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Abstract—As a consequence of the recent development of 

situational awareness technologies for smart grids, the gathering 

and analysis of data from multiple sources offers a significant 

opportunity for enhanced fault diagnosis. In order to achieve 

improved accuracy for both fault detection and classification, a 

novel combined data analytics technique is presented and 

demonstrated in this paper. The proposed technique is based on 

a segmented approach to Bayesian modelling that provides 

probabilistic graphical representations of both electrical power 

and data communication networks. In this manner the reliability 

of both the data communication and electrical power networks 

are considered in order to improve overall power system 

transmission line fault diagnosis.   
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I. INTRODUCTION  

The traditional primary power grid-centric electrical power 

system has gradually evolved into a CPS (Cyber Physical 

System [1]) which regards both power grid and information 

network as equally important and even closely integrated. Due 

to the application of advanced Information Communications 

Technology (ICT) at large scale, it has greatly improved the 

controllability and observability of the electrical power 

system. The powerful function of the information system 

provides technical support to the operation of the power grid, 

but on the other hand, the failure of information system also 

leads to even more serious consequences. In 2001, a black out 

happened to El Paso Electric (EE) in US[3], because the signal 

degradation of communication system and abnormal delay of 

communication data caused the malfunction of protection 

system, which led to the shut-down of the key electric line. 

The impact of abnormality of communication and information 

system (including natural fault and malicious attack) on the 

safe and steady operation of the power grid has started to be 

seen, and will become even more far-reaching in the future. 

The power system fault diagnosis can no longer be a simple 

mode recognition mechanism based on fault feature. The 

faults of Cyber Physical System include both the uncertain 

factors [2], (such as refused-operation and mal-operation of 

protection circuit-breaker), which the physical system 

originally has, and new issues (such as, information 

transmission delay, data error, communication failure etc.). 

The interaction between physical system and information 

system creates higher demand for the instantaneity of fault 

diagnosis, and the robustness in the presence of noise and 

uncertainties. 
In the past, a lot of methods [4-6] have already taken into 

consideration the influence of uncertain factors on fault 

diagnosis. These methods can reduce the interference caused 

by error message as far as possible under the circumstance that 

if the number of correct messages is larger than that of the 

error messages. Bayesian network [7-8] is exactly an 

acknowledged pattern recognition method which shows good 

fault tolerance. In addition, it can describe the logical relation 

between different elements very well during the modeling. 

Introducing the redundant information is another important 

aspect in fault tolerance improvement. Information integration 

[9-10] is an effective way to filter the error messages by 

importing more data for observation. However, overlarge 

redundant information quantity also denotes the increase of 

interference information, which poses strict requirements on 

the method itself. Still, without consideration of information 

system, the improvement of fault tolerance [11] of the fault 

diagnosis will be very limited. Because single interference of 

communication system can often result in problems of 

multiple fault messages, so it is not appropriate for the 

understanding of traditional “noise”. Therefore, in the view of 

CPS, the availability of communication path whose power is 

supported by the physical system and the fault data reliability 

play important roles in the whole process of fault diagnosis.  

This paper proposes a transmission line diagnostic method 

based on combined data analytics.  Chapter II constructs a 

quick line fault diagnostic model based on the Bayesian 

network. In chapter III, a method for analyzing the reliability 

of data and a strategy of data correction are proposed along 

with an easy way of fault classification. Chapter IV describes 

the framework of combined data analytics. With case study, 

Chapter V analyzes the influence of data reliability on fault 

diagnosis by data mining (SVM) and the effectiveness of the 
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method in this article is approved. The conclusion made in 

chapter VI summarizes the article and expounds the 

possibilities for future research. 

II. FAST SCREENING OF POTENTIAL LINE FAULTS  

A. Segmented Bayesian Network model for fast screening of 

potential line faults  

A simple structure of transmission line model is proposed 

as shown in Fig.1. For the switch state data, the breakers 

related to the transmission line could be classified into two 

categories which are the component breaker layer and failure 

protection layer respectively. The breaker CP1 and CP2 

directly connected to the transmission line belongs to the 

component breaker layer, the other breakers CR1, CR2…CRN 

on the adjacent lines of the same bus belong to failure 

protection layer. “MP” and “BP” are the output information of 

main protection and backup protection respectively. Fault 

probability could be obtained from the weighted sum of the 

probability of breaker mode and protection mode. The primary 

and prior probabilities of breaker and protection nodes are 

obtained from the expert knowledge of history database. 

