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Abstract 
 
The potential for nanoengineering hybrid PVA hydrogel and hydrogel microsphere optical coatings is 
demonstrated with fine-tuning by the addition of (i) PNIPAm domains, (ii) water-hunting humectant CaCl2, and 
(ii) polystyrene or SiO2 colloidal crystals. The design and application onto substrates of the hydrogel scaffold is 
described. The addition of a temperature-triggered component as well as humectant and NIR reflectors are 
reported. The hybrid hydrogels appeared effective in sustainable adsorption cooling technology (ACT) over 
sustained periods. It is shown that the thermoresponsive (PNIPAm) domains act as an extra reserve, sweating 
water above 305K, prolonging the controlled release of water. It is also reported that the addition of humectant 
is crucial for the natural re-hydration of the hydrogels. For the moment PNIPAm microspheres have only short-
lived ACT properties. Finally, coating with microspheres (MSs) in hydrogels produces a visible-NIR reflector 
effect that may allow optical feedback on ACT.  
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1. Introduction 
 
Space heating/cooling accounts for 30% of energy consumption and one way to make this greener is through adsorption 
cooling technology (ACT) which has a lineage that stretches back to Michael Faraday [1]. Thermally driven adsorption 
chillers enable low grade heat to drive refrigeration cycles. These may use data centre heat, process heat [2] or 
solar/photovoltaic [3] sources and their operation is often intermittent, but they can produce significant energy savings. 
Many ACTs are based on exothermic adsorption-endothermic desorption with water on silica [4], templated SiO2 [5], metal 
aluminophosphates [6], zeolites [7], MOFs or carbon [8]. Sometimes the adsorbents have hygroscopic salts (e.g. CaCl2 or 
LiBr) [9] added. The extent and rate of water adsorption/desorption can be followed in real-time cycling with intervals of 
300s [4] at a selected % relative humidity (RH) and temperature (T). A commercial SiO2/water 15kW cooling unit lowers 
the temperature of inlet water from 328K to 305K in 10 stages [10]. The specific cooling power (SCP) is a measure of 
efficiency. The authors were surprised that hydrogels (with their high water content and ability to host nanoparticles 
(NPs)) had not been evaluated in this context; they were interested here to know if  

(i) thermoresponsive [11,12] polymers (poly(N-isopropylacrylamide) or PNIPAm) with low critical solution 
temperatures (LCST) (305K) [13], below which they are hydrophilic, but above which they are hydrophobic, could 
cause the hydrogels to contract/expel water [14] (i.e. mimicking animal sweating) [15] thereby increasing ACT 
performance or 

(ii) photonic crystals, that may be present on the skin of chameleons [16] renowned for their camouflage 
could modify hydrogel ACT properties of IR feedback on performance (IR reflectors [17]).  
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Our objective here was to produce PVA-based hydrogel coatings. PVA was chosen because it is water 
soluble/deliverable, thermally stable to 493-513K [18], non-toxic even on human ingestion [19] and non-skin-sensitizing.  
 
Specifically, here we wished to explore the ACT properties of hydrogel coatings produced from aqueous 
solutions/suspensions with varying levels of glutaraldehyde (GLA)-chemical and thermal-physical crosslinking that 
contained  

- water-hunting humectant CaCl2 
[8,9], 

- PNIPAm [20] sweating domains, and 
- biomimetic photonic colloidal crystal structures [21,22] . 

In a feedback sense we wanted to probe these in the NIR (0.75-1.4µm) and LWIR (3-15µm) during their sustainable 
water adsorption/desorption cycling over more than 24h as %RH and T varied (where exothermic sorption is inversely 
proportional to temperature) [23]. It was hoped that these modified hydrogels could be applied to polymer and metal 
surfaces by spraying or painting over mm2 or m2 areas. Preliminary results are now reported for the first time. 
 

