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Abstract

Aims

The aim of this study was to examine the acute effects of dynamic stretching (DS) exercise

on passive ankle range of motion (RoM), resting localized muscle stiffness, as measured by

shear wave speed (SWS) of medial gastrocnemius muscle, fascicle strain, and thickness.

Methods/Results

Twenty-three participants performed a DS protocol. Before and after stretching, SWS

was measured in the belly of the resting medial gastrocnemius muscle (MGM) using

shear wave elastography. DS produced small improvements in maximum dorsiflexion

(+1.5˚ ±1.5; mean difference ±90% confidence limits) and maximum plantarflexion (+2.3˚

±1.8), a small decrease in fascicle strain (-2.6% ±4.4) and a small increase in SWS at neu-

tral resting angle (+11.4% ±1.5). There was also a small increase in muscle thickness

(+4.1mm ±2.0).

Conclusions

Through the use of elastography, this is the first study to suggest that DS increases muscle

stiffness, decreases fascicle strain and increases muscle thickness as a result of improved

RoM. These results can be beneficial to coaches, exercise and clinical scientists when

choosing DS as a muscle conditioning or rehabilitation intervention.
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Introduction

Stretching is generally used as part of a training program to increase flexibility [1,2], improve

sports performance [3] and reduce the incidence of muscular injury [4–7]. Flexibility or maxi-

mum range of motion (RoM) available at a joint depends on both mechanical and neural fac-

tors [8–10]. Only a limited number of studies have examined the effects of DS on joint RoM,

despite the increasing use of DS as a warm-up routine in sporting contexts [11–14]. Accord-

ingly, it is not clear whether the expected increased flexibility in response to DS is based on the

modification of the neural mechanisms and/or mechanical properties of the muscle-tendon

unit (MTU).

Using a numerical optimization procedure [15,16], Herda et al. [12] demonstrated that the

increase in maximum RoM after four 30s sets of DS, consisting of contraction of the agonist

muscle groups (knee flexors) was due to a decrease in the overall MTU stiffness. Samukawa

et al. [14] reported that DS involving contraction of the plantarflexors increased maximum

ankle dorsiflexion RoM and was associated with a proximal displacement of the MTU of the

medial gastrocnemius (MGM) whilst standing. Using B-mode ultrasonography and

dynamometry, Mizuno and Umemura [15], reported that, DS involving contraction of the

dorsiflexors, increased maximum dorsiflexion RoM of the ankle joint but had no effect on the

passive mechanical properties of the MGM MTU. They attributed this change to the increased

stretch tolerance. Therefore, contrasting scenarios about the outcome of DS on MTU stiffness

have been reported, and contribution of the modification of the MTU stiffness to the expected

and observed increased flexibility after stretching remains unclear.

From a logistics point of view, technical and financial factors limit application of the tradi-

tional methods to the assessment of MTU stiffness. The studies described above evaluated the

proximo-distal displacement of the MTU and muscle stiffness either by measuring the rela-

tionship between the joint angle and passive torque developed as resistance to joint movement

(i.e. torque-joint angle relationship); using a numerical optimization technique [16,17]; or by

measuring the MTU displacement from a neutral to a fully stretched position using a combina-

tion of motion analysis, dynamometry and ultrasonography [9,18–20] (i.e. force-displacement

relationship). However, passive torque measurements and MTU displacement are influenced

by several in series and in parallel factors such as properties of the synergistic muscles, aponeu-

rosis, tendon, joint capsules, ligaments, skin, and nerves around a joint [21,22]. Additionally,

measurement of the MTU displacement is not possible in all muscles using current techniques.

Moreover, stiffness of the gastrocnemius MTU evaluated by the numerical optimization

method [16,17] has low reliability and cannot be used to evaluate a single muscle [23]. This

method is also valid for multi-joint muscles and necessitates passive experiments at various

different knee angles, which may limit its use in clinical practice and its applicability for other

muscles [21]. Magnetic resonance elastography has been used to evaluate muscle stiffness rep-

resented by shear modulus in three dimensions [24–26]. However, the measurement can only

be performed with the participant in a lying position inside a scanner, and the acquisition cost

remains a limitation. To assess whether DS or other intervention reduces muscle stiffness, a

direct quantitative and sensitive method that enables the assessment of a single muscle’s

mechanical properties is required.

The problems faced with measuring single muscle stiffness can be overcome using shear

wave elastography (SWE), an imaging technique which utilizes Acoustic Radiation Force

Impulse (ARFI) imaging to generate shear waves (SW) that are then tracked with an ultrafast

wave insonification technique [27], to measure shear wave speed (SWS) in a muscle. The

speed of SW has been related to material properties since SW travels faster through stiffer tis-

sues. When performed under well-controlled conditions, SWE has been shown to be a reliable
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technique for investigating alteration in muscle biomechanical properties [21,23,28–32]. Fur-

thermore, SWE does not require external manual compression applied by the operator on a

tissue, hence, has the advantage of providing more objective outcomes [33].

