inviscid sheets was conducted by Squire (1953), Taylor (1959) and 

Hagerty & Shea (1955). Hagerty & Shea (1955) showed experimentally that the 

sinuous and varicose modes predicted by theoretical analysis could be found at the 

sheet interface as shown in Figure 4. 
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Figure 4: Illustration of Sinuous and Varicose modes (Wang, et al., 2015) 

By furthering instability analysis to a viscous liquid sheet Li & Tankin, (1991) stated 

that viscosity does have a significant impact on the modes of instability showing 

that in contrast to inviscid sheets, where the only mode of instability is 

aerodynamic, viscous sheets have an additional viscosity enhanced instability. 

Several investigations have described the atomization of a liquid sheet (Fraser, et 

al., 1962) & (Dombrowski & Johns, 1963). The review article by Sirignano & 

Mehring, (2000) describes three modes of breakup: rim, wave and perforated-

sheet. The wave mode is shown in Figure 5. In the rim mode, the surface tension 

forces cause the free edge of the sheet to contract into a thick rim. This then breaks 

up in a mode corresponding to that of a liquid jet described previously. This mode is 

most prominent when the liquids viscosity and surface tension are both high. In the 

perforated sheet mode holes appear in the sheet that grow in size and coalesce 

producing ligaments of varying sizes that further break into drops.    

 

Figure 5: Popular version of the sheet atomization process (Deshpande, et al., 2015) 

Finally, the wave mode is where the sheet is broken up by half or full wavelengths 

of the most unstable wave. The broken off sheet sections then roll into ligaments 

owing to surface tension before breaking up into droplets. 
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2.3 Computational Modelling of Atomization 

The characteristics described previously partly explain why the primary atomization 

regime is still not well understood. While it is accepted that there are many 

phenomena that promote instability in the jet or sheet, the dominant phenomena 

are still to be identified. Using experimental techniques has been difficult owing to 

the need to produce images with a very high temporal and spatial resolution. 

Therefore, using numerical methods to study this area has received far more 

attention. As the spray breakup is often split into two regions, generally so is the 

modelling. In the primary atomization region there are complex topological changes 

in the fluid-gas interface therefore it is sensible to resolve these changes using the 

Eulerian coordinate system. However, in the secondary atomization regime the 

liquid structures are far more “simple” and can be generalised as spherical droplets. 

To this end the Lagrangian coordinate system is often used. Models are then 

created to simulate the secondary breakup of the spherical droplets e.g. (Apte, et 

al., 2003). More recently there has been development in the coupling of Eulerian 

and Lagrangian methods, with the aim of simulating the whole spray process at a 

reasonable cost (Herrmann, 2010).   

Numerical simulations such as this require the ability to identify the interface 

between the liquid and gas in some way. These methods are often grouped into 

two distinct categories, each with their own strengths and weaknesses. These are 

explicit and implicit. In explicit methods, the computational mesh will move with 

the interface whereas in implicit methods some scalar field is used to describe the 

location of the interface on a fixed mesh. The most commonly used explicit method 

is the Front tracking method (Unverdi & Tryggvason, 1992). The flow field is 

described in the normal Eulerian mesh system, but an additional unstructured grid 

is used to describe the interface between multiple fluids. This additional grid moves 

through the stationary grid and thus requires regular grid reconstruction however 

as the interface is explicitly described surface tension is easy to describe. The most 

typically used implicit methods are the Volume Of Fluid (VOF) method (Hirt & 
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Nichols, 1981) and the level set method (Osher & Sethian, 1988). The VOF method 

uses a scalar value for a “volume fraction” this scalar is bounded by zero and one 

and represents the volume of one cell occupied by one fluid. In cells that are 

completely filled with one fluid or another, the volume fraction will be one (or 

zero). At the interface there will be cells containing both fluids and in these 

locations the volume fraction will be between one and zero this is visualised in 

Figure 6.  

 

Figure 6: Excerpt of a domain showing an example of volume fractions in a mesh and the interface created with 
them (Elgeti & Sauerland, 2016) 

The level set function is based on the transport of a function using the velocity field. 

The level set function can be described as the signed distance function to the 

interface, i.e. the interface is located at the zero-level set. Negative values are one 

fluid while positive are the other fluid.  

The VOF methods strengths are its ability to easily manage merging and break-up of 

fluid structures, as well as maintaining a sharp interface and good mass 

conservation (Gopala & van Wachem, 2008). However, VOF suffers from an 

uncertainty in the interface curvature owing to the need to locally reconstruct the 

interface in each cell. This often leads to inaccuracies in the calculation of surface 

tension forces. Additionally, it also often suffers from unphysical numerical 

diffusion of the interface. Alternatively, the level set method has the reverse 

characteristics. More recently there has been a move to the coupled level set and 

volume of fluid solver (CLSVOF) (Sussman & Puckett, 2000), this combines the 
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advantages of the VOF method with the level set method therefore outperforming 

both. 

With a defined interface the next numerical obstacle is how to treat the 

singularities that occur at the interface. Two common methods can be found in 

multiphase CFD, the Continuum Surface Force (CSF) method (Brackbill, et al., 1992) 

and the Ghost fluid method (Fedkiw, et al., 1999). The original formulation of the 

CSF method made by Brackbill et al., (1992) was for the VOF method. Later this was 

extended to level set by Chang et al., (1996). In the CSF method, the interface is 

represented as a region with a thickness, as show in Figure 7. Therefore, the fluid 

properties (density and viscosity) are treated as a smooth function across the 

interface region. Surface tension is also transformed into a volume force applied 

across this region.  

 

Figure 7: Visualisation of the CSF method in 2D (Brackbill, et al., 1992) 

This treatment of the interface as a region with a thickness has a distinct drawback. 

Often a spurious velocity is introduced at the interface (Harvie, et al., 2006) due to 

a smooth pressure field being computed by the CSF method when in reality a 

pressure jump condition should exist at the interface. Despite this limitation the 

CSF method has found use in spray atomization simulations. 

In order to combat the spurious currents common in the CSF method; Fedkiw et al., 

(1999) developed the ghost fluid method originally for use in the compressible 
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Euler equations. It was further developed by Liu et al., (2000) and Kang et al., (2000) 

to the point where it could be used with two phase incompressible flows. In the 

ghost fluid method, the surface tension force is applied by a jump condition in the 

pressure. With estimated jump conditions an algorithm will extend each fluid a few 

cells into the other, beyond the interface, at each time step. These are the so called 

“ghost regions” this is illustrated in Figure 8. 

 

Figure 8: Illustration of the ghost fluid method (Pringuey, 2012) 

In the band around the interface the governing equations (mass, momentum and 

energy) are solved for both fluids. The correct solution is then selected from the 

two available using the fluid descriptor from the interface capturing method. The 

original formulation as proposed by Fedkiw et al., (1999) was applied to the level 

set method, the sign of the function selecting the fluid in that location. The level set 

method is well suited to be a companion of the ghost fluid method as the jump 

conditions it requires are easily derived from the signed distance function. 

However, if used in combination with the VOF method a distance function will need 

to be constantly recalculated with the movement of the interface. The ghost fluid 

method has been used by many investigations into primary atomization in 

combination with level set (Desjardins, et al., 2008) and VOF (Menard, et al., 2007).   

2.4 Turbulence Considerations 

Primary atomization occurs from high speed liquid injection, so the corresponding 

length and time scales vary significantly. Therefore, resolving these scales 

numerically represents a significant challenge. Generally, in primary atomization 
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two of the three common approaches are most used. These are direct numerical 

simulation (DNS) and large eddy simulation (LES) however Reynolds-Averaged 

Navier-Stokes (RANS) receives occasional attention (Gorokhovski & Herrmann, 

2008). 

DNS directly solves the Navier-Stokes equations with the aim of resolving all time 

and length scales. In single phase flows generally, the smallest scale to be resolved 

is the Kolmogorov length scale. While resolving this scale is also required in 

multiphase flows an additional scale that corresponds to the smallest liquid 

structure must also be resolved by the computational mesh. As the smallest liquid 

structure will tend to zero in the location of pinch off from the liquid core some 

modelling has to be introduced even in DNS. Gorokhovski & Herrmann (2008) 

stated that with these models the smallest droplets produced should be resolved 

by between two and five mesh cells.  This leads to computational grids in the 

billions of cells to model the primary breakup regime. Computational resources 

have only recently become available to tackle simulations on this scale. 

As DNS is so computationally expensive, significant effort has been placed into 

using LES as an alternative to achieve investigations that are affordable. Indeed, 

often cited examples of important work in the field e.g. (Bianchi, et al., 2007) are 

strictly LES modelled approaches. Though really these are often considered as 

“under-resolved DNS”. Approaches such as these are based on the LES formulation 

for a single phase. The aim of single phase LES is to reduce the computational cost 

by ignoring the smallest length scales by filtering the Navier-Stokes equations. The 

effects of these small length scales are then modelled with sub-grid scale models 

such as that proposed by Smagorinsky (1963). However, the common interface 

tracking methods such as those described above can only track interfaces of the 

size of the grid. Therefore, in this configuration the two distinct phases are 

modelled with LES while the interface between them is described using under 

resolved DNS this requires mesh independence studies. However, investigations 

such as Chesnel et al., (2011) have developed sub-grid models for interface tracking 



29 | P a g e  
 

and singularity treatment. This constitutes full LES modelling and their results 

showed only weak grid dependency.    

RANS is the cheapest turbulence modelling method. It averages the flow over time 

and models fluctuations with additional transport equations. Its use in primary 

atomization is limited as it is not considered accurate enough to give useful 

information about the flow field (Jiang, et al., 2010).  

2.5 Previous Primary Atomization Modelling Investigation 

The most important modelling investigations found in the literature are those 

whose fluid parameters closely represent real atomization cases. The area that has 

received most attention is a round jet injected into quiescent air. An early 

investigation by De Villiers et al., (2004) used an LES and VOF approach, though 

with relatively coarse grids, on diesel spray breakup. The investigation found spray 

angle and drop size distributions, though these varied significantly with a finer grid. 

Bianchi et al., (2005) and Bianchi et al., (2007) used finer grids, again with an LES 

and VOF method on a similar diesel spray. By simulating part of the injector, they 

investigated its influence on the resulting spray parameters, showing there was a 

significant impact on the intact liquid core length. However, there is no grid 

convergence information to show how well the flow is resolved. By coupling 

CLSVOF with the ghost fluid method Menard et al., (2007) presented results for 

diesel like spray though Gorokhovski & Herrmann (2008) suggest that the mesh 

used was too coarse to be considered full DNS. Desjardins et al., (2008) developed a 

combined level set and ghost fluid method to reduce mass loss from the level set 

method. This was then used to investigate diesel like spray, though as with previous 

investigations no grid refinement is performed. Therefore, while it shows many 

different shapes and sizes of liquid structures it may still be under resolved. Sander 

& Weigand (2008) concentrated more on investigating the effects of the nozzle on 

liquid sheet breakup. Several simple nozzle types were evaluated as well as 

different velocity profiles that might be caused by turbulence in the nozzle. It was 
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reported that the level of kinetic energy at the inlet had the most significant 

influence on the sheet breakup. In order to reduce to some extent, the number of 

grid cells required in theses complex flow fields Fuster et al., (2009) used an octree 

adaptive grid method, combined with VOF, reporting several results on atomization 

that agreed with experimental results. 

 

Figure 9: Liquid jet example taken from (Shinjo & Umemura, 2010) 

The series by Shinjo and Umemura (Shinjo & Umemura, 2010), (Shinjo & Umemura, 

2011) and (Shinjo & Umemura, 2011) is often cited as a benchmark simulation in 

this field. In this investigation the CLSVOF method for interface tracking, with the 

CSF method for evaluating surface tension forces, was used on a round liquid jet on 

a highly resolved grid, of the order of 0.35𝜇𝑚. The aim of the investigation was a 

“cause and effect” analysis of the effects of the jet tip on atomization. Therefore, 

the effects of the injector are ignored. Figure 9 shows the extensive ligament and 

droplet structures emanating from the tip but also a significant breakup in the jet 

behind it. It is suggested in this configuration of short injection diesel like spray the 

Tollmien-Schlichting instability is responsible for breakup. The computational cost 

of this investigation was huge, requiring 5760 CPU cores for over 2 weeks, 

illustrating the need to reduce the computational cost of these models. Desjardins 

et al., (2013) again used their level set and ghost fluid method to this time 

investigate the effects of changing surface tension coefficient. Showing that with an 

increased surface tension, as is often found in bio-fuels, much larger drops are 

generated after atomization. Salvador et al., (2016) presented an investigation into 

a diesel like flow configuration very similar to that used by Shinjo & Umemura  

(2010). However, they used an octree adaptive grid refinement system with the 

VOF and CSF methods. This reduced cell count down to just 12.8 million though it is 
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stated there are still some mesh convergence issues. Ghiji et al., (2016) presented 

qualitative comparisons between VOF and LES simulations and experimental 

images. Despite the finest mesh used showing similarities to the experimental 

results significant sensitivity to cell size was found. However, the fluid properties 

are identical to those that would be found in real diesel applications. Grosshans et 

al., (2016) used the VOF and CSF methodologies with LES turbulence modelling to 

study varying physical and numerical parameters of a liquid jet atomizing in still air. 

While the Weber and Reynolds numbers place it clearly in the atomization regime 

and the jet is described as diesel like the density and viscosity ratios are significantly 

reduced for numerical stability. Despite this it is shown that varying density ratio 

has insignificant effect on the jet breakup. However, reducing the viscosity ratio 

resulted in smaller droplets. Finally, some injector effects were assessed, showing 

that in-nozzle turbulence and cavitation bubbles caused the liquid core to break up 

faster. 

2.6 Computational Cost 

From the litriture it is clear that multiphase modelling and in particular modelling 

primary atomization of fuel spray has a very high computational cost. This stems 

from not only needing to resolve the Kolmogorov length scales, as in single phase 

DNS, but also needing to resolve liquid breakup. This final criterion tends to zero 

therby requiring extrememly small cell sizes. This consequently leads to needing 

cell counts in the hundreds of milliions or even billions to solve even modest 

domain dimensions. As the next chapter will show GPUs have key computing 

metrics six or more times that of the CPUs currently available, often for less than 

double the power consumption and at a comparable price. In addition, their highly 

parallel nature makes them ideally suited to the very high cell counts commonly 

found in primary atomization simulation.  
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Chapter 3 GPU Computing 

3.1 Overview 

This chapter will give an introduction to GPU computing. Beginning with a history of 

how computing has evolved over the past decades. This provides a background to 

why the need for GPU computing has arisen. Next an overview of the architectural 

differences between GPUs and CPUs is given. Following this a general explanation 

of CUDA is given to provide context of how the coding model works. Finally, a 

discussion of previous work using GPUs for code acceleration is presented which 

culminates in assessing GPU usage in computational fluid dynamics.   

3.2 History of Computing 

Since personal computers began to become a normal occurrence in both the home 

and the work place, in the early 1980s, manufacturers have been in a quest for ever 

greater computational power. As the computational power grows, the 

requirements of software run on that hardware grows. To this end manufacturers, 

like Intel and AMD (Advanced Micro Devices), managed until recently to pack 

greater numbers of transistors running at higher clock frequencies into their CPUs. 

As predicted by Moore’s law (Moore, 1975) the number of components that could 

be placed onto a dense integrated circuit, at the same cost, doubled every two 

years shown in Figure 10. By combining this doubling of transistors on a circuit with 

increased transistor speed came the popular prediction of David House that CPU 

performance would double every 18 months.  
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Figure 10: Illustration of Moore's Law (Assured Systems, 2016) 

However, this relentless doubling of components could not be sustained. In the 

early 2000’s the industry hit what was known as the “power wall”. This came about 

by the larger number of components running at higher frequencies consuming 

exponentially more power. With power consumption comes heat generation, as the 

overall size of a CPU has not really changed, dissipating the heat becomes a 

significant challenge. 

This need to dissipate heat lead to a new way of thinking. Instead of trying to run at 

ever higher speeds but still with the ability to fit more components onto a chip, a 

new solution had to be found. This solution was to reduce the clock frequency but 

divide the chip into multiple cores. This meant that each core would run at a lower 

speed than their predecessors, but the aggregate performance would be greater. 

Additionally, by running at lower clock frequencies less power would be consumed 

meaning less heat is generated, therefore there is a lower cooling requirement. 

Thus in 2005 both Intel and AMD produced the first multicore CPUs. Intel, the 

Pentium D and AMD the Athlon 64 X2. Since these releases the number of cores 

packed onto a single CPU has become the new battle ground in microprocessor 

development. Currently high-end CPUs for server applications may have as many as 
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24 cores. Such is now the proliferation of multicore CPUs, they can be found in 

anything from mobile phones to games consoles to supercomputers. 

This change in hardware configuration also caused software developers to change 

their way of programming. Previously only programs that used massive 

supercomputers had to be concerned with producing programs that ran in parallel. 

Most programs were simply written to run code in serial (one instruction after 

another). But with the advent of new multi core CPUs this was no longer efficient. 

Instead programmers had to find ways to introduce parallelism into their code. This 

gives rise to parallel computing. 

There are a number of options for parallelising code but the one most commonly 

found in computational fluid dynamics is decomposition. In this method the 

problem is segmented into a number of smaller sections with each being solved on 

one processor or core. The boundaries between these sections will then 

communicate their values between cores. This inter processor communication is 

often what limits parallel computing. As such parallel computing codes are often 

benchmarked using parallel scaling. This can take the form of either strong or weak 

scaling performance. In strong scaling the problem size is kept the same and the 

number of cores is increased. The reduction in compute time obtained by 

increasing the number of cores used is then compared to ideal scaling. In ideal 

scaling the compute time would be reduced by the number of cores used. In other 

words, using four times as many cores would mean compute time becomes ¼ of 

what it would be on one core. Often in engineering instead of just comparing raw 

compute times the parallel efficiency is compared. This is defined by 

 𝐸 =
1

𝑁

𝑇ଵ

𝑇௣
 (6) 

where E is the parallel efficiency, N is the number of cores, T1 is the computational 

time for one core and Tp the time for said number of cores. Getting a parallel 
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efficiency as close to 100% as possible is desirable. Values of above 100% are 

possible though uncommon, this is known as super linear scaling. This comes about 

generally by using more CPUs rather than cores, this increase in CPUs has a 

corresponding increase in cache size. So, for a fixed problem size more of the 

problem can reside in high speed cache which will reduce memory access times 

therefore reducing compute times.  

Weak scaling is less commonly used as a comparison in parallel computing, here the 

problem size per core is kept constant. This means that with any increase in core 

count there is a corresponding increase in problem size. In this case the desirable 

outcome is that time to solution will remain constant across all core counts and 

problem sizes. 

3.3 Emergence of General Purpose Graphics Processor Computing (GPGPU) 

GPUs began emerging in the late 90s. First being used in gaming consoles that 

required hardware accelerated 3D images. These concepts began to move into 

computers giving the graphical user interface everyone has become accustomed to. 

Because of this requirement to generate images in fractions of a second GPUs were 

developed into very high throughput orientated processors. As an image is made up 

of many pixels GPUs developed into highly parallel compute units. All pixels are 

computed in parallel and returned to the display. Early GPUs weren’t 

programmable so were restricted to just outputting images to displays. This began 

to change in the early 1990s with the use of graphics programming languages like 

OpenGL (Khronos Group, 2017), Direct3D (Microsoft, 2017) and Cg (Nvidia 

Corperation, 2017). It became possible to convert mathematical operations to a 

series of colour transformations. But this was very convoluted and so uptake was 

minimal. 

In the early 2000s the advent of programming languages specifically aimed at 

harnessing the power of GPUs saw the first real scientific computing programs run 

on GPUs. While Sh/RapidMind (McCool & Du Toit, 2004) and BrookGPU (Buck, et 
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al., 2004) meant GPU accelerated programs now didn’t have to be written in two 

languages, using a completely new programming language still represented a 

barrier. 

In 2006 NVidia released Compute unified device architecture (CUDA) (Nvidia 

Corperation, 2017) this caused the use of GPUs in general scientific and 

mathematical computing to explode. In contrast to previous GPU programming 

methods, CUDA was built as an extension to C/C++ and the scientific language 

Fortran. This difference allowed much easier integration into existing CPU codes or 

the development of specific GPU code without huge amounts of new knowledge. 

This step change in the access to the power of GPUs led to a flurry of advances in 

numerous areas such as; physics, maths and chemistry. 

With all its benefits, CUDA still has one major drawback, it is proprietary technology 

owned by NVidia and so can only be used on NVidia GPUs. But with the scale of the 

uptake of GPGPU computing CUDA had created, several vendors came together in 

2008 and developed the OpenCL standard (The Khronos Group, 2012). While 

OpenCL is cross platform and so works on any GPU, or any massively parallel 

device, it is generally accepted that it is not as stable or performs as well as CUDA. 

For this reason, the present work uses CUDA. 

3.4 GPU hardware 

A GPU can generally be found attached to a graphics card. This graphics card will 

interface with the motherboard of a computer by way of an input output slot. This 

I/O slot is generally PCIe. Also included on the graphics card will be an amount of 

DRAM (Dynamic Random-Access Memory), currently up to 24GB, as well as cooling 

and other components. As previously mentioned GPUs are generally manufactured 

by NVidia and AMD. Because the CUDA API which is only available on NVidia GPUs 

is the most mature and best performing option only NVidia GPUs will be described. 
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Looking at the GPU chip in detail will show why it is such an attractive proposition 

to high performance computing.  

 

Figure 11: Block diagram of a streaming multiprocessor in an NVidia Kepler GPU (NVidia 
Coorperation, 2012) 

Figure 11, above, details part of an NVidia Kepler GPU chip (specifically the NVidia 

titan black edition). What is featured is a streaming multiprocessor. Each chip has 

15 Streaming Multiprocessors (SM) as well as six 64-bit memory controllers. These 

two main components are what sets a GPU apart from a CPU. Each SM controls 192 

cores, each of which is capable of performing two single precision calculations per 

clock cycle. Coupled with each group of three cores is a double precision unit, giving 

64 double precision units with two operations per cycle. This means in total 

theoretically this GPU is capable of 5121 GFLOPS in single precision or 1707 GFLOPS 

in double precision. The six memory controllers coupled with high clock frequency 

GDDR5 RAM also mean this GPU is capable of accessing its global memory at 

336GB/s. Both figures are many times greater than the most powerful CPUs, never 

mind ones available at an equivalent price as illustrated in Figure 12.  
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Figure 12: Comparison between CPU and GPU in terms of compute power and memory bandwidth 
(Nvidia Corperation, 2017) 

The cores mentioned earlier all have the ability to execute a thread. Which is a 

collection of sequential code. But because the GPU is throughput orientated each 

core in a streaming multiprocessor must perform the same instruction. If the next 

instruction is different it must wait until all cores have completed the previous 

instruction. This is the so called the Single Instruction Multiple thread (SIMT) model. 

When cores need to execute different instructions from one and other so called 

‘thread divergence’ is reached that can significantly harm performance.  

Warps are a group of 32 threads that all access memory at the same time. In 

current NVidia GPUs the SM may run a number of warps at once. In order to hide 
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long global memory access times some warps will be accessing memory while 

others are performing compute functions. 

There are also a number of additional interesting features that make GPUs highly 

attractive massively parallel compute units. The first of these is the copy engine, 

this is the part of the GPU that deals with transferring data between the CPU and 

GPU. Having a copy engine that is separate from the compute engine means 

memory can be copied asynchronously to calculation. Some GPUs have one copy 

engine allowing calculation and copy either to the device or host while others have 

two copy engines allowing simultaneous copy from host to device, device to host 

and calculation. Of course, the data that’s being used in the calculation must reside 

on the device to be used! As well as asynchronous copy and compute it is also 

possible to perform asynchronous computes, with the GPU scheduling them for 

best performance. Also, all code executed on the GPU is done so asynchronously to 

the CPU. Therefore, calculations can be performed on the CPU at the same time as 

the GPU.  

3.5 CUDA Overview 

Kernels are probably the most important part of CUDA. The CUDA programming 

guide defines them as “Functions … when called, are executed N times in parallel by 

N different CUDA threads.” Therefore, kernels are a set of instructions executed in 

parallel, syntax is provided that indexes threads and blocks. A simple example is 

shown below:  

__global__ void add(double* A, double* B, double* C) 

{ 

 Int idx = threadIdx.x; 

 C[idx] = A[idx] + B[idx]; 

} 

 
Code 1: Example of a CUDA kernel 
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This simple kernel will add together the vectors A and B to give a result C. The 

__global__ identifier signifies that the function is to be run on the GPU. The idx 

value is assigned as the thread index. The final line then performs the addition. 

