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Abstract:  

Abdominal wall repair frequently utilizes either non-degradable or bio-degradable meshes, 

which are found to stimulate undesirable biological tissue responses or which possess 

suboptimal degradation rate. In this study, a biologic mesh prototype made from 

carbodiimide-cross-linked cholecyst-derived extracellular matrix (EDCxCEM) was compared 

with small intestinal submucosa (Surgisis®), cross-linked bovine pericardium (Peri-Guard®), 

and polypropylene (Prolene®) meshes in an in vivo rabbit model. The macroscopic 

appearance and stereological parameters of the meshes were evaluated. Tailoring the 

degradation of the EDCxCEM mesh prevents untimely degradation, while allowing cellular 

infiltration and mesh remodelling to take place in a slower but predictable manner. The 

results suggest that the cross-linked biodegradable cholecyst-derived biologic mesh results 

in no seroma formation, low adhesion, and moderate stretching of the mesh. In contrast 

to Surgisis®, Peri-Guard®, and Prolene® meshes, the EDCxCEM mesh showed a statistically 

significant increase in the volume fraction (Vv) of collagen (from 34% to 52.1%) in the 

central fibrous tissue region at both day 28 and day 56. The statistically high Length 

density (Lv), of blood vessels for the EDCxCEM mesh at 28 days was reflected also by the 

higher cellular activity (high Vv of fibroblast and moderate Vv of nuclei) indicating 

remodelling of this region in the vicinity of a slowly degrading EDCxCEM mesh. The lack of 

mesh area stretching/ shrinkage in the EDCxCEM mesh showed that the remodelled tissue 

was adequate to prevent hernia formation. The stereo-histological assays suggest that the 

EDCxCEM delayed degradation profile supports host wound healing processes including 

collagen formation, cellular infiltration, and angiogenesis. The use of cross-linked 

cholecyst-derived extracellular matrix for abdominal wall repair is promising. 

Keywords: carbodiimide crosslinking, cholecyst-derived extracullar matrix, abominal wall 

repair, rabbit animal model, mesh stretching. 
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Introduction 

In abdominal wall hernia, weakness or the absence of the abdominal wall leads to 

protrusion of intra-abdominal organs through this weakened area – presenting clinically as 

bulging or swelling in the area. The goal of abdominal wall repair is the restoration of 

abdominal wall so that it is sufficient to contain abdominal wall organs from herniation 

during physiological levels of stress. In primary hernia repairs, the recurrence rate of 

hernia can be as high as 50% (1-5). As a result, it has become a common practice to 

reinforce the abdominal wall with surgical meshes that at least halved the recurrence rate 

(1, 4). However, the risk of recurrence must be balanced against the risk of mesh related 

complications such as infection, seroma, wound dehiscence and enterocutaneous fistula.  

Synthetic non-degradable surgical meshes used for abdominal wall reconstruction 

can stimulate an intense foreign body response, leading to mesh area contraction (6-8). 

This abnormal tissue reaction is thought to contribute to abdominal wall stiffness, mesh-

related complications and chronic pain (9-11). Although there is no hernia recurrence, the 

implant repair area is contracted and stiff. Strategies such as increasing the pore size of 

meshes and manufacturing lighter synthetic meshes attempt to overcome this problem (7, 

12-16). In some studies, adoption of lighter meshes were associated with a higher 

recurrence rate of hernias (14, 17-19) and no advantage in reduction of chronic pain (20-

23). In the presence of infection or potential contamination, synthetic mesh repair is not 

recommended as it is associated with a high risk of infection, pain and hernia recurrence 

(24-26).  

Degradable allogenic/xenogenic biologic meshes have been widely used in the last 

decade to overcome the undesirable effects of synthetic meshes in high risk patients 

(contamination or potential contamination, high recurrence group) (27-32). Although 

these meshes alleviate the need for a staged abdominal reconstruction, there is 

accumulating evidence to suggest that these meshes are associated with stretching of the 

repaired area and high failure rates (28, 33-35). This phenomena presents clinically as 

abdominal wall bulging, abdominal wall laxity and hernia recurrence (36, 37). 

The phenomena observed with biologic meshes have been attributed to the 

inherent properties of the material. The presence of aged dermal collagen and elastin 
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fibres in dermal-derived materials is considered prone to stretching (37, 38). In addition, the 

rapid in vivo degradation of non-crosslinked meshes in the presence of contamination leads 

to inadequate restoration of the native abdominal tissue in a timely manner. Methods to 

improve the performance of biologic meshes have been employed, which includes the 

creation of multi-laminate constructs to increase bulk and mechanical strength, sourcing 

xenogenic foetal dermal-derived meshes, utilising non-dermal meshes and crosslinking 

processes to prevent degradation (34-36). Unfortunately, constructing multi-laminate 

meshes and crosslinking process are associated with seroma formation (39). Cross-linking 

strategies such as glutaraldehyde render the biomaterial non-degradable. 

For optimal abdominal wall regeneration, it is important that a desired biological 

tissue response is achieved. This includes a controlled degradation rate of the implanted 

mesh which would allow replacement of the mesh with host tissues with subsequent 

timely remodelling of the tissues to restore the function of the abdominal wall.  

Neither non-degradable synthetic meshes nor rapidly degradable biologic meshes 

meet these criteria whereas a slowly degrading extracellular matrix (ECM) could fulfill the 

required needs for abdominal wall repair by prolonging mesh degradation and tissue 

remodelling. Herein, a prototype of slowly degrading EDC-crosslinked cholecyst-derived 

extracellular matrix (EDCxCEM) was developed and its performance was compared with 

commercially available meshes which were small intestinal submucosa (Surgisis®), 

crosslinked bovine pericardium (Peri-Guard®), and polypropylene mesh (Prolene®) in an in 

vivo rabbit model (40). 

1. Materials and methods 

1.1. Materials  

All reagents unless otherwise stated were purchases from Sigma Ireland, Ltd., 

Dublin, Ireland. Fresh cholecysts of market weight farm-reared pigs were obtained from 

the local supplier Sean Duffy Exports Ltd., Gort, Ireland. 

Preparation of cross-linked CEM meshes 

CEM was isolated and processed according to a method described elsewhere (41). 

CEM meshes were then subjected to lyophilisation. Lyophilized CEM meshes were 
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dissected to approximately 4cm x6 cm in size to match the hernia defects in the rabbit 

prior to cross-linking. The substrates were then hydrated in pre-cooled 50mM MES buffer 

on ice prior to cross-linking. EDC-cross-linked CEM (EDCxCEM) meshes were prepared by 

the carbodiimide crosslinking method (41). The crosslinking feed concentration was 0.01 

mmol EDC/NHS (1-ethyl-3-(3-dimethylamino-propyl) carbodiimide/N-hydroxysuccinimide) 

per mg of CEM. The molar ratio of EDC:NHS was kept constant at 1:1. The cross-linking 

proceeded in 50mM MES buffer at pH 5.3 and 37C with intermittent stirring for 4 hours.  

The cross-linked CEM meshes were washed at least five times with distilled water to 

remove excess cross-linker or byproducts. The EDCxCEM meshes were then used 

immediately or stored at 4oC and implanted within 48 hours. The samples were sterilised 

with 0.15% peracetic acid in sterile water for at least five minutes, followed by washing in 

sterile water. Peracetic acid was reported to be an efficient disinfectant that deactivates 

not only bacteria but also viral loads (42-46). The meshes were then kept hydrated in a 

solution of sterile normal saline during surgery. Prolene®, Surgisis® (4-layer) and Peri-

Guard® meshes were used as per the manufacturer’s instruction. 

