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Abstract 

Induction motors are the most used in commercial and industrial areas that consume 

the majority of generated electrical energy. The induction motors always create a low 

power factor. The low power factor not only create a penalty charge for industrial 

customers, but also produces energy losses in electrical systems. To prevent such 

issues, the users responsible to maintain the power factor to unity. Many researchers 

expressed that reactive power compensation by capacitors bank can be a substantial 

solution to maintain the power factor in the desired level at any loads, but providing 

the optimal reactive power still is a controversial topic. In the last decade, the power 

factor correction formula leads to obtain the optimal reactive power using 

measurement of input power and the operating power factor. However, measurement 

of these values synchronously create difficulties at any loading points.	

This research will examine a solution to determine the operating power factor of 

induction motors against input power from no-load to full/over-load conditions using 

measurement and estimation techniques. In this thesis, estimation techniques 

including Kriging, regression, neural network and support vector regression are 

implemented in three different induction motors with the size of 250 W, 10 HP and 

100 HP in order to identify the best estimation technique. In these cases, the support 

vector regression technique with some inputs data determined the power factor and 

input power at every desired loading points with high accuracy. These estimated 

values contributed to obtain the optimal reactive power and so prevent under or over 

correction at any loading points. 
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1.1. Background Information 

An induction motor is classified by single and three phases. The three-phase 

induction motor is the main work-horse of industrial factories. Also, it is known as 

an inductive load that consumes the majority of generated electrical power. The 

induction motor is composed of a stator and rotor. A single or three-phase voltage to 

the stator creates a rotation in the rotor shaft. This rotation requires active and 

reactive power to create a magnetic field and support the mechanical load in the rotor 

shaft. Variation of the mechanical load in the rotor shaft produces a change in the 

induction motor characteristics, including the equivalent circuit parameters, speed, 

efficiency and power factor. This change affects the induction motor’s performance. 

Among these parameters, the power factor is an important element as not only does 

its variation affect the performance of the grid efficiency, but it also increases the 

cost for the user and utility companies. In the induction motor, the load variation 

causes the power factor to be low in particular at no-load and light load. A lower 

power factor than the desired value produces energy losses and also induces a 

penalty charge for the user. Therefore, to prevent this issue, a technique is required to 

maintain the power factor at unity. A capacitor is able to generate the reactive power 

and make a unity power factor. However, determining the amount of required 

reactive power in each induction motor is necessary because it contributes to the 

selection of the capacitors before installation. 

The power factor correction method is one of the significant techniques to calculate 

the exact amount of required reactive power at any loading point in individual or 

group induction motors, or even at the point of common coupling. In this method, 

three components, including the input power, initial power factor and target power 

factor, have major roles in determining the reactive power at any loading point.  



Chapter 1: Introduction  
	

	 Page	3	
	

The target power factor is normally between 0.9 and 1. However, the input power 

and initial power factor are unknown. Finding these two values requires a 

measurement at any loading point, from no-load to full-load and over-load 

conditions.  

Several techniques are available to determine these two values. The first technique is 

to measure the voltage and current waveforms and then use zero crossing sensors to 

determine their angle. Hence, by having the voltage, current and cosine angle, the 

input power and power factor can be computed.  An installed wattmeter and current 

meter in the induction motor can be used for measurement. The second method uses 

a power analyser to measure and save the voltage, current, power and power factor at 

any loading point. A power analyser is very helpful and is able to store the data at 

every point from no-load to full-load. The next technique uses MATLAB/Simulink 

to model any size of induction motor and then measure the power factor from no-

load to full-load conditions. Consequently, once those values are obtained, the 

method of power factor correction determines the amount of reactive power at any 

loading point. Then, the proper size of capacitors can be selected based on the 

obtained kVAR.     

1.2. Problem Statement  

It is understood that determination of the input power and initial power factor versus 

load is important in order to find the optimum value of reactive power for making a 

unity power factor. Determining the initial power factor of an induction motor 

against load is not easy, since there is no equation between the load and power 

factor. In spite of the fact that the installed devices in the induction motor can be 

used to measure the power factor and input power, a load controller is required to 

avoid numerical fluctuation at reading time.  
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A power analyser is a suitable instrument that is able to measure and record data. 

However, in this approach, the induction motor must be shut down for cable 

connection, which may create a cost for the user. Although by simulating the 

induction motor in MATLAB/Simulink the power factor against load can be 

determined, the parameters of the induction motor are required for this simulation. 

Finding such parameters is difficult.  

1.3. Research Aim and Objective  

The main aim of this research is to implement a mathematical technique in order to 

create a model and determine the power factor against motor load from no-load to 

full-load and over-load conditions. This research is also aimed to implement the 

proposed technique in three different induction motors, small, medium and large, and 

then to provide a comparison with all the conventional methods to identify the best 

method for estimating the power factor of any size of induction motor at different 

loading points. The aim of this project will be acheived through the following 

objectives: 

• Analysing the importance of the power factor against load and the effect of 

under- or over-compensation in the induction motor   

• Considering a practical work in the laboratory to measure the power factor 

of the induction motor from no-load to full-load and over-load  

• Investigating a method to determine the induction motor load  

• Investigating a proper estimation technique to determine the power factor of 

different sizes of induction motor  

• Implementing the proposed technique and conventional methods in three 

different induction motors using MATLAB programming  
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• Comparing the estimated power factor with the measured power factor to 

validate the accuracy of the proposed method 

•  Presenting a comparison between the conventional techniques and the 

proposed technique in order to substantiate the accuracy of the proposed 

method  

1.4.  Research Methodology  

This thesis expresses a methodology to identifies the difficulties and presents a new 

idea in order to determine the operating power factor of various induction motors 

including 250 W, 10 HP and 100 HP from no-load to full/over-load condition. To 

determine the power factor of induction motor at different loads both torque and 

power factor measurement are required at the same time. As previously mentioned, 

the practical work discovers the difficulties of this determination. In this research, a 

new idea using mathematical equations and estimation techniques will be used to 

solve the recent difficulties.  

The study found that implementing input power and power factor equations can 

obtain the load and power factor at the same time. Then, implementing the SVR 

method to the obtained values of load and power factor, it is able to determine and 

store the power factor at any single load from no-load to full load and over load 

condition. To identify the accuracy of SVR method, recent techniques including 

measured current and manufacturing data, Kriging, regression and ANN will be 

implemented in the considered induction motors. Furthermore, A simulation and 

practical measurement are used to validate the outcome of SVR and input power 

equation.  
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1.5. Principal Contributions to Knowledge  

The principal contributions to knowledge presented in this thesis can be summarised 

as follows:  

• A comprehensive review is conducted on past research surrounding the issue 

of  power factor determination against motor load from no-load to full-load 

and over-load conditions.  

• Extensive study is presented on an input power measurement method to 

obtain the load and power factor against each other. Also, it contributes to 

finding the support vector regression method for estimation of the power 

factor against load at missing points between the no-load and over-load 

conditions. 

• The combination of the input power measurement method and support vector 

regression method provides a great means to determine the active power and 

initial power factor at any loading point. Therefore, this combination 

provides a principal contribution to knowledge in order to obtain the required 

amount of volt ampere reactive and make the power factor unity.  

1.6. List of Publications Arising from the PhD 

The work detailed in this thesis has resulted in a number of refereed publications as 

follows: 

§ M. Khodapanah, A. F. Zobaa and M. Abbod, "Monitoring of power factor for 
induction machine using estimation technique," in 2015 50th International 
Universities Power Engineering Conference, UPEC 2015, Stoke On Trent, 
United Kingdom, September 1-4, 2015, pp. 1-5.	
	

§ M. Khodapanah, A. F. Zobaa and M. Abbod, "Estimating power factor of 
induction motors using regression techniques," in 17th International 
Conference on Harmonics and Quality of Power (ICHQP), Belo horizonte, 
Brazil,Oct 16-19, 2016 , pp. 502-507 
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§ M. Khodapanah, A. F. Zobaa and M. Abbod, "Estimating power factor of 

induction motors at any loading conditions using support vector regression," 
in Journal of Electrical Engineering" Submitted on October 2017.  

 
1.7. Organisation of the Thesis 

Chapter 1 – Introduction  

The sections in this chapter will outline the motivations of the research presented in 

this thesis. This research has been conducted to gain a greater understanding of 

power factor determination against load in order to obtain the optimal reactive power 

for making a unity power factor at any loading point with a view to saving energy. A 

description of the relevant background information is provided. The overall 

objectives of this research project are presented within three different sizes of 

induction motors.  

Chapter 2 – Literature Review  

This chapter details the concept of power factor measurement and correction in 

induction motor and electrical systems. The chapter discusses various methods of 

estimating induction motor characteristics and electrical systems indices. The 

proposed solutions for estimating the power factor versus load will be presented.  

Chapter 3 – Determination of Load and Power Factor  

 This chapter gives an overview of the induction motor characteristics and analyses 

the load and power factor against each other. The theory of power factor 

determination and power factor correction are described in detail. In addition, the 

experiment and simulation for measurement of the power factor of different 

induction motors against load are presented.   
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Chapter 4 – Estimation Techniques 

This chapter describes the theory of five mathematical techniques for power factor 

estimation versus load. The first technique is a method using measured current and 

manufacturer’s data. The second and third methods are the statistical methods of 

Kriging and regression respectively. The fourth and fifth methods are an artificial 

neural network and support vector regression as intelligent techniques.    

Chapter 5 – Results and Discussion 

 This chapter presents the results of the proposed methods, including measured 

current and manufacturer data, Kriging, regression, and the artificial neural network 

and support vector regression methods that are implemented in 250 W, 10 HP, and 

100 HP induction motors in sequence. The discussion section describes the features 

of and issues with the considered methods. A comparison of the results is presented 

to identify the best methods.      

Chapter 6 – Conclusions and Future Work 

In the final chapter, a summary is provided of the work presented in this thesis and 

the main contributions of the research are discussed. In addition, outlines of 

proposed future work are presented.  
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2.1. Introduction 

This chapter details the papers reviewed about the importance of the power factor in 

induction motor and electrical systems. Several reviewed articles are analysed for 

measuring and correcting the power factor. In addition, the chapter discusses various 

methods for measuring and estimating the induction motor characteristics and 

electrical systems indices. The capabilities and requirements of the various 

estimation approaches with a proposed solution will be examined through a critical 

review. 

2.2. Impact of Electrical Loads on Power Factor 

The power factor in electrical systems is defined as the cosine angle between the 

voltage and current. Electrical and mechanical loads have significant roles in the 

behaviour of the power factor. Electrical loads are divided into passive and active  

loads. These loads provide a change in the angle between the waveforms of the 

voltage and current. For example, if the load is purely resistive, the angle becomes 

zero and as a result the power factor will be unity [1, 2]. However, if the load is 

inductive or capacitive, the angle will be 90 degrees (lagging or leading) so that the 

cosine angle obtains a power factor of zero. In the inductive load, the current 

waveform always lags behind the voltage, while in the capacitive load, the current 

leads the voltage. In electrical systems, a lagging power factor means consuming 

reactive power. A leading power factor means generating reactive power [3].  

The power factor is also described as a ratio between the active and apparent power. 

It can be calculated by active power over apparent power. In electrical and power 

systems, most electrical loads are resistive and inductive, both active and reactive 

power are required in the loads. Therefore, the power factor will not be zero or unity. 

It will be higher than zero or less than one [4].  
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Utility companies are always concerned with reactive power because increase of 

reactive power  causes the current increases and also a voltage drop occurs. This 

results in equipment failure. To avoid this problem, the power factor must be 

maintained between 0.8 and 1 [5]. Commercial and industrial users are always 

concerned with a lower power factor than the standard level (due to penalty charges). 

Hence, this indicates the importance of the power factor in the electrical system.     

Electrical loads can be described as linear and non-linear loads. Non-linear loads 

create harmonics, which distort the voltage and current waveforms. This distortion 

also has an effect on the power factor, such that power factor distortion must be 

taken into account. The power factor distortion can be obtained by considering the 

total harmonic distortion of the voltage and current [6].  

The effects and consideration of the power factor and harmonic distortion is 

presented. A harmonic is defined as a sinusoidal component of a periodic wave in a 

frequency. An AC periodic voltage and current are represented by a Fourier series of 

pure sinusoidal waves which contain the basic or fundamental frequency other than 

50Hz and its multiples, called harmonics. However, harmonic distortion is distortion 

factor of voltage and current waveforms. Voltage and current distortion are 

commonly caused by non-linear loads in the system. In addition, the voltage 

distortion corresponds to the current distortion in case of source impedance, whereas 

the current distortion results in voltage distortion. The root mean square of voltage or 

current harmonics over the fundamental voltage or current computes the total 

harmonic distortion. The fundamental component of the voltage and current to the 

total voltage and total current obtains the power factor distortion [6, 7]. 

Harmonic distortion is usually produced by non-linear load such as from arc 

furnaces, fluorescent lighting and rectifiers. Non-linear load reduces the power factor 
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not only due to the phase shift of the fundamental of the voltage and current, but also 

because of higher harmonics in the voltage and current caused by noise and heat. In 

addition, in induction motors, the majority of motor loads are linear, but there are 

non-linear characteristics. Electrical motors can be influenced by large harmonic 

currents, resulting in higher noise, oscillating torque and increasing copper and iron 

losses. Voltage harmonics cause a growth in iron loss, while current harmonics cause 

an increase in stray flux losses and copper losses. Both components have an effect on 

the power factor in electrical systems.  

It is described power factor distortion and power factor displacement based on IEEE 

Std. 18-2002, observing that the power factor displacement can be described as the 

cosine angle of the voltage and current in a sinusoidal wave. However, with increase 

of the non-linear load, harmonic distortion will be produced, where the total power 

factor will be presented by power factor distortion times power factor displacement. 

A large phase shift and harmonics create low power factor displacement and 

distortion. A capacitor is useful to correct the power factor displacement in linear 

loads. However, it is not recommended in the case of non-linear loads, since power 

resonances produce higher harmonics. A harmonic filter is recommended to 

eliminate harmonic distortions [8]. 

2.3. Effect of Variation of Induction Motor Load on Power  Factor 

Among electrical loads, the induction motor is important due to its extensive 

industrial use. They consume more than 50% of generated electricity. [9]. 

The induction motor is associated with slip speed, which depends on the motor 

frequency and number of poles. The difference between synchronous speed and 

actual speed provides slip. The slip increases when the actual speed decreases by 

adding mechanical load. Since the induction motor is recognized as an asynchronous 
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motor, the slip cannot be zero at the no-load condition because if the slip speed and 

actual motor speed were equal, there would be no rotation due to no voltage being 

induced on the rotor side [10, 11].  

The induction motor needs both active and reactive power, where the active power is 

used for providing mechanical power and the reactive power is used for the existing 

magnetic field. The power factor and efficiency are two important elements in terms 

of energy-saving in industrial applications. Efficiency is a ratio to indicate the losses 

existing between the input and output power. However, the power factor is a ratio 

between active and reactive power. It indicates how much active and reactive power 

is being consumed from no-load to full-load and over-load conditions. In induction 

motors, the mechanical load affects the power factor because the active and reactive 

power are proportional to the mechanical resistance and magnetization reactance. 

Variation of these two parameters creates different demands for active and reactive 

power and therefore results in the power factor changing exponentially [12]. 

2.4. Importance of Power Factor Determination 

An induction motor with linear load at the steady state condition provides sinusoidal 

waveforms. In this condition, using the conventional power factor equation is enough 

to determine the power factor of the induction motor. As previously mentioned, 

induction motors are inductive loads. Inductive loads always cause a low power 

factor due to consuming more reactive power. The low power factor of induction 

motors not only creates a penalty charge for industrial customers, but also produces 

energy losses in electrical systems. It is understood that decreasing and increasing 

the mechanical load in the induction motor produces a change in the power factor. In 

industry, since many induction motor loads change due to different applications, the 

power factor also changes and becomes lower, which needs to be taken care of. To 
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solve this problem, reactive power compensation is required by the user. A 

capacitors bank is a substantial solution to generate reactive power [13, 14, 15].  

In the last decade, a technique using no-load test has been used to obtain the required 

reactive power in the induction motor. For instance, if the motor set to the no-load, 

the reactive current can be estimated as 90% of the no-load current. However, if full-

load current is available, the no-load current can be predicted as 30% of the full-load 

current. Then, 90% of the full-load current provides the required reactive power in 

VAR [16]. However, this method is not sufficient to determine the proper size of 

capacitor because it only provides an approximation, in particular at fixed load. 

Therefore, this empirical technique may create under- or over-correction at operating 

time, where under-correction causes a penalty charge for the user while over-

correction produces self-excitation, which is harmful for the induction motor 

winding [17]. 

The study found that the power factor correction equation is a suitable technique to 

calculate the exact amount of reactive power required at any loading point in 

individual or group induction motors, or even at a point of common coupling. In this 

method, three components including input power, initial power factor and target 

power factor have the main roles in determining the reactive power at any loading 

point. The target power factor is normally between 0.9 and unity. However, the input 

power and initial power factor need to be measured from no-load to full-load and 

over-load conditions. Once these two values are obtained, the power factor 

correction equation determines the amount of volt ampere reactive for improving the 

power factor [18, 19].    