With thread zero adding the first element of vector A to the first element of vector 

B with the answer being written as the first element of vector C. Thread one then 

adds the second elements and so on. It should be noted that these operations will 

not happen one after the other but in parallel and in any order.  

Now that we have a kernel there is a specific way of executing this kernel. The 

following is an example using the kernel above. 

Int main() 

{ 

Add<<<1, 32>>>(A, B, C); 

} 

 
Code 2: Example of a CUDA kernel launch 

While this call is very similar to a C++ function call there is one key difference which 

is the numbers between the more-than and less-than signs. These numbers define 

the number of blocks and the number of threads in a block respectively. All threads 

in a block will be executed by the same SM, therefore to get best throughput the 

number of threads in a block should be optimised.  

Before the execution of a kernel data must be transferred to the GPU. The results 

can then be transferred back to the CPU. This function is almost identical to the C++ 

memcpy function but with an additional parameter providing the direction the 

memory is copied, the options are host to device, device to host and device to 

device. 

Blocks and threads were mentioned previously as well as that the number of 

threads in a block is user defined. But the question remains as to how to define 

these values. The first consideration is that there are limits defined by the GPU that 
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is being used. To aid this explanation some details of the NVidia GPU used in this 

work are detailed below: 

Memory – 6GB 
CUDA Cores – 2880 
Streaming multiprocessors – 15 
Maximum threads per multiprocessor – 2048 
Maximum threads per block – 1024 
Maximum number of concurrent blocks per SM – 16 
Maximum number of blocks per kernel - 263 
 

As the maximum number of blocks is effectively infinite there is no need to restrict 

their number and enough should be used to cover all the data for operation. The 

ideal way to ensure maximum occupancy is to make sure that the maximum 

number of threads per streaming multiprocessor is reached. In this example the 

number of threads per block that will achieve full occupancy could be any of a 

number of options. In addition to this there are also limits on the number of 

registers and shared memory per SM. All of these things considered together is 

what will decide the best number of threads per block.  

3.6 GPU Drawbacks 

While GPUs present huge opportunities to improve scientific computing, they do 

have some limitations. 

The most crucial aspect is that because GPUs are massively parallel compute units, 

running using the SIMT model, algorithms must be selected accordingly. Sometimes 

an efficient algorithm that is inherently sequential may perform poorly on a GPU 

but well on a CPU however a less efficient algorithm on CPUs when ported to a GPU 

may become much faster. 

Because of the number of cores available to a GPU program special care must be 

taken to ensure that all of those threads are kept occupied. If this is not achieved, 

then the high latency memory access time cannot be hidden, and this will cause 

poor performance. In CPU programming it is common to only use as many threads 
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as there are cores available. However, in the case of GPU programming it is 

generally better to use as many threads as possible given the data set being 

operated on. This should ensure that the GPU threads are filled and memory 

latency can be hidden. 

Data transfer between CPU and GPU is a necessity but is costly. PCIe bandwidth 

runs at approximately 12GB/s, which is five times less than CPU memory bandwidth 

and about 30 times less than GPU bandwidth. Therefore, large memory transfers 

followed by short calculations should be avoided. 

3.7 GPU Computing Review 

As mentioned previously GPUs have been around for a few decades but their use in 

general purpose computing is still fairly new. One of the earliest real uses of 

General Purpose Graphics Processor (GPGPU) computing was by Thompson et al., 

(2002). They developed a framework that allowed them to use the early desktop 

GPUs for matrix multiplication. This resulted in a speed up of 3.2 times compared to 

CPUs of the day. 

Molecular mechanics was one of the first fields to take advantage of the 

opportunities CUDA presented. Stone et al., (2007) showed that when applied to 

individual algorithms noticeable speed gains could be found. When applied to 

direct coulomb summation they could evaluate nearly 41 times as many atoms per 

second. They also investigated accelerating Molecular Dynamics Force Evaluation in 

the molecular dynamics code: NAMD (Nanoscale Molecular Dynamics). This was 

compared in a cluster configuration with multiple GPUs compared to multiple CPU 

cores. Results showed that a GPU performed about five times as fast as CPU cores. 

Anderson et al., (2008) claimed the first development of a general purpose 

molecular dynamics code run entirely on GPUs. Their tests were conducted on a 

cluster of dual core CPUs, approximately 18 months older than the GPU. 

Nevertheless, it was shown that the GPU implementation performed as fast as 36 

processor cores. However, running in single precision (required by the GPU) did 
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show greater errors appearing in the results. Friedrichs et al., (2009) reported that 

by developing a complete implementation of all-atom protein molecular dynamics 

and comparing it to Assisted Model Building with Energy Refinement (AMBER) run 

on a single core of a CPU an acceleration of 700 times could be seen. Interestingly 

originally this was developed in BrookGPU to run on an ATI GPU but this was found 

to perform poorly compared to the equivalent in CUDA. GPU computing has also 

been used to benefit financial modelling, resulting in a step change of how it’s used. 

The massive speed ups of around 100 times have meant that options can be priced 

in real time as opposed to a couple of times per day. Fatone et al., (2012) showed 

the effects the GPU can have on performing black Scholes pricing as well as 

European options. Showing a speed up of 20 and 125 times respectively compared 

to serial CPU operation. Abbas-Turki et al., (2014) also reported on GPU 

acceleration of financial pricing this time using the Monte Carlo method. 

Comparisons were made pricing European options on a compute cluster. GPU 

results showed a speed improvement of about 40 times over equivalent numbers of 

quad core CPUs with linear scaling. Also compared is the power consumption of the 

system running in CPU and GPU mode. Because of the reduction in compute time 

an approximate 50 times power saving is made. 

There has also been investigation into elementary mathematics problems. A 

common example of this is the work on sparse matrix-vector multiplication by Bell 

& Garland (2009) comparing their GPU implementation to single core CPUs showed 

up to 12 times improvement. This was from an average over a range of matrix 

densities and sizes. Additionally, analysis of memory bandwidth usage and 

computing performance in FLOPS was made.    

3.8 GPU Computing in Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) has been a recent addition to the selection of 

GPU accelerated methods. The strategies used in accelerating CFD have taken two 

main avenues. The first avenue is to completely re-write a CFD code to run entirely 
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on GPUs. While these often produce the most significant increases in speed they 

come at the cost of generally taking much longer to write as well as often being 

specialised to a particular problem. This is known as a full port. The second avenue 

is to accelerate sections of the CFD code known as a partial port. It is common that 

a CFD code used in a specific situation will have a small segment that accounts for 

the vast majority of the computational time expended to solve it. Therefore, a 

partial port offers the best compromise between biggest performance gains and 

the cost of code re-writing. 

Because of the reduced time input partial ports have received the most attention. 

Shi et al., (2012) reported that when working with detailed chemical kinetics that 

often account for 90% of the simulation time, a speed up of up to 15 times could be 

found by solving the partial differential equations associated with the chemical 

kinetics. This speedup was found by comparing the wall clock time on a single core 

of a current CPU against the performance of the GPU on a number of mesh sizes. 

Khajeh-Saeed & Perot (2013) showed one of the largest uses of GPU computing in 

CFD. By accelerating the preconditioned conjugate gradient method, which took 

90% of computational expenditure, GPUs performed 25 times faster than the 

equivalent number of CPU cores. Salvadore (2013) Accelerated a direct numerical 

simulation of turbulence by again finding that 90% of the computational time was 

spent evaluating the forcing terms. Speedup was then evaluated in two ways. The 

first was to compare a single core of a CPU to a GPU. The finding was that the GPU 

was 11 or 22 times faster depending on the age of the CPU. The second method 

was to find a similar simulation time by running multiple cores in parallel that 

would equal the speed of the GPU. This was 32 cores, power consumption was then 

also compared with the CPU system using 575W and the GPU 240W plus its CPU 

controller. It should be noted however that this comparison was made with an old 

(3 years) CPU architecture. Amritkar & Tafti (2016) reported on the partial port of 

Generalized incompressible direct and large eddy simulation of turbulence 

(GenIDLEST) where the costly linear solvers were ported to GPUs. Speed testing was 

conducted on two different cases in both single and double precision. Results 
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showed that speedups of 8 and 4.5 times were possible on the two cases 

investigated in double precision. It should be noted that again this comparison was 

made on a CPU 3 years older than the GPU.  

Griebel & Zaspel (2010) presented what is recognised to be the first GPU 

accelerated two-phase flow solver. They accelerated the conjugate gradient (CG) 

solver used to solve the Poisson equation as well as the re-initialization of the level 

set function. Using a rising bubble in water case, it was shown that on CG 

algorithms the GPU performed 16 times faster than a single core of a PC grade CPU. 

The level set re-initialization received eight times speed up. These also scaled 

linearly with increasing numbers of GPUs. Combined 8 GPUs performed 70 times 

faster than a single CPU core as shown in Figure 13. 

 

Figure 13: Illustration of the scaling shown by (Griebel & Zaspel, 2010) 

Later this was updated so that all the code ran on multiple GPUs (Zaspel & Griebel, 

2013). This resulted in an approximately 30% improvement. Instead of comparing 

to a single CPU core comparisons were made to dual hex-core CPUs that cost a 

similar amount to the GPU. With the GPU performing about 3.4 times faster makes 

the GPU equivalently cost efficient.   
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Elsen (2008) produced a complete port of the Navier-Stokes Stanford University 

solver and used it to investigate hypersonic flow. Comparing the total time to 

solution of a single CPU core with a consumer graphics card, on their highest mesh 

size, a speed up of 20 times was obtained. As this was an early GPU acceleration it 

used a hybrid of old shading programming and new direct coding inclusion 

(BrookGPU). There were also some investigations into the usage of the GPUs 

available performance in both memory bandwidth and FLOPS. Shinn & Vanka 

(2010) developed a GPU implementation of the Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE) algorithm and compared it to the equivalent CPU 

version. With tests on various mesh sizes of a lid driven cavity flow the GPU was 

about 10 times faster than the single core CPU. Philips et al., (2010) showed an 

acceleration specifically aimed at use with GPU clusters. All of the flow solver is 

ported to the GPU, CPUs are used only for transfer between decomposed domain 

sections. When compared between 8 GPUs and 8 quad core CPUs the GPU 

implementation was about 5.8 times faster. By computing half a block of the 

domain at a time, the data transfer required could be overlapped with Message 

Passing Interface (MPI) communication. This resulted in the GPU becoming 9 times 

faster. Xu et al., (2014) presented an interesting solution to acceleration with GPUs. 

First by comparing single GPU performance to a pair of CPUs a speed up of 1.3 was 

found. The interesting point is that by using a collaborative GPU-CPU approach with 

load balancing algorithms it was possible to raise maximum problem size per node 

by 2.3 times as well as showing a 45% speed improvement over the GPU only 

approach. This was then used to study very large industrial problems showing a 

parallel efficiency of over 60% on 1024 nodes.  

3.9 GPU usage in CFD for multiphase flow 

As mentioned previously Griebel & Zaspel (2010) is considered to be the first usage 

of GPUs to accelerate multiphase CFD. Generally, the level-set method has received 

the most attention. Appleyard & Drikakis (2011) showed a 92 times increase in 

performance in solving the level set equation on GPUs over CPUs, though this is in 
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single precision. Liang et al., (2014) developed an implementation of the seven-

equation compressible two-phase model running effectively just on a GPU. A speed 

up over a single CPU core of 34 times was found, interestingly this was on the 

smallest number of cells tested. Multi GPUs were also tested with 8 GPUs showing 

a 68% parallel efficiency. Reddy & Banerjee, (2015) presented an acceleration of a 

volume of fluid (VOF) based solver. The pressure Poisson equation is solved on the 

GPU using the geometric multigrid method. Comparing serial CPU code running on 

a CPU 18 months older than the GPU a speedup of six times was found. The 

speedup was found on a 2D investigation of a liquid sheet breakup. Ikebata & Xiao 

(2016) accelerated their VOF code again by accelerating the Poisson equation solver 

on GPUs. Again, by using a multigrid method but this time as a preconditioner to a 

conjugate gradient method. The speed up results are a little difficult to identify but 

on a 6 million cell industrial problem an 18 times speed up of the equivalent 

Poisson solver on an unidentified CPU was found when using two GPUs. 

3.10 Comparing GPU and CPU performance 

Throughout the literature there is no consistent and fair way of comparing CPUs 

and GPUs. Comparisons seen range from comparing multi core CPUs with GPUs on 

performance per price or power consumption to comparing a single CPU core to 

multiple GPUs. Even in choosing hardware there can often be big differences, for 

example multiple sources in the literature have compared CPUs that are 3 years 

older than the GPU. As shown earlier CPUs (and GPUs) have developed according to 

Moore’s law so this 3-year gap would be equivalent to a 4 times performance 

difference. 

Comparing GPU performance is easier though still there are discrepancies. 

Seemingly the most common way is to measure the efficient use of the GPUs 

available performance. Often operations are memory bandwidth limited so it 

makes sense to evaluate the performance in terms of memory bandwidth or as 

percentage of available memory bandwidth. Though again comparing different 



48 | P a g e  
 

implementations is difficult due to hardware. When comparing implementations 

using identical hardware a fair comparison can be made. However, when the 

hardware is different this is more difficult. The main reason for this is that GPUs 

(especially those from NVidia) come in two categories. The first are consumer 

GPUs, which are aimed primarily at the computer games market. These are 

characterised by low cost and generally (but not always) have very poor double 

precision performance. The second are those specifically aimed at GPGPU 

computing, these are generally vastly more expensive than their consumer 

orientated stable mates. This cost does mean that double precision performance is 

good as well as adding additional features such as ECC memory protection and the 

ability to control maximum power consumption etc. Generally, memory bandwidth 

is the same across both categories. 

3.11 Chapter Summary 

This chapter has presented the fundamentals of GPGPU computing. Specifically, 

GPUs can be considered as compute units that are capable of performing 

calculations requiring very high data throughput. This ability comes from their 

numerous cores. Recently entering the scale of several thousand. Each core is able 

to perform simple instructions, but groups of cores controlled by a streaming 

multiprocessor must perform the same instruction. Also discussed was the CUDA 

programming language that makes the control of these threads possible. Previous 

investigations into this area were examined. This showed that GPU acceleration is 

capable of producing speed improvements orders of magnitude greater than CPUs. 

However, this headline figure is reserved for very specific applications. More 

generally single digit multiples of speed improvement can be expected. This chapter 

concluded with an analysis of how comparisons have been made between CPU and 

GPU accelerated codes demonstrating that there is no clear consensus as to how 

this should be performed. 
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Chapter 4 Computing methods 

4.1 Overview 

Chapter two gave an introduction to numerical methods used in atomization 

simulation, this chapter presents how they have been implemented in the chosen 

code: OpenFOAM. Therefore, it will detail governing equations, numerical schemes 

and solution procedures. Also, discussed are solutions to linear systems of 

equations which was shown in the previous chapter to be a suitable avenue to 

explore GPU acceleration. Finally, the hardware and software used throughout this 

thesis is presented. 

4.2 OpenFOAM 

First released in 2004, OpenFOAM is an open source toolbox for continuum 

mechanics. Though mainly known for its use in computational fluid dynamics. 

Originally written by Henry Weller at Imperial College in C++ to try to improve upon 

offerings in Fortran. It has proliferated into a multitude of problems found in 

academic CFD. Its proliferation has been assisted by its wide range of solvers which 

are applicable to everything from solving large scale fires (Wang, et al., 2011) to 

coastal engineering (Higuera, et al., 2013) and cavitation in diesel injectors 

(Salvador, et al., 2010). In addition, being written in C++ means that governing 

equations can be written in such a way that they closely resemble their 

mathematical formulation. 

As mentioned its extensive library of solvers means it can be applied to many 

problems. In the current situation, solvers of most interest are the “interFoam” 

family of solvers. These have the following things in common: 

 Eulerian finite volume method for discretization 

 Pressure Implicit with Splitting of Operators (PISO) solver scheme 

 Volume of fluid (VOF) method for interface capturing 

 Surface tension described by the Continuum Surface Method (CSF) 
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 Optional turbulence modelling using Laminar, RANS or LES models. 

4.3 Governing equations 

As previously discussed the VOF method (Hirt & Nichols, 1981) uses a scalar to 

define the location of the two fluids. This scalar, known as the volume fraction, γ 

and is defined as follows: 

𝛾 ቐ

1 𝑖𝑠 𝑓𝑙𝑢𝑖𝑑 1
0 < 𝛾 < 1 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

0 𝑖𝑠 𝑓𝑙𝑢𝑖𝑑 2
 

The motion of a viscous fluid can generally be described by the Navier-Stokes 

equations (Anderson, 1995) & (Deng, et al., 2000). These are not new and have 

been in existence since the 1800s. For an incompressible, unsteady and laminar 

flow these can be written as a volume conservation equation 

 ∇ ∙ 𝑈ሬሬ⃗ = 0 (7) 

Where 𝑈ሬሬ⃗  is the velocity vector. And a momentum conservation equation 

 𝜕𝜌𝑈ሬሬ⃗

𝜕𝑡
+ ∇ ∙ ൫𝜌𝑈ሬሬ⃗ 𝑈ሬሬ⃗ ൯ = −∇𝑝 + 2∇ ∙ ൣ𝜇 �⃖⃗�൧ + 𝜌�⃗� + 𝜎𝜅∇𝛾ଵ (8) 

In which 𝑡 is time, 𝜌 is density, 𝑝 is the pressure, μ is dynamic viscosity, �⃖⃗� is the rate 

of strain tensor, �⃗� is the acceleration due to gravity and the final term on the RHS is 

the source term due to surface tension which applies only at the interface between 

the two fluids. In three dimensions this gives a set of four equations and four 

unknowns, fluid pressure and three components of velocity. Solving these 

equations analytically is difficult, indeed finding a solution is one of the millennium 

prize problems, carrying a $1,000,000 prize (Clay Mathematics Institute, 2017). 

Because of this they are normally solved numerically. 
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The rate of strain tensor in equation 8 is defined as 

 �⃖⃗� =
1

2
(∇𝑈ሬሬ⃗ + ൫∇𝑈ሬሬ⃗ ൯

்
) (9) 

As the volume of fluid method is based on volume fraction function, combined 

momentum and continuity equations are solved. In addition, density and viscosity 

are described as fraction function weighted averages of the fluids in question. 

 𝜌 = 𝛾ଵ𝜌ଵ + (1 − 𝛾ଵ)𝜌ଶ (10) 

 𝜇 = 𝛾ଵ𝜇ଵ + (1 − 𝛾ଵ)𝜇ଶ (11) 

In which the subscripts denote the fluid. In order to account for the source term of 

surface tension, 𝜎𝜅∇𝛾ଵ, the continuum surface method first proposed by Brackbill 

et al., (1992) is used. This gives a force per unit volume. Of course this expression is 

only valid when the surface tension is constant, when there is variable surface 

tension additional shear stress needs to be accounted for. The curvature κ is 

defined as follows: 

 𝜅 = −∇ ∙ ൬
∇𝛾

|∇𝛾|
൰ (12) 

The transport equation for the volume fraction can be written as follows (for 

simplicity only a single phase is considered) 

 
𝜕𝛾

𝜕𝑡
+ ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯ = 0 (13) 

In order to maintain a sharp interface OpenFOAM uses an interface compression 

method that was originally developed by (Jasak & Weller, 1995). This interface 
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compression method is a conservative form of equation 13 which ensures the 

boundedness of the volume fraction between zero and one.  

 
𝜕𝛾

𝜕𝑡
+  ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯ +  ∇ ∙ [𝑈ሬሬ⃗ ௥𝛾(1 − 𝛾)] = 0 (14) 

In which 𝑈ሬሬ⃗ ௥ is the relative velocity between the two phases. Because of the 

𝛾(1 − 𝛾) expression in the interface compression term it only acts at the interface. 

It has been shown this method is accurate in relation to others but at the cost of 

requiring generally smaller courant numbers (Gopala & van Wachem, 2008). The 

relative velocity between the two phases is described by: 

 𝑈௥ = 𝑛௙ 𝑚𝑖𝑛 ቈ𝐶ఊ

|𝛷|

ห𝑆௙ห
, 𝑚𝑎𝑥 ቆ

|𝛷|

ห𝑆௙ห
ቇ቉ (15) 

In which 𝑛௙ is the normal vector of the cell surface, Φ is the mass flux, 𝑆௙ is the area 

of the cell surface and 𝐶ఊ is a user chosen coefficient between zero and four. If zero 

is chosen, then there will be no interface compression. While a coefficient of one, 

as used throughout this work, provides a conservative compression. And finally, 

above one there is an enhanced compression.  

Time step control is governed by the Courant number (Courant, et al., 1967) this 

gives the number of cells the flow will travel in one time step. It is determined by 

the following equation: 

 𝐶𝑜 = ∆𝑡 ෍
𝑈௜

∆𝑥௜

௡

௜ୀଵ

 (16) 

Δt is the time step, Δx is the mesh size and U is the velocity. The subscript i denotes 

the direction, in three dimensions this would be x, y and z. In addition to the 
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Courant number Brackbill et al. (1992) state that to account for capillary waves the 

capillary time-step constraint should be adhered to. 

 ∆𝑡஻௄௓ ≤
∆𝑥

2𝐶𝑎
 (17) 

Where the superscript BKZ denote the authors, Δx is the mesh size and Ca the 

capillary number described in chapter 2. 

4.4 Solution procedure 

The finite volume method is characterised by some large volume spit into a mesh of 

many smaller volumes.  The governing equations are integrated over all the mesh 

elements in the domain. Using the divergence theorem, the equations containing 

divergence terms are converted to surface integrals, these terms are then 

evaluated as fluxes at the surface of each mesh volume (Versteeg & Malalasekera, 

2007). As such in OpenFOAM notation all discretization schemes are prefixed with 

‘Gauss’ denoting the Gaussian divergence theorem. 

OpenFOAM provides numerous options for all categories of discretization. In an 

OpenFOAM setup they are split into the following sections: 

 Time schemes 

 Gradient schemes 

 Divergence schemes 

 Surface normal gradient schemes 

 Laplacian schemes 

 Interpolation schemes 

Discretization for the time derivatives is achieved using the implicit second order 

Crank-Nicolson (Crank & Nicolson, 1996) scheme. For all gradient terms, the central 

differencing scheme is used. In all cases for interpolation from cell centres to faces 
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the central differencing scheme is used. The surface normal gradient is calculated 

using a central differencing method, of the adjacent cell centres, without the 

available non-orthogonal correction as in all cases in this work non-orthogonality is 

zero. Laplacian terms again use a central differencing method to evaluate cell face 

values, the resulting surface normal gradient is then evaluated as previously stated. 

Divergence discretization is different for different terms involved. The ∇ ∙ 𝜌𝑈ሬሬ⃗ 𝑈ሬሬ⃗  term 

uses the second order hybrid LinearUpwind scheme (Spalding, 1972). The ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯ 

term uses the second order, total variation diminishing, limited vanLeer scheme 

(van Leer, 1974). Finally, the interface compression term ∇ ∙ 𝑈ሬሬ⃗ ௥𝛾(1 − 𝛾) uses a 

central differencing scheme as its boundedness is assured by the MULES 

algoritham.  

The pressure implicit with splitting of operators algorithm (PISO), first proposed by 

Issa et al., (1986) is used to obtain the solution to the momentum equation. First a 

discretized momentum predictor equation is solved using a “best-guess” pressure 

field, often the pressure from the previous time step, to compute an intermediate 

velocity field. This intermediate velocity field is then used to solve a pressure 

equation. Finally, the velocity field is corrected using the new values of pressure. 

The final two steps are performed iteratively until suitably accurate values are 

found. Issa et al., (1986) states that two pressure corrections are required to be 

second order accurate. This scheme is summarised in the flow chart in Figure 14.  
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Figure 14: Outline of the PISO Algorithm (Giannopapa & Papadakis , 2007) 

Included as part of the PISO algorithm is the multi-dimensional limiter for explicit 

solution (MULES) (OpenCFD Ltd, 2009). This is used to solve the volume fraction 

field and has been proven to be effective in producing boundedness in scalar fields, 

such as the volume fraction. It uses time step sub cycling to obtain the solution to 

the volume fraction field. This time step sub cycling takes place before the 

momentum predictor step in the PISO loop. It allows higher courant numbers to be 

used in the rest of the PISO loop as usually the solution of the phase volume 

fraction transport equation dictates the size of time step that can be used. At the 

start of each time step the Courant number is calculated and subsequently the new 

time step size. The time step sub cycling then uses equal divisions of the new time 

step size. So, with two sub cycles, as used in the present work, the sub cycle will 

advance time by exactly half of the time step size.  

If the LES or RANS turbulence models are selected these are included in the 

pressure correction steps. Otherwise a laminar model is used, therefore if the cell 

size is small enough it can be considered DNS (Hemida, 2008).  