2. Experimental 
 

2.1 Materials 
All chemicals were purchased from Sigma Aldrich. Deionised water (18.2Mohm.cm) was used exclusively throughout. 
PVA hydrogels (physically- and chemically-crosslinked) or colloid-modified hydrogel samples had varying levels of 
cross-linking. Some hydrogels were prepared with NIPAm dispersed in the PVA aqueous solution, to which was added a 
crosslinker (N,N’-methylene-bis-acrylamide) or not, a radical initiator (ammonium peroxodisulfate) and an accelerator 
(N,N,N’,N’-tetramethylethylene diamine) [15]. Some hydrogels contained polystyrene (PSt) or SiO2 colloidal particles or 
microspheres (MS). SiO2 and PSt colloidal particles were prepared as described [24,25] and used as photonic crystal models 
as previously [25]. These were characterized by optical microscopy and SEM (Zeiss Supra 35VP)-EDX. DSC 
measurements were performed on a Q2000 from TA instruments: a few mg of a dried hydrogel coating was placed into 
the DSC cell with a 100mm3 H2O reservoir under a 5cm3/min N2 steady flow. The heat flow was recorded over time. 
Hydrogel coating IR signatures were recorded using cameras listed in Table 1.  Dispersed 1-4μm diameter PVA hydrogel 
microspheres were also produced [26] as follows: (i) 40cm3 8%PVA(aq) solution was heated to 343K and then 2g Span 80 
was added, followed by 80cm3 octane to form a water-in-oil emulsion, (ii) PVA microspheres were chemically cross-
linked by first adding 0.2cm3 100mM HCl(aq) followed by 8cm3 25%(aq) GLA and (iii) the whole was left stirring at 343K 
for 2h. PNIPAm hydrogel microspheres have also been prepared by co-polymerizing N-isopropylacrylamide (NIPAm) 
and N,N,N-methylene-bis-acrylamide (MBAM) in an aqueous reflux [27]. In general, NIPAm (e.g. 2.5g) was dissolved in 
100-150cm3 water at 343K along with 10% MBAM (by mass to NIPAm). The polymerisation was initiated by the 
addition of 50mg of potassium persulfate (K2S2O8) and left under reflux for 2-15h in a N2 atmosphere. The PVA 
hydrogel microspheres self-assembled into close-packed structures. Typical hydrogel dimensions are that of PSt substrate 
(88mm disc of 3.0-3.5mm thickness) and borosilicate glass microscope slides (75mm x 25mm, τ=1mm), after cleaning 
with ethanol. 
 

2.2 Description of experimental set-up (shown schematically in Figure 1) 
The samples were held at either 318-323K or 277K to simulate daytime release of H2O and night-time recovery of water 
and cycled between these at intervals. The samples were placed inside a dark matt box to avoid stray IR 
(NIR/SWIR/LWIR noise); water content changes were measured gravimetrically.  Table 1 summarizes systems used for 
IR analysis. The samples were imaged in real time with this instrumentation. The uncoated PSt substrate surface showed 
no ACT effect. The hydrogel coatings on this substrate that were tested here are shown in Table 2. 
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Table 1. Specifications for IR imagers 

Manufacturer Model Infrared Spectrum Acronym 
Olympus Modified Visible to ~650-700 nm Vis-NIR 
Pyser-SGI limited PNP-HG Near infrared 350-900 nm NIR 
XenICs XS-514 Shortwave infrared 900-1700 nm SWIR 
Cedip Emerald E660 Midwave infrared 3600-5000 nm MWIR 
FLIR Thermacam PM695 Longwave infrared 7500-13000 nm LWIR 

 
 

3. Results 
 

3.1 Silica (SiO2), polystyrene (PSt) colloidal particle/microsphere (MS) synthesis, characterization and  
 assembly into colloidal crystals 

SiO2 microspheres of 300nm diameters formed colloidal crystals (see Figure 2A,B) that gave long-UV to visible response 
at different wavelengths, depending on the angle of viewing.    
 
Larger polystyrene (PSt) microspheres (average 900nm in diameter) were characterized by optical and electron 
microscopy after they had been fabricated into colloidal crystals by centrifuging, dip-coating and assembly at 2D air-
liquid interfaces (see Figure 3A,B). In the 3D colloidal crystals the latex particles order locally in an expected hexagonal 
compact way, but with some domains exhibiting cubic packing and short range order. Factors that influence the degree of 
ordering included dispersant, microsphere concentration and substrate properties. Although not completely close-packed 
and containing defects, these PSt colloidal crystals showed significant reflectance 550-750nm (see Figure 3C) in the 
visible-NIR. Smaller 400nm PSt microspheres (but not those of 900nm or SiO2) showed significant absorption at 610nm 
(see Figure 4A). There was an angular component of their response in that transmitted light, incoming at 90° and 45° 
angles, produced a photonic diffraction response that was centered around the NIR region (see Figure 4B). 
 