Several techniques are available to determine these two values. The first technique is 

to measure the voltage and current waveforms and then use zero crossing sensors to 
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determine their angle. Hence, by having the voltage, current and cosine angle, the 

input power and power factor can be computed. The installed wattmeter and current 

meter in the induction motor can be used for measurement. The second method  uses 

a power analyser to measure and save the voltage, current, power and power factor at 

any loading point. The power analyser is very helpful and is able to store the data at 

different point from no-load to full-load [20, 21, 14].  

The next technique uses MATLAB/Simulink, which is able to model any size of 

induction motor and then measure the power factor from no-load to full-load 

conditions. Consequently, once those values are obtained, the method of power 

factor correction determines the amount of reactive power at any loading point. 

Then, the proper size of capacitors can be selected based on the obtained kVAR [13].  

2.5. Issue of Power Factor Determination  

Determining the initial power factor of the induction motor against load is not easy 

since there is no equation between the load and the power factor. In spite of the fact 

that the installed devices in the induction motors can be used to measure the power 

factor and input power, a load controller is required to avoid numerical fluctuation at 

reading time. A power analyser is a suitable instrument for the measurement, being 

able to measure and record data. However, in this approach, induction motors must 

be shut down for cable connection, which may create a cost for the user. Although by 

simulating the induction motor using MATLAB/Simulink the power factor against 

load can be determined, the parameters of the some induction motors are required for 

this simulation. In this chapter, various reviewed papers will be presented with 

regard to how the power factor against load can be determined. Since the power 

factor will be obtained from the impedance of the equivalent circuit, determination of 

the equivalent circuit parameters is reviewed as well.  
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Although many past papers are reviewed to indicate the problems, much research are 

still needed to find a proper technique for determining the power factor against load. 

The next section will discuss several past papers on estimation of the power factor 

[22, 23]. 

2.6. Power Factor Estimation Against Load  

It is presented a method using the measured current and manufacturer’s data 

(MCMD) to estimate the power factor of the induction motor (2.2 kW) at any desired 

loading point. In this method, a simple numerical equation is used to provide a good 

solution [14]. In this technique, some measured value of current from no-load to full-

load are required. Also nominal reactive power of induction motor requires in this 

method. The motor current is measured by current meter. The nominal ractive power 

obtained by nominal power factor from motor name plate. Conducting values of 

measured current and and the nominal reactive current into the equation, power 

factor obtained at value of measured current. In this approach, the measured current 

method is used to obtin the load.   The results of the proposed method are compared 

with the instantaneous power method and zero crossing method, and show errors of + 

0.04 at the full-load condition and -0.18 at the no-load condition [14]. 

In this method, two weaknesses have been found. One is in the measurement of the 

current. In the measurement process, the meter provided a numerical fluctuation at 

reading time because increasing and decreasing the motor load must be controlled 

during the measurement, which is difficult. Another weakness relates to the nominal 

reactive current. In induction motors, the reactive current from no-load to full-load is 

not constant, while in this equation the reactive current is considered to be constant. 

This consideration creates high error at many loading points.  
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Consequently, this method is not suitable for induction motors that have not been 

installed and coupled to the load.  

Rajesh presented two techniques including Kriging and regression to estimate the 

power factor in residential houses. It is observed that due to the increase of load, 

determining the power factor is necessary for improving energy efficiency. In this 

paper, statistical methods provided a solution to determine the power factor. In the 

regression method, a locally weighted regression technique with an exponential 

function is used. The Kriging method with a semivariogram model is considered. 

Both methods require some observed points in order to establish a model. Then, 

based on the created model, the power factor is predicted at the desired points. In this 

case, a number of houses with some random measurement of the power factor were 

considered as input data. The output results indicated that the Kriging and regression 

methods estimated the power factor with the average error of 1.824% and 1.944% 

[24, 25]. 

A zero crossing method and instantaneous power method are presented to determine 

the power factor of a small induction motor (250 W) from no-load to full-load 

conditions. The Kriging method is also applied in this induction motor to estimate 

the power factor. The results showed that the zero crossing and instantaneous method 

produced errors of 22% and 35%. However, the Kriging method created an average 

error of 14% [22]. 

It is presented a regression method with a polynomial technique to estimate the 

power factor from no-load to full-load condition. In this technique, the voltage, 

current and input power at a few points are randomly measured. Then, the power 

factor with the conventional method and the motor load with the input measurement 

methods are computed.  
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The obtained values are considered as dependent and independent values in this 

method. Polynomial degrees of the 1st, 2nd, and 3rd orders are applied in this 

technique. The results showed that the 3rd order provided the best model, very close 

to the sample points, and then the unknown points are estimated accurately. In this 

induction motor, MCMD and Kriging are also applied to estimate the power factor 

from no-load to full-load conditions [26].  

Both methods produced average errors of 3% and 0.6% respectively. The compared 

results showed that regression with the 3rd order provided the highest performance 

with the lowest average error of 0.3% compared with the other methods from no-load 

to full-load conditions. However, the Kriging and regression methods were not able 

to estimate the power factor from full-load to over-load conditions because both 

methods are interpolation techniques and cannot extrapolate unseen points.  

It is introduced an intelligent technique to estimate the power factor in distribution 

systems by analysing the real parameters of the power system. In this research, an 

ANN trained by a feed-forward back propagation is used. The hourly average values 

of different power quality parameters over 92 days were taken from a power 

distribution company in Victoria, Australia. The structure of the network was 

considered as two layers, where tan sigmoid and log sigmoid functions are used in 

the first layer and hidden layer respectively. The output layer observed the estimated 

values of the power factor. The results showed that the ANN is able to estimate the 

power factor at unseen points with an accuracy of 93% [27].  

It is mentioned that using equivalent circuit parameters in the induction motor can be 

a great way to determine the power factor because the total resistances over 

impedance obtain the power factor.  
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The next section will discuss past research on induction motor parameters. Also, 

evaluating estimation techniques through the reviewed papers presents a solution for 

power factor estimation  [11].  

2.7. Past Research on Estimation Techniques  

It is stated that an equivalent circuit is a diagram to represent the rotor, stator, losses 

and magnetization of the induction motor. The rotor and stator are indicated in 

resistance and reactance. Losses and magnetization are modelled by a resistance and 

reactance respectively. The mechanical load or output power is indicated by rotor 

resistance over slip. Using all these parameters would be effective for obtaining the 

power factor from no-load to full-load at steady state conditions because they affect 

the motor current and the motor current also affects the power factor at any loading 

point. It is reported that a no-load test and locked-rotor test are used to determine the 

magnetization reactance and total impedance [10].  

A DC test can be applied to determine the stator resistance at no-load. However, 

these procedures had the limitation that estimation techniques had to be applied to 

determine the parameters of the induction motor individually. Once all the 

parameters were found, the motor impedance could be easily computed with its 

angle. Then, the cosine angle provided the power factor of the induction motor at 

steady state conditions.The study found many articles on the subject of how to find 

the parameters of the induction motor.  For example, Phuc estimated the parameters 

of an induction motor using test measurement data. It is mentioned that a DC test, a 

locked-rotor test, and a no-load test were used to obtain the equivalent circuit 

parameters.  

However, the results of the parameters would not be as accurate as measurement 

because the core loss resistance with slip is not constant from no-load to full-load. 
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This paper developed an algorithm to determine the core loss resistance by using a 

Newton–Raphson (NR) algorithm, and then adding the obtained value into a direct 

parameter calculation method [28].  

Therefore, this paper presented a new methodology to match the parameters of the 

equivalent circuit into the measurement under various test conditions. The results 

indicated that by adding the core loss resistance, the estimated parameters are fitted 

into the both the active and reactive power at various slips compared with direct 

calculation. For example, at a slip of 0.0083 the active power, direct calculation and 

Newton–Raphson (N–R) algorithm were 202.75, 124.5 and 164.30 in watt 

respectively. It can be observed that the N–R algorithm provides closer results than 

direct calculation.  

It is discussed parameter estimation of a squirrel-cage induction motor without 

torque measurements. In this paper, some problems in the determination of the 

parameters using methods in IEEE standard 112 are clarified. The parameters are 

determined by a no-load test, locked-rotor test and over-load test. An iterative 

algorithm that needs no torque measurement is used. The proposed method is tested 

with 16 different rating powers. It is noted that IEEE standard 112 provides four 

methods for determination of the equivalent circuit parameters. Methods 1 and 2 

estimate the rotor resistance using a locked-rotor test with a supply frequency where 

the rotor resistance is considered as a maximum 25% of the rated frequency. 

Methods 3 and 4 are used to estimate the rotor resistance in a full-load slip test. The 

results of these methods indicated significant errors. Therefore, the proposed method 

is used to minimise the problems in these methods and the results indicate a very 

good convergence [29]. 
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It is presented a methodology to obtain the parameters of asynchronous machines by 

using the nameplate and manufacturer’s data sheet. The motor nameplate often 

provides the mechanical shaft power, voltage, current, efficiency, speed and power 

factor at full-load condition. However, it is mentioned that a data sheet provides the 

efficiency and power factor at different loads including quarter, half and full-load. 

The stator resistance can be obtained by considering efficiency, output power, slip 

and current. Rotor resistance is estimated by providing the output power, slip and 

current. Rotor and stator reactance are obtained using the voltage current, rotor and 

stator resistance. The resistance losses are computed from the output power, 

efficiency and slip. However, magnetization reactance is calculated by considering 

no-load current and voltage drops in the stator impedance. The methodology was 

implemented in hundreds of motors and the results indicated a very good agreement 

between the calculated value and supplied information [30].  

It is presented a methodology to estimate the parameters of an induction motor using 

motor nameplate data. It is mentioned that several previous papers have discussed 

estimating the parameters using the motor nameplate and data sheet from the 

manufacturer. For example, a recent method required the nameplate information, the 

ratio of the starting torque, full-load torque, power factor and efficiency at four 

loading points (25%, 50%, and 75% and 100%). The proposed method only required 

the motor nameplate information since this provides easy access compared with the 

data sheet from thte manufacturer [31].  

A motor that is already installed may not have a data sheet or it may be difficult to 

find the data from the manufacturer. It is indicated that the proposed method is 

suitable for such cases. In this paper, the algorithm considered the full-load rated, 

starting power, and a set of non-linear equations that refer to the motor power and 



Chapter 2: Literature Review 
 

	 Page	22	
	

losses in circuit parameters. Finally, an iterative Gauss–Seidel method solves the 

non-linear equations. The proposed method had several limitations. The rotor 

resistance and reactance were assumed equal under the locked-rotor test. The 

parameters are fitted into the full-load condition. All motor losses are assumed 

constant at full-load. Therefore, the results show that the proposed method provided 

satisfactory values close to the actual values. For instance, the proposed method 

obtained a stator resistance of 0.657 while the actual value was 0.641Ohm. 

Phumiphak proposed a technique to estimate the parameters of the induction motor. 

The proposed technique used a few sets of data such as voltage, current, speed and 

power factor from the field test of the motor instead of a locked and no-load test 

rotor. The proposed method is suitable for motors connected to the load permanently 

and cannot operate at no-load. There are two difficulties in determining the 

parameters of equivalent circuits at operation time. Firstly, it is too difficult to lock 

the rotor while the motor is in service. Secondly, in the no-load test, the motor cannot 

cut from the motor load since it is coupled [32].  

The equivalent circuit parameters are estimated by a genetic algorithm, in which the 

measured voltage, current, power factor and speed (while the motor is in service 

from light-load to full-load) are considered as the input of the genetic algorithm. Two 

sizes of induction motor, 3 HP and 5 HP, are used to substantiate the feasibility of 

the proposed method. The results showed that the estimated performance of the six-

impedance equivalent circuit provided an average error of 5% compared with the 

measured power factor, efficiency and current.  

It is presented an artificial neural network (ANN) for estimating the parameters of 

the equivalent circuit of the induction motor. It is mentioned that the rotor resistance 

is not constant and changes with time, temperature and speed.  



Chapter 2: Literature Review 
 

	 Page	23	
	

The ANN aimed to identify the rotor resistance and mutual inductance. The delta 

method for the output layer and back propagation for the hidden layer are used in 

ANN training. A simulation and experimental tests with an induction motor with a 

power rating of 1.1 kW are implemented. The performance of the ANN in estimating 

the rotor resistance and inductance of the induction motor is high. It is seen that the 

estimation process was significantly improved and the whole control system operates 

better [33].  

It is presented a method using regression based on a 3rd order for estimating the 

parameters of the induction motor. The proposed method used least squares (LS) to 

estimate the non-linear model parameters and then transformed the 3rd order non-

linear model to a linear regression equation. In this case, the voltage and current are 

considered as inputs and the active and reactive power and motor speed as the output 

of the induction motors. Consequently, the proposed method could identify the 

parameters through an experiment. The simulation results indicated that the proposed 

method performed well with high accuracy in the estimation of induction motor 

parameters [34].  

It is presented a new method to estimate the single-cage induction motor parameters 

from the manufacturer’s data. In this case, the algorithm minimizes the error through 

a non-linear optimization problem. In addition, by defining the variable slip, the 

proposed method predicts the induction motor characteristics at low and high slip 

with satisfactory accuracy. When the proposed method was tested on eight induction 

motors with different sizes, the results showed that the proposed method is capable 

of estimating the different motor characteristics at low and high slip [35]. 

It is discribed a set of algorithms based on a linear regression model to estimate the 

stator resistance, stator inductance and leakage inductance of an induction motor 
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without using rotor speed and rotor resistance data. The proposed method estimated 

these parameters based on the stator current and voltage measurement. The algorithm 

was tested on a 15 kW induction motor. The output results indicated that the stator 

inductance can estimate properly at any rotor speed and the accuracy will be 

improved when the torque is low. In addition, when the speed is very low and the 

torque is high, the stator resistance can be estimated, and also when the speed and 

torque are high, the leakage inductance can be predicted accurately [36].   

A hybrid genetic algorithm presented for estimating the equivalent circuit parameters 

of an induction motor, where the genetic algorithm method is combined with a 

conventional method. The genetic algorithm is only used for the initial search and the 

conventional method is used for the final stage of optimization. The output results 

showed that the main advantage of the hybrid genetic algorithm is in providing a 

good solution to the conventional method. In addition, the hybrid genetic algorithm 

reduced the optimization time of genetic algorithm schemes [37].  

Advanced particle swarm optimization algorithms are used for equivalent parameter 

estimation of induction motors. The proposed method combines two significant 

algorithms, namely dynamic particle swarm optimization (dynamic PSO) and chaos 

PSO algorithms, in order to improve the performance of the standard PSO algorithm 

and modify the parameters with better results. The proposed method required the 

measurement of three-phase stator currents, voltages and the speed of the induction 

motors as inputs. The experimental results compared with the estimated results 

indicated that the dynamic PSO and chaos PSO algorithms performed better than the 

standard PSO and genetic algorithm in terms of parameter estimation of induction 

motors [38, 39, 40]. 
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A  numerical method is implimented to estimate the parameters of double-cage 

induction motors using the manufacturer’s data including the full-load power factor, 

full-load mechanical power, starting current, maximum torque and full-load 

efficiency. Since the model parameters are non-linear, a modified Newton is 

selected. The most critical parameters are the starting current and maximum torque. 

In this situation, the proposed algorithm makes it possible to find the critical 

parameters in order to solve the non-linear equation. The significant advantage of the 

proposed algorithm was the high convergence and the classified solvable and 

unsolvable data [41].      

A simple method is presented for the estimation of the equivalent circuit parameters 

from the National Electrical Manufacturers Association (NEMA) using 

manufacturer’s data such as the starting torque, breakdown torque, efficiency and 

power factor at rated output power. A non-linear least squares algorithm is applied to 

solve the non-linear equation in order to determine the parameters. The non-linear 

least squares employed the Levenberg–Marquardt algorithm to train the data and the 

least squares converged well. The results showed that the proposed method, which 

was tested on 300 large induction motors, performed very well [42].   

A curve-fitting technique using the least squares method is used in order to estimate 

the off-line equivalent circuit parameters of an induction motor. In this case, the 

proposed technique solves the non-linear relationships between the magnetizing 

current and inductances. The Levenberg–Marquardt algorithm (LMA) minimised the 

cost function based on the error between the measured and estimated points. The 

output results demonstrated that the inductances in the presented case are estimated 

with a 3rd order fitting, the rotor flux is estimated by a 4th order fitting and the total 

leakages are estimated by a 5th order fitting with satisfactory errors [43].   
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A method presented for the estimation of induction motor parameters, stating that the 

parameters of the induction motor such as the stator resistance create a high 

temperature in the operating condition. For instance, in a heavily loaded induction 

motor, magnetic saturation might take place in the rotor and stator. This saturation 

creates a non-linear model of the motor’s behaviour. Because of this issue, 

estimation of the parameters is important in terms of evaluating the condition of the 

motor. In this case, the stator currents and the angular speed of the rotor under motor 

start-up are added into the algorithm. The proposed method converges very fast and 

provides satisfactory results [44].  