1.2. Implantation in rabbits 

Forty eight male New Zealand White Rabbits (weight 3.0 - 3.5 kg) were used for this 

study. The animals were acclimatised for at least one week to the local environment 

before surgery. All procedures were conducted under the approval from the Institutional 

Animal Ethics Committee of National University of Ireland, Galway and a license was 

obtained from the Department of Health and Children, Dublin, Ireland as required by the 

Cruelty of Animals Act (1876). Certificate B (No. B100/3685).  

Six rabbits were assigned to each group. Hairs were removed from the anterior 

abdominal wall with electric hair clippers. The rabbits were anaesthetised using 

intramuscular Ketamine (35mg/kg) and Xylazine (5mg/kg). The hernia defect was created 

and repaired. Briefly, a midline incision was performed through the skin and subcutaneous 

fat. The rectus abdominus muscle was exposed on the left side. Excision of the rectus 

abdominus muscle was performed unilaterally on the left side including the peritoneal 

layer. A 4 cm longitudinal length was marked on the mid-portion of the rectus abdominus 
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muscle. Excision was carried out for this longitudinal length (4cm) along the borders of the 

linea alba and the linea semilunaris (width) (40). The resultant abdominal wall defect (the 

excised mid-portion of the rectus abdominus muscle of 4cm length) was repaired with a 

similar sized mesh (like for like, “replacement”) using a running 4/0 polypropylene suture 

(tension-free inlay bridging technique). Each rabbit was randomised to receive either a 

polypropylene mesh (Prolene®, Ethicon Endo-Surgical Inc.), 4-layer small intestinal 

submucosa graft (Surgisis®, Cook Medical Inc., IN, USA), glutaraldehyde-crosslinked bovine 

pericardium (Peri-Guard®, Synovis Surgical Innovations) or EDCxCEM. Each rabbit was given 

a standard dose of prophylactic antibiotic subcutaneous enrofloxacin (5mg/kg) and 

subcutaneous analgesia butorphanol (0.25-0.4mg/kg) for 48 hours post surgery. The 

rabbits were maintained in a controlled environment in cages until sacrifice. All rabbits 

were observed regularly for wound complications including infection, bleeding, seroma 

and dehiscence. The time periods for the study were 28 days and 56 days. 

In the first week post-surgery, the presence of seroma at the mesh site was 

examined daily, followed by weekly observation from the second week onwards. 

Examination for possible occurence of abdominal wall hernia was performed weekly until 

euthanasia.  

At 28 days and 56 days, the rabbits were euthanised with intravenous injection of 2 

mL sodium pentobarbital (Dolethal®) under anaesthesia. The anterior abdominal wall 

tissues were removed with care to preserve both rectus abdominis muscles and 

surrounding tissues. Mesh area stretching or contraction was noted, and any adhesion was 

removed prior to tracing the size of the mesh area with tracing paper. The mesh area was 

identified by the presence of polypropylene sutures used for securing the mesh at the time 

of repair and to identify host tissue ingrowth in place of the mesh.The dimension of the 

implant was measured as previously described (40). Briefly, the mesh borders were traced 

using tracing paper and photographs were taken as required. The tracings were scanned to 

digital images and the mesh area dimensions (width, length and mesh area) were 

determined using image analysis software (ImageJ v1.43, National Institutes of Health, 

USA). The percentage contraction/stretching of the area, width or length of the implant 

area were evaluated with the following formula: 
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Percentage change=[(Implant left side)−(Control right side)]/(Control right 

side)×100% 

The presence of intra-abdominal adhesions were documented and scored using the 

Surgical Membrane Study Group (1992) scoring system (Figure S1) (47). The mesh areas 

were then dissected and preserved in 4% neutral buffered formalin. 

1.3. Tissue processing and histology analysis 

 Formalin fixed tissues were dehydrated through a series of graded ethyl alcohol 

solutions (50, 75, 95 and 100%), cleared with xylene and embedded in paraffin using an 

automatic tissue processor (Leica ASP 300, Leica Microsystems, Nussloch, Germany). 5 m 

thick paraffin sections were stained with Masson’s trichrome stain. The stained sections 

were observed under light microscope and digital images captured for qualitative 

histomorphology and quantitative stereological analysis (BX51 microscope, DP-70 digital 

camera, Olympus Europe, Hamburg, Germany) 

1.4. Quantitative stereological analysis 

  The stereological methods used for the quantitative analysis of tissue response 

and degradation parameters were conducted as previously reported by Garcia et al (48). 

Briefly, the stereological approach is based on isotropic sampling. Since the abdominal wall 

is an anisotropic layered structure, it is stratified and requires the use of a vertical uniform 

random sampling method to obtain isotropy in the vertical sections. At least six non-

overlapping random fields of view per section per stereological parameter, six sections per 

mesh, and six meshes per group per time point were used for adequate sampling. The 

probes/ test systems (counting grids/cycloids) provided by an image analysis software 

(ImageJ, National Institutes of Health, USA) were used to enable point counts for 

stereological estimations. 

 The mesh site was divided into two regions, namely, the mesh region and the 

fibrous tissue region surrounding the mesh (Figure S1a). Each region was subdivided into 

the central area and the peripheral area of the mesh/fibrous tissue regions (Figure S1b). 

Stereological volume fraction (Vv) estimations of nuclei, fibroblasts and native host 

collagen and/or residual mesh (mesh collagen or polypropylene fibres) were used to 
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evaluate the tissue composition of each area. Length density (Lv), surface density (Sv) and 

radius of diffusion (Rdiff) estimations were used to evaluate the distribution of blood 

vessels in each area. 

1.5. Statistical analysis 

 Statistical analyses were carried out using statistical software InStat® (GraphPad 

Software Inc., USA). Statistical differences between groups were analysed by one way 

analysis of variance (ANOVA). Tukey’s honestly significant difference test was used for post 

hoc evaluation for differences between groups. When the dataset did not satisfy the 

criteria for parametric tests, Kruskal-Wallis test was used with Dunn’s multiple 

comparisons between groups. A p value of <0.05 was considered to be statistically 

significant. All data represented was expressed as mean ± standard deviation (SD). 

2. Results 

2.1. Macroscopic tissue explants examination 

Figure 1 summarizes the appearance of the meshes after abdominal wall repair 

surgery at 28 days and 56 days. No infection, skin irritation, ulceration, wound dehiscence; 

bleeding/ haematoma or development of hernia was observed for all groups. All animals 

resumed normal activity within 12 to 24 hours after surgery. 

Examination of the explanted abdominal wall revealed that all Prolene® meshes and 

Peri-Guard® meshes remained macroscopically intact until day 56. The degradable meshes 

(EDCxCEM and Surgisis®) showed different degrees of in vivo degradation at day 28 and 

day 56. Macroscopically, both EDCxCEM and Surgisis® meshes were visible at 28 days. 

Striking blood vessels and host connective tissue were observed to infiltrate the meshes 

from the mesh margin/edge of the defect interface. Compared to EDCxCEM, however, 

Surgisis® showed a more advanced stage of degradation at both 28 days and 56 days. By 56 

days, none of the original Surgisis® meshes were observed by macroscopic examination 

and they had been infiltrated by host tissue, at least on the peritoneal surface of the 

meshes. In contrast, parts of the EDCxCEM meshes were visible at day 56 and showed 

evidence of degradation and host tissue replacement. There was no mesh area stretching 
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observed for both the EDCxCEM and Surgisis® meshes at day 28.  By day 56, stretching of 

the Surgisis® meshes was evident. A much lesser degree of stretching of EDCxCEM meshes 

was observed. 

 Figure 2 shows seroma formation for both the Surgisis® and Peri-Guard® meshes 

during post-operative examinations. 75% of Peri-Guard® meshes showed evidence of 

seroma formation, typically within the first three days after surgery. In contrast to Peri-

Guard® meshes, seroma formation in the Surgisis® group was delayed and typically 

detected clinically at least after three days post-surgery. There was no seroma observed in 

the Prolene® and EDCxCEM groups. 

