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Abstract 
The power usage of the communication technology industry and the consistent 

energy-related pollution are becoming major societal and economic concerns. These 
concern stimulated academia and industry to an intense activity in the new research area 
of green cellular networks. Bandwidth Efficiency (BE) is one of the most important metrics 
to select candidate technologies for next-generation wireless communications systems. 
Nevertheless, the important goal is to design new innovative network architecture and 
technologies needed to encounter the explosive development in cellular data demand 
without increasing the power consumption. As a result, Energy Efficiently (EE) has become 
another significant metric for evaluating the performance of wireless communications 
systems. MIMO technology has drawn lots of attention in wireless communication, as it 
gives substantial increases in link range and throughput without an additional increase in 
bandwidth or transmits power. Multi-user MIMO (MU-MIMO) regarded when evolved 
Base Station equipped with multiple antennas communicates with several User Terminal 
(UEs) at the same time. MU-MIMO is capable of improving either the reliability or the BE 
by improving either the multiplexing gains or diversity gains. A proposed new idea in MU-
MIMO refers to the system that uses hundreds of antennas to serve dozens of UEs 
simultaneously. This so-called, Large Scale-MIMO (LS MIMO) regarded as a candidate 
technique for future wireless communication systems.  

An analysis is conducted to investigate the performance of the proposed uplink and 
downlink of LS MIMO systems with different linear processing techniques at the base 
station. The most common precoding and receive combining are considered: minimum 
mean squared error (MMSE), maximum ratio transmission/combining (MRT/MRC), and 
zero-forcing (ZF)processing. The fundamental problems answered on how to select the 
number of (BS) antennas 𝑀, number of active (UEs) 𝐾, and the transmit power to cover a 
given area with maximal EE.  The EE is defined as the number of bits transferred per Joule 
of energy. 

A new power consumption model is proposed to emphasise that the real power 
scales faster with 𝑀 and 𝐾 than scaling linearly. The new power consumption model is 
utilised for deriving closed-form EE maximising values of the number of BS antennas, 
number of active UEs and transmit power under the assumption that ZF processing is 
deployed in the uplink and downlink transmissions for analytic convenience. This analysis 
is then extended to the imperfect CSI case and to symmetric multi-cell scenarios. These 
expressions provide valuable design understandings on the interaction between systems 
parameters, propagation environment, and different components of the power 
consumption model. Analytical results are assumed only for ZF with perfect channel state 
information (CSI) to compute closed-form expression for the optimal number of UEs, 
number of BS antennas, and transmit power. Numerical results are provided (a) for all the 
investigated schemes with perfect CSI and in a single-cell scenario; (b) for ZF with 
imperfect CSI, and in a multi-cell scenario.  

The simulation results show that (a) an LS MIMO with 100 – 200 BS antennas are the 
correct number of antennas for energy efficiency maximisation; (b) these number of BS 
antennas should serve number of active UEs of the same size; (c) since the circuit power 
increases the transmit power should increase with number of BS antennas; (d) the 
radiated power antenna is in the range of 10-100 mW and decreases with number of BS 
antennas; (e) ZF processing provides the highest EE in all the scenarios due to active 
interference-suppression at affordable complexity. Therefore, these are highly relevant 
results that prove LS MIMO is the technique to achieve high EE in future cellular networks.  
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Chapter 1 

 

Thesis Introduction  
 

 
1.1 Introduction 

 

 This chapter concisely presents the background of research gaps 

investigated, the motivation of the study, and aim and objectives of the studies. 

Additionally, the main contributions and methodology to conduct the research are 

explained respectively in this chapter. Finally, this chapter outlines and describes 

the thesis structure to provide access to readers with the current state of the art. 

1.2 Background 

 With the development of smart terminals and their application, the need 

for multimedia services rapidly increases recently [1]. The increment of the 

capacity of wireless networks guaranteed the Quality of Service (QoS) 

requirements of mobile applications [2]. In the meantime, telecommunication 

manufacturers and operators have also predicted that a load of wireless 

communication networks is growing exponentially [2]. Hence, it is necessary to 

introduce new technologies to meet the demands of explosive traffic for next-

generation wireless communications networks.  

The most vital metrics to choose candidate technologies for next-

generation wireless communication systems is usually Bandwidth Efficiency (BE). 

In the meantime, with extreme power consumption in wireless communications 

networks, both carbon emission and operator expenses surge yearly [3], [4].  
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Thus, Energy Efficiency (EE) has become another important metric for 

evaluating the performances of wireless communications systems with some 

given BE limitations [5] - [7]. 

Multiple-Input and Multiple-Output (MIMO) technology have attracted 

much attention in wireless communication, as it offers substantial rises in data 

throughput and link range without an additional increase in bandwidth or 

transmits power. A MIMO approach and the corresponding patent proposed and 

issued in 1993 and 1994, where numerous transmit antennas jointly located at one 

transmitter with the objective of improving possible link throughput [8]. Then, the 

initial laboratory prototype of spatial multiplexing was deployed to demonstrate 

the practical feasibility of MIMO technology [9]. Currently, MIMO is recognised as 

one of the leading technologies in the Fourth Generation (4G) wireless 

communications systems. When an advanced Node B (eNB) equipped with several 

antennas communicates with several User Terminals (UEs) over the same time-

frequency resources, it is known Multi-User MIMO (MU-MIMO). MU-MIMO is 

capable of improving either the BE or the reliability by improving either the 

multiplexing gains or diversity gains [10]. 

 To scale up these achievements, the Large-Scale MIMO (LS MIMO) 

concept, which is likewise known as massive MIMO scheme, was proposed by 

Marzetta in [11]. Both theoretical and measurement results indicate that an LS 

MIMO is capable of significantly improving the BE, which simultaneously reducing 

the transmit power [12], [13]. Therefore, as a candidate technique for next-

generation wireless communications systems, an LS MIMO is considered for 

improving both their BE and EE.  

As the down tilt of an Antennas Array (AA) is fixed, traditional MIMO 

technology can merely adjust the signal transmission in a horizontal dimension. In 

order to exploit the vertical dimension of signal propagation, AAs such as 

rectangular, spherical, and cylindrical, were studied by the 3rd Generation 

Partnership Project (3GPP) [14] – [16]. MIMO with these arrays can adjust both 
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azimuth and elevation angles, and propagate signals in Three-Dimensional (3D) 

space, thus termed 3D MIMO. To further increase capacity, 3D MIMO deploys 

more antennas to achieve larger multiplexing gains. Meanwhile, LS MIMO adopts 

rectangular, spherical and cylindrical AAs in practical systems by considering the 

space of AAs. Thus, 3D MIMO with large scale antennas can be as a practical 

deployment means of LS-MIMO. However, possibilities of this topic not discussed 

in this thesis, as it is focussed on LS MIMO.  

LS MIMO can improve BE since it can achieve significant multiplexing gain 

when serving tens of UEs simultaneously [11], [17]. The substantial increase in EE 

is due to the use of more antennas where it helps to focus energy to located UEs 

with a highly narrow beam on small regions [18]. Due to the excessive Degrees of 

Freedom (DoF), an LS MIMO can enhance transmission reliability [19]. Alleviation 

of Inter-User Interference (IUI) is because of the extremely narrow beam [12].  

Similarly, approximating the performance achieved by optimal methods, such as 

Maximum-Likelihood (ML) multiuser detection and Dirty Paper Coding (DPC) is 

capable of simple low-complexity signal processing algorithms [13].  

 

 
1.3 Research Motivations 

 

Mobile broadband for cellular networks is continuously being evolved to 

meet the future demands for higher data rates, improved coverage and capacity. 

The enormous success of Smart Phones boosts mobile broadband date 

requirements for 4G or Long-Term Evolution (LTE) is commercial for five years back 

and is being evolved by 3GPP. LTE brings radio features such as advanced uplink 

and downlink multi-antenna solutions (MIMO) and larger bandwidths from 

aggregating multiple carriers. These and other features will bring peak rates of 1 

GB/s but also improves other characteristics such as coverage, delay and flexibility. 

One candidate feature for the evolution of LTE and/or a 5G radio standard is LS 

MIMO. Multiple-input-multiple-output (MIMO) techniques provide the possibility 
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of serving multiple users simultaneously with the same resources by proper 

precoding of the spatially separated streams.  

In LS MIMO, the base station is equipped with hundreds of antennas, new 

possibilities to do beamforming and spatial multiplexing arises, extending 

coverage and capacity in the system serving more users with higher bitrates. With 

this new functionality, new cellular network deployments become possible to 

reduce the networks’ energy consumption and lower the deployment costs.  

This research is deployed in LS MIMO Systems environments to find the 

optimal number of base station antennas, and active user to accommodate the 

ever-increasing number of users who require ubiquitous access to high volumes of 

wireless data without increasing the power consumption. While throughput 

optimisation is a well-studied area (in [20] and references therein), the focus here 

is limited to energy-efficient system design, which has been a key consideration in 

system-level analyses of LS MIMO [21]–[25]. Energy Efficiency is often 

characterised by the ratio of achievable data rate (bit/s) and the total power 

consumption (Watt) [26]. 

An accurate modelling of the total power consumption is the fundamental 

importance to obtain a reliable guideline for EE maximisation of some (BS) 

antennas 𝑀 and na umber of active (UEs) 𝐾 for LS MIMO systems [27]. A common 

assumption in related literature that the total power consumption is computed as 

the sums of the radiated transmit power and a constant quantity accounting for 

the circuit power consumption [28]. This model might be very misleading although 

widely used and can lead to an unbounded EE if utilised to design systems wherein 

𝑀 can be very large because the user rates grow unboundedly as   𝑀 → ∞ [29].  

Attaining infinite EE is evidently impossible as the model does not consider 

the power consumed by digital signal processing and analogue circuits (for radio-

frequency (RF) and baseband processing) grows with 𝑀 and 𝐾. Meaning to say, 

the circuit power consumption contributions can be taken as a constant only in 

multi-user MIMO systems where 𝑀 and 𝐾 take relatively small values. Instead, the 

circuit power consumption variability plays a key role in the so-called LS MIMO (or 
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massive MIMO) systems in which  𝑀,𝐾 ≫ 1 and all the BS antennas are processed 

coherently [13],[17],[18]. The original massive MIMO definition in [11] also 

assumed  
𝑀

𝐾
 ≫ 1, while with the more general definition from [17],[18],  

𝑀

𝐾
  can be 

a small constant. 

 
 

1.4 Aim and Objectives 
 

The main aim of the research presented in this thesis is to cooperatively 

design the uplink and downlink of LS MIMO system from scratch to provide vital 

solution on how the number of (BS) antennas 𝑀, number of active (UEs) 𝐾, and 

the transmit power chosen to uniformly cover a given area with maximal Energy 

efficiency (EE) for LS MIMO systems to uniformly cover a given area with maximal 

EE.  

The EE is defined as the number of bits transferred per Joule of energy and 

it is affected by many factors a such as network architecture, transmission 

protocol, bandwidth efficiency, radiated transmit power, and circuit power 

consumption [27], [28], [36]-[38].  

The research objectives which are briefly explained and summarised as 

below: 

1. To compare the performance of the proposed uplink and downlink of 

LS MIMO systems for ZF, MRT/MRC, and MMSE processing schemes at 

BS. 

2. To implement a new refined model of the total power consumption for 

LS MIMO system. 

3. To derive closed-form EE-maximal values of the number of (BS) 

antennas 𝑀, na umber of active (UEs) 𝐾, and the transmit power 𝜌 using 

ZF processing and new refined model of the total power consumption 

in single-cell and multi-cell scenario with perfect and imperfect CSI. 
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4. To evaluate analytic results for ZF processing scheme with perfect CSI. 

5. To implement standard alternating optimisation algorithm to maximise 

the number of (BS) antennas 𝑀, a number of active (UEs) 𝐾, and the 

transmit power 𝜌 separately when the other two are fixed.   

6. To measure numerical results for ZF, MRT/MRC, and MMSE processing 

schemes with perfect CSI in a single-cell scenario. 

7. To measure numerical results for ZF processing schemes with imperfect 

CSI, in a multi-cell scenario. 

 
 

1.4 Main Contributions 
 

This thesis has contributions to knowledge in three research issues for LS 

MIMO system, which are the new refined circuit power consumption model, 

energy efficiency maximisation with ZF processing scheme, and deployment of  

imperfect CSI case and symmetric multi-cell scenario. Those main contributions of 

this thesis are summarised and elaborated more detail as follows: 

 

1. The circuit power consumption is the sum of the power consumed by different 

analogue components and digital signal processing. The new refined model of 

the total power explicitly described how the total power consumption 

depends non-linearly on some number of UEs, the number of BS antennas, and 

transmit power. 

2. The closed-form EE expression under the assumption of ZF processing scheme 

is employed in the uplink and downlink for the optimal number of UEs, the 

number of BS antennas, and transmit power for a single-cell scenario with 

perfect CSI. Analytic convenience and numerical results likewise,  driven this 

option by which are close to optimal. 
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3. Analysis of imperfect CSI case and symmetric multi-cell scenarios deployment 

are extended using the same method above.  A New possible rate derived from 

symmetric multi-cell scenarios with ZF processing. 

 
 

1.5 Research Methodology 
 

In the first stage of the research, a literature review of past and current 

works on the area of MIMO, MU-MIMO, and LS MIMO are extensively conducted 

to broaden the perspective on such areas of study. Furthermore, state of the art 

related to those addressed issues is intensely researched and intensively explored 

during this period. 

Following the literature review phase, implementation starts with 

formulating the EE maximisation problem.  Proposal of new refined circuit power 

consumption model executed. All this then used to compute closed-form 

expression under the assumption of ZF processing scheme for the optimal number 

of UEs, the number of BS antennas, and transmit power. 

The testing stage starts with simulation. All the simulations were 

performed based on using analytical Zero Forcing processing scheme and Monte 

Carlo simulation techniques in MATLAB. Monte Carlo simulation can handle very 

complex and realistic scenarios. The analytical ZF processing scheme is executed 

for ZF with perfect CSI and imperfect CSI in single-cell and multi-cell. Nevertheless, 

the Monte Carlo simulation is executed for all the investigated schemes with 

perfect CSI in the single-cell scenario, and for ZF with imperfect CSI, and in multi-

cell scenarios. 

In the validation stage, numerical results from ZF processing analytical 

technique and simulation technique are used to validate the optimal analytical 

expression and to make a comparison amongst different processing schemes. 

Finally, the obtained results are deeply analysed and discussed by giving referred 

argumentations. 
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1.6 Thesis Structure 

 

 There are six chapters, and the chapters are inter-related to each other in 

this thesis. Thus, to comprehend the contributions presented in this thesis, readers 

are suggested to read all the chapter. 

Chapter 1 Introduction: This chapter starts with background and then followed by 

motivations, research objective, main contribution, methodology, and this thesis 

outline. 

Chapter 2 LS MIMO-An Overview: This chapter presents an overview of the LS 

MIMO concept. 

Chapter 3 Literature Review- Energy Efficiency Maximisation in LS MIMO: This 

chapter gives the outline of the investigated topic, provides a context for the 

investigation and develops an understanding of existing theories and methods.   

Chapter 4 Techniques to Maximise Energy Efficiency: This chapter explains about 

techniques which have been carried out in this thesis. It also provides details of a 

justification of the techniques employed.  

Chapter 5 Simulation Setup and Numerical Results: This chapter describes 

description and evaluation for this investigation. The simulation procedures 

explained in this chapter. Also, presents the data, the graph generated from the 

simulation during testing and analysis of the result. 

Chapter 6 Conclusion & Further Work: This chapter involves interpretation of the 

findings and comparing the findings with previous findings, discussing the 

implications and concludes the results of the implementations, and recommendation 

of developing revised Energy Efficient power consumption model for LS MIMO 

systems. 
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1.7 Summary 

This chapter describes the background to Large-Scale MIMO systems and 

the study of Energy Efficiency in Large Scale MIMO systems, but the focus is on 

how to maximise Energy Efficiency by examining the interplay between Energy 

Efficiency and differing key system parameters such as the number of Base Station 

antennas, the number of users and the choice of the transmit power in LS MIMO 

systems. With this motivation, the effect of the existing total power consumption 

model will be examined to find the scalable power consumption model which 

varies with system parameters for Energy Efficient Large-Scale MIMO. Numerical 

results in Chapter 5 suggests also that it is energy efficient to operate in Large-

Scale MIMO systems. This chapter also provides the contributions of the thesis, 

the aim and the objectives of the research, the research methodology and finally 

the thesis structure.  
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Chapter 2 

 

Large-Scale MIMO Systems– An Overview 
 
 

2.1 Introduction 

Internet services such as web browsing, email, video streaming, have 

become urgent needs for the people’s daily life, not only on the traditional 

wired networks but also on the wireless networks, particularly cellular systems 

[39]. Wireless communication uses electromagnetic spectrum to carry the 

modulated information data to the receiver. First generations of cellular 

systems are mainly designed for only voice and text services. With the 

advancement of smartphone technology, the devices are nowadays equipped 

with sophisticated capabilities, thus, new demands for multimedia and high 

data rate applications are generated [40]. While high data rates services can 

be reliably provided on wired networks, providing such services on the 

wireless networks, however, is not a trivial matter to accomplish due to the 

limited resources and the unpredictable nature of the wireless channel. 

Besides, the number of subscribers all around the world is still increasing, 

making provisioning of high data rate services over the cellular systems very 

challenging problem for both manufacturers and operators. Consequently, the 

main issue becomes the problem of how to provide high data rate services 

over limited wireless resources such that the quality of service (QoS) is 

satisfied. Thus, wireless communication requires very different approaches 

than that of wired networks. 
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2.1.1 Evolution of Cellular network 

The first generations of wireless mobile networks were voice-oriented, 

providing low data rate services such as voice. With the dramatic evolution of 

wireless mobile systems over the last decades, wireless systems have become 

multimedia oriented mobile networks, and hence raising the expectations for 

higher data rates. The first generation (1G) was based on analogue technology, 

deployed in the USA and Europe in the early 1980’s, followed by the digital 

technology-based second generation (2G) deployed in 1991 in Europe. In 

2001, third generation (3G) system based on the code division multiple access 

(CDMA) technology was first operated. The dramatic enhancement of the 

mobile systems occurred in high-speed downlink packet access (HSDPA) 

supporting a speed of up to 21 Mbps. Then, it is evolved to HSPA+ with speed 

reaching up to 42 Mbps.  

Later, long-term evolution (LTE) is introduced by the third-generation 

partnership (3GPP) to provide high data rate up to 160 Mbps within 20 MHz 

channel bandwidth. LTE is based on orthogonal frequency division multiple 

access (OFDMA technique for resources sharing among users, and 

incorporates advanced technologies such as MIMO, adaptive modulation, and 

link adaptation [41].  

In 2008, the technical requirement of the fourth generation (4G) has 

been identified in the international mobile Telecommunication-Advanced 

(IMT-A) [42]. In this direction, 3GPP targeted the candidate for cellular 

technologies that are meeting the IMT-A requirements and proposed LTE-

advanced  

(LTE-A) [43]. The key technologies that make LTE-A superior over LTE and 3G 

are carrier aggregation, OFDMA, CoMP technique for interference 

management, and deploying the heterogeneous networks to improve spectral 

efficiency and provide uniform coverage [43].  
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Nowadays, researchers all over the world have been targeting 5G 

cellular, which is expected to be a ground-breaking technology, overcoming 

the limitation faced by the previous cellular generations. 5G is envisioned to 

include massive bandwidth with high frequencies, dense BSs deployment, a 

massive number of antennas, heterogeneous network deployment, cognitive 

radio, highly adaptive multicell coordination strategies, and energy efficient 

technology, not to mention others [44]. 

 

2.2 The Wireless Channel 

Wireless channel is the air medium which wireless transmission is 

performed via electromagnetic waves. Since the wave is not restricted to take the 

single path, it suffers reflection, diffraction, scattering by buildings, hills, bodies, 

and other objects when travelling from the transmitter to receiver, hence multiple 

copies of the signal arrive at the receiver as shown in Figure 2.1. 

 

    Figure 2.1: Radio Signal Propagation [45]. 
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Each copy of the signal has a different delay, phase, and gain, and thus they 

interfere constructively or destructively. This is referred as a multipath 

phenomenon. To fully characterise the random time-varying properties of the 

multipath channel, statistical models have been developed [46]. In general, the 

wireless channel is affected by three main factors; path-loss, shadowing, and 

small-scale fading [46]. 

Path-loss refers to signal power dissipation in proportion to the distance 

between transmitter and receiver. In the free space, path-loss is given be 

 

    𝐿 =  
𝜀𝐺𝑡𝐺𝑟

(4𝜋𝑑)2
                                                 (2.1)   

 where 𝜀 is the wavelength, 𝐺𝑡 is the transmitter antenna gain, 𝐺𝑟 is the receive 

antenna gain, 𝑑 is the distance between the transmitter and receiver. This model 

is only valid providto e that there is only one single path between two points, i.e. 

line-of-sight (LoS), or few multipath component. In cellular communication, the 

signal propagates through different paths between transmitter and receiver, for 

which the path-loss is commonly modelled as  

    𝐿 =  𝜍𝑑−𝛼                                                  (2.2)   

where 𝜍 represents a constant that captures the antenna characteristics and 

channel attenuation, and 𝛼 is the path-loss exponent that varies from 2 to 6 

depending on the communication environment [46].  