Research using elastography has been conducted to assess the effect of treatment and reha-

bilitation interventions on muscular structures of a localized area within soft tissues in real

time in vivo [28,34,35]. Six studies applied this technique to investigate the immediate effect of

static stretching (SS) (ranging 2–10 minutes in duration) on gastrocnemius muscle stiffness

[36–41]. Five studies [36–40] reported that SS decreased muscle shear modulus/speed. In con-

trast, Nordez et al. [41] reported no decrease in medial gastrocnemius muscle belly stiffness

after 10 min of SS, however, they applied SS at 80%-86% of the maximum RoM [41]. Inconsis-

tencies between these studies could be due to differences in the employed stretching types.

Due to different effect SS and DS have on performance [42] one may assume that the effect of

DS on MTU stiffness and RoM might also be different. For example, SS involves taking a joint

through its range to a position where the tension is felt, holding it for a period of 10-30s, and

repeating the process two to four times [43], whereas DS is performed as a controlled move-

ment through the active range of motion for each joint [44]. To the best of our knowledge, no

previous study has examined the effects of DS on muscle belly stiffness in vivo.

The goal of this study was to evaluate the acute effects of DS on ankle joint flexibility, and

contribution of the medial gastrocnemius (MGM) muscle belly stiffness to the expected

increased flexibility. Accordingly, ankle joint RoM, SWS in the MGM, muscle fascicle strain

and thickness were examined before and after the DS intervention.

Materials and methods

Participants

Seventeen healthy men [age: 35.4±12.1 years; height: 1.78±0.06 m; body mass: 79.41±14.20kg]

and six healthy women [age: 31.2±11.1 years; height: 1.61±0.05m; body mass: 60.50±7.04kg]

volunteered to participate in this study. Participants were informed of the purpose of the study

and methods used providing written consent. The experimental design of the study was

approved by the Research Ethics Committee of the College of Life and Health Sciences at Bru-

nel University London and was conducted in accordance with the Declaration of Helsinki.

The participant portrayed in Fig 1 has given written informed consent (as outlined in PLOS

consent form) to publish the pictures. The participants were included in this study if they were

healthy and did not have a history of traumatic hip or knee injury in the dominant leg during

the previous six months. They were instructed to refrain from vigorous physical activity for 48

hours before the testing sessions.

Based on the literature, the fluctuation in female steroid hormones during the menstrual

cycle does not seem to have substantial influence on the mechanical properties of the human

muscle and tendon in vivo [45], and the examination of any potential effects of the menstrual

cycle was beyond the scope of the current study, women with a regular menstrual cycle lasting

between 28 and 32 days were included and tested at a non-specific period. Additionally, no sig-

nificant effect of sex has been reported on stretching-induced changes in MTU stiffness and

RoM [46,47], thus both genders were included in the study.

Experimental design

A crossover controlled study (single group, repeated measures experimental design) was used

for this study. Outcome measures were assessed before and after the dynamic stretching proto-

col. Time and ankle positions were the independent variables with two (pre-stretching and

post-stretching) and four (fully stretched position, fully shortened and neutral position,
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standing) conditions, respectively. Passive ankle RoM, SWS measured by shear wave elastogra-

phy, and MGM architectural parameters (fascicle length, muscle thickness) were the depen-

dent variables.

Warm-up

A 5-minute standardized warm-up on a stationary cycle ergometer (Ergomedic 818E Monark,

Stockholm) with a pedaling cadence of 60 rpm [48] was used. Participants were asked to adjust

the seat to the correct height so that the knee was slightly flexed when the foot was parallel to

the ground at the lowest pedal position [49]. This was implemented to avoid muscle injury and

enhance the reliability of the measure [50]. All measurements were performed before DS (pre-

DS) and after approximately 2 min of DS (post-DS). The two-minute interval was similar to

the minimum period between warm-up and start of a game/training session as used by previ-

ous researchers “The two-minute interval was similar to the minimum period between warm-

up and start of a game/training session as used by previous researchers who measured the

effect of stretching on performance [44,51–54]. The participants were familiarized with the

procedure and instructed to relax during the measurements.

Dynamic stretching protocol

For performing DS, each participant wore unrestricted clothing and was asked to stand on a

step. The participant started on the balls of both feet with the heels raised, lowering the heels in

a controlled manner. The exercise was performed on the edge of the step to allow full dorsiflex-

ion to be reached. The stretching exercise was performed at 100 beats/minute controlled by a

metronome (MetroTimer 3.3.2, ONYX 3 Apps, Sofia, Bulgaria). Three sets of twenty repeti-

tions were performed with a 5-second rest in between each set. Instructions were given to the

participants to move into full plantarflexion (Fig 1A) and dorsiflexion (Fig 1B) during the pro-

tocol. In this way, we have standardized the muscle working length range during the DS (i.e.