A statistical method is used to estimate the parameters of the equivalent circuit for an 

induction motor. Indeed, obtaining the equivalent circuit parameters of the induction 

motor is an efficient way to evaluate the electrical, mechanical and energy behaviour 

before purchasing or installing the systems. The proposed method used the data from 

the motor nameplate and manufacturer’s catalogue for parameter estimation. The 

output results demonstrated that the proposed method was able to estimate the 

parameters of the equivalent circuit in the absence of further data. Moreover, the 

estimated values compared with real values showed the high performance of the 

proposed method in terms of high accuracy [45, 46].   

It is proposed a hybrid method combining N–R and a genetic algorithm for 

estimating the parameters of the induction motor by using the manufacturer’s data 

available. Both algorithms are tested on the National Electrical Manufacturers 

Association (NEMA) and International Electro-technical Commission (IEC) motors. 

The results indicated that the N–R algorithm provided poor convergence and high 

average squared errors of 0.5411 and 0.2514 for the NEMA and IEC motors. 

However, by implementing the hybrid algorithm, a significant improvement took 
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place, with very low average squared errors of about 0.0625 and 0.0282 in the IEC 

and NEMA motors respectively [47].  

It is  presented a technique to estimate the parameters of a linear induction motor and 

focused on a suitable cost function to optimise the algorithm. Estimating the 

variation of the magnetic parameter versus the magnetizing current is proposed. The 

proposed method is verified by a test set-up. The results illustrate the robustness of 

the proposed approach when estimating the parameters under different magnetic 

conditions. The significant advantage of this method is that it does not require any 

control technique in no-load and locked tests [48].    

It is used a hybrid artificial neural network (HANN) in a three-phase induction motor 

with a size of ¼ HP in order to estimate the rotor speed and resistance. Parameter 

estimation was done using a large number of methods in order to obtain the magnetic 

flux, motor speed, rotor resistance and rotor time constant. These methods consist of 

observers, adaptive systems, spectral analysis and artificial intelligence such as 

neural networks and fuzzy logic. The HANN estimator uses two hidden layers to 

estimate the resistance and rotor speed of the induction motor. The output results 

showed that the HANN has a good performance with minimum error [49]. 

It is presented a hybrid method in order to estimate the rotor parameters of an 

induction motor. The rotor parameter is quite important for the control system since 

it fluctuates during the operating condition. In this paper, a combination of the least 

squares (LS) method and a genetic algorithm is applied to identify the rotor 

parameters at operating times. The genetic algorithm is applied for initial estimation 

and LS is used for iterative steps. The hybrid method is able to take advantage of 

both algorithms. The results demonstrated that the new approach converges faster 

than LS and performs better than the genetic algorithm in accuracy after longer 
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iteration. The simulation results show that the control system can achieve a good 

performance of dynamic and steady-state responses [50]. 

A support vector machine (SVM) is used to estimate the rotor resistance of a 

squirrel-cage induction motor (SCIM). In this case, flux and variable rotor resistance 

are considered as inputs of the SVM, which uses SVR to estimate a non-linear model 

using a set of linear functions including the kernel function among a Gaussian 

function, which is known as a radial basis function (RBF). The result showed that 

SVR is able to estimate the rotor resistance value with a small amount of data 

compared with the original training values. In addition, SVR is a robust computation 

algorithm with an excellent performance in regression applications, where the rotor 

resistance can be estimated in different operation conditions [51, 52]. 

It is presented a comparison between the performance of a classical model reference 

adaptive system (MRAS) and SVM for rotor resistance estimation of a SCIM. The 

results showed that the performance of the SVM-based estimator was better than that 

of the classical MRAS-based estimator for the same operation conditions of the drive 

system. This work showed that the SVM, which uses SVR, is more powerful to 

estimate an unknown and inaccessible rotor resistance parameter of the SCIM [53] . 

It is used a radial basis function neural network (RBFNN) for rotor speed estimation. 

Measured stator voltages and current are selected as inputs to the network and the 

output of the network is the estimated rotor speed.  In this case, two hidden layers are 

used. Then, a gradient descent training algorithm is used to obtain  the weights and 

biases of the NN. The results show that the RBF performs very well with satisfactory 

results. It is observed that the number of neurons and layers can have a significant 

role in the performance of the neural network. Both neurons and layers will be 

selected based on different cases in order to get a suitable result compared with the 
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input data. The artificial neural network allows a reduction of the cost of the 

industrial drive and also avoids measurement of the induction motor variables 

involved in this process. The ANN has significant advantages consisting of reducing 

the weight matrix, lower cost in the probability of the solution, and being able to 

approximate non-linear functional relationships [54]. 

An artificial neural network is also used to estimate motor speed. The input of the 

network considers the RMS current and rotor speed at a voltage range of 214–226 V. 

In this study, the neural network used a back propagation algorithm with a different 

structure to adjust the weights. In this case, five neurons in the first hidden layer, ten 

neurons in the second layer and one layer of neurons in the output layer are applied. 

However, at different voltages, five neurons in the first and second hidden layers and 

one neuron in the output layer are used. The neural network is also used to estimate 

the speed of the induction motor at different loads within 800 rad/s. RMS voltage 

and current are selected as the input of the network. Then, the speed of the motor is 

estimated at different loads of 2 Nm, 4 Nm and 6 Nm at a voltage of 220 V. The 

results showed that by selecting the number of neurons and layers at a loading of 4 

Nm, the output results provided high error compared with the actual value. In the 

same case study, a neural network was used to estimate the speed by increasing the 

voltage from 216 to 224 V and the load torque from 25% to 150% at each voltage. In 

this work, the neural network considered only five neurons in the first layer and one 

neuron in the output layer with a linear activation function. There was an average 

relative error of 0.54% and standard deviation of 0.41% [55, 56]. 

It is used a fuzzy neural network for speed control in an induction motor with a range 

of 15 kW. The ANN is used to estimate the motor speed and provide a sensor speed 

estimator in the systems.  
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The proposed method is evaluated at any operating conditions of the induction motor 

consisting of unknown load torque and parameter variations. The network is based 

on a multi-layer back propagation neural network that consists of two phases, namely 

a training phase and recall phase. In the training phase, the weight of the network is 

randomly initialized. Next, the output of the network is calculated and compared 

with the desired value. The error of the network is calculated by adjusting the weight 

of the output layer. In such cases, the voltage and current are considered as the input 

of the network. Then, one hidden layer is used for generalization. The results 

obtained show that the NN provides reasonable speed estimation under such 

operation conditions [57]. 

It is presented an adaptive network-based fuzzy interface system (ANFIS). This 

method replaces the model reference adoptive system (MRAS) method. It is reported 

that in the induction motor, the conventional MRAS creates some difficulties in 

meeting the requirement for a fast dynamic response under dynamic operating 

conditions. Therefore, a back propagation algorithm is used in the proposed method, 

with two input layers, five hidden layers and one output layer to generalize the non-

linear model. The gradient descent method is used to reduce the error which is 

propagated from the output layer to the input layer by the back propagation 

algorithm. The experimental results demonstrated that the ANFIS method is 

powerful and performs better than the conventional method under unknown 

conditions. In addition, it produced better results compared with real data during 

speed and load variation. Thus, the speed estimation by the ANFIS provided very 

good accuracy in both transient and steady-state conditions for all ranges of speed 

control [58].  
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It is used a fuzzy-based general regression neural network (FGRNN) for the speed 

control of an induction motor. The general regression neural network would be good 

at estimating the motor speed, and also control the speed at operating time. The 

output result indicated that the proposed method provided satisfactory speed 

estimation under operation conditions. The response time was also very fast. 

Therefore, the method could be used for achieving the desired performance level 

[59]. 

It is presented a HNN in order to estimate the rotor speed and resistance of an 

induction motor. The NN and fuzzy logic are combined in this proposed algorithm 

with a two-neuron structure. The HNN is implemented in real-time with a three-

phase induction motor and obtains the rotor resistance and speed with minimum 

error. It is observed that the results are satisfactory compared with real data. Another 

significant parameter of induction motors is torque, which has a substantial role in 

the performance of the motor. Although speed information assists in monitoring 

torque, there are still many other methods to determine the motor torque [60]. 

It is presented an artificial neural network for online rotor and stator resistance 

estimation of an induction motor. Rotor flux and voltage are used for training. The 

back propagation algorithm trains the network and estimates the resistance. Both the 

rotor and stator resistances are obtained successfully and accurately. In order to 

verify the stator and rotor resistance, an experimental set-up with measurement is 

considered. It is observed that the neural network produces results very close to the 

measurement results [61].  

It is presented a method to estimate the torque of a three-phase induction motor 

without any mechanical sensor. In this case, the slip method is used, where only the 

measured stator current is required.  
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The results of the estimated torque were very similar to the measured torque value. 

The proposed method showed that it could be helpfully applied in many induction 

motors due to its robustness and simplicity [62]. A technique is presented to estimate 

the shaft torque of an induction motor under different loading conditions in terms of 

efficiency monitoring and mentioned that the induction motor consumes total energy. 

It is shown that 40% of the induction motor loads is oversized or under-loaded at 

operating time. Oversizing reduces the efficiency and performance of the motor and 

needs to be taken care of. In this paper, a shaft torque estimation method is 

considered with a no-load test and measurement of the stator resistance. By obtaining 

the shaft torque and available indices like the voltage, current, and power factor, the 

operating efficiency and motor load can be determined at any speed. The results 

showed that the ratio of estimated shaft torque can be helpful to compute the 

percentage loading. It is shown that the accuracy of the proposed method is 

comparable with the power measurement method which is normally used for 

calculating the percentage loading in induction motors [63].      

It is presented a practical method to estimate the motor efficiency. The efficiency 

could be estimated by the slip method at any operating condition, but the motor 

speed must be determined very accurately. Since measurement of speed creates a 

difficulty, the proposed method was applied to estimate the efficiency of an in-

service motor using the recorded voltage, current, watt and var by a digital analyser. 

The output results from the proposed method indicated satisfactory values compared 

with the measured efficiency [64].  

It is presented a method to estimate the full-load efficiency of refurbished induction 

motors. In fact, full-load efficiency estimation after repair creates a simple way to 

evaluate the quality of the work.  
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Also it enables a better decision on whether to replace or repair machines in a very 

low efficiency condition. In this case, to estimate the full-load efficiency, the 

proposed method requires only uncoupled no-load testing under refurbishment. The 

proposed method is tested on several types of induction motor, at 7.5, 15, 25, 50, 100 

and 125 HP and estimated the efficiency at loadings of 50, 75 and 100 percentage 

load. The actual efficiency value is compared with the estimated value and the 

estimated result shows that the proposed method estimated the efficiency with an 

acceptable range of error [65].    

It is estimated the induction motor field efficiency using a genetic algorithm. In this 

paper, the proposed method estimated the efficiency using field test data and 

nameplate information to evaluate the equivalent circuit parameters instead of no-

load and blocked-rotor tests. The field test data considered is the measured input 

voltage, current, power, stator resistance and output speed of the motor. Then, the 

efficiency is determined by the impedance of the equivalent circuit. The equivalent 

circuit method is effective because the impedance of the equivalent circuit indicates 

the performance of the motor, particularly from no-load to full-load condition. The 

genetic algorithm with such procedure estimated the efficiency with high 

performance, especially in the short term, when the motor is in service [66]. 

It is presented a method to estimate the voltage profile in electrical distribution 

systems. It is stated that the utility company must monitor the voltage at each feeder 

due to power quality improvement. Since measuring the voltage creates a limit at 

every node, estimation techniques become important. Using such techniques reduces 

the number of meters. In this paper, locally weighted regression with three 

techniques, linear, non-linear and quadratic, is used in a radial bus system. The 

results showed that non-linear regression performed very well compared with the 



Chapter 2: Literature Review 
 

	 Page	34	
	

other techniques. Non-linear regression can be the best choice for estimating the 

voltage profile given its high performance in the results [67].  

It is presented a method to estimate the voltage in distribution systems using 

independent component analysis (ICA). The proposed method was applied in an 

example of an IEEE 69 bus system. It is observed that the voltage source is one of 

the significant key points in the distribution system that needs to be monitored. The 

ICA algorithm is implemented to predict the voltage at unknown points. This method 

helps to minimise the cost of the installation and maintenance of equipment. The 

proposed method gave results very close to the real values. The satisfactory results 

confirmed the performance of this method [68].     

It is presented a method for estimation of the voltage drop in radial distribution 

networks. The method is called ‘global parameters’, in which the equivalent line is 

considered. The proposed method is applied in 16 distribution sectors in Montenegro 

where the parameters of the network and load in 1995 and 1996 are used. In this 

case, the parameters are taken from existing measurements. Two case studies 

including urban and rural consumption are analysed. The results obtained confirm 

that the proposed method can be satisfactory for voltage drop estimation in 

distribution systems [69].   

It is  presented a method to estimate the voltage sag in distribution systems, given the 

impossibility of voltage sag measurement at every node. The estimation technique 

becomes important in order to determine the voltage sag at unmonitored nodes. An 

IEEE 123 radial bus system is considered as a case study. A least squares method is 

used to estimate the sag profile at a distribution line. The main objective of this paper 

was to estimate the voltage profiles of feeders based on a limited number of metering 
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points. The results showed that the proposed method provided high performance in 

voltage sag estimation at unmonitored nodes [70]. 

It is presented a method to estimate the voltage in a smart distribution network and 

reported that the integration of distributed generations (DGs) at lower voltage levels 

created a voltage rise problem in distribution systems. Voltage estimation in a 

distribution network is important due to online voltage control. In this paper, a 

technique is used to estimate the voltage profile of radial distribution systems with 

multiple DG systems. The technique is tested in two rural radial distribution systems. 

The results showed that the estimated values match and the proposed method is able 

to estimate the voltage profile along the smart distribution systems for online voltage 

control [71]. 

It is presented a new technique for voltage sag estimation in distribution systems. 

The objective is to estimate the number of voltage sags at unmonitored buses. Linear 

programming techniques are used to solve the estimation problem. The proposed 

method is tested in IEEE 24 and 118 radial bus test systems, in which two monitors 

are placed at the 24 bus systems and eight monitors are placed at the 118 bus 

systems. Comparison of the results for the estimated voltage and actual voltage 

showed that the proposed method provided a very good agreement, indicating that it 

can be very useful to estimate the average sag in the network [72]. 

It is presented a method to estimate the voltage profile for control of a distribution 

feeder. It is stated that monitoring of the voltage profile in the distribution feeder can 

improve the reliability and quality of the distribution power system. The article 

presented a method to estimate the voltage profile of a radial distribution feeder whre 

there is a limited number of monitoring points. A radial bus system with 343 buses 

and 83 load conditions is considered. An ANN is used for load forecasting and a 
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least squares method for voltage profile estimation. The proposed method provided 

results very close to the actual points, confirming the satisfactory performance of the 

proposed method. This paper also obtained the optimal capacitor-bank with the 

estimated voltage profile along the feeder for a 24-hour period [73].  

It is applied a genetic algorithm for voltage sag estimation of distribution systems, 

observing that monitoring of voltage sag at non-monitored buses is important for the 

security and reliability of power systems. The proposed method was implemented in 

an IEEE 57-bus test system. The output results are compared with linear 

programming methods in order to indicate the high performance of the proposed 

method. The results showed that the genetic algorithm and linear programming 

produced average errors of about 2.79% and 3.27% in 24 buses respectively. In 

addition, in the case of the 57-bus system, the genetic algorithm provided a better 

result than the linear program, with average errors of 5.54% in the genetic algorithm 

and 7.48% in the linear program. Comparison of the results indicated that the genetic 

algorithm not only acted faster, but also provided satisfactory results at different 

nodes [74].  

Estimation techniques and their related application in distribution networks are 

applied.  It is reported that estimation techniques are useful to monitor and control 

the voltage in transmission distribution systems because they are not only 

economical, but can also be a good solution to determine the voltage profile at 

unmonitored points. The proposed technique can be used also for online monitoring 

to improve the voltage drop [75].       

It is used a neural network method to estimate the voltage profile caused by the 

presence of small-scale generation in a distribution network and notes that the 

presence of distributed generation in distribution network affects the voltage of the 
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feeder. Monitoring of the voltage profile is necessary in order to prevent a voltage 

rise or drop. It is observed that this economical technique is able to obtain the voltage 

at any desired point. Then a tap changer transformer can regulate the voltage along 

the feeder. The results showed that the artificial neural network can be very good at 

properly estimating the voltage profile of distribution systems [76]. 

2.8. Past Research on Power Factor Correction 

There are several procedures to correct the power factor of induction motors using 

the capacitors bank. One is individual power factor correction (IPFC), where the 

power factor is corrected by adding capacitors into the motor terminal individually. 

This kind of power factor correction is suitable in the case of constant motor load 

and power. However, the IPFC method has the problem that, when the motor 

disconnects, the motor shaft is still rotating (due to residual kinetic energy) and the 

reactive energy that is extracted from the capacitor creates a risk of dangerous over-

voltages in the motor terminal.  

The second is group power factor correction (GPFC) that is used to correct the power 

factor of groups of induction motors. This technique is more applicable for induction 

motors of the same size that are operating together. GPFC also provides a 

compromise between an inexpensive solution and the proper management of the 

installation. The advantages of this method are similar to the individual correction 

method. This method can only be used in the condition where all the induction 

motors are always operating at the same loads.  