Where ω1 and ω2 are the weight coefficient, which can be 

adjusted according to the reliability ranking of breaker and 

protection in the power grid.  This paper assume that the 

reliability of the protection is higher than breaker, ω1 is 0.45 

and ω2 is 0.55. 
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 Fig.1 The Bayesian model of transmission line 

For the root node of Bayesian network, 0 means normal, 1 
represents the state is fault. For the protection and breaker node, 
0 represents no action/no tripped, 1 represents action/tripped.  
The probability of root node breaker mode/protection mode 
equals to 1 could be calculated on the basis of evidence set E. 
After input the fault information, the fault probability could be 
obtained by (1). 
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Where, C is the root node, E is the practical state of each 

nodes. The evidence value e is also 0 or 1.  
The joint probability is the multiplication of conditional 

probabilities of each nodes as shown in (2). According to (1) 
and (2), the probability of root node C can be calculated. 

    2

1

1P , , |
n

i i i

i

X X X P X Parent X


                (2) 

Where the node variables of Bayesian network 

are 1 2, , , iX X X . And  iParent X is the parent node of iX . 

III. FAULT DETECTION AND CLASSIFICATION 

A. Data communication network for diagnosis 

1) Reliability analysis of fault data 

As an important segment in power system operation and 

control, the electric power communication and information 

reliability is of great significance especially in online fault 

diagnosis. In order to nip in the bud and actively cope with the 

possible long delay, information loss and other 

communication system problems, this paper has considered 

the monitoring of the communication system and established 

the corresponding index simultaneously to evaluate the fault 

data on the basis of the traditional fault analysis data. 

Path availability

Substation nodesData centerCommunication nodes
 

Fig.2 The analytical framework of path availability 

In a centralized power system diagnosis system, the 

communication network can be regarded as a set of nodes and 

links, and each path is also a set of nodes and links. The 

reliability of the line fault data can be equivalent to that of the 

communication path between the data center and the 

substation information nodes. Suppose that the monitoring 

data of the substation communication status is ranked highest 

in the business channel. The monitoring data when uploaded 

to the data center will not occupy the service channel for fault 

diagnosis information. In the process of data communication, 

the effectiveness of the communication path can be illustrated 

as shown in the Fig.2. The effectiveness of the communication 

path is related to information nodes as well as the substation 

nodes supporting power supply for the information nodes. It 

could be represented by the multiplication of a series 

conditional probabilities.  
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Where N represents information node of communication 

system, S is substation node, C is the data center and cn is the 

number of substations supporting the data center. P is the 

effectiveness probability of information node with the support 

of substation node.   
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Where the LZONE is load factor of the communication 

subsystem, Lc is the load factor of data center, Ni is the 

shortest path to the data center.  n is the number of nodes, Li is 

the load factor of node i, S is the set of communication link, 

Lmk is the load factor of the link between m and k. 

max

( ) i
node zone i

i

N
R i L L

N
                              (5) 

1
( ) [ (1) (2)... ( )]line node node nodeR i R R R n

n
               (6) 

Lnode(i) is the load factor of node i. Rnode(i) is the reliability 

that the information transmitted from node i to the data center. 

Rline(i) is the reliability of line, Rnode (n) is the information 

node of the line. 

2) Correction strategy of missing information  

When the data reliability Rline is less than 0.95, the data 

delay or loss will affect the performance of fault diagnosis. So 

the data need to be modified accordingly. Assuming the state 

matrix of fault information is:  

 1 2, , ,_ nlayer c x x x                           (7) 

 1 2_ , nX Xlayer f X                           (8) 

 1 2, , nPm pm pm pm                            (9) 

  1 2, , , nPb pb pb pb                             (10) 

Layer_c is the state matrix of component breaker layer, 

layer_f is the failure protection layer, Pm is main protection, 

and Pb is backup protection. The element of the state matrix is 

0 or 1.  

For the fault data from a same substation, the modification 

of data follows the principles below: 

 Relevance principle of protection and breaker: if any 

elements of Pm or Pb is not zero, then one of the breaker 

layers should have state of 1.  

 The consistency principle: all the elements of layer_c or 

all the column vector of layer_f should have a same state. 

If more than 50% elements is 1, than the left should be 

modified to 1. 

 If all the protection data is missing, but the breaker data 

meet the consistency principle, then modification of 

protection could reference to the fault information from 

the other side of line. If Pm or Pb from the other side of 

line is 1 and all the fault information is in line with the 

relevance principle and consistency principle, then the 

state of Pm could be revised to 1. 

B. Fault classification based on symmetrical components of 

reactive power 

The symmetrical components of reactive power
 
[12] are 

calculated by using the sequential components of voltage and 

current. As shown in Fig.3, a fault inception is declared, the 

fault classification could be completed by checking the 

quantity criterion of |Q0|/|Q2| and ΔQ12.  

 

Fig.3 The flow of fault classification  

C. Behavioral analysis of protection and breakers 

After fault classification, input the diagnostic results and 

the state of protection and circuit breaker to the logic analysis 

module in Fig.4.  