DS from shortest to longest possible muscle length), and kept the neuromuscular adaptations

that are known to be length-specific (e.g. force, activation, potentiation) as consistent as possi-

ble in all participants.

Fig 1. Start and finish position during the stretching protocol. (a) Standing erect on the step and (b) Position at full

stretch.

https://doi.org/10.1371/journal.pone.0196724.g001
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Instrumentation

Dynamometry testing of passive ankle angle/RoM. Participants adopted a supine posi-

tion on an isokinetic dynamometer (Cybex NORM, New York, USA) with their knee in full

extension and foot strapped to a foot plate to prevent the heel from lifting from the footplate.

The rotational axes of the ankle joint and the dynamometer were visually aligned as closely as

possible. Maximum dorsiflexion and plantarflexion passive RoM position were determined by

manually moving the footplate. A slow angular velocity (<~5˚/s) was used to ensure that the

stretch did not elicit any reflex mediated muscle activity [55]. Participants were instructed to

advise the researcher to stop at the point of discomfort. Throughout the movement, the partic-

ipants were encouraged to relax and not resist the passive motion of the footplate. Ankle angle

was measured at the maximum tolerated dorsiflexion and plantarflexion positions. The per-

pendicular position between the foot and the leg was considered the neutral position. (i.e. 0˚).

Angle data was recorded from the Cybex software.

Muscle shear wave elastic speed and fascicle strain. An Aixplorer ultrasound scanner

(version 7.0; Supersonic Imagine, Aix-en-Provence, France) and a 50 mm linear array trans-

ducer (4–15 MHz, SL15-4, Vermon, Tours France) in supersonic shear imaging mode (muscu-

loskeletal preset) were used to asses MGM shear elastic speed as previously described. Shear

waves are generated in the tissue by focusing ultrasound pushing beams at different depths;

then by using high-frame rate imaging (up to 20000 images/s), a movie of the shear wave prop-

agating was recorded. B-mode images and SWS movies were acquired. The SWS was retrieved

from a time of flight algorithm over the acquired movie [56]. Assuming a linear elastic behav-

ior [27], the muscle shear elastic modulus (μ) was calculated as follows [57,58]:

m ¼ rV2

S

where ρ is the density of soft tissues (1,000 kg/m3) and Vs is the shear wave speed (m/s). Muscle

is highly anisotropic [29], thus acquisitions were performed with the probe in the plane parallel

to the muscle fibres and perpendicular to the skin; this position was determined when several

fibres were continuously visible on the B-mode image. The preceding relationship is valid in

tissues that are infinite (or large in extent), isotropic, homogenous, linear and elastic [59].

Since muscles do not have these characteristics this “stiffness” is reported in terms of shear

wave speed (m/s) which requires few assumptions about the tissue geometry and mechanical

coupling of tissue regions when measured at comparable joint angle or contraction state.

Simultaneous B-mode images were taken to assess the muscle architecture [27,60]. The

ultrasound probe was placed longitudinally on the skin surface at 30% of the lower leg length

measured distal to the lateral joint line of the knee [28,61–63] over the gastrocnemius muscle

belly. The transducer was secured with a custom-made cast placed on the skin according to the

orientation of the muscle fascicles and was securely bandaged to the leg with Cohesive Bandage

(CURRAGH Veterinary Supplies, Culworth, Oxfordshire) to minimise undesired translation

of the transducer. Water-soluble transmission gel (Henleys Medical Supplies Ltd., Hertford-

shire, UK) was applied onto the contact surface to avoid excessive air gaps between the ultra-

sound probe and the dermal surface during the measurements.

The maps of the SWS were collected at 1 Hz within a 1 x 1 cm square (Fig 2) and with a spa-

tial resolution of 1 x 1 mm. A good intra-day reliability of MGM shear modulus/speed has

been previously reported [21,23,31,64–67].

Data analysis

Processing of ultrasound images. For the assessment of muscle stiffness, supersonic

shear (SSI) images were exported from the Aixplorer scanner software (Q Box) (version 7.0;
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Supersonic Imagine, Aix-en-Provence, France) in DICOM format. A custom-written software

developed in Matlab (MathWorks, Natick, USA), was used to manually select rectangular sub-

regions between the superficial and deep aponeurosis using a region of interest (ROI) as large

as possible, avoiding the inclusion of artifacts for the muscle. The ROI of the first image was

then automatically tracked on the following images, and RGB value of each pixel was con-

verted into a SWS value by using the color barcode embedded in the original DICOM image.

