

GPU Accelerated Linear System Solvers for

OpenFOAM and Their Application to Sprays

A thesis submitted for the degree of Doctor of Philosophy

by

Joshua Dyson

Department of Mechanical, Aerospace and Civil Engineering, College of

Engineering, Design and Physical Sciences

Brunel University London

1 | P a g e

Abstract

This thesis presents the development of GPU accelerated solvers for use in

simulation of the primary atomization phenomenon. By using the open source

continuum mechanics library, OpenFOAM, as a basis along with the NVidia CUDA

API linear system solvers have been developed so that the multiphase solver runs in

part on GPUs. This aims to reduce the enormous computational cost associated

with modelling primary atomization. The modelling of such is vital to understanding

the mechanisms that make combustion efficient. Firstly, the OpenFOAM code is

benchmarked to assess both its suitability for atomization problems and to

establish efficient operating parameters for comparison to GPU accelerations. This

benchmarking then culminates in a comparison to an experimental test case, from

the literature, dominated by surface tension, in 3D.

Finally, a comparison is made with a primary atomizing liquid sheet as published in

the literature. A geometric multigrid method is employed to solve the pressure

Poisson equations, the first use of a geometric multigrid method in 3D GPU

accelerated VOF simulation. Detailed investigations are made into the compute

efficiency of the GPU accelerated solver, comparing memory bandwidth usage to

hardware maximums as well as GPU idling time. In addition, the components of the

multigrid method are also investigated, including the effect of residual scaling.

While the GPU based multigrid method shows some improvement over the

equivalent CPU implementation, the costs associated with running on GPU cause

this to not be significantly greater.

2 | P a g e

Contents

Abstract .. 1

Acknowledgements .. 5

List of Figures ... 6

List of Tables ... 11

Nomenclature .. 12

Chapter 1 Introduction ... 16

1.1 Motivation .. 16

1.2 Accelerated Computing .. 16

1.3 Thesis Outline ... 17

Chapter 2 Review of Spray Atomization ... 19

2.1 Breakup Regimes of round jets .. 19

2.2 Breakup of a liquid sheet .. 22

2.3 Computational Modelling of Atomization ... 24

2.4 Turbulence Considerations .. 27

2.5 Previous Primary Atomization Modelling Investigation 29

2.6 Computational Cost .. 31

Chapter 3 GPU Computing .. 32

3.1 Overview ... 32

3.2 History of Computing ... 32

3.3 Emergence of General Purpose Graphics Processor Computing (GPGPU) 35

3.4 GPU hardware .. 36

3.5 CUDA Overview .. 39

3.6 GPU Drawbacks .. 41

3 | P a g e

3.7 GPU Computing Review ... 42

3.8 GPU Computing in Computational Fluid Dynamics .. 43

3.9 GPU usage in CFD for multiphase flow .. 46

3.10 Comparing GPU and CPU performance ... 47

3.11 Chapter Summary ... 48

Chapter 4 Computing methods .. 49

4.1 Overview ... 49

4.2 OpenFOAM ... 49

4.3 Governing equations .. 50

4.4 Solution procedure ... 53

4.5 Computational Hardware ... 60

4.6 Chapter Summary ... 63

Chapter 5 Elementary Test Cases ... 64

5.1 Overview ... 64

5.2 Zalesak’s Disk .. 64

5.3 Rayleigh-Taylor Instability .. 70

5.4 Linear Solver Selection ... 73

5.5 Rising Bubble .. 75

5.6 Performance Comparisons ... 81

5.7 Parallel Scaling .. 85

5.8 Chapter summary ... 89

Chapter 6 Surface Tension Dominated Test Case ... 90

6.1 Overview ... 90

6.2 Experimental Description ... 90

6.3 Computation Setup .. 92

4 | P a g e

6.4 Mesh independence ... 97

6.5 Full port or partial port? ... 97

6.6 Integration between OpenFOAM and GPU solver ... 98

6.7 Jacobi Solver for GPU ... 100

6.8 GPU Acceleration.. 101

6.9 Compute time reliability ... 106

6.10 Chapter Summary ... 109

Chapter 7 Sheet atomization case .. 111

7.1 Overview ... 111

7.2 Establishing a CPU benchmark ... 111

7.3 Chapter summary ... 121

Chapter 8 Multigrid Solver Running Entirely on GPU ... 122

8.1 Overview ... 122

8.2 Solver Outline ... 122

8.3 Starting with a two-level multigrid solver .. 123

8.4 Testing two level solver on sheet atomization case 125

8.5 Comparison of speed on higher cell counts ... 129

8.6 Multi-level solver .. 132

8.7 Chapter Summary ... 136

Chapter 9 Conclusion and further work ... 137

9.1 Conclusion .. 137

9.2 Further work ... 138

Publications .. 140

References.. 141

Appendix: Multigrid Solver Code ... 155

5 | P a g e

Acknowledgements

I must thank anyone that has contributed directly or indirectly to my study

throughout my 7 years at Brunel University first during undergraduate and then

post-graduate programs. Though there are some that deserve special thanks.

First my supervisor Dr Jun Xia for his guidance throughout this project, as well as

organising numerous seminars that have contributed to my understanding of this

subject. Dr Junji Shinjo for his help and advice during the initial stages of study, as

well as others Dr Kadi Wan, Dr Lei Zhao, Dr Alan Gray and Dr George Fern for

suggestions and guidance.

I must also thank the Thomas Gerald Gray scholarship for the funding that made

this project possible as well as the trustees for their discussion during annual

presentations.

I must thank my family and specifically my parents, Dr Paul Dyson and Dr Angela

Dyson, for all the endless support and guidance they have given me.

Finally, I must thank my granny, Judy Dyson, for always being there when I needed

it but who passed away just before this thesis was submitted. You will be greatly

missed.

6 | P a g e

List of Figures

Figure 1: Breakup regime characterization (Lefebvre, 1989) 20

Figure 2: Flow patterns of breakup regimes in Figure 1 (Faeth, 1991)..................... 21

Figure 3: Illustration of breakup regimes (Sun, 2016) ... 22

Figure 4: Illustration of Sinuous and Varicose modes (Wang, et al., 2015) 23

Figure 5: Popular version of the sheet atomization process (Deshpande, et al., 2015)

 .. 23

Figure 6: Excerpt of a domain showing an example of volume fractions in a mesh

and the interface created with them (Elgeti & Sauerland, 2016) 25

Figure 7: Visualisation of the CSF method in 2D (Brackbill, et al., 1992) 26

Figure 8: Illustration of the ghost fluid method (Pringuey, 2012) 27

Figure 9: Liquid jet example taken from (Shinjo & Umemura, 2010) 30

Figure 10: Illustration of Moore's Law (Assured Systems, 2016) 33

Figure 11: Block diagram of a streaming multiprocessor in an NVidia Kepler GPU

(NVidia Coorperation, 2012) .. 37

Figure 12: Comparison between CPU and GPU in terms of compute power and

memory bandwidth (Nvidia Corperation, 2017).. 38

Figure 13: Illustration of the scaling shown by (Griebel & Zaspel, 2010) 45

Figure 15: Outline of the PISO Algorithm (Giannopapa & Papadakis , 2007) 55

Figure 15: Illustration of the errors removed in a multigrid method (Lawrence

Livermore National Laboratory, n.d.) .. 60

Figure 16: Comparison of GPU memory bandwidth with varying transfer size 62

Figure 17: Initial condition of Zalesak's Disk .. 65

Figure 18: Interface at final time step (grey) compared to initial 100 grid (black).... 66

Figure 19: Interface at final time step (grey) compared to initial 200 grid (black).... 66

Figure 20: Interface at final time step (grey) compared to initial 400 grid (black).... 67

Figure 21: Interface comparison at Courant number of 1 (grey) compared to initial

(black) ... 69

7 | P a g e

Figure 22: Interface comparison at Courant number of 0.0625 (grey) compared to

initial (black) ... 69

Figure 23: Initial conditions of Rayleigh-Taylor interface problem 70

Figure 24: Interface at t=0.6s. From L to R, 32, 64, 128, 256 cells(in grey) per unit

length, compared to reference solution (in black) .. 71

Figure 25: Interface at t=0.7s. From L to R, 32, 64, 128, 256 cells(in grey) per unit

length, compared to reference solution (in black) .. 72

Figure 26: Interface at t=0.8s. From L to R, 32, 64, 128, 256 cells (in grey) per unit

length, compared to reference solution (in black) .. 72

Figure 27: Interface at t=0.9s. From L to R, 32, 64, 128, 256 cells (in grey) per unit

length, compared to reference solution (in black) .. 73

Figure 28: Comparison of compute times of different linear solvers 74

Figure 29: Configuration of the rising bubble case proposed by (Hysing, et al., 2009)

 .. 75

Figure 30: Interface smearing initialization on 40 cell mesh. (A) left, initial interface.

(B) right, smeared interface. Red is liquid phase, Blue gas phase and transition is the

interface ... 76

Figure 31: Bubble outline at t = 3s. Grids of 40 (Blue), 80 (Orange), 160 (Grey), 320

(Yellow) .. 77

Figure 32: Close-up of bubble outline, Grids of 40 (Blue), 80 (Orange), 160 (Grey),

320 (Yellow) ... 78

Figure 33: Comparison of circularity on various meshes in OpenFOAM and the level

set methods used in (Hysing, et al., 2009) ... 79

Figure 34: Comparison of bubble centre of mass .. 80

Figure 35: Comparison of bubble rise velocities .. 81

Figure 36: Graph comparing compute time with number of pressure correction

steps ... 82

Figure 37: Circularity comparison with varying pressure correction steps 83

Figure 38: Centre of mass compared across varying pressure correction steps 83

8 | P a g e

Figure 39: Comparison of Y velocity across number of pressure correction steps ... 84

Figure 40: Percentage error across varying number of pressure correction steps ... 85

Figure 41: OpenFOAM parallel scaling with different domain decomposition

methods on 160 cell case ... 86

Figure 42: Parallel scaling of OpenFOAM .. 87

Figure 43: Parallel Scaling with 320 Cells, black is linear scaling, grey is scaling

produced in this study ... 88

Figure 44: Parallel scaling of 480 cells per unit, black is linear scaling, grey is scaling

produced in this study ... 88

Figure 45: Diagram of experimental setup from (Longmire, et al., 2001) 91

Figure 46: Illustration of computational setup .. 92

Figure 47: Comparison of computational results (A) to left, experimental results

from (Longmire, Norman, & Gefroh, 2001) (B) to the right, showing the jet outline

and droplet pinch off. In each series from L to R 0, 120 and 240 degrees of the

sinusoidal profile. ... 93

Figure 48: 3D representation of the computational results in this study using iso-

surface of γ = 0.5 .. 94

Figure 49: Jet centreline velocity at 150 degrees, including computational results

from this study, experimental results from (Longmire, et al., 2001) and a

comparison to (Pan & Suga, 2003) .. 95

Figure 50: Jet centreline velocity at 330 degrees, including computational results

from this study, experimental results from (Longmire, et al., 2001) and a

comparison to (Pan & Suga, 2003) .. 95

Figure 51: Radial velocity profile at z/D = 6.15 and 60 degrees, including

computational results from this study, experimental results from (Longmire, et al.,

2001) and a comparison to (Pan & Suga, 2003) .. 96

Figure 52: Mesh convergence of solution .. 97

Figure 53: Outline of accelerated solver interface .. 99

Figure 54: Initial memory bandwidth usage .. 102

9 | P a g e

Figure 55: Final memory bandwidth usage ... 106

Figure 56: Compute time variation on test case .. 107

Figure 57: Compute time variation among higher cell count test session 108

Figure 58: Compute times of continuity and momentum solvers 108

Figure 59: Outline of boundary conditions used ... 112

Figure 60: Sheet visualisation taken at 4 × 10-4s. Iso contour of volume fraction =

0.5. Coloured by velocity in m/s .. 113

Figure 61: Graph of data presented by (Deshpande, et al., 2015) and what would be

expected by using the the offset related to the reduced number of cells 114

Figure 62: Comparison of data and data offset with results from this work 115

Figure 63: Comparison between alternative boundary conditions on intact liquid

core length ... 116

Figure 64: Breakup Length using multiple slices .. 117

Figure 65: Variation of intact liquid core length across domain, using maximum and

minimum intact core length at discrete points across the sheet width 118

Figure 66: Variation in breakup length in spanwise direction on coarse mesh, using

maximum and minimum intact core length at discrete points across the sheet width

 .. 118

Figure 67: Iso contour of volume fraction = 0.5 on dense mesh (top) and coarse

mesh (bottom), coloured by velocity in m/s.. 119

Figure 68: Comparison of intact liquid core length over time using published results

and results from this study .. 120

Figure 69: Intact liquid core length with varying domain width 121

Figure 70: Flow chart of two level multigrid solver ... 125

Figure 72: Compute analysis of AMG 2 level solver .. 126

Figure 72: Breakup length comparison between CPU and GPU 127

Figure 73: Compute time variation using different numbers of smoothing iterations

 .. 128

10 | P a g e

Figure 74: Memory bandwidth usage of h/6 cell size .. 130

Figure 75: Illustration of GPU timing ... 131

Figure 76: Memory bandwidth usage of coarsest level in two level solver 133

11 | P a g e

List of Tables

Table 1: Key performance criteria of the CPU and GPU used in this work 61

Table 2: Values of E (error) for each cell density ... 68

Table 3: Results of Courant number investigation .. 68

Table 4: Rayleigh-Taylor instability fluid parameters .. 70

Table 5: Parameters for bubble rise case .. 76

Table 6: Dimensionless parameters used by (Longmire, et al., 2001) 91

Table 7: Speed up of dripping case using GPU accelerated solvers over CPU solvers

 .. 101

Table 8: Memory transfer proportions in one time step of JSAccel 102

Table 9: Operating conditions of sheet atomization ... 111

Table 10: Comparison of speed up with varying cell counts 129

Table 11: Percentages of GPU compute time for one time step 132

Table 12: Percentage of solve time in one time step of significant solver sections 135

Table 13: Percentages of time spent in memory copy phase 135

12 | P a g e

Nomenclature

Roman Symbols

A Matrix of coefficients (linear system)

b Source terms (linear system)

B Byte (8 Bits)

𝐶ఊ Interface Compression Coefficient

Ca Capilary Number

Co Courant Number

CoM Centre of Mass [m]

𝑑 Cell Size [m]

D Jet Diameter [m]

�⃖⃗� Rate of Strain Tensor [/s]

E Parallel Efficiency

Eo Eötvös number

g Gravitational Acceleration [m/s2]

h Half Sheet Thickness [m]

I Interpolation Matrix

𝑙 Characteristic Length [m]

M Preconditioning matrix

N Number of Cores

𝑛 Cell Surface Normal Vector

Oh Ohnesorge number

p Pressure [N/m2]

P Search direction vector (Linear System)

R Residual Vector (Linear System)

Re Reynolds Number

𝑆 Cell Surface Area [m2]

13 | P a g e

𝑠𝑓 Scaling Factor

t Time [s]

T Compute Time [s]

U Velocity [m/s]

𝑈ሬሬ⃗ Velocity Vector [m/s]

Ur Relative Velocity [m/s]

We Weber Number

x Result Vector (linear system)

Xliq Intact Liquid Core Length [m]

Greek Symbols

ρ Density [kg/m3]

σ Surface Tension [n/m]

μ Dynamic Viscosity [Pa.s]

γ Volume Fraction

κ Interface Curvature [m]

∆𝑡 Time Step [s]

∆𝑥 Grid Spacing [m]

π 3.14159…

Φ Mass Flux [kg/s.m2]

Acronyms

AMBER Assisted Model Building with Energy Refinement

AMD Advanced Micro Devices

API Application Programming Interface

BLAS Basic Linear Algebra Subprograms

CFD Computational Fluid Dynamics

CG Conjugate Gradient

14 | P a g e

CLSVOF Coupled Level Set and Volume Of Fluid

COO Coordinate matrix format

CPU Central Processing Unit

CSF Continuum Surface Method

CSR Compressed Sparse Row matrix

cuBLAS CUDA Basic Linear Algebra Subprograms

CUDA Compute Unified Device Architecture

DICPCG Diagonal Incomplete Cholesky Preconditioned Conjugate Gradient

DNS Direct Numerical Simulation

DPCG Diagonal Preconditioned Conjugate Gradient

DRAM Dynamic Random-Access Memory

FLOPS Floating Point Operations Per Second

GAMG Generalised Geometric-Algebraic Multigrid

GenIDLEST
Generalized Incompressible Direct and Large Eddy Simulation of

Turbulence

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

I/O Input/Output

LDU Lower Diagonal Upper

LES Large Eddy Simulation

MPI Message Passing Interface

NAMD Nanoscale Molecular Dynamics

NTS Number of Time Steps

OpenCL Open Computing Language

OpenFOAM Open Field Operation and Manipulation

PCIe Peripheral Component Interconnect Express

PISO Pressure Implicit with Splitting of Operators

RAM Random Access Memory

15 | P a g e

RANS Reynolds Averaged Navier-Stokes

SIMD Single Instruction Multiple Data

SIMPLE Semi-Implicit method for Pressure Linked Equations

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

VOF Volume of Fluid

16 | P a g e

Chapter 1 Introduction

1.1 Motivation

Despite recent developments in new “cleaner” fuelled modes of transport, the

burning of fossil fuels is still dominant in most forms of transport. Even though

fossil fuel transport has existed for over a century the detailed mechanisms that

make it possible and efficient are still not well understood. One of these critical

mechanisms is fuel spray. Current developments in more efficient fuel spray are

limited to resource intensive trial and error methods. To replace this process, it is

desirable to simulate the phenomenon from first principles. However, this requires

enormous computing resources. Therefore, work that has been done to date

consists of high fidelity simulation of limited spray regions e.g. (Shinjo & Umemura,

2010). If simulation is to replace trial and error the computational cost must be

reduced to the point where it becomes a viable alternative. One avenue to achieve

this is alternate emerging computing platforms. These have the potential to reduce

times to solution, power consumption and increase performance density. Or indeed

a combination of these depending on the user’s requirements. Despite the

potential of accelerated computing, it is still yet to be used in primary atomization

modelling. Indeed, more generally accelerated computing is still in it’s infancy for

much more general computational modelling approaches. Therefore, it is highly

desireable to investigate the potentital of accelerated computing in making primary

atomization mdeling a viable alternative to trail and error.

1.2 Accelerated Computing

Accelerated computing is a computing model that uses specialized processors to

achieve some kind of performance benefit. In the quest for ever more powerful

computing resources, accelerated computing has become the norm. Indeed, the

two fastest supercomputers in the world employ some kind of accelerated

computing (top500, 2015). As well as this the 32 most energy efficient

supercomputers are configured in such a way (top500, 2015).

17 | P a g e

The common styles are that a standard Central processing unit (CPU) is used as a

controller for an additional many core processor that is focused on throughput.

These many core processors come in two distinct varieties. The first is the Co-

Processor, popularised by Intel. It generally has fewer cores, this means it’s the

slowest performer but requires less specialist programming. Alternatively, graphics

processing unit (GPUs) are generally considered the most mature technology. They

offer the highest performance but require specialist programming knowledge. Their

development has been driven by the computer games industry, often making them

inexpensive. Manufacturers are generally AMD and NVidia, as will be explained

later the manufacturer can dictate the software that must be used to program

them.

The latest co-processor, Intel Xeon Phi, has around 70 cores with high speed access

to on board memory as well as CPU speed access to system memory. GPUs have

many cores, in the regime of four to five thousand with higher speed access to

onboard memory however access to system memory is generally slow. The latest

Xeon Phis, 2016, have been made as bootable devices, blurring the line between

accelerators and CPUs.

1.3 Thesis Outline

This thesis is outlined as follows. Chapter 2 introduces the concepts behind primary

atomization of liquid spray as well as computational methods used to simulate

them, concluding with a review of previous investigations in the field. Chapter 3

introduces GPU computing and discusses its uses in several fields, primarily in

computational fluid dynamics. Chapter 4 presents the computational methods

employed and the governing equations involved. Chapter 5 presents initial test

cases that show OpenFOAMs applicability to multiphase flows. Also shown are

details of computational effort required. Chapter 6 investigates a test case that

brings together the elements tested in the previous chapter to assess its use in

primary atomization. Also discussed is accelerations to the OpenFOAM code using

18 | P a g e

GPUs. Chapter 7 details a much more complex test case of primary atomization.

Chapter 8 explores an improved GPU accelerated method and its application to the

case described in Chapter 7. Finally, some conclusions are made along with

suggestions for further work.

19 | P a g e

Chapter 2 Review of Spray Atomization

2.1 Breakup Regimes of round jets

A liquid jet emanating from an orifice into stagnant air has been investigated since

the 1800s. As a result of various investigations there is a common consensus of a

group of regimes defined by three dimensionless numbers (Lefebvre, 1989). All are

normalised by a characteristic length 𝑙, usually the nozzle diameter for round jets

and the sheet thickness for sheets. The first, the Weber number (equation 1), is the

ratio between the fluid’s inertia and surface tension.

 𝑊𝑒 =
𝜌𝑈ଶ𝑙

𝜎
 (1)

Second is the Reynolds number (equation 2), which is the ratio of inertial to viscous

forces:

 𝑅𝑒 =
𝜌𝑈𝑙

𝜇
 (2)

Thirdly, the Ohnesorge number (equation 3), relates viscous forces to surface

tension forces:

 𝑂ℎ =
𝜇

ඥ𝜌𝜎𝑙
 (3)

In each of these 𝜌 is the fluid density, 𝑈 the liquid velocity, 𝜎 the surface tension

coefficient and 𝜇 the liquid viscosity. In addition, the Eötvös number (or Bond

number) can also be used to describe the flow conditions, this is a relationship

between gravitational forces and surface tension, shown in equation 4.

 𝐸𝑜 =
𝜌𝑔ଶ𝑙

𝜎
 (4)

20 | P a g e

Where 𝑔 is is the acceleration due to gravity, 𝑙 is the characteristic length, 𝜌 is the

fluid density and 𝜎 is the surface tension coefficient. Finally, the Capillary number is

the relationship between viscous and surface tension forces across an interface.

 𝐶𝑎 =
𝜇𝑈

𝜎
 (5)

Figure 1: Breakup regime characterization (Lefebvre, 1989)

21 | P a g e

Figure 2: Flow patterns of breakup regimes in Figure 1 (Faeth, 1991)

The relationship of the Ohnesorge and Reynolds numbers, which are named in

Figure 1, gives a characterization of the breakup patterns that are visualised in

Figure 2. In the Rayleigh regime surface tension forces are responsible for the jet

breakup. Droplets in this regime are greater in diameter than the nozzle and the

onset of breakup is many diameters after the nozzle exit, described by Rayleigh in

(Rayleigh, 1879). In the 1st wind regime aerodynamic forces start to take over from

surface tension as the driver of breakup. Droplets of about the nozzle diameter are

formed and the point of breakup is reduced. In the 2nd wind induced regime greater

aerodynamic forces cause ligaments and droplets to be broken off the liquid core

even earlier, these liquid structures will then further breakup into droplets smaller

than the nozzle. Finally, in the atomization regime the jet is fully turbulent and

breakup begins at the exit of the nozzle. Eventually droplets many times smaller

than the nozzle diameter will be produced. When applied to fuel sprays, which

generally are injected into the combustion chamber at high velocity, the

characteristic dimensionless numbers place the spray in the atomization regime.

22 | P a g e

The atomization of a spray is a complex multiscale problem and is commonly split

into two distinct phases. The first is primary atomization, which takes place near to

the nozzle exit. In this section the liquid core is generally intact with smaller

ligaments or droplets emanating from the core, shown in blue in Figure 3. The next

phase is secondary atomization where generally little or none of the liquid core is

intact. The common forms of breakup in this region are the drops and ligaments

that have detached from the liquid core breaking into yet smaller drops, shown in

Figure 3 in green. Secondary atomization can be further divided into additional

regimes. Using the classification shown in Figure 3 the dense regime will contain

larger liquid structures that aren’t of regular sizes. Following this in the

intermediate regime the liquid structures have broken down into more regular

spherical droplets. Finally, in the dilute regime these spherical droplets now

sparsely populate the gas phase.

Figure 3: Illustration of breakup regimes (Sun, 2016)

2.2 Breakup of a liquid sheet

In a sheet configuration, the liquid phase is injected through a slit generally several

times as wide as it is thick. This kind of injection configuration can be found in many

applications but most commonly in aerospace engines. Early investigations into the

instability of inviscid sheets was conducted by Squire (1953), Taylor (1959) and

Hagerty & Shea (1955). Hagerty & Shea (1955) showed experimentally that the

sinuous and varicose modes predicted by theoretical analysis could be found at the

sheet interface as shown in Figure 4.

23 | P a g e

Figure 4: Illustration of Sinuous and Varicose modes (Wang, et al., 2015)

By furthering instability analysis to a viscous liquid sheet Li & Tankin, (1991) stated

that viscosity does have a significant impact on the modes of instability showing

that in contrast to inviscid sheets, where the only mode of instability is

aerodynamic, viscous sheets have an additional viscosity enhanced instability.

Several investigations have described the atomization of a liquid sheet (Fraser, et

al., 1962) & (Dombrowski & Johns, 1963). The review article by Sirignano &

Mehring, (2000) describes three modes of breakup: rim, wave and perforated-

sheet. The wave mode is shown in Figure 5. In the rim mode, the surface tension

forces cause the free edge of the sheet to contract into a thick rim. This then breaks

up in a mode corresponding to that of a liquid jet described previously. This mode is

most prominent when the liquids viscosity and surface tension are both high. In the

perforated sheet mode holes appear in the sheet that grow in size and coalesce

producing ligaments of varying sizes that further break into drops.

Figure 5: Popular version of the sheet atomization process (Deshpande, et al., 2015)

Finally, the wave mode is where the sheet is broken up by half or full wavelengths

of the most unstable wave. The broken off sheet sections then roll into ligaments

owing to surface tension before breaking up into droplets.

24 | P a g e

2.3 Computational Modelling of Atomization

The characteristics described previously partly explain why the primary atomization

regime is still not well understood. While it is accepted that there are many

phenomena that promote instability in the jet or sheet, the dominant phenomena

are still to be identified. Using experimental techniques has been difficult owing to

the need to produce images with a very high temporal and spatial resolution.

Therefore, using numerical methods to study this area has received far more

attention. As the spray breakup is often split into two regions, generally so is the

modelling. In the primary atomization region there are complex topological changes

in the fluid-gas interface therefore it is sensible to resolve these changes using the

Eulerian coordinate system. However, in the secondary atomization regime the

liquid structures are far more “simple” and can be generalised as spherical droplets.

To this end the Lagrangian coordinate system is often used. Models are then

created to simulate the secondary breakup of the spherical droplets e.g. (Apte, et

al., 2003). More recently there has been development in the coupling of Eulerian

and Lagrangian methods, with the aim of simulating the whole spray process at a

reasonable cost (Herrmann, 2010).

Numerical simulations such as this require the ability to identify the interface

between the liquid and gas in some way. These methods are often grouped into

two distinct categories, each with their own strengths and weaknesses. These are

explicit and implicit. In explicit methods, the computational mesh will move with

the interface whereas in implicit methods some scalar field is used to describe the

location of the interface on a fixed mesh. The most commonly used explicit method

is the Front tracking method (Unverdi & Tryggvason, 1992). The flow field is

described in the normal Eulerian mesh system, but an additional unstructured grid

is used to describe the interface between multiple fluids. This additional grid moves

through the stationary grid and thus requires regular grid reconstruction however

as the interface is explicitly described surface tension is easy to describe. The most

typically used implicit methods are the Volume Of Fluid (VOF) method (Hirt &

25 | P a g e

Nichols, 1981) and the level set method (Osher & Sethian, 1988). The VOF method

uses a scalar value for a “volume fraction” this scalar is bounded by zero and one

and represents the volume of one cell occupied by one fluid. In cells that are

completely filled with one fluid or another, the volume fraction will be one (or

zero). At the interface there will be cells containing both fluids and in these

locations the volume fraction will be between one and zero this is visualised in

Figure 6.

Figure 6: Excerpt of a domain showing an example of volume fractions in a mesh and the interface created with
them (Elgeti & Sauerland, 2016)

The level set function is based on the transport of a function using the velocity field.

The level set function can be described as the signed distance function to the

interface, i.e. the interface is located at the zero-level set. Negative values are one

fluid while positive are the other fluid.

The VOF methods strengths are its ability to easily manage merging and break-up of

fluid structures, as well as maintaining a sharp interface and good mass

conservation (Gopala & van Wachem, 2008). However, VOF suffers from an

uncertainty in the interface curvature owing to the need to locally reconstruct the

interface in each cell. This often leads to inaccuracies in the calculation of surface

tension forces. Additionally, it also often suffers from unphysical numerical

diffusion of the interface. Alternatively, the level set method has the reverse

characteristics. More recently there has been a move to the coupled level set and

volume of fluid solver (CLSVOF) (Sussman & Puckett, 2000), this combines the

26 | P a g e

advantages of the VOF method with the level set method therefore outperforming

both.

With a defined interface the next numerical obstacle is how to treat the

singularities that occur at the interface. Two common methods can be found in

multiphase CFD, the Continuum Surface Force (CSF) method (Brackbill, et al., 1992)

and the Ghost fluid method (Fedkiw, et al., 1999). The original formulation of the

CSF method made by Brackbill et al., (1992) was for the VOF method. Later this was

extended to level set by Chang et al., (1996). In the CSF method, the interface is

represented as a region with a thickness, as show in Figure 7. Therefore, the fluid

properties (density and viscosity) are treated as a smooth function across the

interface region. Surface tension is also transformed into a volume force applied

across this region.

Figure 7: Visualisation of the CSF method in 2D (Brackbill, et al., 1992)

This treatment of the interface as a region with a thickness has a distinct drawback.

Often a spurious velocity is introduced at the interface (Harvie, et al., 2006) due to

a smooth pressure field being computed by the CSF method when in reality a

pressure jump condition should exist at the interface. Despite this limitation the

CSF method has found use in spray atomization simulations.

In order to combat the spurious currents common in the CSF method; Fedkiw et al.,

(1999) developed the ghost fluid method originally for use in the compressible

27 | P a g e

Euler equations. It was further developed by Liu et al., (2000) and Kang et al., (2000)

to the point where it could be used with two phase incompressible flows. In the

ghost fluid method, the surface tension force is applied by a jump condition in the

pressure. With estimated jump conditions an algorithm will extend each fluid a few

cells into the other, beyond the interface, at each time step. These are the so called

“ghost regions” this is illustrated in Figure 8.