Shadowing is a random variation experienced by signal power due to 

obstacles between transmitter and receiver that attenuate the signal through 

scattering, reflection, and diffraction [46], [47]. Statistical methods are usually 

used to model shadowing where log-normal shadowing model is the most 

accurately validated model [46]. 
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The probability density function (PDF) of a log-normal random variable 𝑦 is given as 
 

    𝑓(𝑦) =  
1

𝑦𝜎√2𝜋
𝑒
ln𝑦−𝜇

(2𝜎)2 , 𝑦 > 0.                                   (2.3)                   

 

where 𝜇 and 𝜎 represent the mean and the standard deviation of 𝑦 given in dB. 

 

Small-scale fading refers to the microscopic channel variations due to the 

constructive and destructive addition of multipath signal replicas. Since each 

replica experiences different attenuation, delay, and phase, the superposition of 

all components results in a destructive and constructive addition, thus attenuating 

and amplifying the received signal, respectively [46], [47]. When the drop of the 

signal is severe, it is referred to as deep fade, and usually results in temporary 

outage in communication. 

Fading variations and its impact on frequency domain can be characterised 

by the notion of coherence bandwidth 𝑊𝑐. This parameter measures the range of 

frequencies over which the channel is highly correlated, in other word the channel 

does not change over the entire signal bandwidth (or flat). Coherence bandwidth 

is connected to the delay spread arising from multipath phenomenon as 𝑊𝑐 ≈
1

𝑇𝑑
 

, where 𝑇𝑑 is defined as the difference between delays spread associated with the 

most significant multipath component and the latest component.  

If the signal bandwidth 𝑤 is smaller than the coherence bandwidth, the 

exhibits a constant gain transfer function over the entire signal bandwidth. 

However, when the coherence bandwidth is larger than the signal bandwidth, the 

channel response exhibits frequency-selective behaviour, in other words, different 

parts of signal bandwidth experience uncorrelated fading, rising the signal 

distortion or so-called inter-symbol interference (ISI).  
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To overcome this problem, sophisticated equalisation needs to be utilised 

at the detection side, which is costly in implementation. The other widely adopted 

solution is recent advanced wireless technologies using low rate multi-carrier 

transmission such as orthogonal frequency division multiplexing (OFDM), whereby 

each subcarrier has the smaller bandwidth to ensure that the channel is flat over 

each subcarrier bandwidth [46], [47].  

On the other hand, fading variations in the time domain are characterised 

by the notion of coherence time 𝑇𝑐, which refers to time duration at which the 

channel remains correlated. Coherence time is related to the Doppler spread 

parameter 𝑓𝑑 as 𝑇𝑐 ≈
1

𝑓𝑑
, which is the broadening in the signal bandwidth caused 

by relativethe  mobility of the transmitter and receiver. Channel with larger 

Doppler spread changes faster, thereby having shorter coherence time [46]. The 

rate at which the variation in the signal takes place determines how fast the fading 

is; fast fading occurs with multipath phenomenon as it takes place over very small-

time scale (in the order of milliseconds), while slow fading occurs with path-loss 

and shadowing as it happens over relatively larger time scale (in the order of tens 

of seconds). 

To model small-scale fading, several statistical models have been proposed 

and utilised. The two most common models are Rayleigh and Rician model. 

 

2.2.1 Rayleigh Channel Fading 

This channel fading assumes that there is no line-of-site component 

between transmitter and receiver, and there are many independent signal 

paths. Per Central Limit Theorem (CLT), when there are many random 

variables, the limiting distribution will approximate Gaussian distribution. 

Thus, the fading channel modelled as a zero-mean complex-valued Gaussian 

random variable,  𝑥~𝒞𝒩(0, 𝜎2) with channel envelope 𝑦 = |𝑥| and PDF given 

by 
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    𝑝(𝑦) =
𝑦

𝜎2
𝑒
𝑦2

2𝜎2 , 𝑦 > 0                                                            (2.4)                

where 𝜎2 is, the average received power. 

2.2.2 Rician Channel Fading 

When there is line-of-site component between transmitter and receiver, 

the signal will be composed of a vast number of independent paths plus line-

of-site components. The signal envelope is modelled by Rician distribution 

given by 

           𝑝(𝑦) =
𝑦

𝜎2
𝑒
−𝐾−

(𝐾+1)𝑦2

𝜎2
𝐼0 (2𝑦√

𝐾(𝐾+1)

𝜎2
)                                                   (2.5)                  

where K denotes the ratio of the power of the line-of-site component to the 

power of other multipath components, and 𝐼ois the modified Bessel function 

of the 0th order given by 

    𝐼0(𝑦) = ∑
(
1

4
𝑦2)

𝑘

(𝑘!)2
∞
𝑘=0                                                                (2.6)       

 

2.2.3 Channel Model 

Actual wireless channels are complex and challenging to represent 

accurately. For simulation studies, empirical models have been developed based 

on extensive measurements that approximate the most common communication 

scenarios. As described previously, a complex random variable that models path 

loss, shadowing and small-scale fading effects modelled the channel coefficient 

between a transmit and receive antenna. The instantaneous magnitude and phase 

of the channel coefficient represent the amplitude and phase of channel’s 

frequency response respectively. 
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The international telecommunication union (ITU) and the 3rd generation 

partnership project (3GPP) developed spatial channels models (SCM) that model 

various urban and rural propagation scenarios for simulation studies. The ITU-R 

IMT-Advanced channel model is a stochastic model based on the scenario 

geometry. The model includes information about the angle of arrival (AoA) as well 

as the angle of departure (AoD), the so-called double-directional channel model. 

It specifies the directions, amplitudes and phases for several rays (plane-waves) 

instead of the spatial location of the scatterers.  

The instantaneous parameters are determined stochastically based on 

statistical distributions extracted from actual channel measurements for several 

well-known scenarios. A specific scenario of the simulation study decides the 

location, geometry and pattern of antennas. The effects of delay, power, and 

angular parameters are evaluated to obtain the channel coefficients at several 

instants in time while the rays superimposed at the location of antennas in the 

simulation setup. Moreover, the superposition of rays produces the effects of 

correlation between antenna elements, temporal fading and Doppler spectrum at 

the transmitter as well as at the receiver.  

The urban macro model (UMa) targets coverage for pedestrian and 

vehicular users, with non-line of sight (NLoS) as the dominant mode of 

propagation. The dominant scatterers such as buildings which are usually assumed 

placed in a Manhattan grid layout. While the BS elevated to a height greater than 

the buildings in the vicinity, the mobile terminal is located outdoors at ground 

level.  
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2.3 Multi-user MIMO  

In the first three generation of cellular technology, the BS served multiple 

terminals by separating them in time, frequency or code. Each terminal was 

assigned a different fraction of spectrum resources for communication over the 

forward-and-reverse links, to minimise intra-cell interference. A multi-antenna BS 

opens the spatial dimension that allows it to discriminate the signal to/from each 

terminal based on its location, known as MU-MIMO. The spatial dimension 

enables each terminal to use all available spectrum resources, improving the 

throughput without the need for additional (expensive) resources. The hardware 

cost involved with MU-MIMO is the need to place additional BS antennas at the 

locations that to transmit/receive the signal. Thus, the available spatial degrees of 

freedom at the BS is limited by the number of antennas. 

A multi-antenna transmitter can precode the signal with a complex weight 

vector such that the radiated energy from each antenna adds constructively or 

destructively in desired directions. This approach, called transmit beamforming, 

can be used to maximise the signal power at the receiver or place nulls in the 

direction of interferers. The optimal beamforming weights depend on the 

instantaneous amplitude and phase of the channel. Analogously, a multi-antenna 

receiver may exploit channel knowledge for receive beamforming to maximise 

signal power and minimise the interference power.  
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The MU-MIMO setup of interest consists of a BS with M antennas serving K single-

antenna terminals (K ≤ M), over the same time-frequency resources. The BS exploits 

channel knowledge for transmitting and receive beamforming to create a spatially 

separate data stream for each terminal.  The data streams function as independent 

Single-Input Single-Output (SISO) links as under favourable channel conditions are shown 

in Figure 2.2, and can linearly increase the spectral efficiency with the number of 

terminals served. However, the benefits of this spatial multiplexing regarding spectral 

efficiency critically depend on the array size and the accuracy of channel estimates at the 

BS.  

 

                             Figure 2.2: MU-MIMO System [48]. 

 

2.3.1  Spatial Multiplexing 

Spatial multiplexing aims at increasing achievable data rate. The data 

stream is divided into multiple independent substreams to increase data rates; the 

sub-streams are transmitted simultaneously through spatial channels. At the 

receiver, appropriate techniques can be used to separate these sub-streams. The 

spatial multiplexing gain defined as  
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    𝑑𝑀𝑢𝑙 = lim
𝛾→∞

𝑅

log𝛾
                                                                          (2.7)  

where R denotes the rate measured in (bits/s/Hz) and is a function of the SNR, i.e., 

R = f (SNR). The maximum spatial multiplexing gain achieved by MIMO channel H 

is 

   (𝑑𝑀𝑢𝑙)𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑁𝑇 , 𝑁𝑅)                                                        (2.8) 

which means, the minimum of  𝑁𝑡 and 𝑁𝑅 . 𝑑𝑀𝑢𝑙 is also known as the number of 

degrees of freedom that can be available by MIMO system with channel H. 

 

2.3.2  Shannon Capacity 

In his pioneering work on the information theory, Shannon introduced the 

notion of channel capacity, which means the achievable data rate that transmitted 

over the channel with arbitrarily small error probability. Capacity has become an 

important metric for analysing the performance of wireless networks; it possessed 

even high importance for future mobile networks that are expected to provide 

high data rate applications. In an additive white Gaussian noise (AWGN) channel, 

Shannon capacity defined as 

  𝐶 = 𝑊 log2 (1 +
𝑃

𝑁0𝑊
), [bits/sec]                                                  (2.9) 

where 𝑊  is signal bandwidth in Hz, 𝑁0 id the noise spectral density in 

Watt/Hz, and 𝑃 is the transmit power. The term 
𝑃

𝑁0𝑊
 is commonly referred to a 

signal-to-noise ratio (SNR). Shannon capacity gives an upper bound limit on the 

achievable rate, it could be achieved by advanced signal processing and coding 

techniques.  

 

 



21  

 

It can be observed from the above formula that the two factors 

fundamentally limiting the capacity are power and bandwidth, which represent 

the main wireless resources. Two extreme regimes can be deduced from Shannon 

formula; when SNR gets very large, the capacity becomes logarithmic in power and 

linear in bandwidth, i.e.   𝐶 = 𝑊 log2 (
𝑃

𝑁0𝑊
), this is referred to as bandwidth-

limited regime.  

On the other hand, when SNR get very small, capacity becomes insensitive 

to bandwidth, i.e. 𝐶 = (
𝑃

𝑁0
) log2 𝑒 ,where 𝑒 is the   base of the natural logarithm. 

In the first regime, it is more advantageous to increase bandwidth for capacity 

increase, whereas in the second regime, increasing power is the best strategy. 

 

2.3.3  Energy Efficiency 

Energy efficiency has attracted significant attention nowadays since 

increasing spectral efficiency typically results in more energy consumption.   

The energy consumption increase in wireless communication systems results 

in an increase of CO2 emission, which represents a significant threat to the 

environment. Thus, there is a consensus on the necessity of protecting the 

environment from the dangers of modern technology. Moreover, the radio 

access part of cellular systems consumes about 70% of the electric power bills 

as reported by mobile systems operators, which means high operational cost 

from an economic point of view. 

 Additionally, for uplink radio access it is very reasonable to reduce 

energy consumption for mobile devices to save the battery power.  
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For these reasons, reducing energy consumption motivates research 

circles to investigate new energy efficient techniques in wireless networks 

technology. There is an inherent conflict in enhancing spectral efficiency and 

decreasing energy consumption at the same time; reducing energy 

consumption leads to decrease in spectral efficiency and vice versa.  

Consequently, there always exists a trade-off between spectral and 

energy efficiencies. Thus, the spectral-energy efficiency trade-off can be set off 

as a milestone for the research to investigate the problem of how much energy 

consumption for a given spectral efficiency, or how much spectral efficiency 

can obtain for a given energy consumption. 

Two different definitions are used to define the energy efficiency. The 

first definition is to take the ratio of transmission bit rate (or spectral 

efficiency) to the transmitted power, measured in bit/Joule. This definition has 

used in literature. The other definition of energy efficiency (Joule/bit) is to take 

the ratio of consumed power over bit rate or spectral efficiency . In this thesis, 

the first definition of energy efficiency used as it implies the energy 

consumption. 

 

 

2.3.4  Channel Estimation 

 

Although MU-MIMO is a promising technique to enhance spectral 

efficiency, nevertheless it is quite challenging in practical implementation. To 

achieve full multiplexing gain of MU-MIMO, the system requires an acquisition of 

instantaneous perfect CSI. The BS and the UEs are assumed to have perfect CSI. 

However, in practice, this CSI must be estimated. The system can acquire the CSI 

through two different ways depending on the duplex scheme adopted. Depending 

on the system duplexing mode, the channel estimation schemes are very different.   
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In time division duplex (TDD), both transmitter and receiver utilise the 

same frequency band and reception, spacing them apart by multiplexing the  

downlink and uplink signals on different time slots. A user transmits specific pilot 

symbol training signal and the BS can learn the CSI through channel reciprocity. 

This necessitates that the time coherence should be long enough to span the 

interval of both uplink signalling and downlink transmission [49]. On the other 

hand, in frequency division duplex (FDD), where the downlink and uplink use 

different frequency bands, the user can feedback the necessary information to the 

BS through dedicated low rate uplink channel [49].  

 

2.4 Large-Scale MIMO  

Wireless communication is one of the most successful technologies is one 

of the most successful technologies in recent years, for knowing Copper’s Law 

where an exponential growth rate in wireless traffic sustained for over a century. 

This trend is driven by new innovative; for example, augmented reality and 

internet-of-things [50].  

Large-Scale MIMO which is also known as Massive MIMO is a Multi-user 

MIMO technology where an array of 𝑀 active antenna elements is deployed at 

each base station (BS) and utilises these to communicate with 𝐾 single- antenna 

terminal-over the same time and frequency band. The general multi-user MIMO 

concept has been around for decades, but the vision of deploying BSs with more 

than a handful of service antennas is relatively [11]. By coherent processing of the 

signals over the array, transmit precoding can be used in the downlink to focus 

each signal at its desired terminal and receive combining can be used in the uplink 

to discriminate between signals sent from different terminals. The more antennas 

that are used, the finer the spatial focusing can be [51]. An illustration of these 

concepts is give in Figure 2.3. 
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The canonical LS MIMO system operates in a time-division duplex (TDD) 

mode, where the uplink and downlink transmissions occur in the same frequency 

resource but different in time. The physical propagation channels are reciprocal, 

meaning that the channel responses are the same in both directions, which utilised 

in TDD operation. In particular, LS MIMO systems exploit the reciprocity to 

estimate the channel responses on the uplink and at that point utilise the acquired 

channel state information (CSI) for uplink the receive combining and downlink 

transmit precoding of payload data. Since the transceiver hardware is not 

reciprocal, calibration is needed to exploit the channel reciprocity; calibration is 

required to operate the channel reciprocity in practice [51].  

Fortunately, the uplink-downlink hardware discrepancies only change by a 

few degrees over a one-hour period and can be mitigated by simple relative 

calibration methods, even without additional reference transceiver and by only 

relying on the mutual coupling between antennas in the array [52]. There are 

several good reasons to operate in TDD mode. Firstly, only the BS needs to know 

the channels to process the antennas coherently. Secondly, the uplink estimation 

overhead is proportional to the number of terminals but independent of M thus 

making the protocol fully scalable on some service antennas. Furthermore, basic 

estimation theory tells that the estimation quality recovers with M if there is a 

known correlation structure between the channel responses over the array the 

estimation quality (per antenna) but not reduced by adding more antennas at the 

BS in fact; [53].  

Since fading makes the channel responses vary over time and frequency, 

the estimation and payload transmission must fit into a time/frequency block 

where the channels are approximately static. The coherence bandwidth Bc Hz and 

the coherence time Tc ,which fit 𝜏 = 𝐵𝑐𝑇𝑐  transmission symbols essentially give the 

dimensions of this block. Massive MIMO can be implemented either using single-

carrier or multi-carrier modulation.  
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Multi-carrier OFDM modulation is considered here for simplicity because 

the coherence interval has a neat interpretation: it spans several subcarriers over 

which the channel frequency response is constant, and several OFDM symbols 

over which the channel is constant; see Figure 2.3. The channel coherency 

depends on the propagation environment, user mobility, and the carrier 

frequency. 

 

 
    Figure 2.3: Example of a Massive MIMO system. (a) Illustration of the uplink and   
    downlink in line-of-sight propagation, where each BS is equipped with 𝑀 antennas  
    and serves 𝐾  terminals. The TDD transmission frame consists of 𝜏 = 𝐵𝑐𝑇𝑐 symbols.   
    (b) Photo of the antenna array consists of 160 dual-polarised patch antennas [53]. 
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(b) 
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2.4.1  Antenna Configuration 

In a traditional passive AAs Radio-Frequency (RF) is usually connected to 

its physical antennas through an RF cable. Recently, Remote Radio Unit (RRU) in 

conjunction with a Baseband Unit (BBU) has become a preferred configuration 

recently to reduce the loss imposed by the RF cable and to save the costs of 

installation and maintenance [54].  The BBU generated baseband digital signal sent 

to RRUs through an optical fibre. The RF circuit is placed as close as possible to the 

physical AA.  Furthermore, active AAs operating without RF cables are now 

available commercially, where the careful configuration is required for deploying 

in the LS MIMO systems [55]. A significant milestone in the development of AA is 

the integration of the RF circuit and the AA into a single circuit board in an active 

AA. 

The linear AA, spherical AA, cylindrical AA, rectangular AA are some 

standard LS AAs illustrated in Figure 2.2 [12].  The family of 3D AAs are the 

spherical AA, cylindrical AA and rectangular AAs belong to, whereas the linear AA 

is an example of Two-Dimensional (2D) AAs. The spherical, cylindrical and 

rectangular are practical realistic due to the space limitations at both the eNBs and 

UEs.  The linear AA is mostly supposed in theoretical analysis and practical 

measurements, whereas the distributed AA is mostly used either inside buildings 

or for outdoor cooperation. 

Moreover, due to the associated aspects of aesthetics and potential health 

issues, commercial deployment of LS AAs has been partially opposed both by the 

public and the organisations. LS AAs can be rendered virtually invisible by 

integrating the AEs into the environment. As shown in Figure 2.2, an aesthetically 

attractive method is to deploy LS AA as part of the building’s façade or signage in 

an irregular fashion [56], e.g. the black AEs of a rectangular. Instead, to reduce the 

side lobes of the irregular AA, advanced algorithms relying on subarrays [57], on 

orthogonal placement [58], or on parasitic AAs [59] can be introduced for 

improving the beamforming performance of these irregular AAs. 
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                      Figure 2.4: Various antenna configuration [1]. 

 

2.4.2  Channel Measurement 

Realistic channel measurements were conducted in [60], [61] to identify 

the key features of LS MIMO channels. The outdoor measurements in [60] 

emphasis primarily on the impact of the number of antennas enforced on the 

small-scale fading characteristics. When a linear AA employed at the eNB, both the 

non-stationary nature of the fading and the near-field AA effects have been 

explored to capture the main properties of a realistic channel model [61]. Though, 

it requires further investigations to ascertain whether these properties are valid for 

both spherical as well as cylindrical and rectangular arrays. The main results of 

these measurements elaborated below. 

Since different Antenna Elements (AEs) of the AA at the eNB may 

encounter different multipath clusters and the AA is frequently subjected to 

shadow fading, the accurate modelling of LS MIMO systems in practical non- 

stationary propagation scenarios continues to a large degree an open challenge 

[60]. 
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The Channel Impulse Responses (CIRs) handled by UEs become more 

decorrelated from each other in the case of large AAs, since having more AEs 

allows one to more accurately distinguish both their CIRs and their angles of arrival 

[62], [63]. Moreover, having additional AEs at the eNB is capable of attaining 

better-quality orthogonality amongst different UEs in contrast to their 

conventional small-scale MIMO equivalents. It is particularly important in Spatial 

Division Multiplexing (SDM) or Spatial Division Multiple Access (SDMA) systems, 

where the individual and user-specific CIRs used for distinguishing the UEs and the 

transmission streams. 