All elastography movies were processed by the same operator. Good reliability of the SSI tech-

nique has been demonstrated previously [31]. The SWS was measured at three muscle lengths

(relaxed, neutral and stretched) in prone and at a standing position. Participants were asked to

relax during each recording that lasted approximately 10 seconds (i.e. ~244 frames). For each

position, the 3rd up to the 8th second (i.e. a total of ~146 frames) shear elastic measurements

of the ROI were computed as the mean to obtain a representative value.

For the assessment of architectural parameters, ultrasound images were digitized using a

custom-written routine in Matlab (MathWorks, Inc.; Natick, MA) [68]. MGM architecture

was assessed at neutral, end RoM at maximum plantarflexion and dorsiflexion positions, with

the probe positioned approximately over the muscle belly. At this site changes in muscle archi-

tecture have been shown to be relatively uniform [60] in B-mode ultrasound images. The

upper and lower aponeuroses were manually identified in the custom written Matlab script by

setting reference points along the aponeuroses that were approximated by a linear least-square

fitting. Visible features of multiple fascicles were digitized, and a representative reference fasci-

cle was then calculated on the basis of the orientation of the digitized fascicle portions. The fas-

cicle length was determined as the Euclidean distance between intersection points of the

reference fascicle with the two aponeuroses. Muscle thickness was calculated as the distance

between the two aponeuroses at the intersections points with the reference fascicle and aver-

aged from these two values.

Passive muscle fascicle strain. Strain (ε) of the MGM muscle fascicles and tendon was

defined as the percentage of the change in length to the resting length. Thus:

ε ¼
l � lo

lo
� 100

Fig 2. Shear wave speed measurement from the shear-wave ultrasound elastography image at the neutral ankle

position. The rectangle represents the region of interest (ROI) between the superficial and deep aponeuroses, and the

colored region represents the shear elasticity map with the scale to the right of the figure.

https://doi.org/10.1371/journal.pone.0196724.g002
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where l is the final length and lo is the original length of the tissue. Fascicle strain was defined

as the change from neutral to the maximum plantarflexed or dorsiflexed positions.

Statistical analysis

Descriptive statistics were reported as means and SDs. Data analysis was undertaken using a

post-only crossover trial with adjustment for a predictor spreadsheet [69]. Differences between

trials were expressed as percentages determined from log-transformed and subsequently back-

transformed data, with 90% confidence intervals (CI) reported as estimates of uncertainty to

quantify the magnitude of the difference between pre-intervention and post-intervention out-

come performance measures [70]. This is suggested to be the appropriate method for quantify-

ing changes in athletic performance [70]. Dependent variables were analyzed either as log-

transformed data [SWS at Nneutral, maximum plantarflexion, maximum dorsiflexion and

standing position, muscle thickness] or raw data [RoM, fascicle strain] according to Hopkins’s

[71] definitions. In athletic performance research, it has been argued that it is not whether an

effect exists but how big the effect is that matters and the use of the P-value alone provides no

information about the direction or size of the effect or the range of feasible values [70]. The

magnitude of the effect size was classified as trivial (<0.2), small (0.2–0.6), moderate (0.6–1.2)

or large (2.0–4.0) and extremely large (>4.0) via standardized thresholds [70]. The threshold

value for the smallest worthwhile change was set at 0.2 of the between-subject standard devia-

tion. Non-clinical inference was based on the disposition of the 90% confidence interval for

the mean difference to this smallest worthwhile effect; the probability (percent chances) that

the true population difference between trials is substantial (beneficial/detrimental) or trivial

was calculated as per the magnitude-based inference approach [72]. Where the 90% CI over-

lapped the thresholds for the smallest worthwhile change in both positive and negative sense,

the true effect was classified as unclear. In the event that a clear interpretation was possible,

these percent chances were qualified via probabilistic terms assigned using the following scale:

<0.5%, most unlikely or almost certainly not; 0.5–5%, very unlikely; 5–25%, unlikely or proba-

bly not; 25–75%, possibly; 75–95%, likely or probably; 95–99.5%, very likely; and >99.5%,

most likely or almost certainly [70].

The magnitudes of the relationships between fascicle strain and SWS, and ankle angle and

SWS were interpreted using Pearson’s product moment correlation coefficient, which were

converted into 90% confidence limits using a spreadsheet [73]. The magnitude of the correla-

tion coefficient was interpreted using an adapted Cohen’s scale [74]: 0.00–0.10, trivial; 0.10–

0.29, small; 0.30–0.49, moderate; 0.50–0.69, large; 0.7–0.89; very large, 0.90–1.00 almost perfect

[70]. An inference about the true (large sample) value of a correlation was based on uncer-

tainty in its magnitude [72]: if the 90% confidence limits overlapped small positive and nega-

tive values, the magnitude was deemed unclear; otherwise, the magnitude was deemed to be

the observed magnitude. The confidence interval was derived via the Fisher z transformation

[75]. Inferences about the correlation between SWS and ankle angle and SWS and muscle fas-

cicle strain were made with respect to the smallest worthwhile correlation of 0.10 [76].