Figure 8: Illustration of the ghost fluid method (Pringuey, 2012)

In the band around the interface the governing equations (mass, momentum and

energy) are solved for both fluids. The correct solution is then selected from the

two available using the fluid descriptor from the interface capturing method. The

original formulation as proposed by Fedkiw et al., (1999) was applied to the level

set method, the sign of the function selecting the fluid in that location. The level set

method is well suited to be a companion of the ghost fluid method as the jump

conditions it requires are easily derived from the signed distance function.

However, if used in combination with the VOF method a distance function will need

to be constantly recalculated with the movement of the interface. The ghost fluid

method has been used by many investigations into primary atomization in

combination with level set (Desjardins, et al., 2008) and VOF (Menard, et al., 2007).

2.4 Turbulence Considerations

Primary atomization occurs from high speed liquid injection, so the corresponding

length and time scales vary significantly. Therefore, resolving these scales

numerically represents a significant challenge. Generally, in primary atomization

28 | P a g e

two of the three common approaches are most used. These are direct numerical

simulation (DNS) and large eddy simulation (LES) however Reynolds-Averaged

Navier-Stokes (RANS) receives occasional attention (Gorokhovski & Herrmann,

2008).

DNS directly solves the Navier-Stokes equations with the aim of resolving all time

and length scales. In single phase flows generally, the smallest scale to be resolved

is the Kolmogorov length scale. While resolving this scale is also required in

multiphase flows an additional scale that corresponds to the smallest liquid

structure must also be resolved by the computational mesh. As the smallest liquid

structure will tend to zero in the location of pinch off from the liquid core some

modelling has to be introduced even in DNS. Gorokhovski & Herrmann (2008)

stated that with these models the smallest droplets produced should be resolved

by between two and five mesh cells. This leads to computational grids in the

billions of cells to model the primary breakup regime. Computational resources

have only recently become available to tackle simulations on this scale.

As DNS is so computationally expensive, significant effort has been placed into

using LES as an alternative to achieve investigations that are affordable. Indeed,

often cited examples of important work in the field e.g. (Bianchi, et al., 2007) are

strictly LES modelled approaches. Though really these are often considered as

“under-resolved DNS”. Approaches such as these are based on the LES formulation

for a single phase. The aim of single phase LES is to reduce the computational cost

by ignoring the smallest length scales by filtering the Navier-Stokes equations. The

effects of these small length scales are then modelled with sub-grid scale models

such as that proposed by Smagorinsky (1963). However, the common interface

tracking methods such as those described above can only track interfaces of the

size of the grid. Therefore, in this configuration the two distinct phases are

modelled with LES while the interface between them is described using under

resolved DNS this requires mesh independence studies. However, investigations

such as Chesnel et al., (2011) have developed sub-grid models for interface tracking

29 | P a g e

and singularity treatment. This constitutes full LES modelling and their results

showed only weak grid dependency.

RANS is the cheapest turbulence modelling method. It averages the flow over time

and models fluctuations with additional transport equations. Its use in primary

atomization is limited as it is not considered accurate enough to give useful

information about the flow field (Jiang, et al., 2010).

2.5 Previous Primary Atomization Modelling Investigation

The most important modelling investigations found in the literature are those

whose fluid parameters closely represent real atomization cases. The area that has

received most attention is a round jet injected into quiescent air. An early

investigation by De Villiers et al., (2004) used an LES and VOF approach, though

with relatively coarse grids, on diesel spray breakup. The investigation found spray

angle and drop size distributions, though these varied significantly with a finer grid.

Bianchi et al., (2005) and Bianchi et al., (2007) used finer grids, again with an LES

and VOF method on a similar diesel spray. By simulating part of the injector, they

investigated its influence on the resulting spray parameters, showing there was a

significant impact on the intact liquid core length. However, there is no grid

convergence information to show how well the flow is resolved. By coupling

CLSVOF with the ghost fluid method Menard et al., (2007) presented results for

diesel like spray though Gorokhovski & Herrmann (2008) suggest that the mesh

used was too coarse to be considered full DNS. Desjardins et al., (2008) developed a

combined level set and ghost fluid method to reduce mass loss from the level set

method. This was then used to investigate diesel like spray, though as with previous

investigations no grid refinement is performed. Therefore, while it shows many

different shapes and sizes of liquid structures it may still be under resolved. Sander

& Weigand (2008) concentrated more on investigating the effects of the nozzle on

liquid sheet breakup. Several simple nozzle types were evaluated as well as

different velocity profiles that might be caused by turbulence in the nozzle. It was

30 | P a g e

reported that the level of kinetic energy at the inlet had the most significant

influence on the sheet breakup. In order to reduce to some extent, the number of

grid cells required in theses complex flow fields Fuster et al., (2009) used an octree

adaptive grid method, combined with VOF, reporting several results on atomization

that agreed with experimental results.

Figure 9: Liquid jet example taken from (Shinjo & Umemura, 2010)

The series by Shinjo and Umemura (Shinjo & Umemura, 2010), (Shinjo & Umemura,

2011) and (Shinjo & Umemura, 2011) is often cited as a benchmark simulation in

this field. In this investigation the CLSVOF method for interface tracking, with the

CSF method for evaluating surface tension forces, was used on a round liquid jet on

a highly resolved grid, of the order of 0.35𝜇𝑚. The aim of the investigation was a

“cause and effect” analysis of the effects of the jet tip on atomization. Therefore,

the effects of the injector are ignored. Figure 9 shows the extensive ligament and

droplet structures emanating from the tip but also a significant breakup in the jet

behind it. It is suggested in this configuration of short injection diesel like spray the

Tollmien-Schlichting instability is responsible for breakup. The computational cost

of this investigation was huge, requiring 5760 CPU cores for over 2 weeks,

illustrating the need to reduce the computational cost of these models. Desjardins

et al., (2013) again used their level set and ghost fluid method to this time

investigate the effects of changing surface tension coefficient. Showing that with an

increased surface tension, as is often found in bio-fuels, much larger drops are

generated after atomization. Salvador et al., (2016) presented an investigation into

a diesel like flow configuration very similar to that used by Shinjo & Umemura

(2010). However, they used an octree adaptive grid refinement system with the

VOF and CSF methods. This reduced cell count down to just 12.8 million though it is

31 | P a g e

stated there are still some mesh convergence issues. Ghiji et al., (2016) presented

qualitative comparisons between VOF and LES simulations and experimental

images. Despite the finest mesh used showing similarities to the experimental

results significant sensitivity to cell size was found. However, the fluid properties

are identical to those that would be found in real diesel applications. Grosshans et

al., (2016) used the VOF and CSF methodologies with LES turbulence modelling to

study varying physical and numerical parameters of a liquid jet atomizing in still air.

While the Weber and Reynolds numbers place it clearly in the atomization regime

and the jet is described as diesel like the density and viscosity ratios are significantly

reduced for numerical stability. Despite this it is shown that varying density ratio

has insignificant effect on the jet breakup. However, reducing the viscosity ratio

resulted in smaller droplets. Finally, some injector effects were assessed, showing

that in-nozzle turbulence and cavitation bubbles caused the liquid core to break up

faster.

2.6 Computational Cost

From the litriture it is clear that multiphase modelling and in particular modelling

primary atomization of fuel spray has a very high computational cost. This stems

from not only needing to resolve the Kolmogorov length scales, as in single phase

DNS, but also needing to resolve liquid breakup. This final criterion tends to zero

therby requiring extrememly small cell sizes. This consequently leads to needing

cell counts in the hundreds of milliions or even billions to solve even modest

domain dimensions. As the next chapter will show GPUs have key computing

metrics six or more times that of the CPUs currently available, often for less than

double the power consumption and at a comparable price. In addition, their highly

parallel nature makes them ideally suited to the very high cell counts commonly

found in primary atomization simulation.

32 | P a g e

Chapter 3 GPU Computing

3.1 Overview

This chapter will give an introduction to GPU computing. Beginning with a history of

how computing has evolved over the past decades. This provides a background to

why the need for GPU computing has arisen. Next an overview of the architectural

differences between GPUs and CPUs is given. Following this a general explanation

of CUDA is given to provide context of how the coding model works. Finally, a

discussion of previous work using GPUs for code acceleration is presented which

culminates in assessing GPU usage in computational fluid dynamics.

3.2 History of Computing

Since personal computers began to become a normal occurrence in both the home

and the work place, in the early 1980s, manufacturers have been in a quest for ever

greater computational power. As the computational power grows, the

requirements of software run on that hardware grows. To this end manufacturers,

like Intel and AMD (Advanced Micro Devices), managed until recently to pack

greater numbers of transistors running at higher clock frequencies into their CPUs.

As predicted by Moore’s law (Moore, 1975) the number of components that could

be placed onto a dense integrated circuit, at the same cost, doubled every two

years shown in Figure 10. By combining this doubling of transistors on a circuit with

increased transistor speed came the popular prediction of David House that CPU

performance would double every 18 months.

33 | P a g e

Figure 10: Illustration of Moore's Law (Assured Systems, 2016)

However, this relentless doubling of components could not be sustained. In the

early 2000’s the industry hit what was known as the “power wall”. This came about

by the larger number of components running at higher frequencies consuming

exponentially more power. With power consumption comes heat generation, as the

overall size of a CPU has not really changed, dissipating the heat becomes a

significant challenge.

This need to dissipate heat lead to a new way of thinking. Instead of trying to run at

ever higher speeds but still with the ability to fit more components onto a chip, a

new solution had to be found. This solution was to reduce the clock frequency but

divide the chip into multiple cores. This meant that each core would run at a lower

speed than their predecessors, but the aggregate performance would be greater.

Additionally, by running at lower clock frequencies less power would be consumed

meaning less heat is generated, therefore there is a lower cooling requirement.

Thus in 2005 both Intel and AMD produced the first multicore CPUs. Intel, the

Pentium D and AMD the Athlon 64 X2. Since these releases the number of cores

packed onto a single CPU has become the new battle ground in microprocessor

development. Currently high-end CPUs for server applications may have as many as

34 | P a g e

24 cores. Such is now the proliferation of multicore CPUs, they can be found in

anything from mobile phones to games consoles to supercomputers.

This change in hardware configuration also caused software developers to change

their way of programming. Previously only programs that used massive

supercomputers had to be concerned with producing programs that ran in parallel.

Most programs were simply written to run code in serial (one instruction after

another). But with the advent of new multi core CPUs this was no longer efficient.

Instead programmers had to find ways to introduce parallelism into their code. This

gives rise to parallel computing.

There are a number of options for parallelising code but the one most commonly

found in computational fluid dynamics is decomposition. In this method the

problem is segmented into a number of smaller sections with each being solved on

one processor or core. The boundaries between these sections will then

communicate their values between cores. This inter processor communication is

often what limits parallel computing. As such parallel computing codes are often

benchmarked using parallel scaling. This can take the form of either strong or weak

scaling performance. In strong scaling the problem size is kept the same and the

number of cores is increased. The reduction in compute time obtained by

increasing the number of cores used is then compared to ideal scaling. In ideal

scaling the compute time would be reduced by the number of cores used. In other

words, using four times as many cores would mean compute time becomes ¼ of

what it would be on one core. Often in engineering instead of just comparing raw

compute times the parallel efficiency is compared. This is defined by

 𝐸 =
1

𝑁

𝑇ଵ

𝑇
 (6)

where E is the parallel efficiency, N is the number of cores, T1 is the computational

time for one core and Tp the time for said number of cores. Getting a parallel

35 | P a g e

efficiency as close to 100% as possible is desirable. Values of above 100% are

possible though uncommon, this is known as super linear scaling. This comes about

generally by using more CPUs rather than cores, this increase in CPUs has a

corresponding increase in cache size. So, for a fixed problem size more of the

problem can reside in high speed cache which will reduce memory access times

therefore reducing compute times.

Weak scaling is less commonly used as a comparison in parallel computing, here the

problem size per core is kept constant. This means that with any increase in core

count there is a corresponding increase in problem size. In this case the desirable

outcome is that time to solution will remain constant across all core counts and

problem sizes.

3.3 Emergence of General Purpose Graphics Processor Computing (GPGPU)

GPUs began emerging in the late 90s. First being used in gaming consoles that

required hardware accelerated 3D images. These concepts began to move into

computers giving the graphical user interface everyone has become accustomed to.

Because of this requirement to generate images in fractions of a second GPUs were

developed into very high throughput orientated processors. As an image is made up

of many pixels GPUs developed into highly parallel compute units. All pixels are

computed in parallel and returned to the display. Early GPUs weren’t

programmable so were restricted to just outputting images to displays. This began

to change in the early 1990s with the use of graphics programming languages like

OpenGL (Khronos Group, 2017), Direct3D (Microsoft, 2017) and Cg (Nvidia

Corperation, 2017). It became possible to convert mathematical operations to a

series of colour transformations. But this was very convoluted and so uptake was

minimal.

In the early 2000s the advent of programming languages specifically aimed at

harnessing the power of GPUs saw the first real scientific computing programs run

on GPUs. While Sh/RapidMind (McCool & Du Toit, 2004) and BrookGPU (Buck, et

36 | P a g e

al., 2004) meant GPU accelerated programs now didn’t have to be written in two

languages, using a completely new programming language still represented a

barrier.

In 2006 NVidia released Compute unified device architecture (CUDA) (Nvidia

Corperation, 2017) this caused the use of GPUs in general scientific and

mathematical computing to explode. In contrast to previous GPU programming

methods, CUDA was built as an extension to C/C++ and the scientific language

Fortran. This difference allowed much easier integration into existing CPU codes or

the development of specific GPU code without huge amounts of new knowledge.

This step change in the access to the power of GPUs led to a flurry of advances in

numerous areas such as; physics, maths and chemistry.

With all its benefits, CUDA still has one major drawback, it is proprietary technology

owned by NVidia and so can only be used on NVidia GPUs. But with the scale of the

uptake of GPGPU computing CUDA had created, several vendors came together in

2008 and developed the OpenCL standard (The Khronos Group, 2012). While

OpenCL is cross platform and so works on any GPU, or any massively parallel

device, it is generally accepted that it is not as stable or performs as well as CUDA.

For this reason, the present work uses CUDA.

3.4 GPU hardware

A GPU can generally be found attached to a graphics card. This graphics card will

interface with the motherboard of a computer by way of an input output slot. This

I/O slot is generally PCIe. Also included on the graphics card will be an amount of

DRAM (Dynamic Random-Access Memory), currently up to 24GB, as well as cooling

and other components. As previously mentioned GPUs are generally manufactured

by NVidia and AMD. Because the CUDA API which is only available on NVidia GPUs

is the most mature and best performing option only NVidia GPUs will be described.

37 | P a g e

Looking at the GPU chip in detail will show why it is such an attractive proposition

to high performance computing.

Figure 11: Block diagram of a streaming multiprocessor in an NVidia Kepler GPU (NVidia
Coorperation, 2012)

Figure 11, above, details part of an NVidia Kepler GPU chip (specifically the NVidia

titan black edition). What is featured is a streaming multiprocessor. Each chip has

15 Streaming Multiprocessors (SM) as well as six 64-bit memory controllers. These

two main components are what sets a GPU apart from a CPU. Each SM controls 192

cores, each of which is capable of performing two single precision calculations per

clock cycle. Coupled with each group of three cores is a double precision unit, giving

64 double precision units with two operations per cycle. This means in total

theoretically this GPU is capable of 5121 GFLOPS in single precision or 1707 GFLOPS

in double precision. The six memory controllers coupled with high clock frequency

GDDR5 RAM also mean this GPU is capable of accessing its global memory at

336GB/s. Both figures are many times greater than the most powerful CPUs, never

mind ones available at an equivalent price as illustrated in Figure 12.

38 | P a g e

Figure 12: Comparison between CPU and GPU in terms of compute power and memory bandwidth
(Nvidia Corperation, 2017)

The cores mentioned earlier all have the ability to execute a thread. Which is a

collection of sequential code. But because the GPU is throughput orientated each

core in a streaming multiprocessor must perform the same instruction. If the next

instruction is different it must wait until all cores have completed the previous

instruction. This is the so called the Single Instruction Multiple thread (SIMT) model.

When cores need to execute different instructions from one and other so called

‘thread divergence’ is reached that can significantly harm performance.

Warps are a group of 32 threads that all access memory at the same time. In

current NVidia GPUs the SM may run a number of warps at once. In order to hide

0

100

200

300

400

500

600

700

800

2003 2008 2013

Ba
nd

w
id

th
 (G

B/
s)

Year

Theoretical Peak Memory Bandwidth

GeForce GPU

Tesla GPU

Intel CPU

0

2500

5000

7500

10000

2003 2008 2013

O
pe

ra
tio

ns
 p

er
 S

ec
on

d
(G

FL
O

PS
)

Year

Theoretical Peak Operations per Second

NVIDIA GPU Single Precision

NVIDIA GPU Double Precision

Intel CPU Single Precision

Intel CPU Double Precision

39 | P a g e

long global memory access times some warps will be accessing memory while

others are performing compute functions.

There are also a number of additional interesting features that make GPUs highly

attractive massively parallel compute units. The first of these is the copy engine,

this is the part of the GPU that deals with transferring data between the CPU and

GPU. Having a copy engine that is separate from the compute engine means

memory can be copied asynchronously to calculation. Some GPUs have one copy

engine allowing calculation and copy either to the device or host while others have

two copy engines allowing simultaneous copy from host to device, device to host

and calculation. Of course, the data that’s being used in the calculation must reside

on the device to be used! As well as asynchronous copy and compute it is also

possible to perform asynchronous computes, with the GPU scheduling them for

best performance. Also, all code executed on the GPU is done so asynchronously to

the CPU. Therefore, calculations can be performed on the CPU at the same time as

the GPU.

3.5 CUDA Overview

Kernels are probably the most important part of CUDA. The CUDA programming

guide defines them as “Functions … when called, are executed N times in parallel by

N different CUDA threads.” Therefore, kernels are a set of instructions executed in

parallel, syntax is provided that indexes threads and blocks. A simple example is

shown below:

__global__ void add(double* A, double* B, double* C)

{

 Int idx = threadIdx.x;

 C[idx] = A[idx] + B[idx];

}

Code 1: Example of a CUDA kernel

40 | P a g e

This simple kernel will add together the vectors A and B to give a result C. The

__global__ identifier signifies that the function is to be run on the GPU. The idx

value is assigned as the thread index. The final line then performs the addition.

With thread zero adding the first element of vector A to the first element of vector

B with the answer being written as the first element of vector C. Thread one then

adds the second elements and so on. It should be noted that these operations will

not happen one after the other but in parallel and in any order.

Now that we have a kernel there is a specific way of executing this kernel. The

following is an example using the kernel above.

Int main()

{

Add<<<1, 32>>>(A, B, C);

}

Code 2: Example of a CUDA kernel launch

While this call is very similar to a C++ function call there is one key difference which

is the numbers between the more-than and less-than signs. These numbers define

the number of blocks and the number of threads in a block respectively. All threads

in a block will be executed by the same SM, therefore to get best throughput the

number of threads in a block should be optimised.

Before the execution of a kernel data must be transferred to the GPU. The results

can then be transferred back to the CPU. This function is almost identical to the C++

memcpy function but with an additional parameter providing the direction the

memory is copied, the options are host to device, device to host and device to

device.

Blocks and threads were mentioned previously as well as that the number of

threads in a block is user defined. But the question remains as to how to define

these values. The first consideration is that there are limits defined by the GPU that

41 | P a g e

is being used. To aid this explanation some details of the NVidia GPU used in this

work are detailed below:

Memory – 6GB
CUDA Cores – 2880
Streaming multiprocessors – 15
Maximum threads per multiprocessor – 2048
Maximum threads per block – 1024
Maximum number of concurrent blocks per SM – 16
Maximum number of blocks per kernel - 263

As the maximum number of blocks is effectively infinite there is no need to restrict

their number and enough should be used to cover all the data for operation. The

ideal way to ensure maximum occupancy is to make sure that the maximum

number of threads per streaming multiprocessor is reached. In this example the

number of threads per block that will achieve full occupancy could be any of a

number of options. In addition to this there are also limits on the number of

registers and shared memory per SM. All of these things considered together is

what will decide the best number of threads per block.

3.6 GPU Drawbacks

While GPUs present huge opportunities to improve scientific computing, they do

have some limitations.

The most crucial aspect is that because GPUs are massively parallel compute units,

running using the SIMT model, algorithms must be selected accordingly. Sometimes

an efficient algorithm that is inherently sequential may perform poorly on a GPU

but well on a CPU however a less efficient algorithm on CPUs when ported to a GPU

may become much faster.

Because of the number of cores available to a GPU program special care must be

taken to ensure that all of those threads are kept occupied. If this is not achieved,

then the high latency memory access time cannot be hidden, and this will cause

poor performance. In CPU programming it is common to only use as many threads

42 | P a g e

as there are cores available. However, in the case of GPU programming it is

generally better to use as many threads as possible given the data set being

operated on. This should ensure that the GPU threads are filled and memory

latency can be hidden.

Data transfer between CPU and GPU is a necessity but is costly. PCIe bandwidth

runs at approximately 12GB/s, which is five times less than CPU memory bandwidth

and about 30 times less than GPU bandwidth. Therefore, large memory transfers

followed by short calculations should be avoided.

3.7 GPU Computing Review

As mentioned previously GPUs have been around for a few decades but their use in

general purpose computing is still fairly new. One of the earliest real uses of

General Purpose Graphics Processor (GPGPU) computing was by Thompson et al.,

(2002). They developed a framework that allowed them to use the early desktop

GPUs for matrix multiplication. This resulted in a speed up of 3.2 times compared to

CPUs of the day.

Molecular mechanics was one of the first fields to take advantage of the

opportunities CUDA presented. Stone et al., (2007) showed that when applied to

individual algorithms noticeable speed gains could be found. When applied to

direct coulomb summation they could evaluate nearly 41 times as many atoms per

second. They also investigated accelerating Molecular Dynamics Force Evaluation in

the molecular dynamics code: NAMD (Nanoscale Molecular Dynamics). This was

compared in a cluster configuration with multiple GPUs compared to multiple CPU

cores. Results showed that a GPU performed about five times as fast as CPU cores.

Anderson et al., (2008) claimed the first development of a general purpose

molecular dynamics code run entirely on GPUs. Their tests were conducted on a

cluster of dual core CPUs, approximately 18 months older than the GPU.

Nevertheless, it was shown that the GPU implementation performed as fast as 36

processor cores. However, running in single precision (required by the GPU) did

43 | P a g e

show greater errors appearing in the results. Friedrichs et al., (2009) reported that

by developing a complete implementation of all-atom protein molecular dynamics

and comparing it to Assisted Model Building with Energy Refinement (AMBER) run

on a single core of a CPU an acceleration of 700 times could be seen. Interestingly

originally this was developed in BrookGPU to run on an ATI GPU but this was found

to perform poorly compared to the equivalent in CUDA. GPU computing has also

been used to benefit financial modelling, resulting in a step change of how it’s used.

The massive speed ups of around 100 times have meant that options can be priced

in real time as opposed to a couple of times per day. Fatone et al., (2012) showed

the effects the GPU can have on performing black Scholes pricing as well as

European options. Showing a speed up of 20 and 125 times respectively compared

to serial CPU operation. Abbas-Turki et al., (2014) also reported on GPU

acceleration of financial pricing this time using the Monte Carlo method.

Comparisons were made pricing European options on a compute cluster. GPU

results showed a speed improvement of about 40 times over equivalent numbers of

quad core CPUs with linear scaling. Also compared is the power consumption of the

system running in CPU and GPU mode. Because of the reduction in compute time

an approximate 50 times power saving is made.

There has also been investigation into elementary mathematics problems. A

common example of this is the work on sparse matrix-vector multiplication by Bell

& Garland (2009) comparing their GPU implementation to single core CPUs showed

up to 12 times improvement. This was from an average over a range of matrix

densities and sizes. Additionally, analysis of memory bandwidth usage and

computing performance in FLOPS was made.

3.8 GPU Computing in Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) has been a recent addition to the selection of

GPU accelerated methods. The strategies used in accelerating CFD have taken two

main avenues. The first avenue is to completely re-write a CFD code to run entirely

44 | P a g e

on GPUs. While these often produce the most significant increases in speed they

come at the cost of generally taking much longer to write as well as often being

specialised to a particular problem. This is known as a full port. The second avenue

is to accelerate sections of the CFD code known as a partial port. It is common that

a CFD code used in a specific situation will have a small segment that accounts for

the vast majority of the computational time expended to solve it. Therefore, a

partial port offers the best compromise between biggest performance gains and

the cost of code re-writing.

Because of the reduced time input partial ports have received the most attention.

Shi et al., (2012) reported that when working with detailed chemical kinetics that

often account for 90% of the simulation time, a speed up of up to 15 times could be

found by solving the partial differential equations associated with the chemical

kinetics. This speedup was found by comparing the wall clock time on a single core

of a current CPU against the performance of the GPU on a number of mesh sizes.

Khajeh-Saeed & Perot (2013) showed one of the largest uses of GPU computing in

CFD. By accelerating the preconditioned conjugate gradient method, which took

90% of computational expenditure, GPUs performed 25 times faster than the

equivalent number of CPU cores. Salvadore (2013) Accelerated a direct numerical

simulation of turbulence by again finding that 90% of the computational time was

spent evaluating the forcing terms. Speedup was then evaluated in two ways. The

first was to compare a single core of a CPU to a GPU. The finding was that the GPU

was 11 or 22 times faster depending on the age of the CPU. The second method

was to find a similar simulation time by running multiple cores in parallel that

would equal the speed of the GPU. This was 32 cores, power consumption was then

also compared with the CPU system using 575W and the GPU 240W plus its CPU

controller. It should be noted however that this comparison was made with an old

(3 years) CPU architecture. Amritkar & Tafti (2016) reported on the partial port of

Generalized incompressible direct and large eddy simulation of turbulence

(GenIDLEST) where the costly linear solvers were ported to GPUs. Speed testing was

conducted on two different cases in both single and double precision. Results

45 | P a g e

showed that speedups of 8 and 4.5 times were possible on the two cases

investigated in double precision. It should be noted that again this comparison was

made on a CPU 3 years older than the GPU.

Griebel & Zaspel (2010) presented what is recognised to be the first GPU

accelerated two-phase flow solver. They accelerated the conjugate gradient (CG)

solver used to solve the Poisson equation as well as the re-initialization of the level

set function. Using a rising bubble in water case, it was shown that on CG

algorithms the GPU performed 16 times faster than a single core of a PC grade CPU.

The level set re-initialization received eight times speed up. These also scaled

linearly with increasing numbers of GPUs. Combined 8 GPUs performed 70 times

faster than a single CPU core as shown in Figure 13.

Figure 13: Illustration of the scaling shown by (Griebel & Zaspel, 2010)

Later this was updated so that all the code ran on multiple GPUs (Zaspel & Griebel,

2013). This resulted in an approximately 30% improvement. Instead of comparing

to a single CPU core comparisons were made to dual hex-core CPUs that cost a

similar amount to the GPU. With the GPU performing about 3.4 times faster makes

the GPU equivalently cost efficient.

46 | P a g e

Elsen (2008) produced a complete port of the Navier-Stokes Stanford University

solver and used it to investigate hypersonic flow. Comparing the total time to

solution of a single CPU core with a consumer graphics card, on their highest mesh

size, a speed up of 20 times was obtained. As this was an early GPU acceleration it

used a hybrid of old shading programming and new direct coding inclusion

(BrookGPU). There were also some investigations into the usage of the GPUs

available performance in both memory bandwidth and FLOPS. Shinn & Vanka

(2010) developed a GPU implementation of the Semi-Implicit Method for Pressure

Linked Equations (SIMPLE) algorithm and compared it to the equivalent CPU

version. With tests on various mesh sizes of a lid driven cavity flow the GPU was

about 10 times faster than the single core CPU. Philips et al., (2010) showed an

acceleration specifically aimed at use with GPU clusters. All of the flow solver is

ported to the GPU, CPUs are used only for transfer between decomposed domain

sections. When compared between 8 GPUs and 8 quad core CPUs the GPU

implementation was about 5.8 times faster. By computing half a block of the

domain at a time, the data transfer required could be overlapped with Message

Passing Interface (MPI) communication. This resulted in the GPU becoming 9 times

faster. Xu et al., (2014) presented an interesting solution to acceleration with GPUs.

First by comparing single GPU performance to a pair of CPUs a speed up of 1.3 was

found. The interesting point is that by using a collaborative GPU-CPU approach with

load balancing algorithms it was possible to raise maximum problem size per node

by 2.3 times as well as showing a 45% speed improvement over the GPU only

approach. This was then used to study very large industrial problems showing a

parallel efficiency of over 60% on 1024 nodes.

3.9 GPU usage in CFD for multiphase flow

As mentioned previously Griebel & Zaspel (2010) is considered to be the first usage

of GPUs to accelerate multiphase CFD. Generally, the level-set method has received

the most attention. Appleyard & Drikakis (2011) showed a 92 times increase in

performance in solving the level set equation on GPUs over CPUs, though this is in

47 | P a g e

single precision. Liang et al., (2014) developed an implementation of the seven-

equation compressible two-phase model running effectively just on a GPU. A speed

up over a single CPU core of 34 times was found, interestingly this was on the

smallest number of cells tested. Multi GPUs were also tested with 8 GPUs showing

a 68% parallel efficiency. Reddy & Banerjee, (2015) presented an acceleration of a

volume of fluid (VOF) based solver. The pressure Poisson equation is solved on the

GPU using the geometric multigrid method. Comparing serial CPU code running on

a CPU 18 months older than the GPU a speedup of six times was found. The

speedup was found on a 2D investigation of a liquid sheet breakup. Ikebata & Xiao

(2016) accelerated their VOF code again by accelerating the Poisson equation solver

on GPUs. Again, by using a multigrid method but this time as a preconditioner to a

conjugate gradient method. The speed up results are a little difficult to identify but

on a 6 million cell industrial problem an 18 times speed up of the equivalent

Poisson solver on an unidentified CPU was found when using two GPUs.

3.10 Comparing GPU and CPU performance

Throughout the literature there is no consistent and fair way of comparing CPUs

and GPUs. Comparisons seen range from comparing multi core CPUs with GPUs on

performance per price or power consumption to comparing a single CPU core to

multiple GPUs. Even in choosing hardware there can often be big differences, for

example multiple sources in the literature have compared CPUs that are 3 years

older than the GPU. As shown earlier CPUs (and GPUs) have developed according to

Moore’s law so this 3-year gap would be equivalent to a 4 times performance

difference.