Once discretized the momentum and pressure correction equations produce a 

linear system of equations for all the cells in the domain. This system can be 

described as the following: 
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 𝐴𝑥 = 𝑏 (18) 

Here A is a matrix of coefficients, x is unknown, and b is the source term of the 

governing equations. In OpenFOAM the matrix A is stored in the Lower Diagonal 

Upper (LDU) sparse matrix format. In this format the non-zero values of the 

diagonal, upper triangle and lower triangle are stored consecutively in dense 

vectors. There are then two additional dense vectors that define the location of 

those non-zero values in a co-ordinate format. The LDU format allows for easier 

implementation of some of the linear system solvers that are available to use in 

OpenFOAM. 

The linear systems can be solved by one of 3 general methods. The first is to 

directly solve the system using something like Gaussian elimination, this would give 

an exact result (if there are no rounding errors). However, these methods are often 

too expensive even for small to medium sized matrices. Second is to use a 

stationary method such as the Gauss-Seidel or Jacobi methods. These work using a 

correction equation based upon the measurement of the error found in the 

previous iteration. Convergence is only guaranteed for some types of matrices and 

tends to be relatively slow. The final option is Krylov subspace methods. These 

methods start with an initial guess and therefore residual which iterate until the 

exact solution (without rounding errors) is found. Common options are the 

conjugate gradient or bi-conjugate gradient methods.    

OpenFOAM uses all of these categories in some way. They are further divided into 

two groups. Those for symmetric matrices and those for asymmetric matrices. The 

most commonly used linear system solver for symmetric matrices in OpenFOAM is 

generally considered to be the preconditioned conjugate gradient method. For ease 

of explanation the preconditioner will be ignored to begin with. The conjugate 

gradient method was first proposed by Hestenes & Stiefel (1952) it was first 

developed as a direct solver but has found its popularity as an iterative solver. 
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Indeed, the exact solution of the linear system will be found in as many iterations as 

there are unknowns as long as there is no rounding. However, when there are as 

many unknowns as there are cells in the mesh, coupled with rounding errors 

produced by floating point number storage, this is almost never the case. Instead 

OpenFOAM uses a hard-coded limit of 1000 iterations. The algorithm below shows 

the conjugate gradient method. In addition to the matrix and vectors of the linear 

system, two additional vectors are required. These are the residual and search 

direction vectors. They are labelled R and P respectively. 

𝑅଴ = 𝑏 − 𝐴𝑥଴ 

𝑃଴ = 𝑅଴ 

𝑖 = 0 

While I <= 1000 

𝛼௜ =
𝑅௜

்𝑅௜

𝑃௜
்𝐴𝑃௜

 

𝑥௜ାଵ = 𝑥௜ + 𝛼௜𝑃௜ 

𝑅௜ାଵ = 𝑅௜ − 𝛼௜𝐴𝑃௜  

if 𝑅௜ାଵ is small enough exit loop. 

𝛽௜ =
𝑅௜ାଵ

் 𝑅௜ାଵ

𝑅௜
்𝑅௜

 

𝑃௜ାଵ = 𝑅௜ାଵ + 𝛽௜𝑃௜ 

𝑖 = 𝑖 + 1 

end while loop 

The answer to the linear system is then 𝑥௜ାଵat the point that R is small enough. The 

residual R is considered small when the sum of the magnitude of elements is less 
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than a user specified value, this value is generally normalised by the magnitude of 

vector b. While this method is good, it can take many iterations to come to a 

converged result, particularly when the linear system is large. To combat this slow 

convergence a preconditioner is often used to improve convergence. The algorithm 

is very similar with minor changes. In addition to the storage requirements of the 

conjugate gradient method its preconditioned variant requires the storage of an 

additional vector, in this case Z, as well as the inverse of a preconditioning matrix, 

M. The algorithm is shown below. 

𝑅଴ = 𝑏 − 𝐴𝑥଴ 

𝑍଴ = 𝑀ିଵ𝑅଴ 

𝑃଴ = 𝑍଴ 

𝑖 = 0 

While I <= 1000 

𝛼௜ =
𝑅௜

்𝑅௜

𝑃௜
்𝐴𝑃௜

 

𝑥௜ାଵ = 𝑥௜ + 𝛼௜𝑃௜ 

𝑅௜ାଵ = 𝑅௜ − 𝛼௜𝐴𝑃௜  

if 𝑅௜ାଵ is small enough exit loop. 

𝑍௜ାଵ = 𝑀ିଵ𝑅௜ାଵ 

𝛽௜ =
𝑍௜ାଵ

் 𝑅௜ାଵ

𝑍௜
்𝑅௜

 

𝑃௜ାଵ = 𝑍௜ାଵ + 𝛽௜𝑃௜ 

𝑖 = 𝑖 + 1 
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end while loop 

The simplest preconditioner is the Jacobi or diagonal preconditioner. Here the 

diagonal of matrix A is used as the preconditioner. It is efficient for diagonally 

dominant matrices. In OpenFOAM it is common to use the Diagonal Incomplete 

Cholesky preconditioner. 

The final preconditioner of interest is a bit different to those addressed previously. 

The Geometric-Algebraic Multi-Grid solver (GAMG) can be used either as a 

preconditioner or as a linear system solver in place of say the preconditioned 

conjugate gradient solver. GAMG is, as its name suggests, a multigrid method that 

gives efficient convergence. The advantage of multigrid methods is that the number 

of operations is proportional to the size of the problem, in contrast to others that 

increase quadratically or higher. The basic idea of a multigrid method is that 

classical solvers like the Jacobi method will stall at a certain convergence once high-

frequency errors have been removed. So, at this point a coarser grid is constructed 

where the error is no longer smooth. The transfer of vectors to this coarse grid is 

known as restriction. This is repeated at coarser and coarser grids until some 

minimum is reached and a direct solver can be used to find a solution on the most 

course grid. The solution is then transferred up through finer and finer meshes until 

the original mesh is reached, with Jacobi smoothing iterations taking place at each 

level to remove any errors introduced by this interpolation operation. 
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Figure 15: Illustration of the errors removed in a multigrid method (Lawrence Livermore National Laboratory, 
n.d.) 

The multigrid method described above is a specific method that is known as the V 

cycle, so called due to the shape it makes when the order of grids is lain out as in 

Figure 15. There are alternatives which can be found in the literature, but this is as 

used in OpenFOAM. The final element of the multigrid is how the coarse grids are 

chosen. As the acronym GAMG suggests this can be either geometric or algebraic. 

The geometric method uses the geometry of the mesh to decide on closely related 

cells that can be combined into a single coarse grid cell. On the other hand, 

algebraic methods use only the coefficients of the matrix in the linear system to 

generate the course grid.   

4.5 Computational Hardware 

In the following chapters, all OpenFOAM computations have been performed using 

the same hardware and software stack. Hardware comes in the form of an HP Z820 

workstation. Configured with twin Intel Xeon E5-2650 v2 CPUs which have eight 

cores running at 2.6GHz. 64GB of DDR3-1833 RAM and twin NVidia GeForce Titan 

Black edition graphics cards. As with all Intel CPUs since the early 2000s they are 
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equipped with hyper threading. This is Intel’s proprietary technology for allowing 

the operating system to address each real core as two logical cores. This allows 

multiple instructions on different data to be performed at once, commonly useful in 

general computer use. However, for CFD this is often not helpful as the additional 

MPI communication outweighs the benefits of possible overlap in computation 

(Keough, 2014). Key performance parameters of the two compute units are shown 

in the table below:  

Computing Unit 

Cost at 

launch 

($) 

Theoretical 

Peak DP 

performance 

(GFLOPS) 

Memory 

(GB) 

Max. Memory 

Bandwidth 

(GB/s) 

Max. Power 

Consumption 

(W) 

Intel Xeon E5-

2650 V2 (8 

Core) 

1166 166.4 Up to 768 59.7 95 

NVidia 

GeForce Titan 

Black Edition 

999 1707 6 336 250 

Table 1: Key performance criteria of the CPU and GPU used in this work 

Software used consists of the Ubuntu 12.04 operating system. OpenFOAM version 

2.3.1 and CUDA 6.0. All code compilation for OpenFOAM is conducted using the 

GCC open source compiler while CUDA code is compiled using NVCC (NVidia CUDA 

compiler) included as part of CUDA version 6. Message passing between cores in 

multi core mode is conducted using OpenMPI. 

Of specific interest in the specifications listed in Table 1 is theoretical memory 

bandwidth. The vast majority of compute time in CFD codes is spent in memory 

bound linear system solvers. I.e. the performance bottleneck comes from memory 

bandwidth. With this in mind some analysis of where these specifications come 

from is useful. For a CPU using DDR RAM (as in this case) the memory bandwidth is 

evaluated by the product of the transfer rate and the bus data width. In the current 

case the DDR3 RAM has a transfer of 1.867 × 10ଽ transfers per second with a bus 
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width of 64 bits. This gives a peak memory bandwidth of 14.933 GB/s per module. 

In order to attain the value of 59.7 GB/s multiple modules are used, as is the case in 

the current setup, four 8 GB modules are attached to each CPU. This is known as 

quad channel memory. The GPU is similar, indeed its GDDR5 memory is built upon 

the same DDR3 technology as the CPU memory. However, it is capable of 7 × 10ଽ 

transfers per second with a 384-bit bus width, this gives the quoted value of 336 

GB/s. Achieving this speed is however generally impossible. Deakin & McIntosh-

Smith (2015) showed that the similar architecture NVidia GeForce GTX 780 Ti 

showed a useable bandwidth of 83.9% of the quoted 336 GB/s maximum. 

 

Figure 16: Comparison of GPU memory bandwidth with varying transfer size 

To understand the available memory bandwidth of the NVidia GTX Titan Black in 

the system an investigation was conducted along the lines of that used by Delbosc  

(2015). Using the CudaMemcpy function an amount of data is copied from one 

location in the GPU memory to another. This amount of data is varied between 

1,024 KB and 64 MB. This test is conducted 10 times with the results displayed in 

Figure 16. Plotted are minimum, maximum and average bandwidth usage of the 10 

runs. Interestingly the maximum bandwidth achieved is only just shy of 231 GB/s 

which is just 68.75% of the theoretical peak. As suggested by Delbosc (2015) peak 
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bandwidth is only observed above a transfer size of about 32 MB. Transfers below 

this size steadily reduce in measured bandwidth.   

4.6 Chapter Summary 

In this chapter an introduction to OpenFOAM has been given, the main point of 

which is that it is not a monolithic code and instead is a collection of libraries which 

are combined to makeup solvers for different applications. The solver chosen for 

this study is interFoam, an incompressible multiphase solver. It uses the volume of 

fluid interface capturing method with the continuum surface force method to treat 

singularities. It uses a unique interface compression term to ensure a sharp 

interface and solves the momentum equation with the PISO method. Additionally, 

the different linear system solvers were outlined, showing that OpenFOAM makes 

use of all categories of linear system solvers. Finally, the computational hardware 

used throughout this study was presented, a brief investigation into the GPU 

hardware showed useable memory bandwidth is significantly lower than the peak 

described by the manufacturer. 
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Chapter 5 Elementary Test Cases 

5.1 Overview 

In this chapter the OpenFOAM code presented in the previous chapter is assessed 

to confirm its suitability to be used in complex multiphase problems. Additionally, 

by investigating these problems the efficiency of the solver can be assessed. By 

using an efficient CPU based OpenFOAM setup an “apples to apples” comparison 

can be made with future GPU implementations. This should ensure that GPU 

developments are beneficial in real world applications.  

5.2 Zalesak’s Disk 

The notched disk in a rotating flow field was first proposed by Zalesak (1979) since 

then it has been used by numerous researchers to validate the quality of interface 

capturing methods. While it has been used in numerous configurations only one 

will be considered here. This configuration is as such, a disk of radius 0.15m which 

has a notch removed that is 0.05m wide by 0.25m high. This notched disk is then 

placed into a domain that is 1m square. The disk is then rotated over 6.28s 

according to the velocity profile in equation 19. 

 𝑢 =
గ

ଷ.ଵସ
(0.5 − 𝑦) and 𝑣 =

గ

ଷ.ଵସ
(𝑥 − 0.5) (19) 

With an initial position of (0.5m, 0.75m), over the course of the problem the disk 

will complete one whole rotation. The shape of the disk at the end can then be 

compared with the original to quantify losses associated with the interface 

capturing method being tested. 
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Figure 17: Initial condition of Zalesak's Disk 

Three grid resolutions are compared, 100x100, 200x200 and 400x400. In each case 

the grids are Cartesian. A zero-normal gradient is applied to all boundries. As 

pressure and velocity calculation is switched off, at the boundry these effectively 

remain fixed values equal to the initial conditions. To properly compare the 

interfaces both the momentum and pressure correction equations are switched off. 

In this case, only the interface tracking equations are solved. The effect on velocity 

is that it remains constant throughout all time steps. In addition to this the result of 

the first computed time step is compared to the time step after 6.28s. The effect of 

this is that the interface is allowed to become a gradient across two or three cells as 

is common with VOF. This allows the interfaces to be compared on a like for like 

basis. The results shown below are a contour of volume fraction of 0.5. In all cases 

below the original interface (and reference solution) is shown by the black line 

while the final interface is in grey. 
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Figure 18: Interface at final time step (grey) compared to initial 100 grid (black) 

 

Figure 19: Interface at final time step (grey) compared to initial 200 grid (black) 
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Figure 20: Interface at final time step (grey) compared to initial 400 grid (black) 

Figures 18-20 clearly show, especially on the coarsest grid, that the sharp corners of 

the slot of the disk are difficult to maintain. Apart from the coarsest mesh the 

interface is quite well maintained. Indeed, it is likely not too far from results that 

could be achieved with the level set method which doesn’t suffer from the 

numerical diffusion of the interface. To compare results quantitatively the error 

metric used by several other investigations is used e.g. (Deshpande, et al., 2012) 

and (Sussman & Puckett, 2000). 

 𝐸 =  
1

𝐿
෍ 𝐴|𝛾ூ − 𝛾ி|

ே

ଵ

 (20) 

Here L is the length of the interface. A is the area of a cell. The superscripts I and F 

are the initial and final quantities. The sum is across all cells in the domain. 
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100 x 100 200 x 200 400 x 400 

0.003979 0.001692 0.000971 

Table 2: Values of E (error) for each cell density 

The results of this error metric are similar to (Deshpande, et al., 2012) though 

slightly greater, this is likely due to slight differences in numerical schemes or 

convergence criteria. 

To assess the stability of OpenFOAM the 200 x 200 cell case was used with varying 

courant number. Five cases were run with the courant number halved in each one. 

Initially a comparison with the error metric described above can be made. 

Courant number 1 0.5 0.25 0.125 0.0625 

Error 0.003954 0.002240 0.001691 0.001653 0.001704 

Table 3: Results of Courant number investigation 

From this investigation it can be clearly seen that after dropping to a courant 

number of 0.25 there then becomes very little difference in the final interface. To 

show what kind of difference these errors translate to below is a visual 

representation of the interfaces. 
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Figure 21: Interface comparison at Courant number of 1 (grey) compared to initial (black) 

 

Figure 22: Interface comparison at Courant number of 0.0625 (grey) compared to initial (black) 

In figures 21 & 22, as in previous comparisons the initial interface is shown in black 

while the final interface is shown in grey. These comparisons clearly show that with 

a courant number of 1, the ability to maintain the interface in this problem is poor. 

However as mentioned above there is very little difference at a courant number 

below 0.25.  
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5.3 Rayleigh-Taylor Instability 

The Rayleigh-Taylor instability problem is one that has been used by many 

researchers in different configurations to investigate the performance of numerous 

codes (Tryggvason & Unverdi, 1990), (Bell & Marcus, 1992) & (López, et al., 2005). 

The setup consists of a heavy fluid above a lighter fluid. The interface is initially set 

as a cosine wave with an amplitude of 0.05. Under the effects of normal gravity, 

9.81𝑚 𝑠ଶ⁄ , the two fluids will eventually swap places. Of interest though are the 

initial time steps where the heavier fluid accelerates and becomes a jet like 

structure. 

 

Figure 23: Initial conditions of Rayleigh-Taylor interface problem 

In this investigation the two fluids used are air like and helium like shown in Figure 

23 as red and blue respectively. The fluid properties are listed in Table 4, the 

subscripts indicate the fluid, one being air and two the helium. 

𝜌ଵ (𝑘𝑔 𝑚ଷ⁄ ) 𝜇ଵ (𝑘𝑔 𝑚𝑠⁄ ) 𝜌ଶ (𝑘𝑔 𝑚ଷ⁄ ) 𝜇ଶ (𝑘𝑔 𝑚𝑠⁄ ) σ (𝑁 𝑚⁄ ) 

1.225 3.13 × 10ିଷ 0.1694 3.13 × 10ିଷ 1 × 10ିଶ 

Table 4: Rayleigh-Taylor instability fluid parameters 

All boundries use a slip condition, where there is zero normal velocity and a zero-

normal gradient for other variables. The computational domain is 1 unit by 4. The 

mesh resolution is expressed in terms of cells per unit length. To understand how 

OpenFOAM performs in a large range of mesh resolutions 32, 64, 128, 256 and 512 
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cells are used. As before the grid is Cartesian. As was done by (Herrmann, 2008) up 

to a time of 0.9s is simulated. This ensures that the flow structures will remain 

inside the boundaries in all mesh cases. Therefore, the only influence on the results 

should be the change in mesh resolution. In all cases a constant time stepping 

regime is used. In all the results that follow the reference solution of 512 cells is 

shown in black. The solution that the reference is being compared to is then shown 

in grey. 

 

Figure 24: Interface at t=0.6s. From L to R, 32, 64, 128, 256 cells(in grey) per unit length, compared to reference 
solution (in black) 
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Figure 25: Interface at t=0.7s. From L to R, 32, 64, 128, 256 cells(in grey) per unit length, compared to reference 
solution (in black) 

 

Figure 26: Interface at t=0.8s. From L to R, 32, 64, 128, 256 cells (in grey) per unit length, compared to reference 
solution (in black) 
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Figure 27: Interface at t=0.9s. From L to R, 32, 64, 128, 256 cells (in grey) per unit length, compared to reference 
solution (in black) 

Individually comparing each grid to the reference gives some interesting 

conclusions. At all time steps apart from 0.9s there is no discernible difference 

between the mesh using 256 cells and the reference solution. At 0.9s 256 gives a 

slight over estimation of both the X and Y co-ordinates of the interface. Again, at all 

time steps apart from 0.9s both 64 and 128 cells show some slight differences to 

the reference solution, but these are fairly minor. At 0.9s 128 cells is still close to 

the reference solution but not as close as 256. The first significant difference to the 

reference solution comes at 0.9s in the 64-cell case. Here numerical breakup can be 

observed. While in all denser meshes there is a small thin liquid structure ending in 

a small droplet shape. However, with 64 cells the mesh is too course to capture this 

thin ligament. Finally, in all time steps the 32-cell representation represents a poor 

description compared to the reference. 

5.4 Linear Solver Selection 

The linear system solvers used can have a significant effect on the compute time of 

the case in question. As discussed earlier OpenFOAM has a number of different 

linear system solvers available. To assess the most efficient solver the 128-cell test 
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case was used as a basis. The comparisons would be made among several of the 

options; conjugate gradient (CG), diagonal preconditioned conjugate gradient 

(DPCG), diagonal incomplete Cholesky preconditioned conjugate gradient (DICPCG), 

geometric-algebraic multigrid preconditioned conjugate gradient (GAMGPCG) and 

just geometric-algebraic multigrid (GAMG). The smooth solver is not compared 

here as it would likely take several times longer to reach convergence criteria than 

even the slowest solver presented here.  

 

Figure 28: Comparison of compute times of different linear solvers 

In each case the case setup was constant, the only differences were the linear 

system solver used for the pressure correction equations. The pressure correction 

equation was selected as it is the most expensive code section, indeed in these 

results the cost of solving the pressure equations was between 80% and 95% of the 

total computational time. The results come from the measured clock time and so 

includes some saving data to disk. All computations were done in serial using the 

test hardware with the GUI switched off. 

The results show the huge impact the selection of the linear solver can have on the 

total computational time and so is a key consideration in generating CPU 
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benchmarks. Indeed, using the GAMG solver reduces the computational cost by 

over 50% when compared to the commonly used DICPCG solver.  

5.5 Rising Bubble 

Hysing et al., (2009) proposed a quantitative benchmark to compare incompressible 

interfacial flow codes. The comparison is made on a 2D bubble rising a in a column 

of liquid. A diagram of the problem initial conditions is shown in Figure 29. 

 

Figure 29: Configuration of the rising bubble case proposed by (Hysing, et al., 2009) 

The initial configuration consists of a bubble with radius 0.25 with its centre located 

at [0.5, 0.5] in a 1 x 2 rectangular domain. The top and bottom boundaries are 

defined as no-slip while the vertical walls are slip boundaries. Cartesian meshes 

with different resolutions are used in the comparisons. Meshes are defined in terms 

of the number of cells along the upper or lower walls. In this investigation meshes 

of 40, 80, 160 and 320 cells will be used. In all cases the benchmark quantities are 
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evaluated over 3s. However as has been mentioned previously the VOF method will 

produce a numerical smearing of the interface. Therefore, in all cases the initial 

bubble is simulated for 3s with gravity switched off. The result of these initial 3s 

runs are then used as the starting conditions for the comparison case, with gravity 

switched back on. This transition is shown in Figure 30. The properties of the fluids 

are show in Table 5 below. The subscripts denote the fluid, 1 being the ambient 

liquid and 2 being the gas bubble. 

𝜌ଵ 

(𝑘𝑔 𝑚ଷ⁄ ) 

𝜌ଶ 

(𝑘𝑔 𝑚ଷ⁄ ) 

𝜇ଵ 

(𝑘𝑔 𝑚ଷ⁄ ) 

𝜇ଶ 

(𝑘𝑔 𝑚ଷ⁄ ) 

g  

(𝑚 𝑠ଶ⁄ ) 

σ  

(𝑁 𝑚⁄ ) 

Re 

(-) 

Eo 

(-) 

1000 100 10 1 0.98 24.5 35 10 

Table 5: Parameters for bubble rise case 

       

Figure 30: Interface smearing initialization on 40 cell mesh. (A) left, initial interface. (B) right, smeared interface. 
Red is liquid phase, Blue gas phase and transition is the interface 

The intention of the investigation was to present a quantitative benchmark 

validation exercise for immiscible liquids undergoing topological changes. As there 

was not one accepted in contrast to other fields in CFD. To this end two exercises 

are presented. The first is as described above. The second, which is not considered 

here, has higher density and viscosity ratios as well as a lower surface tension 

coefficient. For each case several error metrics are used to establish the 

comparative performance of three codes, TP2D (Transport Phenomena in 2D), 

FreeLIFE (Free-Surface Library of Finite Element) and MooNMD (Mathematics and 
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object-orientated Numerics in MagDeburg). In future comparisons in this study only 

the first two codes (TP2D and FreeLIFE) will be compared as they follow the 

Eulerian-Eulerian coordinate scheme, the same as interFoam, whereas MooNMD 

uses the Lagrangian-Eulerian scheme. Additionally, both codes, in contrast to 

interFoam, use the level set method for interface tracking. Finally, it should be 

noted that TP2D uses the same range of meshes as this study but FreeLIFE does not 

have a solution with 320 cells. 

Initially the shape of the bubble at the final time step can be compared across the 

mesh densities with only results produced in this work using interFoam. For all 

cases the bubble outline identified by a volume fraction of γ=0.5.  

  

Figure 31: Bubble outline at t = 3s. Grids of 40 (Blue), 80 (Orange), 160 (Grey), 320 (Yellow) 
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Figure 32: Close-up of bubble outline, Grids of 40 (Blue), 80 (Orange), 160 (Grey), 320 (Yellow) 

From the view of the whole bubble at the final time step in Figure 31 it can be seen, 

apart from the coarsest mesh, the bubble outline shows little change across the 

meshes used. The close-up, Figure 32, shows this in more detail. Additionally, the 

close up shows the mesh convergence, indeed the difference between the two 

finest meshes is minimal. 

The first comparison to published results that can be made is the degree of 

circularity. Here the perimeter of the bubble is compared to the perimeter of a 

perfect circle of an equivalent area. Therefore, a perfectly circular bubble will have 

a circularity of 1. 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑝𝑒𝑟𝑖𝑚𝑖𝑡𝑒𝑟 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

𝑝𝑒𝑟𝑖𝑚𝑖𝑡𝑒𝑟 𝑜𝑓 𝑏𝑢𝑏𝑏𝑙𝑒
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Figure 33: Comparison of circularity on various meshes in OpenFOAM and the level set methods used in (Hysing, 
et al., 2009) 

In figure 33 it can be seen that the OpenFOAM results agree fairly well with those 

that are produced by the two level-set codes TP2D and FreeLIFE. Indeed from 0 to 2 

seconds almost no difference can be seen on the higher cell density cases. The 

lowest cell density case however is poor. Next the bubble centre of mass is 

compared. This is defined by equation 21. 