Reliability of the measurements

The repeatability/reproducibility of the muscle shear wave speed was determined from the val-

ues obtained from the 3rd up to the 8th seconds (i.e. a total of ~146 frames) shear elastic mea-

surements. To this end, the interclass correlation coefficient (ICC), typical error (TE) and

coefficient of variation (CV) of SWS were calculated for the 3rd to the 8th seconds across the 4

ankle positions using a spreadsheet provided by Hopkins [77]. To derive the within-subject

variation as a coefficient of variation (CV), data were log-transformed (100 x natural
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algorithm) before analysis [77]. To describe absolute reliability, TE of measurement in raw

units was expressed as CV (%) using the Hopkins’s [77] spreadsheet. Coefficients of variation

of�10%, 10–25%, and�25% were considered of good, moderate and poor reliability, respec-

tively [78]. To interpret the magnitude of a CV representing typical differences or changes in

performance times, we doubled the CV before assessing it on the above scale [79]. Absolute

reliability was expressed as CV for direct comparison with relevant reliability studies, and TE

as an indicator to aid practitioners to determine whether the observed SWS changes were true

physiological responses or measurements errors [77,80]. For a description of relative reliabil-

ity, ICCs were determined using the same spreadsheet, with ICCs >0.75, 0.40–0.75 and<0.40

being considered as good, moderate and poor reliability, respectively [81]. Uncertainty in all

estimates was set at 90% confidence limits.

Results

The before and after stretching values with mean differences, effect sizes and qualitative non-

clinical inferences based on post-only crossover trial analysis are given in Table 1.

Passive ankle RoM

DS intervention resulted in a likely increase in passive ankle plantarflexion RoM (moderate

effect), and a possible increase in passive ankle dorsiflexion (small effect). DS showed a likely

increase in total ankle RoM (small effect) as shown in Table 1.

SWS

The DS intervention resulted in a likely increase in SWS at neutral ankle joint position (moder-

ate effect) and a very likely increase in standing position (very large effect). The DS interven-

tion showed a possible increase in SWS at maximum plantarflexion position (small effect) and

a very likely decrease in SWS at maximum dorsiflexion position (moderate effect) (Table 1).

Table 1. Descriptive statistics and mean differences in the DS performance measures along with effect sizes and qualitative inferences.

Performance measure Pre-stretching

(mean± SD)

Post-stretching

(mean± SD)

Mean difference

(±90% C.I.)

Effect size

(±90% C.I.)

Likelihood (%) of DS being

beneficial/trivial/detrimental

Qualitative

Inference

RoM at Maximum Plantarflexion (˚) 45.78 ± 6.95 48.04 ± 6.36 +2.3 ±1.8 +0.31 ±0.25 78/22/0 Likely increase

RoM at Maximum Dorsiflexion (˚) 17.59 ± 6.00 19.09 ± 6.11 +1.5 ±1.5 +0.24 ±0.24 61/39/0 Possibly increase

Total ankle ROM (˚) 64.86 ± 13.71 68.73 ±12.37 +3.9 ±2.2 +0.27 ±0.15 78/22/0 Likely increase

SWS at Neutral (m/s) 3.81 ± 0.82 4.20 ± 0.89 +11.4 ±7.3 +0.48 ±0.29 94/6/0 Likely increase

SWS at Standing

(m/s)

4.12 ± 0.79 4.70 ± 0.16 +16.0 ±8.1 +0.74 ±0.35 99/1/0 Very likely increase

SWS at Maximum Plantarflexion (m/s) 2.34 ± 0.42 2.45 ± 0.40 +4.9 ±6.0 +0.28 ±0.33 66/33/0 Possibly

increase

SWS at Maximum Dorsiflexion (m/s) 7.66 ± 1.26 6.66 ± 1.08 -12.9 ±7.5 -0.78 ±0.49 0/2/97 Very likely decrease

Fascicle strain

(%) [dorsiflexion]

16.20 ± 11.67 14.21 ± 8.08 -2.6 ±4.4 -0.21 ±0.37 3/44/52 Possibly decrease

Fascicle strain

(%) [plantarflexion]

-38.52 ± 13.04 -35.78 ± 10.16 +2.9 ±4.2 +0.21 ±0.31 52/46/2 Possibly decrease

Thickness at Neutral (mm) 19.19 ± 3.41 19.79 ± 3.22 +4.1 ±2.0 +0.21 ±0.10 56/44/0 Possibly increase