Comparing GPU performance is easier though still there are discrepancies.

Seemingly the most common way is to measure the efficient use of the GPUs

available performance. Often operations are memory bandwidth limited so it

makes sense to evaluate the performance in terms of memory bandwidth or as

percentage of available memory bandwidth. Though again comparing different

48 | P a g e

implementations is difficult due to hardware. When comparing implementations

using identical hardware a fair comparison can be made. However, when the

hardware is different this is more difficult. The main reason for this is that GPUs

(especially those from NVidia) come in two categories. The first are consumer

GPUs, which are aimed primarily at the computer games market. These are

characterised by low cost and generally (but not always) have very poor double

precision performance. The second are those specifically aimed at GPGPU

computing, these are generally vastly more expensive than their consumer

orientated stable mates. This cost does mean that double precision performance is

good as well as adding additional features such as ECC memory protection and the

ability to control maximum power consumption etc. Generally, memory bandwidth

is the same across both categories.

3.11 Chapter Summary

This chapter has presented the fundamentals of GPGPU computing. Specifically,

GPUs can be considered as compute units that are capable of performing

calculations requiring very high data throughput. This ability comes from their

numerous cores. Recently entering the scale of several thousand. Each core is able

to perform simple instructions, but groups of cores controlled by a streaming

multiprocessor must perform the same instruction. Also discussed was the CUDA

programming language that makes the control of these threads possible. Previous

investigations into this area were examined. This showed that GPU acceleration is

capable of producing speed improvements orders of magnitude greater than CPUs.

However, this headline figure is reserved for very specific applications. More

generally single digit multiples of speed improvement can be expected. This chapter

concluded with an analysis of how comparisons have been made between CPU and

GPU accelerated codes demonstrating that there is no clear consensus as to how

this should be performed.

49 | P a g e

Chapter 4 Computing methods

4.1 Overview

Chapter two gave an introduction to numerical methods used in atomization

simulation, this chapter presents how they have been implemented in the chosen

code: OpenFOAM. Therefore, it will detail governing equations, numerical schemes

and solution procedures. Also, discussed are solutions to linear systems of

equations which was shown in the previous chapter to be a suitable avenue to

explore GPU acceleration. Finally, the hardware and software used throughout this

thesis is presented.

4.2 OpenFOAM

First released in 2004, OpenFOAM is an open source toolbox for continuum

mechanics. Though mainly known for its use in computational fluid dynamics.

Originally written by Henry Weller at Imperial College in C++ to try to improve upon

offerings in Fortran. It has proliferated into a multitude of problems found in

academic CFD. Its proliferation has been assisted by its wide range of solvers which

are applicable to everything from solving large scale fires (Wang, et al., 2011) to

coastal engineering (Higuera, et al., 2013) and cavitation in diesel injectors

(Salvador, et al., 2010). In addition, being written in C++ means that governing

equations can be written in such a way that they closely resemble their

mathematical formulation.

As mentioned its extensive library of solvers means it can be applied to many

problems. In the current situation, solvers of most interest are the “interFoam”

family of solvers. These have the following things in common:

 Eulerian finite volume method for discretization

 Pressure Implicit with Splitting of Operators (PISO) solver scheme

 Volume of fluid (VOF) method for interface capturing

 Surface tension described by the Continuum Surface Method (CSF)

50 | P a g e

 Optional turbulence modelling using Laminar, RANS or LES models.

4.3 Governing equations

As previously discussed the VOF method (Hirt & Nichols, 1981) uses a scalar to

define the location of the two fluids. This scalar, known as the volume fraction, γ

and is defined as follows:

𝛾 ቐ

1 𝑖𝑠 𝑓𝑙𝑢𝑖𝑑 1
0 < 𝛾 < 1 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

0 𝑖𝑠 𝑓𝑙𝑢𝑖𝑑 2

The motion of a viscous fluid can generally be described by the Navier-Stokes

equations (Anderson, 1995) & (Deng, et al., 2000). These are not new and have

been in existence since the 1800s. For an incompressible, unsteady and laminar

flow these can be written as a volume conservation equation

 ∇ ∙ 𝑈ሬሬ⃗ = 0 (7)

Where 𝑈ሬሬ⃗ is the velocity vector. And a momentum conservation equation

 𝜕𝜌𝑈ሬሬ⃗

𝜕𝑡
+ ∇ ∙ ൫𝜌𝑈ሬሬ⃗ 𝑈ሬሬ⃗ ൯ = −∇𝑝 + 2∇ ∙ ൣ𝜇 �⃖⃗�൧ + 𝜌�⃗� + 𝜎𝜅∇𝛾ଵ (8)

In which 𝑡 is time, 𝜌 is density, 𝑝 is the pressure, μ is dynamic viscosity, �⃖⃗� is the rate

of strain tensor, �⃗� is the acceleration due to gravity and the final term on the RHS is

the source term due to surface tension which applies only at the interface between

the two fluids. In three dimensions this gives a set of four equations and four

unknowns, fluid pressure and three components of velocity. Solving these

equations analytically is difficult, indeed finding a solution is one of the millennium

prize problems, carrying a $1,000,000 prize (Clay Mathematics Institute, 2017).

Because of this they are normally solved numerically.

51 | P a g e

The rate of strain tensor in equation 8 is defined as

 �⃖⃗� =
1

2
(∇𝑈ሬሬ⃗ + ൫∇𝑈ሬሬ⃗ ൯

்
) (9)

As the volume of fluid method is based on volume fraction function, combined

momentum and continuity equations are solved. In addition, density and viscosity

are described as fraction function weighted averages of the fluids in question.

 𝜌 = 𝛾ଵ𝜌ଵ + (1 − 𝛾ଵ)𝜌ଶ (10)

 𝜇 = 𝛾ଵ𝜇ଵ + (1 − 𝛾ଵ)𝜇ଶ (11)

In which the subscripts denote the fluid. In order to account for the source term of

surface tension, 𝜎𝜅∇𝛾ଵ, the continuum surface method first proposed by Brackbill

et al., (1992) is used. This gives a force per unit volume. Of course this expression is

only valid when the surface tension is constant, when there is variable surface

tension additional shear stress needs to be accounted for. The curvature κ is

defined as follows:

 𝜅 = −∇ ∙ ൬
∇𝛾

|∇𝛾|
൰ (12)

The transport equation for the volume fraction can be written as follows (for

simplicity only a single phase is considered)

𝜕𝛾

𝜕𝑡
+ ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯ = 0 (13)

In order to maintain a sharp interface OpenFOAM uses an interface compression

method that was originally developed by (Jasak & Weller, 1995). This interface

52 | P a g e

compression method is a conservative form of equation 13 which ensures the

boundedness of the volume fraction between zero and one.

𝜕𝛾

𝜕𝑡
+ ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯ + ∇ ∙ [𝑈ሬሬ⃗ 𝛾(1 − 𝛾)] = 0 (14)

In which 𝑈ሬሬ⃗ is the relative velocity between the two phases. Because of the

𝛾(1 − 𝛾) expression in the interface compression term it only acts at the interface.

It has been shown this method is accurate in relation to others but at the cost of

requiring generally smaller courant numbers (Gopala & van Wachem, 2008). The

relative velocity between the two phases is described by:

 𝑈 = 𝑛 𝑚𝑖𝑛 ቈ𝐶ఊ

|𝛷|

ห𝑆ห
, 𝑚𝑎𝑥 ቆ

|𝛷|

ห𝑆ห
ቇ (15)

In which 𝑛 is the normal vector of the cell surface, Φ is the mass flux, 𝑆 is the area

of the cell surface and 𝐶ఊ is a user chosen coefficient between zero and four. If zero

is chosen, then there will be no interface compression. While a coefficient of one,

as used throughout this work, provides a conservative compression. And finally,

above one there is an enhanced compression.

Time step control is governed by the Courant number (Courant, et al., 1967) this

gives the number of cells the flow will travel in one time step. It is determined by

the following equation:

 𝐶𝑜 = ∆𝑡
𝑈

∆𝑥

ୀଵ

 (16)

Δt is the time step, Δx is the mesh size and U is the velocity. The subscript i denotes

the direction, in three dimensions this would be x, y and z. In addition to the

53 | P a g e

Courant number Brackbill et al. (1992) state that to account for capillary waves the

capillary time-step constraint should be adhered to.

 ∆𝑡 ≤
∆𝑥

2𝐶𝑎
 (17)

Where the superscript BKZ denote the authors, Δx is the mesh size and Ca the

capillary number described in chapter 2.

4.4 Solution procedure

The finite volume method is characterised by some large volume spit into a mesh of

many smaller volumes. The governing equations are integrated over all the mesh

elements in the domain. Using the divergence theorem, the equations containing

divergence terms are converted to surface integrals, these terms are then

evaluated as fluxes at the surface of each mesh volume (Versteeg & Malalasekera,

2007). As such in OpenFOAM notation all discretization schemes are prefixed with

‘Gauss’ denoting the Gaussian divergence theorem.

OpenFOAM provides numerous options for all categories of discretization. In an

OpenFOAM setup they are split into the following sections:

 Time schemes

 Gradient schemes

 Divergence schemes

 Surface normal gradient schemes

 Laplacian schemes

 Interpolation schemes

Discretization for the time derivatives is achieved using the implicit second order

Crank-Nicolson (Crank & Nicolson, 1996) scheme. For all gradient terms, the central

differencing scheme is used. In all cases for interpolation from cell centres to faces

54 | P a g e

the central differencing scheme is used. The surface normal gradient is calculated

using a central differencing method, of the adjacent cell centres, without the

available non-orthogonal correction as in all cases in this work non-orthogonality is

zero. Laplacian terms again use a central differencing method to evaluate cell face

values, the resulting surface normal gradient is then evaluated as previously stated.

Divergence discretization is different for different terms involved. The ∇ ∙ 𝜌𝑈ሬሬ⃗ 𝑈ሬሬ⃗ term

uses the second order hybrid LinearUpwind scheme (Spalding, 1972). The ∇ ∙ ൫𝛾𝑈ሬሬ⃗ ൯

term uses the second order, total variation diminishing, limited vanLeer scheme

(van Leer, 1974). Finally, the interface compression term ∇ ∙ 𝑈ሬሬ⃗ 𝛾(1 − 𝛾) uses a

central differencing scheme as its boundedness is assured by the MULES

algoritham.

The pressure implicit with splitting of operators algorithm (PISO), first proposed by

Issa et al., (1986) is used to obtain the solution to the momentum equation. First a

discretized momentum predictor equation is solved using a “best-guess” pressure

field, often the pressure from the previous time step, to compute an intermediate

velocity field. This intermediate velocity field is then used to solve a pressure

equation. Finally, the velocity field is corrected using the new values of pressure.

The final two steps are performed iteratively until suitably accurate values are

found. Issa et al., (1986) states that two pressure corrections are required to be

second order accurate. This scheme is summarised in the flow chart in Figure 14.

55 | P a g e

Figure 14: Outline of the PISO Algorithm (Giannopapa & Papadakis , 2007)

Included as part of the PISO algorithm is the multi-dimensional limiter for explicit

solution (MULES) (OpenCFD Ltd, 2009). This is used to solve the volume fraction

field and has been proven to be effective in producing boundedness in scalar fields,

such as the volume fraction. It uses time step sub cycling to obtain the solution to

the volume fraction field. This time step sub cycling takes place before the

momentum predictor step in the PISO loop. It allows higher courant numbers to be

used in the rest of the PISO loop as usually the solution of the phase volume

fraction transport equation dictates the size of time step that can be used. At the

start of each time step the Courant number is calculated and subsequently the new

time step size. The time step sub cycling then uses equal divisions of the new time

step size. So, with two sub cycles, as used in the present work, the sub cycle will

advance time by exactly half of the time step size.

If the LES or RANS turbulence models are selected these are included in the

pressure correction steps. Otherwise a laminar model is used, therefore if the cell

size is small enough it can be considered DNS (Hemida, 2008).

Once discretized the momentum and pressure correction equations produce a

linear system of equations for all the cells in the domain. This system can be

described as the following:

56 | P a g e

 𝐴𝑥 = 𝑏 (18)

Here A is a matrix of coefficients, x is unknown, and b is the source term of the

governing equations. In OpenFOAM the matrix A is stored in the Lower Diagonal

Upper (LDU) sparse matrix format. In this format the non-zero values of the

diagonal, upper triangle and lower triangle are stored consecutively in dense

vectors. There are then two additional dense vectors that define the location of

those non-zero values in a co-ordinate format. The LDU format allows for easier

implementation of some of the linear system solvers that are available to use in

OpenFOAM.

The linear systems can be solved by one of 3 general methods. The first is to

directly solve the system using something like Gaussian elimination, this would give

an exact result (if there are no rounding errors). However, these methods are often

too expensive even for small to medium sized matrices. Second is to use a

stationary method such as the Gauss-Seidel or Jacobi methods. These work using a

correction equation based upon the measurement of the error found in the

previous iteration. Convergence is only guaranteed for some types of matrices and

tends to be relatively slow. The final option is Krylov subspace methods. These

methods start with an initial guess and therefore residual which iterate until the

exact solution (without rounding errors) is found. Common options are the

conjugate gradient or bi-conjugate gradient methods.

OpenFOAM uses all of these categories in some way. They are further divided into

two groups. Those for symmetric matrices and those for asymmetric matrices. The

most commonly used linear system solver for symmetric matrices in OpenFOAM is

generally considered to be the preconditioned conjugate gradient method. For ease

of explanation the preconditioner will be ignored to begin with. The conjugate

gradient method was first proposed by Hestenes & Stiefel (1952) it was first

developed as a direct solver but has found its popularity as an iterative solver.

57 | P a g e

Indeed, the exact solution of the linear system will be found in as many iterations as

there are unknowns as long as there is no rounding. However, when there are as

many unknowns as there are cells in the mesh, coupled with rounding errors

produced by floating point number storage, this is almost never the case. Instead

OpenFOAM uses a hard-coded limit of 1000 iterations. The algorithm below shows

the conjugate gradient method. In addition to the matrix and vectors of the linear

system, two additional vectors are required. These are the residual and search

direction vectors. They are labelled R and P respectively.

𝑅 = 𝑏 − 𝐴𝑥

𝑃 = 𝑅

𝑖 = 0

While I <= 1000

𝛼 =
𝑅

்𝑅

𝑃
்𝐴𝑃

𝑥ାଵ = 𝑥 + 𝛼𝑃

𝑅ାଵ = 𝑅 − 𝛼𝐴𝑃

if 𝑅ାଵ is small enough exit loop.

𝛽 =
𝑅ାଵ

் 𝑅ାଵ

𝑅
்𝑅

𝑃ାଵ = 𝑅ାଵ + 𝛽𝑃

𝑖 = 𝑖 + 1

end while loop

The answer to the linear system is then 𝑥ାଵat the point that R is small enough. The

residual R is considered small when the sum of the magnitude of elements is less

58 | P a g e

than a user specified value, this value is generally normalised by the magnitude of

vector b. While this method is good, it can take many iterations to come to a

converged result, particularly when the linear system is large. To combat this slow

convergence a preconditioner is often used to improve convergence. The algorithm

is very similar with minor changes. In addition to the storage requirements of the

conjugate gradient method its preconditioned variant requires the storage of an

additional vector, in this case Z, as well as the inverse of a preconditioning matrix,

M. The algorithm is shown below.

𝑅 = 𝑏 − 𝐴𝑥

𝑍 = 𝑀ିଵ𝑅

𝑃 = 𝑍

𝑖 = 0

While I <= 1000

𝛼 =
𝑅

்𝑅

𝑃
்𝐴𝑃

𝑥ାଵ = 𝑥 + 𝛼𝑃

𝑅ାଵ = 𝑅 − 𝛼𝐴𝑃

if 𝑅ାଵ is small enough exit loop.

𝑍ାଵ = 𝑀ିଵ𝑅ାଵ

𝛽 =
𝑍ାଵ

் 𝑅ାଵ

𝑍
்𝑅

𝑃ାଵ = 𝑍ାଵ + 𝛽𝑃

𝑖 = 𝑖 + 1

59 | P a g e

end while loop

The simplest preconditioner is the Jacobi or diagonal preconditioner. Here the

diagonal of matrix A is used as the preconditioner. It is efficient for diagonally

dominant matrices. In OpenFOAM it is common to use the Diagonal Incomplete

Cholesky preconditioner.

The final preconditioner of interest is a bit different to those addressed previously.

The Geometric-Algebraic Multi-Grid solver (GAMG) can be used either as a

preconditioner or as a linear system solver in place of say the preconditioned

conjugate gradient solver. GAMG is, as its name suggests, a multigrid method that

gives efficient convergence. The advantage of multigrid methods is that the number

of operations is proportional to the size of the problem, in contrast to others that

increase quadratically or higher. The basic idea of a multigrid method is that

classical solvers like the Jacobi method will stall at a certain convergence once high-

frequency errors have been removed. So, at this point a coarser grid is constructed

where the error is no longer smooth. The transfer of vectors to this coarse grid is

known as restriction. This is repeated at coarser and coarser grids until some

minimum is reached and a direct solver can be used to find a solution on the most

course grid. The solution is then transferred up through finer and finer meshes until

the original mesh is reached, with Jacobi smoothing iterations taking place at each

level to remove any errors introduced by this interpolation operation.

60 | P a g e

Figure 15: Illustration of the errors removed in a multigrid method (Lawrence Livermore National Laboratory,
n.d.)

The multigrid method described above is a specific method that is known as the V

cycle, so called due to the shape it makes when the order of grids is lain out as in

Figure 15. There are alternatives which can be found in the literature, but this is as

used in OpenFOAM. The final element of the multigrid is how the coarse grids are

chosen. As the acronym GAMG suggests this can be either geometric or algebraic.

The geometric method uses the geometry of the mesh to decide on closely related

cells that can be combined into a single coarse grid cell. On the other hand,

algebraic methods use only the coefficients of the matrix in the linear system to

generate the course grid.

4.5 Computational Hardware

In the following chapters, all OpenFOAM computations have been performed using

the same hardware and software stack. Hardware comes in the form of an HP Z820

workstation. Configured with twin Intel Xeon E5-2650 v2 CPUs which have eight

cores running at 2.6GHz. 64GB of DDR3-1833 RAM and twin NVidia GeForce Titan

Black edition graphics cards. As with all Intel CPUs since the early 2000s they are

61 | P a g e

equipped with hyper threading. This is Intel’s proprietary technology for allowing

the operating system to address each real core as two logical cores. This allows

multiple instructions on different data to be performed at once, commonly useful in

general computer use. However, for CFD this is often not helpful as the additional

MPI communication outweighs the benefits of possible overlap in computation

(Keough, 2014). Key performance parameters of the two compute units are shown

in the table below:

Computing Unit

Cost at

launch

($)

Theoretical

Peak DP

performance

(GFLOPS)

Memory

(GB)

Max. Memory

Bandwidth

(GB/s)

Max. Power

Consumption

(W)

Intel Xeon E5-

2650 V2 (8

Core)

1166 166.4 Up to 768 59.7 95

NVidia

GeForce Titan

Black Edition

999 1707 6 336 250

Table 1: Key performance criteria of the CPU and GPU used in this work

Software used consists of the Ubuntu 12.04 operating system. OpenFOAM version

2.3.1 and CUDA 6.0. All code compilation for OpenFOAM is conducted using the

GCC open source compiler while CUDA code is compiled using NVCC (NVidia CUDA

compiler) included as part of CUDA version 6. Message passing between cores in

multi core mode is conducted using OpenMPI.

Of specific interest in the specifications listed in Table 1 is theoretical memory

bandwidth. The vast majority of compute time in CFD codes is spent in memory

bound linear system solvers. I.e. the performance bottleneck comes from memory

bandwidth. With this in mind some analysis of where these specifications come

from is useful. For a CPU using DDR RAM (as in this case) the memory bandwidth is

evaluated by the product of the transfer rate and the bus data width. In the current

case the DDR3 RAM has a transfer of 1.867 × 10ଽ transfers per second with a bus

62 | P a g e

width of 64 bits. This gives a peak memory bandwidth of 14.933 GB/s per module.

In order to attain the value of 59.7 GB/s multiple modules are used, as is the case in

the current setup, four 8 GB modules are attached to each CPU. This is known as

quad channel memory. The GPU is similar, indeed its GDDR5 memory is built upon

the same DDR3 technology as the CPU memory. However, it is capable of 7 × 10ଽ

transfers per second with a 384-bit bus width, this gives the quoted value of 336

GB/s. Achieving this speed is however generally impossible. Deakin & McIntosh-

Smith (2015) showed that the similar architecture NVidia GeForce GTX 780 Ti

showed a useable bandwidth of 83.9% of the quoted 336 GB/s maximum.

Figure 16: Comparison of GPU memory bandwidth with varying transfer size

To understand the available memory bandwidth of the NVidia GTX Titan Black in

the system an investigation was conducted along the lines of that used by Delbosc

(2015). Using the CudaMemcpy function an amount of data is copied from one

location in the GPU memory to another. This amount of data is varied between

1,024 KB and 64 MB. This test is conducted 10 times with the results displayed in

Figure 16. Plotted are minimum, maximum and average bandwidth usage of the 10

runs. Interestingly the maximum bandwidth achieved is only just shy of 231 GB/s

which is just 68.75% of the theoretical peak. As suggested by Delbosc (2015) peak

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

1.00E+00 1.00E+07 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07

Ba
nd

w
id

th
 (M

B/
s)

Transfer Size (Bytes)

Comparison of memory bandwidth with transfer size

Average Minimum Maximum

63 | P a g e

bandwidth is only observed above a transfer size of about 32 MB. Transfers below

this size steadily reduce in measured bandwidth.

4.6 Chapter Summary

In this chapter an introduction to OpenFOAM has been given, the main point of

which is that it is not a monolithic code and instead is a collection of libraries which

are combined to makeup solvers for different applications. The solver chosen for

this study is interFoam, an incompressible multiphase solver. It uses the volume of

fluid interface capturing method with the continuum surface force method to treat

singularities. It uses a unique interface compression term to ensure a sharp

interface and solves the momentum equation with the PISO method. Additionally,

the different linear system solvers were outlined, showing that OpenFOAM makes

use of all categories of linear system solvers. Finally, the computational hardware

used throughout this study was presented, a brief investigation into the GPU

hardware showed useable memory bandwidth is significantly lower than the peak

described by the manufacturer.

64 | P a g e

Chapter 5 Elementary Test Cases

5.1 Overview

In this chapter the OpenFOAM code presented in the previous chapter is assessed

to confirm its suitability to be used in complex multiphase problems. Additionally,

by investigating these problems the efficiency of the solver can be assessed. By

using an efficient CPU based OpenFOAM setup an “apples to apples” comparison

can be made with future GPU implementations. This should ensure that GPU

developments are beneficial in real world applications.

5.2 Zalesak’s Disk

The notched disk in a rotating flow field was first proposed by Zalesak (1979) since

then it has been used by numerous researchers to validate the quality of interface

capturing methods. While it has been used in numerous configurations only one

will be considered here. This configuration is as such, a disk of radius 0.15m which

has a notch removed that is 0.05m wide by 0.25m high. This notched disk is then

placed into a domain that is 1m square. The disk is then rotated over 6.28s

according to the velocity profile in equation 19.

 𝑢 =
గ

ଷ.ଵସ
(0.5 − 𝑦) and 𝑣 =

గ

ଷ.ଵସ
(𝑥 − 0.5) (19)

With an initial position of (0.5m, 0.75m), over the course of the problem the disk

will complete one whole rotation. The shape of the disk at the end can then be

compared with the original to quantify losses associated with the interface

capturing method being tested.

65 | P a g e

Figure 17: Initial condition of Zalesak's Disk

Three grid resolutions are compared, 100x100, 200x200 and 400x400. In each case

the grids are Cartesian. A zero-normal gradient is applied to all boundries. As

pressure and velocity calculation is switched off, at the boundry these effectively

remain fixed values equal to the initial conditions. To properly compare the

interfaces both the momentum and pressure correction equations are switched off.

In this case, only the interface tracking equations are solved. The effect on velocity

is that it remains constant throughout all time steps. In addition to this the result of

the first computed time step is compared to the time step after 6.28s. The effect of

this is that the interface is allowed to become a gradient across two or three cells as

is common with VOF. This allows the interfaces to be compared on a like for like

basis. The results shown below are a contour of volume fraction of 0.5. In all cases

below the original interface (and reference solution) is shown by the black line

while the final interface is in grey.

66 | P a g e

Figure 18: Interface at final time step (grey) compared to initial 100 grid (black)

Figure 19: Interface at final time step (grey) compared to initial 200 grid (black)

67 | P a g e

Figure 20: Interface at final time step (grey) compared to initial 400 grid (black)

Figures 18-20 clearly show, especially on the coarsest grid, that the sharp corners of

the slot of the disk are difficult to maintain. Apart from the coarsest mesh the

interface is quite well maintained. Indeed, it is likely not too far from results that

could be achieved with the level set method which doesn’t suffer from the

numerical diffusion of the interface. To compare results quantitatively the error

metric used by several other investigations is used e.g. (Deshpande, et al., 2012)

and (Sussman & Puckett, 2000).

 𝐸 =
1

𝐿
 𝐴|𝛾ூ − 𝛾ி|

ே

ଵ

 (20)

Here L is the length of the interface. A is the area of a cell. The superscripts I and F

are the initial and final quantities. The sum is across all cells in the domain.

68 | P a g e

100 x 100 200 x 200 400 x 400

0.003979 0.001692 0.000971

Table 2: Values of E (error) for each cell density

The results of this error metric are similar to (Deshpande, et al., 2012) though

slightly greater, this is likely due to slight differences in numerical schemes or

convergence criteria.

To assess the stability of OpenFOAM the 200 x 200 cell case was used with varying

courant number. Five cases were run with the courant number halved in each one.

Initially a comparison with the error metric described above can be made.

Courant number 1 0.5 0.25 0.125 0.0625

Error 0.003954 0.002240 0.001691 0.001653 0.001704

Table 3: Results of Courant number investigation

From this investigation it can be clearly seen that after dropping to a courant

number of 0.25 there then becomes very little difference in the final interface. To

show what kind of difference these errors translate to below is a visual

representation of the interfaces.

69 | P a g e

Figure 21: Interface comparison at Courant number of 1 (grey) compared to initial (black)

Figure 22: Interface comparison at Courant number of 0.0625 (grey) compared to initial (black)

In figures 21 & 22, as in previous comparisons the initial interface is shown in black

while the final interface is shown in grey. These comparisons clearly show that with

a courant number of 1, the ability to maintain the interface in this problem is poor.

However as mentioned above there is very little difference at a courant number

below 0.25.

70 | P a g e

5.3 Rayleigh-Taylor Instability

The Rayleigh-Taylor instability problem is one that has been used by many

researchers in different configurations to investigate the performance of numerous

codes (Tryggvason & Unverdi, 1990), (Bell & Marcus, 1992) & (López, et al., 2005).

The setup consists of a heavy fluid above a lighter fluid. The interface is initially set

as a cosine wave with an amplitude of 0.05. Under the effects of normal gravity,

9.81𝑚 𝑠ଶ⁄ , the two fluids will eventually swap places. Of interest though are the

initial time steps where the heavier fluid accelerates and becomes a jet like

structure.

Figure 23: Initial conditions of Rayleigh-Taylor interface problem

In this investigation the two fluids used are air like and helium like shown in Figure

23 as red and blue respectively. The fluid properties are listed in Table 4, the

subscripts indicate the fluid, one being air and two the helium.

𝜌ଵ (𝑘𝑔 𝑚ଷ⁄) 𝜇ଵ (𝑘𝑔 𝑚𝑠⁄) 𝜌ଶ (𝑘𝑔 𝑚ଷ⁄) 𝜇ଶ (𝑘𝑔 𝑚𝑠⁄) σ (𝑁 𝑚⁄)

1.225 3.13 × 10ିଷ 0.1694 3.13 × 10ିଷ 1 × 10ିଶ

Table 4: Rayleigh-Taylor instability fluid parameters

All boundries use a slip condition, where there is zero normal velocity and a zero-

normal gradient for other variables. The computational domain is 1 unit by 4. The

mesh resolution is expressed in terms of cells per unit length. To understand how

OpenFOAM performs in a large range of mesh resolutions 32, 64, 128, 256 and 512

71 | P a g e

cells are used. As before the grid is Cartesian. As was done by (Herrmann, 2008) up

to a time of 0.9s is simulated. This ensures that the flow structures will remain

inside the boundaries in all mesh cases. Therefore, the only influence on the results

should be the change in mesh resolution. In all cases a constant time stepping

regime is used. In all the results that follow the reference solution of 512 cells is

shown in black. The solution that the reference is being compared to is then shown

in grey.

Figure 24: Interface at t=0.6s. From L to R, 32, 64, 128, 256 cells(in grey) per unit length, compared to reference
solution (in black)

72 | P a g e

Figure 25: Interface at t=0.7s. From L to R, 32, 64, 128, 256 cells(in grey) per unit length, compared to reference
solution (in black)

Figure 26: Interface at t=0.8s. From L to R, 32, 64, 128, 256 cells (in grey) per unit length, compared to reference
solution (in black)

73 | P a g e

Figure 27: Interface at t=0.9s. From L to R, 32, 64, 128, 256 cells (in grey) per unit length, compared to reference
solution (in black)

Individually comparing each grid to the reference gives some interesting

conclusions. At all time steps apart from 0.9s there is no discernible difference

between the mesh using 256 cells and the reference solution. At 0.9s 256 gives a

slight over estimation of both the X and Y co-ordinates of the interface. Again, at all

time steps apart from 0.9s both 64 and 128 cells show some slight differences to

the reference solution, but these are fairly minor. At 0.9s 128 cells is still close to

the reference solution but not as close as 256. The first significant difference to the

reference solution comes at 0.9s in the 64-cell case. Here numerical breakup can be

observed. While in all denser meshes there is a small thin liquid structure ending in

a small droplet shape. However, with 64 cells the mesh is too course to capture this

thin ligament. Finally, in all time steps the 32-cell representation represents a poor

description compared to the reference.

5.4 Linear Solver Selection

The linear system solvers used can have a significant effect on the compute time of

the case in question. As discussed earlier OpenFOAM has a number of different

linear system solvers available. To assess the most efficient solver the 128-cell test

74 | P a g e

case was used as a basis. The comparisons would be made among several of the

options; conjugate gradient (CG), diagonal preconditioned conjugate gradient

(DPCG), diagonal incomplete Cholesky preconditioned conjugate gradient (DICPCG),

geometric-algebraic multigrid preconditioned conjugate gradient (GAMGPCG) and

just geometric-algebraic multigrid (GAMG). The smooth solver is not compared

here as it would likely take several times longer to reach convergence criteria than

even the slowest solver presented here.