Figure 3 shows adhesions which were evaluated upon euthanasia. All Surgisis® meshes 

were free of adhesion at both day 28 and day 56. At day 28, the EDCxCEM and Peri-Guard® 

meshes were free of adhesions. At day 56, adhesions were confined to the suture lines at 

the mesh-host tissue interface in one rabbit from the EDCxCEM group and two rabbits 

from the Peri-Guard® group. There was no noticeable complication (such as bowel 

dilatation or obstruction) from these adhesions. Adhesions complicated 50% of Prolene® 

meshes at both 28 days and 56 days. These adhesions involved the mesh areas. The area 

of the mesh involved varied from 30% to 70%. Again, no noticable complications was 

found due to these adhesions. 

2.2. Changes in mesh dimensions 

The change of width, length, and total area of the meshes is demonstrated in 

Figure 4. Surgisis® showed a statistically significant percentage change in mesh width from 

5% at day 28 to 30% at day 56. In contrast to Surgisis®, the EDCxCEM mesh did not show a 

statistically significant percentage change in mesh width (from 2.4% at day 28 to 6.6% at 

day 56). The Peri-Guard® and Prolene® meshes contracted significantly by day 56 (16.3% 

and 19.9%, respectively).  

As for the change in mesh length, all meshes showed an increase of between 4-10% 

at day 56. Since the change in length was compared against the initial excision length, 

some of this increase is likely due to the growth of the animals. No statistically significant 

difference was observed between groups.  
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The pattern of change in mesh area broadly follows the trend in the change of width. 

Surgisis® showed the most significant percentage change in mesh area. The increase of 5% 

in area was not significant when compared to other groups at day 28. However, Surgisis® 

underwent statistically significant stretching between day 28 and day 56, resulting in 48% 

stretch in area by day 56. Changes to Surgisis® mesh area was significantly difference when 

compared with all other groups at day 56. The EDCxCEM mesh showed no statistically 

significant change in mesh area over time (from 3% at day 28 to 12% at day 56). Both the 

Peri-Guard® (8% to 12%) and Prolene® (12% to 18%) meshes showed increasing mesh area 

contraction from day 28 to day 56 which were statistically significantly different compared 

to the Surgisis® and EDCxCEM meshes. 

2.3. Descriptive histological analysis 

Underneath the cutaneous tissue, all meshes showed fibrous connective tissues directly 

overlying the meshes. On the underside, a thin layer of neo-peritoneum was evident. 

Where there were adhesions, the neo-peritoneum was continuous to the adherent tissues. 

The regions of interest are the mesh region and the fibrous tissue region surrounding the 

meshes . Each region was subdivided into a central area and a periphery area in relation to 

the position of the meshes (Figure S1). Figure 5 shows the histology sections of different 

meshes.  

2.3.1. Prolene® (polypropylene) 

Histologically, the central area of the mesh region showed multiple circular- or oval-

shaped void spaces representing multiple polypropylene filament fibres. Connective tissue 

surrounded the areas between the filaments. These connective tissues were rich in 

collagen, fibroblasts and occasional blood vessels. The collagen fibres were arranged in a 

disorganized manner and encircled polypropylene filaments where they were present. 

Some collagen bundles appeared more mature (denser and thicker) than other areas 

(looser and sparse). Inflammatory cells approximately one to five layers thick were 

intimately related to the polypropylene filaments. There were fibroblasts and sparse 

inflammatory cells within the connective tissues, away from the polypropylene filaments. 
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There were no apparent difference between the central or peripheral area of the mesh 

regions between 28 days and 56 days. 

In the fibrous tissue region, the tissue was composed of collagen rich connective tissues. 

Fibroblasts, inflammatory cells and blood vessels were frequently observed in this region. 

In contrast to the disorganized arrangement in the mesh region, the collagen fibres in this 

region were more organized and orientated roughly parallel to the long axis of the 

musculature/surface of the mesh. This fibrous tissue area appeared to be more mature, 

denser and less cellular at day 56 compared to day 28. There were no difference between 

the fibrous tissue areas whether they were related to the centre or the periphery of the 

meshes. 

2.3.2. Peri-Guard® (bovine pericardium) 

The collagen bundles of bovine pericardia were parallel and compact. The collagen 

structure in the centre of the Peri-Guard® meshes were intact with no sign of degradation 

or host cell infiltration. In the mesh region, there was no discernible difference between 

the appearance of the centre and the periphery areas.  

Inflammatory cells (lymphocyte and macrophages) surrounded the surface (five to ten 

layer thick) and were seen penetrating the surface of the densely packed collagen bundles 

at the interface between mesh and fibrous tissue regions. Foreign body giant cells were 

occasionally observed at this interface. There was mild surface degradation of the mesh – 

evident by short segments of collagen bundles separating away from the main mesh with 

host cells in between. In the fibrous tissue region, further from the mesh surface, 

connective tissues with organized collagen, fibroblast, blood vessels and few inflammatory 

cells were observed. These fibrous tissue areas matured from 28 days to 56 days. A thin 

neo-peritoneum layer was evident on the underside with a similar inflammatory cellular 

area at the interface 

2.3.3. Surgisis® (small intestinal submucosa) 

The collagen bundles of small intestinal submucosa meshes were roughly parallel with 

occasional curling. A multi-laminated appearance was evident especially in the intact 

central mesh core region. At 28 days, Surgisis® collagen fibres at the mesh region were 
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intact and acellular, with inflammatory cells infiltrating to approximately 30% to 50% of 

the thickness of the mesh from the surface. This was observed both at the central and the 

peripheral of the mesh areas, but more often observed in the central area. The 

inflammatory cells seen to penetrate the meshes from their surface were dense and 

composed of lymphocyte and macrophages. Foreign body giant cells were frequently seen 

with degraded collagen material within the cell bodies. There was some new collagen 

deposition and fibroblasts at this level. 

By 56 days, a large proportions of the mesh had been degraded, leaving behind a thinner 

region of residual mesh collagen and they were fully infiltrated by host inflammatory cells. 

By this time, the inflammatory cells were less dense but occupy a larger area. The 

degraded meshes were replaced by host connective tissues. 

In the fibrous tissue region, a dense inflammatory cells layer (ten to twenty layers) was 

observed at 28 days. These inflammatory cells surrounded and infiltrated the mesh surface 

layer by layer. By 56 days, this process of degradation was less intense. Connective tissues 

with a less dense inflammatory cells layers replaced this region previously occupied by 

mesh collagen bundles. 

2.3.4. EDCxCEM (crosslinked CEM) 

At 28 days, inflammatory cells were observed to penetrate the surface of the EDCxCEM 

mesh, approximately 20% of its thickness. The layer of inflammatory cells was much less 

dense than those seen with Peri-Guard® or Surgisis® meshes. By 56 days, intact collagen 

bundles within the central mesh region were still present with progression of the host 

inflammatory cells towards the core of the mesh.  

On the surface of EDCxCEM, the fibrous tissue region, degradation of surface collagen 

bundles was observed. Lymphocytes and macrophages were seen at this interface region. 

Foreign body giant cells were also seen, having engulfed collagen fibres which had 

separated from the mesh. Further away from the interface/fibrous tissue region, organised 

connective tissue comprised of collagen, blood vessels, and fibroblasts were laid down. 

Occasional inflammatory cells (lymphocytes and macrophages) were also observed but they 

were more frequent at the mesh surface. The host collagen fibres became denser and their 
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orientation was more parallel and organised at day 56 indicating maturation and 

reorganisation of the host connective tissue. 

2.4 Quantitative stereological analysis 

Figure 6 summarizes quantitation of stereological analysis among the groups. Changes to 

each parameter for each implant type and implant area (central or peripheral) are 

described, and any noteworthy observations are discussed. 