Note. SWS at Neutral, Maximum Plantarflexion, Maximum Dorsiflexion, and Muscle Thickness are reported as log-transformed data. RoM, total RoM, and Fascicle

Strain are reported as raw data. Only SWS was measured during standing.

https://doi.org/10.1371/journal.pone.0196724.t001
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Muscle fascicle strain

As expected, SWS was larger for the larger fascicle strains and at larger dorsiflexion angles

prior to and post DS intervention. The relationships between SWS, fascicle strain, and ankle

joint angle were characterized by a cubic fit with very large correlation coefficients (r = 0.75–

0.89) and narrow 90% CI values (Figs 3–6).The DS intervention resulted in a possible decrease

in muscle fascicle strain for both dorsiflexion and plantarflexion (small effect) (Table 1).

Muscle thickness

As shown in Table 1, DS intervention resulted in a possible increase in muscle thickness at neu-

tral ankle position (small effect).

Repeatability of SWE measurements

The SWE results showed very good repeatability (relative and absolute) of this technique at all

testing ankle positions and standing (Table 2). Neutral position was observed to have the high-

est relative and absolute repeatability.

Discussion

Joint angle, SWS, MGM muscle fascicle strain, and thickness were assessed in vivo before and

after an acute DS protocol to examine the effect of this form of stretching on increasing flexi-

bility. Our results showed that post DS intervention, SWS traveled faster in the MGM at the

neutral ankle position, and therefore, DS has increased MGM tissue stiffness. This finding was

associated with increased dorsiflexion angle, decreased muscle fascicle strain at the most dorsi-

flexed position and increased thickness. Moreover, SWS increased as ankle angle and fascicle

strain increased which agreed with previous research that SWS for the MGM was dependent

on ankle angle and fascicle strain [21,67,82].

The present study shows that SWE can be used for a reliable in vivo measurement of MG

muscle stiffness. Our assessment protocol was designed to limit any differences caused by the

operator. The high reproducibility of the measurements can be attributed to maintaining iden-

tical transducer orientation and location on the muscle throughout the measurements. In

addition, tissue compression was minimised by fixating the probe on the muscle using a cus-

tom-made support and tape. This assured that the ultrasound probe position and pressure was

Fig 3. SWS of the MGM plotted against fascicle strain pre-DS.

https://doi.org/10.1371/journal.pone.0196724.g003
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the same during the pre and post DS elastography assessments and hence minimised the inter-

operator error. The size of the elastography ROI from where the average SWS was automati-

cally calculated using a custom written Matlab script, was identical between participants and

also during the pre and post-DS. Therefore, this could not be a source of inter-observer error.

Effect of dynamic stretching

As expected, an acute DS protocol increased dorsiflexion angle by 1.5˚ on average. Recently,

an acute increase in dorsiflexion RoM after a DS protocol was reported to be between 3.1 to

7.3˚ [14,15]. Interestingly, the acute increase in plantarflexion was larger (2.3˚). The likely
increase in the SWS by ~10% immediately after stretching of the MGM at neutral ankle posi-

tion, may imply that muscle stiffness increased due to DS. A number of previous studies inves-

tigated the immediate effect of SS only on muscle stiffness of the gastrocnemius [36–40]

showing that SS decreased the muscle shear modulus, while Nordez et al. [41] reported no

decrease in medial gastrocnemius muscle belly hardness after 10 min of SS. However, in this

study, SS was performed at 80%-86% of the maximum RoM [41] and differences between the

results might be due to the stretching technique employed.

Fig 4. SWS of the MGM plotted against ankle angle pre-DS.

https://doi.org/10.1371/journal.pone.0196724.g004

Fig 5. SWS of the MGM plotted against fascicle strain post-DS.

https://doi.org/10.1371/journal.pone.0196724.g005
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Nevertheless, different mechanisms are proposed for the increased in RoM after SS com-

pared to DS such as: (a) alteration in the mechanical properties of the muscle-tendon unit

(MTU) (decrease in muscle-tendon stiffness [9,18,83,84] and passive resistive torque [19]), (b)

decreases in muscle activation [85] or both [86]. The mechanisms that could explain the

increase in RoM after DS are unclear.

Based on our results, we can speculate that the increased dorsiflexion RoM might be due to

a decrease in stiffness of non-muscular structures such as such as synergistic muscles, tendon,

skin, subcutaneous tissue, fascia, ligament, blood vessels, joint capsule, and cartilage. In other

words, the opposite effects of DS on muscle might have occurred in the above s non-muscular

structures in response to DS, where muscle stiffness increased but stiffness of the other struc-

tures decreased and resulted in an overall decrease in the joint stiffness and increase in RoM.