The linear AA devices have the better angular resolution in azimuth than the 

cylindrical array. Nevertheless, the latter is capable of achieving a beneficial 

resolution in both azimuth and elevation, which may be more useful in high urban 

environments [61]. 

 

2.4.3  Channel Model 

The Correlation-Based Stochastic Model (CBSM), the Parametric Stochastic 

Model (PSM) and the Geometry- Based Stochastic Model (GBSM) are three types 

of channel models devised for evaluating the performance of wireless 

communications systems, in [61], [62]. The difficulty of the CBSM is low hence  

primarily used for assessing the theoretical performance of MIMO systems. 

However, it is somewhat simplistic and hereafter inaccurate for a practical MIMO 

system. Therefore, it is not directly applicable to the modelling of wireless 

channels, when encountering a spherical wavefront. By comparison, the GBSM 

model is capable of accurately describing the realistic channel properties, and 

hence it is more suitable for LS MIMO channels, although with an increased 

computational complexity.  
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The complex nature of the PSM is higher than the CBSM, while the accuracy 

of the PSM is lower than the GBSM, which results in a lack of studies on the PSM 

in LS MIMO systems. Therefore, the CBSM is elaborated in this section as it is 

within the scope of this thesis. 

The non-dispersive correlated channel model, the non-dispersive 

independent identically distributed (i.i.d.) Rayleigh fading model and the 

dispersive multipath channel model are three kinds of simplified CBSMs, where 

each tap modelled as either a correlated or uncorrelated fading process. 

Non-dispersive i.i.d. Rayleigh channel model is when an i.i.d. Rayleigh 

fading channel supposed for LS MIMO systems; no correlation occurs between the 

transmit and receive antennas. Thus, the elements of the fast fading matrix are 

i.i.d. Gaussian variables. Non-dispersive correlated Rayleigh channel model is to 

characterise the Doppler-induced received signal correlation, the correlated 

channel model considered for characterising the possible implementation of LS 

MIMO systems [17]. The fast fading matrix of the correlated channel model 

developed by the product of the standard complex-valued Gaussian matrix and 

the correlation matrix. At the transmitter and receiver of the AEs, the correlation 

matrix quantifies the long-term correlation, attained through measurements. By 

comparison, the complex-valued Gaussian matrix describes the i.i.d. Rayleigh 

fading channel.  

The dispersive multipath channel model is different distributions of the 

Angle of Arrivals (AoAs) from different UEs comprised in the dispersive multipath 

channel model of LS MIMO systems [66]. Each UE’s CIR constituted by multiple 

independent paths arriving from different directions, in this model. The steering 

vector of an  AoA multiplies a  path attenuation to  characterise each independent 

path. The UEs can be separated according to their AoAs when they located at 

different angular positions. Therefore, this model is useful in analysing the 

performances of the IUI or Inter-Cell Interference (ICI) schemes.  
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The characteristics of an LS MIMO channel directly affected by the antenna 

configuration. The linear AA rises both to non-stationary channel characteristics 

and to near-field effects, whereas the cylindrical AAs, rectangular, and spherical are 

capable of accurately directing the beam propagation in the 3D space. Hence, the 

choice of the configuration of an AA conceived for scenarios requires further 

investigations. 

Currently, the CBSMs primarily devised for analysing the theoretical 

performance of LS MIMO systems attributed to its simplicity. Measurements 

conducted for validating the accuracy of this model. The non-stationary LS MIMO 

channel and the spherical wave propagation effects regarded as the inbuilt 

properties of the linear AA. The channel model is reflecting both the non-stationary 

LS MIMO propagation phenomenon and the spherical wave effect propagation 

effects established for the linear AA, which relies on a cluster-based model. 

Furthermore, an improved 3D channel model has been specified by the 3GPP. 

However, characterising the non-stationary propagation of the spherical, cylindrical 

and rectangular arrays requires further measurements. In conclusion, how to 

accurately model the channel of LS MIMOs remains an open problem.  

 

2.4.4  Data Transmission Protocol in Large-Scale MIMO 

In very Large-Scale MIMO, TDD operation is the desired data transmission 

protocol. In a coherence interval, there are three operations: channel estimation 

(with the uplink training and the downlink training), uplink data transmission, and 

downlink data transmission.  
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2.4.4.1 Channel Estimation 

The BS needs CSI to detect signals transmitted from the users in the uplink, 

and to precode the signals in the downlink. This CSI is obtained through the uplink 

training. Each user is assigned an orthogonal pilot, sequences transmitted from all 

users, and then estimates the channels based on the received pilot signals. 

Furthermore, each user may need partial knowledge of CSI to coherently 

detect the signals transmitted from the BS. This information can be acquired 

through downlink training or some blind channel estimation algorithm. Since the 

BS uses linear precoding techniques to beamform the signals to the users, the user 

needs only the effective channel gain, which is a scalar constant to detect its 

desired signals. Therefore, the BS can spend a short time to beamform pilots in the 

downlink for CSI acquisition at the users. 

 

2.4.4.2 Uplink Data Transmission 

In the coherence interval, a part of it is used for the uplink data 

transmission. In the uplink, all 𝐾 users transmit their data to the BS in the same 

time-frequency resource. The BS then uses the channel estimates together with 

linear combining techniques to detect a signal transmitted from all users. 

 

2.4.4.3 Downlink Data Transmission 

In the downlink, the BS transmits signals to all 𝐾 users in the same time-

frequency resource. More specifically, the BS uses its channels estimates in 

combination with the symbols intended for the 𝐾 users to create 𝑀 precoded 

signals which are then fed to 𝑀 antennas. 

2.4.5  Linear Processing in Large-Scale MIMO 
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Linear processing at the BS is fundamental for the payload transmission in LS 

MIMO. In the uplink, the BS has a 𝑀 observation of the multiple access channels 

from the 𝛫 terminals. The BS applies linear receive combining to discriminate the 

signal transmitted by each terminal from the interfering signals. The simplest 

choice is the maximum ratio (MR) combining that uses the channel estimate of a 

terminal to maximise the strength of that terminal’s signal, by adding the signal 

components coherently. This result signal amplification proportional to  𝑀, which 

is known as an array gain. Alternative choices are zero-forcing (ZF) combining, 

which suppresses inter-cell interference at the cost of reducing the array gain 

to 𝑀 − 𝛫 + 1, and minimum mean squared error (MMSE) combining that 

balances between amplifying signals and suppressing interference. 

The receive combining creates one effective scalar channel per terminal 

where the intended signal is amplified and/or the interference suppressed. Any 

judicious receive combining will improve by adding more BS antennas since there 

are more channel observations to utilise. The remaining interference usually 

treated as extra additive noise; thus conventional single-user detection algorithm 

applied. Another benefit from the combining is that small-scale fading averages 

out over the array, in the sense that its variance decreases with𝑀. This is known 

as channel hardening and is consequences of the law of large numbers.  

There is a strong connection between receive combining in the uplink and 

the transmit precoding in downlink [56]. This is known as uplink-downlink duality 

since the uplink and downlink channels are reciprocal in TDD systems. Linear 

precoding based on MR, ZF, or MMSE principles can be applied to focus each signal 

at its desired terminal (and possibly mitigate interference towards other 

terminals). 
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Many convenient closed-form expressions for the possible uplink or 

downlink spectral efficiency (per cell) found in the literature; see and references 

therein. An example for i.i.d. Rayleigh fading channels with MR processing 

provided, just to show how beautifully simple these expressions are: 

    𝛫 (1 − 
𝛫

𝜏
) . 𝑙𝑜𝑔2 (1 + 

𝐶𝐶𝑆𝐼 .  𝑀.  𝑆𝑁𝑅𝑢/𝑑 

𝛫 .  𝑆𝑁𝑅𝑢/𝑑 + 1
 ) [Bit/sec/Hz/cell]                (2.6)              

        

 where 𝛫 is the number of the terminal, (1 − 
𝛫

𝜏
) is the loss from pilot 

signalling, and 𝑆𝑁𝑅𝑢/𝑑 equals the uplink signal-to-noise ratio (SNR), 𝑆𝑁𝑅𝑢 , when 

Eq. (2.1) is used to compute the uplink performance. Similarly,  𝑆𝑁𝑅𝑢/𝑑 is noted 

as the downlink SNR, 𝑆𝑁𝑅𝑑, when Eq. (1) is used to measure the downlink 

performance. In both cases, 𝐶𝐶𝑆𝐼 = (1 + 
1

𝛫 .  𝑆𝑁𝑅𝑢
)
−1

 is the quality of the 

estimated CSI, proportional to the mean squared power of the MMSE channel 

estimate (where 𝑐𝐶𝑆𝐼 =  1 represents perfect CSI). Notice how the numerator 

inside the logarithm increases proportionally to M due to the array gain and that 

the denominator represents the interference plus noise. While canonical LS MIMO 

systems operate with single-antenna terminals, the technology also handles N-

antenna terminals. In this case, 𝛫 denotes the number of simultaneous data 

streams and (2.6) describes the spectral efficiency per stream. These streams can 

be divided over anything from 𝐾/𝑁 to 𝛫 terminals, but in this research 𝑁 = 1 is 

selected. 

 

2.4.6  Challenges in Large-Scale MIMO 

Despite huge advantages on LS MIMO, many issues need to be tackled. The 

main challenges of LS MIMO are explained below; 
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2.4.6.1 Pilot Contamination 

In the previous sections, merely single-cell with perfect CSI scenarios are 

discussed. However, in practice, the cellular network consists of many cells. Due 

to the limited availability of frequency spectrum, many cells have to share the 

same time-frequency resources. Thus, single -cell with imperfect CSI scenario and 

multi-cell systems scenarios are considered. In multi-cell systems, the orthogonal 

pilot can’t be assigned to all the users in all the cells, due to the limitation of 

channel coherence interval. The orthogonal pilot sequences have to be reused 

from cell to cell. Therefore, the channel estimate obtained in a given cell will be 

contaminated by pilots transmitted by users in other cells. This effect, called “pilot 

contamination”, reduces the system performance [67]. The effect of pilot 

contamination is a major inherent limitation of LS MIMO. Pilot Contamination 

does not vanish even when the number of BS antennas grows without bound. 

Thus, considerable efforts have been made to reduce this effect. The eigenvalue-

decomposition based channel estimation, pilot decontamination, as well as pilot 

contamination precoding schemes are proposed in [68]–[71]. In [71], the authors 

had shown that, under certain conditions of the channel covariance, by using a 

covariance aware pilot assignment scheme among the cells, pilot contamination 

can efficiently mitigate. There are continuing researches on this topic. 

 

2.4.6.2 Unfavourable Propagation 

Basically, LS MIMO deployed under favourable propagation environments. 

However, in practice, there may be propagation environments where the channels 

are not favourable.  
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For example, in propagation environments where the numbers of 

scatterers are small compared to the numbers of users, or the channels from 

different users to the BS share some common scatterers, the channel is not 

favourable [72]. Distributing BS antennas over a large area is one possibility to tackle 

the problem. 

 

2.4.6.3 New Standards and Designs  

 Cellular Networks will be more efficient if LS MIMO is deployed in current 

systems such as LTE. However, LTE standard only allows up to 8 antennas at the 

BS [73]. Moreover, LTE uses channel information based on assumption. For 

example, one option of the downlink in LTE where the BS transmits the reference 

signals through several fixed beams. Subsequently, the users report back to the BS 

the strongest beam and BS uses this beam for the downlink transmission. In 

contrast, LS MIMO uses estimated channel information. Thus, to incorporate LS 

MIMO into practice, new standards are required. Additionally, with LS MIMO, a 

costly 40 Watt transceiver can be replaced by large numbers of low-power and 

inexpensive antennas. Likewise, related hardware designs should be considered, 

where this requires huge efforts from both academia and industry. 

 

2.5 Summary 

Large-Scale MIMO is MU- MIMO cellular system where the number of BS 

antennas and the number users are large. In LS MIMO, hundred or thousand of BS 

antennas simultaneously serve tens or hundreds of users in the same time-

frequency  resource. This chapter describes, the background information such as 

wireless channel properties, MU-MIMO channel  model and system properties, LS 

MIMO channel model, Transmission and Processing schemes, and finally the main 

challenges in LS MIMO systems. 
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Chapter 3 
 

Energy Efficiency in Large-Scale MIMO Systems - 

Literature Review 

3.1 Introduction  

The cellular networks of today provide good coverage and service in many 

countries, in both urban and rural areas. The key challenge for the industry is the 

rapid proliferation of smartphones, laptops, and tablet PCs with built-in cellular 

access that is rapidly driving the demand for increased capacity. Forecasts range 

from a hundred-fold to a thousand-fold increase in traffic volume before 2020. In 

addition, increasing access to telecommunication services in rural parts of the 

world has the potential to alleviate the digital divide felt by the people of these 

regions. Recently, both public and private sector entities have shown more 

interest in tackling this problem on a global scale. Deployment of connectivity 

solutions in rural communities, however, faces many practical challenges. Lack of 

availability and access to reliable electricity sources is one of the major hindrances 

for rural connectivity, particularly in under-developed countries. As such, wireless 

connectivity solutions for such applications must focus on low-power hardware 

operation and high energy efficiency (EE). 

EE is an important factor in the design of next-generation (i.e., 5G) urban 

wireless network. The underlying motivations for energy-efficiency designs in 

urban networks, however, may be different from their rural counterparts because 

urban populations often have adequate access to powers sources.  

 

Urban networks are, instead, expected to serve an unprecedented number of 
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devices through what is called network densification (i.e., small cells), with the goal 

of providing 1,000 times more capacity compared to the current generation of 

network. Economic and environmental concerns, however, constrain the practical 

realisation of densified urban networks to power consumption level comparable 

to (or even lower than) current (i.e., legacy) networks [74]. for example, it is 

estimated, it is estimated that network operators spend almost half of their 

operating expenses on energy costs and that the telecommunication industry is 

responsible for 2% of total carbon dioxide emissions worldwide [75]. As a result, 

an alternative view of network design has emerged, referred to collectively as 

green communication, which adopts an end-to-end perspective on Energy 

Efficiency [76]. 

Regardless of rural or urban setting, focussing on energy optimisation 

translates into designs in which radio resources are tuned to maximise the amount 

of reliable information transmitted per watt of total expended power.  A 

traditional approach to EE might include only the transmit power in total 

expended power. An end-to-end system perspective, however, includes additional 

digital hardware and perhaps even the consumption due to cooling and 

networking backhaul. 

 

3.2 Energy Efficiency in Large Scale MIMO System 

Many novel approaches have been taken to increase EE in wireless 

networks. The Large-scale MIMO architecture in [11] has shown promise in this 

regard. The building block of a Large-scale MIMO is a multi-antenna base station 

(BS) concurrently serving many single-antenna users, where the number of BS 

antennas is typically much larger than a number of users. With imperfect CSI at 

the transmitter, it has been shown that for a fixed rate, a single-cell LS MIMO 

transmitter can reduce its radiated power by a factor proportional to the square 

root of the number of deployed BS antennas [18]. The work in [29] extends this 

result to account for the aggregate impact of various hardware impairments on 



38  

massive MIMO systems, concluding that high EE can still be obtained under 

realistic hardware configurations. Such results suggest that LS MIMO systems may 

not only be attractive from an EE point-of-view likewise can yield more cost-

effective implementations because conventional arrays with only a few antennas 

fed by expensive high-power amplifiers can be replaced by hundreds of antennas 

fed by low-cost low-power amplifiers and circuitry [74]. 

3.2.1 Power Consumption in Large-Scale MIMO 

Recently, industry and academia have expressed significant interest in 

implementing LS MIMO in both single and multi-cell environments [33], [32],[77], 

[78], [30]. The use of additional antennas at the BS has been shown to improve 

power efficiency both uplink [33] and for the downlink [77],[78]. LS MIMO is a 

system where a BS equipped with a hundred or more antennas simultaneously 

serves several users in the same frequency band by exploiting the degrees-of-

freedom (DoF) in the spatial domain [11], [30]-[33],[78]-[82]. Providentially, when 

the number of antennas at the BS is large enough, from the law of large numbers, 

the random and mutually independent channel vectors between the BS and the 

users become pairwise orthogonal [83]. Spatial-division multiplexing for LS MIMO 

can enhance the reliability and throughput of the system because more distinct 

paths are established between the BS and the users [84], [85]. Notably, the 

additional DoF provided a massive number of antennas at the BS can reduce the 

transmit power for the users on the uplink. This is very efficient when multimedia 

services are increasing and the design of battery with long time use is a major 

challenge for manufacturers [86]. Undoubtedly, the electrical power supply to the 

BS will be higher which is consumed by the rectifier, baseband digital signal 

processing circuit, power amplifier, feeder, and cooling system on the downlink. 

Henceforth, solutions to reduce the emission of RF power would help in reducing 

the power consumption of the BS [87].  
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3.2.1.1 Power Consumption Model in LS MIMO 

An accurate modelling of the total power consumption is the fundamental 

importance to obtain a reliable guideline for EE maximisation of some (BS) 

antennas 𝑀 and a number of active (UEs) 𝐾 for LS MIMO systems [27]. A common 

assumption in related literature that the total power consumption is computed as 

the sums of the radiated transmit power and a constant quantity accounting for 

the circuit power consumption [28]. This model might be very misleading although 

widely used and can lead to an unbounded EE if utilised to design systems wherein 

𝑀 can be very large because the user rates grow unboundedly as   𝑀 → ∞ [29]. 

Attaining infinite EE is evidently impossible as the model does not consider the 

power consumed by digital signal processing and analogue circuits (for radio-

frequency (RF) and baseband processing) grows with 𝑀 and 𝐾. Meaning to say, its 

contributions can be taken as a constant only in multi-user MIMO systems where 

𝑀 and 𝐾 take relatively small values. Instead, its variability plays a key role in the 

so-called massive MIMO (or large-scale MIMO) systems in which  𝑀,𝐾 ≫ 1 and all 

the BS antennas are processed coherently [29-33]. The original massive MIMO 

definition in [30] also assumed  
𝑀

𝐾
 ≫ 1, while the more general definition from 

[31] - [32] where  
𝑀

𝐾
  is also assumed to be a small constant. 
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3.2.1.2 System Parameters in LS MIMO 

The impact on the EE by the number of antennas 𝑀 has been recently 

investigated in [34] – [39]. Power allocation problem focused in the uplink of multi-

user MIMO systems and showed that the EE is maximized when specific UEs are 

switched off [34]. Likewise, in [35] the uplink was studied, where the EE was shown 

To be a concave function of M and the UE rates. In [36] - [38] the downlink was 

studied, whereby [36] and [37] showed that EE is a concave function of 𝑀 while a 

similar result was shown for 𝐾 in [38]. However, the system parameters were 

optimized by useful simulations which do not provide a complete picture of how 

the EE is affected by the context of the different system. The coexisting work [39] 

derives the optimal 𝑀 and 𝐾 for a given uplink sum rate, nevertheless the 

,necessary overhead signalling for channel acquisition is ignored thus leading to 

unrealistic results where it is beneficial to let K grow very large, or even go to 

infinity. 

 

 

3.2.1.3 Power Amplifier power consumption  

As discussed in [93], the base station is divided into three parts. These are 

pre-transceiver block, transceiver block, and power amplifier (PA) part. The power 

consumption of these blocks are influenced by traffic load and required transmit 

power. As the power consumption due to PA is very large, it had been taken as a 

separate entity. The power of the PA is proportionated to the transmit power of 

the base station.  

One of the reasons for power losses power losses in the BS is PA linearity. 

Linearity is an important aspect in PAs since the system performance and 

efficiency are highly dependent on it. The power consumption of PA depends on 

the peak to average power ratio (PAPR) and PA efficiency.   
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The non-constant envelope modulation schemes like OFDM exhibit a high PAPR, 

resulting in a need for a highly linear Radio Frequency PA.  

However, this can be mitigated by proper choice of PAPR reduction 

schemes and PA efficiency can be improved by the advanced PA technologies like 

Doherty PAs which exhibits high input back off. 

Doherty PA (DPA) is designed using the combination of a carrier PA and a 

peak PA. The Peak amplifier will be active only the carrier amplifier saturates. 

Otherwise only the carrier   amplifier will be in the active region. The DPA will 

provide high efficiency even at a large Back of Point (BOP) [94]. The BOP with peak 

efficiency can be achieved by the conventional 2-stage DPA is around 6dB and it 

can be further increased with the increased in a number of peak PAs [95]. 

 

3.2.2 Detection in Uplink LS MIMO 

In Multi-user MIMO systems, it is known that a multi-user detection 

technique called successive interference cancellation (SIC) can achieve maximum 

rate in the uplink channel [91]. However, the SIC is difficult to be implemented in 

practice due to its high computational complexity. Thus, other detection methods 

that are based on linear detectors, including ZF, MRC, MMSE have been developed 

[32], [30], [78], [84] and [90]. Among them, [11] derived the asymptotic analysis 

for the signal-to-interference-pulse-noise ratio (SINR) for the uplink by using MRC 

and the SINR for the downlink by using MRT. An exact performance analysis for 

the uplink was provided in [84] with arbitrary antennas at the BS. All these results 

have shown that a linear receiver can exploit the advantages of LS MIMO arrays at 

the BS with low implementation complexity. A ZF receiver can cancel intracell 

interference, and therefore it generally outperforms an MRC receiver. This implies 

that a ZF receiver can reduce the number of BS antennas necessarily, relative to 

the number needed for MRC, whilst obtain the same system performance.  
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In general, the performance of the ZF receiver is worse than the MMSE receiver. 