Volume Fraction of Nuclei: Implant Region 

In the central area of the implant region, the Vv of nuclei of the EDCxCEM mesh was not 

significantly different from the other three implant types at 28 days. By 56 days, the Vv of 

nuclei for EDCxCEM was maintained at a moderate level (3.2%), significantly higher than 

Peri-Guard® (0.5%) and significantly lower than Prolene® (8.4%) and Surgisis® (7%).   

In the peripheral area of the implant region, there was no statistical difference in Vv of 

nuclei for each individual implant group over time. However, the Vv of nuclei for Prolene® 

(4.7%) and EDCxCEM (6.4%) was significantly higher than Peri-Guard® (0.5%) at 28 days. By 

56 days, the Vv of nuclei of Prolene® (5.4%), Surgisis® (5.7%) and EDCxCEM (3.7%) were all 

significantly higher than Peri-Guard® (1.8%).  

When the central implant area was compared to the peripheral implant area for each 

group, only the EDCxCEM group showed a statistically higher Vv of nuclei in the peripheral 

implant area (6.5%) compared to the central implant area (2.6%) at 28 days. These 

changes indicated that host cellular infiltration was significantly higher at the implant 

periphery, compared to the centre area for EDCxCEM. The initial higher Vv of nuclei in the 

peripheral implant area suggested that the porous EDCXCEM implant facilitated early 

cellular infiltration at the implant periphery. Although, the Vv of nuclei of Prolene® in the 

peripheral implant area was high, a statistical difference was not observed when 

compared to the central implant area (3.1% at 28 days; 8.4% at 56 days). This observation 

was not seen in Peri-Guard® (a densely packed and highly crosslinked collagen) and 

Surgisis®  (a multi-laminate construct). 

Volume Fraction of Nuclei: Fibrous Tissue Region 

In the central area of the fibrous tissue region at 28 days, EDCxCEM showed a significantly 

higher Vv of nuclei (4.4%) when compared to Prolene® (1.2%). By 56 days, the Vv of nuclei 
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of Peri-Guard® has increased significantly (by 3 fold to 7.1%) to match that of Surgisis® 

(8.9%). In contrast, at 56 days EDCxCEM maintained a similar Vv of nuclei (4.4%) as it was 

at 28 days, which was statistically higher than Prolene® (0.3%), but statistically lower than 

Peri-Guard® (7.1%) and Surgisis® (8.9%). 

In the peripheral area of the fibrous tissue region, the Vv of nuclei for the Prolene® mesh 

(1.2%) at 28 days was significantly lower than all other implants. Surgisis® (17.7%) 

however, showed the highest Vv of nuclei at 28 days. The Vv of nuclei of EDCxCEM (5.7%) 

was significantly higher than Prolene®, and not statistically different from Peri-Guard® or 

Surgisis®. By 56 days, the Vv of nuclei for Surgisis® had significantly decreased from 17.7% 

to 7.9% (by more than half) to the Vv of nuclei similar to that for Peri-Guard® (8.9%). 

EDCxCEM implants showed a Vv of nuclei of 2.2% at 56 days, while Vv of nuclei for Prolene® 

was 0.4%. The Vv of nuclei of EDCxCEM (2.2%) was statistically different from Peri-Guard® 

(8.9%), Surgisis® (7.9%) and Prolene® (0.4%). 

Similarly, the findings of Vv of nuclei in the fibrous tissue region demonstrated that the 

tissue response occurred at a faster pace in the periphery, compared to the central area. 

The initial higher fraction of nuclei in the periphery for Surgisis®, Peri-Guard® and to a 

lesser extent for EDCxCEM indicates that host inflammatory cells were brought into the 

region to degrade these implants. Since four layer Surgisis®, is a degradable scaffold, its 

rapid degradation profile is thought to cause an increased level of cellular activity, 

demonstrated by the high nuclei Vv at 28 days. In contrast, Peri-Guard® being a non-

degradable scaffold, resulted in a sustained and prolonged host inflammatory cellular 

response to degrade the foreign implant, and toxicity of glutaraldehyde may have 

intensified the inflammatory response. Since EDCxCEM is also a degradable scaffold, a 

similar cellular response to Surgisis® was predicted. However, EDCxCEM implants had a 

slower degradation profile and without the toxicity of glutaraldehyde, and therefore, a 

reduced Vv of nuclei were observed. 

Volume Fraction of Fibroblast – Implant Region 

In the central implant region, Prolene® implants showed statistically the highest Vv of 

fibroblasts for both 28 and 56 days (7.5% and 11%, respectively), Peri-Guard®, Surgisis® and 

EDCxCEM all showed similar Vv of fibroblasts at 28 days (1.4%, 1.5% and 2.6%, 

respectively). The Vv of fibroblasts increased significantly to 5.4% for Surgisis® at 56 days. 

D
ow

nl
oa

de
d 

by
 G

ua
ng

xi
 U

ni
ve

rs
ity

 f
or

 N
at

io
na

lit
ie

s 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

2/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 16 of 45 
 
 
 

16 

Ti
ss

ue
 E

ng
in

ee
rin

g 
Cr

os
s-

lin
ke

d 
ch

ol
ec

ys
t-d

er
iv

ed
 e

xt
ra

ce
llu

la
r m

at
rix

 fo
r a

bd
om

in
al

 w
al

l r
ep

ai
r (

DO
I: 

10
.1

08
9/

te
n.

TE
A.

20
17

.0
37

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

Although the Vv of fibroblasts for EDCxCEM also increased from 2.6% to 4.7%, this was not 

statistically significant. 

At the periphery of the implant region, the Vv of fibroblasts for Prolene® (9.1%) and of 

EDCxCEM (10.6%) were statistically higher than Peri-Guard® (4%). The Vv of fibroblasts for 

Surgisis® was 5.2% at 28 days and remained unchanged (5.8%) at 56 days. By 56 days, Vv of 

fibroblasts of the EDCxCEM mesh increased and was statistically higher (12.8%), when 

compared to the Peri-Guard® and Surgisis® groups. In comparison, the Vv of fibroblasts of 

Peri-Guard® and Prolene® decreased to 1.8% and 6.5%, respectively.  

Overall, it was observed that the Vv of fibroblasts broadly parallels the Vv of nuclei in the 

implant region. This supports the suggestion of continous remodeling of the implant 

region by host inflammatory cells (represented by Vv of nuclei) which degrade and remove 

the implants, while host fibroblasts (represented by Vv of fibroblasts) replace the implant 

area with fibrous connective tissues. The high Vv of fibroblasts with Prolene® was related to 

the spaces between the polypropylene filaments that allowed rapid connective tissue 

ingrowth both at the central and peripheral areas. This effect was also observed with 

EDCxCEM at the peripheral implant area (10.6% at 28 days; 12.8% at 56 days) as EDCxCEM 

has been shown to be fibroporous. However, in the central implant area, the Vv of 

fibroblasts for EDCxCEM was not as high as at the peripheral implant area at 56 days 

(4.7%), as it takes time for the fibroblasts to reach the central implant area.  

Volume Fraction of Fibroblast – Fibrous Tissue Region 

In the central fibrous tissue region, the Vv of fibroblasts for Peri-Guard®, Surgisis® and 

EDCxCEM were similar at approximately 18% to 20% at 28 days. The Vv of fibroblasts for 

EDCxCEM (20.2%) was statistically higher than Prolene® (13.1%) in this period. After 56 

days, the Vv of fibroblasts for Peri-Guard® (8.9%), Surgisis® (11.9%) and EDCxCEM (12%) 

decreased to approximately half their initial level and these changes were statistically 

significant.  