Figure 5 shows that close-packed µm-sized hierarchical structures and corrugations seen with MSs of varying refractive 
index could be included within our PVA hydrogel coatings, introducing interesting optical or IR properties. 
 

3.2 PVA and PNIPAm hydrogel microsphere synthesis, characterization and coating 
PVA microspheres were also prepared from a Span 80-stabilised water-in-octane microemulsion and PNIPAm ones  
from polymerization under reflux in an N2 atmosphere. These were successfully applied to surfaces, modifying their 
LWIR imaging. It is assumed that on the substrate surface they form hemi-microspheres (HMSs), with a concentration 
that can be controlled. Self-assembled PVA hydrogel microspheres (1- 4μm diameter) were characterized by optical and  
 

 
Figure 1. Schematic of set up for day-night modes 
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Figure 2. SEM (A) and optical appearance (B) of 300nm SiO2 microspheres self-assembled on glass. 
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C 
Figure 3. SEM (A,B) and reflectance (C) of polystyrene (PSt) microspheres (MSs) 
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Figure 4. UV-vis-NIR reflectance (A) and absorbance (B) responses of 3D arranged PSt and SiO2 microspheres produced by spin-
coating at 2500rpm at different angles of incidence. 
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Figure 5. SEM micrographs of un-modified PVA hydrogel (A) and containing ordered PSt MS (B) using freeze-thawing techniques 
to orient the particles locally. 

 

A B C
Figure 6. Optical (A) and SEM (B) micrographs of PVA hydrogel microspheres. Optical micrograph of PNIPAm microspheres 
(C) 

 
 
Table 2. Samples tested 

 
 
electron microscopy (see Figure 6A,B). The authors intend to ascertain the extent of any crosslinking by 1H and 13C-
NMR. PNIPAm microspheres were investigated for their ACT properties.  

Sample Description Measurement Description (D=day; N=night) Sensors 

1 PVA hydrogel Over 12 days with natural hot and cold (D + N) 
cycles and 2 re-hydration at day 4 and day 8 

LWIR 

2 PVA/PNIPAm hydrogel Over 3 days with natural hot and cold (D +N) cycles. 
Re-hydration performed post cycles. 
3 cycles of hot and cold (artificial D + N) 

NIR, SWIR, LWIR 

3 PVA/PNIPAm/CaCl2 
humectant 

cycles, isotherms, multi angle 
DSC, and SEM 

LWIR, SWIR 
(and DSC, SEM) 

4 Sprayed PNIPAm 
microspheres 

3 cycles of hot and cold (artificial D + N) NIR, SWIR, LWIR 
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3.3 Water loss and recovery from nanoengineered hybrid hydrogel coatings and ACT 
 

Experiments were now aimed to study the daytime water loss and night time H2O recovery of the above nanoengineered 
hybrid hydrogel coatings in real-time in a simulation of shortened cycles of night and day, while monitoring in situ IR 
outputs (NIR, SWIR and LWIR), in order to assess ACT potential.  
 
Real-time LWIR analysis of PVA hydrogel coatings alone (sample 1) revealed that they dried over 3 days (see Figure 7). 
Nevertheless they acted as a scaffold reservoir that had an ability to slowly release water over time with ACT benefits. 
The temperature difference (ΔT) in night and day is in the order of 4K (green curve), but at point C this capacity is 
largely exhausted. However, at points D and E the hydrogel coating was effectively and rapidly rehydrated. It appears 
then that PVA hydrogel coatings could well represent a sustainable ACT opportunity on a variety of substrates. The next 
step was now to determine whether additional water reserve capacity and easier rehydration could be improved through 
hydrogel modification. 
 