However, if the SINR is high enough, the performance of the ZF receiver and MMSE 

are equivalent [33], [91]. Furthermore, an MMSE receiver requires additional 

knowledge on the SINR and yields higher complexity than ZF receiver. In addition, 

exact performance analysis is not tractable even in the case of perfect CSI [32]. It 

was shown in [78] that ZF processing scheme can provide a good trade-off 

between complexity and system. Especially when the number of BS antennas is 

very large. Therefore, ZF processing scheme is used in this thesis. 

 

3.2.3 Channel estimation in Downlink LS MIMO 

In [84], the study considered MIMO configuration with a ZF receiver, where the 

CSI is assumed to be perfectly known to both transmitter and the receiver.  Under such 

assumptions for the CSI, the expression of the exact performance of the system might be 

tractable. In practice, however, CSI is not perfect at the transmitter and the receiver. For 

the BS to acquire the CSI, a simple scheme can be employed where users send pilot 

signals to the BS, so that the BS can estimate the channel by analysing the received 

pilot signals in an uplink training phase [32], [82], [17 85], [90], and [92].  The Least-

squares (LS) methods is a conventional method that is generally used to estimate 

the CSI. Unfortunately, this method causes significant degradation in the system 

performance due to strong inter-cell interference. In contrast, the MMSE 

estimation method can results in more accurate channel estimation [32]. In the 

uplink transmission phase, the signals transmitted from the users to BS can be 

detected by using a linear detector using the estimated CSI. 
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3.3 Large-Scale MIMO System and Signal Model 

The operation of an LS MIMO systems  uplink and downlink considered 

over a bandwidth of B Hz. The BS uses a co-located array with 𝑀 antennas to 

communicate with 𝐾 single-antennas UEs that are selected in round-robin fashion 

from a large set of UEs within the coverage area. A block flat-fading channels is 

considered where,  𝐵C (in Hz) is the coherence bandwidth and 𝑇C (in seconds) is 

the coherence time. Hence, the channels are static within time-frequency 

coherence block of 𝑈 = 𝐵C𝑇C symbols. The BS and UEs are assumed perfectly 

synchronised and operate per the time-division duplex (TDD) protocol shown in 

Figure 3.1. The fixed ratios of uplink and downlink transmission are denoted by 

𝜁(ul) and 𝜁(dl), respectively, with 𝜁(ul) + 𝜁(dl) = 1. As seen from Figure 3.1, uplink 

transmission takes place first and consists of 𝑈𝜁(ul) symbols. The subsequent 

downlink transmission consists of 𝑈𝜁(dl) symbols. The pilot signalling occupies 

𝜏(ul)𝐾 symbols in the uplink and 𝜏(dl)𝐾 in the downlink, where  𝜏(ul), 𝜏(dl) ≥ 1 to 

enable orthogonal pilot sequences among the UEs [29],[32],[33]. The uplink pilots 

enable the BS to estimate the UE channels. Since the TDD protocol is matched to 

the coherence blocks, the uplink and downlink channels are considered reciprocal 

and the BS can make use of uplink estimates for both reception and downlink 

transmission. TDD protocols basically require 𝑀 and 𝐾 to be the same in the uplink 

and downlink. The downlink pilots let each UE estimate its effective channel and 

interference variance with the current precoding. 

 

 

                            Figure 3.1: Illustration of the TDD protocol [23]. 
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The physical location of UE k is denoted by xk ∈ ℝ2 (in meters) and 

computed on the BS (assumed to be in origin). First, non-line-of-sight propagation 

considered for analytic tractability. The function 𝚤(. ): ℝ2 → ℝ describes the large-

scale channel fading at different user locations; that is, 𝑙(xk) is the average channel 

attenuation due to path-loss, scattering, and shadowing at location xk. Since the 

UEs are selected in a round-robin fashion, the user’s location can be treated as 

random variables from user distribution f (x). Thus, user’s location implicitly 

defining the shape and density of the coverage area; as illustrated in Figure 3.2. 

The large-scale fading between a UE and BS is assumed to be the same for all BS 

antennas. This is reasonable since the distances between UEs and the BS are much 

larger than the distance between the antennas. Since the forthcoming analysis 

does not depend on a choice of 𝑙(. ) and user distribution, it is kept generic. The 

following symmetric example is used for simulations. 

 

 

                              Figure 3.2: Illustration of a generic Multiuser MIMO [23].  

 

The UEs are supposed uniformly distributed in a round cell radius dmax moreover, 

the minimum distance dmin. The density function described this user distribution  

𝑓(𝑥) = {
𝟏

𝝅(𝒅𝒎𝒂𝒙
𝟐 −𝒅𝒎𝒊𝒏

𝟐 )

𝟎
                                        (3.1)                                                          

By allowing the path-loss take-over the large-scale fading, this model as  

𝑙(𝑥) =
�̅�

‖X‖𝜅
                                    (3.2) 

𝑑𝑚𝑖𝑛 ≤∥ x ∥≤
𝑑𝑚𝑎𝑥, 
otherwise. 

𝑓𝑜𝑟 ∥ x ∥ ≥ 𝑑𝑚𝑖𝑛 
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where κ ≥ 2 is the path-loss exponent and the constant d ̅ > 0 regulates the 

channel attenuation at a distance dmin [96]. The average inverse channel 

attenuation 𝔼x {(l(x))
−1
} plays a key role in all subsequent discussions. In this 

example, simple integration (using polar coordinates) shows that 

 𝔼𝑥 {(𝑙(𝑥))
−1
} =

𝑑𝑚𝑎𝑥
𝜅+2 −𝑑𝑚𝑖𝑛

𝜅+2

�̅�(1+
𝜅

2
)(𝑑𝑚𝑎𝑥

2 −𝑑𝑚𝑖𝑛
2 )

           (3.3)              

   

   

3.3.1 Channel Model and Linear Processing LS MIMO System 

All M antennas at the BS sufficiently are set apart so that the channel 

components are uncorrelated among the BS antennas and the single-antenna UEs. 

The channel vector hk = [hk,1, hk,2, . . . , hk,M]T ∈ ℂ𝑀 x 1 has entries {ℎ𝑘,𝑛} that 

describe the instantaneous propagation channel between the nth antenna at the 

BS and the kth UE. A Rayleigh small scale fading assumed distribution such that hk 

~ C N (OM, 𝚤 (xk) IM), which is a valid model for both small and large arrays [97]. 

Linear processing is used for uplink data detection and downlink data precoding. 

For analytic tractability, the BS can acquire perfect CSI from the uplink pilots.  

Besides, the imperfect CSI case is considered in Chapter 4. The uplink linear 

receive combining matrix denote by G = [g1, g2, . . ., gK] ∈ ℂ𝑀 x 𝐾 with the column 

gk being assigned to the kth UE. The MRC, ZF, and MMSE processing are considered 

for uplink detection, which gives 

  G={

𝑯
𝑯(𝑯𝑯𝑯)−𝟏

(𝑯𝑷(𝒖𝒍)𝑯𝑯 + 𝝈𝟐𝑰𝑴)
−𝟏𝑯

                                                 (3.4)    

 

where H = [h1, h2,…, hK] contains all the user channels, σ2 denotes the noise 

variance (in Joule/symbol),  𝑷(𝒖𝒍) = diag(𝑝1
(𝑢𝑙), 𝑝2

(𝑢𝑙), … , 𝑝𝐾
(𝑢𝑙)), and the design 

parameter 𝑝𝑖
(𝑢𝑙) ≥ 0 is the transmitted uplink  power  of UE 𝑖 (in Joule/symbol) 

for 𝑖 =  1, 2, … , 𝐾. Similarly, MRT, ZF, and MMSE as precoding schemes considered 

For MRC, 
For ZF, 
For MMSE, 
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for downlink transmission [100]. The precoding schemes matrix denoted by  V =

 [v1, v2, … , v𝐾]   ∈ ℂ
𝑀 x 𝐾, where 

V = {

𝑯
𝑯(𝑯𝑯𝑯)−𝟏

(𝑯𝑷𝒖𝒍𝑯𝑯 + 𝝈𝟐𝑰𝑴)
−𝟏𝑯

                (3.5)                    

setting 𝐕 =  𝐆 is normal since it reduces the computational complexity, but it is 

optional. 

The aim is to design the system assuring a uniform gross rate �̅� (in 

bit/second) for any active UE, whereof  𝜁ul�̅� is the uplink rate and 𝜁dl�̅� is the 

downlink rate, while conventional systems have a significant difference between 

peak and average rates. As detailed below, this is achieved by combining the linear 

processing with proper power allocation. 

 
 

3.3.2 Uplink in LS MIMO System 

Under the assumption of Gaussian codebooks, linear processing, and the 

perfect CSI [32], the achievable uplink rate in (bit/second) of the 𝑘th UE is  

 

    𝑅𝑘
(ul)

= 𝜁(ul) (1 −
 𝜏(ul)𝐾

𝑈𝜁(ul)
) �̅�𝐾

(ul)
                                                   (3.6)                 

 

 where the pre-log factor (1 −
 𝜏(ul)𝐾

𝑈𝜁(ul)
) accounts for pilot overhead and 𝜁(ul) is the 

 the fraction of uplink transmission. Likewise, 

 

    �̅�𝑘
(ul) = 𝐵 log(1 +

 𝑃𝑘
(ul)

|𝑔𝑘
𝐻ℎ𝑘|

2

∑ 𝑃
ℓ
(ul)

𝐾

ℓ=1,ℓ≠𝑘
|𝑔𝑘
𝐻ℎℓ|

2

+𝜎2‖𝑔𝑘‖
2

)                      (3.7)                                                        

 

is the uplink gross rate (in bit/second) of the transmission from the kth UE, where 

“gross” refers to overhead factors which are excluded. As mentioned above, the 

aim is to provide the same gross rate �̅�𝑘
(ul) = �̅� for 𝑘 = 1, 2, . . . , 𝐾. By utilizing a 

For MRC, 
For ZF, 
For MMSE, 
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technique from [98], this equal-rate condition is met if and only if the uplink power 

allocation vector 𝐩(ul) = [𝑝1
(ul)
, 𝑝2
(ul)
, . . . , 𝑝𝑘

(ul)
 ]
𝑇

is such that 

 𝐩(ul) = 𝜎2(𝐃(ul))
−1
1𝐾           (3.8)         

   

Where the (𝑘, ℓ)th element of 𝐃(ul) ∈ ℂ𝐾×𝐾 is 

 [𝐃(ul)]
𝑘ℓ
=

{
 

 
|𝒈𝒌
𝑯𝒉𝒌|

𝟐

(𝟐�̅� 𝑩 ⁄ −𝟏)
𝟐
‖𝒈𝒌‖

𝟐

−|𝒈𝒌
𝑯𝒉𝓵|

𝟐

‖𝒈𝒌‖
𝟐

                                    (3.9)                       

 

The power allocation in (3.2) figured precisely for MRC and ZF detection, where 

for MMSE detection it is a fixed-point equation since also G varies on the power 

allocation [99].The average uplink PA power (in Watt) expressed as the power 

consumed by the power amplifiers (PAs), which comprises radiated transmit 

power and PA dissipation. By using (3.8), it is to be 

 

PTX
(ul) =

𝛣𝜁(𝑢𝑙)

𝜂(𝑢𝑙)
𝔼{𝟏𝐾

𝑇𝐩(ul)} = 𝜎2
𝛣𝜁(𝑢𝑙)

𝜂(𝑢𝑙)
𝔼 {𝟏𝐾

𝑇(𝐃(ul))
−1
} 𝟏𝐾      (3.10)                          

      

where 0 < 𝜂(ul) ≤ 1 is the PA efficiency at the UEs. 

Observe that it might happen that �̅� cannot be supported for any transmit 

powers. In such a case, computing 𝐩(ul) in (3.2) would lead to some negative 

powers.  However, this can easily be detected and avoided by computing the 

spectral radius of 𝐃(ul) [98]. Moreover, it only happens in interference-limited 

cases; thus, it is not an issue when ZF is employed (under perfect CSI). In these 

circumstances, PTX
(ul) in (3.4) can be computed is closed form as stated in the 

following.  

Lemma 1: If a ZF detector engaged with 𝑀 ≥ 𝐾 + 1, with loss of 

generality the gross rate is parameterize as, 
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�̅� = 𝐵 log 1 + 𝜌(Μ − Κ)       (3.11)                

 

where 𝜌 is a design parameter that is proportional to the received signal-to-

interference-and-noise ratio (SINR). Using this parameterization, the RF power 

PTX
(ul−zf) required to guarantee each UE a gross rate in (3.8) is 

PTX
(ul−ZF) =

𝛣𝜁(𝑢𝑙)

𝜂(𝑢𝑙)
𝜎2𝛼𝑆x𝐾                      (3.12)                                     

where 𝑆𝑥 = 𝔼𝑥 {(1(𝑥))
−1
} account for user distribution and propagation 

environment. The gross rate in (3.11) is used for ZF processing in the remainder of 

this thesis since it gives simple PA power expressions. The parameter 𝜌 is later 

treated as an optimisation variable. 

 

3.3.3 Downlink in LS MIMO System 
 

A normalised precoding vector v𝑘/‖v𝑘‖ and the downlink signal to the kth 

is assigned a transmit power of 𝑝𝑘
(dl)

 (in Joule/symbol). In [j00], assuming Gaussian 

codebooks and perfect CSI the achievable downlink rate (in bit/second) of the kth 

UE with linear processing is  

 

    𝑅𝑘
(dl)

= 𝜁(dl) (1 −
 𝜏(dl)𝐾

𝑈𝜁(dl)
) �̅�𝐾

(dl)
                            (3.13)                      

where (1 −
 𝜏(dl)𝐾

𝑈𝜁(dl)
) accounts for downlink pilot overhead and �̅�𝐾

(dl)
 is the gross rate 

(in bit/second) given by   

   �̅�𝑘
(dl) = 𝐵 log(1 +

 𝑃𝑘
(dl)|h𝑘

𝐻v𝑘|
2

‖v𝑘‖
2

∑ 𝑃ℓ
(dl)

𝐾

ℓ=1,ℓ≠𝑘

|𝑔𝑘
𝐻ℎℓ|

‖𝑣ℓ‖
2

2

+𝜎2

)                 (3.14)                                   

The average PA power defined as  

   PTX
(dl) =

𝛣𝜁(𝑑𝑙)

𝜂(𝑑𝑙)
∑ 𝔼{𝑃ℓ

(dl)}
𝐾

𝑘=1
                                                 (3.15)                                                    
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where 0 < 𝜂(dl) ≤ 1 is the PA efficiency at the BS. Imposing the equal-rate 

condition �̅�𝑘
(dl) = �̅� for all k, it follows that the power allocation vector 𝐩(dl) =

[𝑝1
(dl)
, 𝑝2
(dl)
, . . . , 𝑝𝑘

(dl)
 ]
𝑇

must be computed as 𝐩(dl) = 𝜎2(𝐃(dl))
−1
1𝐾[98], where 

the (𝑘, ℓ)th element of 𝐃(dl) ∈ ℂ𝐾×𝐾 is  

                   [𝐃(ul)]
𝑘,ℓ
=

{
 

 
|𝐡𝒌
𝑯𝐯𝒌|

𝟐

(𝟐�̅� 𝑩 ⁄ −𝟏)
𝟐
‖𝐯𝒌‖

𝟐

−|𝐡𝒌
𝑯𝐯𝓵|

𝟐

‖𝐯𝓵‖
𝟐

                                                (3.16)                           

Plugging 𝒑(𝑑𝑙) = 𝜎2(𝑫(𝑑𝑙))
−1
1𝐾 into (3.12), the average down-link PA power (in 

Watt) is 

        PTX
(dl) = 𝜎2

𝛣𝜁(𝑑𝑙)

𝜂(𝑑𝑙)
𝔼 {1𝐾

𝑇 (𝐃(dl))
−1
1𝐾}                                 (3.17)                                                                     

 

Observe that 𝐃(dl) = (𝐃(ul))
T

if the same processing scheme is used for 

transmit precoding and receive combining (i.e., if G = V). In this case, the user-

specific uplink/downlink transmit powers are different, but the total uplink and 

downlink PA powers in (10) and (17), respectively, are the same (except for the 

factors 𝜁ul/𝜂ul and 𝜁dl/𝜂dl. This is a consequence of the well-known uplink-

downlink duality [101]. Like the uplink, the following result can be proved for ZF in 

the downlink. 

Lemma 2: If a ZF precoding devised with 𝑀 ≥ 𝐾 + 1, then the average 

downlink PA power PTX
(dl−ZF)required to serve each UE with a gross rate equal to �̅� 

in (3.8) is  

        PTX
(dl−ZF) =

𝛣𝜁(𝑢𝑙)

𝜂(𝑢𝑙)
𝜎2𝜌𝑆x𝐾                                   (3.18)                                                              

 
where 𝑆𝑥 is the propagation environment parameter defined in Lemma 1 [23]. 

From Lemmas 1 and 2, that the average uplink and downlink PA powers 
sum up to  

        PTX
(ZF) = PTX

(ul−ZF) + PTX
(dl−ZF) =

Β𝜎2𝜌𝑆x

𝜂
𝐾                  (3.19)                                                                                   

for 𝑘 = ℓ, 
 
for 𝑘 ≠ ℓ. 
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under ZF processing, where 𝜂 = (
𝜁𝑢𝑙

𝜂𝑢𝑙
+

𝜁𝑑𝑙

𝜂𝑑𝑙
)
−1

.A key assumption in this thesis is 

that a uniform gross rate �̅� is a guarantee to all UEs by means of power allocation. 

However, the main results are also applicable in cases with in cases with fixed 

power allocation. Suppose for example that the transmit power is allocated 

equally under ZF processing. The Jensen’s inequality can be used (as is done in 

[102]) to prove that �̅� is a lower bound of the average gross rates  𝔼 {�̅�𝑘
(ul)
} and 

𝔼 {�̅�𝑘
(dl)
} (where the expectation is taken with respect to both user locations and 

channel realizations). 

 

3.4 Existing Power Consumption Model in LS MIMO System  

The EE of a wireless communication system measured in bit/Joule. 

Likewise, the EE calculated as per the ratio between the average sum rate in 

(bit/second) and the average total power consumption 𝑃T (in Watt = Joule/second) 

[40]. The total EE metric accounting for both uplink and downlink takes the 

following form, in a multi-user setting, where 𝑃CP accounts for the circuit power 

consumption. 
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The uplink and downlink total EE is 

 

    EE =
∑ (𝔼{𝑅𝑘

(ul)
}+𝔼{𝑅𝑘

(dl)
})

𝐾

𝑘=1

PTX
(ul)

+ PTX
(dl)

+𝑃CP
                                              (3.20)              

 
 

In most of the existing work, 𝑃CP = 𝑃𝐹𝐼𝑋  is a constant quantity accounting 

for fixed power consumption required for site-cooling, control signaling, and load-

independent power of backhaul infrastructure and baseband processors [28]. 

Moreover, this is not an accurate model to design a good system by optimizing a 

number of antennas (M) and number of UEs (K).  

In fact, Lemmas 1 and 2 shows that the achievable rates with ZF grow 

logarithmically with M (for a fixed PA power). Hence, the simplified model 𝑃CP =

𝑃𝐹𝐼𝑋 gives the impression that achieved an unbounded EE by adding more and 

more antennas. This modelling artefact comes from ignoring that each antenna at 

the BS requires dedicated circuits with non-zero power consumption, and that the 

signal processing tasks also become increasingly complex. In other words, an 

accurate modelling of 𝑃CP is of paramount importance when dealing with the 

design of energy-efficient communication systems.  

 

 

3.5 Energy Efficiency Problem in LS MIMO System  

Based on this EE model in (3.20), the main problem formulated: 

  EE =
∑ (𝔼{𝑅𝑘

(ul)
}+𝔼{𝑅𝑘

(dl)
})

𝐾

𝑘=1

PTX
(ul)

+ PTX
(dl)

+𝑃CP(𝑀,𝐾,�̅�)
  (3.21)
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Solution is designed in Chapter 4 to provide an appropriate model for 

𝑃CP(𝑀,𝐾, �̅�)as a function of the three main design parameters: the number of BS 

antennas(𝑀), number of active UEs(𝐾), and the user gross rates(�̅�).This problem 

is solved analytically for ZF processing in Chapter 4. In Chapter 5, the problem 

solved by Monte Carlo Simulation for MMSE and MRT processing schemes. 