 𝐶𝑜𝑀 =  
∫ �⃗�𝑑𝐴

ఆ

∫ 1𝑑𝐴
ఆ

 (21) 

In which �⃗� is the vector (x, y) position of the centre of a computational cell, Ω is the 

region occupied by the gas bubble and A is the bubble area. 
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Figure 34: Comparison of bubble centre of mass 

Finally, a comparison on the bubble rise velocity can be made. This is described by 

equation 22. 

 𝑅𝑖𝑠𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  
∫ 𝑈ሬሬ⃗  𝑑𝐴

ఆ

∫ 1𝑑𝐴
ఆ

 (22) 

 In which again Ω is the region of the gas bubble and 𝑈ሬሬ⃗  is the velocity vector. 
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Figure 35: Comparison of bubble rise velocities 

Again, the comparison with the two level-set codes presented in Hysing et al., 

(2009) is good although interFoam seems to show a slight under estimation of the 

bubble rise velocity which consequently gives an under estimation of the location 

of the bubble centre of mass. For completeness Hysing et al., (2009) provide CPU 

timings to give an idea of code efficiency. However, given the improvements in 

processor performance since this study, the efficiencies are of little value as a 

comparison with modern data. As an example, the most expensive cases took 35 

hours and 30.25 hours for TP2D and FreeLIFE respectively. The most expensive case 

in this study took just 5.4 hours. While all were conducted on a single core of a 

multi core processor the processor age, and therefore its performance, varies 

significantly. In this regard some additional normalisation of processor performance 

would be needed to be added to compare code developments.  

5.6 Performance Comparisons 

The number of pressure corrector steps needed differs greatly from the (Issa, et al., 

1986) suggested minimum of 2 steps required to reduce the discretization error if 

second order time stepping is used right up to the 15 suggested by Klostermann et 
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al., (2013). Therefore, some further investigation is required. First a collection of 

runs were conducted on the 160 cell test case. In each case the bubble was 

initialised using 15 corrector steps. All cases were performed using a single core but 

with the Linux GUI switched off. The number of pressure correction steps was 

varied from 1 to 15, compute times are plotted below in Figure 36. 

 

Figure 36: Graph comparing compute time with number of pressure correction steps 

The first thing to note is that a single pressure corrector failed to produce a stable 

solution and so is not included in the results. The remaining results show that 

between two and four correctors give similar performance costs. After this however 

the cost rises sub linearly. With 15 correctors time is 2 1/3 times as great as 4 

correctors. Results of the previous properties shown below were then compared in 
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shown on a graph to improve clarity. 
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Figure 37: Circularity comparison with varying pressure correction steps 

 

Figure 38: Centre of mass compared across varying pressure correction steps 
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Figure 39: Comparison of Y velocity across number of pressure correction steps 

These figures show that the quantitative results of this case do not very significantly 

with increasing number of pressure correctors. But what is the optimum efficient 

setup? If it is assumed that the largest number of correctors is the most accurate 

solution the error of each case can be evaluated in comparison to it.  
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Here R is the actual values at each time step of the 15 pressure corrector steps 

case, E is the difference between the 15 pressure corrector steps case and the case 

in question and NTS is the number of time steps. Equation 21 effectively shows how 

different the result is compared to the optimum. Looking at results for Y-velocity, 

and 2 pressure correction steps. Across all time steps there is a loss in accuracy of 

0.28% in the results but achieving that accuracy requires 138% more computing 

time.  
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Figure 40: Percentage error across varying number of pressure correction steps 

5.7 Parallel Scaling 

Running OpenFOAM in parallel is common. The method used being domain 

decomposition. Optimizing this is very much dependent on both hardware available 

and the problem being solved. It is generally accepted that between 10,000 and 

50,000 cells per core is most efficient. Less than 10,000 cells per core would result 

in high core to core communication while above 50,000 raw performance simply 

isn’t good enough. In Keough (2014) indeed it is shown that the type of problem 

influences the number of cells needed to saturate a core. 

To get a good idea of the systems parallel performance, again this case was used as 

a test. Each case was performed with the Linux GUI switched off using the 160-cell 

case. In addition to this hyper threading on the Intel CPU was switched off giving 16 

logical cores on 16 real cores as opposed to 32 logical cores on 16 real. In all cases 

the scotch decomposition method was used to decompose the problem. Scotch is 

one of four options for decomposition, the others are simple, hierarchical and 

manual. Simple will just divide the domain into sections as defined by the user in 

terms of number in x y z directions. Hierarchical works in a similar fashion but 

instead equalises the number of cells per processor. This means it is very useful for 
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domains that have meshes with refinement zones or if the number of cells in the 

three directions is not easily divisible by the number of processors available. 

Manual is where the user defines exactly which cells are allocated to which 

processor. The used scotch method aims to equalise the number of processor 

boundary cells between each processor, in theory this should equalise MPI 

communication. It requires no user input. 

 

Figure 41: OpenFOAM parallel scaling with different domain decomposition methods on 160 cell case 

Figure 41 shows a comparison between the different domain decomposition 

methods. It can be seen that at two processor cores there is no difference as would 

be expected because the methods can’t make a difference. But after this clearly the 

simple method performs more poorly. However, there is very little difference 

between hierarchical and scotch so the advantage of scotch requiring no user input 

makes it a clear winner. 
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Figure 42: Parallel scaling of OpenFOAM 

Strong scaling was compared with both 15 and 3 pressure corrector steps. In all 

cases as discussed previously, 3 pressure corrector steps was fastest. However, as 

the number of cores increases the gap reduces. In terms of parallel efficiency 15 

correctors is always better, with the increased compute requirement being able to 

hide the intra core communication. With 15 correctors parallel efficiency is good up 

to 8 cores, staying above 90%, at 16 cores though it drops down to 78%. With 3 

correctors efficiency is only above 90% with two cores. Dropping to 89% for 4 and 

81% with 8. Finally, 16 cores have an efficiency of just 69%. This is explained by 

there only being 3200 cells per core so simply there is not enough computational 

requirement to hide the intra core communication. Additionally, the cost of 

decomposing and reconstructing the case (required cost to run in parallel) was 

found to be 60 seconds in every case no matter the number of cores or number of 

correctors. This cost is equal to the computational cost of 3 correctors running on 

16 cores so is not insignificant in this instance. 
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Figure 43: Parallel Scaling with 320 Cells, black is linear scaling, grey is scaling produced in this study 

To further investigate the parallel performance of this case additional cases were 

used with higher cell counts. First, with the results shown in Figure 43 the 320-cell 

per unit case is shown. In black is linear scaling while in grey is scaling results 

obtained in this investigation. Even though the number of cells per core with 16 

cores is now 12,800 the improvement in parallel efficiency is not great. Indeed, the 

rise is only about four percentage points from 69.3% to 73.4%. 

 

Figure 44: Parallel scaling of 480 cells per unit, black is linear scaling, grey is scaling produced in this study 

0 2 4 6 8 10 12 14 16
600

6000

Number of Cores

Ti
m

e 
to

 C
om

pl
et

io
n 

(S
)

Parallel Scaling of OpenFOAM

0 2 4 6 8 10 12 14 16
3400

34000

Number of Cores

Ti
m

e 
to

 C
om

pl
et

io
n 

(S
)

Parallel Scaling of OpenFOAM



89 | P a g e  
 

Figure 44 has additional cells, now with 480 cells per unit length. This results in 

28,800 cells per core. Again, black shows linear scaling while grey is scaling results 

in this study. Of note this time is that parallel efficiency now drops, albeit by less 

than one percent, from 73.4% to 72.6%. This would suggest that the optimum 

number of cells per core for this case lies between 13,000 and 28,000. A reasonable 

choice would be 20,000. 

5.8 Chapter summary 

This chapter has shown that OpenFOAM is a prime candidate for use in liquid 

atomization cases. While these cases are 2D it has demonstrated first that 

OpenFOAMs interface tracking method is accurate using a courant number of 0.25 

it also can perform well when compared to interface tracking methods commonly 

found in liquid atomization studies. Setup parameters for future use have also been 

investigated to ensure future GPU comparisons are useful in real world 

applications. Finding that the three pressure correctors suggested by Deshpande  

(2012) are most efficient. In addition, the GAMG linear system solver is clearly the 

most efficient solver available. Finally, parallel scaling on the available computing 

platform has been assessed showing good strong scaling up to a point, with an 

estimation of 20,000 cells per core being most efficient.      
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Chapter 6 Surface Tension Dominated Test Case 

6.1 Overview 

Using the setup parameters found in the previous chapter interFoam will now be 

compared to an experimental liquid injection case, this will test its capabilities in 

three dimensions instead of just two. This will also give a good platform for 

development of an initial GPU acceleration which will be investigated in the latter 

portion of this chapter, this GPU acceleration will build upon the concepts 

discussed in chapter 4.  

6.2 Experimental Description 

To test the suitability of OpenFOAM in a primary spray atomization case as well as 

to provide a platform for GPU acceleration a relatively simple surface tension 

dominated case was selected. Longmire et al., (2001) presented an investigation 

into topological changes of liquid jet pinch off. Full two-dimensional velocity fields 

of a forced jet of glycerine and water solution pinching off in an ambient Dow 

Coming 200 series silicone fluid were measured using particle image velocimetry 

(PIV). 
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Figure 45: Diagram of experimental setup from (Longmire, et al., 2001) 

Two series of experiments were performed, in the first series the Dow Coming 

ambient liquid viscosity is approximately 10 times that of the second series. The 

resulting pinch off dynamics will therefore differ. Additional parameters of the 

experiment are described in Table 6. These non-dimensional numbers use the inlet 

diameter, D, and velocity. Only the first experiment series is considered here, 

where the viscosity ratio is 0.17. 

Reynolds 

number 

Froude 

Number 

Eötvös  

number 

Density 

Ratio 

Viscosity 

ratio 

Strouhal 

number 

34 0.2 6.1 1.19 0.17 4 

Table 6: Dimensionless parameters used by (Longmire, et al., 2001) 

Without forcing, on exit of the 10mm nozzle the liquid would contract and continue 

as a steady stream until it leaves the ambient Dow Coming fluid. However, if forcing 
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is introduced, in this case at 10Hz, a sinusoidal velocity at the nozzle exit is created. 

This sinusoidal velocity will generate repeatable pinch-off conditions. 

6.3 Computation Setup 

In order to simulate the conditions described above a small section of the tank in 

Figure 45 just below the nozzle is used as the computational domain. Using the 

meshing program blockMesh that is included in OpenFOAM a regular orthogonal 

mesh is generated. 

 

Figure 46: Illustration of computational setup 

The domain is 22mm square in the jet cross section and 100mm long. Grid sizing is 

Δx/D = 0.05 where D is the jet diameter. Because of the Cartesian grid, the round 

nozzle is approximated by square cells. To produce the sinusoidal velocity profile a 

time dependent velocity condition was imposed at the inlet using the OpenFOAM 

user contributed library groovyBC. Apart from the top boundary described as the 

inlet the remaining boundaries are set using the OpenFOAM inletOutlet condition. 

In this boundary condition the condition will apply zero-normal gradient when the 

fluid is flowing out (flux is positive) while if there is backflow (flux is negative) a 

Inlet (D), 10mm 

inletOutlet 
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fixed user defined value will apply, in this case inflow of the ambient Dow Corning 

fluid. For pressure however the inletOutlet condition is replaced with a fixed value. 

Quantitative comparisons come from contrasting the liquid jet shape between 

computation and experimental at instantaneous times. To quantify the time at 

which the image is taken the phase of the sinusoidal wave is used. 

 

         

Figure 47: Comparison of computational results (A) to left, experimental results from (Longmire, Norman, & 
Gefroh, 2001) (B) to the right, showing the jet outline and droplet pinch off. In each series from L to R 0, 120 and 

240 degrees of the sinusoidal profile. 

Figure 47A, is coloured by the volume fraction of the injected water/glycerine 

mixture, being one (red), while the ambient Dow Coming is zero (blue). As is 

common when using the volume of fluid method there is an interface of partially 

filled cells which extends over three to four cells. The match between the liquid 

structures in both the computational and experimental results is acceptable. The 

computational results indeed show a good representation of the perturbations 

found in the liquid jet. A good example of well captured features is in the initial 

image at zero degrees. Here the experimental results show a very thin neck 

between the jet and what is about to become a droplet. In the computational 

A B 
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results this is represented by a small area where the volume fraction doesn’t reach 

one. Additionally, the characteristic flattening of the droplets after they have 

pinched off the jet is well captured. However, it is noted that the numerical results 

show a slight under estimaton of the velocity profile. 

 

Figure 48: 3D representation of the computational results in this study using iso-surface of 𝛾 = 0.5 

This experiment has previously been used by Pan & Suga (2003) to validate their 

investigation into the use of the level set method for multiphase problems involving 

interface breakup. For the quantitative results that follow, the results presented in 

Pan & Suga (2003) are included as a comparison. First the instantaneous axial 

velocity along the jet centreline is measured. Again, time description is in terms of 

degrees of the sinusoidal velocity inlet. 
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Figure 49: Jet centreline velocity at 150 degrees, including computational results from this study, experimental 
results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003) 

 

Figure 50: Jet centreline velocity at 330 degrees, including computational results from this study, experimental 
results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003) 
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Again, the agreement between the computational results in this study and the 

experimental results in Figure 49 & 50 is reasonable. It can be noted that the 

agreement is better downstream than upstream however. The magnitude of 

velocity is well captured in all cases. The experimental results and the present study 

captures this better than was managed by Pan & Suga (2003), specifically at the 

downstream minimum and maximum.  

 

Figure 51: Radial velocity profile at z/D = 6.15 and 60 degrees, including computational results from this study, 
experimental results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003) 

Further comparison can be made on the radial velocity profile. In Figure 51 the 

radial velocity profile at a distance of 6.15 diameters is shown, again experimental 

results and the computational comparison are shown. The results produced by Pan 

& Suga (2003) show a slight over prediction of the velocity found experimentally. 

Whereas in the present study, as was seen in the centreline velocity figures, a small 

under prediction of the axial velocity is made. In addition, the velocity gradient 

moving away from the jet centreline is lower. This is likely due to using an inlet 

condition that has a uniform velocity across the nozzle diameter.  
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6.4 Mesh independence 

To assess the mesh independence of the solution 3 meshes were constructed. The 

time averaged flow rate of the exit of the domain was calculated for each mesh. 

 

Figure 52: Mesh convergence of solution 

The flow rate at the exit of the domain is used as the convergence metric as the 

axial velocity, which is the primary driver of flow rate, is also the key factor in the 

statistics presented for comparison. Note that the flow rate in this instance is small 

as the average injection velocity is 2.48 × 10ିଶm/s.  

6.5 Full port or partial port? 

As discussed previously OpenFOAM is not a monolithic code and consists of many 

independent parts. Therefore, a full port would represent a significant challenge 

even for a large number of researchers with considerable time. In addition, a full 

port is only worthwhile if there are several sections of code making significant 

contributions to the overall compute time.  

As seen in the literature commonly the most computationally expensive sections of 

CFD code are the linear system solvers. These are therefore the prime candidates 

for GPU acceleration. As shown previously, OpenFOAM has numerous linear system 
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solvers available for a variety of applications. Tomczak (2013) showed that with 

their lid driven cavity case 87% of the compute time is taken up with solving the 

linear system produced by the pressure correction equation. 

If it is assumed that memory bandwidth is the limiting factor in solving the system 

of linear equations (Bell & Garland, 2009) the GPU has a claimed advantage of 6 

times over the CPU in this respect. In an idealised example taking from the above, if 

the linear system accounts for 87% of a 100 second compute time then a 6 times 

speed improvement would result in a compute time of 27.5s and a 3.6 times speed 

up. 

6.6 Integration between OpenFOAM and GPU solver 

As OpenFOAM is not a monolithic code but collection of libraries that have different 

functions, this can make integrating special functions easier. In the case of 

OpenFOAM linear system solvers these are also contained in libraries. Each linear 

system solver has its own library. Contained in the source code of this library are 

the methods used to solve the system as well as access to the controls the user 

inputs in dictionary files. Finally, in cases such as the preconditioned conjugate 

gradient method where there are sections of code used by multiple solvers, i.e. the 

preconditioners, interfaces to these libraries are included. 

As mentioned previously the transport equations are discretised into a coefficient 

matrix. OpenFOAM uses a type of COO matrix format, LDU, to store the coefficients 

of this matrix. The LDU matrix stores the upper triangle, lower triangle and 

diagonals of the matrix in dense vectors. These dense vectors are addressed using 

the COO format. While the LDU format is useful for algorithms where operations on 

one specific part of the matrix are required, for example Gauss-Seidel. However, 

when using GPUs there are some elements of this format that are non-desirable. 

The first is in terms of data transfer, while the difference may seem small when 

large matrices are involved the difference is not insignificant. Secondly the 

algorithms that can make use of the LDU format are often not suited to the 
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massively parallel nature of GPUs. As generally there are large elements of 

sequential code. 

In the first instance of data transfer the COO format requires 1 floating point value 

and 2 integer values per non-zero matrix value. The CSR format however only 

requires 1 floating point and 1 integer per non-zero matrix value with an additional 

integer per matrix row. This will reduce the number of integer values by about 40% 

or 10 bytes per row. Additionally, as investigated by Bell & Garland (2009) the COO 

format often suffers from poor memory coalescence. 

The way that a linear system solver is integrated is illustrated in Figure 53: a linear 

system solver is created that is loaded at run time. This solver is written in 

OpenFOAM ‘format’ it connects to the functions that OpenFOAM requires, such as 

final residual etc. Included in this is the conversion of the coefficient matrix from 

OpenFOAM LDU format to CSR format. A solve function in a separate library is 

called by this solver that solves the matrix on the GPU. This library is compiled using 

included OpenFOAM compile structures and the open source GCC compiler. 

 

 

The called solve function is written separately in CUDA and is compiled using the 

NVidia CUDA Compiler (NVCC). This additional library is passed pointers to CPU 

memory that contains the coefficient matrix and result vector. The shared library 

Figure 53: Outline of accelerated solver interface 

Pre-processing 

Discretization 

Linear Solver 

Postprocessing 

Interface 
Matrix Conversion 

Memory copy 

Accelerated 
Numerical 
Schemes 

Linear 
System Ax=b 

Solution X 

OpenFOAM 



100 | P a g e  
 

written in CUDA then performs all required functions of the linear system solver, 

including the algorithm and memory transfer to the GPU. The function that is called 

by the CPU solver then returns with a pointer to the result vector in CPU memory 

and information about solver performance; such as number of iterations and final 

residual.  

6.7 Jacobi Solver for GPU 

For solving the momentum equation OpenFOAM generally is configured to use a 

Gauss-Seidel smoother, one of a collection of smoothers that can be used as a 

solver or as a smoother for the GAMG solver. 

The Gauss-Seidel method is in some ways undesirable as an algorithm for GPU 

computing as it includes some operations that are inherently sequential and not 

suited to massively parallel computing. An alternative and related method is the 

Jacobi method. The Jacobi method consists of the iteration of equation 24, which is 

written in matrix-vector format:  

 𝑋(௞ାଵ) =  𝐷ିଵ(𝐵 − (𝐿 + 𝑈)𝑋௞) (24) 

Where D is the diagonal, L is the lower and U is the upper sections of a matrix A. 

while the superscripts indicate the iteration number. Each operation is then 

parallelised to run on the GPU. The operations used to iteratively solve the above 

equation are outlined below: 

𝑅 ×  𝑋 = 𝑅𝑋  Multiply 1 

𝐵 − 𝑅𝑋 = 𝐵𝑅𝑋 Subtract 1 

𝐷 ×  𝐵𝑅𝑋 = 𝑋1 Multiply 2 

𝑋1 − 𝑋 = 𝑋2  Subtract 2 
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The general rule in parallelising these operations is that each matrix/vector row will 

be computed by one GPU thread.  

6.8 GPU Acceleration 

In order to test the capability of the GPU accelerations a number of cell sizes were 

selected. The comparison was made between a set-up run purely on CPUs using 

standard OpenFOAM solvers and an identical set-up using the GPU accelerated 

solvers. The results can be found in Table 7. Additionally, the speed up of the GPU 

momentum solver over its Gauss-Seidel and Jacobi counterparts running on CPU is 

shown. The speed up is calculated from the total measured wall clock times of each 

run. 

Cell Size Overall speed up Momentum Speed up Speed up over Jacobi on CPU 

315K 1.75 1.09 2.59 

1M 1.94 1.34 3.33 

2.5M 1.53 1.47 3.59 

5M 1.35 1.68 4.17 
Table 7: Speed up of dripping case using GPU accelerated solvers over CPU solvers 

Table 8 shows the percentage of time taken in each time step for the calculation 

and the various memory transfer operations. This explains the improved 

performance of the Jacobi acceleration (JSAccel), as the cell count of the problem 

increases. The gains in speed from using GPUs are found in calculations where the 

reduction in compute time, conducting the computation on a GPU, outweighs the 

disadvantage of a very slow transfer of data to the GPU. Therefore, as the amount 

of computations increase compared to data transfers, the GPUs advantage 

increases.  
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Operation 315K Cells 1M Cells 2.5M Cells 5M Cells 

Calculation (%) 55.695 62.199 66.994 70.651 

Host to Device (%) 39.002 32.350 27.430 23.672 

Device to Host (%) 2.7914 2.3233 1.9352 1.5473 

Device to Device (%) 2.5119 3.1277 3.6400 4.1296 

Table 8: Memory transfer proportions in one time step of JSAccel 

To ensure the GPU is being used efficiently the usage of its main performance 

metrics can be calculated. First a calculation of the computational throughput was 

made; it was found that raw compute power usage was orders of magnitude below 

maximum. Second the memory bandwidth of individual code sections was 

calculated to assess memory bandwidth usage. The results of the initial study can 

be found in Figure 54. 

 

Figure 54: Initial memory bandwidth usage 
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50% of the computational cost of each iteration of the JSAccel solver, because this 

is where the matrix A is multiplied by the vector X. Therefore, savings in this area is 

highly desirable. The parallelisation method for this section of JSAccel is broadly 

similar to what would be used in a CPU code with one thread operating on each 

row of the matrix A. As mentioned previously GPUs access memory in chunks of 

128 bytes. In this instance groups of threads are accessing memory that has gaps 

equal to the number of non-zero values per row. To remedy this and allow threads 

to access memory that is better coalesced, multiple threads per row can be used. 

 int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
 if (idx >= num_rows) 
     return; 
 
 double dot = 0; 
 
 int row_start = Ap[idx]; 
 int row_end = Ap[idx+1]; 
 
 for (int k = row_start; k<row_end; k++) 
     dot += Ax[k] * x[Aj[k]]; 
 
 y[idx] = dot; 

 

Code 3: Original matrix vector multiplication 

First in Code 3 an index for each thread is defined. Next an if statement is used as 

an escape for non-required threads. As threads are launched in groups of 256 it is 

likely there will be a small number that are not required, this statement means they 

do nothing and won’t produce an error. Then the sum for each row is allocated. 