In sample 2, the addition of 7.5% of a thermo-responsive polymer (PNIPAm) to the crosslinked PVA hydrogel was 
explored. This had the effect of allowing a better, more thorough re-hydration (83.7%; see Figure 8) and sustaining the 
period of effective ACT use of the hydrogel (i.e. it now operated over >3 days of natural day and night cycles, with no 
rehydration step). The reader needs to note that the local temperatures (from the MET office; plotted in orange) decreased 
gradually from 3000 minutes, that is related to the decrease in outdoor temperature (i.e. the coating was not air-
conditioned). However, the ∆T between ambient and the hydrogel is lower than with PVA alone, despite more water 
being retained and released over longer periods. It was possible to predict the water loss (red curve) from previous water 
loss trends, by integration of the temperature-dependent rate r(T) over time: ∫r(T).dt. Hence, PNIPAM addition is 
beneficial in an ACT sense.  
 
In sample 3, the addition of a humectant (i.e. CaCl2) was explored to determine whether it enhanced the hydrogel intake 
and release of water. When subjected %RH>32%, this humectant absorbs water, regardless of the external temperature. 
This process was studied with hydrogel using DSC in an isothermal manner (at 293K) where the thermo-responsive 
polymer component is hydrophilic. Figure 9 shows heat flow plots of the background (furnace cell) and of the hydrogel. 
No clear endothermic or exothermic 1st or 2nd order transition peaks are observed during the hydration phase. However, 
the heat flow (dH/dt) was not constant and can be described as dH/dt = Cp×dT/dt + f(T,t), were Cp is the sample’s heat 
capacity and the kinetic heat flow term is f(T,t). As we are performing isotherms, dT/dt = 0. Hence the heat flow is only 
the kinetic heat flow term f(T,t) and can be written dH/dt = A(T)×t + B(T), where A and B only depend on T, which is 
fixed here. Because T is fixed, only the heat capacity of the sample is varying in a linear manner. This is due to the 
change in the sample’s Cp from dry to wet to saturated. The saturation is indicated by the sudden change of slope at t 
=120 min, after which the heat flow is constant. The global mass change between dry and saturated indicates that the 
hydrogel coating doubles its weight by absorbing its own weight in water, creating a gram for gram water reserve. 
 
This sample (3; consisting of scaffold and water reserve PVA hydrogel, temperature-triggered extra water reserve 
PNIPAm, and humectant CaCl2 for water recovery) has been subjected to various substrates temperatures and the 
observed coating temperature recorded and plotted in Figure 10. 
 
At low temperatures (Figure 10A), this modified hydrogel coating follows the substrate’s temperature as there is no 
significant difference between coating and substrate. This is important; this is when the coating is recharging itself with 
moisture present naturally in air (e.g. early morning dew for outdoor applications). It is only when it is subjected to 
higher temperatures (isotherms Figure 10B or cycles Figure 10C) that the thermoresponsive component releases water 
controllably, with the effect of lowering the coating temperature. Moreover, the water present in the hydrogel is 
evaporated faster at higher temperatures. 
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Figure 7. ACT data (top) and LWIR images (bottom) for PVA hydrogel (sample 1) over 12 days as it was subjected to natural 
day and night temperature cycles with 2 re-hydrations at day 4 and day 8 

 
 

 
Figure 8. ACT data for PNIPAm-modified PVA hydrogel (sample 2) over more than 3 days with natural hot/cold cycles; re-
hydration images and data are after 3.5 days. 
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Figure 9. DSC plots of the water intake of sample 3 from dry (t=0min) to saturated (t>300min) 

Figure 10. Plots of the response of sample 3 to various substrate temperatures (A to C) and all the data combined in (D) 
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All data relating the coating temperature to that of the background are plotted together in Figure 10D. It is clear that for 

 
 
Figure 11. ACT data for a PNIPAm hydrogel microsphere (MS)-based coating (Sample 4) (A) and SWIR images (B) 

almost all temperatures between 290 and 330 K, the coating temperature was well below those of the substrate. This is 
only possible, independent of the substrate temperature, when the coating has some water in reserve. If not, the coating 
will reach the substrate’s temperature (as observed at background temperature of 330K in Figure 10D, where, over time, 
the coating reached the dashed line). At this point, as seen in Figure 9, the coating will recharge fully in 2 h. 
 