“No alteration” in the MGM stiffness in addition to the reduced stiffness of the other structure

stiffness could have led to the similar outcome (i.e. an overall decrease in the joint stiffness),

however, our argument for the increase in MGM muscle stiffness after acute DS is based on

the likely increase in the SWS at the neutral position. Additionally, the effect of an increase

overall stretch tolerance cannot be disregarded.

Despite the increase in the MGM stiffness, SWS decreased at the most dorsiflexed position.

The decrease in SWS in the most dorsiflexed position from pre to post-DS can be explained by

the decrement in the fascicle strain which has been shown to be correlated to the SWS

[21,67,82]. In other words, the reduced SWS at the most dorsiflexed position after DS protocol

was because of the reduced fascicle strain and is not inconsistent with the reduction of the

MGM stiffness although the contribution from changes in the pain tolerance [87–89] for the

overall increase in flexibility cannot be ruled out.

Additionally, our results differ from those reported in previous studies in which DS was

employed as a treatment intervention [12,15]. Mizuno and Umemura [15] found that DS (con-

traction of the antagonist to the target muscle group) does not change the mechanical

Fig 6. SWS of the MGM plotted against fascicle strain post-DS.

https://doi.org/10.1371/journal.pone.0196724.g006

Table 2. Repeatability results for SWS at 3 ankle positions and standing (n = 23).

SWS (m/s)

Ankle position Plantarflexion Neutral Dorsiflexion Standing

Mean ± STD (m/s) 2.51 ± 0.93 3.81 ± 0.80 7.66 ± 1.3 4.19 ± 0.84

ICC (90% CI) 1.00 1.00 1.00 1.00

TE (m/s) (90% CI) 0.02 0.01 0.02 0.04

CV (%) (90% CI) 1.00 0.40 0.60 2.20

https://doi.org/10.1371/journal.pone.0196724.t002

Effects of acute dynamic stretching Assessed by elastography

PLOS ONE | https://doi.org/10.1371/journal.pone.0196724 May 3, 2018 11 / 19

https://doi.org/10.1371/journal.pone.0196724.g006
https://doi.org/10.1371/journal.pone.0196724.t002
https://doi.org/10.1371/journal.pone.0196724


properties of the muscle-tendon unit (stiffness) and attributed the change in RoM to enhanced

stretch tolerance, whereas Herda et al. [12] reported that the increase in the RoM after four 30s

sets of DS (contraction of the agonist muscle group to the target muscle group technique -knee

flexors) was due to a decrease in the MTU stiffness. These results differ from the above where

muscle stiffness was inferred from the passive torque-angle curve. These discrepancies may be

explained by the fact that passive torque is influenced not only by muscular but also by non-

muscular structures.

The connective tissue, and in particular the perimysium, is considered to be a major extra-

cellular contributor to passive stiffness [90]. The ultrasound SWE scanner used in the present

study can quantify localized tissue stiffness, and we exclude the outside connective tissues (epi-

mysium, fascia, and aponeurosis) from the analysis of SWS data. Additionally, measurement

of individual muscle properties is difficult to distinguish using dynamometry and measure-

ment of the passive torque is affected by synergistic muscle activity, tissue composition and

articular structures [21]. The method employed in the present study, i.e. SWE, allows quick

and easy evaluation of the passive properties of individual muscles in vivo [31].

After the DS, there was a possible decrease in muscle fascicle strain at the most dorsiflexed

position compared to the pre-stretching situation, which supports the notion that the increase

in the overall elongation of the MTU may be attributed to the relatively increased contribution

from the tendon. It should be emphasized that we did not measure tendon properties directly

but considering that the muscle fascicle and the tendon are aligned in series, and both contrib-

ute to the MTU properties [9,19], a decrease in fascicle strain will imply an increase in the ten-

don strain. A future study should consider simultaneous measurements of the tendon

properties to clarify the present results.

The decrease in muscle strain caused by the DS protocols may indicate microtrauma to the

cytoskeleton-membrane and accompanying sarcomere disruption during eccentric exercise

giving rise to Ca2+ levels in muscle fibers [76]. This, in turn, can trigger low-level activation

and produces ‘contracture clots’, which increase passive musclee tension [77–79] by increasing

cross-bridge formation and may lead to higher (resting) stiffness.

A recent study suggests that early increases in muscle SWS after exercise could reflect the

pertuberation of calcium homeostasis induced by cytoskeletal alterations [91]. Although a

direct relationship with the increase in SWS is not clearly established, a 28% increase in MGM

SWS after eccentric exercise suggests that the MGM might have been damaged by this DS

eccentric exercise protocol [92].