The third method is central power factor correction (CPFC), which automatically 

switches the capacitors in and out of service by an automatic reactive power control 

(ARPC) relay and contactors. The central power factor correction method has several 

advantages.  
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It is easy to monitor and provide power factor correction at various motor loads, 

unlike IPFC and, in addition, it is more reliable in coincidence conditions. The main 

disadvantage is the cost of the automatic control system.  

The fourth method is hybrid power factor correction (HPFC). In this method, all the 

abovementioned techniques are combined, providing a significant power factor 

correction in any size of induction motor with constant and inconstant motor loads. 

HPFC provides multiple advantages since all the power factor correction methods 

are considered. The main disadvantage of this method is the high cost of installation.    

Ghosh presented the theory of power factor measurement and the correction 

technique. In electrical systems, there are several methods to correct the power 

factor, including the static VAR compensator (SVC), fixed capacitors, switch 

capacitors and synchronous generator or motor, static synchronous compensator 

(STATCOM) and modulated power filter capacitor compensator. The SVC is a shunt 

device in the flexible AC transmission systems (FACTS) and uses power electronics 

to regulate the voltage at its terminal by controlling the amount of injected reactive 

power. For instance, when the voltage is low, it generates reactive power and when 

the voltage is high, it absorbs reactive power.  

The variation of reactive power is controlled by switching the capacitors bank and 

inductor bank. Each capacitors bank is switched on and off by thyristor-switched 

capacitors (TSC) and a thyristor-switched reactor. Fixed and switched capacitors are 

significant techniques used particularly in industrial factories to correct the power 

factor. Fixed capacitors are suitable for power factor correction in the application of 

induction motors with fixed loads. Switched capacitors are suitable for centralized 

power factor correction in the application of load variation, and need the amount of 
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reactive power at any loading point. A synchronous generator is more economical 

than capacitors to correct the power factor [15, 77]. 

It is described a new approach to improve the power factor and reduce the total 

harmonic distortion (THD) of induction motors. In this technique, an active filter is 

considered in order to eliminate the harmonic current and improve the power factor. 

The measured results of the induction motor showed that with increase of the voltage 

step by step from 180 V to 240 V, the speed and the THD % increase because both 

are proportional to the increment of the input voltage. However, increase of the input 

voltage indicated a decrease of the power factor by about 18%. Adding an active 

filter not only causes the THD to decrease from 172.76% to 48.71%, but also 

improved the power factor from 0.72 to 0.89 at a voltage of 180 V. As a result, using 

such techniques reduces the effect of loss and heating and improves the efficiency 

and the power factor of the induction motors [78]. 

It is used an algorithm in order to find the optimum number of fixed capacitors and 

reduce the harmonic distortion to maintain the power factor displacement at the 

desired level. The test results in two cases indicated that the performance of the 

proposed method is satisfactory and the transmission losses, distortion level and the 

power factor are improved. It is understood that a high angle between the voltage and 

current, even with harmonic distortion in the induction motor or in electrical systems, 

provides a low power factor, which creates power quality problems. In this chapter, 

several articles have been reviewed and discussed about power factor measurement 

and correction techniques as follows [8].  

It is presented a finite element method to calculate the power factor of a single 

induction motor. It is stated that the power factor and manufacturer’s data sheet are 

vital because they indicate how much reactive power is consumed by the induction 
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motor.  It is observed that obtaining the value of the power factor is not an easy task 

and requires a significant technique for estimation. In this work, finite element 

analysis is used to estimate the power factor of a single-phase induction motor. The 

components of the input power and the RMS value of the first harmonic of the input 

current are considered for the power factor estimation. Simulation results and tests 

indicated that the proposed method provided a good solution to obtain the power 

factor of the induction motor [20]. 

It is presented a significant algorithm for measuring the power factor of resistance 

spot welding (RSW). It is stated that the power factor is quite important for safe 

operation and analysing the welding operation, since RSW is non-linear and time-

varying. The power factor of RSW cannot be determined online because direct 

measurement of the power factor angle is difficult in real time. Therefore, a new 

algorithm is developed to determine the power factor angle in real time. The results 

indicated that the proposed algorithm is able to obtain an accurate value of the power 

factor angle better than other methods. The value of the power factor angle obtained 

from the proposed algorithm is very close to the result of numerical simulation [21].   

It is implemented a novel method to measure the instantaneous power factor of non-

sinusoidal single-phase systems based on wavelet transform. An algorithm is 

implemented with a digital signal processor along with a data acquisition system 

card. The results confirmed that the proposed method can be successfully used for 

online measurement of the instantaneous true power factor for both sinusoidal and 

non-sinusoidal waveforms. In addition, the proposed algorithm is able to indicate 

lagging and leading measured power factors. The unique advantages of the proposed 

algorithm for measuring the power factor are its fast response and frequency 

independency.  
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It is stated that the real-time monitoring of the power factor is more applicable for 

tariff assessment in a deregulated environment [79]. 

It is examined how the power factor changed due to the loading effect. In this paper, 

the power factor is obtained from recorded voltage and current waveforms using a 

digital signal processing algorithm. The load is a combination of resistance, 

reactance and capacitance (RLC). The values of resistance and capacitance are fixed, 

but the value of reactance is considered to be varying. The results showed that 

variation of the load affects the change of power factor. For instance, keeping the 

capacitance constant and varying the value of inductance from 269.1 mH to 1.232 H 

and with resistance of 36 ohm and 124 ohm, resulted in different values of the power 

factor. The minimum and maximum value of the power factor for the resistance of 

36 ohm is 0.02 and 0.03, and for the resistance of 124 ohm is 0.104 and 0.148 

respectively [80]. 

It is described the effect of the compensating power factor on harmonic distortion. In 

this article, two case studies with linear and non-linear loads are analysed in which 

client-1 is switchable loads containing R load and RL loads with a capacitor. Client-2 

is a rectifier load. The test results indicated that with the presence of client-1 as a 

linear load with connected capacitors, the power factor and power factor 

displacement become unity since the load is linear and the THD of the voltage and 

current are near zero. However, by adding client-2 (which is non-linear) with the 

presence of the capacitor, the total harmonic distortion has values of 11.34% and 

83.5% in the voltage and current respectively. The power factor was reduced to 

0.707, but the power factor displacement did not change due to the presence of the 

capacitor. It can be observed that disconnecting the capacitor decreases the THD of 

the voltage and current by 5.5% and 1.3% respectively.  
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The power factor displacement was reduced to 0.707. To optimize the power factor 

and power factor displacement, an inductive reactance connecting in series with the 

capacitor is required [81].    

It is presented a new method to obtain the LC compensators for optimal power factor 

correction in non-sinusoidal systems. Such compensators serve two purposes. The 

first is to improve the power factor at non-linear loads. The second is to eliminate the 

harmonic current in the network. Determination of the optimal LC compensator with 

conventional methods is difficult because it needs multi-objective optimization. In 

this paper, a new solution algorithm with a penalty function has been developed to 

find the desired value for the LC. The results indicated that the proposed method 

improved the conventional approach compared with existing publications [82].       

A method is used to design a passive LC compensator for power factor correction in 

non-linear loads. The penalty function method as an optimization tool is considered 

for selection of an appropriate inductor and capacitor. The results of the proposed 

method showed lower losses and a higher efficiency, and a higher power factor 

displacement than the uncompensated case. The presented method implemented two 

important tasks. One is the level of reactive power and the other is harmonic 

currents. The significant advantage of the proposed method was to reduce the 

harmonics in the lines, cables and switchgear. It is noted that the power factor curve 

is required for selecting the capacitor for the best average performance [83, 84].  

A reason for maintaining the desired power factor in electrical systems is presented. 

It is explained that utilities often encourage consumers to provide a power factor 

toward unity because a high power factor reduces system losses and increases the 

internal electrical distribution capacity and therefore improves the voltage stability.  

In addition, holding the power factor at the desired value prevents a monthly penalty 
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charge from the utility company. For consumers, using a capacitors bank can be a 

good solution to compensate a low power factor. This approach not only saves 

money, but also increases the capacity of the cable in order to take the maximum 

useful power in kW [5, 85].   

It is presented a technique to reduce the harmonics and improve the power factor of a 

three-phase 1 HP induction motor using a passive LC component. The result showed 

that by adding the passive LC filter, the harmonics reduced from 93.5% to 57% at a 

load of 200 W, and at a load of 600 W they reduced from 102% to 65.8%. In 

addition, by adding the filter, the power factor improved from 0.6 to 0.724. 

Therefore, passive LC is a simple technique to design and helps to eliminate the 

THD. The presence of passive LC also improves the quality of power and maintains 

the power factor in a high range at different loading conditions [86].  

Shunt capacitors have been used for many years to improve the power factor of 

induction motors. However, connecting the capacitors directly to the motor terminal 

has created over-voltage due to self-excitation. Self-excitation occurs when the 

capacitive reactance becomes greater than the magnetic reactance. Since the power 

factor is proportional to the motor load from no-load to full-load, fixed capacitors 

may create self-excitation. Ensuring the proper value of the capacitors and using 

switching capacitors can be a good solution to prevent self-excitation problems. As a 

result, it is stated that selecting the proper size of shunt capacitors can not only 

prevent over-voltage due to self-excitation but also maintain the power factor at the 

desired point from no-load to full-load and over-load conditions [87, 88]. 

An optimization technique is designed for a linear induction motor in order to 

improve the power factor and efficiency. It is observed that induction motors are 

mostly used in industry. Induction motors produce a low power factor and low 
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efficiency, which increase the input current and create more losses in the systems. A 

genetic algorithm with an appropriate objective function is used to improve both the 

power factor and the efficiency. The parameters of a three-phase induction motor are 

selected as the basis of design optimization. The minimum value of the power factor 

and the minimum value of efficiency are chosen as the initial values in the algorithm. 

The results indicated that the power factor improved by up to 7% and the efficiency 

increased by about 2% [89].  

A method is presented to correct the power factor using a microcontroller 

automatically. It is reported that the initial power factor is corrected by adjusting the 

capacitor manually. However, many industrial factories have trouble using this 

technique since under- and over-correction occur due to variation of loads. In this 

paper, an automated power factor corrector using a capacitors bank is proposed to 

solve this problem. The proposed method involves a power factor meter and micro- 

controller, which are connected together. The power factor meter is used to measure 

the value of the power factor at different loads and the microcontroller is used to 

detect the low power factor and then connect the required capacitors automatically to 

take the power factor close to unity. Selecting the size of each capacitor is estimated 

based on the active power and initial power factor from no-load to full- and over-

load condition. The results show that this technique not only helps to reduce the time, 

but also increases the efficiency through the entire electrical systems [90, 91, 92].       

It is presented a programmable logic controller (PLC) to switch the capacitors bank 

so as to correct the power factor of induction motors at any loading condition. It is 

noted that the power factor of induction motors is always low, particularly at no-load 

and light-load conditions. These conditions draw a large magnetization current and 

also deliver low active power into the motor. Based on the determined value of the 
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power factor from no-load to full-load/over-load conditions, the PLC switches the 

appropriate capacitors into the circuit to correct the power factor. The results from 

the 3 HP induction motor indicated that the capacitors switched by the PLC in five 

different load conditions reduced the current and improved the power factor to the 

desired value, which consequently provided an energy-saving and power quality 

improvement [93].    

It is researched the power factor regulating tariff standard. The study reported on the 

actuality and the problem of the existing power factor regulating tariff. The study 

indicated that the regulating tariff power factor can be determined based on different 

types of client, and could be classified as 0.8, 0.85 and 0.9. The standard power 

factor level is fixed by the voltage quality and line loss. It is concluded that the 

power factor adjustment tariff creates the simplest and most convenient way to 

enhance the performance of the electrical grid. In addition, it motivates users to 

improve the power factor by using generating reactive power [94].  

It is presented the effect of power quality indices containing voltage distortion, 

voltage unbalance and voltage dips on a 4 kW induction motor. The power factor and 

efficiency are analysed based on the motor load, rated frequency and standard level 

of power quality. The experimental results showed that the characteristics of the 

induction motor are significantly impacted by voltage dips. The efficiency decreased 

linearly with the level of voltage distortion in a specific range of motor load. The 

decrease of efficiency was about 3% at the rated motor load in both voltage 

unbalance and voltage distortion and in a voltage dip it was higher than 1%. 

Unbalanced voltage mainly affected the power factor, which decreased by about 2% 

[95].  

It is presented a power factor controller for a three-phase induction motor using a 
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programmable logic controller (PLC). The PLC switches the capacitors on and off in 

order to improve the power factor. Variation of motor load affects the power factor 

and particularly when the motor load is low the power factor also is low. Therefore, 

capacitors must be added to improve the power factor. However, when the motor 

load increases, the power factor becomes high so the capacitor must be disconnected. 

This process is implemented by the PLC. The algorithm is divided into four sections. 

Firstly, read the phase angle between the voltage and current. Secondly, calculate the 

power factor. Thirdly, switch the capacitor to correct the power factor. This 

controller cannot consider the harmonics in the systems, and is only responsible for 

switching capacitors at different loadings at the steady-state condition [96].  

It is  presented a power factor improvement of an induction motor using a capacitors 

bank. It is found that improving the power factor of the induction motor saves more 

energy. However, a low power factor needs more current, which creates losses in the 

system. In the induction motor, no-load and light load produce a low power factor. In 

this paper, a capacitors bank is applied to the stator side with parallel connection to 

improve the power factor in such conditions. The simulation obtained the power 

factor from no-load to over-load with six loading points. The measured result 

showed that the power factor at no-load is very low, at  about 0.17. By increasing the 

mechanical load, the power factor is improved in the rated power. The results of 

adding capacitors indicated that the power factor at no-load improved, reaching 

0.977. Therefore, a capacitors bank is one significant device to improve the low 

power factor at any loading point. It is observed that the proper size of capacitors can 

be selected by having the old value of the power factor from no-load to full-load, 

which is obtained by measuring devices [13].  

It is presented a static switched capacitor for improving the power factor of a three-
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phase induction motor when starting and operating. It is stated that improving the 

power factor of the induction motor requires reactive power compensation that can 

be generated by a synchronous machine, fixed and switched capacitors. Such 

techniques create some problems, such as voltage rising and very high inrush current 

during starting. Also, a large harmonic current in machines and lines take place. The 

proposed method prevents harmonics and inrush current when starting and eliminates 

the over-or under-voltage problems [97].   

It is presented a technique using an artificial neural network to improve the line 

power factor with variable loads. A synchronous motor is controlled by a neural 

network to handle the generated reactive power. A back propagation algorithm is 

used for training. The results indicated that the proposed method developed the work 

and eliminated the problems occurring in conventional compensators, such as over- 

or under-compensation, time delay and step change of the reactive power. Also, it 

creates a low-cost solution with fast compensation compared with other techniques 

[98].   

2.9. Summary  

It is understood that the power factor is an important element in electrical motors and 

power systems because it affects the energy efficiency, voltage drop, line capacity, 

self-excitation and so on. The reviewed papers indicate that there is a non-linear 

relation between the power factor and load whereby the power factor will always 

take different values with variation of the load. A lower power factor than the desired 

level produces a disturbance. Many researchers stated that power factor 

compensation is an important technique to maintain the power factor at the desired 

level. However, determination of the required reactive power for power factor 

compensation is needed. Whereas many papers presented various techniques to 
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compensate the power factor, the VAR needs to be predicted before compensation. 

Predicting the proper size of capacitors in VAR is not only  cost-effective, but also 

helps to prevent under- or over-correction at operating time. Therefore, this 

important subject represents a research gap, still needing a accurate solution for 

power factor determination against load.  

This chapter presented several techniques to determine the power factor from no-

load to full-load conditions. Many papers have discussed how the presence of 

equivalent circuit parameters can evaluate the performance of the induction motor 

and determine the power factor. However, these parameters are unknown. Many 

papers examined ways to determine the equivalent circuit parameters using the 

available manufacturer data and proposed estimation techniques.  [14] reported that 

determining the power factor from no-load to full-load conditions by using 

equivalent circuit parameters created difficulties and made the work more 

complicated because several estimation techniques are required to determine all the 

parameters, including resistance and reactance in the rotor and stator side, 

magnetization reactance, and core loss resistance. Also, leakage reactance on both 

sides is needed because all these parameters require computation of the impedance, 

as the cosine angle of impedance provides the power factor. In other words, to find 

the power factor at different loads, the mechanical resistance must be estimated. All 

these processes make the solution complicated. It is found that MCMD is able to 

estimate the power factor without using equivalent circuit parameters.  

[26] notes that although this method is sufficient to determine the power factor of the 

induction motor, it requires the induction motor to be installed and the current needs 

to be measured from no-load to full-load conditions. In addition, using this method is 

not suitable for medium and large induction motors. Since the reactive current is not 
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constant, high errors will be produced. However, [26] provided a solution by 

implementing a Kriging and regression method in the induction motor, as introduced 

by [24, 25]. It is observed that both methods are able to create models of the 

observed data, and then estimate the power factor from no-load to full-load 

conditions. However, both methods produce high error from full-load to over-load 

conditions because they are interpolation techniques and are not able to extrapolate 

the unseen points.  