Following this the start and end of each row are accessed from global memory. A 

for loop is then used to iteratively sum the product of each matrix value and vector 

value, this section runs serially on each thread. Finally, the sum is written to global 

memory. 
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const int THREADS_PER_VECTOR = 4; 
const int VECTORS_PER_BLOCK = BLOCK_SIZE/THREADS_PER_VECTOR; 
const int THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR; 
const int thread_id   = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x;    // global thread index 
 
  if (thread_id >= (num_rows*THREADS_PER_VECTOR))  // Error 
    return; 
 
    __shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2]; 
    __shared__ volatile int ptrs[VECTORS_PER_BLOCK][2]; 
 
    const int thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1);          // thread index within the vector 
    const int vector_id   = thread_id   /  THREADS_PER_VECTOR;               // global vector index 
    const int vector_lane = threadIdx.x /  THREADS_PER_VECTOR;               // vector index within the block 
    const int num_vectors = VECTORS_PER_BLOCK * gridDim.x;                   // total number of active vectors 
 
    for(int row = vector_id; row < num_rows; row += num_vectors) 
    { 
 
        if(thread_lane < 2) 
            ptrs[vector_lane][thread_lane] = Ap[row + thread_lane]; 
        const int row_start = ptrs[vector_lane][0];                   //same as: row_start = Ap[row]; 
        const int row_end   = ptrs[vector_lane][1];                   //same as: row_end   = Ap[row+1]; 
 
        double sum = 0; 
 
        for(int jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR) 
           sum += Ax[jj] * x[Aj[jj]]; 
 
        sdata[threadIdx.x] = sum; 
 
        if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16]; 
        if (THREADS_PER_VECTOR >  8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x +  8]; 
        if (THREADS_PER_VECTOR >  4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x +  4]; 
        if (THREADS_PER_VECTOR >  2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x +  2]; 
        if (THREADS_PER_VECTOR >  1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x +  1]; 
 
        if (thread_lane == 0){ 
            y[row] = sdata[threadIdx.x]; 
        } 
    } 
}; 
 

 

Code 4: CSR vector multiplication as proposed by (Bell & Garland, 2009) 

In detail Code 4 can be explained as follows. The first 3 lines create variables that 

have information about vector sizes, the fourth has the thread index. Next an if 

statement is used as an escape for non-required threads as previously noted. The 

next two lines create on chip variables that can be accessed by all threads, these 

are used for the sum totals and row start and end values. The following two lines 

then give indexes for each thread in relation to their location in a group of threads 
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operating on one row, which group it’s located in. The next two lines give indexes 

for the thread groups. The for loop is then used to compute the result for each 

matrix row. The next lines then access the start and end positions for the row being 

operated on, it uses two threads, one to access each value. Next a variable is 

allocated for the result of a thread. The final for statement then calculates the 

multiplication of the matrix values by the corresponding vector value this is added 

to the sum by each thread. This is done with the number of threads per row and if 

there are matrix values remaining the group operates again until all are computed. 

This gives each thread a part of the result which is transferred to shared memory. 

The transfer enables the next if statements to perform a reduction, each time using 

half as many threads as there are values to be summed. Finally, the first thread 

writes the final result to global memory.  

Finding the number of threads to use per row can be achieved in the following way. 

The average number of non-zeros per row can be computed, in this case 

approximately 6.3. This number of threads would be ideal from the view point of 

memory coalescing, however due to the practicalities of GPU computing this is not 

the case. The reality of GPU computing is that after the multiplication has taken 

place, the values for each must be summed together, which is best performed with 

one addition per thread. Otherwise the idling threads will harm performance. With 

this considered, the only options are to use either 4 or 8 threads per row. Testing 

showed that the number of threads that are idling when using 8 threads per row 

harm performance more than does the worse memory coalescing using 4 threads 

per row. The results of this change and some other minor changes are shown in 

Figure 55. In the figure, the inverse kernel is used to calculate the inverse of the 

diagonal matrix. The memory bandwidth usage of each kernel is compared with 

each other as well as the maximum measured by an ideal operation (Measured). 

This measured value was found by the method detailed in Chapter 4. Finally, the 

maximum bandwidth claimed by the manufacturer (Ideal) is shown. 
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The results of this improvement in memory coalescing were soon evident with the 

time required to compute multiply2 being reduced by a third. Coupled with the 

other small improvements, an overall improvement of approximately 20% was 

achieved.  

 

Figure 55: Final memory bandwidth usage 

6.9 Compute time reliability 

During testing of the GPU accelerated solvers it was noted that there was often 

significant variation in the compute time. In order to test this variation a collection 

of tests were performed on the reference hardware. 15 test runs were performed 

one after the other with no other interaction with the hardware. This should give a 

good indication of the variation seen. In the first instance the 315k cell test case 

referred to above was run for one second. This represents a compute time of 

around 7000 seconds.  
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Figure 56: Compute time variation on test case 

Figure 56 shows the variation on total compute time across the 15 tests cases, the 

order is the same as was conducted on the reference hardware. The variation 

seems not to come from change in real time. This could be expected to happen 

from additional residual memory usage by the operating system or with memory 

not being deallocated from previous runs etc. However, this is clearly not the case 

as there is no trend over real time. Indeed, the fastest run is the 12th of 15. While 

the variation is not hugely significant at approximately 1.2% it does remain 

unexplained. 

An additional comparison was made on the much higher five million cell count 

though this was only run for two time steps to save real time. This produced a much 

greater variation in compute time. 
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Figure 57: Compute time variation among higher cell count test session 

As can be seen in figure 58 there is clearly more variation across real time, but the 

variation is far more significant, in the region of 12%. Looking into more detail at 

the breakdown of the compute profile it’s possible to compare different sections of 

the code.  

 

Figure 58: Compute times of continuity and momentum solvers 
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While the variation of the momentum solver compute times is similar to the 

variation in the overall compute time the magnitude isn’t accounted for. Though 

interestingly this demonstrates that the variation is unlikely to be coming from 

either specifically GPU or CPU compute processes. To investigate the possibility of 

the CPU computation causing the errors the Linux perf program was used to check 

the number of page-faults and cache misses. Both of these have the potential to 

increase the computational time of each run. The results showed that variation in 

these was minimal, page-faults and cache misses only varied by 0.02% across all the 

cases. This doesn’t equate to the 12% difference in compute time. As this variation 

remains unexplained care should be taken to make comparisons over long compute 

time to reduce the variation in run time or if short compute time are required 

multiple computes should be performed and averaged. 

6.10 Chapter Summary 

This chapter has shown that interFoam performs well on a low Reynolds number 

liquid injection case. Indeed in the key metric of jet centreline velocity the 

computational results are close to experiment and in some areas are also better 

than alternative level set methods. 

Following this, GPU accelerated linear solvers were developed for both the pressure 

and momentum equations. These showed a doubling of speed over the equivalent 

CPU linear solvers. Although a decent speedup there is room for improvement, the 

speedup of the pressure equation does not improve with increasing cell count. This 

type of improvement would be expected from a GPU as the additional data means 

the GPU cores can be kept occupied better. The high level of memory transfer in 

this implementation harms this performance and needs to be removed. Finally a 

compute time variation has been found that has a significant effect on short 

compute time problems and although smaller has an effect on longer compute time 

comparisons. Some explanations for this were investigated but a definitive 

conclusion was not found however recommendations for future investigations were 
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suggested such that compute comparisons should be made long enough that the 

uncertainty is minimised.    
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Chapter 7 Sheet atomization case 

7.1 Overview 

This chapter will set out a much more complex and industrially significant problem 

in primary atomization. Bulding on the low Reynolds number case presented in the 

previous chapter. This test case will then be used to assess the suitability of GPU 

accelerated computing to computationally expensive industrial atomization 

problems. 

7.2 Establishing a CPU benchmark 

The case presented by Deshpande et al., (2015) is used as a basis. While the CFD 

modelling of the primary atomization of a liquid sheet is used as a comparison to 

other techniques, it does represent a near to real case. The primary atomization 

problem consists of a thin sheet that is injected into quiescent air at high velocity 

(200m/s) and therefore typically has a high Reynolds number. In this investigation 

the average liquid breakup length is compared across a number of different density 

ratios. This ratio is achieved by varying the ambient gas density the liquid is injected 

into. The cell density used puts the simulation in the DNS regime. The operating 

parameters are outlined in Table 9 below. 

Liquid Density 666.7 kg/m3 

Liquid viscosity 2.5 × 10ିସ 𝑁𝑠/𝑚ଶ 

Gas Density 39.22 𝑘𝑔/𝑚ଷ 

Gas Viscosity 4.06 × 10ିହ 𝑁𝑠/𝑚ଶ 

Coefficient of surface tension 0.02 𝑁/𝑚 

Sheet thickness 200 𝜇𝑚 

Injection speed 200 𝑚/𝑠 

Table 9: Operating conditions of sheet atomization 
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Dimensions are normalised by half the sheet thickness (ℎ). The overall size of the 

domain used in the reference case is described as 90ℎ ×  80ℎ ×  270ℎ. With a 

maximum cell density of 12 cells per ℎ resulting in a total cell count of 3.359 ×

 10ଽ. Because of this some economy of cell count is required in order to run this 

problem on the available hardware. However, this huge cell count re-enforces the 

need to investigate alternate computing platforms to reduce compute cost on 

these kinds of problems. 

The reference case investigates multiple density ratios which are inversely 

proportional to the length of the sheet. The first economy can be made by only 

considering the highest density ratio. Indeed Deshpande et al., (2015) states “In 

order to show breakup length for the lowest density ratio … the domain was made 

sufficiently long in the stream wise direction”. Plots of intact liquid core length 

show that on average the highest density ratio sheet core-length is three times 

longer than the smallest. Therefore, the overall domain length is reduced by half to 

allow a reasonable section of no longer intact liquid core. 

 

Figure 59: Outline of boundary conditions used 

Figure 59 describes most of the boundry conditions used. The inlet is defined as a 

fixed velocity in a central slit equal to the sheet thickness (2ℎ) of 200m/s. At the 

span-wise boundaries periodic conditions are applied. This allows for a significant 

reduction in the span wise dimension. Compared to the domain published, the one 

in this study is half the size in the stream wise direction and 1/9 of the size in the 
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span wise direction. The remaining direction is also halved, after initial results 

showed that after breakup insignificant quantities of liquid could be found near the 

vertical boundaries (as show in Figure 60). This gives an overall domain of 

135ℎ ×  40ℎ × 10ℎ where 2h is the sheet thickness. 

 

Figure 60: Sheet visualisation taken at 4 × 10ିସs. Iso contour of volume fraction = 0.5. Coloured by velocity in 
m/s 

To confirm that this economy of cell count does not adversely affect the physical 

results of the simulation, the breakup length (Xliq) was compared. Deshpande et al., 

(2015) presented a plot of intact liquid core length over time for the various gas 

densities tested. They also presented a plot of how the intact liquid core length 

varies with mesh density. Using both of these an estimate of how the intact liquid 

core length varies over time on the coarsest mesh density can be plotted using the 

offset as shown in Figure 61. 
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Figure 61: Graph of data presented by (Deshpande, et al., 2015) and what would be expected by using the the 
offset related to the reduced number of cells 

This offset graph does not well represent the linear regime because a simple offset 

is used giving a negative value for intact liquid core length. However, the quasi-

steady state period has an indication of the variation around the average intact 

liquid core length. The method for establishing the intact liquid core length is not 

well explained. So, for comparison a slice is cut through the centre of the domain 

and the point at which there is no longer a chain of volume fraction greater than 

0.5 is taken as the intact core length. 
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Figure 62: Comparison of data and data offset with results from this work 

From these results it can be seen that in the quasi-steady state period the 

agreement between the results offset for cell density and those in this study is 

quite good. The average intact liquid core length in this region is very similar. 

However, the initial transient, linear growth regime results in a much shorter intact 

liquid core length. To investigate the effects of the different boundary conditions 

used, a comparison was made by doubling the domain length and also increasing 

the width, from 10h to 30h, and removing the cyclic boundary conditions. This gives 

a distance of 10h between the liquid sheet and the boundaries on the sides of the 

domain. As a result, the same ratio of sheet width to gap size between the sheet 

and boundary is obtained as is used in the reference case.   
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Figure 63: Comparison between alternative boundary conditions on intact liquid core length 

This comparison shows that the downstream outlet boundary condition has an 

insignificant effect on the transient linear growth regime. However, increasing the 

domain width as well as using outlet boundaries with a gap between the jet and 

boundary noticeably increases the length of the jet at the end of the linear growth 

region. 

0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04
-20

-10

0

10

20

30

40

50

60

70

Time (S)

X l
iq

/2
h

Liquid Sheet Breakup Length

Reference Reference Offset Extended Domain Length Wide Domain



117 | P a g e  
 

 

Figure 64: Breakup Length using multiple slices 

When the cell density was increased the expected increase in intact liquid core 

length did not occur. This lead to the possibility that using a single slice to calculate 

the intact core length was not suitable. The possibility of there being span wise 

breakup could account for this lower than expected result. To investigate this 

further the number of slices used to assess intact core length was increased so 

multiple positions across the domain could be probed. The result from using 20 and 

40 slices is shown in Figure 64 above. 20 slices gives one slice every four cells with 

40 giving one every two cells in the span wise direction. The intact liquid core 

length is then evaluated on each slice, this gives the intact liquid core length at 

discrete points across the domain. The maximum intact core length can then be 

plotted for each timestep. 
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Figure 65: Variation of intact liquid core length across domain, using maximum and minimum intact core length 
at discrete points across the sheet width 

Figure 65 shows the maximum and minimum intact liquid core length among 40 

slices across the domain. It can be seen that for only a short period in time there is 

no variation across the domain but clearly throughout most of the simulation time 

there is significant variation across the width of the sheet. This indicates that there 

is significant span wise breakup in the sheet while there is still an intact core. 

 

Figure 66: Variation in breakup length in spanwise direction on coarse mesh, using maximum and minimum 
intact core length at discrete points across the sheet width 
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Using the same method as previously described on the fine mesh, this time on the 

course mesh with a slice taken every 3 cells gives Figure 66. As opposed to the fine 

mesh where a significant difference is seen here there is very insignificant variation. 

Indeed, for large portions of simulated time the maximum and minimum values 

track each other almost exactly. 

The difference between the dense and course mesh can be further visualised in the 

Figure 67 below. The first line drawn on the dense mesh shows the start of clear 

breaks in the liquid sheet, but not across the whole span. The second line and the 

line drawn on the coarse mesh show clear breaks across the whole span. 

 

Figure 67: Iso contour of volume fraction = 0.5 on dense mesh (top) and coarse mesh (bottom), coloured by 
velocity in m/s 
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Figure 68: Comparison of intact liquid core length over time using published results and results from this study 

The variation in intact liquid core lengths across the domain width is compared for 

both course and fine meshes in Figure 68. As expected the fine mesh produces a 

slightly lengthened intact liquid core length, although this lengthening is not as 

great as previously published. For the present application however, it is deemed 

acceptable. 

Finally, a comparison was made in varying the span wise dimension and therefore 

the width of the injected liquid sheet. Figure 69 shows there is little significant 

difference among the among the 5 different domain widths tested. In all cases the 

domain width is described in terms of ℎ defined at the beginning of this chapter. 
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Figure 69: Intact liquid core length with varying domain width 

7.3 Chapter summary 

This chapter has shown that a complex sheet atomization case can be well 

represented on the available hardware using alternative boundary conditions and 

reduced domain size. While there are some differences, the average intact liquid-

core length is well captured. However, a clear difference in the transient growth 

regime was found. Investigation into this issue showed that using periodic 

boundary conditions had the effect of reducing the peak intact liquid core length at 

the end of the linear growth regime. Additionally, it was shown that the coarsest 

mesh does not show the significant span-wise breakup that was found in the finest 

mesh. Finally, it was shown that changing the span-wise domain dimension showed 

no significant effect on the intact liquid core length.  
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Chapter 8 Multigrid Solver Running Entirely on GPU 

8.1 Overview 

This chapter will present a much improved GPU accelerated linear system solver, 

extending the solver presented in chapter 6 to a full multigrid method with the aim 

of reducing memory transfers between the CPU and GPU. First the solver will be 

explained with the key points detailed. Next performance tests will be made on the 

sheet atomization case presented in the previous chapter. 

8.2 Solver Outline 

As has been discussed previously the conjugate gradient solver is fairly good and 

efficient but it works best with either a multigrid preconditioner or just using a 

multigrid method can be even faster. Because of this and as very few previous 

investigations have reached the point of running a multigrid linear solver it seems a 

natural progression for this work. As touched on in the earlier chapters a multigrid 

solver consists of four main components. The first is a smoother, then there are 

ways of transferring results to course grids, transferring results from course to fine 

grids and a coarsest grid solver. 

At least in the first instance the solver produced in this study uses a damped Jacobi 

smoother, injection for interpolation, agglomeration for restriction and conjugate 

gradient as the coarsest level solver. A V cycle is also used for grid cycling. Damped 

Jacobi is used as it performs well when ported to GPU. There is no clear consensus 

as to the most suitable smoother to use in GPU accelerated multigrid methods. 

Indeed Liu et al., (2015) showed that the damped Jacobi method performs better 

on GPUs than multiple other options. Others simply state that as Gauss-Seidel has 

faster convergence it is better to use without consideration for the alternatives e.g. 

(Reddy & Banerjee, 2015). As discussed in earlier chapters the conjugate gradient 

solver was originally developed as a direct solver and its convergence is guaranteed 

with as many iterations as there are unknowns. This makes it ideal for a situation 
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where the number of unknowns could vary in addition this is also the option used 

by OpenFOAM. The prolongation and restriction operators were selected so as to 

keep the solver similar to OpenFOAMs. 

8.3 Starting with a two-level multigrid solver 

To begin with a two-level solver was developed. In this instance, the solver may also 

be referred to as a course grid corrector. Here two levels are used, the original fine 

grid and a generated course grid. The course grid generation method is similar to 

that outlined in (Versteeg & Malalasekera, 2007), i.e. a course grid cell consists of 

the sum of eight fine cells. This is generated as a sparse matrix in compressed 

sparse row format. This is then passed to the NVidia CUSP library (Nvidia 

Corporation, 2014). The CUSP library is designed for efficient GPU computation with 

sparse matrices. The CUSP library transposes the interpolation matrix to give a 

restriction matrix. The Galerkin product is then used to generate the course grid. 

The Galerkin product is shown below, R is the restriction matrix, I the interpolation 

and A the linear system matrix. The subscripts denote the level on which the matrix 

applies. 

 𝐴௞ାଵ = 𝐼௞
்𝐴௞𝐼௞  (25) 

In order to produce the Galerkin product the CUSP library will first convert each 

matrix to the COO format. The COO format is more suited to the matrix 

multiplication process whereas as discussed previously the CSR format is better 

suited to matrix-vector products. The cost of this change is small and so worthwhile 

(Bell, et al., 2012). This consists of what is commonly known as the setup phase. 

After the setup phase comes the solve phase, this section is iterative. First comes 

the pre-smoothing, a damped Jacobi method (damping of 2/3) operating on the 

fine grid. The error from this pre-smoothing is then restricted onto the course grid 

using the restriction matrix. A diagonally pre-conditioned conjugate gradient 



124 | P a g e  
 

method is then used to solve the linear system that arises from the error equation, 

equation 26, shown below: 

 𝐴௞ାଵ𝑋௞ାଵ = 𝑒௞ାଵ (26) 

The result of this iterative process, after interpolation, gives an estimation of the 

error on the fine grid. Therefore, the interpolated X vector is added to that 

generated in the pre-smoothing. Finally post smoothing, again damped Jacobi is 

used, is applied on the original linear system using the new X starting vector. The 

solve phase is applied iteratively until the convergence criteria is reached. 

One additional point of note concerns the boundary condition correction for the 

two cyclic boundaries. OpenFOAM treats these boundaries as if they were the 

boundaries between processors in a multi process operation. Thus, coefficients are 

generated and the correction is applied part way through the iterative solver. A 

similar approach is used in the present solver. The interface coefficients generated 

by OpenFOAM are passed to the GPU and a correction is applied after every matrix 

vector multiplication. On the course grid the original coefficients are restricted in a 

similar way to the transfer of vectors from fine to course grids. 
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Figure 70: Flow chart of two level multigrid solver 
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The two level solver was applied to the sheet atomization case outlined in the 

previous chapter initially one time step was performed to understand memory 

bandwidth usage. The results of this analysis are shown in Figure 71. Bandwidth 
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and interpolation operations. The boundary correction performs poorly as by its 

very nature there is non-coalesced access to the linear system matrix. This is 

because only the cells an X-dimension width apart are accessed. Matrix-vector 

multiplication also doesn’t perform to the full capability of the GPU as the number 

of non-zero values in each matrix row varies. Therefore, in some cases a memory 

fetch operation will collect all data required while others will need multiple fetches. 

Also of note is that the matrix-vector product represents around 45% of 

computational time for each time step. As this operation is only using about 33% of 

the GPUs theoretical bandwidth the acceleration over CPU will suffer. 

 

Figure 71: Compute analysis of AMG 2 level solver 

In addition to investigating compute parameters it is also necessary to validate the 

results produced by the new solver. This was done in two ways. The first was to 

directly compare results of the linear solver with an OpenFOAM equivalent setup to 

behave in a comparable manner. Comparing the result of each cell after one-time 

step gave a maximum percentage difference of 0.005%. This shows that although 

not equal to machine accuracy the difference in result is well within a tolerable 

0

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

300

Pr
op

or
tio

n 
of

 C
om

pu
te

 T
im

e 
(%

)

M
em

or
y 

Ba
nd

w
id

th
 U

sa
ge

 (G
B/

s)

Kernel Name

GPU memory bandwidth usage of multigrid solver kernels



127 | P a g e  
 

level. The difference can also come from minor differences in the computational 

algorithm used by each compute unit. For example, OpenFOAM uses Gauss-Seidel 

as its smoother and doesn’t have a damped Jacobi option. 

For the second method of validation the breakup length is computed and compared 

for each compute unit. This gives a comparison of how the codes compare over 

many time steps.   

 

Figure 72: Breakup length comparison between CPU and GPU 

The results of breakup length comparison showed a difference in the results 

obtained from the GPU as compared to the CPU. Upon investigation the GPU solver 

overall proved to be marginally less stable resulting in slightly increased courant 

number. This leads to requiring additional time steps, 1 in 97, again the differences 

in algorithm will account for this. 

With this in mind, the reference case was re-run using a fixed time stepping 

method, 1e-8s being the applied t. The case was run for 40-time steps with the 

result in each cell directly compared. The average difference among all cells in the 
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one cell of 0.0024%. This demonstrates that the GPU code offers good accuracy. 

Indeed, with reducing the residual criteria for each time step the differences 

between GPU and CPU would decrease further.  

Originally the multigrid solver was run using two pre and four post smoothing 

iterations. However the number of smoothing iterations has a direct impact on the 

number of iterations the multigrid solver takes to reach the convergence criteria. 

With this in mind a test was conducted to find the optimum number of smoothing 

iterations required for this problem. Each test was conducted using one time step 

and repeated 25 times to account for compute time variation. The averaged results 

are shown below in Figure 73. 

 

Figure 73: Compute time variation using different numbers of smoothing iterations 
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slowest configuration is that with one pre and post smoothing iteration. This 

configuration requires 39 multigrid iterations to reach convergence. However, if 
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one pre and six post smoothing iterations are applied only 19 multigrid iterations 

are required for convergence and compute time is reduced by about 17.5%. The 

original usage of two pre and four post smoothing iterations is marginally improved 

by increasing post smoothing iterations to six. 

Speedup is compared using the fixed time stepping method mentioned previously. 

This gives as like for like comparison as possible. The GPU coarse grid correction 

method gave an overall speed up of 1.93 over its CPU counterpart. This was found 

by comparing the total wall clock time of each run, which includes non-accelerated 

code. Additionally, splitting the total clock time down into the amount of time 

taken to compute pressure a speedup of 2.44 was found. 

8.5 Comparison of speed on higher cell counts 

To assess how the GPU performs in situations with higher cell counts three 

different cell densities were compared. In all cases 40-time steps were used to 

produce the comparison. 

Cell Size Number of Cells Total speedup 

Speedup of 

pressure 

corrections 

h/3 1468800 1.926 2.444 

h/4 3456000 2.539 3.386 

h/6 11664000 3.520 4.831 

Table 10: Comparison of speed up with varying cell counts 

Table 10 shows the speedup obtained by using the two-level solver on higher cell 

counts. Cell size is expressed as in Deshpande et al., (2015) in non-dimensional form 

related to the sheet thickness. Ideally, the even more dense mesh using a cell size 

of ℎ/8 would have been investigated as this is the largest case capable of being run 

on the reference hardware. However, the GPUs limited available memory was not 

large enough to accommodate this. The ℎ/6 case represents a usage of about 
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3.8GB of the GPUs available 6GB of memory. This represents a consumption of 326 

bytes per cell meaning the maximum possible cell count that can be run on a single 

GPU is around 18.5 million cells. 

To understand the improvement in speed up over the CPU again memory 

bandwidth usage was calculated, this is show in Figure 74 below. 

 

Figure 74: Memory bandwidth usage of h/6 cell size 

The memory bandwidth usage of the high cell count case is quite similar to that in 

the standard case, though with some slight increases. Indeed, only the course level 

kernels show any real increase but this is only by a few GB/s. 
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Figure 75: Illustration of GPU timing 

Figure 75 above is taken from the NVidia visual profiler. Shown are the kernels 

involved in one preconditioned conjugate gradient iteration. In each iteration, there 

are three noticeable gaps in compute time. These take place after vector operations 

such as sum and dot product. These operations use the CUBLAS library, the GPU 

accelerated version of BLAS (Basic Linear Algebra Subprograms). The result of these 

operations is a scalar returned to the CPU. This return operation is a 

synchronisation point and so the next GPU kernel cannot be launched until the 

return has completed. Additionally, the time cost of launching a kernel is not zero, 

and this must take place after the scalar is returned. This gap is small, of the order 

of 0.05ms, but occurs many times. This cost remains constant no matter how many 

cells are used in the problem under investigation. Therefore, in lower cell counts 

these gaps represent a significant portion of the compute time. But at higher cell 

counts where the number of iterations doesn’t really change these gaps diminish in 

percentage of overall compute time. In addition, the CUBLAS API is linked at its first 

usage rather than purely at compile time. Again, this has a cost of around 0.1s, 

though this only takes place at the start of computation so its effect when multiple 

time steps are involved becomes minimal. 