Numerical results for all the processing schemes shown in Chapter 5. Furthermore, 

prior works on EE optimisation have focused on either uplink or downlink. In 

contrast, the main problem, is a holistic optimisation where the total EE maximised 

provided for ζ (ul) and ζ (dl) of uplink and downlink transmission. The optimisation of 

the uplink or downlink is clearly a special case in which ζ (ul) = 0 or ζ (dl) = 0, 

respectively.   Maximising the EE in (3.21) doesn’t decrease the total power, but 

choosing a right power level and use it wisely.  

 

3.6 Summary  

There is four main part of the literature review are explained in this 

chapter. First is the Energy Efficiency in LS MIMO systems, second is the LS MIMO 

system and model, third is the existing power consumption model in LS MIMO 

system and finally the problem formulated based first ,second  and third part. In 

the first part, the definition of EE, the design parameters of EE, and the interplay 

between EE and key system parameters are examined  based on the prior works. 

In the second part, the LS MIMO system model,  and the LS MIMO system key 

design parameters such number of BS antennas, number of users and transmit 

power are explained. In the third part, the existing power consumption model in 

LS MIMO system and its drawbacks are explained. Finally, the Energy Efficiency 

maximisation problem is formulated. The solution is designed to provide an 

appropriate power consumption model which is scalable with the key design 

parameters of EE in LS MIMO system. The problem is solved analytically with ZF 

processing scheme in Chapter 4.   
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Chapter 4 

 

Energy Efficiency Maximisation in Large-Scale 

MIMO Systems - Analytical Framework 

 

4.1 Introduction  

Most prior work on LS MIMO system either ignores the circuit power 

consumption on LS MIMO systems either ignores the circuit power consumption 

at the nodes or the models it as fixed component [20], [21]. This model could be 

misleading because the total power consumption caries with different system 

parameters such as the number of antennas, the numbers of users, and the choice 

of the transmit/receive filters. With this motivation, EE of LS MIMO with a scalable 

power-consumption model is studied. The interplay between EE and the key 

parameters are examined. 

 

4.2 Total Power Consumption Model EE in LS MIMO System 

Based on this EE model in (3.20), the average total power consumption, 𝑃T 

is sum of 𝑃TX and 𝑃CP. 𝑃TX   denotes, the average transmit power consumption (in 

watts) while 𝑃CP  denotes the total average circuit [i.e., all hardware except power 

amplifier (PA)] power consumption (in watts) at the BS. While deploying more 

antenna at the BS boots the data rate, the additional antennas circuitry leads to 

increased power consumption. Inspired by [23], the circuit power consumption 

allowed to scale with the key parameters such as M and K. 
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In particular, 𝑃TX defines the total RF power, as in Equation (3.19) where 𝜂  

in is the effective power amplifier efficiency, averaged over uplink and downlink. 

Based on works from [28], [107] on advanced power amplifier technologies like 

Doherty Power Amplifier, the uplink power amplifier efficiency, 𝜂(𝑢𝑙) set to be 

30%, and the downlink power amplifier efficiency, 𝜂(𝑑𝑙)set to be 39%. 

 

4.3 Realistic Circuit Power Consumption Model in LS MIMO System 
 

The total power utilised by different analogue components and digital 

signal processing is the circuit consumption 𝑃CP in [28]. Based from prior works of 

[28],[27],[34],[93][103] and[104], a new refined circuit power consumption model 

for multi-user MIMO systems is proposed: 

 

    𝑃𝐶𝑃 = 𝑃𝐹𝐼𝑋 + 𝑃𝑇𝐶 + 𝑃𝐶𝐸 + 𝑃𝐶 𝐷⁄ + 𝑃𝐵𝐻 + 𝑃𝐿𝑃                                  (4.1)              

 

where the fixed power 𝑃FIX was defined in Chapter 3, 𝑃TC  accounts for the 

power consumption of the transceiver chains, 𝑃CE  of the channel estimation 

process (performed once per coherence block), 𝑃C/D of the channel coding and 

decoding units, 𝑃BH of the load-dependent backhaul, and 𝑃LP of the linear 

processing at the BS. In the following, simple and realistic models provided for how 

each term in Equation (4.1) depends, linearly or non-linearly, on the main system 

parameters(𝑀,𝐾, �̅�). This is achieved by characterizing the hardware setup using 

a variety of fixed coefficients, which are kept generic in the analysis; typical values 

are given later in Table 2. The proposed model is inspired by [28] [27], [34], [30], 

[93], and [106-109] but goes beyond these prior works by modelling all the terms 

with realistic, and sometimes non-linear, expressions. 

 

 

 

4.3.1 Transceiver Circuit Power  
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For standard transmitters and receivers, power consumption 𝑃TC   can be 

computed as  

    𝑃TC = 𝑀𝑃BS + 𝑃SYN + 𝐾𝑃UE                                       (4.2)    

   

where 𝑃BS  is the power required to run the circuit components (such as 

converters, mixers, and filters) attached to each antenna at the BS and 𝑃SYN is the 

power consumed by the local oscillator. The last term 𝑃UE  accounts for the power 

required by all circuit components (such as amplifiers, mixer, oscillator, and filters) 

of each single-antenna UE. 

 

4.3.2 Channel Estimation Circuit Power  

All channel estimation process is carried out at the BS and UEs, whose 

computational efficiency are 𝐿BS and 𝐿UE . In addition, computational efficiency is 

measured as arithmetic complex-valued operations per Joule also known as 

flops/Watt. There are 
𝐵

𝑈
 coherence blocks per second and, the pilot-based CSI 

estimation is performed once per block. In the uplink, the BS receives the pilot 

signal as a Μ× 𝜏(ul)𝛫 matrix and estimates each UE’s channel by multiplying with 

the corresponding pilot sequence of length 𝜏(ul)𝛫 [17]. This standard linear 

algebra operation [105] and requires PCE
(ul)

=
𝐵

𝑈
 
2𝜏ul𝑀𝐾2

𝐿BS
 Watt. In the downlink, 

each active UE receives a pilot sequence of length 𝜏(dl)𝛫 and processes it to 

acquire its effective precoded channel gain (one inner product). From [105], 

PCE
(dl)

=
𝐵

𝑈
 
4𝜏ul𝐾2

𝐿𝑈𝐸
 Watt is obtained. Therefore, the total power consumption 𝑃CE =

PCE
(ul)

+ PCE
(dl)

 of the channel estimation process becomes 

 

PCE =
𝐵

𝑈
 
2𝜏ul𝑀𝐾2

𝐿𝐵𝑆
+

𝐵

𝑈
 
4𝜏ul𝐾2

𝐿𝑈𝐸
    Watt                                                    (4.3) 
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4.3.3 Coding and Decoding Circuit Power  

 In the downlink, the BS applies channel coding and modulation to 𝛫 

sequences of information symbols. Similarly, each UE applies some suboptimal 

fixed-complexity algorithm for decoding its own sequence. The opposite is done 

in the uplink. The power consumption 𝑃C/D accounting for these processes is 

proportional to the number of bits [104] can thus be quantized as  

𝑃C/D =∑ (𝔼{𝑅𝑘
(ul)

+ 𝑅𝑘
(dl)
})

𝐾

𝐾=1
(𝑃COD + 𝑃DEC)    Watt            (4.4)

  

where 𝑃COD and  𝑃DEC are the coding and decoding powers (in Watt per bit/sec), 

respectively. For simplicity, 𝑃COD and  𝑃DEC are assumed the same in the uplink 

and downlink, but it is straightforward to assign them different values. 

 

4.3.4 Backhaul Circuit Power  

The backhaul circuit power is used to transfer uplink/downlink data between the 

BS and the core network. The power consumption of the backhaul is modelled as 

the sum of two parts [104]: one load-independent and one load-dependent. The 

first part comprised in 𝑃FIX, while the load-dependent part is proportional to the 

average sum rate. Looking jointly at the downlink and uplink, the load-dependent 

term 𝑃BH can be computed as [104] 

 

 

PBH =∑ (𝔼{𝑅𝑘
(ul)

+ 𝑅𝑘
(dl)
})

𝐾

𝐾=1
𝑃BT     Watt                                     (4.5)                                               
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where 𝑃BT is the backhaul traffic power (in Watt per bit/s). 

 

4.3.5 Linear Processing Circuit Power  

The transmitted and received vectors of information symbols at the BS are 

generated by transmit precoding and processed by receive combining, respectively. From 

[105]; 

PLP =  𝛣 (1 −
(𝜏ul+𝜏dl)𝛫

𝑈
)
2𝑀𝐾

𝐿BS
+ 𝑃LP−CWatt                                      (4.6) 

where the power consumed describes the first term by making one matrix-vector 

multiplication per data symbol. The second term 𝑃LP−C, accounts for the power 

required for the uplink linear receive combining matrix G; and the linear precoding 

schemes matrix V; as described in Chapter 3. The precoding and linear receive 

combining matrices are computed once per coherence block and the complexity 

depends strongly on the choice of processing scheme. Since G = V is a natural 

choice (except when the uplink and downlink are designed very differently, only 

one need to be computed and thereby reduce the computational complexity. If 

MRT/MRC is used, only each column of H need to normalize. This requires 

approximately  

𝑃LP−C
(MRT MRC⁄ )

=
𝐵

𝑈
 
3𝑀𝐾

𝐿BS
   Watt             (4.7) 
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which was calculated using the arithmetic operations for standard linear algebra 

operations in [105]. On the other hand, if ZF processing is selected, then 

approximately 

𝑃LP−C
(ZF)

=
𝐵

𝑈
 (

𝐾3

3𝐿BS
+
3𝑀𝐾2+𝑀𝐾

𝐿BS
) Watt             (4.8) 

 

consumed, if the channel matrix inversion implementation based on standard 

Cholesky factorization and back-substitution [105]. The computational of optimal 

MMSE processing is more complex since the power allocation in Equation (3.8) is 

a fixed-point equation that needed iteration until convergence. Such fixed-point 

iterations usually converge very quickly, but for simplicity, the number of 

iterations to some predefined number 𝑄 is fixed. This 𝑃LP−C
(MMSE)

= 𝑄𝑃LP−C
(ZF)

 Watt 

since the operations in each iteration are approximately the as in ZF.  

 

4.4 Energy Efficiency Maximisation with ZF Processing in LS MIMO 
System 

 

A theoretical solution for the Energy Efficiency problem is explained here 

under the assumption of employing  ZF linear processing in LS MIMO system. The 

Energy Efficiency problem is solved analytically by utilising  ZF processing scheme 

in the uplink and downlink. The is solution motivated by analytic convenience and 

likewise the numerical results, which are close to optimal.  
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For ZF processing, Energy Efficiency problem reduces to  

    EE(ZF) =
𝛫(1−

𝜏sum𝐾

𝑈
)�̅�

𝛣𝜎2𝜌𝑆x
𝜂

𝛫+𝑃CP
(ZF)

                                                (4.9)                  

where the notation  

 𝜏sum = 𝜏(ul) + 𝜏(dl)        (4.10)    

    

used the expression in (3.19), and the fact that 

𝔼 {𝑅𝑘
(dl)
} + 𝔼 {𝑅𝑘

(ul)
} = 𝑅𝑘

(dl)
+ 𝑅𝑘

(ul)
= (1 −

𝜏sum𝐾

𝑈
) �̅�        (4.11)    

 

and 

𝑃CP
(ZF)

= 𝑃FIX + 𝑃TC + 𝑃CE + 𝑃C D⁄ + 𝑃BH + 𝑃LP
(ZF)

         (4.12)           

      
  

with 𝑃LP
(ZF)

 being given by (27) after replacing 𝑃LP−C with 𝑃LP−C
(ZF)

 from (4.8).  For 

notational convenience, the constant coefficient 𝒜, {𝒞𝑖}, and {𝒟𝑖} introduced in 

Table I. These, coefficients collect all the different terms in (4.2) – (4.6) and allow 

us to rewrite 𝑃LP
(ZF)

 in (4.12) in the more compact form 

𝑃CP
(ZF)

= ∑ 𝒞𝑖𝛫
𝑖3

i=0
+𝛭∑ 𝒟𝑖𝛫

𝑖2

i=0
+𝒜𝛫 (1 −

𝜏sumΚ

𝑈
) �̅�            (4.13) 

 

where recalling that �̅� is given by (3.11) and, thus, is also a function of (𝑀,𝐾, 𝜌). 

Plugging (34) into (30) yields 

EE(ZF) =
𝛫(1−

𝜏sum𝐾

𝑈
)�̅�

𝛣𝜎2𝜌𝑆x
𝜂

𝛫+∑ 𝒞𝑖𝛫
𝑖3

i=0
+𝛭∑ 𝒟𝑖𝛫

𝑖2

i=0
+𝒜𝛫(1−

𝜏sumΚ

𝑈
)�̅�

                  (4.14)          
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In the following, the aim is to  solve Equation (4.9) for 𝒜,{𝒞𝑖} and {𝒟𝑖}. Firstly,  

derive a closed-form expression for the EE-optimal value of either M, K, or 𝜌, when 

the other two are fixed. This does not bring indispensable insights on the interplay 

between these parameters and the coefficients 𝒜,{𝒞𝑖} and {𝒟𝑖}, but provides the 

means to solve the problem by an alternating optimization algorithm. Observe 

that the subsequent analysis is generic with respect to the coefficient 𝒜, {𝒞𝑖} 

and {𝒟𝑖}, while the hardware characterization  

given in Table I for used simulations setup.  

 

Preliminary Definition of Energy Efficiency Maximisation  

Definition 2: Denoting  The Lambert W function by 𝑊(𝑥) and defined by the 

equation 𝑥 = 𝑊(𝑥)𝑒𝑊(𝑥) for any 𝑥 ∈ ℂ. 

 

Lemma 3: Consider the optimisation problem 

 

 
𝑔 log𝑎+𝑏𝓏

𝑐+𝑑𝓏+ℎ log𝑎+𝑏𝓏
                (4.15)

  

 

with constant coefficients 𝑎 ∈ ℝ, 𝑐, ℎ ≥ 0, and 𝑏, 𝑑, 𝑔 > 0. The unique solution 

to (36) is 

 

TABLE 1  
Circuits Power Coefficients for ZF Processing 

 

Coefficients {𝒞𝑖} Coefficients {𝒞𝑖} and {𝒟𝑖} 
𝒞0 = 𝑃FIX + 𝑃SYN 𝒜 = 𝑃COD + 𝑃DEC + 𝑃BT 

𝒞1 = 𝑃UE 𝒟0 = 𝑃BS 

𝒞0 =
4𝛣𝜏

(dl)

𝑈𝐿UE
 𝒟1 =

𝐵

𝐿BS
(2 +

1

𝑈
) 

𝒞0 =
Β

3𝐿BS
 𝒟2 =

Β

𝑈𝐿BS
(3 − 2𝜏(dl)) 

 
 
 
 
 
 
 
 

 

maximise 

𝓏 ≥
𝑎

𝑏
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 𝓏∗ =
𝑒
𝑊(

𝑏𝑐
𝑑𝑒
+
𝑎
𝑒
)+1

−𝑎

𝑏
          (4.16) 

Lemma 4: The Lambert W function 𝑊(𝑥) is an increasing function for 𝑥 ≥ 0 and 

satisfies the inequalities 

 

 𝑒
𝑥

ln(𝑥)
≤ 𝑒𝑊(𝑥)+1 ≤ (1 + 𝑒)

𝑥

ln(𝑥)
        (4.17)

   

The above lemma follows the results and inequalities in and implies that 𝑒𝑊(𝑥)+1 

is approximately equal to 𝑒 for small 𝑥 (i.e., when ln 𝑥 ≈ 𝑥 ) whereas it increases 

almost linearly with 𝑥 when 𝑥 takes large values. In other words, 

 𝑒𝑊(𝑥)+1 ≈ 𝑒        (4.18)            

 𝑒𝑊(𝑥)+1 ≈ 𝑥               (4.19) 

Lemma 3 is used to optimise the EE, while (4.18) and (4.19) are useful in the 

subsequent discussion to bring insights on how solutions in the form of  𝓏∗ in 

(4.16) behave. 

 
 

4.4.1  Optimal Number of Users for Energy Efficiency Maximisation  

When M and 𝜌 are given, the EE-optimal value of K is considered. For 

analytic tractability, the sum SINR 𝜌𝐾(and thereby the PA power)  assumed and 

the number of BS antennas per UE, 
𝑀

𝐾
 are kept constant and equal to 𝜌𝐾 = �̅� and 

𝑀

𝐾
= �̅� with �̅� > 0 and �̅� > 1. The gross rate is then fixed at 𝒸̅ = Β log (1 +

�̅�(�̅� − 1)). The following is the result; 

 

for  𝑥 ≥ 𝑒. 

 
 

 
 
 
 

 
 
 

for small values 
of  𝑥 

 
 

 
 
 
 

 
 
 

for small values of  𝑥 
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Theorem 1: Suppose 𝒜,{𝒞𝑖} and {𝒟𝑖} are non-negative and constant. For given 

values of �̅� and �̅�, the number of UEs that maximize the EE metric is  

 

 K∗ = max
ℓ
⌈Kℓ

(o)
⌋          (4.20) 

 

Where the quantities {𝐾ℓ
(𝑜)
} denote the real positive roots of the quartic equation 

 𝐾4 −
2𝑈

𝜏sum
𝐾3 − 𝜇1𝐾

2 − 2𝜇0𝐾 +
𝑈𝜇0

𝜏𝑠𝑢𝑚
= 0        (4.21) 

 

where 𝜇1 =

𝑈

𝜏𝑠𝑢𝑚
(𝒞2+�̅� 𝒟1)+𝒞1+�̅� 𝒟0

𝒞2+�̅� 𝒟2
 and  𝜇1 =

𝑈

𝜏𝑠𝑢𝑚
(𝒞2+�̅� 𝒟1)+𝒞1+�̅� 𝒟0

𝒞2+�̅� 𝒟2
  

 

The optimal K is root to the quartic polynomial given in (4.21) shown in this 

theorem. The notation ⌈∙⌋ in (4.20) says that the optimal value  𝐾∗ is either the 

closest smaller or closest larger integer to 𝐾ℓ
(𝑜)

, which is easily determined by 

comparing the corresponding EE. A basic property in linear algebra is that quartic 

polynomials have exactly 4 roots (some can be complex-valued) and there are 

generic closed-form root expressions (4.11). However, these expressions are very 

lengthy and not given here for a brevity infact, the closed-form expressions are 

seldom used because there are simple algorithms to find the roots with higher 

numerical accuracy [106]. 

To gain insights on  𝐾∗ is affected by the different parameters, assume that the 

power consumption required for linear processing and channel estimation are 

both negligible (i.e., 𝑃CE = PLP
(ZF)

≈ 0). This case is particularly relevant as 𝑃CE and 

PLP
(ZF)

 essentially decrease with the computational efficiencies 𝐿BS and 𝐿UE, which 

are expected to increase rapidly in the future. Then, the following result is of 

interest. 
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Corollary 1: If 𝑃CE and PLP
(ZF)

 are both negligible, then  𝐾∗ in (41) can be 

approximated as  

 𝐾∗ ≈ ⌊𝜇 (√1 +
𝑈

𝜏sum𝜇
− 1)⌉          (4.22) 

with  

𝜇 =
𝒞0+

𝛣𝜎2𝑆x
𝜂

�̅�

𝒞1+�̅�ℬ0
=

𝑃FIX+𝑃SYN+
𝛣𝜎2𝑆x
𝜂

�̅�

𝑃UE+�̅�𝑃BS
         (4.23)     

   

From (4.22) and (4,23), it is seen that  𝐾∗ is a decreasing function of the terms in 

(4.1) that are independent of K and M. This amounts to saying that the number of 

UEs is increases with {𝑃FIX,𝑃SYN} and 𝑆x, as well as with the PA power (proportional 

to 𝜌) and the noise power 𝜎2. Looking at the Example 1, 𝑆x increases 

proportionally to 𝑑max
𝑘  which means that a larger number of UEs must be served 

as the cell radius 𝑑𝑚𝑎𝑥 increases. Moreover,  𝐾∗ is unaffected by the terms 

{𝑃COD,𝑃DEC, 𝑃BT}, which are the ones that are multiplied with the average sum 

rate. The above results are summarized on the following corollaries.  

 

Corollary 2: If the power consumptions for linear processing and channel 

estimation are both negligible, then the optimal  𝐾∗ decreases UE and BS antenna 

{𝑃UE,𝑃BS}, is unaffected by the rate-dependent power {𝑃COD, 𝑃DEC, 𝑃BT}, and 

increase with the fixed power {𝑃FIX,𝑃SYN}. 

Corollary 3: A larger number of UEs must be served when the coverage area 

increases. 
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4.4.2  Optimal Number of BS Antennas for Energy Efficiency Maximisation 

The 𝛭 ≥ 𝛫 + 1 that maximizes the EE in (4.14) is found and yielded the following 

result. 