Since the motor load is variable in some cases, this variation will be reflected in the 

power factor. Therefore, determination of the power factor at any loading point with 

high accuracy remains a research gap. In this project, statistical and intelligent 

techniques drawn from the reviewed papers will be implemented in different size 

induction motors in order to identify the best method. 

This chapter described the impact of power factor determination and correction in 

electrical systems. It also reviewed the various methods to determine the power 

factor in electrical loads in particular induction motors. In addition, estimation of the 

equivalent circuit parameters for the purpose of determining the power factor and 

analysing the performance of the induction motor is reviewed. The reviewed papers 

assert that determining the power factor of the induction motor at any loading point 

with high accuracy is very important due to power factor compensation. This subject 

is still open for further research. Therefore, through the reviewed estimation 

technique, in this project, implementation of statistical and intelligent techniques in 

different ranges of induction motors will be considered in order to determine the  

power factor of induction motors at any loading conditions. 
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3.1. Introduction 

The following sections will outline the theory of the induction motor, and the effect 

of load variation on the induction motor characteristics, and then describe the power 

factor and its behaviour versus motor load. The procedures for calculating the power 

factor and motor load and also correcting the power factor are detailed. The 

experiment and simulation have been considered to determine the power factor of 

various induction motor loads, from no-load to full-load and over-load conditions.      

3.2. Theory of the Induction Motor 

Induction motors are constructed with a stator and rotor. The stator includes a series 

of wire windings. The rotor consists of a number of thin aluminium bars which are 

mounted in a laminated cylinder horizontally and parallel to the motor shaft. At both 

ends of the rotor, the bars are connected together with a short ring. The rotor and 

stator are separated by an air gap to allow free rotation of the rotor.  A three-phase 

voltage connected to the induction motor creates a three-phase stator current [11]. 

These currents generate a magnetic field named 𝐵@ that rotates in a counter-

clockwise direction. The rotating magnetic field 𝐵@ moves through the rotor bars and 

induces a voltage. The voltage induced in the rotor bars is expressed by Equation (3-

1). 

 

𝑒BCD = 𝑣×𝐵 . 𝑙 (3-1) 

 

where 𝑣	is the velocity of the bar, 𝐵 is the magnetic flux density, and 𝑙 is the length 

of the conductor in the magnetic field. Then, the voltage of the rotor creates a rotor 

current flow, which lags behind the voltage due to the rotor’s inductance.  
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The rotor current generates a rotor magnetic field 𝐵8 lagging 90° behind itself and 

𝐵8 interacts with 𝐵CKL to generate a counter-clockwise torque in the motor. The 

speed of the magnetic field’s rotation expresses the speed of the rotor, which is 

called synchronous speed (𝑛N ), which is a function of the frequency of the power 

source and the number of poles in the motor. Calculation of the synchronous speed 

for the induction motors is given in Equation (3-2). 

 

𝑛N =
2
𝑃 𝑓K60 

 
(3-2) 

 

where 𝑓K is the frequency in Hz and R
S
 is the resultant of one complete cycle, where P 

is the number of poles in the motor. 𝑛NTC5 is the synchronous speed in rpm. In the 

induction motor, rotor speed 𝑛U and the stator speed or synchronous speed 𝑛N have 

different values during operating time from no-load to full-load. This difference is 

expressed as a ratio of the synchronous speed in percentage, which is also referred to 

as slip, indicated with 𝑠 as follows: 

 

𝑠 =
𝑛N − 𝑛U
𝑛N

 (3-3) 

 

The slip (𝑠) is between 0 and 1 where the motor speed falls between those limits. 

For instance, if the rotor reaches the synchronous speed, the slip becomes zero, while 

if the rotor is at a standstill, the slip is one.  The reason why these speeds cannot be 

equal to each other is that if the rotor speed of the induction motor reaches the 

synchronous speed	𝑛N, no voltage will be induced.  
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If the voltage induced is equal to zero, the rotor current will be zero and, as a result, 

the rotor magnetic field becomes zero. Then, with no magnetic field, the induced 

torque becomes zero and there is consequently no rotation. Therefore, in the 

induction motor, the presence of slip is required, in which 𝑛U is always smaller 

than	𝑛N. Due to these phenomena, the induction motor can be termed an 

asynchronous motor [9]. Slip can also be expressed as in Equation (3-4), where 

𝑛N[B\	is the slip speed of the induction motor, 𝑛N is the speed of the magnetic field, 

and 𝑛U is the mechanical rotor speed of the motor. 

 

𝑛N[B\ = 𝑛NTC5 − 𝑛U (3-4) 

 

3.3. Load Determination of Induction Motor 

The mechanical or resistance load, which is coupled to the induction motor, indicates 

the output power, also known as the induction motor load. The equation (3-5)  

computes the output power.  

 

𝑃]^L =
R_`a
bc

   (3-5) 

 

where 𝑇 is the motor torque and 𝑁	is the rotor speed. Since the torque and speed 

sensors may not be available in many induction motors, the motor load can be 

estimated by an empirical method known as input power measurement. 
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• Input Power Measurement 

 
Input power measurement is one of the significant methods used to estimate the 

motor load due to the torque and speed limits of the induction motors [99]. In this 

method, it is required to obtain the input power at any loading point, from no-load to 

full-load and over-load. This value can be determined either by directly measuring 

the input power or by measuring the voltage, current and power factor, and then 

applying these in Equation (3-6).    

 

𝑃B =
3	×𝑉×𝐼	×𝑃𝐹	

1000 		
(3-6) 

 

where	𝑃B	is the three-phase input power in kW, 𝑉 is the RMS volt, mean line-to-line 

of 3 phases and 𝐼 is the RMS current in amp. In addition, the full rated input power is 

necessary in calculating the motor load. Equation (3-7) computes the full rated input 

power, then Equation (3-8) determines the load of the induction motor.  

 

𝑃BU =
𝐻𝑃×0.7475

𝜂C
 (3-7) 

𝐿𝑜𝑎𝑑 = Sr
Srs
× 100% (3-8) 

 

 

where 𝑃BU is the input power at full rated load in kW, HP is the nameplate rated 

horsepower, and 𝜂C is the efficiency at full rated load. Consequently, the motor load 

will be calculated by the measured three-phase power (kW) over the full rated input 

power (kW) in Equation (3-8). To substantiate the accuracy of the input power 

measurement, Figure 3-1 indicates that the motor load obtained from the input power 
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measurement method has an approximate linear relationship with the output power. 

These linear relationships verify that the input power measurement method can 

determine the acceptable motor load. 

 

	

                 Figure 3-1: Output power versus motor load (IM 250 W) 

 

3.4. Effect of Load on Induction Motor Characteristics 

In the induction motor, the load is an important element and has a significant role in 

the performance of the induction motor because variation of the motor load will 

change many elements, including the speed, efficiency, the parameters of the 

equivalent circuit and the power factor. The effects of load variation on the induction 

motor elements are described in detail below.  

 The Speed 

In the induction motor, the rotor speed is the rotation of the motor shaft indicated in 

revolutions per minute (rpm). It can be observed that variation of the load affects the 

rotor speed of the induction motor where increase of the load decreases the rotor 

speed. The reason is change of motor slip because the difference between the 
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synchronous speed and rotor speed, is slip. With increase of the motor load, the slip 

increases and therefore, according to the rotor speed equation 𝑛U = 𝑛N(1 − 𝑠), the 

speed decreases. Figure 3-2 indicates the motor load versus speed, where increase of 

the motor load decreases the speed slightly.   

 

 

                 Figure 3-2: Speed versus motor load (IM 250 W) 

 

 The Efficiency 

In the induction motor, the efficiency is a ratio of mechanical output power over 

electrical input power, indicated in percentage. Figure 3-3 shows that the motor load 

affects the efficiency, such that the efficiency is very low at the no-load condition 

when there is no mechanical power. However, by increasing the motor load, the 

input power increases and so the efficiency increases as well. In the induction motor, 

the losses comprise core losses, windage, friction losses and copper losses and create 

a low efficiency. 
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Figure 3-3: Efficiency versus motor load  

 

 The Power Factor 

In addition, in the induction motor, the load affects the power factor because when 

the motor load changes from no-load to full-load and over-load, the power factor also 

changes. Figure 3-4 indicates that variation of the motor load has a non-linear 

relationship with the power factor. This variation causes the motor impedance to 

change and the motor impedance provides a change in the stator current that results 

in power factor variation. The equivalent circuit of an induction motor can be used to 

describe the reason for the variation in detail.     
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Figure 3-4: Power factor versus motor load (250 W) 

 
The equivalent circuit of the induction motor is a diagram to describe the behaviour 

of the power factor versus the motor load. Figure 3-5 indicates that the diagram 

contains resistance and reactance, where 𝑉 and 𝐼@ are the voltage terminal and stator 

current [9].  

 

 

Figure 3-5: Equivalent circuit diagram of induction motor 
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𝐸@ and 𝐸8 are the stator and rotor induced voltage,  𝑅@  and 𝑋@  are the stator 

resistance and stator leakage reactance, 𝑅8 and 𝑋8	are the rotor resistance and rotor 

leakage reactance respectively, 𝐼8 is the rotor current, 𝑋{	and 𝐼{ are the magnetizing 

inductance and magnetizing current, 𝑅|  is the losses (core losses, bearing friction, 

windage losses, etc.), 𝑅8
}~@
@

 is the mechanical load where the 𝑠 is motor slip, and 𝑁@ 

and 𝑁8 are the stator and rotor turns.   

In this diagram, the stator current has a significant role in the behaviour of the power 

factor because the stator current can be decomposed into the active current and 

reactive current, which are consumed in the resistance and reactance components 

respectively [10]. Since the impedance of the equivalent circuit changes with 

variation of the load, the active and reactive current change, which causes the power 

factor to change.  The reason for impedance variation is that when the induction 

motor is working at the no-load condition, the slip and mechanical resistance are 

approximately zero, which causes the rotor current to become zero, so all the input 

current flows through the stator side. In the stator side, the majority of the current is 

pass through the magnetizing reactance to create magnetic field. Only a small 

amount of the current is required in stator resistance and core losses. Therefore, at 

this condition, the stator current lags the stator voltage by the angle of 𝜃c in the range 

of 75 − 85° , and therefore  the power factor in the stator side will be approximately 

between 0.1 and 0.3.  

However, when the motor load increases gradually, the mechanical resistance 

increases, and consequently the demand for active current will be high, for 

supporting the rotor resistance and mechanical resistance. Since the rotor resistance 

is constant, the mechanical resistance consumes the majority of the active current. 
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The high consumption of active current will be greater than the reactive current and 

so provides a high increase of the power factor.   

Although rotor and mechanical resistance demand more active current from light-

load to full-load, rotor leakage reactance requires reactive current as it will appear 

from light-load to full-load conditions. This can be a significant reason why the 

reactive current from light-load to full-load is not constant. Consequently, from 

Figure 3-6 it can be understood that from no-load to full-load condition, variation of 

the active current is higher than variation of the reactive current, so the active current 

has a major role in the power factor changing versus load.  

 

Figure 3-6: Current versus motor load (IM 250 W) 

 

 

To find the value of the power factor against motor load, it is necessary to determine 

the parameters of the equivalent circuit by performing significant tests on the 
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In the no-load test, the balance voltages are connected to the stator terminals at a 

rated frequency. The current, voltage and power at the input to the motor are 

measured when there is no mechanical load. The measured input power shows only 

the losses consisting of core losses, winding and friction losses.  

In the no-load test, the rotor side acts as an open circuit, which means that the rotor 

current is zero (as there is no mechanical resistance). Hence, 𝑅8 and 𝑋@ are 

neglected. As a result, the magnetization current will be approximately equal to the  

input current. However, a DC test can be applied to determine the stator resistance at 

no load. By connecting a DC voltage to the stator windings of the induction motor, it 

produces a current. As the current is DC, there will not be any induced voltage in the 

rotor circuit, which results in no rotor current flow and no magnetization reactance. 

Hence, only limited current is drawn in the stator resistance	𝑅@.  

At the rotor side, the rotor resistance is neglected because the mechanical resistance 

is too large and acts as an open circuit, which means there is no current (𝐼8 = 0) 

through the rotor side, and so the DC test obtains the stator resistance 𝑅@. The locked 

rotor test is applied to provide the impedance of the equivalent circuit. The locked 

rotor test requires the motor shaft to be locked while the AC voltage is applied. The 

voltage, current and power are measured when the current is at a maximum (at full-

load current, before heating up the motor). In this situation, since the rotor shaft is 

not moved, the slip is equal to one.  

Therefore, the rotor resistance 8�
N

 corresponds to 𝑅8. Since 𝑅8 and 𝑋8 are 

considerably smaller than the magnetizing reactance, most of the input current will 

flow through the 𝑅8 and	𝑋8. Consequently, under this condition, the circuit will be a 

series combination of 𝑅@, 𝑋@, 𝑅8 and	𝑋8. In such method, the total impedance is 

obtained, where the angle of the motor impedance can provide the power factor.  
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It is understood that the efficiency and the power factor have significant roles in the 

performance of the induction motor, in which low efficiency means consuming more 

active power in losses and a low power factor means consuming more reactive power 

in the magnetizing reactance and reactance leakage losses. In spite of the fact that by 

reducing the losses, the power factor can be improved, reducing the air gap between 

the rotor and stator causes the power factor and the efficiency to improve. However, 

a higher load with a smaller air gap increases the stray load losses in the motor, 

which tends to decrease the efficiency. Consequently, from Figure 3-7 it can be 

understood that the power factor has a relationship with the efficiency from no-load 

to full-load, in which, as the motor load increases from no-load to full rated, the 

power factor and motor efficiency increase. However, the efficiency tends to 

decrease at higher/over-load due to induction motor losses.  

 

 

Figure 3-7: Power factor versus motor efficiency (IM 250 W) 
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3.5. Power Factor Description of Induction Motor  

In electrical motors and systems, the presence of a power ratio is quite important in 

indicating how much useful power is being consumed [12, 4]. This ratio can be 

called the power factor. Indeed, the power factor has been described in two aspects.  

The first is power factor displacement (PFD), which is recognised as the cosine angle 

(cos	f	) between the fundamental voltage terminal and stator current, as shown in 

Equation (3-9), where the stator current can be expressed by Equation (3-10). The 

second is power factor distortion, which appears when the voltage terminal and stator 

current waveforms are distorted. 

 

cos	f =
𝑃BC
𝑉a𝐼@

 

 

(3-9) 

𝐼@ =
𝑉a

𝑅@R + 𝑋@R) +
1

1
𝑋{

R
+ 1

𝑅8
𝑆

R

+ 1
𝑋8

R

		 (3-10) 

where  𝑃BC is the input motor power, 𝑉a and 𝐼@ are the voltage terminal and stator 

current that provide cos	f.  𝐼@ is the voltage terminal over motor impedance, where 

the motor impedance contains the stator resistance 𝑅}, leakage stator reactance 𝑗𝑋{, 

magnetizing reactance 𝑗𝑋{, rotor resistance over slip 8�
@

 and rotor leakage reactance 

𝑗𝑋{. This equation can only be used when the terminal voltage and motor current 

waveforms are sinusoidal. Indeed, the power factor displacement is suitable as an 

indication of lagging and leading load. For instance, from Figure 3-8, if the current 

lags the voltage, the cosine angle will be positive, which means that the load is 
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inductive and consuming reactive power or current. However, if the current leads the 

voltage, the power factor will be negative, which means that the load is capacitive 

and reactive power or current are being generated.  

 

 

Figure 3-8:  Voltage and current phase angle  

 

In other words, the power triangle diagram in Figure 3-9 can describe cos	f, where it 

is also located between the active power and apparent power. The power triangle 

diagram shows that the reactive power is proportional to the power angle. For 

instance, if the reactive power 𝑄	or current 𝐼� is small, the power angle also is small 

and results in a high	cos	f, but if the reactive power increases, the angle increases, 

which tends to a low	cos	f.  

 



Chapter 3: Determination of Load and Power Factor 
 

	 Page	65	
	

 

Figure 3-9: Power triangle diagram 

 

Consequently, it can be understood that the active and reactive power have a 

significant role in determining cos	f because the power factor can also be expressed 

as  S
S���	

 .  The active power and reactive power can affect the behaviour of the 

power factor. The active power and reactive power have a proportional relationship 

to the active current 𝐼\ and reactive current 𝐼� that is shown in Equations (3-11) and 

(3-12).  

𝑃 = 𝑉×𝐼\			where 			𝐼\ = 𝐼×𝑐𝑜𝑠	f (3-11) 

 

𝑄 = 𝑉×𝐼�			where 			𝐼� = 𝐼×𝑠𝑖𝑛	f (3-12) 

 

Since in the induction motor the ratio of active and apparent power must have a 

value higher than 0.8, the reactive power or current can have a significant 

responsibility for maintaining this ratio, which is known as cos f or the power factor 

[7]. However, power factor distortion is related to the harmonic distortion, in which 

the THD of the voltage and current affects the induction motor’s power factor.  
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The power factor distortion is expressed in Equation (3-13) and the total harmonic 

distortion in the voltage and current is presented in Equations (3-14) and (3-15).    