Figure 28: Comparison of compute times of different linear solvers

In each case the case setup was constant, the only differences were the linear

system solver used for the pressure correction equations. The pressure correction

equation was selected as it is the most expensive code section, indeed in these

results the cost of solving the pressure equations was between 80% and 95% of the

total computational time. The results come from the measured clock time and so

includes some saving data to disk. All computations were done in serial using the

test hardware with the GUI switched off.

The results show the huge impact the selection of the linear solver can have on the

total computational time and so is a key consideration in generating CPU

0

2000

4000

6000

8000

10000

12000

14000

16000

CG DPCG DICPCG GAMGPCG GAMG

Co
m

pu
te

 T
im

e
(S

)

Linear Solver

Compute Time of Different Linear Solvers

75 | P a g e

benchmarks. Indeed, using the GAMG solver reduces the computational cost by

over 50% when compared to the commonly used DICPCG solver.

5.5 Rising Bubble

Hysing et al., (2009) proposed a quantitative benchmark to compare incompressible

interfacial flow codes. The comparison is made on a 2D bubble rising a in a column

of liquid. A diagram of the problem initial conditions is shown in Figure 29.

Figure 29: Configuration of the rising bubble case proposed by (Hysing, et al., 2009)

The initial configuration consists of a bubble with radius 0.25 with its centre located

at [0.5, 0.5] in a 1 x 2 rectangular domain. The top and bottom boundaries are

defined as no-slip while the vertical walls are slip boundaries. Cartesian meshes

with different resolutions are used in the comparisons. Meshes are defined in terms

of the number of cells along the upper or lower walls. In this investigation meshes

of 40, 80, 160 and 320 cells will be used. In all cases the benchmark quantities are

76 | P a g e

evaluated over 3s. However as has been mentioned previously the VOF method will

produce a numerical smearing of the interface. Therefore, in all cases the initial

bubble is simulated for 3s with gravity switched off. The result of these initial 3s

runs are then used as the starting conditions for the comparison case, with gravity

switched back on. This transition is shown in Figure 30. The properties of the fluids

are show in Table 5 below. The subscripts denote the fluid, 1 being the ambient

liquid and 2 being the gas bubble.

𝜌ଵ

(𝑘𝑔 𝑚ଷ⁄)

𝜌ଶ

(𝑘𝑔 𝑚ଷ⁄)

𝜇ଵ

(𝑘𝑔 𝑚ଷ⁄)

𝜇ଶ

(𝑘𝑔 𝑚ଷ⁄)

g

(𝑚 𝑠ଶ⁄)

σ

(𝑁 𝑚⁄)

Re

(-)

Eo

(-)

1000 100 10 1 0.98 24.5 35 10

Table 5: Parameters for bubble rise case

Figure 30: Interface smearing initialization on 40 cell mesh. (A) left, initial interface. (B) right, smeared interface.
Red is liquid phase, Blue gas phase and transition is the interface

The intention of the investigation was to present a quantitative benchmark

validation exercise for immiscible liquids undergoing topological changes. As there

was not one accepted in contrast to other fields in CFD. To this end two exercises

are presented. The first is as described above. The second, which is not considered

here, has higher density and viscosity ratios as well as a lower surface tension

coefficient. For each case several error metrics are used to establish the

comparative performance of three codes, TP2D (Transport Phenomena in 2D),

FreeLIFE (Free-Surface Library of Finite Element) and MooNMD (Mathematics and

77 | P a g e

object-orientated Numerics in MagDeburg). In future comparisons in this study only

the first two codes (TP2D and FreeLIFE) will be compared as they follow the

Eulerian-Eulerian coordinate scheme, the same as interFoam, whereas MooNMD

uses the Lagrangian-Eulerian scheme. Additionally, both codes, in contrast to

interFoam, use the level set method for interface tracking. Finally, it should be

noted that TP2D uses the same range of meshes as this study but FreeLIFE does not

have a solution with 320 cells.

Initially the shape of the bubble at the final time step can be compared across the

mesh densities with only results produced in this work using interFoam. For all

cases the bubble outline identified by a volume fraction of γ=0.5.

Figure 31: Bubble outline at t = 3s. Grids of 40 (Blue), 80 (Orange), 160 (Grey), 320 (Yellow)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Y
Co

-o
rd

in
at

e
(m

)

X Co-ordinate (m)
1/40m 1/80m 1/160m 1/320m

78 | P a g e

Figure 32: Close-up of bubble outline, Grids of 40 (Blue), 80 (Orange), 160 (Grey), 320 (Yellow)

From the view of the whole bubble at the final time step in Figure 31 it can be seen,

apart from the coarsest mesh, the bubble outline shows little change across the

meshes used. The close-up, Figure 32, shows this in more detail. Additionally, the

close up shows the mesh convergence, indeed the difference between the two

finest meshes is minimal.

The first comparison to published results that can be made is the degree of

circularity. Here the perimeter of the bubble is compared to the perimeter of a

perfect circle of an equivalent area. Therefore, a perfectly circular bubble will have

a circularity of 1.

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑝𝑒𝑟𝑖𝑚𝑖𝑡𝑒𝑟 𝑜𝑓 𝑎𝑟𝑒𝑎 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒

𝑝𝑒𝑟𝑖𝑚𝑖𝑡𝑒𝑟 𝑜𝑓 𝑏𝑢𝑏𝑏𝑙𝑒

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

0.7 0.72 0.74 0.76 0.78 0.8

Y
Co

-o
rd

in
at

e
(m

)

X Co-ordinate (m)
1/40m 1/80m 1/160m 1/320m

79 | P a g e

Figure 33: Comparison of circularity on various meshes in OpenFOAM and the level set methods used in (Hysing,
et al., 2009)

In figure 33 it can be seen that the OpenFOAM results agree fairly well with those

that are produced by the two level-set codes TP2D and FreeLIFE. Indeed from 0 to 2

seconds almost no difference can be seen on the higher cell density cases. The

lowest cell density case however is poor. Next the bubble centre of mass is

compared. This is defined by equation 21.

 𝐶𝑜𝑀 =
∫ �⃗�𝑑𝐴

ఆ

∫ 1𝑑𝐴
ఆ

 (21)

In which �⃗� is the vector (x, y) position of the centre of a computational cell, Ω is the

region occupied by the gas bubble and A is the bubble area.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.5 1 1.5 2 2.5 3

De
gr

ee
 o

f C
irc

ul
ar

ity

Time (S)

Degree of circularity of OpenFOAM and alternate level set methods

40

80

160

320

TP2D

FreeLIFE

80 | P a g e

Figure 34: Comparison of bubble centre of mass

Finally, a comparison on the bubble rise velocity can be made. This is described by

equation 22.

 𝑅𝑖𝑠𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
∫ 𝑈ሬሬ⃗ 𝑑𝐴

ఆ

∫ 1𝑑𝐴
ఆ

 (22)

 In which again Ω is the region of the gas bubble and 𝑈ሬሬ⃗ is the velocity vector.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

Y-
lo

ca
tio

n
of

 b
ub

bl
e

ce
nt

re

Time (S)

Comparison of bubble centre of mass location between OpenFOAM and other level-
set codes

40

80

160

320

TP2D

FreeLIFE

81 | P a g e

Figure 35: Comparison of bubble rise velocities

Again, the comparison with the two level-set codes presented in Hysing et al.,

(2009) is good although interFoam seems to show a slight under estimation of the

bubble rise velocity which consequently gives an under estimation of the location

of the bubble centre of mass. For completeness Hysing et al., (2009) provide CPU

timings to give an idea of code efficiency. However, given the improvements in

processor performance since this study, the efficiencies are of little value as a

comparison with modern data. As an example, the most expensive cases took 35

hours and 30.25 hours for TP2D and FreeLIFE respectively. The most expensive case

in this study took just 5.4 hours. While all were conducted on a single core of a

multi core processor the processor age, and therefore its performance, varies

significantly. In this regard some additional normalisation of processor performance

would be needed to be added to compare code developments.

5.6 Performance Comparisons

The number of pressure corrector steps needed differs greatly from the (Issa, et al.,

1986) suggested minimum of 2 steps required to reduce the discretization error if

second order time stepping is used right up to the 15 suggested by Klostermann et

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3

Ve
lo

ci
ty

 (m
/s

)

Time (S)

Comparison of bubble rise velocity between OpenFOAM and level-set methods

40

80

160

320

TP2D

FreeLIFE

82 | P a g e

al., (2013). Therefore, some further investigation is required. First a collection of

runs were conducted on the 160 cell test case. In each case the bubble was

initialised using 15 corrector steps. All cases were performed using a single core but

with the Linux GUI switched off. The number of pressure correction steps was

varied from 1 to 15, compute times are plotted below in Figure 36.

Figure 36: Graph comparing compute time with number of pressure correction steps

The first thing to note is that a single pressure corrector failed to produce a stable

solution and so is not included in the results. The remaining results show that

between two and four correctors give similar performance costs. After this however

the cost rises sub linearly. With 15 correctors time is 2 1/3 times as great as 4

correctors. Results of the previous properties shown below were then compared in

Figure 37 to Figure 39. In each comparison 2, 6, 10 and 15 pressure correctors are

shown on a graph to improve clarity.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16

Co
m

pu
te

 T
im

e
(S

)

Number of Correctors

Comparison of Compute time and pressure correctors

83 | P a g e

Figure 37: Circularity comparison with varying pressure correction steps

Figure 38: Centre of mass compared across varying pressure correction steps

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0 0.5 1 1.5 2 2.5 3

De
gr

ee
 o

f C
irc

ul
ar

ity

Time (S)

Comparison of Circularity with number of Correctors

2 6 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.5 1 1.5 2 2.5 3

Ce
nt

re
 o

f M
as

s Y
 C

oo
rd

in
at

e

Time (S)

Centre of Mass Comparison among number of correctors

2 6 10 15

84 | P a g e

Figure 39: Comparison of Y velocity across number of pressure correction steps

These figures show that the quantitative results of this case do not very significantly

with increasing number of pressure correctors. But what is the optimum efficient

setup? If it is assumed that the largest number of correctors is the most accurate

solution the error of each case can be evaluated in comparison to it.

 100 −
‖∑ 𝑅ଵ

ே்ௌ
ଵ ‖ − ‖∑ 𝐸ଵ

ே்ௌ
ଵ ‖

‖∑ 𝑅ଵ
ே்ௌ
ଵ ‖

× 100 (23)

Here R is the actual values at each time step of the 15 pressure corrector steps

case, E is the difference between the 15 pressure corrector steps case and the case

in question and NTS is the number of time steps. Equation 21 effectively shows how

different the result is compared to the optimum. Looking at results for Y-velocity,

and 2 pressure correction steps. Across all time steps there is a loss in accuracy of

0.28% in the results but achieving that accuracy requires 138% more computing

time.

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3

Y
Ve

lo
ci

ty

Time (S)

Y Velocity compared across number of Correctors

2 6 10 15

85 | P a g e

Figure 40: Percentage error across varying number of pressure correction steps

5.7 Parallel Scaling

Running OpenFOAM in parallel is common. The method used being domain

decomposition. Optimizing this is very much dependent on both hardware available

and the problem being solved. It is generally accepted that between 10,000 and

50,000 cells per core is most efficient. Less than 10,000 cells per core would result

in high core to core communication while above 50,000 raw performance simply

isn’t good enough. In Keough (2014) indeed it is shown that the type of problem

influences the number of cells needed to saturate a core.

To get a good idea of the systems parallel performance, again this case was used as

a test. Each case was performed with the Linux GUI switched off using the 160-cell

case. In addition to this hyper threading on the Intel CPU was switched off giving 16

logical cores on 16 real cores as opposed to 32 logical cores on 16 real. In all cases

the scotch decomposition method was used to decompose the problem. Scotch is

one of four options for decomposition, the others are simple, hierarchical and

manual. Simple will just divide the domain into sections as defined by the user in

terms of number in x y z directions. Hierarchical works in a similar fashion but

instead equalises the number of cells per processor. This means it is very useful for

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14 16

Pe
rc

en
ta

ge
 e

rr
or

Number of correctors

Percentage error with varying pressure correctors

86 | P a g e

domains that have meshes with refinement zones or if the number of cells in the

three directions is not easily divisible by the number of processors available.

Manual is where the user defines exactly which cells are allocated to which

processor. The used scotch method aims to equalise the number of processor

boundary cells between each processor, in theory this should equalise MPI

communication. It requires no user input.

Figure 41: OpenFOAM parallel scaling with different domain decomposition methods on 160 cell case

Figure 41 shows a comparison between the different domain decomposition

methods. It can be seen that at two processor cores there is no difference as would

be expected because the methods can’t make a difference. But after this clearly the

simple method performs more poorly. However, there is very little difference

between hierarchical and scotch so the advantage of scotch requiring no user input

makes it a clear winner.

0
50

100
150
200
250
300
350
400
450

0 2 4 6 8 10 12 14 16 18

Ti
m

e
(S

)

Number of Cores

Parallel scaling of different domain decomposition methods

Simple Hierarchical Scotch

87 | P a g e

Figure 42: Parallel scaling of OpenFOAM

Strong scaling was compared with both 15 and 3 pressure corrector steps. In all

cases as discussed previously, 3 pressure corrector steps was fastest. However, as

the number of cores increases the gap reduces. In terms of parallel efficiency 15

correctors is always better, with the increased compute requirement being able to

hide the intra core communication. With 15 correctors parallel efficiency is good up

to 8 cores, staying above 90%, at 16 cores though it drops down to 78%. With 3

correctors efficiency is only above 90% with two cores. Dropping to 89% for 4 and

81% with 8. Finally, 16 cores have an efficiency of just 69%. This is explained by

there only being 3200 cells per core so simply there is not enough computational

requirement to hide the intra core communication. Additionally, the cost of

decomposing and reconstructing the case (required cost to run in parallel) was

found to be 60 seconds in every case no matter the number of cores or number of

correctors. This cost is equal to the computational cost of 3 correctors running on

16 cores so is not insignificant in this instance.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

Ti
m

e
to

 C
om

pl
et

io
n

(S
)

Number of Cores

Parallel Scaling of OpenFOAM on Bubble Rise Case

88 | P a g e

Figure 43: Parallel Scaling with 320 Cells, black is linear scaling, grey is scaling produced in this study

To further investigate the parallel performance of this case additional cases were

used with higher cell counts. First, with the results shown in Figure 43 the 320-cell

per unit case is shown. In black is linear scaling while in grey is scaling results

obtained in this investigation. Even though the number of cells per core with 16

cores is now 12,800 the improvement in parallel efficiency is not great. Indeed, the

rise is only about four percentage points from 69.3% to 73.4%.

Figure 44: Parallel scaling of 480 cells per unit, black is linear scaling, grey is scaling produced in this study

0 2 4 6 8 10 12 14 16
600

6000

Number of Cores

Ti
m

e
to

 C
om

pl
et

io
n

(S
)

Parallel Scaling of OpenFOAM

0 2 4 6 8 10 12 14 16
3400

34000

Number of Cores

Ti
m

e
to

 C
om

pl
et

io
n

(S
)

Parallel Scaling of OpenFOAM

89 | P a g e

Figure 44 has additional cells, now with 480 cells per unit length. This results in

28,800 cells per core. Again, black shows linear scaling while grey is scaling results

in this study. Of note this time is that parallel efficiency now drops, albeit by less

than one percent, from 73.4% to 72.6%. This would suggest that the optimum

number of cells per core for this case lies between 13,000 and 28,000. A reasonable

choice would be 20,000.

5.8 Chapter summary

This chapter has shown that OpenFOAM is a prime candidate for use in liquid

atomization cases. While these cases are 2D it has demonstrated first that

OpenFOAMs interface tracking method is accurate using a courant number of 0.25

it also can perform well when compared to interface tracking methods commonly

found in liquid atomization studies. Setup parameters for future use have also been

investigated to ensure future GPU comparisons are useful in real world

applications. Finding that the three pressure correctors suggested by Deshpande

(2012) are most efficient. In addition, the GAMG linear system solver is clearly the

most efficient solver available. Finally, parallel scaling on the available computing

platform has been assessed showing good strong scaling up to a point, with an

estimation of 20,000 cells per core being most efficient.

90 | P a g e

Chapter 6 Surface Tension Dominated Test Case

6.1 Overview

Using the setup parameters found in the previous chapter interFoam will now be

compared to an experimental liquid injection case, this will test its capabilities in

three dimensions instead of just two. This will also give a good platform for

development of an initial GPU acceleration which will be investigated in the latter

portion of this chapter, this GPU acceleration will build upon the concepts

discussed in chapter 4.

6.2 Experimental Description

To test the suitability of OpenFOAM in a primary spray atomization case as well as

to provide a platform for GPU acceleration a relatively simple surface tension

dominated case was selected. Longmire et al., (2001) presented an investigation

into topological changes of liquid jet pinch off. Full two-dimensional velocity fields

of a forced jet of glycerine and water solution pinching off in an ambient Dow

Coming 200 series silicone fluid were measured using particle image velocimetry

(PIV).

91 | P a g e

Figure 45: Diagram of experimental setup from (Longmire, et al., 2001)

Two series of experiments were performed, in the first series the Dow Coming

ambient liquid viscosity is approximately 10 times that of the second series. The

resulting pinch off dynamics will therefore differ. Additional parameters of the

experiment are described in Table 6. These non-dimensional numbers use the inlet

diameter, D, and velocity. Only the first experiment series is considered here,

where the viscosity ratio is 0.17.

Reynolds

number

Froude

Number

Eötvös

number

Density

Ratio

Viscosity

ratio

Strouhal

number

34 0.2 6.1 1.19 0.17 4

Table 6: Dimensionless parameters used by (Longmire, et al., 2001)

Without forcing, on exit of the 10mm nozzle the liquid would contract and continue

as a steady stream until it leaves the ambient Dow Coming fluid. However, if forcing

92 | P a g e

is introduced, in this case at 10Hz, a sinusoidal velocity at the nozzle exit is created.

This sinusoidal velocity will generate repeatable pinch-off conditions.

6.3 Computation Setup

In order to simulate the conditions described above a small section of the tank in

Figure 45 just below the nozzle is used as the computational domain. Using the

meshing program blockMesh that is included in OpenFOAM a regular orthogonal

mesh is generated.

Figure 46: Illustration of computational setup

The domain is 22mm square in the jet cross section and 100mm long. Grid sizing is

Δx/D = 0.05 where D is the jet diameter. Because of the Cartesian grid, the round

nozzle is approximated by square cells. To produce the sinusoidal velocity profile a

time dependent velocity condition was imposed at the inlet using the OpenFOAM

user contributed library groovyBC. Apart from the top boundary described as the

inlet the remaining boundaries are set using the OpenFOAM inletOutlet condition.

In this boundary condition the condition will apply zero-normal gradient when the

fluid is flowing out (flux is positive) while if there is backflow (flux is negative) a

Inlet (D), 10mm

inletOutlet

93 | P a g e

fixed user defined value will apply, in this case inflow of the ambient Dow Corning

fluid. For pressure however the inletOutlet condition is replaced with a fixed value.

Quantitative comparisons come from contrasting the liquid jet shape between

computation and experimental at instantaneous times. To quantify the time at

which the image is taken the phase of the sinusoidal wave is used.

Figure 47: Comparison of computational results (A) to left, experimental results from (Longmire, Norman, &
Gefroh, 2001) (B) to the right, showing the jet outline and droplet pinch off. In each series from L to R 0, 120 and

240 degrees of the sinusoidal profile.

Figure 47A, is coloured by the volume fraction of the injected water/glycerine

mixture, being one (red), while the ambient Dow Coming is zero (blue). As is

common when using the volume of fluid method there is an interface of partially

filled cells which extends over three to four cells. The match between the liquid

structures in both the computational and experimental results is acceptable. The

computational results indeed show a good representation of the perturbations

found in the liquid jet. A good example of well captured features is in the initial

image at zero degrees. Here the experimental results show a very thin neck

between the jet and what is about to become a droplet. In the computational

A B

94 | P a g e

results this is represented by a small area where the volume fraction doesn’t reach

one. Additionally, the characteristic flattening of the droplets after they have

pinched off the jet is well captured. However, it is noted that the numerical results

show a slight under estimaton of the velocity profile.

Figure 48: 3D representation of the computational results in this study using iso-surface of 𝛾 = 0.5

This experiment has previously been used by Pan & Suga (2003) to validate their

investigation into the use of the level set method for multiphase problems involving

interface breakup. For the quantitative results that follow, the results presented in

Pan & Suga (2003) are included as a comparison. First the instantaneous axial

velocity along the jet centreline is measured. Again, time description is in terms of

degrees of the sinusoidal velocity inlet.

95 | P a g e

Figure 49: Jet centreline velocity at 150 degrees, including computational results from this study, experimental
results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003)

Figure 50: Jet centreline velocity at 330 degrees, including computational results from this study, experimental
results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003)

0

2

4

6

8

10

12

5.75 6.25 6.75 7.25 7.75 8.25

U
/U

E

Z/D

J E T C E N T E R L I N E V E L O C I T Y

150 Deg Computation 150 Deg Experimental 150 Deg Comparison

0

2

4

6

8

10

12

5.75 6.25 6.75 7.25 7.75 8.25

U
/U

E

Z/D

J E T C E N T E R L I N E V E L O C I T Y

330 Deg Computation 330 Deg Experimental 330 Deg Comparison

96 | P a g e

Again, the agreement between the computational results in this study and the

experimental results in Figure 49 & 50 is reasonable. It can be noted that the

agreement is better downstream than upstream however. The magnitude of

velocity is well captured in all cases. The experimental results and the present study

captures this better than was managed by Pan & Suga (2003), specifically at the

downstream minimum and maximum.

Figure 51: Radial velocity profile at z/D = 6.15 and 60 degrees, including computational results from this study,
experimental results from (Longmire, et al., 2001) and a comparison to (Pan & Suga, 2003)

Further comparison can be made on the radial velocity profile. In Figure 51 the

radial velocity profile at a distance of 6.15 diameters is shown, again experimental

results and the computational comparison are shown. The results produced by Pan

& Suga (2003) show a slight over prediction of the velocity found experimentally.

Whereas in the present study, as was seen in the centreline velocity figures, a small

under prediction of the axial velocity is made. In addition, the velocity gradient

moving away from the jet centreline is lower. This is likely due to using an inlet

condition that has a uniform velocity across the nozzle diameter.

0

1

2

3

4

5

6

7

8

9

10

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

U
/U

e

r/D

Radial Velocity at 60 degrees

Computation Experimental Comparison

97 | P a g e

6.4 Mesh independence

To assess the mesh independence of the solution 3 meshes were constructed. The

time averaged flow rate of the exit of the domain was calculated for each mesh.

Figure 52: Mesh convergence of solution

The flow rate at the exit of the domain is used as the convergence metric as the

axial velocity, which is the primary driver of flow rate, is also the key factor in the

statistics presented for comparison. Note that the flow rate in this instance is small

as the average injection velocity is 2.48 × 10ିଶm/s.

6.5 Full port or partial port?

As discussed previously OpenFOAM is not a monolithic code and consists of many

independent parts. Therefore, a full port would represent a significant challenge

even for a large number of researchers with considerable time. In addition, a full

port is only worthwhile if there are several sections of code making significant

contributions to the overall compute time.

As seen in the literature commonly the most computationally expensive sections of

CFD code are the linear system solvers. These are therefore the prime candidates

for GPU acceleration. As shown previously, OpenFOAM has numerous linear system

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

12.5 13.5 14.5 15.5 16.5 17.5 18.5

Av
er

ag
e

flo
w

 ra
te

Cells per nozzle diameter

Mesh convergence of time averaged flow rate

98 | P a g e

solvers available for a variety of applications. Tomczak (2013) showed that with

their lid driven cavity case 87% of the compute time is taken up with solving the

linear system produced by the pressure correction equation.

If it is assumed that memory bandwidth is the limiting factor in solving the system

of linear equations (Bell & Garland, 2009) the GPU has a claimed advantage of 6

times over the CPU in this respect. In an idealised example taking from the above, if

the linear system accounts for 87% of a 100 second compute time then a 6 times

speed improvement would result in a compute time of 27.5s and a 3.6 times speed

up.

6.6 Integration between OpenFOAM and GPU solver

As OpenFOAM is not a monolithic code but collection of libraries that have different

functions, this can make integrating special functions easier. In the case of

OpenFOAM linear system solvers these are also contained in libraries. Each linear

system solver has its own library. Contained in the source code of this library are

the methods used to solve the system as well as access to the controls the user

inputs in dictionary files. Finally, in cases such as the preconditioned conjugate

gradient method where there are sections of code used by multiple solvers, i.e. the

preconditioners, interfaces to these libraries are included.

As mentioned previously the transport equations are discretised into a coefficient

matrix. OpenFOAM uses a type of COO matrix format, LDU, to store the coefficients

of this matrix. The LDU matrix stores the upper triangle, lower triangle and

diagonals of the matrix in dense vectors. These dense vectors are addressed using

the COO format. While the LDU format is useful for algorithms where operations on

one specific part of the matrix are required, for example Gauss-Seidel. However,

when using GPUs there are some elements of this format that are non-desirable.

The first is in terms of data transfer, while the difference may seem small when

large matrices are involved the difference is not insignificant. Secondly the

algorithms that can make use of the LDU format are often not suited to the

99 | P a g e

massively parallel nature of GPUs. As generally there are large elements of

sequential code.

In the first instance of data transfer the COO format requires 1 floating point value

and 2 integer values per non-zero matrix value. The CSR format however only

requires 1 floating point and 1 integer per non-zero matrix value with an additional

integer per matrix row. This will reduce the number of integer values by about 40%

or 10 bytes per row. Additionally, as investigated by Bell & Garland (2009) the COO

format often suffers from poor memory coalescence.

The way that a linear system solver is integrated is illustrated in Figure 53: a linear

system solver is created that is loaded at run time. This solver is written in

OpenFOAM ‘format’ it connects to the functions that OpenFOAM requires, such as

final residual etc. Included in this is the conversion of the coefficient matrix from

OpenFOAM LDU format to CSR format. A solve function in a separate library is

called by this solver that solves the matrix on the GPU. This library is compiled using

included OpenFOAM compile structures and the open source GCC compiler.

The called solve function is written separately in CUDA and is compiled using the

NVidia CUDA Compiler (NVCC). This additional library is passed pointers to CPU

memory that contains the coefficient matrix and result vector. The shared library

Figure 53: Outline of accelerated solver interface

Pre-processing

Discretization

Linear Solver

Postprocessing

Interface
Matrix Conversion

Memory copy

Accelerated
Numerical
Schemes

Linear
System Ax=b

Solution X

OpenFOAM

100 | P a g e

written in CUDA then performs all required functions of the linear system solver,

including the algorithm and memory transfer to the GPU. The function that is called

by the CPU solver then returns with a pointer to the result vector in CPU memory

and information about solver performance; such as number of iterations and final

residual.

6.7 Jacobi Solver for GPU

For solving the momentum equation OpenFOAM generally is configured to use a

Gauss-Seidel smoother, one of a collection of smoothers that can be used as a

solver or as a smoother for the GAMG solver.

The Gauss-Seidel method is in some ways undesirable as an algorithm for GPU

computing as it includes some operations that are inherently sequential and not

suited to massively parallel computing. An alternative and related method is the

Jacobi method. The Jacobi method consists of the iteration of equation 24, which is

written in matrix-vector format:

 𝑋(ାଵ) = 𝐷ିଵ(𝐵 − (𝐿 + 𝑈)𝑋) (24)

Where D is the diagonal, L is the lower and U is the upper sections of a matrix A.

while the superscripts indicate the iteration number. Each operation is then

parallelised to run on the GPU. The operations used to iteratively solve the above

equation are outlined below:

𝑅 × 𝑋 = 𝑅𝑋 Multiply 1

𝐵 − 𝑅𝑋 = 𝐵𝑅𝑋 Subtract 1

𝐷 × 𝐵𝑅𝑋 = 𝑋1 Multiply 2

𝑋1 − 𝑋 = 𝑋2 Subtract 2

101 | P a g e

The general rule in parallelising these operations is that each matrix/vector row will

be computed by one GPU thread.

6.8 GPU Acceleration

In order to test the capability of the GPU accelerations a number of cell sizes were

selected. The comparison was made between a set-up run purely on CPUs using

standard OpenFOAM solvers and an identical set-up using the GPU accelerated

solvers. The results can be found in Table 7. Additionally, the speed up of the GPU

momentum solver over its Gauss-Seidel and Jacobi counterparts running on CPU is

shown. The speed up is calculated from the total measured wall clock times of each

run.

Cell Size Overall speed up Momentum Speed up Speed up over Jacobi on CPU

315K 1.75 1.09 2.59

1M 1.94 1.34 3.33

2.5M 1.53 1.47 3.59

5M 1.35 1.68 4.17
Table 7: Speed up of dripping case using GPU accelerated solvers over CPU solvers

Table 8 shows the percentage of time taken in each time step for the calculation

and the various memory transfer operations. This explains the improved

performance of the Jacobi acceleration (JSAccel), as the cell count of the problem

increases. The gains in speed from using GPUs are found in calculations where the

reduction in compute time, conducting the computation on a GPU, outweighs the

disadvantage of a very slow transfer of data to the GPU. Therefore, as the amount

of computations increase compared to data transfers, the GPUs advantage

increases.

102 | P a g e

Operation 315K Cells 1M Cells 2.5M Cells 5M Cells

Calculation (%) 55.695 62.199 66.994 70.651

Host to Device (%) 39.002 32.350 27.430 23.672

Device to Host (%) 2.7914 2.3233 1.9352 1.5473

Device to Device (%) 2.5119 3.1277 3.6400 4.1296

Table 8: Memory transfer proportions in one time step of JSAccel

To ensure the GPU is being used efficiently the usage of its main performance

metrics can be calculated. First a calculation of the computational throughput was

made; it was found that raw compute power usage was orders of magnitude below

maximum. Second the memory bandwidth of individual code sections was

calculated to assess memory bandwidth usage. The results of the initial study can

be found in Figure 54.