The Vv of fibroblasts in the peripheral fibrous tissue region showed the same pattern as the 

central fibrous tissue region. Peri-Guard®, Surgisis® and EDCxCEM implants all showed high 

Vv of fibroblasts of up to 20% at 28 days. 'On day 56, the values decreased significantly for 

Peri-Guard® (5.7%) and Surgisis® (10.1%). The Vv of fibroblasts in both the central area and 

the peripheral area of the fibrous tissue region did not resemble the implant region. 
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Fibroblasts showed a high volume fraction early in the healing process (28 days), and their 

density decreased after 56 days. For Prolene®, this process occurred earlier as evident by 

the lower Vv of fibroblasts at 28 days. 

Volume Fraction of Implant (Implant Collagen/ Mesh) 

In the central implant region, the Vv of all implant types remained statistically unchanged 

from 28 days to 56 days. The non-degradable Peri-Guard® showed a stable Vv of 90% 

throughout the study period. The Vv of Surgisis® decreased from 50% to 41% but this was 

not statistically significant. The Vv of EDCxCEM was virtually unchanged from 28 days 

(31.3%) to 56 days (29.6%). The Vv of the polypropylene fibres of Prolene® mesh was also 

virtually unchanged from 28 days (33%) to 56 days (30.5%). 

At the peripheral implant region, EDCxCEM showed a statistically significant decrease in Vv 

of implant from 28 days to 56 days (18.5% to 6.8%). There was no significant change for 

Prolene® (18.4% to 27.9%), Peri-Guard® (81% to 84%) and Surgisis® (45.7% to 27%) over 

time. Although Surgisis® is a degradable implant and the Vv of Surgisis® showed a decrease, 

it did not reach statistical significance at 56 days. As expected, the Vv of Peri-Guard® was 

still very high at 84% at 56 days. Although not statistically significant, the Vv of Prolene® 

mesh showed a visible increase from 18.4% to 27.9% which may indicate the beginning of 

the process of host tissue maturation and contraction of fibrous connective tissue 

between its polypropylene mesh filaments. 

When comparing the central implant region with the peripheral implant region, only the 

EDCxCEM group showed a statistically significant decrease in Vv of implant collagen at 56 

days (29.6% to 6.8%). The Vv of implant in the peripheral implant area of EDCxCEM at 56 

days (6.8%) was statistically lower than for all the other groups (Prolene® (27.9%), Peri-

Guard® (84%) and Surgisis® (27%)). 

The Vv of implant collagen/ mesh fibres can be used as an indication of scaffold 

degradation or changes in the mesh-tissue composite. Implant collagen displayed different 

morphology compared to native host collagen – implant collagens showed a denser and 

darker colour, generally acellular and they stood out against the background host tissue 

morphology.   

The central implant region showed less statistically significant changes than the peripheral 

implant region with Vv of implant collagen/ mesh that evaluates scaffold degradation. In 
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vivo degradation of degradable implants (EDCxCEM and Surgisis®) was observed at the 

peripheral implant area, represented by their respective reduction in Vv of implant 

collagen over the study period and when compared to their respective central implant 

areas. The low Vv of Prolene® and EDCxCEM illustrated the degree of porosity within these 

scaffold structures. In comparison, the dense collagen bundles arrangement in Peri-Guard® 

and the layered small intestinal submucosa in Surgisis® explained their overall higher Vv. 

The increase in Vv of Prolene® suggests contraction of the implant area causing mesh 

contraction. 

Volume Fraction of Native Collagen – Implant Region 

In the central implant region, there was a high Vv of native host collagen (24.6%) within 

Prolene® meshes at 28 days, and 56 days (26.7%). The Vv of native collagen for Surgisis® 

increased from 3.6% at 28 days to 8% at 56 days and the Vv of native collagen for EDCxCEM 

increased from 11.5% to 19.4%; however both did not reach statistical significance. As 

expected, Peri-Guard® showed negligible Vv of native collagen. 

In the peripheral implant region, the Vv of native collagen for Prolene® mesh was very high 

at 40% by 28 days, and this level was maintained at an average of 36% at 56 days. 

Although the Vv of native collagen for Surgisis® showed an increase (6.9% to 10.8%), the 

changes were not significant. In contrast, EDCxCEM showed a statistically significant 

increase in Vv of native collagen from 28 days (14.7%) to 56 days (39%). Again, Peri-Guard® 

showed negligible native collagen in this region.  

When the peripheral implant region was compared to the central implant region, only the 

EDCxCEM mesh showed a statistically significant increase in Vv of native collagen. At 56 

days, the Vv of native collagen in the peripheral implant region of EDCxCEM was 39%, 

significantly higher when compared to its central implant region (19.4%). 

Native host collagen was rapidly laid down within the gaps of the Prolene® mesh. The 

secretion of native extracellular matrix is produced by host tissue fibroblasts. Therefore, 

the Vv of host collagen resembled the pattern of Vv of fibroblasts in the implant region. 

Only the Vv of EDCxCEM showed statistical difference between the peripheral and central 

regions at 56 days. EDCxCEM encouraged collagen deposition by two mechanisms - its 

fibroporous nature (similar to Prolene® mesh) and the remodelling of implant area 
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following scaffold degradation, although this remodelling process is likely slower than 

Surgisis®. 

Volume Fraction of Native Collagen – Fibrous Tissue Region  

In the central fibrous tissue region, Prolene® showed statistically the highest Vv of native 

collagen when compared to other groups at both time points. The Vv of native collagen for 

Prolene® at 28 days was 64%, and 73% by 56 days. The Vv of native collagen for Peri-

Guard®, EDCxCEM and Surgisis® were 59.8% to 46%, 41.4% to 43.2%, and 37.2% to 27.2% at 

28 days and 56 days, respectively. At 56 days, the Vv of native collagen for Surgisis® was 

statistically the lowest compared to other groups.  

Again in the peripheral fibrous tissue region, Prolene® (64.2%) showed statistically higher 

Vv of native collagen at 28 days compared to Peri-Guard® (42.9%), and Surgisis® (24.4%), 

but not to EDCxCEM (34%). EDCxCEM showed a significant increase in Vv of collagen (from 

34% to 52.1%) between 28 days and 56 days. None of the other three groups showed this 

increase over time. By this time, the Vv of EDCxCEM became higher than both Peri-Guard® 

(36%) and Surgisis® (24%), and no difference to Prolene® (60%). 

It was observed that Prolene® mesh showed the highest volume fraction of native collagen 

deposition at both time points. This was faster for Prolene® because there was no implant 

degradation in the vicinity that delayed collagen matrix deposition. For the degradable 

biological scaffolds, however, collagen deposition had to be balanced with the demands of 

ongoing implant degradation. In the cases of Surgisis® and EDCxCEM, it appeared 

depositions of collagen were reduced by the presence of degrading scaffolds. 

Surface Density of Blood Vessels: Implant Region 

In the central implant region, Sv of blood vessels for Surgisis® (1.43 x 104 µm2/µm3) was 

significantly lower than the other groups at 28 days  (Prolene® 18.5 x 104 µm2/µm3, 

PeriGuard® 11.5 x 104 µm2/µm3, EDCxCEM 20.5 x 104 µm2/µm3). After 56 days, Sv of blood 

vessels for Surgisis® (21.4 x 104 µm2/µm3) had increased significantly to level similar to 

Prolene® (24.7 x 104 µm2/µm3) and EDCxCEM (16.1 x 104 µm2/µm3). Peri-Guard® showed a 

lower Sv of blood vessels (2.9 x 104 µm2/µm3) even at 56 days as blood vessels were unable 

to infiltrate the non-degradable and stiff Peri-Guard.  

For the peripheral implant region, the Sv of blood vessels in this region was generally 

higher than the central area due to their location at the implant margins. This is due to the 
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increased surface area in contact with host tissue that permits blood vessel infiltration. 

The Sv of blood vessels for Prolene® (25.3 x 104 µm2/µm3) was significantly higher than 

Surgisis® (4.1 x 104 µm2/µm3) at 28 days while the Sv of blood vessels for the EDCxCEM 

mesh was not significantly different when compared to the other groups at 28 days. The 

porosities of Prolene® mesh and EDCxCEM architecture allowed blood vessels in growth. 