 

𝑃𝐹DBNL =
1

1 + 𝑇𝐻𝐷�R	 1 + 𝑇𝐻𝐷�R
 (3-13) 

𝑇𝐻𝐷� =
(𝑉RR + 𝑉�R + 𝑉�R + ⋯)

𝑉a}
×100	 (3-14) 

𝑇𝐻𝐷B =
(𝐼RR + 𝐼�R + 𝐼�R + ⋯)

𝐼@}
	×100	 (3-15) 

 

where (𝐼RR + 𝐼�R + 𝐼�R + ⋯+ 𝐼CR) and (𝑉RR + 𝑉�R + 𝑉�R + ⋯+ 𝑉CR) are harmonics, and 

𝐼@} and 𝑉a} are the fundamental voltage terminal and stator current.  

These values compute the total harmonic distortion of the voltage (𝑇𝐻𝐷�) and motor 

current (𝑇𝐻𝐷B) in percentage. The power factor distortion equation will be applied 

when there is either distorted voltage or distorted current. Then, the 𝑇𝐻𝐷B or 𝑇𝐻𝐷� 

or even both can be accommodated into the equation and so obtain the power factor 

distortion. As a result, in the case of non-sinusoidal voltage and motor current 

waveforms, the true power factor will be represented by the power factor distortion 

times the power factor displacement, but if the voltage and motor current waveforms 

are sinusoidal, only the power factor displacement is considered. 

3.6. Impact of Low Power Factor in Electrical Systems 

A low power factor in the induction motor, particularly at no-load or light-load, 

indicates a high demand for reactive current to support leakage and magnetizing 

reactance. This demand is much higher than for the active current (as there is no 

mechanical load), which shows that the load is more inductive [100]. 
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 Inductive load produces excess current that is alternately stored in the magnetization 

reactance and regenerated back to the line with each AC cycle.  

A low power factor also provides low efficiency since the input power is 

proportional to the power factor. Therefore, although a low power factor does not 

affect the performance of the motor as the power factor characteristics are the result 

of the motor design, it affects power grid systems more [19] as a low power factor 

creates a penalty charge for industrial factories.  

Utility companies require a suitable grid power factor near unity because a low 

power factor in grid systems draws a high current and generates heat and thus huge 

losses. Moreover, a high current requires a change in the size of conductors with high 

capacity, which can be a huge cost. In addition, a low power factor causes a voltage 

drop and so reduces the quality of power in the grid systems. Consequently, 

determining the operating power factor of induction motor at different load leads to 

compensate the low power factor [101].  

3.7. Power Factor Correction of Induction Motor 

Correcting the low power factor of the induction motor not only prevents penalty 

charges, but also creates a high quality of power in electrical grid systems. The point 

of common coupling, which is a point between a utility and a customer, is an 

important point for power factor correction because at this point multiple electrical 

loads are connected and the utility monitors the low power factor at this point to 

apply the penalty charge. Therefore, the power factor has a significant role and must 

be corrected at this point. Since the loads of induction motors in many cases vary, 

industrial customers are always responsible for monitoring and correcting the power 

factor toward unity at any loading condition [18].  
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This correction requires an amount of reactive power that can be generated by 

capacitors. Methods of power factor correction are described in Figure 3-10. It can 

be seen that there are several approaches to correct the power factor of the induction 

motor. An individual capacitor at each induction motor is one basic method and is 

usually suitable for a fixed motor load. Using a single capacitor bank in group 

induction motors is another method for power factor correction that is also 

appropriate for a fixed motor load. Automatic power factor correction using a 

capacitors bank with a reactive power controller is a common method in terms of the 

power factor correction of induction motors at PCC points. To provide a high 

performance power factor correction at any loading condition,  using a combination 

of all techniques as a hybrid method is more efficient.        

 

Figure 3-10: Methods of correcting power factor of induction motors  
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It is understood that adding the required reactive power at the right times enables the 

correction of the power factor of induction motors to the target value at any loading 

point. A capacitor is one of the significant electrical components to generate reactive 

power. Controlling the amount of required reactive power at any loading point is 

important because under- or over-correction produces many issues since under-sizing 

absorbs more reactive current from the grid and over-sizing generates more reactive 

current than the motor requires and backs to the grid. Over-sizing also causes the 

capacitor current to be higher than the magnetizing current of the induction motors 

and in such a situation self-excitation will occur. 

 To find the optimum value of the required reactive power or size of the capacitor, a 

power factor correction formula can be applied as shown in Equation (3-16), which 

requires three values including the input power, initial power factor and target power 

factor.  

 

𝑄5 = 𝑃
1 − cos f}

R

cos f}	
−

1 − cos fR
R

cos fR
	  (3-16) 

where 𝑄5 is the value of  reactive power compensation in VAR,  𝑃 is the input power 

in W,	cos f} is the initial or operating power factor, and cos fR	is the new power 

factor. In Figure 3-11, the power triangle indicates that	f} and 𝑄}	are the old values 

and fR and 𝑄R	are the new values. By obtaining the value of D� where D�	is 𝑄5 =

(𝑄} − 𝑄R), the required reactive power can be determined [4].  
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Figure 3-11: Power factor correction diagram  

In this equation, the old value of the power factor and input power at any load from 

no-load to full-load and over-load can be determined by several approaches. The first 

is to calculate the power factor by online measurement of the voltage and current 

with the angle or input power. The second is direct measurement of the power factor 

by a measurement device. The third uses MATLAB/Simulink to model the induction 

motor and measure the power factor. 

3.8. Power Factor Determination of Induction Motor 

The zero crossing method and instantaneous power method are techniques that can 

compute the power factor from voltage and current measurement waveforms. In the 

zero crossing method, a zero crossing sensor is needed to detect the distance between 

the voltage and current waveforms [14]. In the instantaneous power method, 

measurement of the average power is required. Both methods will be explained in the 

following sections. 

 Zero Crossing Method 

From Figure 3-12, in the zero crossing method the distance between the voltage and 

current waveforms indicates the angle between the voltage and current waveforms, 
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so the cosine angle will be the power factor. Using the displacement method, 

measurement of the supply voltage and the motor current waveforms is required.  

 

  
 

Figure 3-12: Phase angle measurement between voltage and current waveforms  

Also, a zero crossing sensor is necessary to distinguish the differences between 

voltage and current waveforms. Then, by considering the voltage as a reference 

(constant) and the motor current as a displacement current from zero crossing, the 

power factor can be obtained by Equation (3-17). 

 

𝑃𝐹 = 𝑐𝑜𝑠
±D𝑡
𝑇 ×360°  (3-17) 

 

where ±D𝑡 is the distance between the voltage and current waveforms, 𝑇 is a period 

and 360° is one period of the cycle.  

  Instantaneous Power Method  

Another method to determine the power factor is instantaneous power measurement. 

Indeed, from the zero crossing time displacement, the power factor can also be 
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calculated via instantaneous power measurement. In this method, measuring both the 

synchronized supply voltage and motor current waveforms and their multiplication in 

point by point provide the instantaneous power that utilizes the average power	(P). 

Then, the motor power factor is expressed by Equation (3-18). 

 

𝑃𝐹 =
𝑃

𝑉 ∗ 𝐼 
(3-18) 

 

where 𝑃  is the average active power, V is the RMS voltage supply and I is the RMS 

motor current. The zero crossing and instantaneous power method requires both 

voltage and current waveforms in order to evaluate the power factor from no-load to 

full-load condition.  

 Direct Measurement Method 

Several types of electrical device such as a power factor meter, clamp meter, 

oscilloscope and power analyser can be applied for direct power factor measurement. 

An oscilloscope is usually used for small induction motors in the laboratory. A 

power factor meter is also used in industry to indicate the power factor of the 

induction motor. A power analyser is a powerful device that is able to measure and 

record all components, including voltage, current, power factor and harmonics, at 

one second intervals. 

3.9. Experimental Work 

In this study, three different induction motors with ranges of 250 W, 10 HP and 100 

HP are considered in order to measure and evaluate the behaviour of the power factor 

versus motor load. The 250 W and 10 HP induction motors are taken from the 
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laboratory. Both are coupled to the DC generator. A volume button, which is 

connected to the torque sensor, is used to control the motor load. Two types of 

measurement device can be used to measure the components.  

One is a normal meter to measure the voltage, current and input power at any 

possible point while the load is increasing gradually, then to calculate the power 

factor. Another is a power analyser, which is able to measure and record all 

components from no-load to full-load and over-load at one-second intervals [102]. In 

these cases, due to its high performance, a power analyser is connected to the 

induction motors and records the voltage, current, power factor and harmonics. 

Figure 3-13 shows the experimental set-up. 

	

Figure 3-13: Experimental set-up of induction motor  

 
  

In addition, a three-phase induction motor with a power rating 100 HP is taken from 

a stone-cutting factory (stone-cutting machine). Measurement took place when the 

operator gradually moved the blade for cutting the stone by variable volume from 

no-load to full-load and over-load. A Unipower (UP-2210) power analyser was used 

to measure and record all components for the three phases, including voltage, 
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current, active and reactive power, power factor and harmonics. The power analyser 

stored all components at 6-second intervals and provided 30 measurement points 

from no-load to full-load and over-load conditions. To connect the power analyser, 

the motor is shut down for half an hour. The measurement process took an hour. 

Table 3-1 shows the specifications of the considered induction motors.  

Table 3-1 Specifications of considered induction motors 

Nameplate data IM (250 W) IM (10 HP) IM (100 HP) 
Nominal Voltage 380 V 380 V 380 V 
Frequency 50 Hz 50 Hz 50 Hz 
Nominal Current 0.6 29 139 
Rated Power 250W 10HP 100 HP 
Rated Speed 2770 RPM 765 RPM 990 RPM 
Rated Power Factor 0.85 0.8 0.82 
Nominal efficiency 0.71 0.85 0.92 

 

MATLAB/Simulink is valuable software that is able to model the induction motor 

with the required electrical components and then measure the power factor at the 

desired loading points. Figure 3-14 indicates a three-phase 100 HP induction motor 

with the same specifications as induction motors used in industry, as modelled by 

MATLAB/Simulink. A torque meter is used to increase the motor load step by step. 

Then, a simulated power factor meter measures the power factor from no-load to 

full-load and over-load conditions.  
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Figure 3-14: Simulation of induction motor by MATLAB/Simulink 

It is understood that the operating power factor of the induction motor at any loading 

condition from no-load to full-load and over-load must be determined. Determination 

of the operating power factor helps to obtain the required reactive power for creating 

a new power factor at the desired loading points. The zero crossing method and 

instantaneous power method enable the power factor to be obtained by measuring the 

voltage and current waveforms or average power.  

It is observed that the measurement devices including the power factor meter and 

power analyser indicated a good solution to determine the power factor versus load. 

In addition, modelling of the induction motor in MATLAB/Simulink introduced 

another way to determine the power factor at any loading point. However, those 

approaches had limitations in their measurements. For instance, in the zero crossing 

and instantaneous power method, measurement of the voltage and current waveforms 

with a sensor is required. In MATLAB/Simulink, the parameters of the equivalent 
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circuit are required to model the induction motor, and finding these parameters is 

difficult.  

In the practical work, it is shown that the power factor meter installed in the 

induction motor by the manufacturer creates a reading problem due to numerical 

fluctuation. The power analyser is shown to be able to measure and record the power 

factor versus load accurately. However, to connect it, the induction motor must be 

switched off, but it is sometimes not possible to shut down the induction motor for 

power factor measurement.  

In this thesis, a new technique will be presented in order to solve the recent problems 

and obtain the power factor at any desired loading point with high accuracy. The 

procedure of this technique is demonstrated and followed by a flow chart in Figure 3-

15. In this technique, adding some input data including the measured voltage, 

current, and input power from no-load to full-load is the first step. In the second step, 

the motor load via the power measurement method will be calculated. In the third 

step, the power factor needs to be obtained from the measured voltage, current and 

input power. In the fourth step, the obtained load and power factor will be considered 

as the 𝑥 and 𝑦	axis resepctively. The fifth step considers the proposed methods, 

including MCMD, Kriging, regression, ANN and SVR, for estimating the power 

factor at any desired loading point from no-load to full-load and over-load 

conditions. The last step makes a comparison, and then presents the best method with 

the highest accuracy. The theory of the proposed methods will be presented in the 

next chapter.     
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    Figure 3-15: The main flowchart of estimating power factor of induction motor  
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3.10. Summary 

In this chapter, the theory of the power factor in induction motors and the results of 

experimental work indicated that variation of the motor load produced different 

power factors from no-load to full-load and over-load conditions. Since the power 

factor must be maintained at unity as previously discussed, determining the power 

factor against load is required. In this chapter, the experimental studies indicated that 

measurement devices created restrictions in terms of wiring connection, such that the 

motor had to be shut down, or needed control of the motor load for power factor 

measurement, which is not easy. Therefore, estimation techniques using some 

measured points are suggested to determine the power factor against input power  at 

every loading point. In the next chapter, the estimation techniques will be introduced 

in detail. 
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4.1. Introduction  

In this chapter, the theory of the proposed techniques, including a method using the 

measured current and manufacturer’s data, Kriging, regression, an artificial neural 

network and support vector regression, will be described in detail. The method using 

measured current presents a simple equation to predict the power factor. The other 

methods are statistical and intelligent techniques that are able to create a 

mathematical model, and then determine the power factor at any desired loading 

point from no-load to full-load and over-load conditions.    

4.2. Method Using Measured Current  

In this method, a simple technique was developed by  [14] in order to estimate the 

power factor based on a numerical equation with measurement of the current and 

some information from the manufacturer’s data. In this technique, two components 

need to be considered. The first is the nominal power factor from the data sheet or 

the nameplate of the motor in order to calculate the nominal reactive current. The 

second is measurement of the current at any loading from no-load to full-load 

conditions. Then, by using the proposed Equation (4-1), the power factor can be 

estimated at any measured point of loading.  

 

𝑃𝐹 = 𝑐𝑜𝑠∅ = 1 − 𝑠𝑖𝑛R∅ = 	 1 − (
𝐼	UC]�
	𝐼	�

)R       (4-1) 

 

In the trigonometry, the basic relationship between the sine and cosine will be 

obtained by the Pythagorean identity as 𝑠𝑖𝑛R∅+𝑐𝑜𝑠R∅ = 1. Therefore, 𝑐𝑜𝑠∅ can be 

written as 𝑐𝑜𝑠∅ = 1 − 𝑠𝑖𝑛R∅ and is able to solve the 𝑐𝑜𝑠∅ in math as well [103].  
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Since the power factor in the case of sinusoidal waveforms can be named as 𝑐𝑜𝑠	∅, 

the proposed equation is able to solve 𝑐𝑜𝑠∅ with this theorem, where 𝑠𝑖𝑛R∅ would be 

converted in to the (�	s���
	�	�

)R according to Equation (4-4).  

In the induction motor, the motor current (I) in Equation (4-2) is divided into two 

components, the active current and reactive current. The active current in Equation 

(4-3) is used for useful work and it has a linear correlation with the mechanical 

resistance from no-load to full-load [11]. The reactive current in Equation (4-4) is 

magnetization current and is used in magnetization reactance. If the magnetization 

current or reactive current is assumed to be constant, the power factor can be 

estimated by Equation (4-1).  

 

𝐼 = 𝐼�5LB�KR + 𝐼UK�5LB�KR  (4-2) 

𝐼�5LB�K = 𝐼𝑐𝑜𝑠∅ (4-3) 

𝐼UK�5LB�K = 𝐼𝑠𝑖𝑛∅ (4-4) 

 

Therefore, by considering this assumption, the nominal reactive current can be 

obtained by the nominal power factor using Equation (4-5), where 	𝐼	UC]� is the 

nominal  reactive current, 𝑃𝐹C]� is the nominal power factor, and 	𝐼	� is the 

measured current from no-load to full-load. 

 

	𝐼	UC]� = 	𝐼𝑠𝑖𝑛	(𝑐𝑜𝑠~}𝑃𝐹C]�)	     (4-5) 

 

The proposed equation with current measurement is a good idea to predict the power 

factor of the induction motor against load, since the load can be determined by the 
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measured current method as well. The computation of this method will be done with 

MATLAB programming with the following outline.   

• Considering measured current values from no-load to full load conditions as 

input   

• Considering the nominal power factor which can be found from the motor 

nameplate 

• Computing the nominal reactive current via the nominal power factor  

• Putting the measured current and nominal reactive current into the 

developed equation 

• Computing the motor load via the measured current method 

• Obtain the power factor at the measured current  

• Obtain the power factor versus load.  

This technique has advantages and disadvantages. The main advantage is that it is 

able to determine the power factor at the measured current by considering only the 

nominal reactive current because, otherwise, to obtain the power factor, 

measurement of the voltage, current and active power is required synchronously, 

while in the proposed method only measurement of the current is necessary. 

Therefore, this method simplifies the power factor determination because, for 

measurement of the required components, the induction motor must be switched off 

in order to connect the measurement device and the motor cut-off may create a cost 

for the user.    

The disadvantage is that this method is only able to estimate the power factor by 

assuming that the reactive current of the induction motor at any loading condition is 

constant. Assumption of a constant reactive current and using the nominal reactive 

current may produce high error compared with real measurement because, in 
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practice, at operation time the reactive current may not be constant when the load is 

changing from no-load to full-load. In addition, obtaining the power factor at every 

loading point in this method may be difficult since measurement of the current at any 

loading point from no-load to full-load conditions with a normal device is difficult 

due to numerical fluctuation.  