Analysing compute and memory transfer timing shows further details of how these 

idling periods effect the overall compute time. 
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Cell Size Compute 
Host to device 

transfer 

Device to host 

transfer 

Device to 

device transfer 

h/3 60.8308 1.36823 0.90981 0.41678 

h/4 72.7214 1.43959 0.56024 0.48760 

h/6 85.2864 1.20839 0.24313 0.47435 

Table 11: Percentages of GPU compute time for one time step 

Table 11 shows the percentage of GPU compute time for several classes of GPU 

operation. Memory transfer operations remain a fairly constant proportion of 

overall compute time. However, the compute proportion increases significantly. 

This reinforces the notion that the idling time remains constant with the longer 

compute times reducing the proportion idling time accounts for. In the coarsest 

mesh idling accounts for about 35.5% of the total compute time but with the finest 

mesh this decreases to just under 13%. 

8.6 Multi-level solver 

Following the testing of the course grid correction method the AMG solver was 

further developed to use multiple grid levels. Because of the mesh dimensions only 

the ℎ/4 mesh case is considered. This allows the coarsening to take place on all 

mesh dimensions with the coarsest level still having an integer value of cells. 
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Figure 76: Memory bandwidth usage of coarsest level in two level solver 

Figure 76 shows the memory bandwidth usage of the coarse level solver. The 

remaining levels are not assessed as they will perform much the same as previous 

examples. However, the coarsest level is of interest as it is now only computing the 

result of a 54,000 cell mesh. This is significant as keeping the GPU fully saturated 

with smaller and smaller numbers of threads can become a problem. 

Initial comparisons on speedup were disappointing with no significant difference 

between the CPU and GPU results. As previously these measurements were taken 

from the overall CPU wall clock time, on a 40 time step compute run. The cause for 

this poor result seems to partially be down to additional iterations per time step. 

The CPU method only requires an additional one or two iterations per time step as 

compared to the course level corrector. On the other hand, the GPU required a 

factor of over 3 times as many iterations. This results in an overall time reduction of 

10% for the GPU accelerated solver, whereas the CPU solver is 2.67 times faster. 

To further investigate the effects of the different configurations of the OpenFOAM 

implementation and the GPU implementation a Jacobi smoother was written and 

implemented in OpenFOAM. An initial test showed that while the Jacobi smoother 

reduced computational efficiency to some extent it was by nowhere near as much 
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as would be expected. Trottenberg et al., (2001) states that the smoothing factor 

should be 2.67 times greater. An arbitrary selection of time step showed that the 

Jacobi smoother takes an additional 6 multigrid iterations to converge, going from 

21 to 27. This contrasts significantly with the GPU multigrid iterations of 73. 

Therefore, there is something significantly different. Extensive analysis of the 

GAMG OpenFOAM code shows that it uses a form of residual scaling. Though in 

contrast to (Liu & Zeng, 2010) and (Zhang, 1997) where a fixed scaling factor is 

used, OpenFOAM calculates one at each multigrid iteration. Using the notation 

described earlier in this chapter the scaling factor is calculated as below: 

𝑠𝑓 =  
|𝑅|  ∙  |𝑑|

|𝐴𝑑|  ∙  |𝑑|
 

This scaling factor is then effectively used as a damping factor in a Jacobi iteration 

to get a new vector, X. Progressing from coarse to fine grids this new value of X is 

added to the old to get a new starting point for relaxation. Indeed, switching off 

this scaling confirms it is the factor having a significant impact on the convergence 

speed. To this end when the scaling factor is switched off and CPU and GPU speeds 

are compared an overall speedup of 1.47 is found. When the residual scaling 

method is added to the GPU code an overall speed up of 1.26 is found compared to 

its equivalent CPU counterpart. Showing improvements over the original value 

obtained. 

In further detail the solve time can be broken down into the following major parts; 

matrix conversion, memory copy time, solver setup time and solve time. These 

times are compared below in Table 12 on the final time step of a 40 step fixed time 

stepping method discussed previously. 
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Corrector 
Matrix 

conversion 

Memory 

copy 

Setup 

phase 

Solve 

phase 

Number 

of 

iterations 

1st 41.96 16.64 14.37 27.03 8 

2nd 44.57 26.89 14.76 13.77 5 

3rd 28.13 11.15 9.48 51.24 13 

Table 12: Percentage of solve time in one time step of significant solver sections 

As would be expected with a higher number of iterations the significance of the 

solve phase increases. However, despite this in all cases there is a significant 

amount of time spent in code sections that are not required in the CPU 

implementation. Specifically, the matrix conversion and memory copy sections, 

indeed in the corrector with the lowest iteration count this is over 70% of solver 

time. 

The method of memory copying is to use page-locked memory, (Sanders & Kandrot, 

2010) states that using page-locked memory can result in a halving of copy time. 

Therefore, to this point CUDA code has been written with this in mind but in order 

to perform this function other routines must be performed. These are allocating the 

page-locked memory and copying pageable memory to the page-locked location. 

So, the memory copy can be split further into these components. 

Allocate page-locked 

memory 

Copy pageable to page-

locked 

Copy page-locked to GPU 

global memory 

48.02 39.82 12.16 

Table 13: Percentages of time spent in memory copy phase 

Table 13 shows that the time required for the memory copy setup operations 

actually represent most of the memory copy time, around 88%, the actual copy to 

GPU is only a small portion. So even if this small portion is doubled in size a 

significant saving could still be made. A test was conducted running the final time 
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step 50 times to obtain an average of the saving made. These savings equated to a 

56.8% saving in the memory copy phase. 

8.7 Chapter Summary 

A new GPU accelerated multigrid method has been presented. It has been 

developed using methods that represent a compromise between methods that are 

used by OpenFOAM as well those that are efficiently parallelised. Validation tests 

showed that the new solver was slightly less numerically stable. Despite this it 

produced results that were accurate to hundredths of a percent after 40 time steps. 

A course grid correction method was compared to its CPU counterpart showing an 

overall speed up of 3.5 times. Subsequently the cause of the speed improvement in 

higher cell counts was found to be the reduced importance of idling time after 

CUBLAS vector operations. Subsequent to this several aspects of a multi-level solver 

were investigated. These showed that the residual scaling used by OpenFOAMs 

GAMG method provides significant reductions in compute time.    
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Chapter 9 Conclusion and further work 

9.1 Conclusion 

Primary atomization of fuel spray is a complex problem that is most commonly 

investigated numerically. However, this numerical investigation is generally very 

computationally expensive.  

In this work the open source code OpenFOAM has first been assessed on 

elementary numerical problems to understand how it performs in simulating key 

physical phenomena. Cases such as the Zalesak disk (Zalesak, 1979), Rayleigh-Taylor 

instability and rising bubble (Hysing, et al., 2009) have shown that OpenFOAM is a 

viable candidate for use in primary atomization investigations. In addition, the key 

conditions that effect its computational efficiency have been investigated. 

In this work OpenFOAM was further validated against a low Reynolds number 

experimental test case (Longmire, et al., 2001). This showed reliable performance in 

flow fields dominated by surface tension. Indeed, despite being a general purpose 

CFD library it is comparable to other purpose built codes. In addition to this, using 

the NVidia developed API CUDA GPU, accelerated linear system solvers were 

further developed from previous research resulting in a doubling of speed over the 

CPU implementation. 

Next a high Reynolds number sheet atomization case was replicated on the 

available hardware showing comparable results. 

Finally, a GPU accelerated multigrid solver was developed to accelerate this high 

Reynolds number primary atomization case. The resulting solver represents the first 

usage of a GPU accelerated multigrid method in 3D VOF described primary 

atomization. Using a multigrid method similar to that used by OpenFOAM showed a 

speed improvement of 1.26 times. This is of note as the comparison is made to 

highly CPU optimised linear system solver. 
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9.2 Further work 

The main aim of further work that could be undertaken in accelerating OpenFOAM 

for usage in primary atomization should be closer integration between the GPU and 

its CPU counterpart. A logical next step from the present work would be to port 

most of the PISO algorithm to GPU operation. This would include the momentum 

predictor and pressure correctors. This would involve porting the governing 

equation discretisation to the GPU in addition to the linear system solvers 

presented in this investigation. This would have the benefit of further reducing the 

expensive memory transfer operations involved in the present study. Indeed, with 

three pressure corrections and three velocity solutions there are six transfers to 

and from the GPU in each time step which could be reduced to one. Coupled with 

this a move away from OpenFOAMs LDU matrix format could be made, the 

conversion process of which has a significant cost in the present study. While each 

of these points would likely only represent a small speed improvement together 

they could amount to a significant speed increase. 

Further investigation into multigrid methods presented in this study could also be 

conducted. The selection criteria for the methods used in this study were a 

compromise between similarity to those used in OpenFOAM and those that are 

efficiently parallelised. However, if the similarity to OpenFOAM is removed then 

there are numerous other examples of multigrid components found in the 

literature that could be investigated each with advantages and disadvantages. This 

could correspond to more efficient compute performance. 

This investigation was mainly limited to using a single consumer grade GPU. 

Therefore, naturally interesting avenues of further work would be to further 

develop the source code produced here for usage on several GPUs. Some of the 

ground work has been laid with periodic boundary usage but efficient 

communication of processor boundary coefficients would still need to be found. 

This would allow problems with far greater cell counts to be investigated. 
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Finally, this work has not used turbulence modelling, instead working in the DNS 

regime to account for the turbulence found in primary atomization. However, this is 

only one method and there are numerous examples of using LES in this regard, 

found in the literature. As there is significant ongoing work to develop suitable LES 

methods to reduce the time to solve primary atomization problems it would be 

interesting to establish how a GPU may benefit this approach. 
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Publications 

Some of the contents of this thesis have previously appeared in the following: 

Dyson, J., Xia, J., Shinjo, J., Zhao, H., “GPU Accelerated Droplet Dynamics Simulation 

Using OpenFOAM”, ILASS Europe, 27th Annual Conference on Liquid Atomization 

and Spray Systems, Brighton, UK, September 2016.  
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Appendix: Multigrid Solver Code 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2014 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "cuda.h" 
#include "cublas_v2.h" 
#include "stdio.h" 
#include "math.h" 
#include <cusp/array1d.h> 
#include <cusp/array2d.h> 
#include <cusp/multiply.h> 
#include <cusp/coo_matrix.h> 
#include <cusp/csr_matrix.h> 
#include <cusp/format_utils.h> 
#include <cusp/elementwise.h> 
#include <cusp/transpose.h> 
#include <cusp/print.h> 
#include <iostream> 
#include <limits> 
 
#include "amgaccel.H" 
 
using namespace std ; 
 
  const int streams = 1; 
cudaStream_t stream[streams]; 
const int xcellwidth = 40; //cells in one row between periodic BCs 
const int nboundcells = 86400; //cells in one periodic BC 
const int BLOCK_SIZE = 256; 
int debug = 0; 
 
 
// 
// CUDA API error checking function 
// 
static inline void  
cudaCall(  
        cudaError   err,  
        const char * msg  
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        ) 
{ 
  if( cudaSuccess != err)  
  {  
    cerr << msg << " : "              ; 
    cerr << cudaGetErrorString( err ) ; 
    cerr << "\n"                      ; 
    exit(-1)                          ; 
  } ; 
} ; 
 
// 
//  GPU kernel to multiply sparse matrix in CSR format by dense vector 
// 
static __global__ void 
KERNEL_crs_multiply(    
        int     offset, 
        int     num_rows, 
        const double * Ax, 
        const int   * Aj, 
        const int   * Ap, 
        const double * x, 
        double * y, 
        int level  
        ) 
{ 
 
const int THREADS_PER_VECTOR = 4; 
const int VECTORS_PER_BLOCK = BLOCK_SIZE/THREADS_PER_VECTOR; 
const int THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR; 
const int thread_id   = offset + THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; 
 
  if (thread_id >= ((num_rows*THREADS_PER_VECTOR)/level)) 
    return; 
 
    __shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + 
THREADS_PER_VECTOR / 2]; 
    __shared__ volatile int ptrs[VECTORS_PER_BLOCK][2]; 
 
    const int thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); 
    const int vector_id   = thread_id   /  THREADS_PER_VECTOR; 
    const int vector_lane = threadIdx.x /  THREADS_PER_VECTOR; 
    const int num_vectors = VECTORS_PER_BLOCK * gridDim.x; 
 
    for(int row = vector_id; row < num_rows/level; row += num_vectors) 
    { 
        if(thread_lane < 2) 
            ptrs[vector_lane][thread_lane] = Ap[row*level + thread_lane]; 
        const int row_start = ptrs[vector_lane][0]; 
        const int row_end   = ptrs[vector_lane][1]; 
 
        double sum = 0; 
 
        for(int jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR){ 
           sum += Ax[jj] * x[Aj[jj]]; 
           } 
 
        sdata[threadIdx.x] = sum; 
 
        if (THREADS_PER_VECTOR > 16) sdata[offset + threadIdx.x] = sum = sum + 
sdata[offset + threadIdx.x + 16]; 
        if (THREADS_PER_VECTOR >  8) sdata[offset + threadIdx.x] = sum = sum + 
sdata[offset + threadIdx.x +  8]; 
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        if (THREADS_PER_VECTOR >  4) sdata[offset + threadIdx.x] = sum = sum + 
sdata[offset + threadIdx.x +  4]; 
        if (THREADS_PER_VECTOR >  2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x 
+  2]; 
        if (THREADS_PER_VECTOR >  1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x 
+  1]; 
 
        if (thread_lane == 0){ 
            y[row*level] = sdata[threadIdx.x]; 
        } 
    } 
}; 
 
// 
//  GPU kernel to multiply sparse matrix in CSR format by dense vector 
// 
//  Where matrix is type int 
// 
static __global__ void 
KERNEL_crs_multiplyint( 
        int     num_rows, 
        const int * Ax, 
        const int   * Aj, 
        const int   * Ap, 
        const double * x, 
        double * y 
        ) 
{ 
 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
    if (idx >= num_rows) 
        return; 
 
    double dot = 0; 
 
    int row_start = Ap[idx]; 
    int row_end = Ap[idx+1]; 
 
    for (int k = row_start; k<row_end; k++) 
        dot += Ax[k] * x[Aj[k]]; 
 
    y[idx] = dot; 
 
}; 
 
// 
//  GPU kernel to interpolate vector from oarse grid to fine grid 
// 
static __global__ void 
KERNEL_crs_interpolate( 
        int     num_rows, 
        const int * Ax, 
        const int   * Aj, 
        const int   * Ap, 
        const double * x, 
        double * y 
        ) 
{ 
 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
    if (idx >= num_rows) 



158 | P a g e  
 

        return; 
 
    double dot = 0; 
 
    int row_start = Ap[idx]; 
    int row_end = Ap[idx+1]; 
 
    if(idx == 0) 
        row_start = 0; 
 
    for (int k = row_start; k<row_end; k++) 
        dot += Ax[k] * x[Aj[k]]; 
 
 
    y[idx] = dot; 
 
}; 
 
// 
//  GPU kernel to restrict boundry interfaces 
// 
static __global__ void 
KERNEL_boun_restrict( 
                int     num_rows, 
                int     Ydim, 
                int     Zdim, 
                const double * x, 
                double * y 
                    ) 
{ 
 
    int id = blockIdx.x * blockDim.x + threadIdx.x; 
 
    if (id >= num_rows)  
    return; 
 
    int j = id/(Ydim/2);  
    int k = id-(j*(Ydim/2)); 
    int idx = j*(Ydim*2)+(k*2); 
 
    y[id] = x[idx] + x[idx+1] + x[idx+Ydim] + x[idx+Ydim+1]; 
 
}; 
 
// 
//  GPU kernel to multiply sparse matrix in DIA format by dense vector 
// 
__global__ void 
KERNEL_crs_multiply2(  
        const int offset   , 
        const int n_rows , 
        const double * data , 
        const double * x , 
        double * R, 
        int level ) 
{ 
 
    int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
    if (idx >= n_rows/level)  
    return; 
 
    R[idx*level] = data[idx*level] * x[idx*level]; 
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} 
 
// 
//  GPU kernel residual scaling 
// 
static __global__ void 
KERNEL_jacobiscale ( 
            int     offset, 
            int     n_rows, 
            double * B, 
            double * RX,  
            double * invDC, 
            double  damp, 
            double * X   
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows)  // Error 
    return; 
 
  X[idx] = damp * X[idx] + (B[idx] - damp * RX[idx]) * invDC[idx]; 
 
} ; 
 
// 
//  GPU kernel to perform a jacobi soothing iteration 
// 
static __global__ void 
KERNEL_partjacobi ( 
            int     offset, 
            int     n_rows, 
            double * B, 
            double * RX,  
            double * invDC, 
            double  damp, 
            double * X, 
            double * X1  
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows)  // Error 
    return; 
 
  X1[idx] = ((B[ idx ] - RX[ idx ]) * invDC[idx] * damp) + X[idx]; 
 
} ; 
 
// 
//  GPU kernel to apply cyclic boundry 
// 
static __global__ void 
KERNEL_boundry(  
        const int n_rows, 
        double * Q, 
        double * P, 
        double * convertx, 
        int cellwidth, 
        int boundcells) 
{ 
 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 
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    if (idx >= boundcells)  
    return; 
 
    Q[idx*cellwidth] -= P[(cellwidth-1)+idx*cellwidth] * convertx[idx]; 
 
} 
 
// 
//  GPU kernel to apply cyclic boundry 
// 
static __global__ void 
KERNEL_boundry2(  
        const int n_rows, 
        double * Q, 
        double * P, 
        double * convert2x, 
        int cellwidth, 
        int boundcells) 
{ 
 
    int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
    if (idx >= boundcells)  
    return; 
 
    Q[(cellwidth-1)+idx*cellwidth] -= P[idx*cellwidth] * convert2x[idx]; 
 
} 
 
// 
//  GPU kernel for inverse of diagonal matrix 
// 
//      D^-1 
// 
static __global__ void 
KERNEL_inverse ( 
            int     offset, 
            int     n_rows, 
            double * valsD, 
            double * invD, 
            int level   
                ) 
{ 
  int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  invD[ idx*level ] = 1/valsD[ idx*level ]; 
   
} ; 
 
// 
// GPU kernel for generating interpolation matrix 
// 
static __global__ void 
KERNEL_gen_interp ( 
        int X,  
        int Y,  
        int Z,  
        int nnzI,  
        int n_rowsI,  
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        int n_colsI,  
        int *valsI,  
        int *c_idI,  
        int *r_idI 
        ) 
{ 
 
    int Xnew = X/2; 
    int Ynew = Y/2; 
    int Znew = Z/2; 
 
  int id = blockIdx.x * blockDim.x + threadIdx.x; 
 
    int idy = id/X; 
    int idz = id/(X*Y); 
    int idk = id/(X*Y*Z); 
    int posx= (id-(idy*X))/2; 
    int posy= (idy-(idz*Y))/2; 
    int posz= (idz-(idk*Z))/2; 
 
  if (id >= n_rowsI) // Error 
    return; 
 
    valsI[id] = 1; 
    r_idI[id] = id; 
    c_idI[id] = posx+(posy*Xnew)+(posz*Xnew*Ynew); 
 
} ; 
 
// 
//  GPU kernel to expand row indicies of CSR matrix to COO format 
// 
static __global__ void 
KERNEL_expand ( 
            int   n_rows, 
            int * r_idxR, 
            int * r_idxR2 
                ) 
{ 
  int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows)  // Error 
    return; 
 
    for (int k=r_idxR[idx]; k<r_idxR[idx+1]; k++){ 
        r_idxR2[k] = idx; 
    } 
 
} ; 
 
// 
//  GPU kernel for vector plus vector multiplied by scalar 
// 
static __global__ void 
KERNEL_smul_vadd ( 
            int     offset, 
            int     n_rows, 
            double * B, 
            double * RX, 
            double * alpha,   
            double * BRX, 
            int level  
                ) 
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{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  BRX[ idx*level ] = B[ idx*level ] + alpha[0] * RX[ idx*level ]; 
 
} ; 
 
// 
//  GPU kernel for vector plus vector multiplied by scalar 
// 
static __global__ void 
KERNEL_add_to_x ( 
            int     offset, 
            int     n_rows, 
            double * alpha,  
            double * RX,  
            double * BRX, 
            int level  
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  BRX[ idx*level ] += alpha[0] * RX[ idx*level ]; 
 
} ; 
 
// 
//  GPU kernel for vector minus vector multiplied by scalar 
// 
static __global__ void 
KERNEL_add_to_xneg ( 
            int     offset, 
            int     n_rows, 
            double * alpha,  
            double * RX,  
            double * BRX, 
            int level  
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  BRX[ idx*level ] += -alpha[0] * RX[ idx*level ]; 
 
} ; 
 
// 
//  GPU kernel for vector addition 
// 
//    BRX = B + RX 
// 
static __global__ void 
KERNEL_add2 ( 
            int     offset, 
            int     n_rows, 
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            double * B, 
            double * RX,  
            double * BRX, 
            int level  
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  BRX[idx] = B[ idx ] + RX[ idx ]; 
 
} ; 
 
// 
//  GPU kernel for simple vector operation 
// 
//     BRX = B - RX 
// 
static __global__ void 
KERNEL_subtract ( 
            int     offset, 
            int     n_rows, 
            double * B, 
            double * RX,  
            double * BRX, 
            int level  
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows/level)  // Error 
    return; 
 
  BRX[ idx*level ] = B[ idx*level ] - RX[ idx*level ]; 
 
} ; 
 
// 
//  Set vector to zero 
// 
static __global__ void 
KERNEL_setzero ( 
            int     offset, 
            int     n_rows, 
            double * X       
                ) 
{ 
  int idx = offset + blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= n_rows)  // Error 
    return; 
 
  X[ idx ] = 0; 
 
} ; 
 
// 
//  GPU kernel to copy type int from one location to another 
// 
static __global__ void 
KERNEL_inttransfer ( 
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            int   size, 
            int * A, 
            int * B    
                ) 
{ 
  int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= size)  // Error 
    return; 
 
  B[ idx ] = A [idx]; 
 
} ; 
 
// 
//  GPU kernel to correct CSR indexes 
// 
static __global__ void 
KERNEL_fix ( 
            int    nnzI, 
            int    n_rowsI, 
            int *  r_idI,  
            int    nnzT, 
            int    n_rowsT, 
            int *  r_idT    
                ) 
{ 
  int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= 2)  // Error 
    return; 
 
  if (idx == 0) 
    r_idI[(n_rowsI)]=nnzI; 
 
  if (idx == 1) 
    r_idT[(n_rowsT)]=nnzT; 
 
} ; 
 
// 
//  GPU kernel to divide one scalar by another 
// 
static __global__ void 
KERNEL_divide ( 
            double * r1, 
            double * r2, 
            double * Result    
                ) 
{ 
 
  Result[0]= r1[0]/r2[0]; 
 
} ; 
 
// 
//  GPU kernel to copy type double from one location to another 
// 
static __global__ void 
KERNEL_doubletransfer ( 
            int     size, 
            double * A, 
            double *    B    
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                ) 
{ 
  int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 
  if (idx >= size)  // Error 
    return; 
 
  B[ idx ] = A [idx]; 
 
} ; 
 
// 
//  Wrapper for cublasDdot() function 
//  Calculates the dot product 
// 
static inline double 
dot_product ( 
        cublasHandle_t h, 
        int n_rows, 
        const double * v, 
        const double * w, 
        int level   
            ) 
{ 
  double result;  
    cublasDdot(h, n_rows/level, v, level, w, level, &result)     ; 
 
  return result ; 
} ; 
 
// 
//  Wrapper for cublasDasum() function 
//  Calculates the sum of the absolute values 
// 
static inline double  
sum( 
      cublasHandle_t h, 
      const double * v,  
      const int size, 
      int level 
    ) 
{ 
 
  double result; 
    cublasDasum(h, size/level, v, level, &result)      ; 
 
  return result; 
} ; 
 
// 
//  Wrapper for residual scaling 
// 
static void 
jacobiscale(   
            int     n_rows , 
            double * B      , 
            double * RX      , 
            double * invDC     ,  
            double  damp    ,  
            double * X      
         ) 
{ 
  int size = n_rows; 
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  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_jacobiscale<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, invDC, damp, X) ; 
 