After 56 days, Sv of blood vessels for Surgisis® (25.3 x 104 µm2/µm3) increased significantly 

(to level similar to Prolene® [23.6 x 104 µm2/µm3] and EDCxCEM [22.7 x 104 µm2/µm3]), 

likely due to infiltration by cells and implant degradation at this time point. Since Prolene® 

is a non-degrading macroporous material (allowing blood vessels within the mesh 

interstices) and EDCxCEM was designed to be slowly degrading (sustained blood vessels 

ingrowth as EDCxCEM was still undergoing degradation), the Sv of blood vessels were still 

high at 56 days. As expected, the Sv of blood vessels for PeriGuard® (5.6 x 104 µm2/µm3) 

was statistically the lowest when compared to the other groups at this time point. 

Surface Density of Blood Vessels: Fibrous Tissue Region 

At 28 days, in the central fibrous tissue region, the Sv of blood vessels of the EDCxCEM 

mesh (52.4 x 104 µm2/µm3) was statistically higher than PeriGuard® (24.2 x 104 µm2/µm3) 

and Surgisis® (19.5 x 104 µm2/µm3), but not statistically different when compared to 

Prolene® (39.6 x 104 µm2/µm3). Both the EDCxCEM and Prolene® meshes had the highest Sv 

of blood vessels because they promoted early cellular infiltration and angiogenesis was 

stimulated at this early stage in the fibrous tissue area. After 56 days, the Sv of blood 

vessels for all four groups were similar which indicated a continued host response to 

remodel or degrade the implants (EDCxCEM 34.3 x 104 µm2/µm3, PeriGuard® 23.7 x 104 

µm2/µm3, Surgisis® 33.4 x 104 µm2/µm3, and Prolene® 32.1 x 104 µm2/µm3). 

In the peripheral fibrous tissue region, the Sv of blood vessels of EDCxCEM (62.2 x 104 

µm2/µm3) in this region was statistically higher than Prolene® (21.9 x 104 µm2/µm3), 

PeriGuard® (17.5 x 104 µm2/µm3) and Surgisis® (31.6 x 104 µm2/µm3) at 28 days. By 56 days, 

the Sv of blood vessels of EDCxCEM (40.5 x 104 µm2/µm3) has reduced and was no longer 

statistically higher than PeriGuard® (41.2 x 104 µm2/µm3) and Surgisis® (37.1 x 104 

µm2/µm3). The Sv of blood vessels for Peri-Guard® significantly increased from 28 to 56 

days, but there was no difference over time for the other groups. Prolene® showed the 

lowest overall Sv at its 56 days time point (18.7 x 104 µm2/µm3) when compared to other 
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groups which indicate completion of tissue remodeling and maturation of the peripheral 

fibrous tissue region of Prolene®, while this process was still ongoing for the other 

implants.  

Length Density of Blood Vessels: Implant Region 

In the central implant region, Prolene® (5.2 x 104 µm/µm3), Peri-Guard® (3.6 x 104 µm/µm3) 

and EDCxCEM (5.3 x 104 µm/µm3) all showed high Lv of blood vessels, while the Lv of blood 

vessels for Surgisis® (0.31 x 104 µm/µm3) was statistically the lowest at 28 days time point. 

The presence of blood vessels within bovine pericardium could be explained by host 

vasculature present on the surface/edge of Peri-Guard® (3.6 x 104 µm/µm3) as 

inflammatory cells attempts to infiltrate the collagen structure. After 56 days, the Lv of 

blood vessels for Surgisis® increased significantly (5.2 x 104 µm/µm3) to Lv similar to 

Prolene® (4.9 x 104 µm/µm3) and EDCxCEM (5.1 x 104 µm/µm3).This can be explained by 

cellular infiltration into Surgisis® and progressive degraded at this stage. The Lv of blood 

vessels for Peri-Guard® at 56 days (1.2 x 104 µm/µm3) was statistically lower when 

compared to Prolene®, Surgisis® and EDCxCEM. The high initial length density of blood 

vessels seen with Prolene® and EDCxCEM could be attributed to their porous nature. 

In the peripheral implant area, Lv of vessels in this region showed the same pattern as the 

central implant region. There was a statistically significant increase in Lv of blood vessels 

for Surgisis® from 28 days (1.03 x 104 µm/µm3) to 56 days (6.4 x 104 µm/µm3). There was 

no statistical difference when comparing the Lv of blood vessels between the different 

implant groups at 56 days  

Overall, both Prolene® and EDCxCEM showed a uniform Lv of blood vessels for both the 

central and peripheral implant areas at 28 and 56 days (ranging between 4.7 x 104 µm/µm3 

to 5.5 x 104 µm/µm3. In contrast, Peri-Guard® showed a decrease in the Lv of blood vessels 

from 28 to 56 days for both the central (3.6 x 104 µm/µm3 to 1.2 x 104 µm/µm3) and 

peripheral implant (4.6 x 104 µm/µm3 to 2.1 x 104 µm/µm3) areas. Surgisis® showed 

increase in the Lv of blood vessels from 28 to 56 days for both the central (0.31 x 104 

µm/µm3 to 5.2 x 104 µm/µm3) and peripheral implant (1.02 x 104 µm/µm3 to 6.4 x 104 

µm/µm3) areas. 
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Length Density of Blood Vessels: Fibrous Tissue Region 

The Lv of blood vessels in the central fibrous tissue region of EDCxCEM (13.5 x 104 µm/µm3) 

was statistically higher than PeriGuard® (7.3 x 104 µm/µm3) and Surgisis® (5.4 x 104 

µm/µm3) and not significantly different from Prolene® (8.8 x 104 µm/µm3). The was 

reflected also by the higher cellular activity (high Vv of fibroblast and moderate Vv of 

nuclei) indicating remodeling of this region in the viscinity of a slowly degrading EDCxCEM 

implant. There was no statistical difference in the Lv of blood vessels at 56 days between 

the four groups (Prolene® 7.0 x 104 µm/µm3, Peri-Guard® 7.8 x 104 µm/µm3, Surgisis® 8.2 x 

104 µm/µm3 and EDCxCEM 8.2 x 104 µm/µm3). 

The Lv of blood vessels in the peripheral fibrous tissue area were similar to the pattern 

seen at the central fibrous tissue area. The Lv of blood vessels of EDCxCEM (18.8 x 104 

µm/µm3) was statistically higher than Prolene® (5.1 x 104 µm/µm3), Peri-Guard® (4.5 x 104 

µm/µm3) and Surgisis® (8.04 x 104 µm/µm3) at 28 days. However, there was a statistically 

significant increase of Lv of blood vessels for Peri-Guard® from 28 (4.5 x 104 µm/µm3) to 56 

days (11.0 x 104 µm/µm3) which may be attributed to the continuing angiogenesis to 

support inflammatory cells to degrade the densely crosslinked pericardium. There was an 

increase in Lv of blood vessels for Surgisis® from 28 (8.04 x 104 µm/µm3) to 56 days (10.7 x 

104 µm/µm3) but this increase was not statistically significant. In comparison, by 56 days, 

the Lv of blood vessels of Prolene® implants (5.07 x 104 µm/µm3) was statistically the 

lowest, indicating maturation of its fibrous tissue area. Even though there was a decrease 

in Lv of blood vessels for the peripheral fibrous tissue area at 56 days for EDCxCEM (12.7 x 

104 µm/µm3), indicating the early phase of host tissue maturation in this region, this 

decrease was not statistically significant. 