3.3 Water loss and recovery from nanoengineered PNIPAm hydrogel microspheres in ACT simulated with 
artificial hot day and cool night cycles 

 
Following their study of cycles of natural day and night, the authors addressed the release and recovery of water under 
hotter and cooler conditions with real-time visible-LWIR analysis. Here, a thinner coating of hydrogel MSs (sample 4) 
that had been freshly coated from water (containing purely thermo-responsive PNIPAm microspheres) has been 
investigated (Figure 11). Here, the wt% hydrogel on the substrate was only 25% of samples 1 and 2. Unfortunately, ACT 
effects (which were significant) were largely lost in the first cycle. 
 
Interestingly, when combined with the hydrogel scaffold, and subjected to the same hot and cold cycles, the coating 
(sample 2; Figure 12) behaves as intended: a constant, positive temperature difference between substrate (green curve) 
and coating (red curve) during hot (305K) cycles, accompanied with a predictable water loss (blue curve), followed by 
matching temperatures during cooler cycles (285K), with no water loss. The authors would like to point that water intake 
happens mainly when the coating approaches water depletion. 
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Figure 12. ACT data for a PVA/PNIPAm hydrogel coating (Sample 2)  

 
 

4. Discussion and conclusions 
 
The ability of an adsorbent to desorb and re-sorb water controllably is a key function in adsorption cooling technology 
(ACT). A series of daytime and night time phase conditions have been performed on selected hydrogels that consisted of 
one or several of the following: PVA hydrogel, thermo-responsive polymer and humectant.  
 
All coatings were subjected to temperature and UV, visible and IR light conditions and their responses were measured 
over a wide range of the IR spectrum (from near to long wavelength).  
 
From the results presented, it is judged that these nanoengineered coatings were green, biocompatible and hydrophilic 
polymer networks (hydrogels). It has been shown that the amount of water can be designed carefully to match location-
dependent conditions (T and %RH). The coating thickness can be controlled on a variety of substrates. These operate 
even when they appear dry at their surfaces. Indeed, no disastrous irreversible network collapse was seen at extremes of t, 
T or %RH. Interestingly, when the temperature dropped below 273 K, there was a reinforcement of hydrogel crosslinking 
(that will be quantified in forthcoming 1H NMR) confining the same amount of H2O into smaller hydrogel cells [28]. 
Adding PNIPAm or CaCl2 was beneficial. The added components allowed water to be squeezed out further from the 
coating at physiological temperature, reversibly; this then was the real purpose of adding the thermo-responsive polymer. 
The humectant addition allowed water recharge at any temperature, provided a minimum of 32%RH was in the 
atmosphere, over a 2h period, adsorbing a gram of water per gram of dry coating.  
 
Coatings of close-packed SiO2 or polystyrene spheres of uniform size have been shown to be self-assembled on a 
substrate to form 2D rafts or 3D clusters; these are ordered close-packed colloidal crystals. Factors that influence the 
degree of ordering appear to include dispersant, MS concentration and substrate properties. Using MS materials of 
varying refractive index, will in future lead to microstructures and corrugations that will give hydrogel coatings IR 
reflective/photonic properties. Scattering or reflectance in the IR at chosen wavelengths have been seen. These could be 
introduced into the hydrogels, affecting visible-NIR reflectivity and IR feedback. 
 
PNIPAm microspheres did not show sustainable ACT properties. In the future an alternative route to photonic responses 
may be shown to be to use stable suspensions of PVA hydrogel microspheres (prepared from Span 80-stabilised water-in-
octane microemulsions) that could be applied to and self-assemble on surfaces, where they would rapidly dry as fast-
assembling 2D photonics crystals that released/took up water visible-NIR-SWIR-LWIR characteristics. At the time of 
this preliminary report, these do not have as good a period of ACT operation as complete hydrogel coatings. 
 
Hydrogel coatings are used in reverse osmosis desalination [29], stimuli-responsive nano-antennae [30] and medicine [31] 
and can be generated from sprayed colloidal microspheres [32] to give interesting optical properties, but the sprayable 
designer IR-active hydrogel coatings described here remain novel. We expect to hear more of hydrogel-based ACT 
technology that has an in-built optical feedback to define its state of operation. 
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