Figure 54: Initial memory bandwidth usage

It can be seen that some of the kernels used perform much more poorly than

others, and of particular note is multiply1. This kernel accounts for approximately

Kernals
0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

Ba
nd

w
id

th
 (B

yt
es

/s
)

Memory Bandwidth Usage of Kernals used in JSAccel

Subtract 2

Multiply 2

Subtract 1

Inverse

Multiply 1

Messured

Ideal

103 | P a g e

50% of the computational cost of each iteration of the JSAccel solver, because this

is where the matrix A is multiplied by the vector X. Therefore, savings in this area is

highly desirable. The parallelisation method for this section of JSAccel is broadly

similar to what would be used in a CPU code with one thread operating on each

row of the matrix A. As mentioned previously GPUs access memory in chunks of

128 bytes. In this instance groups of threads are accessing memory that has gaps

equal to the number of non-zero values per row. To remedy this and allow threads

to access memory that is better coalesced, multiple threads per row can be used.

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= num_rows)
 return;

 double dot = 0;

 int row_start = Ap[idx];
 int row_end = Ap[idx+1];

 for (int k = row_start; k<row_end; k++)
 dot += Ax[k] * x[Aj[k]];

 y[idx] = dot;

Code 3: Original matrix vector multiplication

First in Code 3 an index for each thread is defined. Next an if statement is used as

an escape for non-required threads. As threads are launched in groups of 256 it is

likely there will be a small number that are not required, this statement means they

do nothing and won’t produce an error. Then the sum for each row is allocated.

Following this the start and end of each row are accessed from global memory. A

for loop is then used to iteratively sum the product of each matrix value and vector

value, this section runs serially on each thread. Finally, the sum is written to global

memory.

104 | P a g e

const int THREADS_PER_VECTOR = 4;
const int VECTORS_PER_BLOCK = BLOCK_SIZE/THREADS_PER_VECTOR;
const int THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const int thread_id = THREADS_PER_BLOCK * blockIdx.x + threadIdx.x; // global thread index

 if (thread_id >= (num_rows*THREADS_PER_VECTOR)) // Error
 return;

 __shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR + THREADS_PER_VECTOR / 2];
 __shared__ volatile int ptrs[VECTORS_PER_BLOCK][2];

 const int thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1); // thread index within the vector
 const int vector_id = thread_id / THREADS_PER_VECTOR; // global vector index
 const int vector_lane = threadIdx.x / THREADS_PER_VECTOR; // vector index within the block
 const int num_vectors = VECTORS_PER_BLOCK * gridDim.x; // total number of active vectors

 for(int row = vector_id; row < num_rows; row += num_vectors)
 {

 if(thread_lane < 2)
 ptrs[vector_lane][thread_lane] = Ap[row + thread_lane];
 const int row_start = ptrs[vector_lane][0]; //same as: row_start = Ap[row];
 const int row_end = ptrs[vector_lane][1]; //same as: row_end = Ap[row+1];

 double sum = 0;

 for(int jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR)
 sum += Ax[jj] * x[Aj[jj]];

 sdata[threadIdx.x] = sum;

 if (THREADS_PER_VECTOR > 16) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 16];
 if (THREADS_PER_VECTOR > 8) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 8];
 if (THREADS_PER_VECTOR > 4) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 4];
 if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 2];
 if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x + 1];

 if (thread_lane == 0){
 y[row] = sdata[threadIdx.x];
 }
 }
};

Code 4: CSR vector multiplication as proposed by (Bell & Garland, 2009)

In detail Code 4 can be explained as follows. The first 3 lines create variables that

have information about vector sizes, the fourth has the thread index. Next an if

statement is used as an escape for non-required threads as previously noted. The

next two lines create on chip variables that can be accessed by all threads, these

are used for the sum totals and row start and end values. The following two lines

then give indexes for each thread in relation to their location in a group of threads

105 | P a g e

operating on one row, which group it’s located in. The next two lines give indexes

for the thread groups. The for loop is then used to compute the result for each

matrix row. The next lines then access the start and end positions for the row being

operated on, it uses two threads, one to access each value. Next a variable is

allocated for the result of a thread. The final for statement then calculates the

multiplication of the matrix values by the corresponding vector value this is added

to the sum by each thread. This is done with the number of threads per row and if

there are matrix values remaining the group operates again until all are computed.

This gives each thread a part of the result which is transferred to shared memory.

The transfer enables the next if statements to perform a reduction, each time using

half as many threads as there are values to be summed. Finally, the first thread

writes the final result to global memory.

Finding the number of threads to use per row can be achieved in the following way.

The average number of non-zeros per row can be computed, in this case

approximately 6.3. This number of threads would be ideal from the view point of

memory coalescing, however due to the practicalities of GPU computing this is not

the case. The reality of GPU computing is that after the multiplication has taken

place, the values for each must be summed together, which is best performed with

one addition per thread. Otherwise the idling threads will harm performance. With

this considered, the only options are to use either 4 or 8 threads per row. Testing

showed that the number of threads that are idling when using 8 threads per row

harm performance more than does the worse memory coalescing using 4 threads

per row. The results of this change and some other minor changes are shown in

Figure 55. In the figure, the inverse kernel is used to calculate the inverse of the

diagonal matrix. The memory bandwidth usage of each kernel is compared with

each other as well as the maximum measured by an ideal operation (Measured).

This measured value was found by the method detailed in Chapter 4. Finally, the

maximum bandwidth claimed by the manufacturer (Ideal) is shown.

106 | P a g e

The results of this improvement in memory coalescing were soon evident with the

time required to compute multiply2 being reduced by a third. Coupled with the

other small improvements, an overall improvement of approximately 20% was

achieved.

Figure 55: Final memory bandwidth usage

6.9 Compute time reliability

During testing of the GPU accelerated solvers it was noted that there was often

significant variation in the compute time. In order to test this variation a collection

of tests were performed on the reference hardware. 15 test runs were performed

one after the other with no other interaction with the hardware. This should give a

good indication of the variation seen. In the first instance the 315k cell test case

referred to above was run for one second. This represents a compute time of

around 7000 seconds.

Kernals
0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

3.5E+11

4E+11

Ba
nd

w
id

th
 (B

yt
es

/s
)

Improved Memory Bandwidth Usage of Kernels used in JSAccel

Subtract 2

Multiply 2

Subtract 1

Inverse

Multiply 1

Messured

Ideal

107 | P a g e

Figure 56: Compute time variation on test case

Figure 56 shows the variation on total compute time across the 15 tests cases, the

order is the same as was conducted on the reference hardware. The variation

seems not to come from change in real time. This could be expected to happen

from additional residual memory usage by the operating system or with memory

not being deallocated from previous runs etc. However, this is clearly not the case

as there is no trend over real time. Indeed, the fastest run is the 12th of 15. While

the variation is not hugely significant at approximately 1.2% it does remain

unexplained.

An additional comparison was made on the much higher five million cell count

though this was only run for two time steps to save real time. This produced a much

greater variation in compute time.

6930

6940

6950

6960

6970

6980

6990

7000

7010

7020

7030

1 3 5 7 9 11 13 15

Co
m

pu
te

 T
im

e
(S

)

Run Number

Compute time variation on test case

108 | P a g e

Figure 57: Compute time variation among higher cell count test session

As can be seen in figure 58 there is clearly more variation across real time, but the

variation is far more significant, in the region of 12%. Looking into more detail at

the breakdown of the compute profile it’s possible to compare different sections of

the code.

Figure 58: Compute times of continuity and momentum solvers

In figure 59 it can be seen that the plot of the momentum solver follows that of the

whole solver compute time, however the continuity solver is much more varied.

160

165

170

175

180

185

190

1 3 5 7 9 11 13 15

Co
m

pu
te

 T
im

e
(S

)

Run Number

Compute time variation on test case

98
99
100
101
102
103
104
105
106
107
108

20
21
22
23
24
25
26
27
28
29
30

1 3 5 7 9 11 13 15

Ti
m

e
(s

) C
on

tin
ui

ty

Ti
m

e
(S

) M
om

en
tu

m

Run Number

Comparison of momentum and continuity compute times

Momentum Continuity

109 | P a g e

While the variation of the momentum solver compute times is similar to the

variation in the overall compute time the magnitude isn’t accounted for. Though

interestingly this demonstrates that the variation is unlikely to be coming from

either specifically GPU or CPU compute processes. To investigate the possibility of

the CPU computation causing the errors the Linux perf program was used to check

the number of page-faults and cache misses. Both of these have the potential to

increase the computational time of each run. The results showed that variation in

these was minimal, page-faults and cache misses only varied by 0.02% across all the

cases. This doesn’t equate to the 12% difference in compute time. As this variation

remains unexplained care should be taken to make comparisons over long compute

time to reduce the variation in run time or if short compute time are required

multiple computes should be performed and averaged.

6.10 Chapter Summary

This chapter has shown that interFoam performs well on a low Reynolds number

liquid injection case. Indeed in the key metric of jet centreline velocity the

computational results are close to experiment and in some areas are also better

than alternative level set methods.

Following this, GPU accelerated linear solvers were developed for both the pressure

and momentum equations. These showed a doubling of speed over the equivalent

CPU linear solvers. Although a decent speedup there is room for improvement, the

speedup of the pressure equation does not improve with increasing cell count. This

type of improvement would be expected from a GPU as the additional data means

the GPU cores can be kept occupied better. The high level of memory transfer in

this implementation harms this performance and needs to be removed. Finally a

compute time variation has been found that has a significant effect on short

compute time problems and although smaller has an effect on longer compute time

comparisons. Some explanations for this were investigated but a definitive

conclusion was not found however recommendations for future investigations were

110 | P a g e

suggested such that compute comparisons should be made long enough that the

uncertainty is minimised.

111 | P a g e

Chapter 7 Sheet atomization case

7.1 Overview

This chapter will set out a much more complex and industrially significant problem

in primary atomization. Bulding on the low Reynolds number case presented in the

previous chapter. This test case will then be used to assess the suitability of GPU

accelerated computing to computationally expensive industrial atomization

problems.

7.2 Establishing a CPU benchmark

The case presented by Deshpande et al., (2015) is used as a basis. While the CFD

modelling of the primary atomization of a liquid sheet is used as a comparison to

other techniques, it does represent a near to real case. The primary atomization

problem consists of a thin sheet that is injected into quiescent air at high velocity

(200m/s) and therefore typically has a high Reynolds number. In this investigation

the average liquid breakup length is compared across a number of different density

ratios. This ratio is achieved by varying the ambient gas density the liquid is injected

into. The cell density used puts the simulation in the DNS regime. The operating

parameters are outlined in Table 9 below.

Liquid Density 666.7 kg/m3

Liquid viscosity 2.5 × 10ିସ 𝑁𝑠/𝑚ଶ

Gas Density 39.22 𝑘𝑔/𝑚ଷ

Gas Viscosity 4.06 × 10ିହ 𝑁𝑠/𝑚ଶ

Coefficient of surface tension 0.02 𝑁/𝑚

Sheet thickness 200 𝜇𝑚

Injection speed 200 𝑚/𝑠

Table 9: Operating conditions of sheet atomization

112 | P a g e

Dimensions are normalised by half the sheet thickness (ℎ). The overall size of the

domain used in the reference case is described as 90ℎ × 80ℎ × 270ℎ. With a

maximum cell density of 12 cells per ℎ resulting in a total cell count of 3.359 ×

 10ଽ. Because of this some economy of cell count is required in order to run this

problem on the available hardware. However, this huge cell count re-enforces the

need to investigate alternate computing platforms to reduce compute cost on

these kinds of problems.

The reference case investigates multiple density ratios which are inversely

proportional to the length of the sheet. The first economy can be made by only

considering the highest density ratio. Indeed Deshpande et al., (2015) states “In

order to show breakup length for the lowest density ratio … the domain was made

sufficiently long in the stream wise direction”. Plots of intact liquid core length

show that on average the highest density ratio sheet core-length is three times

longer than the smallest. Therefore, the overall domain length is reduced by half to

allow a reasonable section of no longer intact liquid core.

Figure 59: Outline of boundary conditions used

Figure 59 describes most of the boundry conditions used. The inlet is defined as a

fixed velocity in a central slit equal to the sheet thickness (2ℎ) of 200m/s. At the

span-wise boundaries periodic conditions are applied. This allows for a significant

reduction in the span wise dimension. Compared to the domain published, the one

in this study is half the size in the stream wise direction and 1/9 of the size in the

Inlet

Fixed 0 guage

pressure

outlet

Zero-Normal

Gradient

113 | P a g e

span wise direction. The remaining direction is also halved, after initial results

showed that after breakup insignificant quantities of liquid could be found near the

vertical boundaries (as show in Figure 60). This gives an overall domain of

135ℎ × 40ℎ × 10ℎ where 2h is the sheet thickness.

Figure 60: Sheet visualisation taken at 4 × 10ିସs. Iso contour of volume fraction = 0.5. Coloured by velocity in
m/s

To confirm that this economy of cell count does not adversely affect the physical

results of the simulation, the breakup length (Xliq) was compared. Deshpande et al.,

(2015) presented a plot of intact liquid core length over time for the various gas

densities tested. They also presented a plot of how the intact liquid core length

varies with mesh density. Using both of these an estimate of how the intact liquid

core length varies over time on the coarsest mesh density can be plotted using the

offset as shown in Figure 61.

114 | P a g e

Figure 61: Graph of data presented by (Deshpande, et al., 2015) and what would be expected by using the the
offset related to the reduced number of cells

This offset graph does not well represent the linear regime because a simple offset

is used giving a negative value for intact liquid core length. However, the quasi-

steady state period has an indication of the variation around the average intact

liquid core length. The method for establishing the intact liquid core length is not

well explained. So, for comparison a slice is cut through the centre of the domain

and the point at which there is no longer a chain of volume fraction greater than

0.5 is taken as the intact core length.

-20

-10

0

10

20

30

40

50

60

70

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2.50E-04 3.00E-04 3.50E-04 4.00E-04

X l
iq

/2
h

Time (S)

Intact liquid core length over time

Paper Paper Offset

115 | P a g e

Figure 62: Comparison of data and data offset with results from this work

From these results it can be seen that in the quasi-steady state period the

agreement between the results offset for cell density and those in this study is

quite good. The average intact liquid core length in this region is very similar.

However, the initial transient, linear growth regime results in a much shorter intact

liquid core length. To investigate the effects of the different boundary conditions

used, a comparison was made by doubling the domain length and also increasing

the width, from 10h to 30h, and removing the cyclic boundary conditions. This gives

a distance of 10h between the liquid sheet and the boundaries on the sides of the

domain. As a result, the same ratio of sheet width to gap size between the sheet

and boundary is obtained as is used in the reference case.

-20

-10

0

10

20

30

40

50

60

70

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2.50E-04 3.00E-04 3.50E-04 4.00E-04

X l
iq

/2
h

Time (S)

Breakup length comparing slices accross domain

Reference Reference Offset Coarse Mesh

116 | P a g e

Figure 63: Comparison between alternative boundary conditions on intact liquid core length

This comparison shows that the downstream outlet boundary condition has an

insignificant effect on the transient linear growth regime. However, increasing the

domain width as well as using outlet boundaries with a gap between the jet and

boundary noticeably increases the length of the jet at the end of the linear growth

region.

0.00E+00 2.00E-05 4.00E-05 6.00E-05 8.00E-05 1.00E-04
-20

-10

0

10

20

30

40

50

60

70

Time (S)

X l
iq

/2
h

Liquid Sheet Breakup Length

Reference Reference Offset Extended Domain Length Wide Domain

117 | P a g e

Figure 64: Breakup Length using multiple slices

When the cell density was increased the expected increase in intact liquid core

length did not occur. This lead to the possibility that using a single slice to calculate

the intact core length was not suitable. The possibility of there being span wise

breakup could account for this lower than expected result. To investigate this

further the number of slices used to assess intact core length was increased so

multiple positions across the domain could be probed. The result from using 20 and

40 slices is shown in Figure 64 above. 20 slices gives one slice every four cells with

40 giving one every two cells in the span wise direction. The intact liquid core

length is then evaluated on each slice, this gives the intact liquid core length at

discrete points across the domain. The maximum intact core length can then be

plotted for each timestep.

0
5

10
15
20
25
30
35
40
45

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04

X l
iq

/2
h

Time (S)

Intact liquid core length over time

20 Slices 40 Slices

118 | P a g e

Figure 65: Variation of intact liquid core length across domain, using maximum and minimum intact core length
at discrete points across the sheet width

Figure 65 shows the maximum and minimum intact liquid core length among 40

slices across the domain. It can be seen that for only a short period in time there is

no variation across the domain but clearly throughout most of the simulation time

there is significant variation across the width of the sheet. This indicates that there

is significant span wise breakup in the sheet while there is still an intact core.

Figure 66: Variation in breakup length in spanwise direction on coarse mesh, using maximum and minimum
intact core length at discrete points across the sheet width

0
5

10
15
20
25
30
35
40
45

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04

X l
iq

/2
h

Time (S)

Comparison of Intact Liquid Core length Across Domain

Max Min

0

5

10

15

20

25

30

35

40

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2.50E-04 3.00E-04 3.50E-04 4.00E-04

X l
iq

/2
h

Time (S)

Breakup length comparing slices accross domain

Min Max

119 | P a g e

Using the same method as previously described on the fine mesh, this time on the

course mesh with a slice taken every 3 cells gives Figure 66. As opposed to the fine

mesh where a significant difference is seen here there is very insignificant variation.

Indeed, for large portions of simulated time the maximum and minimum values

track each other almost exactly.

The difference between the dense and course mesh can be further visualised in the

Figure 67 below. The first line drawn on the dense mesh shows the start of clear

breaks in the liquid sheet, but not across the whole span. The second line and the

line drawn on the coarse mesh show clear breaks across the whole span.

Figure 67: Iso contour of volume fraction = 0.5 on dense mesh (top) and coarse mesh (bottom), coloured by
velocity in m/s

120 | P a g e

Figure 68: Comparison of intact liquid core length over time using published results and results from this study

The variation in intact liquid core lengths across the domain width is compared for

both course and fine meshes in Figure 68. As expected the fine mesh produces a

slightly lengthened intact liquid core length, although this lengthening is not as

great as previously published. For the present application however, it is deemed

acceptable.

Finally, a comparison was made in varying the span wise dimension and therefore

the width of the injected liquid sheet. Figure 69 shows there is little significant

difference among the among the 5 different domain widths tested. In all cases the

domain width is described in terms of ℎ defined at the beginning of this chapter.

-10

0

10

20

30

40

50

60

70

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04

X l
iq

/2
h

Time (S)

Intact liquid core length over time

Fine MEsh Paper Offset Coarse Mesh

121 | P a g e

Figure 69: Intact liquid core length with varying domain width

7.3 Chapter summary

This chapter has shown that a complex sheet atomization case can be well

represented on the available hardware using alternative boundary conditions and

reduced domain size. While there are some differences, the average intact liquid-

core length is well captured. However, a clear difference in the transient growth

regime was found. Investigation into this issue showed that using periodic

boundary conditions had the effect of reducing the peak intact liquid core length at

the end of the linear growth regime. Additionally, it was shown that the coarsest

mesh does not show the significant span-wise breakup that was found in the finest

mesh. Finally, it was shown that changing the span-wise domain dimension showed

no significant effect on the intact liquid core length.

0

5

10

15

20

25

30

35

40

45

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04 2.50E-04 3.00E-04 3.50E-04 4.00E-04

X l
iq

/2
h

Time (s)

Comparison of intact liquid core length with varying sheet width

14 12 10 8 6

122 | P a g e

Chapter 8 Multigrid Solver Running Entirely on GPU

8.1 Overview

This chapter will present a much improved GPU accelerated linear system solver,

extending the solver presented in chapter 6 to a full multigrid method with the aim

of reducing memory transfers between the CPU and GPU. First the solver will be

explained with the key points detailed. Next performance tests will be made on the

sheet atomization case presented in the previous chapter.

8.2 Solver Outline

As has been discussed previously the conjugate gradient solver is fairly good and

efficient but it works best with either a multigrid preconditioner or just using a

multigrid method can be even faster. Because of this and as very few previous

investigations have reached the point of running a multigrid linear solver it seems a

natural progression for this work. As touched on in the earlier chapters a multigrid

solver consists of four main components. The first is a smoother, then there are

ways of transferring results to course grids, transferring results from course to fine

grids and a coarsest grid solver.

At least in the first instance the solver produced in this study uses a damped Jacobi

smoother, injection for interpolation, agglomeration for restriction and conjugate

gradient as the coarsest level solver. A V cycle is also used for grid cycling. Damped

Jacobi is used as it performs well when ported to GPU. There is no clear consensus

as to the most suitable smoother to use in GPU accelerated multigrid methods.

Indeed Liu et al., (2015) showed that the damped Jacobi method performs better

on GPUs than multiple other options. Others simply state that as Gauss-Seidel has

faster convergence it is better to use without consideration for the alternatives e.g.

(Reddy & Banerjee, 2015). As discussed in earlier chapters the conjugate gradient

solver was originally developed as a direct solver and its convergence is guaranteed

with as many iterations as there are unknowns. This makes it ideal for a situation

123 | P a g e

where the number of unknowns could vary in addition this is also the option used

by OpenFOAM. The prolongation and restriction operators were selected so as to

keep the solver similar to OpenFOAMs.

8.3 Starting with a two-level multigrid solver

To begin with a two-level solver was developed. In this instance, the solver may also

be referred to as a course grid corrector. Here two levels are used, the original fine

grid and a generated course grid. The course grid generation method is similar to

that outlined in (Versteeg & Malalasekera, 2007), i.e. a course grid cell consists of

the sum of eight fine cells. This is generated as a sparse matrix in compressed

sparse row format. This is then passed to the NVidia CUSP library (Nvidia

Corporation, 2014). The CUSP library is designed for efficient GPU computation with

sparse matrices. The CUSP library transposes the interpolation matrix to give a

restriction matrix. The Galerkin product is then used to generate the course grid.

The Galerkin product is shown below, R is the restriction matrix, I the interpolation

and A the linear system matrix. The subscripts denote the level on which the matrix

applies.

 𝐴ାଵ = 𝐼
்𝐴𝐼 (25)

In order to produce the Galerkin product the CUSP library will first convert each

matrix to the COO format. The COO format is more suited to the matrix

multiplication process whereas as discussed previously the CSR format is better

suited to matrix-vector products. The cost of this change is small and so worthwhile

(Bell, et al., 2012). This consists of what is commonly known as the setup phase.

After the setup phase comes the solve phase, this section is iterative. First comes

the pre-smoothing, a damped Jacobi method (damping of 2/3) operating on the

fine grid. The error from this pre-smoothing is then restricted onto the course grid

using the restriction matrix. A diagonally pre-conditioned conjugate gradient

124 | P a g e

method is then used to solve the linear system that arises from the error equation,

equation 26, shown below:

 𝐴ାଵ𝑋ାଵ = 𝑒ାଵ (26)

The result of this iterative process, after interpolation, gives an estimation of the

error on the fine grid. Therefore, the interpolated X vector is added to that

generated in the pre-smoothing. Finally post smoothing, again damped Jacobi is

used, is applied on the original linear system using the new X starting vector. The

solve phase is applied iteratively until the convergence criteria is reached.

One additional point of note concerns the boundary condition correction for the

two cyclic boundaries. OpenFOAM treats these boundaries as if they were the

boundaries between processors in a multi process operation. Thus, coefficients are

generated and the correction is applied part way through the iterative solver. A

similar approach is used in the present solver. The interface coefficients generated

by OpenFOAM are passed to the GPU and a correction is applied after every matrix

vector multiplication. On the course grid the original coefficients are restricted in a

similar way to the transfer of vectors from fine to course grids.

125 | P a g e

Figure 70: Flow chart of two level multigrid solver

8.4 Testing two level solver on sheet atomization case

The two level solver was applied to the sheet atomization case outlined in the

previous chapter initially one time step was performed to understand memory

bandwidth usage. The results of this analysis are shown in Figure 71. Bandwidth

usage is around maximum in the vast majority of the routines used. Exceptions are

the boundary correction routines, matrix vector multiplication and the restriction

Transfer matrix,

vector B and

boundary

coefficients to

GPU`

Generate

interpolation

matrix

I

Transpose

interpolation

matrix

IT

Compute

Galerkin

product

A2

Relax two

times on

Ax=b

Compute the

residual

b-Ax=R

Restrict the

residual

ITR=b2

Solve on course

grid with PCG

A2x2=b2

Interpolate

result to fine

grid

Ix2=d

Add

residual to

old x

x+d=x

Relax four

times on

Ax=b

Converged?

No

Return result and

performance data

to CPU

Yes

126 | P a g e

and interpolation operations. The boundary correction performs poorly as by its

very nature there is non-coalesced access to the linear system matrix. This is

because only the cells an X-dimension width apart are accessed. Matrix-vector

multiplication also doesn’t perform to the full capability of the GPU as the number

of non-zero values in each matrix row varies. Therefore, in some cases a memory

fetch operation will collect all data required while others will need multiple fetches.

Also of note is that the matrix-vector product represents around 45% of

computational time for each time step. As this operation is only using about 33% of

the GPUs theoretical bandwidth the acceleration over CPU will suffer.

Figure 71: Compute analysis of AMG 2 level solver

In addition to investigating compute parameters it is also necessary to validate the

results produced by the new solver. This was done in two ways. The first was to

directly compare results of the linear solver with an OpenFOAM equivalent setup to

behave in a comparable manner. Comparing the result of each cell after one-time

step gave a maximum percentage difference of 0.005%. This shows that although

not equal to machine accuracy the difference in result is well within a tolerable

0

5

10

15

20

25

30

35

40

45

50

0

50

100

150

200

250

300

Pr
op

or
tio

n
of

 C
om

pu
te

 T
im

e
(%

)

M
em

or
y

Ba
nd

w
id

th
 U

sa
ge

 (G
B/

s)

Kernel Name

GPU memory bandwidth usage of multigrid solver kernels

127 | P a g e

level. The difference can also come from minor differences in the computational

algorithm used by each compute unit. For example, OpenFOAM uses Gauss-Seidel

as its smoother and doesn’t have a damped Jacobi option.

For the second method of validation the breakup length is computed and compared

for each compute unit. This gives a comparison of how the codes compare over

many time steps.

Figure 72: Breakup length comparison between CPU and GPU

The results of breakup length comparison showed a difference in the results

obtained from the GPU as compared to the CPU. Upon investigation the GPU solver

overall proved to be marginally less stable resulting in slightly increased courant

number. This leads to requiring additional time steps, 1 in 97, again the differences

in algorithm will account for this.

With this in mind, the reference case was re-run using a fixed time stepping

method, 1e-8s being the applied t. The case was run for 40-time steps with the

result in each cell directly compared. The average difference among all cells in the

domain after 40-time steps was found to be 0.0011% with a maximum difference in

0

5

10

15

20

25

30

35

40

45

0.00E+00 5.00E-05 1.00E-04 1.50E-04 2.00E-04

X l
iq

/2
h

Time (S)

Breakup length comparing CPU and GPU

GPU CPU

128 | P a g e

one cell of 0.0024%. This demonstrates that the GPU code offers good accuracy.

Indeed, with reducing the residual criteria for each time step the differences

between GPU and CPU would decrease further.

Originally the multigrid solver was run using two pre and four post smoothing

iterations. However the number of smoothing iterations has a direct impact on the

number of iterations the multigrid solver takes to reach the convergence criteria.

With this in mind a test was conducted to find the optimum number of smoothing

iterations required for this problem. Each test was conducted using one time step

and repeated 25 times to account for compute time variation. The averaged results

are shown below in Figure 73.

Figure 73: Compute time variation using different numbers of smoothing iterations

The variation in compute time comes from the reduction in overall number of

iterations the multigrid solver requires. A smoothing iteration is relatively cheap

compared to full multigrid iterations. This effect is clear from the results, the

slowest configuration is that with one pre and post smoothing iteration. This

configuration requires 39 multigrid iterations to reach convergence. However, if

8

8.5

9

9.5

10

10.5

1 2 3 4 5 6

Co
m

pu
te

 T
im

e
(S

)

Number of post smoothing iterations

Effect of number of smoothing iterations on compute time

1 Pre Smooth 2 Pre Smooth 3 Pre Smooth

4 Pre Smooth 5 Pre Smooth 6 Pre Smooth

129 | P a g e

one pre and six post smoothing iterations are applied only 19 multigrid iterations

are required for convergence and compute time is reduced by about 17.5%. The

original usage of two pre and four post smoothing iterations is marginally improved

by increasing post smoothing iterations to six.

Speedup is compared using the fixed time stepping method mentioned previously.

This gives as like for like comparison as possible. The GPU coarse grid correction

method gave an overall speed up of 1.93 over its CPU counterpart. This was found

by comparing the total wall clock time of each run, which includes non-accelerated

code. Additionally, splitting the total clock time down into the amount of time

taken to compute pressure a speedup of 2.44 was found.

8.5 Comparison of speed on higher cell counts

To assess how the GPU performs in situations with higher cell counts three

different cell densities were compared. In all cases 40-time steps were used to

produce the comparison.

Cell Size Number of Cells Total speedup

Speedup of

pressure

corrections

h/3 1468800 1.926 2.444

h/4 3456000 2.539 3.386

h/6 11664000 3.520 4.831

Table 10: Comparison of speed up with varying cell counts

Table 10 shows the speedup obtained by using the two-level solver on higher cell

counts. Cell size is expressed as in Deshpande et al., (2015) in non-dimensional form

related to the sheet thickness. Ideally, the even more dense mesh using a cell size

of ℎ/8 would have been investigated as this is the largest case capable of being run

on the reference hardware. However, the GPUs limited available memory was not

large enough to accommodate this. The ℎ/6 case represents a usage of about

130 | P a g e

3.8GB of the GPUs available 6GB of memory. This represents a consumption of 326

bytes per cell meaning the maximum possible cell count that can be run on a single

GPU is around 18.5 million cells.

To understand the improvement in speed up over the CPU again memory

bandwidth usage was calculated, this is show in Figure 74 below.

Figure 74: Memory bandwidth usage of h/6 cell size

The memory bandwidth usage of the high cell count case is quite similar to that in

the standard case, though with some slight increases. Indeed, only the course level

kernels show any real increase but this is only by a few GB/s.