Radius of diffusion 

As expected the radius of diffusion was the lowest in the peripheral fibrous tissue region, 

followed by central fibrous tissue region. Since blood vessels ingrowth occured from the 

periphery, it was expected that the central implant area would have delayed vessels 

ingrowth compared to the peripheral areas. Peri-Guard® and Surgisis® had the highest 

radius of diffusion at 28 days, and can be explained by their dense architecture or layering 

that prevented capillary ingrowth. At 56 days, the radius of diffusion for Surgisis® improved 
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to the levels similar to Prolene® and EDCxCEM. This can be attributed to the degradation of 

Surgisis® and hence, allowing blood vessels to infiltrate more readily. 

 

3. Discussion 

 Seroma and adhesion formation remained a complication common to non-

degradable meshes, whether they were synthetic or biologic in nature. We found that 

seroma complicated 75% of Peri-Guard® meshes which typically occured within the first 

three days post-surgery (Figure 2c). Interestingly, all Surgisis® meshes were found to have 

seroma at 3 days post-surgery. The Peri-Guard® mesh has a naturally thick and dense 

collagenous matrix that prevented large amounts of fluid from permeating through its 

layer immediately after surgery. In contrast, although each layer of Surgisis® is thin, 

Surgisis® is designed as a laminated construct. Once fluid entered these layers (within the 

initial three days) and coupled with the inflammatory process, trapped fluid within these 

layers had difficulty escaping (Figure 2a). In a small clinical study comparing abdominal 

wall closure following open abdominal aortic aneurysm repair with primary closure versus 

augmentation with Peri-Guard® meshes, seroma occurred in 10% of patients repaired with 

Peri-Guard® meshes (49). However, the authors had anticipated this and made multiple 

small incisions in the mesh during surgery and inserted drains to prevent seroma 

formation. The problem with the design of multi-layered Surgisis® was highlighted by 

Gupta and co-authors who reported a rate of seroma formation as high as 91%. Explanted 

Surgisis® meshes revealed unincorporated middle layers. This prompted the authors to use 

a perforated version of the mesh in the latter part of the study (39). 

 Post-operative adhesion is a major cause of intestinal obstruction, and may lead to 

bowel strangulation, necrosis and mortality (50, 51). Intraperitoneal contact with a 

polypropylene mesh is associated with a higher rate of adhesions and it is believed that 

the macroporosity and reticular structure of polypropylene meshes encourages fibroblasts 

integration and adherence to visceral peritoneum (52-54). The microporous laminar 

structure of Polytetrafluoroethylenen(ePTFE) is thought to encourage the formation of 

mesothelium cells parallel to the mesh surface and thus, reduce intraperitoneal adhesions 

(54-57). These hypotheses were consistent with our findings that adhesions formed in 50% 
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of the rabbits implanted with polypropylene, and of these, at least 25% of the mesh 

surfaces were involved (Figure 3). However, intraperitoneal placement of all three biologic 

meshes in this study were associated with very low adhesion rates. Biologic meshes are 

closer to a microporous laminar structure rather than a reticular macroporous structure. 

To avoid adhesions on the suture lines which occured in our cases, we proposed modifying 

the suturing technique to reduce the amount of permanent suture material on the 

intraperioneal side or the use of absorbable sutures. 

From the analysis done on changes to dimensions of the mesh area, we found that the 

changes to the mesh area width was the most reliable for distinguishing stretching or 

contraction of the mesh area. When we examine the changes in mesh area length, which 

demonstrated an increase for all mesh types, we can deduce that at least a proportion, if 

not all, of the increase/changes seen, were caused by growth. Therefore, based on our 

calculations, an expected stretch of 4% and up to 10% can be attributed to growth. 

Prolene® meshes were known to shrink but there was a 4% increase in the mesh area 

length. This would mean that growth was reduced by mesh shrinkage in the Prolene® 

group. Hence, it was likely that growth was above 4%. In comparison, the change in length 

was 10% for Surgisis® meshes, a mesh known to stretch. All of the changes here could be 

attributed to mesh stretching or a proportion contributed by growth. Hence, it can be 

concluded that growth was expected to be above 4% and under 10% after 56 days. 

Mesh shrinkage has plagued the performance of synthetic meshes since their 

introduction. We found that the area of the polypropylene shrank by 12% and 18% at day 

28 and day 56, respectively (Figure 4). It is believed that scar tissues build up around 

synthetic filaments. When each filaments that are close together (small pore diameter 

<600-800 μm), the scar tissue will bridge from one filament to another across the narrow 

pores, forming a large scar plate across the mesh (15, 58, 59). Macroporous light weight 

meshes are designed to overcome this problem (60-64) by speading the filaments further 

apart and thus, prevent the scar tissue from bridging the wider pores.  

 In a preperitoneal implantation (without defect) in dogs, heavy weight 

polypropylene (Marlex) meshes were found to shrink by 45% in mesh area size after 4 

weeks, associated with approximately 25% shortening in both vertical and horizontal 

D
ow

nl
oa

de
d 

by
 G

ua
ng

xi
 U

ni
ve

rs
ity

 f
or

 N
at

io
na

lit
ie

s 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

2/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 25 of 45 
 
 
 

25 

Ti
ss

ue
 E

ng
in

ee
rin

g 
Cr

os
s-

lin
ke

d 
ch

ol
ec

ys
t-d

er
iv

ed
 e

xt
ra

ce
llu

la
r m

at
rix

 fo
r a

bd
om

in
al

 w
al

l r
ep

ai
r (

DO
I: 

10
.1

08
9/

te
n.

TE
A.

20
17

.0
37

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

directions. The biggest changes were recorded between 4 to 8 weeks (65). Intraperitoneal 

long term placement of the Marlex mesh resulted in up to 15.8% shrinkage in a rabbit 

study at one year (66). In another rabbit study comparing onlay versus sublay placement of 

polypropylene meshes to repair 3 cm x 3 cm pararectal defects on each side, mesh area 

showed an average reduction of 25.9%, 28.7% and 29.0% at 30, 60, and 90 days, 

respectively. The onlay method (37.5% shrinkage at 90 days) showed a statistically higher 

shrinkage when compared with the sublay method (23.4% shrinkage) (67). Another study 

using a polypropylene mesh to repair a 7cm x 5cm defect in rabbits showed a 13.8% 

shrinkage after 90 days (68). However, in a subcutaneous implantation study in rats, a 

polypropylene mesh showed only 8.8% shrinkage at 56 days (69). A clinical study of 30 

patients using digital radiographic evaluation, the shrinkage of a heavy weight 

polypropylene (Prolene®) mesh were estimated to be 7.8% at 90 days post surgery (70). 

 The phenomena of mesh area stretching and its clinical relevance has been largely 

unexplored experimentally. In this study, stretching of the mesh area was found to affect 

Surgisis® meshes significantly, where there was a 5% increase in size at day 28, and this 

increased to 48% at day 56 (Figure 4). This can be explained by the degradation of the non-

crosslinked Surgisis® meshes between day 28 and day 56.  Non-cross-linked CEM was also 

found to degrade relatively quickly in a subcutaneous implantation rat model (41, 71). By 

cross-linking CEM, the degradation of the EDCxCEM mesh was manipulated to prevent 

untimely degradation (72), while allowing cellular infiltration and mesh remodelling to take 

place in a slower but predictable manner (41). This was evident by the increase in the Vv of 

host tissue native collagen in the EDCxCEM group between day 28 and day 56 (Figure 6g). 

 In this study, we elected to study the response from day 28 onwards as acute 

inflammatory responses would be resolved at this point. Hence, host tissue responses that 

were related to the presence of the meshes in the period after the acute 

inflammation/surgical trauma phase could be evaluated. Following implantation, the 

processes of inflammation, mesh degradation, cellular infiltration, collagen deposition and 

eventual tissue remodelling were observed. The extent of each process was determined by 

host factors and mesh characteristics – which has been previously reviewed by our group 

(73). 
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 Inflammation was found to be a common feature to all meshes – whether biologic 

or synthetic, degradable or non-degradable. It is known that inflammation plays an 

essential role in wound healing provided that the process is appropriate and temporary 

(74-79). Prolonged inflammation can lead to tissue damage and fibrosis. If the cause of 

inflammation is not removed, the inflammation will become chronic, causing further 

damage to tissues. Similarly, if a mesh is not degradable or releases damaging non-

biodegradable products, the inflammation will become chronic, promoting fibrosis around 

the mesh (encapsulation) and/ or a foreign body reaction (73, 77, 80-84). This will continue 

until the cause of the inflammation is removed. 