Theorem 2: for given values of 𝐾 and 𝜌, the number of BS antennas maximising 

the EE metric can be computed as 𝛭∗ = ⌊𝑀(𝑜)⌉, where 

 

 𝑀(𝑜) =
𝑒

𝑊

(

 
 
𝜌(
𝛽𝜎2𝑆x
𝜂

𝜌+𝒞′)

𝒟′𝑒
+𝜌

𝐾−1
𝑒

)

 
 
+1

+𝜌𝐾−1

𝜌
         (4.24) 

 

 𝛭∗ is an optimal integer-value and ⌊𝑀(𝑜)⌉ is an optimal real value; where the 

notation ⌈∙⌋ represents, the optimal value  𝑀∗ is either the closest smaller or 

closest larger integer to 𝑀(𝑜).  

 𝒞′ > 0 and 𝒟′ > 0 are defined as  

𝒞′ =
∑ 𝒞𝑖

3

𝑖=0
𝐾𝑖

𝐾
   and  𝒟′ =

∑ 𝒟𝑖
3

𝑖=0
𝐾𝑖

𝐾
                          (4.25) 

 

Theorem 2 provides explicit guidelines on how to select 𝑀 in a multi-user MIMO 

system to maximize EE. It provides the following fundamental insights. 

 Corollary 4: The optimal 𝛭∗ does not depend on the rate-dependent 

power{𝑃COD, 𝑃DEC,𝑃BT} whereas it decreases with the power per BS antenna 𝑃BS 

and increases with the fixed power and UE-dependent power {𝑃FIX, 𝑃SYN ,𝑃UE}. 

Corollary 5: The optimal 𝛭∗ is lower bounded as  
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 𝑀∗ ≥ 𝐾 +

𝛽𝜎2𝑆x
𝜂𝒟′

𝜌+
𝒞′

𝒟′
+𝐾−

1

𝜌

ln(𝜌)+ln(
𝛽𝜎2𝑆x
𝜂𝒟′

𝜌+
𝒞′

𝒟′
+𝐾−

1

𝜌
)−1

−
1

𝜌
                       (4.26) 

for moderately large values of  𝜌 (a condition is given in the proof). When 𝜌 grows 

large, then 

 𝑀∗ ≈
𝛽𝜎2𝑆x

2𝜂𝒟′
𝜌

ln(𝜌)
                 (4.27) 

which is an almost linear scaling law. 

 

Corollary 6: A larger number of antennas are needed as the size of the coverage 

area increases. 

The above corollary follows from the observation that 𝑀∗ increases almost linearly 

with 𝑆x, which is a parameter that increases with the cell radius 𝑑max
𝜅  expressed 

as Equation (3.1). 

 

 

4.4.3  Optimal Transmit Power for Energy Efficiency Maximisation 

Recollecting that 𝜌 is proportional to the SINR, which is directly 

proportional to the PA/transmit power under ZF processing. Finding the EE-

optimal total PA power amounts to looking for the value of 𝜌 in (3.19) that 

maximizes (4.14). The solution is given by the following theorem. 

Theorem 3: For given values of 𝑀 and 𝐾, the EE-optimal 𝜌 ≥ 0 can be computed 

as  

 𝜌∗ ≈
𝑒𝑊(

𝜂

𝛽𝜎2𝑆x
 
(𝑀−𝐾)(𝒞′+𝑀𝒟′)

𝑒
−
1

𝑒
)+1

𝑀−𝐾
− 1                  (4.28) 

 

with 𝒞′ > 0 and 𝒟′ > 0 given by (4.25). 
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Using Lemma 4, it turns out that the optimal  𝜌∗ increases with 𝒞′ and 𝒟′, 

which were defined in (4.25), and thus with the coefficients in the circuit power 

model. Since the maximizing total PA power with ZF processing is 𝑃TX
(ZF)

=

𝛽𝜎2𝑆x

𝜂
𝐾𝜌∗, the following result is found. 

 

Corollary 7: The optimal transmit power does not depend on the rate-dependent 

power {𝑃COD, 𝑃DEC, 𝑃BT} whereas it increases with fixed power and the power per 

UE and BS antenna {𝑃BS, 𝑃FIX, 𝑃SYN, 𝑃UE}. 

The fact that the optimal PA/transmit power increases with {𝑃BS, 𝑃FIX, 

𝑃SYN, 𝑃UE} might seem a bit counter intuitive at first, but it makes much sense and 

can be explained as follows.  

If the fixed circuit powers are large, then higher PA power 𝑃TX
(ZF)

(and thus higher 

average rates) can be afforded in the system since 𝑃TX
(ZF)

 has a small impact on the 

total power consumption. 

It has recently been shown in [29], [17], and [18] that TDD systems permit 

a power reduction proportional to 1/𝑀 (or 1/√𝑀 with imperfect CSI) while 

maintaining non-zero rates as 𝑀 → ∞. Despite being a remarkable result and a 

key motivation for massive MIMO systems, Theorem 3 proves that this is not the 

most energy-efficient strategy. In fact, the EE metric is maximized by the opposite 

strategy of increasing the power with 𝑀. 

 

Corollary 8: the optimal 𝜌∗ is lower bounded as  

 𝜌∗ ≥

𝜂(𝒞′+𝑀𝒟′)

𝛽𝜎2𝑆x
 − 

ln(
𝜂(𝑀−𝐾)(𝒞′+𝑀𝒟′)

𝛽𝜎2𝑆x
 − 1)

𝑀−𝐾

ln(
𝜂(𝑀−𝐾)(𝒞′+𝑀𝒟′)

𝛽𝜎2𝑆x
−1)−1

                             (4.29)    

 

for moderate and large values of 𝑀 (a condition is given in the proof) whereas  
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 𝜌∗ ≈
𝜂𝒟′

2𝛽𝜎2𝑆x
 
𝑀

ln𝑀
        (4.30)  

       

when 𝑀 grows large. 

The above corollary states that the total PA power 𝑃TX
(ZF)

 required 

maximizing the EE metric increases approximately as 𝑀/ ln(𝑀), which is an 

almost linear scaling. The explanation is the same as for Corollary 7; the circuit 

power consumption grows with 𝑀, thus using more transmit power to improve 

the rates is practical before it becomes the limiting factor for the EE. Although the 

total transmit power increases with 𝑀, the average transmit power emitted per 

BS antenna (and per UE if  𝐾 is let scale linearly with 𝑀) decays as1/ ln(𝑀). Hence, 

the RF amplifiers can be gradually simplified with 𝑀. The EE-maximizing per-

antenna transmit power reduction is, nevertheless, much slower than the linear 

to quadratic scaling laws observed in [17], [18] for the unrealistic case of no circuit 

power consumption.  

 

4.4.4 Alternating optimisation 

Theorem 1-3 provide simple closed-form expressions that enable EE-

maximization by optimising 𝐾, 𝑀, or 𝜌 separately when the other two parameters 

are fixed. However, the goal for a system designer is to find the joint global 

optimum. Since 𝐾 and 𝑀 are integers, the global optimum can be obtained by an 

exhaustive search over all reasonable combinations of the pair (𝐾 , 𝑀) and 

computing the optimal power allocation for each pair using Theorem 3. Since 

Theorem 1 shows that EE metric is quasi-concave when 𝐾 and 𝑀 are increased 

jointly which is a fixed ratio,  𝐾 and 𝑀 can be increased step-by-step and can be 

stopped when the EE starts to decrease. Hence, there is no need to consider all 

integers. 
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Although feasible and utilised for simulations in Chapter 5, the brute-force 

joint optimisation is of practical interest only for off-line cell planning, while in low-

complexity approach is required to take into account changes in the system 

settings eventually (e.g., the user distribution or the path-loss model as specified 

by 𝑆x). A practical solution in this direction is to optimize the system parameters 

sequentially per a standard alternating optimization: 

1) Assume that an initial set (𝐾, 𝑀, 𝜌) is given; 

2) Update the number of UEs 𝐾 (and implicitly 𝑀 and 𝜌) per Theorem 1; 

3) Replace 𝑀 with the optimal value from Theorem 2; 

4) Optimise the PA power through 𝜌 by using Theorem 3; 

5) Repeat 2) – 5) until convergence is achieved. 

Observe that the EE metric has a finite upper bound (for 𝒞′ > 0 and 𝒟′ > 0). 

Therefore, the alternating algorithm illustrated above monotonically converges to 

a local optimum for any initial set (𝐾, 𝑀, 𝜌) because the alternating updates of 𝐾, 

𝑀, and 𝜌 may either increase or maintain (but not decrease) the objective 

function. Convergence is declared when the integers 𝑀 and 𝐾 are left unchanged 

in the iteration. 

 

4.5 Imperfect CSI and Multi-Cell Deployment 

The EE-optimal parameter values were derived in the previous section for a 

single-cell scenario with perfect CSI. In this section, to what extent the analysis can 

be extended to single-cell scenarios with imperfect CSI investigated. A newly 

achievable rate for symmetric multi-cell scenarios with ZF forcing processing is 

derived. The analysis is protracted to single-cell scenarios with imperfect CSI. A 

new achievable rate is derived for symmetric multi-cell scenarios with ZF forcing 

processing.  
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The following lemma gives achievable user rates in single-cell scenarios 

with imperfect CSI. 

 

Lemma 5: approximately if ZF detection/precoding is applied under 

imperfect CSI, the average gross rate  

 

       ℛ̅ = 𝛣 log 1 +
𝜌(𝑀−𝐾)

1+
1

𝜏(ul)
+

1

𝜌𝐾𝜏(ul)

                                   (4.31)    

       

is achievable using the same average PA power 
𝛽𝜎2𝑆x

𝜂
𝐾 as in (3.19), where 𝜌 ≥ 0 

is a parameter. 

 

The rate expression in (4.31) is different from (3.11) due to the imperfect CSI which 

causes unavoidable interference between the UEs. The design parameters 𝐾 and 

𝜌 appear in both the numerator and denominator of the SINRs, while in both the 

numerator and denominator of the SINRs, while these only appeared in the 

numerator. Consequently, the EE-optimal 𝐾 and 𝜌 in closed form under imperfect 

CSI not found. This optimal number of BS antennas can, however, be derived 

similarly to Theorem 2, (4.32). Despite the analytic difficulties, Chapter 5 shows 

numerically that the single-cell behaviours that were proved in Section 4.2 are 

applicable also under imperfect CSI.  

 

 𝑀∗ =

⌈
⌈
⌈
⌈
⌈
 

(1 +
1

𝜏(ul)
+

1

𝜌𝐾𝜏(ul)
)
𝑒

𝑤

(

 
 

𝜌(
𝛽𝜎2𝑆x
𝜂

𝜌+𝒞′)

𝑒(1+
1

𝜏(ul)
+

1

𝜌𝐾𝜏(ul)
)

 + 
𝜌𝐾−1

𝑒(1+
1

𝜏(ul)
+

1

𝜌𝐾𝜏(ul)
)
)

 
 
+1

+𝜌𝐾−1

𝜌

⌋
 
 
 
 
 

(4.32) 
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The analytic framework and observations of this thesis can also be applied in multi-

cell scenarios. To illustrate this, a complete symmetric scenario is considered 

where the system parameters 𝑀, 𝐾, and ℛ̅ are the same in all cells and optimized 

jointly. The symmetry implies that the cell shapes, user distributions, and 

propagation conditions are the same in all cells. There are ℐ cells in the system 

assumed. Let x𝑗𝑘  denote the position of the 𝑘th UE in cell 𝑗 and call 𝑙𝑗(x) the 

average channel attenuation between a certain position x ∈ ℝ2 and the 𝑗th BS. 

The symmetry implies that the average inverse attenuation to the serving BS,  𝑆x =

𝔼 {(𝑙𝑗(x𝑗𝑘))
−1

}, is independent of the cell index 𝑗. Moreover, defined as 

 

𝐼𝑗ℓ = 𝔼𝑥ℓ𝑘 {
𝑙𝑗(𝑥ℓ𝑘)

𝑙ℓ(𝑥ℓ𝑘)
}              (4.33) 

as the average ratio between the channel attenuation to another BS and the 

serving BS. This parameter describes the average interference that leaks from a 

UE in cell ℓ to the BS in cell 𝑘 in the uplink, and in the inverse direction in the 

downlink. The symmetry implies 𝐼𝑗ℓ = 𝐼ℓ𝑗. 

The necessity of reusing pilot resources across cells causes pilot contamination 

(PC) [11]. To investigate its impact on the EE, different pilot reuse patterns by 

defining 𝒬𝑗 ⊂{1, 2, ..., 𝐽} as the set of cells (including cell 𝑗) that use the same pilot 

sequences as cell 𝑗 are considered. For symmetry reasons, the cardinality |𝒬𝑗| 

allowed to be the same for all 𝑗. The uplink pilot sequence length is 𝐾𝜏
(ul)
 where 

𝜏(ul) ≥ 𝐽 ∕ |𝒬𝑗| to account for the pilot reuse factor is recorded. The average 

relative power from PC is 𝐼PC = ∑ 𝐼𝑗ℓℓ∈𝒬𝑗∖{𝑗}
, while 𝐼 =∑ 𝐼𝑗𝑙

𝐽

ℓ=1
 is the relative 

interference from all cells and 𝐼PC2 = ∑ 𝐼𝑗ℓ
2

ℓ∈𝒬𝑗∖{𝑗}
 is defined for later use defined 

for later use. Note that these parameters are also independent of 𝑗 for symmetry 

reasons. 

 
Lemma 6: If ZF detection/precoding are applied by treating channel uncertainty as 
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noise, the average total PA power 
𝛽𝜎2𝑆x

𝜂
𝐾 as in (19) achieves the average gross rate 

 

 

ℛ̅ = 𝛣 × log(1 +
1

𝐼PC+(1+𝐼PC+
1

𝜌𝐾𝜏(ul)
)
(1+𝐾𝜌𝐼)

𝜌(𝑀−𝐾)
−
𝐾(𝐼

PC2
)

𝑀−𝐾

)        

 (4.34)   

in each cell, where 𝜌 ≥ 0 is a design parameter. 

 

The rate expression is (4.34) for symmetric multi-cell scenarios (with 

imperfect CSI) are even more complicated than single-cell imperfect CSI case 

considered in Lemma 5. All the design parameters 𝑀, 𝐾, and 𝜌 appear in both the 

numerator and denominator of the SINRs, which generally makes it inflexibly to 

find a closed-form expression for the EE-optimal parameter values. Indeed, this is 

the reason Section 4.2 given for an analytically practicable in the single-cell 

scenario. However, in the Chapter 5 that symmetric multi-cell scenarios perform 

similarly to the ingle-cell scenario, by utilizing the rate expression in Equation 

(4.34) for simulations. 

 

4.6 Total Power Requirement in Single-cell and Multi-Cell scenario 

with Perfect CSI and Imperfect CSI 

For perfect CSI scenario in single-cell deployment, CSI is assumed to be 

perfectly known to both the BS and UEs for analytic tractability. In practice, 

however, CSI is not perfect. For imperfect CSI scenario in single-cell and multi-cell 

deployment, for the BS to acquire the CSI, a simple scheme employed where UEs 

send pilots signals to the BS.  
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Then the BS can estimate the channel by analysing the received pilot 

signals in an uplink training phase. This is acquired from pilot signalling and MMSE 

channel estimation method, where it results in more accurate channel estimation 

[32]. 

The average sum rate in Equation (4.31) for imperfect CSI in single-cell 

deployment and in Equation (4.44) for imperfect CSI in Multi-cell deployment are 

obtained using the same average PA power from Equation (3.19). However, the 

average sum rates are different from perfect CSI average sum rate in Equation 

(3.11). This is due to the imperfect CSI which causes unavoidable interference 

between in the UEs in single-cell deployment. As per the multi-cell deployment, 

the necessity of reusing pilot resources across cells causes pilot contamination [11] 

among the cells. 

As for the total power consumed to achieve the EE, these analytical 

expressions are found to be in an agreement with numerical results provided in 

Chapter 5 in Figure 5.5. In single-cell deployment, increasing the number of BS 

antennas increases the total power consumption, where it also increases the 

hardware-consumed power (different processing schemes are consuming a 

different amount of power in the digital baseband processing.). Likewise, in multi-

cell deployment, however, the numbers are smaller due to inter-cell interference. 

These analyses are confirmed with numerical results over simulation in Chapter 5 

in Figure 5.6.  This is in line with Corollary 8 but stands in contrast to the results in 

[17] and 18], which indicated that the total power consumption should be 

decreased with a number of BS antennas.  

Corollary 8 states that the circuit power consumption grows with 𝑀, thus 

using more total power to improve the rates is practical before it becomes the 

limiting factor for the EE. Although the total power increases with 𝑀, the average 

transmit power emitted per BS antenna (and per UE if  𝐾 is let scale linearly with 

𝑀) decays as 1/ ln(𝑀).  
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Hence, the RF amplifiers can be gradually simplified with 𝑀. The EE-

maximizing per-antenna transmit power reduction is, nevertheless, much slower 

than the linear to quadratic scaling laws observed in [17] and [18], for the 

unrealistic case of no circuit power consumption.  

From [17] and [18], the energy efficiency in LS MIMO can be increased by 

decreasing the total radiated power by increasing the number of the transmit 

antennas per user. This is a straightforward consequence of beamforming and the 

concentration of the transmitted power in a much smaller radiation angle 

targeting a specific user. Since the number of transmit antennas increase per user, 

the number of the processing blocks increases, which consumes additional energy 

which is called the processing energy for precoding. If the precoding is 

accomplished in digital processors, it will consume appreciable additional energy 

since it increases as the number of antennas increases.  

To reduce such precoding energy, the precoding to be divided into the 

analogue functions at high frequency and the digital functions at baseband 

frequencies. It is found that in such hybrid precoding the processing energy can be 

fundamentally reduced. The analogue precoding is dedicated to the so-called 

beam forming steering the radiation to specific users. Hence, finding the right 

balance between these is important. Nevertheless, LS MIMO can be energy 

efficient, despite the additional hardware consumed power. 
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4.7 Summary  

In this chapter, the realistic power consumption model is explained and 

derived  as the first contribution to Energy Efficiency maximisation in LS MIMO 

systems. Following the first contribution,  the second contribution is  computing 

the closed-form analytical expressions using ZF for the optimal number of UEs, the 

number of BS antennas, and transmit power under the assumption of ZF 

processing. This analysis is extended to imperfect CSI case and symmetric multi-

cell scenarios as the third contribution in Energy Maximisation in Large-Scale 

MIMO systems. The expressions derived here then confirmed with numerical 

results in Chapter 5 through simulation along MRT/MRC and MMSE processing 

schemes. 
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Chapter 5 

 

Simulation and Numerical Results 

 
 

5.1 Introduction  

 
MATLAB based simulations executed in this chapter to validate the system 

design guidelines under analytical ZF processing scheme and to make a 

comparison with other processing schemes such as MRT and MMSE. Numerical 

results are provided under both perfect and imperfect CSI, in the single cell and 

multi-cell deployment for analytical ZF processing schemes. Analytical closed-form 

equations for the EE-maximising parameters from Chapter 4 are computed to 

simulate ZF processing scheme. Furthermore, the optimal EE for ZF processing 

with Monte Carlo simulation is numerically compared with the optimal EE 

obtained under ZF analytical closed-form equations. Meanwhile, numerical results 

are provided for single-cell deployment with perfect CSI for both MRT and MMSE 

processing scheme. Whilst for MRT and MMSE processing schemes, Monte Carlo 

simulations are executed; both under random user locations and small-scale 

fading to maximise EE.  

 

 

5.2 Simulation Setting 
 

Simulations are performed using two key system designs from Chapter 4. 

The first key design is; the scalable realistic power consumption model which 

scales non-linearly  with design parameters; the number of BS antennas  M ranges 

from 1 to 220 , and number of users K ranges from 1 to 150 and gross rate ℛ̅.  
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The second key design is; the closed-form analytical EE-maximising 

parameters; the number of BS antennas 𝑀, number of active UEs 𝐾, and transmit 

power 𝜌  (per UE) which were under derived under ZF processing  with perfect CSI 

and imperfect CSI , for both single-cell and multi-cell scenario to maximise the EE 

in Chapter 4. Moreover, as explained in Lemma 1 ZF processing operates only 

when 𝑀 > 𝐾 + 1. Otherwise it i,s not possible to operate ZF and EE is 

unobtainable in both single-cell and multi-cell scenarios. Meanwhile, due to 

analytical complexity closed-form EE -maximising parameters were not derived 

under MMSE and MRT/MRC processing scheme in Chapter 4. Thus, Monte Carlo 

simulation with random user locations and small-scale were performed to 

optimise EE with MMSE and MRT/MRC processing schemes for single-cell scenario 

with perfect CSI. 