  } 
 
if (debug >= 1)    
  cudaCall (cudaGetLastError(), "KERNEL_jacobiscale FAILED") ; 
} ; 
 
// 
//  Wrapper for part of jacobi iteration 
// 
static void 
partjacobi(   
            int     n_rows, 
            double * B, 
            double * RX, 
            double * invDC,  
            double  damp,  
            double * X,  
            double * X1      
         ) 
{ 
  int size = n_rows; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_partjacobi<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, invDC, damp, X, 
X1) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after partjacobi"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_partjacobi FAILED") ; 
} ; 
 
// 
//  Wrapper for cyclic boundry application 
// 
static void 
boundry(   
        const int n_rows , 
        double * Q , 
        double * P , 
        double * convertx, 
        int cellwidth, 
        int boundcells) 
{ 
  int size = boundcells; 
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  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
   
  KERNEL_boundry<<<numBlocks,BLOCK_SIZE>>>(n_rows, Q, P, convertx, cellwidth, boundcells) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundry"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_boundry FAILED") ; 
} ; 
 
// 
//  Wrapper for cyclic boundry application 2 
// 
static void 
boundry2(   
        const int n_rows , 
        double * Q , 
        double * P , 
        double * convert2x, 
        int cellwidth, 
        int boundcells) 
{ 
  int size = boundcells; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
   
  KERNEL_boundry2<<<dimGrid,dimBlock>>>(n_rows, Q, P, convert2x, cellwidth, boundcells) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundry2"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_boundry2 FAILED") ; 
} ; 
 
// 
//  Wrapper to set vector equal to zero 
// 
static void 
setzero(   
        int     n_rows, 
        double * X    
         ) 
{ 
  int size = n_rows; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_setzero<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, X) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after setzero"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_setzero FAILED") ; 
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} ; 
 
// 
//  Wrapper to generate interpolation matrix 
// 
static void 
gen_interp(   
        int X,  
        int Y,  
        int Z,  
        int nnzI,  
        int n_rowsI,  
        int n_colsI,  
        int *valsI,  
        int *c_idI,  
        int *r_idI    
         ) 
{ 
  int size = n_rowsI; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  KERNEL_gen_interp<<<dimGrid,dimBlock>>>(X, Y, Z, nnzI, n_rowsI, n_colsI, valsI, c_idI, r_idI) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gen_interp"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_gen_interp FAILED") ; 
} ; 
 
// 
//  Wrapper to correct CSR indexing 
// 
static void 
fix(   
          int   nnzI , 
          int   n_rowsI, 
          int * r_idI , 
          int   nnzT , 
          int   n_rowsT, 
          int * r_idT  
         ) 
{ 
  int size = 2; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  KERNEL_fix<<<dimGrid,dimBlock>>>(nnzI, n_rowsI, r_idI, nnzT, n_rowsT, r_idT) ; 
 
if (debug >= 1)   
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after fix"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_fix FAILED") ; 
} ; 
 
// 
//  Wrapper for inverse of diagonal matrix 
// 
static void 
inversed(   
        int     n_rows, 
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        double * valsD, 
        double * invD, 
        int level     
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_inverse<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, valsD, invD, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inversed"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_inverse FAILED") ; 
} ; 
 
// 
//  Wrapper for inverse of diagonal matrix 
// 
static void 
inversedc(   
        int     n_rows, 
        double * valsD, 
        double * invD, 
        int level     
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_inverse<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, valsD, invD, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inversed"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_inversec FAILED") ; 
} ; 
 
 
// 
//  Wrapper to interpolate coarse grid vector to fine grid 
// 
static void 
interpolate(   
            int     n_rows, 
            double * X, 
            double * X2, 
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            int level     
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_interpolate<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, X, X2, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after interpolate"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_interpolate FAILED") ; 
} ; 
 
// 
//  Wrapper for transfer of array type int 
// 
static void 
inttransfer(       
        int     dim, 
        int *   A, 
        int *   B 
              ) 
{ 
  int size = dim ; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks) ; 
  dim3 dimBlock(BLOCK_SIZE) ; 
 
  KERNEL_inttransfer <<<dimGrid, dimBlock>>> (size, A, B) ;   
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inttransfer"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_inttransfer FAILED") ; 
} ; 
 
// 
//  Wrapper for transfer of array type double 
// 
static void 
doubletransfer( 
        int    dim , 
        double *   A, 
        double *   B 
              ) 
{ 
  int size = dim ; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks) ; 
  dim3 dimBlock(BLOCK_SIZE) ; 
   
  KERNEL_doubletransfer <<<dimGrid, dimBlock>>> (size, A, B) ;   
 
if (debug >= 1)    
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  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after doubletransfer"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_doubletransfer FAILED") ; 
} ; 
 
// 
//  Wrapper for vector opperation X = X1 - X2 
// 
static void 
calcresidual( 
        int     n_rows, 
        double * X, 
        double * X1, 
        double * X2, 
        int level 
              ) 
{ 
  int size = n_rows/level ; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks) ; 
  dim3 dimBlock(BLOCK_SIZE) ; 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_subtract <<<dimGrid, dimBlock,0,stream[i]>>> (offset, n_rows, X, X1, X2, level) ;   
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after subtract"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_subtract FAILED") ; 
} ; 
 
// 
//  Wrapper for vector opperation BRX = B + alpha * RX 
// 
static void 
gpuaddoffset(   
        int     n_rows, 
        double * B, 
        double * RX, 
        double * alpha,  
        double * BRX, 
        int level  
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_smul_vadd<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, alpha, BRX, level) 
; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after smul_vadd"); 
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  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_smul_vadd FAILED") ; 
} ; 
 
// 
//  Wrapper for vector opperation X = X + alpha * P 
// 
static void 
gpuaddtox(   
        int     n_rows, 
        double * alpha,  
        double * RX,  
        double * BRX, 
        int level  
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_add_to_x<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, alpha, RX, BRX, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuaddtox"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_add_to_x FAILED") ; 
} ; 
 
// 
//  Wrapper for vector opperation X = X - alpha * P 
// 
static void 
gpuaddtoxneg(   
        int     n_rows, 
        double * alpha,  
        double * RX,  
        double * BRX, 
        int level  
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_add_to_xneg<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, alpha, RX, BRX, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuaddtoxneg"); 
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  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_add_to_xneg FAILED") ; 
} ; 
 
// 
//  Wrapper for vector opperation BRX = B + RX 
// 
static void 
gpuadd2(   
        int     n_rows, 
        double * B, 
        double * RX,  
        double * BRX, 
        int level  
         ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_add2<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, BRX, level) ; 
 
if (debug >= 1)    
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuadd2"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_add2 FAILED") ; 
} ; 
 
 
// 
//  Wrapper for multiplying sparse matrix by vector where matrix is type double 
// 
//            A * X = R 
// 
//  where A - matrix, X and R - vectors. 
// 
int  
gpumultiply(        
        const int     n_rows, 
        const double * vals, 
        const int   * c_idx,            
        const int   * r_idx, 
        const double * X, 
        double * R, 
        int level 
            ) 
{ 
  int size = (n_rows/level) * 4; 
  int streamsize = size / streams;// + (size % streams == 0 ? 0 : 1); 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
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  KERNEL_crs_multiply<<<dimGrid,dimBlock,0,stream[i]>>> ( 
                          offset, 
                          n_rows, 
                          vals, 
                          c_idx, 
                          r_idx, 
                          X, 
                          R, 
                          level 
                                            ) ; 
                                             
if (debug >= 1)                                      
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiply"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_crs_multiply FAILED") ; 
 
  return 0 ; 
} ; 
 
// 
// Wrapper to restrict the boundry coefficents 
// 
int  
gpuboundres(        
        const int n_rows , 
        int Ydim, 
        int  Zdim,  
        const double * X, 
        double * R 
            ) 
{ 
  int size = n_rows; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  KERNEL_boun_restrict<<<dimGrid,dimBlock>>> ( 
                                              n_rows , 
                                              Ydim   , 
                                              Zdim  , 
                                              X      , 
                                              R       
                                            ) ; 
                                             
if (debug >= 1)                                          
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundres"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_boun_restrict FAILED") ; 
 
  return 0 ; 
} ; 
 
// 
//  Wrapper for multiplying sparse matrix by vector where matrix is type int 
// 
//            A * X = R 
// 
//  where A - matrix, X and R - vectors. 
// 
int  
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gpumultiplyint(        
          const int   n_rows, 
          const int * vals, 
          const int * c_idx,            
          const int * r_idx, 
          const double * X, 
          double * R 
            ) 
{ 
  int size = n_rows; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  KERNEL_crs_multiplyint<<<dimGrid,dimBlock>>> ( 
                                              n_rows , 
                                              vals   , 
                                              c_idx  , 
                                              r_idx  , 
                                              X      , 
                                              R       
                                            ) ; 
                                             
if (debug >= 1)                                          
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiplyint"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_crs_multiplyint FAILED") ; 
 
  return 0 ; 
} ; 
 
// 
//  Wrapper for multiplying sparse matrix by vector where matrix is type int 
// 
//            A * X = R 
// 
//  where A - matrix, X and R - vectors. 
// 
int  
gpuinterpolate(        
          const int   n_rows, 
          const int * vals, 
          const int * c_idx,         
          const int * r_idx, 
          const double * X, 
          double * R 
            ) 
{ 
  int size = n_rows; 
  int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  KERNEL_crs_interpolate<<<dimGrid,dimBlock>>> ( 
                                              n_rows , 
                                              vals   , 
                                              c_idx  , 
                                              r_idx  , 
                                              X      , 
                                              R       
                                            ) ; 
                                             
if (debug >= 1)                                              
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  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after interpolate"); 
 
  cudaCall (cudaGetLastError(), "KERNEL_crs_interpolate FAILED") ; 
 
  return 0 ; 
} ; 
 
// 
//  Wrapper for multiplying sparse matrix by vector where matrix is a diagonal 
// 
//            A * X = R 
// 
//  where A - matrix, X and R - vectors. 
// 
int  
gpumultiply2(        
        int     n_rows, 
        const double * vals, 
        const double * X, 
        double * R, 
        int level 
            ) 
{ 
  int size = n_rows/level; 
  int streamsize = size / streams; 
  int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1); 
  dim3 dimGrid(numBlocks);  
  dim3 dimBlock(BLOCK_SIZE); 
 
  for (int i = 0; i<streams; ++i){  
      int offset = i * streamsize; 
 
  KERNEL_crs_multiply2<<<dimGrid,dimBlock,0,stream[i]>>> ( 
                          offset , 
                                              n_rows , 
                                              vals   , 
                                              X      , 
                                              R      , 
                          level 
                                            ) ; 
                                             
if (debug >= 1)                                          
  cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiply2"); 
 
  } 
 
  cudaCall (cudaGetLastError(), "KERNEL_crs_multiply2 FAILED") ; 
 
  return 0 ; 
} ; 
 
// 
//  function that performs residual scaling 
// 
void scale 
    ( 
        cublasHandle_t h, 
        int n_rows, 
        double * pgpu_valsR, 
        int * pgpu_c_idxR, 
        int * pgpu_r_idxR, 
        double * pgpu_X, 
        double * RX, 
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        double * convert_gpu, 
        double * convert2_gpu, 
        int cellwidth, 
        int boundcells, 
        double * pgpu_B, 
        double * invD, 
        double * X1 
    ) 
{ 
 
     gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, pgpu_X, RX, 1); //R * X = RX 
 
     boundry(n_rows, RX, pgpu_X, convert_gpu, cellwidth, boundcells); 
     boundry2(n_rows, RX, pgpu_X, convert2_gpu, cellwidth, boundcells); 
 
    //RX = Acf 
 
     double ScalingFactor = dot_product(h, n_rows, pgpu_B, pgpu_X, 1)/dot_product(h, n_rows, 
RX, pgpu_X, 1); 
 
    printf ("scalingfactor: %e \n",ScalingFactor); 
 
     jacobiscale(n_rows, pgpu_B, RX, invD, ScalingFactor, pgpu_X); 
 
}; 
 
// 
//  function that performs a damped jacobi smoothing iteration 
// 
void jacobiSmooth 
    ( 
        int n_rows, 
        double * pgpu_valsR, 
        int * pgpu_c_idxR, 
        int * pgpu_r_idxR, 
        double * pgpu_X, 
        double * RX, 
        double * convert_gpu, 
        double * convert2_gpu, 
        int cellwidth, 
        int boundcells, 
        double * pgpu_B, 
        double * invD, 
        double damp, 
        double * X1 
    ) 
{ 
    printf ("cell width: %d \n",cellwidth); 
    printf ("boundcells: %d \n",boundcells); 
     gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, pgpu_X, RX, 1); //R * X = RX 
 
     boundry(n_rows, RX, pgpu_X, convert_gpu, cellwidth, boundcells); 
     boundry2(n_rows, RX, pgpu_X, convert2_gpu, cellwidth, boundcells); 
 
     partjacobi(n_rows, pgpu_B, RX, invD, damp, pgpu_X, X1); 
 
     doubletransfer(n_rows, X1, pgpu_X); 
 
}; 
 
// 
//  Function that calculates the residual vector 
// 
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void calculateResidual 
    ( 
        int n_rows, 
        double * pgpu_valsR, 
        int * pgpu_c_idxR, 
        int * pgpu_r_idxR, 
        double * X1, 
        double * RX1, 
        double * convert_gpu, 
        double * convert2_gpu, 
        int cellwidth, 
        int boundcells, 
        double * pgpu_B, 
        double * X2 
    ) 
{ 
     gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, 1); //R * X1 = RX1 
 
     boundry(n_rows, RX1, X1, convert_gpu, cellwidth, boundcells); 
     boundry2(n_rows, RX1, X1, convert2_gpu, cellwidth, boundcells); 
 
     calcresidual(n_rows, pgpu_B, RX1, X2, 1); // B - RX1 = X2 
 
}; 
 
// 
//  Function to extract the diagonal of a CSR matrix 
// 
void extractDiagonal 
    ( 
        int n_rows, 
        int nnzR, 
        double * pgpu_valsR, 
        int * pgpu_c_idxR, 
        int * pgpu_r_idxR, 
        double * invD 
    ) 
{ 
 
    typedef typename cusp::array1d_view< thrust::device_ptr<int>   > DeviceIndexArrayView; 
    typedef typename cusp::array1d_view< thrust::device_ptr<double> > DeviceValueArrayView; 
 
    typedef cusp::csr_matrix_view<DeviceIndexArrayView, 
            DeviceIndexArrayView, 
            DeviceValueArrayView> CSRDeviceView; 
 
    thrust::device_ptr<int>   wrapped_device_r_idxR(pgpu_r_idxR); 
    thrust::device_ptr<int>   wrapped_device_c_idxR(pgpu_c_idxR); 
    thrust::device_ptr<double> wrapped_device_valsR(pgpu_valsR); 
 
    DeviceIndexArrayView row_indices   (wrapped_device_r_idxR, wrapped_device_r_idxR + 
(n_rows+1)); 
    DeviceIndexArrayView column_indices(wrapped_device_c_idxR, wrapped_device_c_idxR + nnzR); 
    DeviceValueArrayView values        (wrapped_device_valsR, wrapped_device_valsR + nnzR);  
             
    CSRDeviceView A(n_rows, n_rows, nnzR, row_indices, column_indices, values); 
 
    cusp::array1d<double, cusp::device_memory> diagonal; 
 
    cusp::extract_diagonal(A, diagonal); 
 
    double * pgpu_valsD = thrust::raw_pointer_cast(&diagonal[0]); 
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    inversed(n_rows, pgpu_valsD, invD, 1); 
}; 
 
// 
//  Function to perfom the Galkin product 
// 
void Galkinproduct 
    ( 
        int n_rows, 
        int nnzR, 
        double * pgpu_valsR, 
        int * pgpu_c_idxR, 
        int * pgpu_r_idxR, 
        int * valsI, 
        int * c_idI, 
        int * r_idI, 
        int * c_idT, 
        int * r_idT, 
        int nnzI, 
        int n_rowsI, 
        int n_colsI, 
        int nnzT, 
        int n_rowsT, 
        int n_colsT, 
        double * pgpu_valsC, 
        int * pgpu_c_idC, 
        int * pgpu_r_idC, 
        int * nnzC, 
        int * n_rowsC, 
        double * invD4 
    ) 
{ 
 
    typedef typename cusp::array1d_view< thrust::device_ptr<int>   > DeviceIndexArrayView; 
    typedef typename cusp::array1d_view< thrust::device_ptr<double> > DeviceValueArrayView; 
 
    typedef cusp::csr_matrix_view<DeviceIndexArrayView, 
            DeviceIndexArrayView, 
            DeviceValueArrayView> CSRDeviceView; 
 
    typedef cusp::coo_matrix_view<DeviceIndexArrayView, 
            DeviceIndexArrayView, 
            DeviceIndexArrayView> COODeviceView; 
 
    typedef cusp::csr_matrix_view<DeviceIndexArrayView, 
            DeviceIndexArrayView, 
            DeviceIndexArrayView> CSRintDeviceView; 
 
    thrust::device_ptr<int>   wrapped_device_r_idxR(pgpu_r_idxR); 
    thrust::device_ptr<int>   wrapped_device_c_idxR(pgpu_c_idxR); 
    thrust::device_ptr<double> wrapped_device_valsR(pgpu_valsR); 
 
    DeviceIndexArrayView row_indices   (wrapped_device_r_idxR, wrapped_device_r_idxR + 
(n_rows+1)); 
    DeviceIndexArrayView column_indices(wrapped_device_c_idxR, wrapped_device_c_idxR + nnzR); 
    DeviceValueArrayView values        (wrapped_device_valsR, wrapped_device_valsR + nnzR);  
             
    CSRDeviceView A(n_rows, n_rows, nnzR, row_indices, column_indices, values); 
 
    thrust::device_ptr<int>   wrapped_device_r_idI(r_idI); 
    thrust::device_ptr<int>   wrapped_device_c_idI(c_idI); 
    thrust::device_ptr<int>   wrapped_device_valsI(valsI); 
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    thrust::device_ptr<int>   wrapped_device_r_idT(r_idT); 
    thrust::device_ptr<int>   wrapped_device_c_idT(c_idT); 
 
    DeviceIndexArrayView rowT (wrapped_device_r_idT, wrapped_device_r_idT + nnzT); 
    DeviceIndexArrayView colT (wrapped_device_c_idT, wrapped_device_c_idT + nnzT); 
    DeviceIndexArrayView valI (wrapped_device_valsI, wrapped_device_valsI + nnzI); 
 
    DeviceIndexArrayView rowI (wrapped_device_r_idI, wrapped_device_r_idI + nnzI); 
    DeviceIndexArrayView colI (wrapped_device_c_idI, wrapped_device_c_idI + nnzI); 
 
    COODeviceView L(n_rowsI, n_colsI, nnzI, rowI, colI, valI); 
     
    CSRintDeviceView K(n_rowsT, n_colsT, nnzT, rowT, colT, valI); 
 
    cusp::transpose(L, K); 
 
    cusp::coo_matrix<int,double,cusp::device_memory>C2; 
 
    cusp::multiply(K, A, C2); 
 
    cusp::coo_matrix<int,double,cusp::device_memory>C3; 
 
    cusp::multiply(C2, L, C3); 
 
    cusp::csr_matrix<int,double,cusp::device_memory>C; 
 
    cusp::convert(C3, C); 
 
    *nnzC = C.num_entries; 
    *n_rowsC = C.num_rows; 
 
    int nnz = C.num_entries; 
        int rows = C.num_rows; 
 
    printf ("nnzC: %d\n",*nnzC); 
    printf ("n_rowsC: %d\n",*n_rowsC); 
 
    double * valsC = thrust::raw_pointer_cast(&C.values[0]); 
    int * c_idC = thrust::raw_pointer_cast(&C.column_indices[0]); 
    int * r_idC = thrust::raw_pointer_cast(&C.row_offsets[0]); 
 
    doubletransfer(nnz, valsC, pgpu_valsC); 
    inttransfer(nnz, c_idC, pgpu_c_idC); 
    inttransfer(rows+1, r_idC, pgpu_r_idC); 
 
    cusp::array1d<double, cusp::device_memory> diagonal; 
 
    cusp::extract_diagonal(C, diagonal); 
 
    double * invD3 = thrust::raw_pointer_cast(&diagonal[0]); 
 
    inversedc(*n_rowsC, invD3, invD4, 1); 
 
}; 
 
 
// 
//  Function that performs the multigrid calculation 
// 
int amgcompute 
( 
          int     n_rows, 
          double     normFac, 
          int        nnzR, 
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          const double * valsR, 
          const int  * c_idxR, 
          const int  * r_idxR, 
          int        nnzD, 
          const double * valsD, 
          const int * c_idxD, 
          const int * r_idxD, 
          double  * X, 
          const double * B, 
          int    * n_iter, 
          double * epsilon, 
          double    rTol, 
          int    CP, 
          double    Ires, 
          double * convert, 
          double    * convert2     
) 
{ 
 
// Get starting time stamp 
struct timespec start, end; 
clock_gettime(CLOCK_MONOTONIC_RAW, &start); 
 
    int result = -1 ; 
 
// Initialize CUBLAS 
    cudaSetDevice(0); 
 
    cublasStatus_t s; 
    cublasHandle_t h; 
    s = cublasCreate(&h); 
    if (s != CUBLAS_STATUS_SUCCESS) { 
        printf ("CUBLAS initialization failed\n"); 
        return EXIT_FAILURE; 
    }    
     
// Define multigrid prameters    
    int maxlevels = 3; 
 
    int tlevels; 
    int Tnnz=nnzR, Tn_rows=n_rows; 
    int totalnnz=nnzR, totalrows=(n_rows+1); 
    int ntotalrows=n_rows+1; 
    int Xdim[maxlevels], Ydim[maxlevels], Zdim[maxlevels]; 
 
    Xdim[0] = 40; 
    Ydim[0] = 160; 
    Zdim[0] = 540; 
 
    float Xdimt, Ydimt, Zdimt; 
 
    Xdimt = Xdim[0]; 
    Ydimt = Ydim[0]; 
    Zdimt = Zdim[0]; 
 
// Calculate the mesh dimensions at each level   
    for(int i = 1; i<maxlevels; i++){ 
        Xdimt = Xdimt/2; 
        Ydimt = Ydimt/2; 
        Zdimt = Zdimt/2; 
    if(floor(Xdimt) == Xdimt && floor(Ydimt) == Ydimt && floor(Zdimt) == Zdimt){ 
        Tnnz = Tnnz/8; 
        Tn_rows = Tn_rows/8; 



182 | P a g e  
 

        totalnnz += Tnnz; 
        totalrows += (Tn_rows+1); 
        ntotalrows += (Tn_rows+1); 
        printf ("i %d \n",i); 
    } 
    } 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
 
double delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; 
 
            printf ("time for total values: %e \n",delta_us);      
       
// Create pointers to GPU Memory 
 
    double* pgpu_B      = NULL; 
    double* pgpu_Bt      = NULL; 
    double* pgpu_X      = NULL; 
    double* pgpu_valsR  = NULL; 
    int* pgpu_c_idxR   = NULL; 
    int* pgpu_r_idxR   = NULL; 
 
// Create pointers to results on GPU memory 
 
    double *RX, *BRX, *X1, *X2, *invD, *RX1, residual; 
    double rho_1;      // \rho_{i-1} 
    double rho_2 = 0;  // \rho_{i-2}    
    double alpha = 0;  // \alpha{i}     
    double beta = 0;       // \beta_{i-1} 
    int levels = 1; 
    int level = 1; 
    int courselevel = n_rows/2; 
    double d1 = 4; 
    double d2 = 5; 
    double damp = d1/d2; 
    double damp2 = 1 - damp; 
    double cgtoll; 
    double ScalingFactor = 0.0; 
 
    double * g_rho_1, * g_rho_2, * g_rho_3, * g_alpha, * g_beta; 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
 
delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; 
 
            printf ("time to first cuda command: %e \n",delta_us); 
 
// Create CUDA Streams 
 
    cudaStream_t stream[streams]; 
 
    const double almost_zero = numeric_limits<double>::min(); 
 
    for (int i = 0; i < streams; ++i) 
      cudaCall(cudaStreamCreate(&stream[i]), "cudaStreamCreate Failed"); 
 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
 
delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; 
 
            printf ("time to cuda malloc: %e \n",delta_us); 
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    cudaCall(cudaMalloc((void**)(&g_rho_1), sizeof(double)), "cudaMalloc failed for g_rho_1"); 
    cudaCall(cudaMalloc((void**)(&g_rho_2), sizeof(double)), "cudaMalloc failed for g_rho_2"); 
    cudaCall(cudaMalloc((void**)(&g_rho_3), sizeof(double)), "cudaMalloc failed for g_rho_3"); 
    cudaCall(cudaMalloc((void**)(&g_alpha), sizeof(double)), "cudaMalloc failed for g_alpha"); 
    cudaCall(cudaMalloc((void**)(&g_beta), sizeof(double)), "cudaMalloc failed for g_beta"); 
 