 It was generally accepted that cross-linked meshes were associated with foreign 

body giant cells (FBGC) which are not associated with non-cross-linked meshes (85-87). 

FBGCs were assumed in general, to be associated with detrimental tissue response and 

generally not observed with degradable biologic meshes and have been cited as a negative 

feature (77, 80, 86). However, two interesting observations were found in this study. 

Firstly, we found that FBGCs were consistently present in all mesh groups (Figure 5). In the 

non-degradable mesh groups (Prolene® and Peri-Guard®), FBGCs were commonly found on 

the tissue-mesh interface. In the degradable mesh groups (EDCxCEM and Surgisis®), 

however, FBGCs were often observed near the degrading mesh collagen, with small pieces 

of collagen observed within the giant cells. The degradation sites were observed on the 

mesh surface initially, but progressed to the thickness of the mesh by day 56 in both the 

Surgisis® and EDCxCEM groups. FBGCs were known to participate in mesh degradation, as a 

response to “frustrated phagocytosis” when macrophages were unable to easily 

phagocytose the mesh in the early phase of chronic inflammation. Our observation 

confirmed that they actively participate in collagen-based mesh degradation. Secondly, we 

found that FBGCs did not persist in the mesh areas where the implanted mesh had 

degraded. This would suggests that their presence in the mesh area were temporary and 

therefore, do not always interfere negatively with tissue remodelling. Hence, we 

hypothesize that FBGCs in the vicinity of degrading meshes is not a negative final 

consequence but rather a natural host tissue response to degradation in vivo. Further 

investigation is warranted to verify this.  
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The degraded areas showed a combination of loose immature collagen and mature 

denser collagen, with immature collagen being observed closer to the mesh (Figure 5). 

These observations indicated that remodelling continued after the mesh had been 

degraded. The lack of mesh area stretching/ shrinkage in the EDCxCEM group showed that 

the remodelled tissues was adequate to prevent hernia formation in the early period. 

Stretching of the Surgisis® mesh would suggest untimely degradation and inadequate 

remodelling of the mesh area. In contrast, shrinkage of the Prolene® mesh area signifies 

fibrosis due to continued foreign body reaction and disorganised remodelling of the 

surrounding tissue. 

  Neovascularisation is essential for the process of initial wound healing and mesh 

remodelling. Neovascularisation of biologic meshes is recognised as one of the crucial 

properties of biologic meshes to resists bacterial infection (88, 89). Facilitation of early 

blood vessel ingrowth into the three-dimensional structure of meshes allows an increased 

number of host inflammatory cells to infiltrate the mesh. An environment within the mesh 

that benefited from inflammatory pathways helps to reduce and eliminate mesh infection 

(90, 91). Although neovascularisation is important, the ability of meshes to tolerate the 

presence of infection is hypothesised to be influenced by other factors, which include 

biomaterial porosity, degradability and surface biochemical properties. When used in a 

potentially contaminated field, enhancing the meshes ability to resist increased level of 

enzymatic degradative activity is critical to the success of its clinical objective. One method 

to achieve this is by providing supplementary cross-linking to the collagen structure so that 

a higher concentration of degradative enzymes could be tolerated, and untimely 

degradation avoided. In our observation (Figure 6), we found that stereological parameters 

for blood vessels were related to the ability to promote tissue infiltration in the earlier 

phase (day 28), and the demand of degradation and inflammation in the later phase (day 

56). Completion of remodelling was associated with a decrease in the volume fraction of 

blood vessels and an increase in host collagen. This was observed as the remodelled area 

becomes less cellular and structurally more organised. Therefore, angiogenesis played an 

important role in supporting acute injury and inflammation, subsequent removal of the 

mesh and host degradation products, and finally contributed to the synthesis and 

maintenance of the remodelled host collagen matrix. 
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4. Conclusion: 

In this study, the cross-linked EDCxCEM mesh prototype was compared against three 

established clinical products. The overall macroscopic and stereological parameters 

evaluated and their changes over time are summarised in the schematic diagram (Figure 

7). The EDCxCEM mesh exhibited optimal biological tissue response and degradation rate 

in a rabbit in vivo model.  Cross-linked EDCxCEM mesh demonstrated potential as a 

promising biologic mesh for clinical application in abdominal wall repair.  
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Figure Legends   

 
Figure 1:  Schematic diagram showing a cross section of the implant area with the implant 

region, and fibrous tissue region, showing the central implant area (CA) and peripheral 

implant area. 
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Figure 2: Macroscopic appearance of the meshed meshes after abdominal wall repair 

surgery immediately (post-op), 28 days, and 56 days. 
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Figure 3: Seroma formation in vivo: (a) photograph of seroma fluid within the layers of the 

Surgisis® mesh (b) seroma visible on abdominal wall after Surgisis® mesh implantation, (c) 

numbers of seroma formed for the meshes. No seroma formation was observed for 

Prolene® and EDCxCEM meshes.  
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Figure 4: Intraabdominal adhesions in (a) Prolene®, (b) Peri-Guard®, and (c) EDCxCEM 

meshes. (d) Analysis of adhesion using the scoring method developed by the Surgical 

Membrane Study Group (1992). No statistical significance among groups (ANOVA, p>0.05 

between all pairs) was observed.  

  

D
ow

nl
oa

de
d 

by
 G

ua
ng

xi
 U

ni
ve

rs
ity

 f
or

 N
at

io
na

lit
ie

s 
fr

om
 o

nl
in

e.
lie

be
rt

pu
b.

co
m

 a
t 0

2/
17

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Page 42 of 45 
 
 
 

42 

Ti
ss

ue
 E

ng
in

ee
rin

g 
Cr

os
s-

lin
ke

d 
ch

ol
ec

ys
t-d

er
iv

ed
 e

xt
ra

ce
llu

la
r m

at
rix

 fo
r a

bd
om

in
al

 w
al

l r
ep

ai
r (

DO
I: 

10
.1

08
9/

te
n.

TE
A.

20
17

.0
37

9)
 

Th
is 

pa
pe

r h
as

 b
ee

n 
pe

er
-re

vi
ew

ed
 a

nd
 a

cc
ep

te
d 

fo
r p

ub
lic

at
io

n,
 b

ut
 h

as
 y

et
 to

 u
nd

er
go

 co
py

ed
iti

ng
 a

nd
 p

ro
of

 co
rr

ec
tio

n.
 T

he
 fi

na
l p

ub
lis

he
d 

ve
rs

io
n 

m
ay

 d
iff

er
 fr

om
 th

is 
pr

oo
f. 

 
Figure 5: Percentage change in (a) width, (b) length, and (c) mesh area following 

implantation at 28 and 56 days. 
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Figure 6: Masson’s Trichrome stained histology sections showing mesh area and fibrous 

tissue area, and foreign body giant cells in the tested groups. (Bar 50µm). 
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Figure 7: Quantification of stereological analysis in volume fraction of (a,b) nuclei, (c,d) 

fibroblasts, (e) mesh, (f,g) collagen; (h,i) surface/ (j,k) length density of blood vessel, and 

(l,m) radius of diffusion; X-axis legend (left to right) on (a-m); central implant area 28d; 

central implant area 56d; peripheral implant area 28d; peripheral area 56d.   
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Figure 8: Summary of macroscopic appearance (top) and stereological parameters 

(bottom) of four meshes investigated in this study. 
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