 
Fig.4 The flow of behavioral analysis 

The logic analysis module can classify the state of 

protection and breaker quickly with the behavior analysis of 

the sub module in Fig.5. 

 
Fig.5 The behavioral analysis module 

IV. MBINATED DATA ANALYTICS  

A. Combinated data analytics framework 

As shown in Fig.6, the step of combined data analytics 
consists of following three parts. 



1）By analyzing the topology data of SCADA system, the set 

of transmission lines could be obtained. Then establish the 

Bayesian network for each transmission line; 

2）According to (3), evaluate the path availability for the 

nodes of each lines. If the communication path is valid, then 

calculate the reliabilities of each lines via (4) to (6).  If Rline is 

lower than 0.95, use the correction strategy to revise the fault 

data;  

3）Input the state data of protection and breaker to BN model 

after data correction. According to (1) and (2), the fault 

probabilities will be obtained. The threshold value will self-

adjust according to the data load factor in the control area. The 

fault lines will be screened by the threshold value.  Finally, 

call the electric quantities data and calculate the fault 

classification criterion based on symmetrical components of 

reactive power. After that, input the diagnostic result to the 

behavioral analysis model and screen out the abnormal 

protections and breakers. 

 

Fig.6 The framework of combined data analytics 

V. CASE STUDY 

A. Data reliability analysis 

 
Fig.7 Three-layer network of a typical power system 

As shown in Fig.7, the power grid is simulated as a cyber-

physical system [13] which is comprised of switch nodes 

network, substation nodes network and the communication 

nodes network formed by the data center and information 

nodes. Every substation node sends status messages and 

receives control commands through at least one information 

node, while every information node gets electrical power from 

at least one substation node. In order to improve the 

robustness of fault diagnosis for missing information, this 

paper uses the support vector machine [14] to predict the data 

reliability. When the data reliability LZONE is lower than 0.9, 

the fault information will be revised.  

 
Fig.8 Comparison chart of fitting curve and error display 

By the training of 1000 groups of sample data, the load 

factor of communication subsystem (Lzone) were fitted by 

support vector machine. Fig.9 is the comparison chart of 

fitting curve and error display, as seen from the chart, the 

average fitting precision of multi group experiments reaches to 

99.98%. 

B. Case simulation of typical power system 

 
Fig. 9 Switch node network of simulation 

Eight lines of the above system (Fig.9) have been 

simulated with 64 fault scenarios, the results of each test are 

derived from the average of 5000 random tests. The fault 

scenarios contain protection/breaker refused operation and 

mal-operation. Furthermore, 30 group simulations under 

different data loss rate are added. Fig.10 shows the 

misdiagnosis rate under different data loss rates. As diagnosis 

system miss more data, the diagnosis performance will drop 

quickly. When the data loss rate is 0.2, misdiagnosis rate is 

0.55. If 30% of data is missing, the misdiagnosis rate will 

reach or more than 0.7.   
Table I Threshold value under different situations 

LZONE 0.33~0.83 0.83~1.00 1.00~1.17 

Data loss rate 0~0.05 0.05~0.15 0.15~0.3 

Pset 0.75 0.55 0.3 



In order to ensure the validity of the fault screening, the 

threshold value Pset should be self-adjusted according to the 

reliability of the data. Table I shows the selection of threshold 

value under different load factor or data loss rate.  

 
Fig.10 Misdiagnosis rate under different data loss rates 

Although the consequences of data loss are difficult to 

recover, the assessing of data reliability could offer a better 

guide for related operator to choose a reasonable failure 

recovery strategy. In Fig.11 (a), the blue line is the 

misdiagnosis rate without data correction and self-adjustment 

of Pset. After data correction, the performance of diagnosis has 

already been improved. With the self-adjustment of Pset, the 

misdiagnosis rate drops obviously as shown in Fig.11 (b).  

 
(a) Without adjustment of threshold value 

 
(b) With the self-adjustment of threshold value 

Fig.11 Comparison charts of diagnostic performance  

VI. CONCLUSIONS AND FUTURE RESEARCH  

This paper proposes a combined data analytics technique, 

which Bayesian network to construct diagnostic model 

through the switching value information. By use of support 

vector machine to predict the reliability of communication 

data and with the data correction strategy and self-adjustment 

of threshold value, the accuracy of fault diagnosis is 

improved. 

The data transmission is very complex, especially in the 

large-scale information network, the observability is poor. It is 

a feasible way to evaluate the data reliability by the method of 

data mining. In the analysis of data reliability, this paper only 

considers the influence of data loss. In the future work, this 

paper will further extend the fault scenarios, such as the 

linkage effects of the information node breakdown caused by 

physical system failure. Through the simulation of a variety of 

scenarios and the means of big data analysis to further 

enhance the performance of reliability assessment of 

information system, and build a fault diagnosis model with 

greater robustness. 
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