Moreover, this technique considers cos𝜑, which is the cosine angle between the 

voltage and current, which mainly provide the displacement power factor. However, 

in present of harmonics, this technique is not able to obtain the power factor 

distortion and so may also provide errors compared with real power factor 

measurement. In this research, the main goal is to implement the proposed technique 

with the developed equation in three different sizes of induction motor in order to 

present the positive and negative performance. Then, a technique will be presented to 

enhance and improve the technique of power factor estimation. In the next section, 

the Kriging method is described in detail.    

4.3. Kriging Method 

Kriging is a geostatistical approach that produces a predicted surface from a separate 

set of points. The fundamental theory of this method was developed in 1960 by 

Georges Matheron, a French mathematician. Kriging is a kind of interpolation 

technique that constructs a model and predicts unknown values between observed 

points. In this method, assumptions are based on the distance and direction between 

sample points with a spatial autocorrelation. This method can give the best 

performance when the correlation and direction of the dataset are clear [25, 24].   

In the Kriging method, two tasks are important to make a prediction. One is 

variography in order to describe the spatial structure of the data. The other is 

applying a semivariogram model to predict unknown values at different locations.  
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In the first task, the variogram function indicates the statistical dependence values, 

which is called spatial autocorrelation of values. The spatial autocorrelation 

quantifies the assumed points that are closer and more alike than values that are 

farther apart. To quantify the spatial autocorrelation, structure analysis or 

variography must be considered by a graph of an empirical semivariogram computed 

with  Equation (4-6) for all pairs separated by distance	ℎ.  

 

𝛾 ℎ =
1

2𝑁(ℎ) 𝑧 𝑥B − 𝑧 𝑥B + ℎ R

`(¤)

B¥}

 
(4-6) 

 

 
where 𝛾 ℎ  is a semivariogram for number 𝑁 of pairs that are separated by distances, 

𝑧 𝑥B  is the observed value at 𝑥 point, and  𝑧 𝑥B + ℎ  is the observed value that is 

located at distance (ℎ) from 𝑥. To compute the semivariogram, initially the square of 

two points with distance is necessary. To generalize the difference in the values of 

the two points, all points with distances will be considered.  

Since each pair at different locations are at some distance, plotting all pairs in the 

form of		𝑥 and 𝑦 axes is unmanageable. Therefore, instead of plotting each pair, all 

pairs can be plotted by computing the average semivariogram for all pairs of 

locations. The graph of the empirical semivariogram comprises the averaged 

semivariogram values on the 𝑦-axis and the distance on the 𝑥-axis. The plot is shown 

in Figure 4-1. Figure 4-2 is an example with eleven locations to indicate how the 

empirical semivariogram will be obtained. In this figure, the red point is an unknown 

value that must be estimated. Black points are known values. Dashed lines are the 

distance between all known locations. Solid lines are the distance between an 

unknown point and all known points [104, 105]. 



Chapter 4: Estimation Techniques 
 

	 Page	85	
	

 
 

 

Figure 4-1: Illustration of an unknown point surrounded by known points [105] 

 

 
Figure 4-2: Example of empirical semivariogram graph [105] 

 

• Semivariogram models 

 
The next task is to fit a model to the points forming the empirical semivariogram for 

prediction. Indeed, semivariogram modelling is a good solution to obtain a suitable 

model because the main application of Kriging is to estimate the required values at 

un-sampled locations. Although the empirical semivariogram creates direction in the 

spatial autocorrelation of the dataset, it does not provide any information on all 

distances. Therefore, a semivariogram model needs to be fitted to the empirical 

semivariogram. There are many semivariogram models in Kriging, including 
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spherical, circular, exponential, linear and Gaussian. These are illustrated in Figure 

4-3.   

 

Figure 4-3: Semivariogram models [106] 

 

In the Kriging, a properly selected semivariogram model indicates a high level of 

prediction, in particular when the model is similar to the dataset. The proposed 

model predicts all unknown points in different locations. Each model is designed to 

fit different applications with more accuracy [107]. Semivariogram models are 

described by three parameters: range, sill, and nugget. Range is the distance by 

which the observed location is separated. Locations farther apart than the range set 

cannot be autocorrelated. The value at which the model reaches the range on the 𝑦-

axis is named the sill. A partial sill is the sill minus the nugget. The nugget is the 

value that represents the starting point of the dataset.  

Theoretically, at zero separation distance the value of the semivariogram is zero. 

However, with a small separation distance, the semivariogram indicates the nugget, 

which will be greater than zero. Figure 4-4 illustrates the parameters of the 

semivariogram model.   
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Figure 4-4: Characteristics of semivariogram model [107] 

 
As previously mentioned, there are many different semivariogram models. The 

equations for these mathematical models are as follows: 

 

Exponential						g ℎ = 𝑐c + 𝑐 1 − 𝑒𝑥𝑝
−3ℎ
𝑎 							ℎ > 0										 (4-7) 

 
 

Gaussian																	g ℎ = 𝑐c + 𝑐 1 + 𝑒𝑥𝑝
ℎR

𝛼R 										ℎ > 0 (4-8) 

 
 

Spherical																g ℎ = 𝑐c + 𝑐
3ℎ
2𝛼 −

1
2
ℎ
𝛼

�

										0 < ℎ < 𝛼 (4-9) 

 
 

Linear																					g ℎ = 𝑐c + 𝑐
ℎ
𝛼 												0 < ℎ < 𝛼 (4-10) 

 
 

Circular																g ℎ = 𝑐c + 𝑐 1 −
2
𝜋 𝑐𝑜𝑠

~} ℎ
𝛼 + 1 −

ℎR

𝛼R		 										ℎ > 0 (4-11) 

 
 



Chapter 4: Estimation Techniques 
 

	 Page	88	
	

where 𝑐c is the nugget, 𝑐 is the partial sill at which levelling takes place, ℎ is the 

distance between variables and 𝛼 is the range that represents the maximum distance 

in the 𝑥-axis of the semivariogram model. The key point of Kriging is applying a 

suitable semivariogram model to provide high output accuracy in the desired 

application. For this study, among the semivariogram models, selecting the 

exponential model is more applicable since it is similar to the power factor curve. 

Therefore, in Equation (4-2),	𝑐 is replaced as the rated power factor at maximum 

load	(m¹º), ℎ is the distance between all load points, 𝛼 is replaced as the maximum 

load (m»),		 g ℎ  is the semivariogram of the exponential model.  

There are two types of Kriging, ordinary and universal, that can be selected based on 

the quality of correlation and trend of the data as well as the relationship between 

paired points in different locations. In ordinary Kriging, it is assumed that the spatial 

autocorrelation is directly deployed by the semivariogram and there is no trend in the 

observed points [108]. In the universal type, it is assumed that not only is the 

presence of the spatial autocorrelation between points necessary, but also that there 

will be a trend in the data. Therefore, Kriging is combined with a 1st or 2nd order 

polynomial. In this case, ordinary Kriging will be described by Equation (4-6), where 

Kriging estimates the unknown values based on nearby observed values at 

surrounding locations. Obtaining the weight of each observed point and unknown 

point requires the error of a predicted value to be minimised.  

 

𝑍(@½) = 𝑊B𝑍(@r)

`

B¥}

 (4-12) 
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where 𝑍(@r) is the observed value at the 𝑖L¤ location, 𝑊B	is an unknown weight for the 

observed value at the 𝑖L¤ location,  𝑆c	is the prediction location, and 𝑁 is the number 

of observed values. Using this equation, first of all the calculation of weights 𝑤B is 

important. To obtain	𝑤B, Kriging requires the use of a semivariogram. This is a 

function that relates the semivariance of the data points to the distance that separates 

them. A Lagrange matrix will be applied to obtain the weights of the observed 

values. In the Lagrange matrix, two main vectors are needed. One is the obtained 

values of semivariance g ℎ  and the other is the distance between the observed value 

and the point that will be estimated. Then, the Lagrange multiplier matrix can be 

expressed in Equation (4-13). 

 

𝑤}
𝑤R
⋮
𝑤1
λ

=

g}} g}R
gR} gRR

… g}1 1
⋯ gR1 1

⋮ ⋮
gÂ}
1

gÂR
1

⋱ ⋮ 						⋮
…
…

gÂ1 1
1 					0

~}

.

g}c
gRc
⋮
g1c
1

 (4-13) 

 

In Lagrange multiplication, 𝑤B is (m×1 matrix) the weight of actual and estimated 

points, which is unknown, gÄ is (m×n matrix) the output of the semivariogram 

function, and gC]is a vector (m×1) between the unknown loading points and 

observed loading points. Thus, from the obtained values of  w},wR, … ,w1  and 𝜆  

(where λ is useful in calculating the variance), the unknown point can be estimated 

by Equation (4-14). 

 

𝑍@½ = 	𝑤}𝑆} + 𝑤R𝑆R + 𝑤𝑆� + ⋯𝑤C𝑆C (4-14) 
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where 𝑤B is the weight between an estimated point and observed points, 𝑆B is the 

observed points. Then, multiplying the observed points by the obtained weights, the 

target point at a desired location is estimated. In the Kriging algorithm, a loop 

function has been applied in order to estimate any unknown points in the desired 

location. In this project, the Kriging method will be applied in different sizes of 

induction motor, small, medium and large (250 W, 10 HP and 100 HP), in order to 

estimate their power factor at any desired loading point. The steps of the algorithm 

are as follows:   

• Compute the distance between each pair of points in the 𝑥-axis and make it as 

4 x 4 vectors. 

• Compute the distance between all	𝑥-axis points and a point needs to be 
estimated. 

 

• Create an empirical semivariogram model 

 

• Select an appropriate function, and then insert the obtained parameters from 

the computed distances in the 𝑥-axis  

• Put in the results obtained by the function, and the results of the distance 

between all 𝑥-axis points and a given point need to be estimated in the 

Lagrange matrix 

• Create a loop function to iterate the algorithm in order to obtain the next 

desired points.  
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4.4. Regression Method 

Regression is a statistical technique that is widely used in prediction and forecasting. 

Regression was developed by Francis Galton in 1877. In the technique, regression 

predicts the relationship between variables and contributes to understanding how a 

dependent variable reacts when each independent variable is constant or varying 

[109, 110, 111]. The basis of regression is determining the relationship between one 

or more independent values in the 𝑥-axis, and one or more dependent values in the 𝑦-

axis by obtaining their coefficients [112]. The main equation of regression can be 

expressed in Equation (4-15).   

 

𝑦B = 𝑓 𝑥B, 𝛽 + 𝜀B			𝑖 = 1,2, … , 𝑛 (4-15) 

 

where 𝑦B is the number of observations of dependent values, 𝑥B is the number of 

predictor variables related to 𝑦B, 𝛽 is the coefficient of regression, 𝑓 is the regression 

function that is explained in the next section. Therefore, 𝛽 multiplied by 𝑥B  provides 

an estimated value 	𝑦É. The difference between 𝑦B and 𝑦É  is 𝜀B. Now, by obtaining the 

value of 𝛽 and 𝜀B	 with a new set of		𝑥B, the values of 𝑦B will be determined. Creating 

a fitting model requires the sum of squares of the residuals to be minimised [25, 26]. 

Least squares is a common approach in regression in order to find the coefficients 

(𝛽) and minimise (the sum of squared residual) the differences between known 

values and the fitted values. To obtain the coefficients, therefore, the equation can be 

converted into matrix form as in Equation (4-16). 

𝑌 = 𝑋 𝛽 + 𝜀  (4-16) 
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where [Y] is an n×1 vector of dependent variables, [X] is an n×m matrix of estimators 

(Vandermonde matrix), with one column for each estimator and one row for each 

observation. [β] is an m×1 vector of unknown parameters to be predicted. [ε] is an 

n×1 vector of independent variables and indicates the error between the observed and 

estimated values. Hence, converting Equation (4-15) to Equation (4-16), the 

coefficient will be obtained in Equation (4-17).   

β = (X<X)~}X<Y      (4-17) 

4.4.1. Goodness of Fit  

In the statistical methods, indicating the goodness of fit is important because it can 

show the fitness of the model. R2, which is the square of correlation between the 

observed values and the predicted values, can be an indicator to show the fitness of 

methods [113, 114]. R2 is defined as the ratio of the sum of squares of regression 

(SSR) and the total sum of squares (TSS). It is expressed in Equations (4-18) to (4-

21).       

𝑅R =
𝑆𝑆𝑅
𝑆𝑆𝑇 = 1 −

𝑆𝑆𝐸
𝑆𝑆𝑇 (4-18) 

 

𝑆𝑆𝐸 = 𝑦B − 𝑦B R
C

B¥}

 (4-19) 

 

𝑆𝑆𝑅 = 𝑦B − 𝑦B
R

C

B¥}

 (4-20) 

 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 (4-21) 
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R2 can take values of 0 and 1. A value closer to 1 provides a greater proportionality 

to the model. It is observed that increasing the number of degrees in the model 

provides a greater R2. However, the fit may not improve in a practical sense. To 

avoid this situation, the adjusted R2, which is indicated in Equation (4-22), must be 

considered in (4-23). 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 − 𝑅R = 1 −
𝑆𝑆𝐸(𝑛 − 1)
𝑆𝑆𝑇(u)  (4-22) 

 

u = 𝑛 −𝑚 (4-23) 
 

In Equation (4-23), u indicates the number of independent pieces of information 

involving the 𝑛 data points that are required to calculate the sum of the square,	𝑛 is 

the number of values and	𝑚 is the number of fitted coefficients. The adjusted R2 is 

the best indicator of the quality of the fit. It can be a value less than one or equal to 

one. A value closer to 1 indicates a better fit. Root mean square error (RMSE) can be 

used to indicate the standard error of the fit and the standard error of the regression, 

which are defined in Equation (4-24), where the mean square error (MSE) is 

obtained by 𝐸/u. 

 

𝑅𝑀𝑆𝐸 = 𝑆 = 𝑀𝑆𝐸 (4-24) 

 

4.4.2. Linear and Non-linear Regression Models 

Regression can be described in two types including a linear regression and non-linear 

regression model, shown in Figure 4-5. Linear regression provides a linear model 

between the independent variable (𝑥) and dependent variable	(𝑦).  
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In linear regression, the model can be obtained by using a linear predictor function, 

where the model is named a linear model. Non-linear regression provides a non-

linear model by a function which is a combination of model parameters and variables 

[114]. In both linear and non-linear regression, there are many functions that can be 

selected based on the model data.The regression models are described as follows. 

 

Figure 4-5: Linear and non-linear regression models [114]  

 

4.4.2.1. Exponential Model 

An exponential function is used to provide a linear or non-linear model to fit in the 

dataset model. The linear and non-linear functions are presented in Equations (4-25) 

and (4-26). These functions can be used when the change rate of quantities is 

proportional to the initial quantities. In these equations, a, 𝑏, 𝑐 and	𝑑 are the 

coefficients of the exponential that are estimated by the least squares method. These 

functions can only produce a fixed model after obtaining the coefficients. Both 

equations are unable to provide flexible models because in these functions there is no 

adjustable parameter.         

𝑦 = 𝑎𝑒ÓÔ (4-25) 

𝑦 = 𝑎𝑒ÓÔ + 𝑐𝑒DÔ (4-26) 
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4.4.2.2. Gaussian Model 

The Gaussian model is another use of a regression function to provide a desired 

model fitting to the data model. In this function, 𝑎 is the amplitude, 𝑏 is the location, 

and 𝑐 is related to the peak width. 𝑛 is the number of peaks for fitting where 1 ≤ 𝑛 ≤

8. In this function, it is possible to produce several models by changing the peak 

value from 1 to 8. Adjusting the peak value manually indicates the flexibility of this 

function in terms of creating an exact fitting model to the data points. This function 

is more applicable in cases where the input model is similar to the Gaussian shape.   

𝑦 = 𝑎B𝑒
~ Ô~Ór

5r

ÖC

B¥}

 (4-27) 

 

4.4.2.3. Power Series Model 

In this function, only two terms can provide linear and non-linear models. These  are 

indicated in Equations (4-28) and (4-29), where a, 𝑏 and 𝑐 are the coefficients. The 

power series is only able to create two models in linear and non-linear form, in which 

the first term in Equation (4-28) is a linear function and the second term in Equation 

(4-29) is a non-linear function. In these functions there are no adjustable parameters 

to regulate the existing model. Once its coefficients are obtained by least squares, it 

will produced a fixed model.   

 
y = axØ 

(4-28) 

 
 
y = axØ + c 

(4-29) 
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4.4.2.4. Polynomial Model 

The polynomial model is also is a very common use of regression in which the 

relationship between the dependent variable in the 𝑦-axis and independent variable in 

the 𝑥-axis is modelled by the number of degrees. Polynomial regression also 

provides a model fitting to a linear and non-linear model from datasets by adjusting 

the polynomial order. The main equation of the polynomial is presented in Equation 

(4-30). 