0

50

100

150

200

250

300

M
em

or
y

Ba
nd

w
id

th
 U

sa
ge

 (G
B/

s)

Kernel Name

GPU memory bandwidth usage of multigrid kernels

131 | P a g e

Figure 75: Illustration of GPU timing

Figure 75 above is taken from the NVidia visual profiler. Shown are the kernels

involved in one preconditioned conjugate gradient iteration. In each iteration, there

are three noticeable gaps in compute time. These take place after vector operations

such as sum and dot product. These operations use the CUBLAS library, the GPU

accelerated version of BLAS (Basic Linear Algebra Subprograms). The result of these

operations is a scalar returned to the CPU. This return operation is a

synchronisation point and so the next GPU kernel cannot be launched until the

return has completed. Additionally, the time cost of launching a kernel is not zero,

and this must take place after the scalar is returned. This gap is small, of the order

of 0.05ms, but occurs many times. This cost remains constant no matter how many

cells are used in the problem under investigation. Therefore, in lower cell counts

these gaps represent a significant portion of the compute time. But at higher cell

counts where the number of iterations doesn’t really change these gaps diminish in

percentage of overall compute time. In addition, the CUBLAS API is linked at its first

usage rather than purely at compile time. Again, this has a cost of around 0.1s,

though this only takes place at the start of computation so its effect when multiple

time steps are involved becomes minimal.

Analysing compute and memory transfer timing shows further details of how these

idling periods effect the overall compute time.

132 | P a g e

Cell Size Compute
Host to device

transfer

Device to host

transfer

Device to

device transfer

h/3 60.8308 1.36823 0.90981 0.41678

h/4 72.7214 1.43959 0.56024 0.48760

h/6 85.2864 1.20839 0.24313 0.47435

Table 11: Percentages of GPU compute time for one time step

Table 11 shows the percentage of GPU compute time for several classes of GPU

operation. Memory transfer operations remain a fairly constant proportion of

overall compute time. However, the compute proportion increases significantly.

This reinforces the notion that the idling time remains constant with the longer

compute times reducing the proportion idling time accounts for. In the coarsest

mesh idling accounts for about 35.5% of the total compute time but with the finest

mesh this decreases to just under 13%.

8.6 Multi-level solver

Following the testing of the course grid correction method the AMG solver was

further developed to use multiple grid levels. Because of the mesh dimensions only

the ℎ/4 mesh case is considered. This allows the coarsening to take place on all

mesh dimensions with the coarsest level still having an integer value of cells.

133 | P a g e

Figure 76: Memory bandwidth usage of coarsest level in two level solver

Figure 76 shows the memory bandwidth usage of the coarse level solver. The

remaining levels are not assessed as they will perform much the same as previous

examples. However, the coarsest level is of interest as it is now only computing the

result of a 54,000 cell mesh. This is significant as keeping the GPU fully saturated

with smaller and smaller numbers of threads can become a problem.

Initial comparisons on speedup were disappointing with no significant difference

between the CPU and GPU results. As previously these measurements were taken

from the overall CPU wall clock time, on a 40 time step compute run. The cause for

this poor result seems to partially be down to additional iterations per time step.

The CPU method only requires an additional one or two iterations per time step as

compared to the course level corrector. On the other hand, the GPU required a

factor of over 3 times as many iterations. This results in an overall time reduction of

10% for the GPU accelerated solver, whereas the CPU solver is 2.67 times faster.

To further investigate the effects of the different configurations of the OpenFOAM

implementation and the GPU implementation a Jacobi smoother was written and

implemented in OpenFOAM. An initial test showed that while the Jacobi smoother

reduced computational efficiency to some extent it was by nowhere near as much

0

50

100

150

200

250

add to x boundry smul_vadd crs_multiply multiply2

Ba
nd

w
id

th
 U

sa
ge

 (G
B/

s)

Kernel

Bandwidth usage of coarsest level solver

134 | P a g e

as would be expected. Trottenberg et al., (2001) states that the smoothing factor

should be 2.67 times greater. An arbitrary selection of time step showed that the

Jacobi smoother takes an additional 6 multigrid iterations to converge, going from

21 to 27. This contrasts significantly with the GPU multigrid iterations of 73.

Therefore, there is something significantly different. Extensive analysis of the

GAMG OpenFOAM code shows that it uses a form of residual scaling. Though in

contrast to (Liu & Zeng, 2010) and (Zhang, 1997) where a fixed scaling factor is

used, OpenFOAM calculates one at each multigrid iteration. Using the notation

described earlier in this chapter the scaling factor is calculated as below:

𝑠𝑓 =
|𝑅| ∙ |𝑑|

|𝐴𝑑| ∙ |𝑑|

This scaling factor is then effectively used as a damping factor in a Jacobi iteration

to get a new vector, X. Progressing from coarse to fine grids this new value of X is

added to the old to get a new starting point for relaxation. Indeed, switching off

this scaling confirms it is the factor having a significant impact on the convergence

speed. To this end when the scaling factor is switched off and CPU and GPU speeds

are compared an overall speedup of 1.47 is found. When the residual scaling

method is added to the GPU code an overall speed up of 1.26 is found compared to

its equivalent CPU counterpart. Showing improvements over the original value

obtained.

In further detail the solve time can be broken down into the following major parts;

matrix conversion, memory copy time, solver setup time and solve time. These

times are compared below in Table 12 on the final time step of a 40 step fixed time

stepping method discussed previously.

135 | P a g e

Corrector
Matrix

conversion

Memory

copy

Setup

phase

Solve

phase

Number

of

iterations

1st 41.96 16.64 14.37 27.03 8

2nd 44.57 26.89 14.76 13.77 5

3rd 28.13 11.15 9.48 51.24 13

Table 12: Percentage of solve time in one time step of significant solver sections

As would be expected with a higher number of iterations the significance of the

solve phase increases. However, despite this in all cases there is a significant

amount of time spent in code sections that are not required in the CPU

implementation. Specifically, the matrix conversion and memory copy sections,

indeed in the corrector with the lowest iteration count this is over 70% of solver

time.

The method of memory copying is to use page-locked memory, (Sanders & Kandrot,

2010) states that using page-locked memory can result in a halving of copy time.

Therefore, to this point CUDA code has been written with this in mind but in order

to perform this function other routines must be performed. These are allocating the

page-locked memory and copying pageable memory to the page-locked location.

So, the memory copy can be split further into these components.

Allocate page-locked

memory

Copy pageable to page-

locked

Copy page-locked to GPU

global memory

48.02 39.82 12.16

Table 13: Percentages of time spent in memory copy phase

Table 13 shows that the time required for the memory copy setup operations

actually represent most of the memory copy time, around 88%, the actual copy to

GPU is only a small portion. So even if this small portion is doubled in size a

significant saving could still be made. A test was conducted running the final time

136 | P a g e

step 50 times to obtain an average of the saving made. These savings equated to a

56.8% saving in the memory copy phase.

8.7 Chapter Summary

A new GPU accelerated multigrid method has been presented. It has been

developed using methods that represent a compromise between methods that are

used by OpenFOAM as well those that are efficiently parallelised. Validation tests

showed that the new solver was slightly less numerically stable. Despite this it

produced results that were accurate to hundredths of a percent after 40 time steps.

A course grid correction method was compared to its CPU counterpart showing an

overall speed up of 3.5 times. Subsequently the cause of the speed improvement in

higher cell counts was found to be the reduced importance of idling time after

CUBLAS vector operations. Subsequent to this several aspects of a multi-level solver

were investigated. These showed that the residual scaling used by OpenFOAMs

GAMG method provides significant reductions in compute time.

137 | P a g e

Chapter 9 Conclusion and further work

9.1 Conclusion

Primary atomization of fuel spray is a complex problem that is most commonly

investigated numerically. However, this numerical investigation is generally very

computationally expensive.

In this work the open source code OpenFOAM has first been assessed on

elementary numerical problems to understand how it performs in simulating key

physical phenomena. Cases such as the Zalesak disk (Zalesak, 1979), Rayleigh-Taylor

instability and rising bubble (Hysing, et al., 2009) have shown that OpenFOAM is a

viable candidate for use in primary atomization investigations. In addition, the key

conditions that effect its computational efficiency have been investigated.

In this work OpenFOAM was further validated against a low Reynolds number

experimental test case (Longmire, et al., 2001). This showed reliable performance in

flow fields dominated by surface tension. Indeed, despite being a general purpose

CFD library it is comparable to other purpose built codes. In addition to this, using

the NVidia developed API CUDA GPU, accelerated linear system solvers were

further developed from previous research resulting in a doubling of speed over the

CPU implementation.

Next a high Reynolds number sheet atomization case was replicated on the

available hardware showing comparable results.

Finally, a GPU accelerated multigrid solver was developed to accelerate this high

Reynolds number primary atomization case. The resulting solver represents the first

usage of a GPU accelerated multigrid method in 3D VOF described primary

atomization. Using a multigrid method similar to that used by OpenFOAM showed a

speed improvement of 1.26 times. This is of note as the comparison is made to

highly CPU optimised linear system solver.

138 | P a g e

9.2 Further work

The main aim of further work that could be undertaken in accelerating OpenFOAM

for usage in primary atomization should be closer integration between the GPU and

its CPU counterpart. A logical next step from the present work would be to port

most of the PISO algorithm to GPU operation. This would include the momentum

predictor and pressure correctors. This would involve porting the governing

equation discretisation to the GPU in addition to the linear system solvers

presented in this investigation. This would have the benefit of further reducing the

expensive memory transfer operations involved in the present study. Indeed, with

three pressure corrections and three velocity solutions there are six transfers to

and from the GPU in each time step which could be reduced to one. Coupled with

this a move away from OpenFOAMs LDU matrix format could be made, the

conversion process of which has a significant cost in the present study. While each

of these points would likely only represent a small speed improvement together

they could amount to a significant speed increase.

Further investigation into multigrid methods presented in this study could also be

conducted. The selection criteria for the methods used in this study were a

compromise between similarity to those used in OpenFOAM and those that are

efficiently parallelised. However, if the similarity to OpenFOAM is removed then

there are numerous other examples of multigrid components found in the

literature that could be investigated each with advantages and disadvantages. This

could correspond to more efficient compute performance.

This investigation was mainly limited to using a single consumer grade GPU.

Therefore, naturally interesting avenues of further work would be to further

develop the source code produced here for usage on several GPUs. Some of the

ground work has been laid with periodic boundary usage but efficient

communication of processor boundary coefficients would still need to be found.

This would allow problems with far greater cell counts to be investigated.

139 | P a g e

Finally, this work has not used turbulence modelling, instead working in the DNS

regime to account for the turbulence found in primary atomization. However, this is

only one method and there are numerous examples of using LES in this regard,

found in the literature. As there is significant ongoing work to develop suitable LES

methods to reduce the time to solve primary atomization problems it would be

interesting to establish how a GPU may benefit this approach.

140 | P a g e

Publications

Some of the contents of this thesis have previously appeared in the following:

Dyson, J., Xia, J., Shinjo, J., Zhao, H., “GPU Accelerated Droplet Dynamics Simulation

Using OpenFOAM”, ILASS Europe, 27th Annual Conference on Liquid Atomization

and Spray Systems, Brighton, UK, September 2016.

141 | P a g e

References

Abbas-Turki, L., Vialle, S., Lapeyre, B. & Mercier, P., 2014. Pricing derivatives on

graphics processing units using Monte Carlo simulation. Concurrency and

Computation-Practice & Experience, 26(9), pp. 1679-1697.

Amritkar, A. & Tafti, D., 2016. Computational Fluid Dynamics Computations Using a

Preconditioned Krylov Solver on Graphical Processing Units. Journal of Fluids

Engineering, 138(1).

Anderson, J., 1995. Computational Fluid Dynamics: The basics with applications.

Singapore: McGraw-Hill.

Anderson, J., Lorenz, C. & Travesset, A., 2008. General purpose molecular dynamics

simulations fully implemented on graphics processing units. Journal of

Computational Physics, 227(10), pp. 5342-5359.

Appleyard, J. & Drikakis, D., 2011. Higher-order CFD and interface tracking methods

on highly-Parallel MPI and GPU systems. Reading, Computers and Fluids, pp. 101-

105.

Apte, S., Gorokhovski, M. & Moin, P., 2003. LES of atomizing spray with stochastic

modeling of secondary breakup. Interntional Journal of Multiphase Flow, 29(9), pp.

1503-1522.

Assured Systems, 2016. IOT growth means moore's law could soon be no more.

[Online]

Available at: http://www.assured-systems.com/news/article/moores-law--soon-to-

be-no-more/

[Accessed 14 December 2016].

Bell, J. & Marcus, D., 1992. A Second-Order Projection Method for Variable Density

Flows. Journal of Computational Physics, 101(2), pp. 334-348.

142 | P a g e

Bell, N., Dalton, S. & Olson, L. N., 2012. Exposing fine-grained parallelism in

algebraic multigrid methods. SIAM JOURNAL ON SCIENTIFIC COMPUTING, pp. C123-

C152.

Bell, N. & Garland, M., 2009. Implementing sparse matrix-vector multiplication on

throughput-oriented processors. Portland, ACM, p. 18.

Bianchi, G., Minelli, F., Scardovelli, R. & Zaleski, S., 2007. 3D large scale simulation

of the high-speed liquid jet atomization. SAE technical paper.

Bianchi, G. et al., 2005. Improving the Knowledge of high-speed liquid jets

atomization by using quasi-direct 3D simulation. SAE technical paper.

Brackbill, J., Kothe, D. & Zemach, C., 1992. A continuum method for modeling

surface tension. Journal of computational physics, 100(2), pp. 335-354.

Buck, I. et al., 2004. Brook for GPUs: Stream computing on graphics hardware. ACM

Transactions on Graphics, 23(3), pp. 777-786.

Chang, Y., Hou, T., Merriman, B. & Osher, S., 1996. A Level Set Formulation of

Eulerian Interface Capturing Methods for Incompressible Fluid Flows. Journal of

Computational Physics, 124(2), pp. 449-464.

Chesnel, J., Reveillon, J., Ménard, T. & Demoulin, F., 2011. Large eddy simulation of

liquid jet atomization. Atomization and Sprays, 21(9), pp. 711-736.

Clay Mathematics Institute, 2017. Navier-Stokes Equation. [Online]

Available at: http://www.claymath.org/millennium-problems/navier-stokes-

equation

[Accessed 4 July 2017].

Courant, R., Friedrichs, K. & Lewy, H., 1967. On the partial difference equations of

mathematical physics. IBM Journal, 11(2), pp. 215-234.

143 | P a g e

Crank, J. & Nicolson, P., 1996. A practical method for numerical evaluation of

solutions of partial differential equations of the heat-conduction type. Advances in

Computational Mathematics, 6(3-4), pp. 207-226.

De Villiers, E., Gosman, A. & Weller, H., 2004. Large eddy simulation of primary

diesel spray atomization. SAE technical paper.

Deakin, T. & McIntosh-Smith, S., 2015. GPU-STREAM benchmarking the achievable

memory bandwidth of graphics processing units. Austin, IEEE/ACM

SuperComputing.

Delbosc, N., 2015. Real-time simulation of indoor air flow using the lattice

boltzmann method on graphics processing unit, Leeds: University of Leeds.

Deng, G., Piquet, J., Queutey, P. & Visonneau, M., 2000. Navier-Stokes equations for

incompressible flows: finite-difference and finite-volume methods. In: Handbook of

Computational Fluid Mechanics. London: Academic Press, pp. 25-99.

Deshpande, S., Anumolu, L. & Trujillo, M., 2012. Evaluating the performance of the

two-phase flow solver interFoam. Computational Science & Discovery, 5(1).

Deshpande, S., Gurjar, S. & Trujillo, M., 2015. A computational study of an

atomizing liquid sheet. Physics of Fluids, 27(8).

Desjardins, O., McCaslin, J., Owkes, M. & Brady, P., 2013. Direct numerical and

large-eddy simulation of primary atomization in complex geometries. Atomization

and Sprays, 23(11), pp. 1001-1048.

Desjardins, O., Moureau, V. & Pitsch, H., 2008. An accurate conservative level

set/ghost fluid method for simulating turbulent atomization. Journal of

Computational Physics, 227(18), pp. 8395-8416.

Dombrowski, N. & Johns, W., 1963. The aerodynamic instability and disintegration

of viscous liquid sheets. Chemical Engineering Science, 18(3), pp. 203-214.

144 | P a g e

Elgeti, S. & Sauerland, H., 2016. Deforming fluid domains within the finite element

method: five mesh-based tracking methods in comparison. Archives of

computational methods in engineering, 23(2), pp. 323-361.

Elsen, E., 2008. Large Calculation of the flow over a hypersonic vehicle using a GPU.

Journal of Computational Physics, 227(24), pp. 10148-10161.

Faeth, G., 1991. Structure and atomization properties of dense turbulent sprays.

International Symposium on Combustion, 23(1), pp. 1345-1352.

Fatone, L. et al., 2012. Parallel option pricing on GPU: barrier options and realized

variance options. Journal of Supercomputing, 62(3), pp. 1480-1501.

Fedkiw, R., Aslam, T., Merriman, B. & Osher, S., 1999. A Non-oscillatory Eulerian

Approach to Interfaces in Multimatirial Flows (the Ghost Fluid Method). Journal of

Computational Physics, 152(2), pp. 457-492.

Fraser, R., Eisenklam, P., Dombrowski, N. & Hasson, D., 1962. Drop formation from

rapidly moving liquid sheets. AIChE Journal, 8(5), pp. 672-680.

Friedrichs, M., Eastman, P. & Vaidyanathan, V., 2009. Accelerating molecular

dynamic simulation on graphics processing units. Journal of Computational

Chemistry, 30(6), pp. 864-872.

Fuster, D., Agbaglah, G., Josserand, C. & Popinet, S., 2009. Numerical simulation of

droplets, bubbles and waves: state of the art. Fluid Dynamics Research, 41(6), pp. 1-

24.

Fuster, D. et al., 2009. Simulation of primary atomization with an octree adaptive

mesh refinement and VOF method. International Journal of Multiphase Flow, 35(6),

pp. 530-565.

Ghiji, M. et al., 2016. Numerical and experimental investigation of early stage diesel

sprays. Fuel, Volume 175, pp. 274-286.

145 | P a g e

Giannopapa, C. G. & Papadakis , G., 2007. Indicative results and progress on the

development of the unified single solution method for fluid-structure iteration

problems. San Antonio, American Society of Mechanical Engineers, pp. 87-91.

Gonnet, P., 2013. Parallel scaling/efficieny plots. [Online]

Available at: https://community.dur.ac.uk/pedro.gonnet/?p=141

[Accessed 25 January 2017].

Gopala, V. & van Wachem, B., 2008. Volume of fluid methods for immiscible-fluid

and free-surface flows. Chemical Engineering Journal, 141(13), pp. 204-221.

Gorokhovski, M. & Herrmann, M., 2008. Modeling Primary Atomization. Annual

review of fluid mechanics, Volume 40, pp. 343-366.

Griebel, M. & Zaspel, P., 2010. A multi-GPU accelerated solver for the three-

dimensional two-phase incompressible Navier-Stokes equations. Computer Science

- Research and Development, 25(1), pp. 65-73.

Grosshans, H. et al., 2016. Sensitivity of VOF simulations of the liquid jet breakup to

physical and numerical parameters. Computers and Fluids, Volume 136, pp. 312-

323.

Hagerty, W. & Shea, J., 1955. A study of the stability of plane fluid sheets. Journal of

applied mechanics, 22(4), pp. 509-514.

Harvie, D., Davidson, M. & Rudman, M., 2006. An analysis of parasitic current

generation in volume of fluid simulations. Applied Mathematical Modelling, 30(10),

pp. 1056-1066.

Hemida, H., 2008. OpenFOAM tutorial: Free surface tutorial using interFoam and

rasInterFoam, Goteborg: Chalmers University of Technology.

146 | P a g e

Herrmann, M., 2008. A balanced force refined level set grid method for two-phase

flows on unstructured flow solver grids. Journal of computational physics, 227(4),

pp. 2674-2706.

Herrmann, M., 2010. A parallel Eulerian interface tracking/Lagrangian point particle

multi-scale coupling procedure. Journal of Computational Physics, 229(3), pp. 745-

759.

Hestenes, M. & Stiefel, E., 1952. Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49(6), pp. 409-

436.

Higuera, P., Lara, J. L. & Losada, I. J., 2013. Realistic wave generation and active

wave absorption for Navier-Stokes models Application to OpenFOAM. Coastal

Engineering, Volume 71, pp. 102-118.

Hirt, C. & Nichols, B., 1981. Volume of fluid (VOF) method for the dynamics of free

boundaries. Journal of Computational Physics, 39(1), pp. 201-225.

Hysing, S. et al., 2009. Quantitative benchmark computations of two-dimensional

bubble dynamics. International journal for numerical methods in fluids, 60(11), pp.

1259-1288.

Ikebata, A. & Xiao, F., 2016. GPU-accelerated large-scale simulations of interfacial

multiphase fluids for real-case applications. Computers & Fluids, Volume 141, pp.

235-249.

Issa, R., Gosman, A. & Watkins, A., 1986. The computation of compressible and

incompressible recirculating flows by a non-iterative implicit scheme. Journal of

Computational Physics, 62(1), pp. 66-82.

Jasak, H. & Weller, H., 1995. Interface-tracking capabilities of the InterGamma

differencing scheme, London: Imperial College.

147 | P a g e

Jiang, X., Siamas, G., Jagus, K. & Karayiannis, T., 2010. Physical modelling and

advanced simulations of gas-liquid two-phase jet flows in atomization and sprays.

Progress in Energy and Combusion Science, 36(2), pp. 131-167.

Kang, M., Fedkiw, R. & Liu, X., 2000. A boundry condition capturing method for

multiphase incompressible flow. Journal of Scientific Computing, 15(1), pp. 323-360.

Keough, S., 2014. Optimising the Parallelisation of OpenFOAM Simulations, Victoria:

Maritime Division, Defence and Technology Organisation.

Khajeh-Saeed, A. & Perot, J., 2013. Direct numerical simulation of turbulence using

GPU accelerated supercomputers. Journal of Computational Physics, Volume 235,

pp. 241-257.

Khronos Group, 2017. The OpenGL Registry. [Online]

Available at: https://khronos.org/registry/OpenGL/index_gl.php

[Accessed 14 August 2017].

Klostermann, J., Schaake, K. & Schwarze, R., 2013. Numerical simulation of a single

rising bubble by VOF with surface compression. International journal for numerical

methods in fluids, 71(8), pp. 960-982.

Lawrence Livermore National Laboratory, n.d. Scalable linear solvers. [Online]

Available at: https://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html

[Accessed 27 December 2016].

Lefebvre, A., 1989. Atomization and Sprays. s.l.:Hemisphere Publishing Corporation.

Liang, S., Liu, W. & Yuan, L., 2014. Solving seven-equation model for compressible

two-phase flow using multiple GPUs. Computers and Fluids, Volume 99, pp. 156-

171.

Liu, H., Yang, B. & Chen, Z., 2015. Accelerating algebraic multigrid solvers on NVIDIA

GPUs. Computers & Mathematics with Applications, 70(5), pp. 1162-1181.

148 | P a g e

Liu, Q. & Zeng, J., 2010. Convergence analysis of multigrid methods with residual

scaling techniques. Journal of computational and applied mathematics, 234(10), pp.

2932-2942.

Liu, X., Fedkiw, R. & Kang, M., 2000. A boundry condition capturing method for

poisson's equation on irregular domains. Journal of computational physics, 160(1),

pp. 151-178.

Li, X. & Tankin, R., 1991. On the temporal instability of a two-dimensional viscous

liquid sheet. Journal of Fluid Mechanics, Volume 226, pp. 425-443.

Longmire, E., Norman, T. & Gefroh, D., 2001. Dynamics of pinch-off in liquid/liquid

jets with surface tension. International Journal of Multiphase Flow, 27(10), pp.

1735-1752.

López, J., Hernández, J., Gómez, P. & Faura, F., 2005. An improved PLIC-VOF method

for tracking thin fluid structures in incompressible two-phase flows. Journal of

Computational Physics, 208(1), pp. 51-74.

McCool, M. & Du Toit, S., 2004. Metaprogramming GPUs with Sh. s.l.:AK Peters.

Menard, T., Tanguy, S. & Berlemont, A., 2007. Coupling level set/VOF/ghost fluid

methods: Validation and application to 3D simulation of the primary break-up of a

liquid jet. International journal of multiphase flow, 33(5), pp. 510-5224.

Microsoft, 2017. Direct3D Graphics. [Online]

Available at: https://msdn.microsoft.com/en-

us/library/windows/desktop/dn903821(v=vs.85).aspx

[Accessed 3 June 2017].

Moore, G., 1975. Progress in Digital Integrated Electronics. s.l., IEEE, pp. 11-13.

149 | P a g e

Navarro-Martinez, S., 2014. Large eddy simulation of spray atomization with a

probability density function method. International Journal of Multiphase Flow,

Volume 63, pp. 11-22.

NVidia Coorperation, 2012. NVidia's next generation CUDA compute architecture:

Kepler GK110, Santa Clara: NVidia Coorperation.

Nvidia Corperation, 2017. Cg Toolkit. [Online]

Available at: https://developer.nvidia.com/cg-toolkit

[Accessed 3 June 2017].

Nvidia Corperation, 2017. CUDA C Programing Guide. [Online]

Available at: http://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#axzz4iwePFLKL

[Accessed 3 June 2017].

Nvidia Corporation, 2014. CUSP Toolkit. [Online]

Available at: https://developer.nvidia.com/cusp

[Accessed 3 June 2017].

Ohnesorge, W., 1936. Formation of Drops by Nozzles and the Breakup of Liquid

Jets. Journal of applied mathematics and mechanics, Volume 16, pp. 355-358.

OpenCFD Ltd, 2009. OpenFOAM User Guide, Bracknell: OpenCFD Ltd.

Osher, S. & Sethian, J., 1988. Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi formulations. Journal of Computational

Physics, 79(1), pp. 12-49.

Pan, Y. & Suga, K., 2003. Capturing the pinch-off of liquid jets by the level set

method. Journal of fluids engineering, 125(5), pp. 922-927.

Phillips, E., Davis, R. & Owens, J., 2010. Unsteady turbulent simulations on a cluster

of graphics. San Antonio, Texas, AIAA.

150 | P a g e

Pringuey, T., 2012. Large Eddy Simulation of Primary Liquid-Sheet Breakup, s.l.:

Cambridge University.

Rayleigh, J., 1879. On the capillary phenomena of jets. Proceedings of the Royal

Society of London, Volume 29, pp. 71-97.

Reddy, R. & Banerjee, R., 2015. GPU accelerated VOF based multiphase flow solver

and its application to sprays. Computers and Fluids, Volume 117, pp. 287-303.

Salvadore, F., 2013. GPU accelerated flow solver for direct numerical simulation of

turbulent flows. Journal of computational physics, Volume 235, pp. 129-142.

Salvador, F. J., Romero, J.-V., Roselló, M.-D. & Martínez-López, J., 2010. Validation

of a code for modeling cavitation phenomena in Diesel injector nozzles.

Mathematical and Computer Modelling, 52(7-8), pp. 1123-1132.

Salvador, F., Romero, J., Roselló, M. & Jaramillo, D., 2016. Numerical simulation of

primary atomization in diesel spray at low injection pressure. Journal of

Computational and Applied Mathematics, Volume 291, pp. 94-102.

Sanders, J. & Kandrot, E., 2010. Page-Locked Host Memory. In: CUDA by example:

an intorduction to general purpose GPU prgramming. Boston: Pearson Education,

Inc, pp. 186-192.

Sander, W. & Weigand, B., 2008. Direct numerical simulation and analysis of

instability enhancing parameters in liquid sheets at moderate reynolds numbers.

Physics of fluids, 20(5).

Shinjo, J. & Umemura, A., 2010. Simulation of liquid jet primary breakup: Dynamics

of ligament and droplet formation. International Journal of Multiphase Flow, 36(7),

pp. 513-532.

151 | P a g e

Shinjo, J. & Umemura, A., 2011. Detailed simulation of primary atomization

mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects).

Proceedings of the combustion institute, Volume 33, pp. 2089-2097.

Shinjo, J. & Umemura, A., 2011. Surface instability and primary atomization

characteristics of straight liquid jet sprays. International journal of multiphase flow,

37(10), pp. 1294-1304.

Shinn, A. & Vanka, S., 2010. Implementation of a semi-implicit pressure-based

multigrid fluid flow algorithm on a graphics processing unit. Lake Buena Vista,

ASME, pp. 125-133.

Shi, Y., Green, W., Wong, H.-W. & Oluwole, O., 2012. Accelerating multi-

dimensional combustion simulations using GPU and hybrid explicit/implicit ODE

integration. Combustion and Flame, 159(7), pp. 2388-2397.

Sirignano, W. & Mehring, C., 2000. Review of theory of distortion and disintegration

of liquid streams. Antalya, Turkey, Combustion Institute, pp. 609-655.

Smagorinsky, J., 1963. General circulation experiments with the primitives

equations. Monthly weather review, Volume 63, pp. 99-161.

Spalding, D., 1972. A novel finite difference formulation for differential expressions

involving both first and second derivatives. International Journal for Numerical

Methods in Engineering, 4(4), pp. 551-559.

Squire, H., 1953. Investigation of the instability of a moving liquid film. British

Journal of Applied Physics, Volume 4, pp. 167-169.

Stone, J. et al., 2007. Accelerating molecular modeling applications wich graphics

processors. Journal of Computational Chemistry, 28(16), pp. 2618-2640.

152 | P a g e

Sun, Y., 2016. Yifei Sun's Research. [Online]

Available at: http://plaza.ufl.edu/yfsun/research.html

[Accessed 24 January 2017].

Sussman, M. & Puckett, E., 2000. A Coupled level set and volume-of-fluid method

for ccomputing 3D and axisymmetric incompressible two-phase flows. Journal of

computational physics, 162(2), pp. 301-337.

Taylor, G., 1959. The dynamics of thin sheets of fluid I. Water bells. Proceedings of

the Royal Society of London, Series A, Volume 253, pp. 289-295.

The Khronos Group, 2012. The OpenCL Specification. [Online]

Available at: https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

[Accessed 27 July 2017].

Thompson, C. J., Hahn, S. & Oskin, M., 2002. Using Modern Graphics Architectures

for General-Purpose Computing: A Framework and Analysis. Istanbul, IEEE

COMPUTER SOCIETY, pp. 306-317.

Tomczak, T., 2013. Acceleration of iterative Navier-Stokes solvers on graphics

processing units. International Journal of computational fluid dynamics, 27(4-5), pp.

201-209.

top500, 2015. June 2015 Green 500 list. [Online]

Available at: https://www.top500.org/green500/lists/2015/06/

[Accessed 16 February 2017].

top500, 2015. June 2015 top 500 list. [Online]

Available at: https://www.top500.org/lists/2015/06/

[Accessed 16 February 2017].