// Create pointers to Host Pinned memory 
 
    const double *p_B   = B; 
    const double *p_X   = X; 
    const double *p_valsR   = valsR; 
    const int   *p_c_idxR  = c_idxR; 
    const int   *p_r_idxR  = r_idxR; 
 
// Define CPU values for debugging 
/* 
    double f1[n_rows]; 
 
    double f2[n_rows]; 
 
    double f3[n_rows]; 
 
    double f4[n_rows]; 
 
    double f5[n_rows]; 
*/ 
 
// Allocate memory on GPU for linear system A * X = B 
 
    cudaCall(cudaMalloc((void**)(&pgpu_B), n_rows*sizeof(double)), "cudaMalloc failed for B"); 
    cudaCall(cudaMalloc((void**)(&pgpu_X), n_rows*sizeof(double)), "cudaMalloc failed for X"); 
    cudaCall(cudaMalloc((void**)(&pgpu_valsR), (totalnnz) * sizeof(double)), "cudaMalloc Failed 
for valsR"); 
    cudaCall(cudaMalloc((void**)(&pgpu_c_idxR), (totalnnz) * sizeof(int)), "cudaMalloc Failed for 
c_idxR"); 
    cudaCall(cudaMalloc((void**)(&pgpu_r_idxR), (totalrows) * sizeof(int)), "cudaMalloc Failed for 
r_idxR"); 
 
// Allocate GPU memory for inverse of the diagonal 
 
    cudaCall(cudaMalloc((void**)(&invD), totalrows*sizeof(double)), "cudaMalloc failed for invD"); 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
 
delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; 
 
            printf ("time for cuda malloc: %e \n",delta_us); 
 
  double norm_b = normFac; 
    printf ("norm B %e \n",norm_b); 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
     
// Copy vectors X and B to GPU 
 
    cudaCall(cudaMemcpyAsync(pgpu_B, B, n_rows * sizeof(double),  cudaMemcpyHostToDevice), 
"CudaMemcpy Failed for B"); 
    cudaCall(cudaMemcpyAsync(pgpu_X, X, n_rows * sizeof(double),  cudaMemcpyHostToDevice), 
"CudaMemcpy Failed for B"); 
 
// Copy vals for matrix R 
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    cudaCall(cudaMemcpyAsync (pgpu_valsR,  valsR,  nnzR * sizeof(double), 
cudaMemcpyHostToDevice), "CudaMemcpyAsync failed for valsR") ; 
 
// Copy c_idx for matrix R 
 
    cudaCall(cudaMemcpyAsync (pgpu_c_idxR, c_idxR,  nnzR * sizeof(int), 
cudaMemcpyHostToDevice), "CudaMemcpyAsync failed for c_idxR") ; 
 
// Copy r_idx for matrix R 
 
    cudaCall(cudaMemcpyAsync (pgpu_r_idxR, r_idxR,  (n_rows + 1) * sizeof(int), 
cudaMemcpyHostToDevice), "CudaMemcpy failed for r_idxR") ; 
 
// Create pointers for PCG vectors and boundry coefficents   
    double *P, *Q, *R, *Z, *convert_gpu, *convert2_gpu; 
 
    cudaCall(cudaMalloc((void**)(&X2), (totalrows)*sizeof(double)), "cudaMalloc failed for X2");     
 
// Debug printouts 
if (debug >= 1) { 
    printf ("nnzR: %d\n",nnzR); 
    printf ("nnzD: %d\n",nnzD); 
    printf ("n_rows: %d\n",n_rows); 
} 
 
if (debug >= 2) { 
  for (int i = 0; i<nnzR; ++i){ 
      printf ("vals [%d]: %e \n",i,valsR[i]); 
      } 
 
  for (int i = 0; i<(nnzR); ++i){ 
      printf ("vals [%d]: %e \n",i,valsR[i]); 
      } 
 
  for (int i = 0; i<(nnzR); ++i){ 
      printf ("c_idx [%d]: %d \n",i,c_idxR[i]); 
      } 
 
  for (int i = 0; i<(n_rows); ++i){ 
      printf ("r_idx [%d]: %d \n",i,r_idxR[i]); 
      } 
 
  for (int i = 0; i<(n_rows); ++i){ 
      printf ("X [%d]: %e \n",i,X[i]); 
      } 
 
  for (int i = 0; i<(n_rows); ++i){ 
      printf ("B [%d]: %.20e \n",i,B[i]); 
      } 
 
  for (int i = 0; i<(n_rows); ++i){ 
      printf ("valsD [%d]: %e \n",i,p_valsD[i]); 
      } 
 
  for (int i = 0; i<(nnzD); ++i){ 
      printf ("c_idxD [%d]: %d \n",i,c_idxD[i]); 
      } 
 
  for (int i = 0; i<(n_rows+1); ++i){ 
      printf ("r_idxD [%d]: %d \n",i,r_idxD[i]); 
      } 
} 
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// Multigrid Wrapper 
 
    int s_iter = 1; 
    int s_iter2 = 2; 
    *n_iter = 1000; 
    level = 1; 
    levels = 1; 
 
  double normCL; 
 
  if (norm_b < almost_zero) 
  { 
    norm_b = 1.0 ; 
  } 
 
// Setup Stage 
 
// Generate interpolation matrix 
// Define arrays of matrix size for all levels 
    int nnzI[maxlevels], n_rowsI[maxlevels], n_colsI[maxlevels]; 
    int *valsI, *c_idI, *r_idI; 
 
    nnzI[0] = 0; 
 
    for (int i=1; i<(maxlevels); i++){ 
 
    Xdim[i] = Xdim[i-1]/2; 
    Ydim[i] = Ydim[i-1]/2; 
    Zdim[i] = Zdim[i-1]/2; 
 
    nnzI[i] = Xdim[i-1] * Ydim[i-1] * Zdim[i-1]; 
 
    n_rowsI[i] = Xdim[i-1] * Ydim[i-1] * Zdim[i-1]; 
 
    n_colsI[i] = Xdim[i] * Ydim[i] * Zdim[i]; 
 
    } 
 
// Allocate GPU memory for interpolation matrix 
    cudaCall(cudaMalloc ((void**)(&valsI), totalrows*sizeof(int)), "cudaMalloc failed for valsI") ; 
    cudaCall(cudaMalloc ((void**)(&c_idI), totalrows*sizeof(int)), "cudaMalloc failed for c_idI") ; 
    cudaCall(cudaMalloc ((void**)(&r_idI), totalrows*sizeof(int)), "cudaMalloc failed for r_idI") ; 
 
    int nnzI_runT = 0; 
    int  n_rowsT_T=0; 
 
// Generate the interpolation matrix for each level 
    for (int i=1; i<maxlevels; i++){ 
        if (i != 1){ 
        nnzI_runT += nnzI[i-1]; 
        } 
    gen_interp(Xdim[i-1], Ydim[i-1], Zdim[i-1], nnzI[i], n_rowsI[i], n_colsI[i], &valsI[nnzI_runT], 
&c_idI[nnzI_runT], &r_idI[nnzI_runT]); 
    printf ("nnzI_runT %d \n",nnzI_runT); 
    } 
     
// Create arrays for the restriction matrix  
    int nnzT[maxlevels], n_rowsT[maxlevels], n_colsT[maxlevels]; 
    int *valsT, *c_idT, *r_idT; 
 
    for (int i=1; i<maxlevels; i++){ 
    nnzT[i] = nnzI[i]; 
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    n_rowsT[i] = n_colsI[i]; 
 
    n_colsT[i] = n_rowsI[i]; 
        n_rowsT_T += n_rowsT[i]; 
    } 
     
// Allocate GPU memory for restriction matrix 
    cudaCall(cudaMalloc ((void**)(&c_idT), totalrows*sizeof(int)), "cudaMalloc failed for c_idI") ; 
    cudaCall(cudaMalloc ((void**)(&r_idT), totalrows*sizeof(int)), "cudaMalloc failed for r_idI") ; 
     
    int rows[maxlevels], nnz[maxlevels]; 
    rows[1]=n_rows; 
    nnz[1]=nnzR; 
    int totalnnzold=0, totalrowsold=0, totalrows2old=0, totalrows2=n_rows; 
    totalnnz=nnzR, totalrows=(n_rows+1); 
    Tn_rows = n_rows, Tnnz = nnzR; 
     
// Extract the diagonal of the finest level 
    extractDiagonal(n_rows, nnzR, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, invD); 
 
// Perform the Galkin product at each level to generate course grids 
    for(int i = 1; i<(maxlevels); i++){ 
 
    Galkinproduct(rows[i], nnz[i], &pgpu_valsR[totalnnzold], &pgpu_c_idxR[totalnnzold], 
&pgpu_r_idxR[totalrowsold], &valsI[totalrows2old], &c_idI[totalrows2old], &r_idI[totalrows2old], 
&c_idT[totalrows2old], &r_idT[totalrows2old], nnzI[i], n_rowsI[i], n_colsI[i], nnzT[i], n_rowsT[i], 
n_colsT[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows], &nnz[i+1], 
&rows[i+1], &invD[totalrows2]); 
 
        totalnnzold = totalnnz; 
        totalrowsold = totalrows; 
        totalrows2old = totalrows2; 
 
        Tnnz = Tnnz/8; 
        Tn_rows = Tn_rows/8; 
        totalnnz += Tnnz; 
        totalrows += (Tn_rows+1); 
        totalrows2 += (Tn_rows); 
    }  
     
    int boundCells_T=0; 
 
    for (int i=1; i<maxlevels; i++){ 
        boundCells_T += Ydim[i] * Zdim[i];   
    } 
 
// Allocate GPU memory for boundry coefficents   
    cudaCall(cudaMalloc ((void**)(&convert_gpu), (nboundcells+boundCells_T)*sizeof(double)), 
"cudaMalloc failed for convert") ; 
    cudaCall(cudaMalloc ((void**)(&convert2_gpu), (nboundcells+boundCells_T)*sizeof(double)), 
"cudaMalloc failed for convert2") ; 
 
    cudaCall(cudaMemcpy (convert_gpu, convert,  nboundcells * sizeof(double), 
cudaMemcpyHostToDevice), "CudaMemcpy failed for convert") ; 
    cudaCall(cudaMemcpy (convert2_gpu, convert2,  nboundcells * sizeof(double), 
cudaMemcpyHostToDevice), "CudaMemcpy failed for convert2") ; 
 
// Restrict boundry coefficents for use at coarse levels     
    int boundCellsSum=0, boundCellsSumOld=0; 
 
        for (int i=1; i<maxlevels; i++){ 
        boundCellsSumOld = boundCellsSum; 
        boundCellsSum += (Ydim[i-1] * Zdim[i-1]); 
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    gpuboundres((Ydim[i])*(Zdim[i]), Ydim[i-1], Zdim[i-1], &convert_gpu[boundCellsSumOld], 
&convert_gpu[boundCellsSum]); 
    gpuboundres((Ydim[i])*(Zdim[i]), Ydim[i-1], Zdim[i-1], &convert2_gpu[boundCellsSumOld], 
&convert2_gpu[boundCellsSum]); 
    } 
 
    nnzI_runT=0; 
    int n_rowsT_runT=0; 
 
        for (int i=1; i<maxlevels; i++){ 
        if (i != 1){ 
        nnzI_runT += nnzI[i-1]; 
        n_rowsT_runT += n_rowsT[i-1]; 
        } 
    fix(nnzI[i], n_rowsI[i], &r_idI[nnzI_runT], nnzT[i], n_rowsT[i], &r_idT[n_rowsT_runT]); 
    } 
 
// Allocate GPU for intermediate vectors 
    cudaCall(cudaMalloc((void**)(&R), n_rows*sizeof(double)), "cudaMalloc failed for R") ; 
    cudaCall(cudaMalloc((void**)(&RX), n_rows*sizeof(double)), "cudaMalloc failed for RX"); 
    cudaCall(cudaMalloc((void**)(&BRX), n_rows*sizeof(double)), "cudaMalloc failed for BRX"); 
    cudaCall(cudaMalloc((void**)(&RX1), n_rows*sizeof(double)), "cudaMalloc failed for BR1"); 
    cudaCall(cudaMalloc((void**)(&X1), (totalrows)*sizeof(double)), "cudaMalloc failed for X1"); 
            printf ("X1 totalrows %d \n",totalrows); 
    cudaCall(cudaMemcpyAsync(&X1[0], X, n_rows * sizeof(double),  cudaMemcpyHostToDevice), 
"CudaMemcpy Failed for X"); 
     
    cudaCall(cudaMalloc ((void**)(&P), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for P") 
; 
    cudaCall(cudaMalloc ((void**)(&Z), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for Z") 
; 
    cudaCall(cudaMalloc ((void**)(&Q), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for 
Q") ; 
    cudaCall(cudaMalloc ((void**)(&pgpu_Bt), n_rows*sizeof(double)), "cudaMalloc failed for Q") ; 
    doubletransfer(n_rows, pgpu_B, pgpu_Bt); 
     
    // show memory usage of GPU 
 
        size_t free_byte ; 
 
        size_t total_byte ; 
 
        cudaMemGetInfo( &free_byte, &total_byte ) ; 
 
        double free_db = (double)free_byte ; 
 
        double total_db = (double)total_byte ; 
 
        double used_db = total_db - free_db ; 
 
        printf("GPU memory usage: used = %f, free = %f MB, total = %f MB\n",    
used_db/1024.0/1024.0, free_db/1024.0/1024.0, total_db/1024.0/1024.0); 
 
    double toll; 
 
// Calculate the initial residual    
    calculateResidual(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, convert_gpu, 
convert2_gpu, xcellwidth, nboundcells, pgpu_B, R); 
 
// Calculate convergence criteria    
    if (rTol == 0) 
    toll = *epsilon; 
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    else 
    toll = (sum(h, R, n_rows, 1)/norm_b) * rTol; 
 
// Multigrid iterations  
for (int niter = 1; niter <= *n_iter; niter++) 
{ 
 
    totalnnz=0, totalrows=0; 
    Tn_rows = n_rows, Tnnz = nnzR; 
    totalnnzold=0, totalrowsold=0, totalrows2old=0, totalrows2=0; 
    boundCellsSum=0, boundCellsSumOld=0; 
 
  for(int i = 1; i<maxlevels; i++) 
  { 
 
        boundCellsSumOld = boundCellsSum; 
        boundCellsSum += (Ydim[i-1] * Zdim[i-1]); 
    if(i != 1){ 
        setzero(rows[i], pgpu_X); 
    } 
     
// Jacobi Smoothing 
    if(i != 1){ 
    for (int siter = 1; siter <= s_iter; siter++) 
    { 
    jacobiSmooth(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows], 
pgpu_X, RX, &convert_gpu[boundCellsSumOld], &convert2_gpu[boundCellsSumOld], 
xcellwidth/(pow(2,i-1)), nboundcells/(pow(4,i-1)), pgpu_B, &invD[totalrows2], damp, 
&X1[totalrows2]); 
    printf ("pre smooth itteration: %d \n",siter); 
    } 
    } 
    calculateResidual(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], 
&pgpu_r_idxR[totalrows], &X1[totalrows2], RX1, &convert_gpu[boundCellsSumOld], 
&convert2_gpu[boundCellsSumOld], xcellwidth/(pow(2,i-1)), nboundcells/(pow(4,i-1)), pgpu_B, 
&X2[totalrows2]); 
 
        gpumultiplyint(rows[i+1], &valsI[totalrows2], &c_idT[totalrows2], &r_idT[totalrows2], 
&X2[totalrows2], pgpu_B); 
 
        totalnnz += Tnnz; 
        totalrows += (Tn_rows+1); 
        totalrows2 += (Tn_rows); 
        Tnnz = Tnnz/8; 
        Tn_rows = Tn_rows/8; 
 
  } // end of pre-smoothing 
 
    setzero(rows[maxlevels], &X1[totalrows2]); 
 
// Calculate initial residual at coarsest level  
      gpumultiply(rows[maxlevels], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], 
&pgpu_r_idxR[totalrows], &X1[totalrows2], RX1, 1); 
 
      boundry(rows[maxlevels], RX1, &X1[totalrows2], &convert_gpu[boundCellsSum], 
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1))); 
      boundry2(rows[maxlevels], RX1, &X1[totalrows2], &convert2_gpu[boundCellsSum], 
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1))); 
 
    setzero(rows[maxlevels], &X2[totalrows2]); 
        calcresidual(rows[maxlevels], pgpu_B, RX1, &X2[totalrows2], 1); // B - RX1 = X2 
 
      normCL = sum(h, pgpu_B, rows[maxlevels], 1); 
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      residual = sum(h, &X2[totalrows2], rows[maxlevels], 1) / normCL; 
 
    if(rTol == 0) 
    cgtoll = *epsilon; 
    else 
    cgtoll = rTol * residual; 
 
// Solve coasrest level using PCG    
    for (int iter = 1 ; iter <= 1000 ; iter++) 
    { 
 
    cublasSetPointerMode(h, CUBLAS_POINTER_MODE_DEVICE); 
 
      gpumultiply2(rows[maxlevels], &invD[totalrows2], &X2[totalrows2], Z, 1); //1/D * X2 = Z 
 
      cublasDdot(h, rows[maxlevels], &X2[totalrows2], 1, Z, 1, g_rho_1);  
 
      if (1 == iter) { 
        // p^1 = z^0;   Barlett: line 6 
        doubletransfer(rows[maxlevels], Z, P); 
      } else { 
    divide(g_rho_1, g_rho_2, g_beta); 
        gpuaddoffset(rows[maxlevels], Z, P, g_beta, P, 1) ;             // P = Z + beta * P  
      } ; 
    setzero(rows[maxlevels], Q); 
      gpumultiply(rows[maxlevels], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], 
&pgpu_r_idxR[totalrows], P, Q, 1); 
 
      boundry(rows[maxlevels], Q, P, &convert_gpu[boundCellsSum], xcellwidth/(pow(2,maxlevels-
1)), nboundcells/(pow(4,maxlevels-1))); 
      boundry2(rows[maxlevels], Q, P, &convert2_gpu[boundCellsSum], 
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1))); 
 
      cublasDdot(h, rows[maxlevels], P, 1, Q, 1, g_rho_3);  
 
    divide(g_rho_1, g_rho_3, g_alpha); 
 
      gpuaddtox(rows[maxlevels],  g_alpha, P, &X1[totalrows2], 1) ;         // X^i = X^{i-1} + 
alpha_i * p^i 
      gpuaddtoxneg(rows[maxlevels], g_alpha, Q, &X2[totalrows2], 1) ;           
 
    doubletransfer(1, g_rho_1, g_rho_2); 
 
    cublasSetPointerMode(h, CUBLAS_POINTER_MODE_HOST); 
 
      residual = sum(h, &X2[totalrows2], rows[maxlevels], 1) / normCL; 
       
      if (residual < (cgtoll)) // iteration succeeded 
      { 
    printf ("CG final residual %e \n",residual); 
    printf ("CG Itterations %d \n",iter); 
    break ; 
      } ; 
    } ; 
 
// Post Smoothing iterations 
 
  for (int i = (maxlevels-1); i>=1; i--) 
  { 
        boundCellsSumOld = boundCellsSum; 
        boundCellsSum -= (Ydim[i-1] * Zdim[i-1]); 
 
        Tnnz = Tnnz*8; 
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        Tn_rows = Tn_rows*8; 
        totalnnz -= Tnnz; 
        totalrows -= (Tn_rows+1); 
        totalrows2 -= (Tn_rows); 
 
    gpuinterpolate(rows[i], &valsI[totalrows2], &c_idI[totalrows2], &r_idI[totalrows2], 
&X1[totalrows2+Tn_rows], pgpu_X); // Xh <- X2h 
 
    doubletransfer(rows[i], &X2[totalrows2], pgpu_B); 
 
// Perform residual scaling  
    if(i != (maxlevels-1) || i == 1){ 
     gpumultiply(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows], 
pgpu_X, RX, 1); //R * X = RX 
 
     boundry(rows[i], RX, pgpu_X, &convert_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)), 
nboundcells/(pow(4,i-1))); 
     boundry2(rows[i], RX, pgpu_X, &convert2_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)), 
nboundcells/(pow(4,i-1))); 
 
     ScalingFactor = dot_product(h, rows[i], pgpu_B, pgpu_X, 1)/dot_product(h, rows[i], RX, 
pgpu_X, 1); 
 
     jacobiscale(rows[i], pgpu_B, RX, &invD[totalrows2], ScalingFactor, pgpu_X); 
 
    } 
 
    gpuadd2(rows[i], &X1[totalrows2], pgpu_X, pgpu_X, 1); //Xh + X2H = X 
 
    if (i == 1) 
    doubletransfer(rows[i], pgpu_Bt, pgpu_B); 
 
    for (int siter2 = 1; siter2 <= s_iter2; siter2++) 
    { 
 
    jacobiSmooth(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows], 
pgpu_X, RX, &convert_gpu[boundCellsSum], &convert2_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)), 
nboundcells/(pow(4,i-1)), pgpu_B, &invD[totalrows2], damp, &X1[totalrows2]); 
 
    } 
// End of Post-smoothing 
  } 
 
// Calculate final residual 
    calculateResidual(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, convert_gpu, 
convert2_gpu, xcellwidth, nboundcells, pgpu_B, X2); 
 
    level = 1; 
    levels = 1; 
 
    residual = sum(h, X2, n_rows, 1)/norm_b; 
    printf ("residual: %e \n",residual); 
 
// Break iteration loop if convergence criteria is met   
        if (residual < toll) 
        { 
            *epsilon = residual ; 
            *n_iter = niter; 
            result = 0; 
        break;       
        } 
} 
// End of Multigrid iterations 
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// Copy result back to CPU 
    cudaCall(cudaMemcpy ((void**)X, pgpu_X, n_rows * sizeof(double),  
cudaMemcpyDeviceToHost), "CudaMemcpy of X back to host failed"); 
 
// Destroy cuda streams 
 
    for (int i = 0; i < streams; ++i) 
        cudaStreamDestroy(stream[i]); 
 
// Free GPU memory for intermediate vectors and boundry coefficents      
    cudaCall(cudaFree (P), "cudaFree failed for P"); 
    cudaCall(cudaFree (R), "cudaFree failed for R"); 
    cudaCall(cudaFree (Q), "cudaFree failed for Q"); 
    cudaCall(cudaFree (Z), "cudaFree failed for Z"); 
    cudaCall(cudaFree (convert_gpu), "cudaFree failed for convert_gpu"); 
    cudaCall(cudaFree (convert2_gpu), "cudaFree failed for convert2_gpu"); 
 
// Free GPU inputs 
 
    cudaCall(cudaFree (pgpu_B), "cudaFree failed for pgpu_B"); 
    cudaCall(cudaFree (pgpu_Bt), "cudaFree failed for pgpu_B"); 
    cudaCall(cudaFree (pgpu_X), "cudaFree failed for pgpu_X"); 
    cudaCall(cudaFree (pgpu_valsR), "cudaFree failed for pgpu_valsR"); 
    cudaCall(cudaFree (pgpu_c_idxR), "cudaFree failed for pgpu_c_idxR"); 
    cudaCall(cudaFree (pgpu_r_idxR), "cudaFree failed for pgpu_c_idxR"); 
     
// Free interpolation and restriction matrixes 
 
    cudaCall(cudaFree (c_idI), "cudaFree failed for c_idI"); 
    cudaCall(cudaFree (c_idT), "cudaFree failed for c_idT"); 
    cudaCall(cudaFree (r_idI), "cudaFree failed for r_idI"); 
    cudaCall(cudaFree (r_idT), "cudaFree failed for r_idT"); 
    cudaCall(cudaFree (valsI), "cudaFree failed for valsI"); 
 
// Free GPU memory for intermediate steps  
 
    cudaCall(cudaFree (RX), "cudaFree failed for RX"); 
    cudaCall(cudaFree (BRX), "cudaFree failed for BRX"); 
    cudaCall(cudaFree (X1), "cudaFree failed for X1"); 
    cudaCall(cudaFree (X2), "cudaFree failed for X2"); 
    cudaCall(cudaFree (RX1), "cudaFree failed for RX1"); 
    cudaCall(cudaFree (invD), "cudaFree failed for invD"); 
 
clock_gettime(CLOCK_MONOTONIC_RAW, &end); 
 
delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000; 
 
            printf ("cuda code: %e \n",delta_us); 
 
    return result; // Return value for error checking in OpenFOAM code 
 
} 
 
 
// ************************************************************************* // 

 