Moreover, for single -cell scenario, a symmetric circular cell considered  

with radius 250 m, as shown  in Figure 3.2. For the symmetric multi-cell scenario, 

24 identical clustered cell is considered,  as shown in Figure 5.8. Each cell is a 

500×500 meters square with uniformly distributed UEs, with the same minimum 

distance as in the single-cell scenario. The cell under study is in middle and 

respective for another cell in the system. The interference that arrives from the 

two closest cells in each direction only considered. Thus the cell under study is the 

representative for any cell in the system. Motivated by the single-cell deployment 

from Chapter 4, only ZF processing is considered and focused to compare different 

pilot reuse patterns. As depicted in Figure 5.8, the cells are divided into four 

clusters. Three different pilot reuse patterns are considered, where the same 

pilots in all cells (𝜏(ul) = 1), two orthogonal sets of pilots of  (𝜏(ul) = 2) in Cluster 

1 and Cluster 4 and finally  all clusters have different orthogonal pilots (𝜏(ul) = 4). 
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The corresponding simulation parameters are given in Table 2 and are 

inspired by a variety of prior works: the 3GPP propagation environment defined in 

[96], RF and baseband power modeling from [28], [104], [93], [107], backhaul 

power according to [108], and the computational efficieny are from [34], [109] and 

power amplifier efficiency are from [34], ,[93], [ 107], [103],[ 104]. 

 

 
  

TABLE 2 
Simulation Parameters 

 

Parameter Value 

Carrier frequency: 𝑓c 2 GHz 

Cell radius (single-cell): 𝑑𝑚𝑎𝑥 250 m 

Channel coherence bandwidth: 𝐵C 180 kHz 

Channel coherence time: 𝑇C 10ms 

Coherence block (symbols): 𝑈 1800 

Computational efficiency at BSs: 𝐿𝐵𝑆  12.8 Gflops/W 

Computational efficiency at UEs: 𝐿𝑈𝐸  5 Gflops/W 

Fixed power consumption (control signals, backhaul): 𝑃FIX 18 W 

Fraction of downlink transmission: 𝜁(dl) 0.6 

Fraction of uplink transmission: 𝜁(dl) 0.4 

Inter-site distance for multi-cell 500 m 

Large-scale fading model:  𝑙(𝑥) 10−3.53 ∕∥ x ∥3.76 
Minimum distance:   𝑑𝑚𝑖𝑛 35 m  

Network Deployment for multi-cell 25-cell clustered grid 

Network Deployment for single-cell circular 

Power Amplifier efficiency at the UEs: 𝜂(ul) 0.3 

Power Amplifier efficiency at the BSs: 𝜂(dl) 0.39 

Power consumed by local oscillator at BSs: 𝑃SYN 2 W 

Power required for backhaul traffic: 𝑃BT 0.25 W/(Gbit/s) 

Power required for coding of data signals: 𝑃COD 0.1 W/(Gbit/s) 

Power required for decoding of data signals: 𝑃DEC 0.8 W/(Gbit/s) 

Power required to run the circuit components at a BS: 𝑃BS 1 W 

Power required to run the circuit components at a UE: 𝑃UE 0.1 W 

Propagation environment 3GPP [48] 

Relative pilot lengths: 𝜏(ul) , 𝜏(dl) 1 

Total noise power: 𝐵𝜎2 96 dBm  

Transmission bandwidth: 𝐵 20 MHz 
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5.3 Simulation Method 

There are two methods primarily carried out to achieve objectives of this 

thesis; first is obtaining the EE maximising parameters under analytical ZF 

Processing Scheme and second is obtaining the EE maximising parameters under 

Monte Carlo Simulation for MMSE and MRT/MRC Scheme. The EE maximising 

parameters such as; the number of BS antennas 𝑀, number of active UEs 𝐾, and 

transmit power 𝜌  (per UE) were derived under closed-form analytical ZF 

processing scheme and new refined total power consumption model 𝑃T from 

Chapter 4, for both single-cell and multi-cell with perfect CSI and imperfect CSI.  

However, due to analytic complexity,the EE maximising parameters above 

were obtained under Monte Carlo simulation based on power allocation  from 

Equation (3.8 ), Equation (3.9) and Equation (3.16) in Chapter 3 and the new circuit 

power consumption model 𝑃CP  from Equation (4.1) in Chapter 4 for; MMSE and 

MRT/MRC processing for single-cell scenario with perfect CSI . 

The optimal number of (BS) antennas 𝑀, the optimal number of active 

(UEs) 𝐾, and the optimal transmit power 𝜌 were obtained by implementing the 

standard alternating optimisation algorithm from Chapter 4 for all the processing 

schemes. The standard alternating optimising algorithm enable EE maximisation 

by optimising the number of (BS) antennas 𝑀, numba er of active (UEs) 𝐾, and the 

transmit power 𝜌 separately when the other two are fixed.  

Since the goal of the system design is to find the joint global optimum, thus 

the global optimum can be obtained by an exhaustive search over all reasonable 

combinations of the pair (𝐾 , 𝑀) and computing the optimal power allocation 𝜌 

for each pair using Theorem 3 in Chapter 4. Since Theorem 1 shows that EE metric 

is quasi-concave when 𝐾 and 𝑀 are increased jointly which is a fixed ratio,  𝐾 and 

𝑀 can be increased step-by-step and can be stopped when the EE starts to 

decrease. Hence, there is no need to consider all integers.  
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Achievable global optimum Energy Efficiency values for all the processing 

schemes are computed for different values of 𝑀 and 𝐾 where a number of BS 

antennas ranges from 1 to 220 and number of users ranges from 1 to 150 are 

considered based on EE maximising parameters. The EE maximising parameters 

are likewise utilised to compute other system parameters such as; Energy 

Efficiency, Area throughput, Total Transmit Power and Radiated Power per BS 

antenna where a number of BS antennas 𝑀 ranges between 1 to 220 and the 

optimal number of users 𝐾 is fixed. 

 

 

5.4 Optimal Energy Efficiency in Single Cell with Existing Power 
Consumption Model with Analytical ZF processing 

In the following plot, an analytical expression derived for EE optimal with 

ZF processing scheme from Equation (3.20) used to compute existing circuit power 

consumption, 𝑃CP where 𝑃CP is a constant quantity accounting for fixed power 

consumption. For this purpose, the EE-optimal transmit power, the EE-optimal 

number of BS antennas (M) and the EE-optimal number of users (K) derived from 

Equation (4.28), Equation (4.26) and Equation (4.22), respectively are utilised. In 

the Figure 5.1, the maximum EE is plotted against nua mber of BS antennas ranges 

from 1 to 220 and number of users ranges from 1 to 150. The plot confirms the 

simplified model 𝑃CP = 𝑃𝐹𝐼𝑋  gives the impression that achieved an unbounded EE 

by adding more and more antennas, where maximum BS antennas which is 220 

accounts for optimal EE. Thus, this is not an accurate model to design a good 

system by optimizing number a of antennas (M) and number of UEs (K). 
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Figure 5.1: Energy Efficiency in the single-cell scenario for ZF processing with Existing           
Power Consumption Model.                 

    

          

5.4.1 Comparison of EE Optimal for Existing Energy Model and Realistic 
Power Model with Analytical ZF Processing 

Figure 5.2 shows the comparison of EE optimal for existing energy model 

and realistic energy model. The results are compared for a fixed 100 number of 

users when the number of BS antennas ranges from 1 to 220. The plot in Figure 

5.2 shows that the existing energy model gives unbounded EE as the number of BS 

antennas. The EE is optimal when the BS antennas are maximum, which is 220.  
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However, for realistic energy model, the EE optimal is obtained when the 

BS antennas are 160. The numerical result for existing energy model is obtained 

from analytical expression derived in Equation (3.20). 

 

Figure 5.2: Comparison of Energy Efficiency in the single-cell scenario with perfect CSI     for 
ZF processing with Existing Power Consumption Model and Realistic Power Consumption 
Model. 
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5.5 Optimal Energy Efficiency in Single Cell Deployment for ZF 
Processing scheme with Monte Carlo Simulation 

In Figure 5.3, the EE is plotted against a number of BS antennas and number 

of users for Single-cell deployment with perfect CSI. In the plot, Monte Carlo 

simulation is utilised to compute EE optimal with ZF processing where a number 

of BS antennas ranges from 1 to 220 and number of users ranges from 1 to 150 

are considered. 

 For this purpose, the power allocation is computed from Equation (3.8) 

and Equation (3.16) for ZF processing scheme. The EE optimal is obtained by 

optimising the power allocation to each UE for a given processing scheme and 

system dimension. The optimal EE = 30.8 Mbit/Joule is obtained when a number 

of BS antennas, M = 162 and numbers of users, K = 133. The plot confirms the 

Monte Carlo simulation results in Figure 5.2 and the analytical result from 

Equation (4.14) in Figure 5.5 are found to be in an agreement.  

            Figure 5.3: Energy Efficiency with Monte Carlo ZF simulation in the single-cell    
            scenario with perfect CSI. 
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5.5.1 Comparison of EE Optimal obtained under Analytical ZF processing 
and ZF Processing under Monte Carlo simulation 

Figure 5.4 shows the comparison of EE optimal obtained under Analytical 

ZF processing and ZF processing under Monte Carlo Simulation. The results are 

compared for a fixed 100 number of users when the number of BS antennas ranges 

from 1 to 220. The plot shows that EE optimal obtained under analytical ZF 

processing from Equation (3.21) is in an agreement with the EE optimal obtained 

under Monte Carlo ZF processing simulation.  For example, in the Single-cell 

scenario with perfect CSI, the EE is optimal when BS antennas are 160 in both 

analytical ZF processing and Monte Carlo ZF processing simulation.  

Figure 5.4: Comparison of Energy Efficiency in the single-cell scenario with perfect CSI 
for ZF processing with Analytical Simulation and Monte Carlo Simulation. 
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5.6 Total Power Consumption in Single-cell and Multi-cell with perfect 
and Imperfect CSI with Analytical ZF processing 

In Figure 5.5, the total power consumption is plotted against a number of 

Base Station antennas, M utilising an EE-optimal number of users, K = 133 with 

perfect CSI and K = 127 with imperfect CSI in single-cell deployment, where BS 

antennas from 1 to 220 are considered in the simulation.  The EE-optimal total 

power consumption is 342 Watt. As the number of BS antennas increases, the 

transmit power increases, where it also increases the total power consumption 

and the hardware-consumed power. The total power consumption with imperfect 

CSI is smaller due to unavoidable interference between in the UEs in single-cell 

deployment, where the EE-optimal total power consumption is 38.62 Watt.  

    
      
 
        
 
 
 
  
   
  
 
     
  

Figure 5.5: Total power consumption in the single-cell scenario under analytical ZF 
simulation with an EE-optimal number of users, K = 133 with perfect CSI and K = 127 
with imperfect CSI. 
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In multi-cell deployment shown in Figure 5.6, however, the total power 

consumption is smaller compared to single-cell, due inter-cell interference. The 

EE-optimal number of users, K = 77, 70, and 60 for pilot reuse, 𝜏(ul) = 1, 2, and  4 

, respectively, and BS antennas from 1 to 220 are considered in the simulation. The 

optimal total power consumption are 2.82 watt, 1.71 watt and 0.6857 

respectively. 

These plots confirmed the numerical results through simulation to agree 

with analytical results in Chapter 4.  This result is in line with Corollary 8 but stands 

in contrast to the results in [31] and [33], which indicated that the transmit power 

should be decreased with a number of BS antennas.  

 

 

   

           Figure 5.6: Total power consumption in the multi-cell scenario under analytical      
           ZF processing with an EE-optimal number of user K = 77, 70, and 60 with pilot reuse    
           1, 2, and 4 for imperfect CSI.   
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5.7 Single-Cell Deployment 
 

The single-cell deployment model validated in Figure 5.7 shows the set of 

achievable EE values with perfect CSI, under analytical ZF processing from 

Equation (3.21), and for different values of 𝑀 and 𝐾 where a number of BS 

antennas ranges from 1 to 220 and number of users ranges from 1 to 150 are 

considered. ZF processing operates when 𝑀 > 𝐾 + 1, otherwise it is not possible 

to operate ZF. Each point uses the EE-maximizing value of transmit power 𝜌 from 

Theorem 3. The plot shows that there is a global EE-optimum at 𝑀 = 165 and 𝐾 =

104, which is achieved by 𝜌 = 0.8747 and the practically reasonable spectral 

efficiency 5.7644 bit/symbol (per UE). The optimum is clearly a massive MIMO 

setup, which is notable since it is the output of an optimization problem where the 

system dimension is not restricted. The surface in Figure 5.7 is concave and quite 

smooth. Thus, there is a variety of system parameters that provides close-to-

optimal EE and the results appear to be robust to small changes in the circuit 

coefficients. The alternating optimization algorithm from Chapter 4 is applied with 

a starting point of (𝐾,𝑀,𝜌)=(3,1,1). The iterative progression is shown in Figure 

5.7 and the algorithm converged after 7 iterations to the global optimum. 
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                 Figure 5.7: Energy Efficiency with analytical ZF simulation in the single-cell scenario  
                 with perfect CSI.                       

 

For comparisons, Figure 5.8 shows the corresponding set of achievable EE 

values under MMSE processing (𝑄 = 3) Figure 5.9 illustrates the results for 

MRT/MRC processing with, and Figure 5.10 considers analytical ZF processing 

under imperfect CSI where number of BS antennas from 1 to 220 and number of 

users and from 1 to 150 are considered. The MMSE and MRT/MRC results were 

generated by Monte Carlo simulations, while the ZF results were computed using 

the expression in Lemma 5. Although MMSE processing is optimal from a 

throughput perspective, however ,ZF processing yielded higher EE. This is due to 

the higher computational complexity of MMSE otherwise, the difference in 

throughput is quite small.  
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MMSE also has the unnecessary benefit of handling 𝑀 < 𝐾 in LS MIMO setting. ZF 

processing with imperfect CSI has the similar behaviour as ZF processing and 

MMSE processing with perfect CSI. Therefore, this analysis has bearing on realistic 

single-cell systems. 

 
 
 

 
              
               Figure 5.8: Energy Efficiency with MMSE processing in the single-cell scenario  
               with Monte Carlo simulation.   
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             Figure 5.9: Energy Efficiency with MRT/MRC processing in the single-cell  
             scenario with Monte Carlo simulation. 

      
 
 
 

 
     Figure 5.10: Energy Efficiency in the single-cell scenario with imperfect CSI with   
     analytical ZF simulation. 
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Remarkably, MRT/MRC processing gives a very different behaviour. The EE 

optimum is much smaller than with ZF and MMSE and achieved when  𝑀 = 81 

and 𝐾 = 77. This can still be called a Large-Scale MIMO setting since there are a 

large number of BS antennas. However, it is a degenerative case where 𝑀 and 𝐾 

are almost equal. Thus, the typical asymptotic LS MIMO properties from [11], [18] 

will not hold. The cause for 𝑀 ≈ 𝐾 ,is that MRT/MRC operates under strong inter-

user interference. Thus, the rate per UE is small and it make sense to schedule as 

many UEs as possible to wind up the sum rate. The signal processing complexity is 

lower compare to ZF processing for the same number of 𝑀 and 𝐾. However, the 

power savings are not big enough to compensate for the lower rates. To achieve 

the same rates as ZF, MRT/MRC requires 𝑀 ≫ 𝐾. This setting would drastically 

increase the computational complexity and circuit power, however not improving 

the EE. 

Looking at the respective EE-optimal operating points, the formulas in 

Chapter 4 can be used to compute the total complexity of channel estimation, the 

precoding/combining matrices, and performing precoding and receive combining. 

The complexity becomes 710 Gflops with ZF processing, 239 Gflop with MRT/MRC 

processing, and 664 Gflops with MMSE processing. These numbers are all within a 

realistic range, and a clear majority of the computations can be parallelised for 

each antenna. This is due to the total complexity is dominated by performing 

precoding and receive combining on every vector of data symbols in MRT/MRC. 

Despite its larger number of BS antennas and UEs, ZF processing only requires 3 

times more operations than MRT/MRC processing. However, the computation of 

the precoding matrix which scales as 𝒪 (𝐾3 +𝑀𝐾2) in ZF only occurs once per 

coherence block. 
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Furthermore, to compare the different processing schemes, Figure 5.11 

shows the maximum EE as a function of the number of BS antennas where a 

number of users are fixed and BS antennas from 1 to 220 are considered in the 

simulation. Undoubtedly, the similarity between MMSE and ZF processing shows 

an optimality of operating at high SNRs where these precoding schemes are almost 

equal in EE. 

 

 

 

        Figure 5.11: Maximum EE of BS antennas for different processing schemes  
         in the single-cell scenario at EE-optimal number of user K (KZF = 133,   
         KMMSE = 134 and KMRT = 81). 

       
 

Subsequently, Figure 5.12,  shows the total Power Amplifier power that 

maximizes the EE for different 𝑀 ranges from 1 to 220 using the corresponding 

optimal 𝐾. For all the considered processing schemes, the most energy-efficient 

strategy is to increase the transmit power with 𝑀. This is in line with Corollary 8 

but stands in contrast to the results in [17] and [18], which indicated that the 

transmit power should be decreased with 𝑀. However, Figure 5.12 likewise shows 

that the transmit power with ZF precoding and MMSE precoding is about 

100mW/antenna. Mean,while it drops to 23 mW/antenna with MRT, as it gives 

higher interference and thus makes the system interference-limited at lower 

power.  
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These numbers are much smaller than conventional macro BSs which 

operate at around 40 × 103 mW/antenna [96] and reveals that the EE-optimal 

solution can be deployed with low-power UE-like RF amplifiers.  

 

 
   Figure 5.12: Total PA Power of BS antennas for different processing schemes in 

        the single-cell scenario and the radiated power per BS antenna at EE-    
         optimal number of user (KZF = 133, KMMSE = 134 and KMRT = 81). 
 

 

Finally, Figure 5.13 shows the area throughput (in Gbit/s/Km2) that 

maximizes the EE for different Base station antennas 𝑀 ranges from 1 to 220 for 

all the processing schemes as in Figure 5.11 and 5.12. By referring to Figure 5.11, 

there are a 3-fold improvement in optimal EE for ZF and MMSE processing as 

compared to MRT/MRC. Figure 5.13 shows, that there is simultaneously 8-fold 

improvement in area throughput. Mostly, this gain also is achieved under 

imperfect CSI with ZF processing scheme, which shows that LS MIMO with proper 

interference-suppressing precoding can achieve both great energy efficiency and 

unprecedented area throughput. In contrast, it is inefficient to deploy many BS 

antennas and then co-process them using a MRT/MRC processing scheme. This is 

because MRT/MRC severely limiting both the energy efficiency and area 

throughput. 

 



93  

 

 

 
         Figure 5.13: Area throughput of BS antennas for different processing 
         schemes in the single-cell scenario at EE-optimal number of user (KZF = 133,  
         KMMSE = 134 and KMRT = 81). 

 

 

 

5.8 Multi-Cell Deployment 
 

A lot of studies have been carried out on the symmetric multi-cell scenario. 

The symmetric multi-cell scenario illustrated in Figure 5.14 is considered and 

concentrated on the cell in the middle. Each cell is a 500×500 meters square with 

uniformly distributed UEs, with the same minimum distance as in the single-cell 

scenario. The interference that arrives from the two closest cells in each direction 

only considered.  Thus the cell under study in Figure 5.14 is respective for another 

cell in the system. Motivated by the single-cell deployment results, only ZF 

processing is considered and focused to compare different pilot reuse patterns. As 

depicted in Figure 5.14, the cells are divided into four clusters. Three different pilot 

reuse patterns are considered, where the same pilots in all cells (𝜏(ul) = 1), two 

orthogonal sets of pilots of  (𝜏(ul) = 2), in Cluster 1 and Cluster 4 and finally  all 

clusters have different orthogonal pilots (𝜏(ul) = 4).  
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Numerical computations of the relative inter-cell interference give 

𝐼PC ∈{0.5288, 0.1163, 0.0214} and 𝐼PC2 ∈{0.0405, 0.0023, 7.82∙10-5 }, where the 

values reduce with increasing reuse factor 𝜏(ul). Moreover, 𝐼 = 1.5288 and 

𝛣𝜎2𝜌𝑆x

𝜂
= 1.6022 in this multi-cell scenario. 

 

 

                      Figure 5.14: a Multi-cell scenario where cells are clustered (25 identical    
                        cells) to enable different pilot reuse factor. 

 

The maximal EE for a different number of antennas is shown in Figure 5.15. 

Meanwhile, Figure 5.16 shows the corresponding PA power and power per BS 

antenna, whereby 5.17 shows the area throughout. A number of BS antennas M 

ranges from 1 to 200, and EE-optimal number of users K is fixed in the simulations. 

These figures are very similar to the single-cell counterparts in Figure 5.11, Figure 

5.12 and Figure 5.13. However, the main difference is, all the values are smaller. 

Hence, the inter-cell interference affects the system by reducing the throughput, 

reducing the transmit power consumption, and thereby the EE likewise. 