Trottenberg, U., Oosterlee, C. & Schüller, A., 2001. Multigrid. London: Academic

Press.

153 | P a g e

Tryggvason, G. & Unverdi, S., 1990. Computations of three-dimensional Rayleigh-

Taylor instability. Physics of Fluids A, Volume 2, pp. 656-659.

Unverdi, S. & Tryggvason, G., 1992. A front-tracking method for viscous,

incompressible, multi-fluid flows. Journal of computational physics, 100(1), pp. 25-

37.

van Leer, B., 1974. Towards the ultimate conservative difference scheme. II.

Monotonicity and conservation combined in a scond-order scheme. Journal of

Computational Physics, 14(4), pp. 361-370.

Versteeg, H. & Malalasekera, W., 2007. An introduction to computational fluid

dynamics: the finite volume method. Harlow: Pearson Education.

Versteeg, H. & Malalasekera, W., 2007. Grid generation for the multigrid mehod. In:

An Introduction to Computational Fluid Dynamics: the finite volume method.

Harlow: Pearson Prentice Hall, p. 241.

Wang, C., Yang, L., Xie, L. & Chen, P., 2015. Weakly nonlinear instability of planar

viscoelastic sheets. Physics of Fluids, 27(1).

Wang, Y., Chatterjee, P. & De Ris, J. L., 2011. Lerge eddy simulation of fire plumes.

Proceedings of the Combustion Institute, 33(2), pp. 2473-2480.

Xu, C. et al., 2014. Collaborating CPU and GPU for large-scale high-order CFD

simulations with complex grids on the TianHe-1A supercomputer. Journal of

Computational Physics, Volume 278, pp. 275-297.

Zalesak, S., 1979. Fully multidimensional flux-corrected transport algorithm for

fluids. Journal of computational physics, 31(3), pp. 335-362.

Zaspel, P. & Griebel, M., 2013. Solving incompressible two-phase flows on multi-

GPU clusters. Computers and Fluids, Volume 80, pp. 356-364.

154 | P a g e

Zhang, J., 1997. Residual scaling techniques in multigrid, I: Equivalence proof.

Applied mathematics and computation, 86(2-3), pp. 283-303.

155 | P a g e

Appendix: Multigrid Solver Code
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "cuda.h"
#include "cublas_v2.h"
#include "stdio.h"
#include "math.h"
#include <cusp/array1d.h>
#include <cusp/array2d.h>
#include <cusp/multiply.h>
#include <cusp/coo_matrix.h>
#include <cusp/csr_matrix.h>
#include <cusp/format_utils.h>
#include <cusp/elementwise.h>
#include <cusp/transpose.h>
#include <cusp/print.h>
#include <iostream>
#include <limits>

#include "amgaccel.H"

using namespace std ;

 const int streams = 1;
cudaStream_t stream[streams];
const int xcellwidth = 40; //cells in one row between periodic BCs
const int nboundcells = 86400; //cells in one periodic BC
const int BLOCK_SIZE = 256;
int debug = 0;

//
// CUDA API error checking function
//
static inline void
cudaCall(
 cudaError err,
 const char * msg

156 | P a g e

)
{
 if(cudaSuccess != err)
 {
 cerr << msg << " : " ;
 cerr << cudaGetErrorString(err) ;
 cerr << "\n" ;
 exit(-1) ;
 } ;
} ;

//
// GPU kernel to multiply sparse matrix in CSR format by dense vector
//
static __global__ void
KERNEL_crs_multiply(
 int offset,
 int num_rows,
 const double * Ax,
 const int * Aj,
 const int * Ap,
 const double * x,
 double * y,
 int level
)
{

const int THREADS_PER_VECTOR = 4;
const int VECTORS_PER_BLOCK = BLOCK_SIZE/THREADS_PER_VECTOR;
const int THREADS_PER_BLOCK = VECTORS_PER_BLOCK * THREADS_PER_VECTOR;
const int thread_id = offset + THREADS_PER_BLOCK * blockIdx.x + threadIdx.x;

 if (thread_id >= ((num_rows*THREADS_PER_VECTOR)/level))
 return;

 __shared__ volatile double sdata[VECTORS_PER_BLOCK * THREADS_PER_VECTOR +
THREADS_PER_VECTOR / 2];
 __shared__ volatile int ptrs[VECTORS_PER_BLOCK][2];

 const int thread_lane = threadIdx.x & (THREADS_PER_VECTOR - 1);
 const int vector_id = thread_id / THREADS_PER_VECTOR;
 const int vector_lane = threadIdx.x / THREADS_PER_VECTOR;
 const int num_vectors = VECTORS_PER_BLOCK * gridDim.x;

 for(int row = vector_id; row < num_rows/level; row += num_vectors)
 {
 if(thread_lane < 2)
 ptrs[vector_lane][thread_lane] = Ap[row*level + thread_lane];
 const int row_start = ptrs[vector_lane][0];
 const int row_end = ptrs[vector_lane][1];

 double sum = 0;

 for(int jj = row_start + thread_lane; jj < row_end; jj += THREADS_PER_VECTOR){
 sum += Ax[jj] * x[Aj[jj]];
 }

 sdata[threadIdx.x] = sum;

 if (THREADS_PER_VECTOR > 16) sdata[offset + threadIdx.x] = sum = sum +
sdata[offset + threadIdx.x + 16];
 if (THREADS_PER_VECTOR > 8) sdata[offset + threadIdx.x] = sum = sum +
sdata[offset + threadIdx.x + 8];

157 | P a g e

 if (THREADS_PER_VECTOR > 4) sdata[offset + threadIdx.x] = sum = sum +
sdata[offset + threadIdx.x + 4];
 if (THREADS_PER_VECTOR > 2) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x
+ 2];
 if (THREADS_PER_VECTOR > 1) sdata[threadIdx.x] = sum = sum + sdata[threadIdx.x
+ 1];

 if (thread_lane == 0){
 y[row*level] = sdata[threadIdx.x];
 }
 }
};

//
// GPU kernel to multiply sparse matrix in CSR format by dense vector
//
// Where matrix is type int
//
static __global__ void
KERNEL_crs_multiplyint(
 int num_rows,
 const int * Ax,
 const int * Aj,
 const int * Ap,
 const double * x,
 double * y
)
{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= num_rows)
 return;

 double dot = 0;

 int row_start = Ap[idx];
 int row_end = Ap[idx+1];

 for (int k = row_start; k<row_end; k++)
 dot += Ax[k] * x[Aj[k]];

 y[idx] = dot;

};

//
// GPU kernel to interpolate vector from oarse grid to fine grid
//
static __global__ void
KERNEL_crs_interpolate(
 int num_rows,
 const int * Ax,
 const int * Aj,
 const int * Ap,
 const double * x,
 double * y
)
{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= num_rows)

158 | P a g e

 return;

 double dot = 0;

 int row_start = Ap[idx];
 int row_end = Ap[idx+1];

 if(idx == 0)
 row_start = 0;

 for (int k = row_start; k<row_end; k++)
 dot += Ax[k] * x[Aj[k]];

 y[idx] = dot;

};

//
// GPU kernel to restrict boundry interfaces
//
static __global__ void
KERNEL_boun_restrict(
 int num_rows,
 int Ydim,
 int Zdim,
 const double * x,
 double * y
)
{

 int id = blockIdx.x * blockDim.x + threadIdx.x;

 if (id >= num_rows)
 return;

 int j = id/(Ydim/2);
 int k = id-(j*(Ydim/2));
 int idx = j*(Ydim*2)+(k*2);

 y[id] = x[idx] + x[idx+1] + x[idx+Ydim] + x[idx+Ydim+1];

};

//
// GPU kernel to multiply sparse matrix in DIA format by dense vector
//
__global__ void
KERNEL_crs_multiply2(
 const int offset ,
 const int n_rows ,
 const double * data ,
 const double * x ,
 double * R,
 int level)
{

 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level)
 return;

 R[idx*level] = data[idx*level] * x[idx*level];

159 | P a g e

}

//
// GPU kernel residual scaling
//
static __global__ void
KERNEL_jacobiscale (
 int offset,
 int n_rows,
 double * B,
 double * RX,
 double * invDC,
 double damp,
 double * X
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows) // Error
 return;

 X[idx] = damp * X[idx] + (B[idx] - damp * RX[idx]) * invDC[idx];

} ;

//
// GPU kernel to perform a jacobi soothing iteration
//
static __global__ void
KERNEL_partjacobi (
 int offset,
 int n_rows,
 double * B,
 double * RX,
 double * invDC,
 double damp,
 double * X,
 double * X1
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows) // Error
 return;

 X1[idx] = ((B[idx] - RX[idx]) * invDC[idx] * damp) + X[idx];

} ;

//
// GPU kernel to apply cyclic boundry
//
static __global__ void
KERNEL_boundry(
 const int n_rows,
 double * Q,
 double * P,
 double * convertx,
 int cellwidth,
 int boundcells)
{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

160 | P a g e

 if (idx >= boundcells)
 return;

 Q[idx*cellwidth] -= P[(cellwidth-1)+idx*cellwidth] * convertx[idx];

}

//
// GPU kernel to apply cyclic boundry
//
static __global__ void
KERNEL_boundry2(
 const int n_rows,
 double * Q,
 double * P,
 double * convert2x,
 int cellwidth,
 int boundcells)
{

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= boundcells)
 return;

 Q[(cellwidth-1)+idx*cellwidth] -= P[idx*cellwidth] * convert2x[idx];

}

//
// GPU kernel for inverse of diagonal matrix
//
// D^-1
//
static __global__ void
KERNEL_inverse (
 int offset,
 int n_rows,
 double * valsD,
 double * invD,
 int level
)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 invD[idx*level] = 1/valsD[idx*level];

} ;

//
// GPU kernel for generating interpolation matrix
//
static __global__ void
KERNEL_gen_interp (
 int X,
 int Y,
 int Z,
 int nnzI,
 int n_rowsI,

161 | P a g e

 int n_colsI,
 int *valsI,
 int *c_idI,
 int *r_idI
)
{

 int Xnew = X/2;
 int Ynew = Y/2;
 int Znew = Z/2;

 int id = blockIdx.x * blockDim.x + threadIdx.x;

 int idy = id/X;
 int idz = id/(X*Y);
 int idk = id/(X*Y*Z);
 int posx= (id-(idy*X))/2;
 int posy= (idy-(idz*Y))/2;
 int posz= (idz-(idk*Z))/2;

 if (id >= n_rowsI) // Error
 return;

 valsI[id] = 1;
 r_idI[id] = id;
 c_idI[id] = posx+(posy*Xnew)+(posz*Xnew*Ynew);

} ;

//
// GPU kernel to expand row indicies of CSR matrix to COO format
//
static __global__ void
KERNEL_expand (
 int n_rows,
 int * r_idxR,
 int * r_idxR2
)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows) // Error
 return;

 for (int k=r_idxR[idx]; k<r_idxR[idx+1]; k++){
 r_idxR2[k] = idx;
 }

} ;

//
// GPU kernel for vector plus vector multiplied by scalar
//
static __global__ void
KERNEL_smul_vadd (
 int offset,
 int n_rows,
 double * B,
 double * RX,
 double * alpha,
 double * BRX,
 int level
)

162 | P a g e

{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 BRX[idx*level] = B[idx*level] + alpha[0] * RX[idx*level];

} ;

//
// GPU kernel for vector plus vector multiplied by scalar
//
static __global__ void
KERNEL_add_to_x (
 int offset,
 int n_rows,
 double * alpha,
 double * RX,
 double * BRX,
 int level
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 BRX[idx*level] += alpha[0] * RX[idx*level];

} ;

//
// GPU kernel for vector minus vector multiplied by scalar
//
static __global__ void
KERNEL_add_to_xneg (
 int offset,
 int n_rows,
 double * alpha,
 double * RX,
 double * BRX,
 int level
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 BRX[idx*level] += -alpha[0] * RX[idx*level];

} ;

//
// GPU kernel for vector addition
//
// BRX = B + RX
//
static __global__ void
KERNEL_add2 (
 int offset,
 int n_rows,

163 | P a g e

 double * B,
 double * RX,
 double * BRX,
 int level
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 BRX[idx] = B[idx] + RX[idx];

} ;

//
// GPU kernel for simple vector operation
//
// BRX = B - RX
//
static __global__ void
KERNEL_subtract (
 int offset,
 int n_rows,
 double * B,
 double * RX,
 double * BRX,
 int level
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows/level) // Error
 return;

 BRX[idx*level] = B[idx*level] - RX[idx*level];

} ;

//
// Set vector to zero
//
static __global__ void
KERNEL_setzero (
 int offset,
 int n_rows,
 double * X
)
{
 int idx = offset + blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= n_rows) // Error
 return;

 X[idx] = 0;

} ;

//
// GPU kernel to copy type int from one location to another
//
static __global__ void
KERNEL_inttransfer (

164 | P a g e

 int size,
 int * A,
 int * B
)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= size) // Error
 return;

 B[idx] = A [idx];

} ;

//
// GPU kernel to correct CSR indexes
//
static __global__ void
KERNEL_fix (
 int nnzI,
 int n_rowsI,
 int * r_idI,
 int nnzT,
 int n_rowsT,
 int * r_idT
)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= 2) // Error
 return;

 if (idx == 0)
 r_idI[(n_rowsI)]=nnzI;

 if (idx == 1)
 r_idT[(n_rowsT)]=nnzT;

} ;

//
// GPU kernel to divide one scalar by another
//
static __global__ void
KERNEL_divide (
 double * r1,
 double * r2,
 double * Result
)
{

 Result[0]= r1[0]/r2[0];

} ;

//
// GPU kernel to copy type double from one location to another
//
static __global__ void
KERNEL_doubletransfer (
 int size,
 double * A,
 double * B

165 | P a g e

)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 if (idx >= size) // Error
 return;

 B[idx] = A [idx];

} ;

//
// Wrapper for cublasDdot() function
// Calculates the dot product
//
static inline double
dot_product (
 cublasHandle_t h,
 int n_rows,
 const double * v,
 const double * w,
 int level
)
{
 double result;
 cublasDdot(h, n_rows/level, v, level, w, level, &result) ;

 return result ;
} ;

//
// Wrapper for cublasDasum() function
// Calculates the sum of the absolute values
//
static inline double
sum(
 cublasHandle_t h,
 const double * v,
 const int size,
 int level
)
{

 double result;
 cublasDasum(h, size/level, v, level, &result) ;

 return result;
} ;

//
// Wrapper for residual scaling
//
static void
jacobiscale(
 int n_rows ,
 double * B ,
 double * RX ,
 double * invDC ,
 double damp ,
 double * X
)
{
 int size = n_rows;

166 | P a g e

 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_jacobiscale<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, invDC, damp, X) ;

 }

if (debug >= 1)
 cudaCall (cudaGetLastError(), "KERNEL_jacobiscale FAILED") ;
} ;

//
// Wrapper for part of jacobi iteration
//
static void
partjacobi(
 int n_rows,
 double * B,
 double * RX,
 double * invDC,
 double damp,
 double * X,
 double * X1
)
{
 int size = n_rows;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_partjacobi<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, invDC, damp, X,
X1) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after partjacobi");

 }

 cudaCall (cudaGetLastError(), "KERNEL_partjacobi FAILED") ;
} ;

//
// Wrapper for cyclic boundry application
//
static void
boundry(
 const int n_rows ,
 double * Q ,
 double * P ,
 double * convertx,
 int cellwidth,
 int boundcells)
{
 int size = boundcells;

167 | P a g e

 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_boundry<<<numBlocks,BLOCK_SIZE>>>(n_rows, Q, P, convertx, cellwidth, boundcells) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundry");

 cudaCall (cudaGetLastError(), "KERNEL_boundry FAILED") ;
} ;

//
// Wrapper for cyclic boundry application 2
//
static void
boundry2(
 const int n_rows ,
 double * Q ,
 double * P ,
 double * convert2x,
 int cellwidth,
 int boundcells)
{
 int size = boundcells;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_boundry2<<<dimGrid,dimBlock>>>(n_rows, Q, P, convert2x, cellwidth, boundcells) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundry2");

 cudaCall (cudaGetLastError(), "KERNEL_boundry2 FAILED") ;
} ;

//
// Wrapper to set vector equal to zero
//
static void
setzero(
 int n_rows,
 double * X
)
{
 int size = n_rows;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_setzero<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, X) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after setzero");

 }

 cudaCall (cudaGetLastError(), "KERNEL_setzero FAILED") ;

168 | P a g e

} ;

//
// Wrapper to generate interpolation matrix
//
static void
gen_interp(
 int X,
 int Y,
 int Z,
 int nnzI,
 int n_rowsI,
 int n_colsI,
 int *valsI,
 int *c_idI,
 int *r_idI
)
{
 int size = n_rowsI;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_gen_interp<<<dimGrid,dimBlock>>>(X, Y, Z, nnzI, n_rowsI, n_colsI, valsI, c_idI, r_idI) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gen_interp");

 cudaCall (cudaGetLastError(), "KERNEL_gen_interp FAILED") ;
} ;

//
// Wrapper to correct CSR indexing
//
static void
fix(
 int nnzI ,
 int n_rowsI,
 int * r_idI ,
 int nnzT ,
 int n_rowsT,
 int * r_idT
)
{
 int size = 2;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_fix<<<dimGrid,dimBlock>>>(nnzI, n_rowsI, r_idI, nnzT, n_rowsT, r_idT) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after fix");

 cudaCall (cudaGetLastError(), "KERNEL_fix FAILED") ;
} ;

//
// Wrapper for inverse of diagonal matrix
//
static void
inversed(
 int n_rows,

169 | P a g e

 double * valsD,
 double * invD,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_inverse<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, valsD, invD, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inversed");

 }

 cudaCall (cudaGetLastError(), "KERNEL_inverse FAILED") ;
} ;

//
// Wrapper for inverse of diagonal matrix
//
static void
inversedc(
 int n_rows,
 double * valsD,
 double * invD,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_inverse<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, valsD, invD, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inversed");

 }

 cudaCall (cudaGetLastError(), "KERNEL_inversec FAILED") ;
} ;

//
// Wrapper to interpolate coarse grid vector to fine grid
//
static void
interpolate(
 int n_rows,
 double * X,
 double * X2,

170 | P a g e

 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_interpolate<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, X, X2, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after interpolate");

 }

 cudaCall (cudaGetLastError(), "KERNEL_interpolate FAILED") ;
} ;

//
// Wrapper for transfer of array type int
//
static void
inttransfer(
 int dim,
 int * A,
 int * B
)
{
 int size = dim ;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks) ;
 dim3 dimBlock(BLOCK_SIZE) ;

 KERNEL_inttransfer <<<dimGrid, dimBlock>>> (size, A, B) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after inttransfer");

 cudaCall (cudaGetLastError(), "KERNEL_inttransfer FAILED") ;
} ;

//
// Wrapper for transfer of array type double
//
static void
doubletransfer(
 int dim ,
 double * A,
 double * B
)
{
 int size = dim ;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks) ;
 dim3 dimBlock(BLOCK_SIZE) ;

 KERNEL_doubletransfer <<<dimGrid, dimBlock>>> (size, A, B) ;

if (debug >= 1)

171 | P a g e

 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after doubletransfer");

 cudaCall (cudaGetLastError(), "KERNEL_doubletransfer FAILED") ;
} ;

//
// Wrapper for vector opperation X = X1 - X2
//
static void
calcresidual(
 int n_rows,
 double * X,
 double * X1,
 double * X2,
 int level
)
{
 int size = n_rows/level ;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks) ;
 dim3 dimBlock(BLOCK_SIZE) ;

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_subtract <<<dimGrid, dimBlock,0,stream[i]>>> (offset, n_rows, X, X1, X2, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after subtract");

 }

 cudaCall (cudaGetLastError(), "KERNEL_subtract FAILED") ;
} ;

//
// Wrapper for vector opperation BRX = B + alpha * RX
//
static void
gpuaddoffset(
 int n_rows,
 double * B,
 double * RX,
 double * alpha,
 double * BRX,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_smul_vadd<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, alpha, BRX, level)
;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after smul_vadd");

172 | P a g e

 }

 cudaCall (cudaGetLastError(), "KERNEL_smul_vadd FAILED") ;
} ;

//
// Wrapper for vector opperation X = X + alpha * P
//
static void
gpuaddtox(
 int n_rows,
 double * alpha,
 double * RX,
 double * BRX,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_add_to_x<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, alpha, RX, BRX, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuaddtox");

 }

 cudaCall (cudaGetLastError(), "KERNEL_add_to_x FAILED") ;
} ;

//
// Wrapper for vector opperation X = X - alpha * P
//
static void
gpuaddtoxneg(
 int n_rows,
 double * alpha,
 double * RX,
 double * BRX,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_add_to_xneg<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, alpha, RX, BRX, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuaddtoxneg");

173 | P a g e

 }

 cudaCall (cudaGetLastError(), "KERNEL_add_to_xneg FAILED") ;
} ;

//
// Wrapper for vector opperation BRX = B + RX
//
static void
gpuadd2(
 int n_rows,
 double * B,
 double * RX,
 double * BRX,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_add2<<<dimGrid,dimBlock,0,stream[i]>>>(offset, n_rows, B, RX, BRX, level) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after gpuadd2");

 }

 cudaCall (cudaGetLastError(), "KERNEL_add2 FAILED") ;
} ;

//
// Wrapper for multiplying sparse matrix by vector where matrix is type double
//
// A * X = R
//
// where A - matrix, X and R - vectors.
//
int
gpumultiply(
 const int n_rows,
 const double * vals,
 const int * c_idx,
 const int * r_idx,
 const double * X,
 double * R,
 int level
)
{
 int size = (n_rows/level) * 4;
 int streamsize = size / streams;// + (size % streams == 0 ? 0 : 1);
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

174 | P a g e

 KERNEL_crs_multiply<<<dimGrid,dimBlock,0,stream[i]>>> (
 offset,
 n_rows,
 vals,
 c_idx,
 r_idx,
 X,
 R,
 level
) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiply");

 }

 cudaCall (cudaGetLastError(), "KERNEL_crs_multiply FAILED") ;

 return 0 ;
} ;

//
// Wrapper to restrict the boundry coefficents
//
int
gpuboundres(
 const int n_rows ,
 int Ydim,
 int Zdim,
 const double * X,
 double * R
)
{
 int size = n_rows;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_boun_restrict<<<dimGrid,dimBlock>>> (
 n_rows ,
 Ydim ,
 Zdim ,
 X ,
 R
) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after boundres");

 cudaCall (cudaGetLastError(), "KERNEL_boun_restrict FAILED") ;

 return 0 ;
} ;

//
// Wrapper for multiplying sparse matrix by vector where matrix is type int
//
// A * X = R
//
// where A - matrix, X and R - vectors.
//
int

175 | P a g e

gpumultiplyint(
 const int n_rows,
 const int * vals,
 const int * c_idx,
 const int * r_idx,
 const double * X,
 double * R
)
{
 int size = n_rows;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_crs_multiplyint<<<dimGrid,dimBlock>>> (
 n_rows ,
 vals ,
 c_idx ,
 r_idx ,
 X ,
 R
) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiplyint");

 cudaCall (cudaGetLastError(), "KERNEL_crs_multiplyint FAILED") ;

 return 0 ;
} ;

//
// Wrapper for multiplying sparse matrix by vector where matrix is type int
//
// A * X = R
//
// where A - matrix, X and R - vectors.
//
int
gpuinterpolate(
 const int n_rows,
 const int * vals,
 const int * c_idx,
 const int * r_idx,
 const double * X,
 double * R
)
{
 int size = n_rows;
 int numBlocks = size / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 KERNEL_crs_interpolate<<<dimGrid,dimBlock>>> (
 n_rows ,
 vals ,
 c_idx ,
 r_idx ,
 X ,
 R
) ;

if (debug >= 1)

176 | P a g e

 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after interpolate");

 cudaCall (cudaGetLastError(), "KERNEL_crs_interpolate FAILED") ;

 return 0 ;
} ;

//
// Wrapper for multiplying sparse matrix by vector where matrix is a diagonal
//
// A * X = R
//
// where A - matrix, X and R - vectors.
//
int
gpumultiply2(
 int n_rows,
 const double * vals,
 const double * X,
 double * R,
 int level
)
{
 int size = n_rows/level;
 int streamsize = size / streams;
 int numBlocks = streamsize / BLOCK_SIZE + (size % BLOCK_SIZE == 0 ? 0 : 1);
 dim3 dimGrid(numBlocks);
 dim3 dimBlock(BLOCK_SIZE);

 for (int i = 0; i<streams; ++i){
 int offset = i * streamsize;

 KERNEL_crs_multiply2<<<dimGrid,dimBlock,0,stream[i]>>> (
 offset ,
 n_rows ,
 vals ,
 X ,
 R ,
 level
) ;

if (debug >= 1)
 cudaCall (cudaThreadSynchronize(), "Thread Sync Failed after multiply2");

 }

 cudaCall (cudaGetLastError(), "KERNEL_crs_multiply2 FAILED") ;

 return 0 ;
} ;

//
// function that performs residual scaling
//
void scale
 (
 cublasHandle_t h,
 int n_rows,
 double * pgpu_valsR,
 int * pgpu_c_idxR,
 int * pgpu_r_idxR,
 double * pgpu_X,
 double * RX,

177 | P a g e

 double * convert_gpu,
 double * convert2_gpu,
 int cellwidth,
 int boundcells,
 double * pgpu_B,
 double * invD,
 double * X1
)
{

 gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, pgpu_X, RX, 1); //R * X = RX

 boundry(n_rows, RX, pgpu_X, convert_gpu, cellwidth, boundcells);
 boundry2(n_rows, RX, pgpu_X, convert2_gpu, cellwidth, boundcells);

 //RX = Acf

 double ScalingFactor = dot_product(h, n_rows, pgpu_B, pgpu_X, 1)/dot_product(h, n_rows,
RX, pgpu_X, 1);

 printf ("scalingfactor: %e \n",ScalingFactor);

 jacobiscale(n_rows, pgpu_B, RX, invD, ScalingFactor, pgpu_X);

};

//
// function that performs a damped jacobi smoothing iteration
//
void jacobiSmooth
 (
 int n_rows,
 double * pgpu_valsR,
 int * pgpu_c_idxR,
 int * pgpu_r_idxR,
 double * pgpu_X,
 double * RX,
 double * convert_gpu,
 double * convert2_gpu,
 int cellwidth,
 int boundcells,
 double * pgpu_B,
 double * invD,
 double damp,
 double * X1
)
{
 printf ("cell width: %d \n",cellwidth);
 printf ("boundcells: %d \n",boundcells);
 gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, pgpu_X, RX, 1); //R * X = RX

 boundry(n_rows, RX, pgpu_X, convert_gpu, cellwidth, boundcells);
 boundry2(n_rows, RX, pgpu_X, convert2_gpu, cellwidth, boundcells);

 partjacobi(n_rows, pgpu_B, RX, invD, damp, pgpu_X, X1);

 doubletransfer(n_rows, X1, pgpu_X);

};

//
// Function that calculates the residual vector
//

178 | P a g e

void calculateResidual
 (
 int n_rows,
 double * pgpu_valsR,
 int * pgpu_c_idxR,
 int * pgpu_r_idxR,
 double * X1,
 double * RX1,
 double * convert_gpu,
 double * convert2_gpu,
 int cellwidth,
 int boundcells,
 double * pgpu_B,
 double * X2
)
{
 gpumultiply(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, 1); //R * X1 = RX1

 boundry(n_rows, RX1, X1, convert_gpu, cellwidth, boundcells);
 boundry2(n_rows, RX1, X1, convert2_gpu, cellwidth, boundcells);

 calcresidual(n_rows, pgpu_B, RX1, X2, 1); // B - RX1 = X2

};

//
// Function to extract the diagonal of a CSR matrix
//
void extractDiagonal
 (
 int n_rows,
 int nnzR,
 double * pgpu_valsR,
 int * pgpu_c_idxR,
 int * pgpu_r_idxR,
 double * invD
)
{

 typedef typename cusp::array1d_view< thrust::device_ptr<int> > DeviceIndexArrayView;
 typedef typename cusp::array1d_view< thrust::device_ptr<double> > DeviceValueArrayView;

 typedef cusp::csr_matrix_view<DeviceIndexArrayView,
 DeviceIndexArrayView,
 DeviceValueArrayView> CSRDeviceView;

 thrust::device_ptr<int> wrapped_device_r_idxR(pgpu_r_idxR);
 thrust::device_ptr<int> wrapped_device_c_idxR(pgpu_c_idxR);
 thrust::device_ptr<double> wrapped_device_valsR(pgpu_valsR);

 DeviceIndexArrayView row_indices (wrapped_device_r_idxR, wrapped_device_r_idxR +
(n_rows+1));
 DeviceIndexArrayView column_indices(wrapped_device_c_idxR, wrapped_device_c_idxR + nnzR);
 DeviceValueArrayView values (wrapped_device_valsR, wrapped_device_valsR + nnzR);

 CSRDeviceView A(n_rows, n_rows, nnzR, row_indices, column_indices, values);

 cusp::array1d<double, cusp::device_memory> diagonal;

 cusp::extract_diagonal(A, diagonal);

 double * pgpu_valsD = thrust::raw_pointer_cast(&diagonal[0]);

179 | P a g e

 inversed(n_rows, pgpu_valsD, invD, 1);
};

//
// Function to perfom the Galkin product
//
void Galkinproduct
 (
 int n_rows,
 int nnzR,
 double * pgpu_valsR,
 int * pgpu_c_idxR,
 int * pgpu_r_idxR,
 int * valsI,
 int * c_idI,
 int * r_idI,
 int * c_idT,
 int * r_idT,
 int nnzI,
 int n_rowsI,
 int n_colsI,
 int nnzT,
 int n_rowsT,
 int n_colsT,
 double * pgpu_valsC,
 int * pgpu_c_idC,
 int * pgpu_r_idC,
 int * nnzC,
 int * n_rowsC,
 double * invD4
)
{

 typedef typename cusp::array1d_view< thrust::device_ptr<int> > DeviceIndexArrayView;
 typedef typename cusp::array1d_view< thrust::device_ptr<double> > DeviceValueArrayView;

 typedef cusp::csr_matrix_view<DeviceIndexArrayView,
 DeviceIndexArrayView,
 DeviceValueArrayView> CSRDeviceView;

 typedef cusp::coo_matrix_view<DeviceIndexArrayView,
 DeviceIndexArrayView,
 DeviceIndexArrayView> COODeviceView;

 typedef cusp::csr_matrix_view<DeviceIndexArrayView,
 DeviceIndexArrayView,
 DeviceIndexArrayView> CSRintDeviceView;

 thrust::device_ptr<int> wrapped_device_r_idxR(pgpu_r_idxR);
 thrust::device_ptr<int> wrapped_device_c_idxR(pgpu_c_idxR);
 thrust::device_ptr<double> wrapped_device_valsR(pgpu_valsR);