Several studies have reported increased muscle stiffness immediately after repeated eccen-

tric muscle contractions [93,94]. Agten et al. [95] reported an immediate increase in SWS after

eccentric exercise which was explained by extracellular muscle edema and increased blood

flow due to the exercise rather than DOMS. Increased perfusion with exercise in our study

might have produced ‘pseudohypertrophy’ of the muscle as indicated by increased thickness

post DS. Metabolic factors may contribute to this, because adenosine triphosphate (ATP) is

required to detach myosin from actin during cycles of muscle contraction [96]. With ATP loss

during exercise, this detachment capacity decreases and the two proteins remain connected.

Therefore, ATP loss may be another reason for the increased stiffness observed in SWS.

This work provides further evidence that SWS increase in MGM with increasing ankle

angle and fascicle strain. These relationships are similar to the ones observed by other authors

[21,67,82], however, there are some limitations to consider when interpreting the results of the

study. We did not directly measure muscle activity throughout the passive dorsiflexion and

plantarflexor movement to ensure that the muscles remained passive. However, the fact that

the participants were instructed to stay relaxed throughout the testing procedures, and that we

monitored fascicle length using B-mode ultrasonography and made sure that it stayed constant

Effects of acute dynamic stretching Assessed by elastography

PLOS ONE | https://doi.org/10.1371/journal.pone.0196724 May 3, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0196724


at the end RoM of passive ankle movements indicate that the muscle was quiet during the

SWS passive measurements. In isotropic homogenous materials, SWS is directly related to the

Young’s modulus [97], but this is not necessarily true in tissue which is transversely anisotropic

[97], e.g. muscle. It is shown that SWS is related to the Young modulus in muscle [98] and pro-

vides a reliable measurement of the resting state muscle [31], but such relationship is unclear in

passive and active measurements. Muscle is also anisotropic, viscoelastic and heterogeneous,

which violates common assumptions needed to convert SWS to shear modulus and Young’s

modulus. Therefore, we decided to report our values in SWS. Furthermore, SWS cannot differ-

entiate which factors may contribute to the increased stiffness such as the extracellular matrix,

intracellular proteins, or reflexively mediated activity [67]. A recent publication has shown that

skin is a main contributor (among the tissues covering skeletal muscle) to the maintenance of

muscle mechanical properties, contributing up to 50% to muscle shear modulus and that epi-

mysium has no effect on muscle stiffness [99]. We can speculate that with any intervention we

can change no more than around half of the factors influencing muscle stiffness. Another limi-

tation is that SWS measurement was only performed at only one region of the muscle. There-

fore, it is unclear whether the current findings can be generalized for the entire muscle region.

Further research is needed to clarify this. Additionally, no study has investigated the acute

effects of DS on SWS in elderly people and between genders. However, recent studies [100]

have found no significant difference in MGM elasticity between men and women and between

young and elderly women [101]. Recently Nakamura et al. [101] suggested that the effect of 5

min of SS on decreasing shear elastic modulus is similar between young and elderly women.

Shear wave elastography assesses the muscle elasticity based on the shear wave propagation

information within the defined ROI, which was placed on the muscle belly. Therefore, SWS can

be measured without the confounding influences of the muscle volume or other nearby ana-

tomical structures, such as synergistic muscles, tendon, skin, subcutaneous tissue, fascia, liga-

ment, joint capsule, and cartilage compared to passive joint methods which is affected by

muscle volume [102] and other structures within and around the joint (22).

Current results add to the body of knowledge by showing acute changes in single muscle

properties in response to DS and support the notion that differential changes in the muscle

and tendon mechanical properties, and hence function, can be achieved through different

stretch training protocols. Our results have implications for dynamic muscle function in sport-

ing and clinical contexts. For example, stiffer muscle combined with a compliant tendon is

thought to transfer forces slower to the skeleton to initiate joint movements involving concen-

tric contraction [103]. After DS, combined increased muscle stiffness and tendon compliance,

might change muscle-tendon interaction during movement by shifting the optimum angle for

force production, and/or contraction economy due to the altered elasticity of the tendon.

More compliant tendons store more elastic energy than stiffer tendons under the same relative

loading conditions [104,105]. When combined with a shorter and stiffer muscle during

dynamic tasks, the larger tendon stretch and recoil increases the stretch-shortening cycle

(SSC) rate and results in faster movements [103]. Additionally, a more compliant tendon is

able to absorb more energy, during large SSC movements and accordingly, both the tendon

and muscle will be less prone to injury.[103,106]. Future studies should measure the simulta-

neous effect on different structures around the joint, in addition to alteration in tendon prop-

erties directly.

Conclusion

We have found that DS increases SWS in the resting MGM at the neutral ankle position. This

suggests that the mechanical properties of the MGM may have altered, as evidenced by the
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greater muscle stiffness but also by a decreased muscle fascicle strain and increased muscle

thickness. Results of the present study demonstrate the need for further exploration of the neu-

romuscular and functional adaptations to DS as a potential intervention that could be benefi-

cial to athletes and in rehabilitation.
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