Interestingly, the largest pilot reuse factor (𝜏(ul) = 4) gives the highest EE and 

area throughput. This shows the requirement of mitigating pilot contamination in 

multi-cell deployment. EE-optimal is nevertheless increasing the transmit power 

with 𝑀 as proved in Corollary 8 in the single-cell scenario, but a pace where the 

power per antenna reduces with 𝑀. 
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        Figure 5.15: Maximum EE for different BS antennas and different pilot reuse     
                      factors in the multi-cell scenario at EE-optimal number of user K = 77, 70, and    
                      60 with pilot reuse 1, 2, and 4. 
  

 
 
 

 

 

        Figure 5.16: Total PA for different BS antennas and different pilot reuse factors 
                      in the multi-cell scenario at an EE-optimal number of user K = 77, 70, and 60    
                      with pilot reuse 1, 2, and 4. 
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                 Figure 5.17: Area Throughput for different BS antennas and different pilot  
                       reuse factors in the multi-cell scenario at an EE-optimal number of user K =   
                       77, 70, and 60 with pilot reuse 1, 2, and 4. 

  
 

                 

Finally, the set of achievable  EE values for ZF precoding deployed multi-

cell scenario shown in Figure 5.18, where a number of BS antennas from 1 to 220 

and number of users and from 1 to 150 are considered. This simulation setup 

devised a pilot reuse of 𝜏(ul) = 4.  This gives the highest EE as the shape of the 

concave is like the single-cell counterpart is observed in Figure 5.9, but the optimal 

EE value is smaller since it occurs at the smaller system dimensions of 𝑀 =123 and 

𝐾 =40. This is mainly due to inter-cell interference, which forces each cell to 

sacrifice some degrees-of-freedom. The pilot over-head is almost the same as in 

the single-cell scenarios, but the pilot reuse factor gives room for fewer UEs. 

Nevertheless, the conclusion drawn is that Large -Scale MIMO is the EE-optimal 

architecture. 
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             Figure 5.18: Energy efficiency with ZF processing in the multi-cell scenario with pilot   
             reuse 4 
 
 
 
 

5.9 Summary 

This chapter gives numerical results for an analytical framework based on 

ZF processing scheme and Monte Carlo simulation for MRT and MMSE processing 

scheme. Moreover, this chapter proved the studies in Chapter 4, that Energy 

Efficiency can be maximised by the interplay between different key system 

parameters such as the number of Base Station antennas, the number of users and 

the choice of the transmit power in LS MIMO systems including propagation and 

different components of the power consumption model.  Furthermore, a realistic 

power consumption model which scalable key system parameters for Large-Scale 

MIMO is validated in this chapter.  
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The results reveal that (a) an LS MIMO with 100 – 200 BS antennas are the 

correct number of antennas for energy efficiency maximisation; (b) these number 

of BS antennas should serve number of active UEs of the same size; (c) since the 

circuit power increases the transmit power should increase with number of BS 

antennas since the circuit power increases; (d) the radiated power antenna is in 

the range of 10-100 mW and decreases with number of BS antennas; (e) ZF 

processing provides the highest EE in all the scenarios due to active interference-

suppression at affordable complexity. Therefore, these highly relevant numerical 

results prove that it is energy efficient to operate the next generation cellular 

networks in the LS MIMO regime.  
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Chapter 6 

 

Conclusions and Future Research 
 
 

 
6.1 Introduction 

 

This chapter presents the main conclusion and a summary of research done 

in each chapter with some contributions to the knowledge. Since the research in 

LS MIMO is a continuous work, then this chapter also highlights a possible further 

investigation as a guide to the next research direction. 

 

 
 

6.2 Conclusions 

 
 

This thesis focuses on the energy maximisation improvement of the LS 

MIMO systems to cope with energy maximisation problem. The thesis has three 

main contributions; all the three contributions elaborated in detail.  

This thesis analysed how to select the number of BS antennas 𝑀, number 

of active UEs 𝐾, and transmit power 𝜌  (per UE) to maximise the EE in Large-Scale 

MIMO systems. Contrary to most prior works, a realistic power consumption 

model is deployed that explicitly described how the total power consumption 

depends non-linearly on 𝑀, 𝐾, and ℛ̅. Simple-closed-form expressions for the EE-

optimising parameter values and their scaling behaviours were derived under ZF 

processing with perfect CSI and verified by simulations for other processing 

schemes, under imperfect CSI, and in symmetric multi-cell scenarios.  
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The applicability in general multi-cell scenarios is an important open 

problem for future work. 

The EE (in bit/Joule) is a quasi-concave function of  𝑀 and 𝐾, thus it has a 

finite global optimum. The numerical results show that deploying 100-200 

antennas to serve a relatively large number of UEs is the EE-optimal solution using 

today’s circuit technology. This is interpreted as Large-Scale MIMO setups, but 

stress that 𝑀 and 𝐾 are at the same order of magnitude in contrast to the 
𝑀

𝐾
≫ 1 

assumption in the seminal paper of [30]. Contrary to common belief, the transmit 

power should increase with 𝑀 (to compensate for the increasing circuit power) 

and not decrease. Energy-efficient systems are therefore not operating in the low 

SNR regime, but in a regime where proper interference-suppressing processing 

(e.g., ZF or MMSE) is highly preferably over interference-ignoring MRT/MRC 

processing. The radiated power per antenna is, however, decreasing with 𝑀 and 

the numerical results show that it is in the range of 10-100 mW. This indicates that 

massive MIMO can be built using low-power consume-grade transceiver 

equipment at the BSs instead of conventional industry-grade high-power 

equipment. 

 

 
 

6.2 Future Research 
 

 

Several recommendations, which may guide to the future research 

directions on LS MIMO systems. The analysis was based on spatially uncorrelated 

fading, while each user might have unique non-identity channel covariance 

matrices in practice (e.g., due to limited angular spread and variations in the 

shadow fading over the array). The statistical information carried in these matrices 

can be utilised in the scheduler to find statistically compatible users that are likely 

to interfere less with each other [113].  
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This makes the results with imperfect CSI and with MRT/MRC processing 

behaves more like ZF processing with perfect CSI does.  

The numerical results are stable to small changes in the circuit power 

coefficients, but can otherwise change drastically. The simulation code is available 

for download, to enable simple testing of other coefficients. the circuit power 

coefficients are predicted to decrease over time, implying that the EE-optimal 

operating point will get a larger value and be achieved using fewer UEs, fewer BS 

antennas, less transmit power and more advanced processing. The system model 

of this thesis assumes that any number of UEs can be served with any data rate. 

The problem formulation can be extended to take specific traffic patterns and 

constraints into account; delay can, for example, be used as an additional 

dimension to optimise [112]. This is outside the scope of this thesis, but the closed-

form expressions in Theorem 1-3 regardless used to optimise a subset of the 

parameters while traffic constraints select the others. Another extension is to 

consider N-antenna UEs, where 𝑁 > 1. If one stream is sent per UE, one can 

approximate the end performance by treating each UE as N separate UEs in the 

framework. In both cases, the exact analysis would require a revised and more 

complicated system model.  
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Appendix A 

Proofs for Chapter 3 

 
A.1 Proof of Lemma 1 and 2 

 

ZF is employed for this purpose, 𝐃(ul) in (3.8) is reduces to a diagonal matrix 

where the 𝑘th diagonal entry is 
 1

𝑝(𝑀−𝐾)‖𝑔𝑘‖
2
 since |𝑔𝑘

𝐻ℎ𝑘|
2 = 1 with ZF detection. 

𝑝𝑘
(ul−ZF) = 𝑝(𝑀 − 𝐾)𝜎2‖𝑔𝑘‖

2  

                                            = 𝑝(𝑀 − 𝐾)𝜎2[(𝑯𝑯𝑯)−1]𝒌,𝒌              (1) 

 

since 𝑔𝑘 is the kth column of 𝑮 = 𝑯(𝑯𝑯𝑯)−𝟏. Therefore, (3.10) reduces to  

𝑃TX
(ul−ZF)

=
𝛣𝜁(𝑢𝑙)

𝜂(𝑢𝑙)
𝑝(𝑀 − 𝐾)𝜎2𝔼{ℎ𝑘,x𝑘}{tr((𝑯

𝑯𝑯)−1)}             (2)       

 

where the expectation is computed with respect to both the channel realization  

{ℎ𝑘} and the user locations {x𝑘}. For fixed user locations, 𝑯𝑯𝑯 ∈ ℂ𝑲×𝑲 has a 

complex Wishart distribution with 𝑀 degrees of freedom and parameter matrix 

𝚲 = diag(𝑙(x1, 𝑙(x1), 𝑙(x1),…, 𝑙(x𝐾)). By using [113, Eq. (50)], the inverse first-

order moment is 
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𝔼{ℎ𝑘,x𝑘}{tr((𝑯
𝑯𝑯)−1)} = 𝔼{ℎ𝑘} {

𝑡𝑟(𝚲−1)

𝑀 − 𝐾
} 

                                                                                 = ∑
𝔼𝑥𝑘{(𝑙(𝑥𝑘))

−1
}

𝑀−𝐾
𝐾
𝑘=1                                          (3) 

The average uplink PA power in (3.12) is obtained and expected same for all the 𝑘 

with respect to x𝑘. The same step as described above followed to proof Lemma 2 

by referring to [110] for details. 
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Appendix B 

Proofs for Chapter 4 

 
B.1 Proof of Lemma 3 

 

The objective function is denoted by 𝜑(𝑧) =
𝑔 log𝑎+𝑏𝓏

𝑐+𝑑𝓏+ℎ log𝑎+𝑏𝓏
 . This function 

is proven quasi concave by allowing the level sets 𝑆𝜅 = {𝓏: 𝜑(𝓏) ≥ 𝜅} to be 

concave for any 𝜅 ∈ ℝ [114, Section 3.4]. The set is empty for 𝜅 >
𝑔

ℎ
 since 𝜑(𝓏) ≤

𝑔

ℎ
. 

When the set is non-empty, the second-order derivative of 𝜑(𝓏) should be negative, 

which holds for 𝓏 ≥ −
𝑎

𝑏
 since 

𝜕2𝜑(𝓏)

𝜑𝓏2
=

ℎ𝜅−𝑔

ln(2)
 

𝑏2

(𝑎+𝑏𝓏)2
≤ 0 for 𝜅 ≤

𝑔

ℎ
 . Hence, 𝜑(𝓏) 

is a quasi-concave function. 

If there 𝓏∗ ≥ −
𝑎

𝑏
 such that 𝜑′(𝓏∗) = 0, then the quasi-concavity implies 

that 𝓏∗ is the global maximiser and that 𝜑(𝓏) is increasing for 𝓏 < 𝓏∗ and 

decreasing for 𝓏 > 𝓏∗. The existence of 𝓏∗ is proven, when 𝜑′(𝓏) = 0 if and only 

if 
1

ln(2)
 
𝑏(𝑐+𝑑𝓏)

𝑎+𝑏𝓏
− 𝑑 log(𝑎 +𝑏𝓏) = 0 or, equivalently, 

𝑏𝑐+𝑎𝑑

𝑎+𝑏𝓏
= 𝑑(ln 𝑎 + 𝑏𝓏) − 1                          (1) 

 

Plugging ln(𝑎 + 𝑏𝓏) − 1 into (B.1) yields 
𝑏𝑐

𝑑𝑒
−
𝑎

𝑒
= 𝓍ℯ𝓍 whose is eventually found 

to be 𝓍∗ = 𝑊 (
𝑏𝑐

𝑑𝑒
−
𝑎

𝑒
) where 𝑊(∙) is defined in Definition 2. Finally obtaining 

𝓏∗ =
ℯ(𝓍

∗+1)−𝑎

𝑏
. 
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B.2 Proof of Theorem 1 

Plugging �̅�, �̅� and 𝒸 ̅into Equation (4.14) leads to the optimisation problem 

                                                                                                                                          (2) 

 

 where 

𝜙(𝐾) =
𝛫(1−

𝜏sum𝐾

𝑈
)𝒸̅ 

𝛣𝜎2𝑆x
𝜂

�̅�+∑ 𝒞𝑖𝛫
𝑖3

i=0
+�̅�∑ 𝒟𝑖𝛫

𝑖2

i=0
+𝒜𝛫(1−

𝜏sumΚ

𝑈
)𝒸̅

              (3)

      

The function 𝜙(𝐾) is quasi-concave for 𝐾 ∈ ℝ if the level sets 𝑆𝜅 = {𝐾:𝜑(𝓏) ≥ 𝜅} 

are convex for any 𝜅 ∈ ℝ [114, Section 3.4]. This condition is easily verified by 

differentiation when the coefficients 𝒜,{𝒞𝑖} and {𝒟𝑖} are non-negative (note that 𝑆𝜅 

is an empty set for 𝜅 >
1

𝒜
). The quasi-concavity implies that the global maximiser 

of 𝜙(𝐾) for 𝐾 ∈ ℝ satisfies the stationary condition  
𝜕𝜙

𝜕𝐾
(𝐾) = 0, which is 

equivalent to finding the roots of the quartic polynomial given in (4.21) and  {𝐾ℓ
(𝑜)
} 

is noted as the real roots.  The quasi-concavity of 𝜙(𝐾)  is observed where it 

implies  𝐾∗ is either the closest smaller or the closest larger integer. 

 

  

   

               maximise  𝜙(𝐾) 
     𝐾 ∈ ℤ+ 
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B.3 Proof of Corollary 1 

 

This follows from the same line of reasoning used for proving Theorem 1. Observe 

that if 𝑃CE = 𝑃LP
(ZF)

= 0  then 𝒞2 = 𝒞3 = 𝒟1 = 𝒟2 = 0  so that  𝐾∗  is obtained as 

one of the two roots to a quadratic polynomial, for which there are well-known 

expressions. 

 

B.4 Proof of Theorem 2 

 

To find the integer value 𝑀∗ ≥ 𝐾 + 1 that maximises 

  EE(ZF) =
𝛫(1−

𝜏sum𝐾

𝑈
)�̅�

𝛣𝜎2𝜌𝑆x
𝜂

+𝒞′+𝛭𝒟′+𝒜(1−
𝜏sumΚ

𝑈
)�̅�

                        (4)                

 

where 𝒞′ and 𝒟′ are defined in (4.25). By relaxing 𝛭  to be real-valued, the maximisation 

of (4) is solved by Lemma 3 by setting 𝑎 = 1 − 𝜌𝐾, 𝑏 = 𝜌, 𝑐 =
𝛣𝜎2𝜌𝑆x
𝜂

+ 𝒞′, 𝑑 = 𝒟′, 𝑔 =

𝛣 (1 −
𝜏sum𝐾

𝑈
) and ℎ = 𝒜𝑔. This lemma proves that EE(ZF) is a quasi-concave function, 

thus the optimal real value solution  𝑀(𝑜)  in  (4.16) can be transformed into an optimal 

integer-valued solution as 𝛭∗ = ⌊𝑀𝑜⌉. Finally, the condition 𝑀∗ ≥ 𝐾 + 1 is always 

satisfied since EE(ZF) is quasi-concave and goes to zero for 𝛭 = 𝐾 and when 𝛭 → ∞. 

 

 

B.5 Proof of Corollary 4 

 

   The independence from {𝑃COD, 𝑃DEC,𝑃BT} follows from that 𝑀∗ is independent of 𝒜. 

From Lemma 4, the function 𝑒𝑊(𝑥)  is monotonically increasing with 𝓍. Applying this 

result to (4.24), it turns out that 𝑀∗ is monotonically increasing with 𝒞′ and monotonically 

decreasing with 𝒟′. Recalling (4.25), this means that 𝑀∗ increases with 𝒞𝑖 and decreases 

with 𝒟𝑖. Based on these results, the second part follows from Table 1. 
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B.6 Proof of Corollary 5 

 

The first statement comes direct application of Lemma 4 to (4.24), which requires 

𝛽𝜎2𝑆x

𝜂𝒟′
𝜌2 +

𝒞′

𝒟′
𝜌 + 𝐾𝜌 − 1 ≥ 𝑒2, this is satisfied for the moderately large value of   𝜌. 

The scaling law for a large value of 𝜌 follows directly from (4.26). 

 

 

B.7 Proof of Theorem 3 

 

From (4), the optimal 𝜌 maximises 

 

 
𝐵(1−

𝜏sum𝐾

𝑈
) log(1+𝜌(𝑀−𝐾))

𝛣𝜎2𝑆x
𝜂

𝜌+𝒞′+𝛭𝒟′+𝒜(1−
𝜏sum𝛫

𝑈
) log(1+𝜌(𝑀−𝐾))

                        (5)                  

 

whose solution follows from Lemma 3 by setting 𝑎 = 1, 𝑏 = 𝑀 − 𝐾, 𝑐 = 𝒞′ +𝑀𝒟′, 𝑑 =

𝛣𝜎2𝑆x
𝜂
, 𝑔 = 𝐵 (1 −

𝜏sum𝐾

𝑈
) and ℎ =𝒜𝑔. The value 𝜌∗ in (4.28) is always positive since the 

objective function is quasi-concave and is equal to zero at 𝜌 = 0 and when 𝜌 → ∞. 

 

 

B.8 Proof of Corollary 8 

 

The lower bound follows from the direct application of Lemma 4 to (4.24) under the 

condition 
𝜂(𝑀−𝐾)(𝒞′+𝑀𝒟′)

𝛽𝜎2𝑆x
 −  1 ≥ 𝑒2 which is satisfied for moderately large values of 𝑀. 

The approximation for large 𝑀 is achieved from (4.29) by simple algebra. 
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B.9 Proof of Lemma 5 

 

Uplink pilot power of the 𝑘th UE is 
𝜌𝜎2

𝑙(x𝑘)
and length of orthogonal pilot sequences 

is  𝐾𝜏(ul). By using MMSE estimation [115], a channel estimate 

ℎ̂𝑘~𝒞𝒩(O𝑁 ,
𝑙(x𝑘)
1

1+
1

𝜌𝐾𝜏(ul)

I𝑘) obtained with estimation error covariance matrix 

 

 𝑙(x𝑘) (1 −
1

1+
1

𝜌𝐾𝜏(ul)

) I𝑁                                                    (6)                                                           

 

Approximated ZF applied in uplink and downlink by treating the channel estimates 

as the true channels. By treating the estimation errors as noise with a variance 

that is averaged over the channel realisation, the 𝑘th achieves the average gross 

rate 

 

 ℛ̅ = 𝛣 log

(

  
 
1 +

𝑝𝑘
(ul)

‖𝑔𝑘‖
2(𝜎2+(1−

1

1+
1

𝜌𝐾𝜏(ul)

)𝐾𝜌𝜎2)

)

  
 

                                       (7) 

 

which is equivalent to (4.31) for the uplink transmit powers 𝑝𝑘
(ul) =

𝜌𝜎2(𝑀−𝐾)‖𝑔𝑘‖
2

1+
1

𝜌𝐾𝜏(ul)

. 

The downlink rate is derived analogously and it is straightforward to compute the 

average PA power. 
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B.10 Proof of Lemma 6 

 

During data transmission where 𝑔𝑗𝑘 is the receive filter, the uplink power for UE 𝑘 in cell 

𝑗 is 

 

 

 𝑝𝑗𝑘
(ul) =

𝜎2𝜌(𝑀−𝐾)‖𝑔𝑘‖
2

1+𝐼PC+
1

𝜌𝐾𝜏(ul)

                                                                 (8) 

 
 

Under approximate ZF, after averaging over the channel realisation, the average UE 
power is  
 

 𝔼{‖𝑔𝑘‖
2} =

1+𝐼PC+
1

𝜌𝐾𝜏(ul)

(𝑀−𝐾)𝑙𝑗(x𝑗𝑘
)
                                                    (9) 

 

which is same as in Lemma 1. The channel-averaged value  𝑝𝑗𝑘
(ul−pilot)

=
𝜎2𝜌

𝑙𝑗(x𝑗𝑘
)
  is used for 

pilot transmission, since it can only depend on channel statistic s. If the BS applies MMSE 

estimation [115] and is unaware of the UE position s in other cells, the average 

interference from cells with orthogonal pilots is ‖𝑔𝑘‖
2𝜌𝐾𝜏(ul)∑ 𝐼𝑗ℓℓ∉𝒬𝑗

 . The average 

interference from the cells using the same pilots is  

 

 

𝜌(𝑀− 𝐾)‖𝑔𝑘‖
2 I(𝑃𝐶)

1+I(𝑃𝐶)+
1

𝜌𝐾𝜏(ul)

+ ‖𝑔𝑘‖
2𝜌𝐾𝜏(ul) (∑ 𝐼𝑗ℓ −

∑ 𝐼𝑗ℓ
2

ℓ∈𝒬𝑗

𝜌𝐾𝜏(ul)ℓ∈𝒬𝑗
)            (10)         

   

where the first term is due to PC and the second is due to channel uncertainty. 

Combining this together, the gross rate in the uplink in (4.44) is achieved. The same 

expression is achieved in the downlink by treating channel uncertainty as noise 

and exploiting the cell symmetry. 
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