 DeviceIndexArrayView row_indices (wrapped_device_r_idxR, wrapped_device_r_idxR +
(n_rows+1));
 DeviceIndexArrayView column_indices(wrapped_device_c_idxR, wrapped_device_c_idxR + nnzR);
 DeviceValueArrayView values (wrapped_device_valsR, wrapped_device_valsR + nnzR);

 CSRDeviceView A(n_rows, n_rows, nnzR, row_indices, column_indices, values);

 thrust::device_ptr<int> wrapped_device_r_idI(r_idI);
 thrust::device_ptr<int> wrapped_device_c_idI(c_idI);
 thrust::device_ptr<int> wrapped_device_valsI(valsI);

180 | P a g e

 thrust::device_ptr<int> wrapped_device_r_idT(r_idT);
 thrust::device_ptr<int> wrapped_device_c_idT(c_idT);

 DeviceIndexArrayView rowT (wrapped_device_r_idT, wrapped_device_r_idT + nnzT);
 DeviceIndexArrayView colT (wrapped_device_c_idT, wrapped_device_c_idT + nnzT);
 DeviceIndexArrayView valI (wrapped_device_valsI, wrapped_device_valsI + nnzI);

 DeviceIndexArrayView rowI (wrapped_device_r_idI, wrapped_device_r_idI + nnzI);
 DeviceIndexArrayView colI (wrapped_device_c_idI, wrapped_device_c_idI + nnzI);

 COODeviceView L(n_rowsI, n_colsI, nnzI, rowI, colI, valI);

 CSRintDeviceView K(n_rowsT, n_colsT, nnzT, rowT, colT, valI);

 cusp::transpose(L, K);

 cusp::coo_matrix<int,double,cusp::device_memory>C2;

 cusp::multiply(K, A, C2);

 cusp::coo_matrix<int,double,cusp::device_memory>C3;

 cusp::multiply(C2, L, C3);

 cusp::csr_matrix<int,double,cusp::device_memory>C;

 cusp::convert(C3, C);

 *nnzC = C.num_entries;
 *n_rowsC = C.num_rows;

 int nnz = C.num_entries;
 int rows = C.num_rows;

 printf ("nnzC: %d\n",*nnzC);
 printf ("n_rowsC: %d\n",*n_rowsC);

 double * valsC = thrust::raw_pointer_cast(&C.values[0]);
 int * c_idC = thrust::raw_pointer_cast(&C.column_indices[0]);
 int * r_idC = thrust::raw_pointer_cast(&C.row_offsets[0]);

 doubletransfer(nnz, valsC, pgpu_valsC);
 inttransfer(nnz, c_idC, pgpu_c_idC);
 inttransfer(rows+1, r_idC, pgpu_r_idC);

 cusp::array1d<double, cusp::device_memory> diagonal;

 cusp::extract_diagonal(C, diagonal);

 double * invD3 = thrust::raw_pointer_cast(&diagonal[0]);

 inversedc(*n_rowsC, invD3, invD4, 1);

};

//
// Function that performs the multigrid calculation
//
int amgcompute
(
 int n_rows,
 double normFac,
 int nnzR,

181 | P a g e

 const double * valsR,
 const int * c_idxR,
 const int * r_idxR,
 int nnzD,
 const double * valsD,
 const int * c_idxD,
 const int * r_idxD,
 double * X,
 const double * B,
 int * n_iter,
 double * epsilon,
 double rTol,
 int CP,
 double Ires,
 double * convert,
 double * convert2
)
{

// Get starting time stamp
struct timespec start, end;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);

 int result = -1 ;

// Initialize CUBLAS
 cudaSetDevice(0);

 cublasStatus_t s;
 cublasHandle_t h;
 s = cublasCreate(&h);
 if (s != CUBLAS_STATUS_SUCCESS) {
 printf ("CUBLAS initialization failed\n");
 return EXIT_FAILURE;
 }

// Define multigrid prameters
 int maxlevels = 3;

 int tlevels;
 int Tnnz=nnzR, Tn_rows=n_rows;
 int totalnnz=nnzR, totalrows=(n_rows+1);
 int ntotalrows=n_rows+1;
 int Xdim[maxlevels], Ydim[maxlevels], Zdim[maxlevels];

 Xdim[0] = 40;
 Ydim[0] = 160;
 Zdim[0] = 540;

 float Xdimt, Ydimt, Zdimt;

 Xdimt = Xdim[0];
 Ydimt = Ydim[0];
 Zdimt = Zdim[0];

// Calculate the mesh dimensions at each level
 for(int i = 1; i<maxlevels; i++){
 Xdimt = Xdimt/2;
 Ydimt = Ydimt/2;
 Zdimt = Zdimt/2;
 if(floor(Xdimt) == Xdimt && floor(Ydimt) == Ydimt && floor(Zdimt) == Zdimt){
 Tnnz = Tnnz/8;
 Tn_rows = Tn_rows/8;

182 | P a g e

 totalnnz += Tnnz;
 totalrows += (Tn_rows+1);
 ntotalrows += (Tn_rows+1);
 printf ("i %d \n",i);
 }
 }

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

double delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;

 printf ("time for total values: %e \n",delta_us);

// Create pointers to GPU Memory

 double* pgpu_B = NULL;
 double* pgpu_Bt = NULL;
 double* pgpu_X = NULL;
 double* pgpu_valsR = NULL;
 int* pgpu_c_idxR = NULL;
 int* pgpu_r_idxR = NULL;

// Create pointers to results on GPU memory

 double *RX, *BRX, *X1, *X2, *invD, *RX1, residual;
 double rho_1; // \rho_{i-1}
 double rho_2 = 0; // \rho_{i-2}
 double alpha = 0; // \alpha{i}
 double beta = 0; // \beta_{i-1}
 int levels = 1;
 int level = 1;
 int courselevel = n_rows/2;
 double d1 = 4;
 double d2 = 5;
 double damp = d1/d2;
 double damp2 = 1 - damp;
 double cgtoll;
 double ScalingFactor = 0.0;

 double * g_rho_1, * g_rho_2, * g_rho_3, * g_alpha, * g_beta;

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;

 printf ("time to first cuda command: %e \n",delta_us);

// Create CUDA Streams

 cudaStream_t stream[streams];

 const double almost_zero = numeric_limits<double>::min();

 for (int i = 0; i < streams; ++i)
 cudaCall(cudaStreamCreate(&stream[i]), "cudaStreamCreate Failed");

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;

 printf ("time to cuda malloc: %e \n",delta_us);

183 | P a g e

 cudaCall(cudaMalloc((void**)(&g_rho_1), sizeof(double)), "cudaMalloc failed for g_rho_1");
 cudaCall(cudaMalloc((void**)(&g_rho_2), sizeof(double)), "cudaMalloc failed for g_rho_2");
 cudaCall(cudaMalloc((void**)(&g_rho_3), sizeof(double)), "cudaMalloc failed for g_rho_3");
 cudaCall(cudaMalloc((void**)(&g_alpha), sizeof(double)), "cudaMalloc failed for g_alpha");
 cudaCall(cudaMalloc((void**)(&g_beta), sizeof(double)), "cudaMalloc failed for g_beta");

// Create pointers to Host Pinned memory

 const double *p_B = B;
 const double *p_X = X;
 const double *p_valsR = valsR;
 const int *p_c_idxR = c_idxR;
 const int *p_r_idxR = r_idxR;

// Define CPU values for debugging
/*
 double f1[n_rows];

 double f2[n_rows];

 double f3[n_rows];

 double f4[n_rows];

 double f5[n_rows];
*/

// Allocate memory on GPU for linear system A * X = B

 cudaCall(cudaMalloc((void**)(&pgpu_B), n_rows*sizeof(double)), "cudaMalloc failed for B");
 cudaCall(cudaMalloc((void**)(&pgpu_X), n_rows*sizeof(double)), "cudaMalloc failed for X");
 cudaCall(cudaMalloc((void**)(&pgpu_valsR), (totalnnz) * sizeof(double)), "cudaMalloc Failed
for valsR");
 cudaCall(cudaMalloc((void**)(&pgpu_c_idxR), (totalnnz) * sizeof(int)), "cudaMalloc Failed for
c_idxR");
 cudaCall(cudaMalloc((void**)(&pgpu_r_idxR), (totalrows) * sizeof(int)), "cudaMalloc Failed for
r_idxR");

// Allocate GPU memory for inverse of the diagonal

 cudaCall(cudaMalloc((void**)(&invD), totalrows*sizeof(double)), "cudaMalloc failed for invD");

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;

 printf ("time for cuda malloc: %e \n",delta_us);

 double norm_b = normFac;
 printf ("norm B %e \n",norm_b);

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

// Copy vectors X and B to GPU

 cudaCall(cudaMemcpyAsync(pgpu_B, B, n_rows * sizeof(double), cudaMemcpyHostToDevice),
"CudaMemcpy Failed for B");
 cudaCall(cudaMemcpyAsync(pgpu_X, X, n_rows * sizeof(double), cudaMemcpyHostToDevice),
"CudaMemcpy Failed for B");

// Copy vals for matrix R

184 | P a g e

 cudaCall(cudaMemcpyAsync (pgpu_valsR, valsR, nnzR * sizeof(double),
cudaMemcpyHostToDevice), "CudaMemcpyAsync failed for valsR") ;

// Copy c_idx for matrix R

 cudaCall(cudaMemcpyAsync (pgpu_c_idxR, c_idxR, nnzR * sizeof(int),
cudaMemcpyHostToDevice), "CudaMemcpyAsync failed for c_idxR") ;

// Copy r_idx for matrix R

 cudaCall(cudaMemcpyAsync (pgpu_r_idxR, r_idxR, (n_rows + 1) * sizeof(int),
cudaMemcpyHostToDevice), "CudaMemcpy failed for r_idxR") ;

// Create pointers for PCG vectors and boundry coefficents
 double *P, *Q, *R, *Z, *convert_gpu, *convert2_gpu;

 cudaCall(cudaMalloc((void**)(&X2), (totalrows)*sizeof(double)), "cudaMalloc failed for X2");

// Debug printouts
if (debug >= 1) {
 printf ("nnzR: %d\n",nnzR);
 printf ("nnzD: %d\n",nnzD);
 printf ("n_rows: %d\n",n_rows);
}

if (debug >= 2) {
 for (int i = 0; i<nnzR; ++i){
 printf ("vals [%d]: %e \n",i,valsR[i]);
 }

 for (int i = 0; i<(nnzR); ++i){
 printf ("vals [%d]: %e \n",i,valsR[i]);
 }

 for (int i = 0; i<(nnzR); ++i){
 printf ("c_idx [%d]: %d \n",i,c_idxR[i]);
 }

 for (int i = 0; i<(n_rows); ++i){
 printf ("r_idx [%d]: %d \n",i,r_idxR[i]);
 }

 for (int i = 0; i<(n_rows); ++i){
 printf ("X [%d]: %e \n",i,X[i]);
 }

 for (int i = 0; i<(n_rows); ++i){
 printf ("B [%d]: %.20e \n",i,B[i]);
 }

 for (int i = 0; i<(n_rows); ++i){
 printf ("valsD [%d]: %e \n",i,p_valsD[i]);
 }

 for (int i = 0; i<(nnzD); ++i){
 printf ("c_idxD [%d]: %d \n",i,c_idxD[i]);
 }

 for (int i = 0; i<(n_rows+1); ++i){
 printf ("r_idxD [%d]: %d \n",i,r_idxD[i]);
 }
}

185 | P a g e

// Multigrid Wrapper

 int s_iter = 1;
 int s_iter2 = 2;
 *n_iter = 1000;
 level = 1;
 levels = 1;

 double normCL;

 if (norm_b < almost_zero)
 {
 norm_b = 1.0 ;
 }

// Setup Stage

// Generate interpolation matrix
// Define arrays of matrix size for all levels
 int nnzI[maxlevels], n_rowsI[maxlevels], n_colsI[maxlevels];
 int *valsI, *c_idI, *r_idI;

 nnzI[0] = 0;

 for (int i=1; i<(maxlevels); i++){

 Xdim[i] = Xdim[i-1]/2;
 Ydim[i] = Ydim[i-1]/2;
 Zdim[i] = Zdim[i-1]/2;

 nnzI[i] = Xdim[i-1] * Ydim[i-1] * Zdim[i-1];

 n_rowsI[i] = Xdim[i-1] * Ydim[i-1] * Zdim[i-1];

 n_colsI[i] = Xdim[i] * Ydim[i] * Zdim[i];

 }

// Allocate GPU memory for interpolation matrix
 cudaCall(cudaMalloc ((void**)(&valsI), totalrows*sizeof(int)), "cudaMalloc failed for valsI") ;
 cudaCall(cudaMalloc ((void**)(&c_idI), totalrows*sizeof(int)), "cudaMalloc failed for c_idI") ;
 cudaCall(cudaMalloc ((void**)(&r_idI), totalrows*sizeof(int)), "cudaMalloc failed for r_idI") ;

 int nnzI_runT = 0;
 int n_rowsT_T=0;

// Generate the interpolation matrix for each level
 for (int i=1; i<maxlevels; i++){
 if (i != 1){
 nnzI_runT += nnzI[i-1];
 }
 gen_interp(Xdim[i-1], Ydim[i-1], Zdim[i-1], nnzI[i], n_rowsI[i], n_colsI[i], &valsI[nnzI_runT],
&c_idI[nnzI_runT], &r_idI[nnzI_runT]);
 printf ("nnzI_runT %d \n",nnzI_runT);
 }

// Create arrays for the restriction matrix
 int nnzT[maxlevels], n_rowsT[maxlevels], n_colsT[maxlevels];
 int *valsT, *c_idT, *r_idT;

 for (int i=1; i<maxlevels; i++){
 nnzT[i] = nnzI[i];

186 | P a g e

 n_rowsT[i] = n_colsI[i];

 n_colsT[i] = n_rowsI[i];
 n_rowsT_T += n_rowsT[i];
 }

// Allocate GPU memory for restriction matrix
 cudaCall(cudaMalloc ((void**)(&c_idT), totalrows*sizeof(int)), "cudaMalloc failed for c_idI") ;
 cudaCall(cudaMalloc ((void**)(&r_idT), totalrows*sizeof(int)), "cudaMalloc failed for r_idI") ;

 int rows[maxlevels], nnz[maxlevels];
 rows[1]=n_rows;
 nnz[1]=nnzR;
 int totalnnzold=0, totalrowsold=0, totalrows2old=0, totalrows2=n_rows;
 totalnnz=nnzR, totalrows=(n_rows+1);
 Tn_rows = n_rows, Tnnz = nnzR;

// Extract the diagonal of the finest level
 extractDiagonal(n_rows, nnzR, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, invD);

// Perform the Galkin product at each level to generate course grids
 for(int i = 1; i<(maxlevels); i++){

 Galkinproduct(rows[i], nnz[i], &pgpu_valsR[totalnnzold], &pgpu_c_idxR[totalnnzold],
&pgpu_r_idxR[totalrowsold], &valsI[totalrows2old], &c_idI[totalrows2old], &r_idI[totalrows2old],
&c_idT[totalrows2old], &r_idT[totalrows2old], nnzI[i], n_rowsI[i], n_colsI[i], nnzT[i], n_rowsT[i],
n_colsT[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows], &nnz[i+1],
&rows[i+1], &invD[totalrows2]);

 totalnnzold = totalnnz;
 totalrowsold = totalrows;
 totalrows2old = totalrows2;

 Tnnz = Tnnz/8;
 Tn_rows = Tn_rows/8;
 totalnnz += Tnnz;
 totalrows += (Tn_rows+1);
 totalrows2 += (Tn_rows);
 }

 int boundCells_T=0;

 for (int i=1; i<maxlevels; i++){
 boundCells_T += Ydim[i] * Zdim[i];
 }

// Allocate GPU memory for boundry coefficents
 cudaCall(cudaMalloc ((void**)(&convert_gpu), (nboundcells+boundCells_T)*sizeof(double)),
"cudaMalloc failed for convert") ;
 cudaCall(cudaMalloc ((void**)(&convert2_gpu), (nboundcells+boundCells_T)*sizeof(double)),
"cudaMalloc failed for convert2") ;

 cudaCall(cudaMemcpy (convert_gpu, convert, nboundcells * sizeof(double),
cudaMemcpyHostToDevice), "CudaMemcpy failed for convert") ;
 cudaCall(cudaMemcpy (convert2_gpu, convert2, nboundcells * sizeof(double),
cudaMemcpyHostToDevice), "CudaMemcpy failed for convert2") ;

// Restrict boundry coefficents for use at coarse levels
 int boundCellsSum=0, boundCellsSumOld=0;

 for (int i=1; i<maxlevels; i++){
 boundCellsSumOld = boundCellsSum;
 boundCellsSum += (Ydim[i-1] * Zdim[i-1]);

187 | P a g e

 gpuboundres((Ydim[i])*(Zdim[i]), Ydim[i-1], Zdim[i-1], &convert_gpu[boundCellsSumOld],
&convert_gpu[boundCellsSum]);
 gpuboundres((Ydim[i])*(Zdim[i]), Ydim[i-1], Zdim[i-1], &convert2_gpu[boundCellsSumOld],
&convert2_gpu[boundCellsSum]);
 }

 nnzI_runT=0;
 int n_rowsT_runT=0;

 for (int i=1; i<maxlevels; i++){
 if (i != 1){
 nnzI_runT += nnzI[i-1];
 n_rowsT_runT += n_rowsT[i-1];
 }
 fix(nnzI[i], n_rowsI[i], &r_idI[nnzI_runT], nnzT[i], n_rowsT[i], &r_idT[n_rowsT_runT]);
 }

// Allocate GPU for intermediate vectors
 cudaCall(cudaMalloc((void**)(&R), n_rows*sizeof(double)), "cudaMalloc failed for R") ;
 cudaCall(cudaMalloc((void**)(&RX), n_rows*sizeof(double)), "cudaMalloc failed for RX");
 cudaCall(cudaMalloc((void**)(&BRX), n_rows*sizeof(double)), "cudaMalloc failed for BRX");
 cudaCall(cudaMalloc((void**)(&RX1), n_rows*sizeof(double)), "cudaMalloc failed for BR1");
 cudaCall(cudaMalloc((void**)(&X1), (totalrows)*sizeof(double)), "cudaMalloc failed for X1");
 printf ("X1 totalrows %d \n",totalrows);
 cudaCall(cudaMemcpyAsync(&X1[0], X, n_rows * sizeof(double), cudaMemcpyHostToDevice),
"CudaMemcpy Failed for X");

 cudaCall(cudaMalloc ((void**)(&P), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for P")
;
 cudaCall(cudaMalloc ((void**)(&Z), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for Z")
;
 cudaCall(cudaMalloc ((void**)(&Q), rows[maxlevels]*sizeof(double)), "cudaMalloc failed for
Q") ;
 cudaCall(cudaMalloc ((void**)(&pgpu_Bt), n_rows*sizeof(double)), "cudaMalloc failed for Q") ;
 doubletransfer(n_rows, pgpu_B, pgpu_Bt);

 // show memory usage of GPU

 size_t free_byte ;

 size_t total_byte ;

 cudaMemGetInfo(&free_byte, &total_byte) ;

 double free_db = (double)free_byte ;

 double total_db = (double)total_byte ;

 double used_db = total_db - free_db ;

 printf("GPU memory usage: used = %f, free = %f MB, total = %f MB\n",
used_db/1024.0/1024.0, free_db/1024.0/1024.0, total_db/1024.0/1024.0);

 double toll;

// Calculate the initial residual
 calculateResidual(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, convert_gpu,
convert2_gpu, xcellwidth, nboundcells, pgpu_B, R);

// Calculate convergence criteria
 if (rTol == 0)
 toll = *epsilon;

188 | P a g e

 else
 toll = (sum(h, R, n_rows, 1)/norm_b) * rTol;

// Multigrid iterations
for (int niter = 1; niter <= *n_iter; niter++)
{

 totalnnz=0, totalrows=0;
 Tn_rows = n_rows, Tnnz = nnzR;
 totalnnzold=0, totalrowsold=0, totalrows2old=0, totalrows2=0;
 boundCellsSum=0, boundCellsSumOld=0;

 for(int i = 1; i<maxlevels; i++)
 {

 boundCellsSumOld = boundCellsSum;
 boundCellsSum += (Ydim[i-1] * Zdim[i-1]);
 if(i != 1){
 setzero(rows[i], pgpu_X);
 }

// Jacobi Smoothing
 if(i != 1){
 for (int siter = 1; siter <= s_iter; siter++)
 {
 jacobiSmooth(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows],
pgpu_X, RX, &convert_gpu[boundCellsSumOld], &convert2_gpu[boundCellsSumOld],
xcellwidth/(pow(2,i-1)), nboundcells/(pow(4,i-1)), pgpu_B, &invD[totalrows2], damp,
&X1[totalrows2]);
 printf ("pre smooth itteration: %d \n",siter);
 }
 }
 calculateResidual(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz],
&pgpu_r_idxR[totalrows], &X1[totalrows2], RX1, &convert_gpu[boundCellsSumOld],
&convert2_gpu[boundCellsSumOld], xcellwidth/(pow(2,i-1)), nboundcells/(pow(4,i-1)), pgpu_B,
&X2[totalrows2]);

 gpumultiplyint(rows[i+1], &valsI[totalrows2], &c_idT[totalrows2], &r_idT[totalrows2],
&X2[totalrows2], pgpu_B);

 totalnnz += Tnnz;
 totalrows += (Tn_rows+1);
 totalrows2 += (Tn_rows);
 Tnnz = Tnnz/8;
 Tn_rows = Tn_rows/8;

 } // end of pre-smoothing

 setzero(rows[maxlevels], &X1[totalrows2]);

// Calculate initial residual at coarsest level
 gpumultiply(rows[maxlevels], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz],
&pgpu_r_idxR[totalrows], &X1[totalrows2], RX1, 1);

 boundry(rows[maxlevels], RX1, &X1[totalrows2], &convert_gpu[boundCellsSum],
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1)));
 boundry2(rows[maxlevels], RX1, &X1[totalrows2], &convert2_gpu[boundCellsSum],
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1)));

 setzero(rows[maxlevels], &X2[totalrows2]);
 calcresidual(rows[maxlevels], pgpu_B, RX1, &X2[totalrows2], 1); // B - RX1 = X2

 normCL = sum(h, pgpu_B, rows[maxlevels], 1);

189 | P a g e

 residual = sum(h, &X2[totalrows2], rows[maxlevels], 1) / normCL;

 if(rTol == 0)
 cgtoll = *epsilon;
 else
 cgtoll = rTol * residual;

// Solve coasrest level using PCG
 for (int iter = 1 ; iter <= 1000 ; iter++)
 {

 cublasSetPointerMode(h, CUBLAS_POINTER_MODE_DEVICE);

 gpumultiply2(rows[maxlevels], &invD[totalrows2], &X2[totalrows2], Z, 1); //1/D * X2 = Z

 cublasDdot(h, rows[maxlevels], &X2[totalrows2], 1, Z, 1, g_rho_1);

 if (1 == iter) {
 // p^1 = z^0; Barlett: line 6
 doubletransfer(rows[maxlevels], Z, P);
 } else {
 divide(g_rho_1, g_rho_2, g_beta);
 gpuaddoffset(rows[maxlevels], Z, P, g_beta, P, 1) ; // P = Z + beta * P
 } ;
 setzero(rows[maxlevels], Q);
 gpumultiply(rows[maxlevels], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz],
&pgpu_r_idxR[totalrows], P, Q, 1);

 boundry(rows[maxlevels], Q, P, &convert_gpu[boundCellsSum], xcellwidth/(pow(2,maxlevels-
1)), nboundcells/(pow(4,maxlevels-1)));
 boundry2(rows[maxlevels], Q, P, &convert2_gpu[boundCellsSum],
xcellwidth/(pow(2,maxlevels-1)), nboundcells/(pow(4,maxlevels-1)));

 cublasDdot(h, rows[maxlevels], P, 1, Q, 1, g_rho_3);

 divide(g_rho_1, g_rho_3, g_alpha);

 gpuaddtox(rows[maxlevels], g_alpha, P, &X1[totalrows2], 1) ; // X^i = X^{i-1} +
alpha_i * p^i
 gpuaddtoxneg(rows[maxlevels], g_alpha, Q, &X2[totalrows2], 1) ;

 doubletransfer(1, g_rho_1, g_rho_2);

 cublasSetPointerMode(h, CUBLAS_POINTER_MODE_HOST);

 residual = sum(h, &X2[totalrows2], rows[maxlevels], 1) / normCL;

 if (residual < (cgtoll)) // iteration succeeded
 {
 printf ("CG final residual %e \n",residual);
 printf ("CG Itterations %d \n",iter);
 break ;
 } ;
 } ;

// Post Smoothing iterations

 for (int i = (maxlevels-1); i>=1; i--)
 {
 boundCellsSumOld = boundCellsSum;
 boundCellsSum -= (Ydim[i-1] * Zdim[i-1]);

 Tnnz = Tnnz*8;

190 | P a g e

 Tn_rows = Tn_rows*8;
 totalnnz -= Tnnz;
 totalrows -= (Tn_rows+1);
 totalrows2 -= (Tn_rows);

 gpuinterpolate(rows[i], &valsI[totalrows2], &c_idI[totalrows2], &r_idI[totalrows2],
&X1[totalrows2+Tn_rows], pgpu_X); // Xh <- X2h

 doubletransfer(rows[i], &X2[totalrows2], pgpu_B);

// Perform residual scaling
 if(i != (maxlevels-1) || i == 1){
 gpumultiply(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows],
pgpu_X, RX, 1); //R * X = RX

 boundry(rows[i], RX, pgpu_X, &convert_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)),
nboundcells/(pow(4,i-1)));
 boundry2(rows[i], RX, pgpu_X, &convert2_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)),
nboundcells/(pow(4,i-1)));

 ScalingFactor = dot_product(h, rows[i], pgpu_B, pgpu_X, 1)/dot_product(h, rows[i], RX,
pgpu_X, 1);

 jacobiscale(rows[i], pgpu_B, RX, &invD[totalrows2], ScalingFactor, pgpu_X);

 }

 gpuadd2(rows[i], &X1[totalrows2], pgpu_X, pgpu_X, 1); //Xh + X2H = X

 if (i == 1)
 doubletransfer(rows[i], pgpu_Bt, pgpu_B);

 for (int siter2 = 1; siter2 <= s_iter2; siter2++)
 {

 jacobiSmooth(rows[i], &pgpu_valsR[totalnnz], &pgpu_c_idxR[totalnnz], &pgpu_r_idxR[totalrows],
pgpu_X, RX, &convert_gpu[boundCellsSum], &convert2_gpu[boundCellsSum], xcellwidth/(pow(2,i-1)),
nboundcells/(pow(4,i-1)), pgpu_B, &invD[totalrows2], damp, &X1[totalrows2]);

 }
// End of Post-smoothing
 }

// Calculate final residual
 calculateResidual(n_rows, pgpu_valsR, pgpu_c_idxR, pgpu_r_idxR, X1, RX1, convert_gpu,
convert2_gpu, xcellwidth, nboundcells, pgpu_B, X2);

 level = 1;
 levels = 1;

 residual = sum(h, X2, n_rows, 1)/norm_b;
 printf ("residual: %e \n",residual);

// Break iteration loop if convergence criteria is met
 if (residual < toll)
 {
 *epsilon = residual ;
 *n_iter = niter;
 result = 0;
 break;
 }
}
// End of Multigrid iterations

191 | P a g e

// Copy result back to CPU
 cudaCall(cudaMemcpy ((void**)X, pgpu_X, n_rows * sizeof(double),
cudaMemcpyDeviceToHost), "CudaMemcpy of X back to host failed");

// Destroy cuda streams

 for (int i = 0; i < streams; ++i)
 cudaStreamDestroy(stream[i]);

// Free GPU memory for intermediate vectors and boundry coefficents
 cudaCall(cudaFree (P), "cudaFree failed for P");
 cudaCall(cudaFree (R), "cudaFree failed for R");
 cudaCall(cudaFree (Q), "cudaFree failed for Q");
 cudaCall(cudaFree (Z), "cudaFree failed for Z");
 cudaCall(cudaFree (convert_gpu), "cudaFree failed for convert_gpu");
 cudaCall(cudaFree (convert2_gpu), "cudaFree failed for convert2_gpu");

// Free GPU inputs

 cudaCall(cudaFree (pgpu_B), "cudaFree failed for pgpu_B");
 cudaCall(cudaFree (pgpu_Bt), "cudaFree failed for pgpu_B");
 cudaCall(cudaFree (pgpu_X), "cudaFree failed for pgpu_X");
 cudaCall(cudaFree (pgpu_valsR), "cudaFree failed for pgpu_valsR");
 cudaCall(cudaFree (pgpu_c_idxR), "cudaFree failed for pgpu_c_idxR");
 cudaCall(cudaFree (pgpu_r_idxR), "cudaFree failed for pgpu_c_idxR");

// Free interpolation and restriction matrixes

 cudaCall(cudaFree (c_idI), "cudaFree failed for c_idI");
 cudaCall(cudaFree (c_idT), "cudaFree failed for c_idT");
 cudaCall(cudaFree (r_idI), "cudaFree failed for r_idI");
 cudaCall(cudaFree (r_idT), "cudaFree failed for r_idT");
 cudaCall(cudaFree (valsI), "cudaFree failed for valsI");

// Free GPU memory for intermediate steps

 cudaCall(cudaFree (RX), "cudaFree failed for RX");
 cudaCall(cudaFree (BRX), "cudaFree failed for BRX");
 cudaCall(cudaFree (X1), "cudaFree failed for X1");
 cudaCall(cudaFree (X2), "cudaFree failed for X2");
 cudaCall(cudaFree (RX1), "cudaFree failed for RX1");
 cudaCall(cudaFree (invD), "cudaFree failed for invD");

clock_gettime(CLOCK_MONOTONIC_RAW, &end);

delta_us = (end.tv_sec - start.tv_sec) * 1000000 + (end.tv_nsec - start.tv_nsec) / 1000;

 printf ("cuda code: %e \n",delta_us);

 return result; // Return value for error checking in OpenFOAM code

}

// *** //