 

y = βB

C�}

B¥}

𝑥C�}~B (4-30) 

 

where 𝑛 + 1 is the polynomial order, and 𝑛 is the polynomial degree where 1 ≤ 𝑛 ≤

9.  The order provides the number of coefficients for fitting. The degree indicates the 

highest power of the estimator variable. In polynomial regression, the polynomial 

degrees have significant roles in terms of fitting the linear and non-linear models. If 

the polynomial degree is (𝑛 =1), this represents a linear model. If the polynomial 

degree is (𝑛 =2, 3), this indicates non-linear models, quadratic and cubic models 

respectively. Third-degree polynomials are described in Equation (4-31). 

 

y = β}𝑥� + βR𝑥R + β�𝑥 + β� (4-31) 

 

Polyfit and polyval are substantial functions in statistical MATLAB tools. The polyfit 

(𝑝) function is used to obtain the coefficients for a polynomial of degree (𝑛). It can 

also be described as 𝑝 = 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 𝑥, 𝑦, 𝑛 , in which 𝑥 is an observed point and 

determined as an independent value. 𝑦	is an observed value and is determined as a 
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dependent value. 𝑛 is a degree of polynomial that specifies the polynomial power of 

the coefficient in	𝑝. 𝑝 obtains the polynomial coefficients by using the least squares 

procedure and selecting the value of the degree (the length of 𝑝 is 𝑛 + 1) [26]. In the 

polyfit procedure, an independent value requires the formation of a Vandermonde 

matrix with 𝑛 + 1 columns. Polyfit solves the polynomial coefficients with	𝑝 = 𝑉/𝑦 

as expressed in Equation (4-32).   

 

𝑝}
𝑝R
⋮
𝑝C

=

𝑥}C�} 𝑥}C … 1
𝑥RC¥} 𝑥RC … 1
⋮ 								⋮ 			⋱ 1
𝑥CC�} 𝑥CC ⋮ 1

~} 𝑦}
𝑦R
⋮
𝑦C

  (4-32) 

 

Polyval is a function that evaluates 𝑝 at query points. The function can be described 

as	𝑦 = 𝑝𝑜𝑙𝑦𝑣𝑎𝑙 𝑝, 𝑥 , in which the 𝑦 output is the polynomial coefficient of degrees 

and evaluated at query points 𝑥. Therefore, combining both functions with the 

required numbers of degrees can predict values at unknown points with significant 

accuracy. The steps of the algorithm are outlined as follows: 

 

• Inserting the load and the power factor data as the 𝑥-axis and 𝑦-axis 

• Putting the 𝑥-axis and 𝑦-axis data in a Vandermonde matrix  

• Using the polyval technique to obtain the polynomial coefficients 

• Using the polyfit technique to place the obtained coefficient in the points that 

need to be determined    
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Selection of the polynomial degree can be an effective solution for solving non-linear 

models. In the regression analysis, the polynomial function has the advantage that it 

is not too complicated due to the flexibility in data. In addition, the fitting process is 

simple and the polynomial degree at any term can provide the desired models. The 

main disadvantage of this function is that a high degree creates instability in the 

model and it diverges outside the range. Of the aforementioned functions, however, 

polynomial regression is more flexible and can be applied in different cases for 

prediction and forecasting. In this project, polynomial regression is applicable and 

more powerful than other functions for the estimation of the power factor because 

the initial power factor curve in all induction motors is exponential. Selecting 

different polynomial degrees can provide the best fitting for each model.  

Although a two-term exponential function can be used in this application, this may 

not provide a high performance in the output result, since there is no adjustable 

parameter to regulate the best fitting. In addition, in a two-term power series function 

only one model can be obtained and also it is not possible to adjust the new model 

into the dataset model. The Gaussian function is flexible and can produce several 

models by selecting different numbers of peaks. However, it is not appropriate in the 

case of power factor estimation, since the existing model is different from the power 

factor curve. As a result, this analysis demonstrates that using a polynomial function 

can provide better performance compared with other functions. The proposed 

method will be implemented in three different power factors of induction motors and 

the results will be presented in the next chapter.  

4.5. Artificial Neural Network Method 

An artificial neural network is a novel computation method that is able to predict the 

output responses from complex systems.  
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The idea of such a network arises from the biological neural network that constitutes 

the human brain. A biological neural network is a series of interconnected neurons 

where each connection between neurons can transmit a signal to other neurons and 

therefore provide an output. A neuron is constituted of dendrites and an axon. These 

are connected via synapses, which are responsible for transmitting the signal from 

the dendrites to the axon terminals. The neuron and synapse may have a weight that 

is able to increase or decrease the strength of the signals sent downstream. Further, 

they may have a threshold to evaluate the signal if it is below or above it [115, 116]. 

 Hence, it was possible to simulate an artificial neural network with a model as in 

Figure 4-6. In this model, 𝑋 is the input where each line considers a column as 𝑋}.	𝑤 

is a coefficient of the input vector and can also be called a weight. and It times to the 

input vector in order to indicate the strength of the signal. All input vectors with their 

weights are summed. This summation, before going to the output, will be taken into 

a different process that is called an activation function in order to determine whether 

the output is right or not. In this structure, the aim is to train the neurons in order to 

specify the matrix weight by the input data, and then provide an optimal output. In 

general, an artificial neural network in terms of learning is divided into fixed and 

adaptive networks, where in a fixed network the weight is constant, but in an 

adaptive network the weight is variable (a learning network). The adaptive network 

can be divided into two categories, supervised and unsupervised learning. In 

supervised learning, the ideal output can be obtained by training the sample points 

that have been considered as input. 
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Figure 4-6: Simplified mathematical model of real nerve [116] 

  

   However, in unsupervised learning, the output data will be given without 

considering the input data. In fact, its aim is to discover an interesting structure, a 

process which is sometimes named knowledge discovery. In this learning, it has not 

been indicated what the desired output is for each input, unlike in supervised 

learning. Supervised learning is used in the case of a regression problem, while 

unsupervised learning is considered to solve the problem of clustering data into the 

group. In the case of supervised learning, the artificial neural network acts like a 

body nerve and can provide a supervised learning ability so that by receiving signals 

from the input, it is able to create the output. To obtain the desired output, the weight 

needs to be changed each time. Since the topology of the brain is much more 

complicated, it is not possible to deploy this topology as the same as modelling a 

biological neural network [117].  

Therefore, a simpler method for this arrangement is considered. One of the most 

commonly suggested models for modelling the connection and agreement of neurons 

is Multi-layer Feedforward (MLF), which will be described in the next section. 
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• Multi-layer Feedforward 

Multi-layer feedforward is the most popular network pattern and is associated with 

back propagation (BP). It is used in prediction and forecasting applications by having 

two vector variables of which one is the estimator and the other is the target. Figure 

4-7 shows the feedforward structure which is taken from the main neural network 

structure (Figure 4-6), where the main neural network takes several inputs and 

obtains one output, while the feedforward structure takes one input and provides one 

output as well. As can be seen from Figure 4-7, the feedforward network structure is 

constituted by a hidden layer and an output layer. The hidden layer supplies the input 

for the output layer; its number is flexible and can be increased manually. In 

addition, there are two differentiable transfer functions in this structure. One is 

located in the hidden layer with sigmoid functions. The other is located in the output 

layer with a linear transfer function. Such structure is able to learn non-linear 

relationships between input and output vectors. The linear output layer is  most 

commonly used  to solve non-linear regression problems [118, 115]. 

 

 

Figure 4-7: Structure of Multi-layer Feedforward with 2 hidden layers [118] 
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In the feedforward network, the sample values in the  x-axis are considered as 

input	𝑥�(𝑗 = 1,2, … , 𝑛), and the sample values in the d-axis 	𝑑L(𝑖 = 1,2, … , 𝑛) are 

considered as the target. The output network will be obtained as 𝑦L 𝑡 = 1,2, … , 𝑛 . 

The hidden layer, which supplies the input for the output layer, is considered as 

𝑧B 𝑖 = 1,2, … , 𝑛 . 𝑤B� is a weight between each two connected neurons of the input 

and hidden layers, and 𝑤BL is a weight between the hidden layer and output layer. 

Finally, by using an optimization technique with a back-propagation algorithm, the 

weights are updated, and then the error between the output and target will be 

minimised. The next section presents the minimization process with the back 

propagation algorithm. 

• Back Propagation Algorithm  

This algorithm was introduced by Rumelhart and McClelland in 1985 and is mostly 

used in feedforward neural networks. The idea of the back propagation algorithm in a 

multi-layer feedforward function is to adjust the weights of each neuron in order to 

obtain optimal values in the input by a forward and backward process. Back 

propagation is one of the supervised learning methods in which the input values are 

observed and the output of each sample will be predicted. In the back propagation 

algorithm, the function of each neuron takes the sum of weights in the input of the 

considered neurons and provides output. However, if the obtained outputs are not 

similar to the target values, the algorithm back propagates the output to the input and 

creates a new weight to obtain outputs closer to the targets. This process continues 

until the outputs achieve the target values. This process is named minimization. An 

error function in Equation (4-33), which is also named the sum of squared error 

(SSE), is used through the back propagation algorithm for this minimization. 
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𝐸(𝑤) =
1
𝑁 (𝑦L − 𝑑B)R

`

B¥}

 (4-33) 

 

Here, 𝑤 represents the set of all weights in the network, 𝑦B is the output of the 

feedforward structure that needs to be obtained, and 𝑑B is the target value which is 

observed. To compute	𝑦B, two steps are required. The first step is obtaining hidden 

layer 𝑧B by Equation (4-34), where 𝑤�B are the weights between each two connected 

neurons between the input and hidden layer, 𝑥�	 is the training value located as 

inputs, and 𝑓¤ is a sigmoid function which is indicated in Equation (4-35). 

𝑧B = 𝑓¤(𝑤�B𝑥�) = 𝑓¤ 𝑛𝑒𝑡� 		1,2, … 𝑛			 (4-34) 

𝑓¤ 𝑤�B, 𝑥� =
1

1 + 𝑒𝑥𝑝	(−𝑤�B, 𝑥�)
	 (4-35) 

The second step is to obtain the output of all neurons in the output layer by Equation 

(4-36), where 𝑤BL is the weight between each two connected neurons between the 

hidden layer and output layer, 𝑧B is the hidden layer, and 𝑓c is a linear transfer 

function in the output layer. 

 

𝑦L = 𝑓c 𝑤BL

C

�¥c

𝑧B = 𝑛𝑒𝑡L			1,2, … 𝑛		 (4-36) 

 

There are various methods, including gradient descent, the Newton method and 

Marquardt–Levenberg, for updating the weights in order to minimise the error 

function. Among these methods, gradient descent is the simplest and one of the most 

common methods for error minimization. In the gradient descent method, the delta 
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rule is a significant technique to update each weight and can be expressed in 

Equations (4-37) and (4-38).  

 

∆𝑤BL = 𝑤BLCKÚ − 𝑤BL5 = −𝜌c
𝜕𝐸
𝜕𝑤BL

 

 
(4-37) 

∆𝑤�B = 𝑤BLCKÚ − 𝑤BL5 = −𝜌¤
𝜕𝐸
𝜕𝑤�B

 

 
(4-38) 

	

where this equation is the partial derivative of the error function with respect to each 

of the weights in the hidden and output layers and 𝜌 is the learning rate parameter. If 

𝜌 is small, the search path will approximate the gradient path, but convergence will 

be very slow due to the large number of update steps needed to reach a local minima. 

On the other hand, if 𝜌 is larger, convergence will be very fast, but the algorithm will 

not reach a minimum. In the feedforward neural network, the complete procedure for 

updating the weights can be summarised as follows:  

• Initialize all weights and refer to them as current weights 𝑤�B5   and 𝑤BL5 .  

• Set the learning rates 𝜌c and 𝜌¤ to small positive values 

• Select an input pattern 𝑥Ý from the training set and propagate it through the 

network, thus generating hidden and output units based on the current weight 

settings.  

• Use the desired target , 𝑑C, associated with 𝑥C, and employ Equation (4-37) to 

compute the output layer weight changes ∆𝑤BL 

• Update all weights according to 𝑤BLCKÚ = 𝑤BL5 + ∆𝑤BL and 𝑤�BCKÚ = 𝑤�B5 + ∆𝑤�B 

for the output and hidden layers respectively.  

• Test for convergence 
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This step will be done by an error function (4-33). If convergence is met, stop; 

otherwise, set 𝑤BL5 = 	𝑤BLCKÚ and 𝑤�B5 = 𝑤�BCKÚ	and go to step 3. However, back 

propagation may not be able to find the solution. In such cases, reinitializing or using 

more hidden layers can be tried.  

In this project, the neural network toolbox from MATLAB programming is used to 

estimate the power factor curve of the considered induction motors at different 

loading points. This tool is made to solve the fitting problem between a dataset of 

numeric inputs and a set of numeric targets. The main aim of this tool is that after 

selecting the input data, it trains the network and evaluates its performance using 

mean squared error and regression analysis. Then, it produces a model fitting the 

dataset model. In this tool, a two-layer feedforward network with sigmoid hidden 

neurons and linear output neurons is considered to solve the fitting problem. Using a 

gradient technique called a back propagation algorithm involves performing 

computations backward through the network [119]. In MATLAB programming, 

neural network design has four primary steps as follows:  

1. Collect data 

In this step, the input data must be presented by two vectors where one vector is the 

estimator and the other is the target. Then, they must be divided into three subsets. 

The first is the training set which is used for the gradient and updating the weights 

and biases. It normally selects 70% of all data. The second is the validation set. It is 

used to measure the network generalization and is responsible for stopping training 

when the generalization is improved. It is usually 15% of all the data. The third is the 

test set, which is used to provide an independent measure of network performance 

during and after training. It will not have any effect on the training. It is used to 

compare the different models and plot the test set error during the training process. It 
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to is usually 15% of the data. The division of data into subsets can be done either 

manually or randomly by the defined functions described in the tool.    

2. Create and configure the network 

After data collection, the next step is to create the multi-layer feedforward network. 

The feedforward network constitutes two layers, a hidden and an output layer with a 

number of neurons. The number of neurons in the hidden layer can be added 

manually. When the network has been created, it has to be configured. The 

configuration steps include demonstrating the input and target data, setting the size 

of the input and output to match the data, and selecting settings for processing the 

inputs and outputs to provide satisfactory performance. The configuration step is 

normally done automatically when the selected training function is called.  

3. Initialize the weights and biases 

Before training the network, the weights and biases must be initialized. The 

configured network automatically initializes the weights. Configuration is a process 

setting the network input, output and target sizes, and also setting the weight 

initialization to match the input and target data.   	

4. Train the network  

After initialization of the weights and biases, the multi-layer feedforward network 

can be trained for non-linear regression. The process of training involves the values 

of weights and biases of the network in order to optimise the network performance. 

The performance function in the feedforward network is the mean squared error 

(MSE), which is the average squared error between the network outputs and the 

target outputs that are expressed in Equation (4-33). To train the multi-layer 

feedforward networks, any standard numerical optimization technique can be used to 
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optimise the function. These optimization methods use the gradient of the network 

performance with respect to the network weights. The gradient is computed using a 

technique called back propagation that involves backward computation through the 

network. The computation of back propagation is derived using the delta rule. In 

MATLAB programming, a training algorithm is applied to compute the gradient by 

performing calculations backward through the network. Gradient descent and 

Levenberg–Marquardt are the most common algorithms in the case of non-linear 

regression due to their fast computation [119].    

It is understood that the artificial neural network is one of the significant intelligent 

techniques that is able to generalize and create a desired model. In reality, in this 

method a mathematical structure is considered with some parameters that need to be 

adjusted. In this structure, a learning or training algorithm will be introduced to 

optimise and find the parameters. This learning process is similar to the human brain, 

in which the data has been analysed by weakness and strength between the neural 

cells of the brain. This weakness and strength in the mathematical structure is 

defined and modelled by adjusting a parameter, which is known as weighting.  

Artificial neural networks are different types. The first is Multi-layer Feedforward 

(MLF), which is a simplified model and the most commonly used in neural networks. 

In MLF, some measured values are required for the network (input layer) as a 

training sample. For updating weights, the error between the predicted and actual 

output values is back propagated via the network. Minimising the error of the desired 

and predicted values will be done by the back propagation algorithm. The back 

propagation (BP) algorithm with the gradient descent method is used in MLF and is 

able to minimise the error between the inputs and targets data and provide the desired 

model.  
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The second type is the radial basis function. This is similar to the MLF, but the RBF 

concentrates more on processing of the input neurons and allows faster data 

processing. In the neural network, both MLF and RBF try to improve the structure of 

the neural network in which the estimation error is mainly concentrated. In other 

words, in the neural network there will be another specific type, called support vector 

machine regression. This type concentrates on reducing empirical risk. The structure 

of the SVM is similar to the MLF. The only differences are in the learning style. In 

this project, support vector machine regression will be used for estimating the power 

factor curve as well. The theory of this technique is described in the next section.  

4.6. Support Vector Regression Method 

The study indicates that the conventional estimation methods provide high error and 

also poor performance in many applications. Artificial intelligence is the newest 

method for prediction with high accuracy. In the recent development of artificial 

intelligence, the neural network was one of the most common methods. However, 

this method showed weaknesses in performance, such as the requirement to control 

the parameters, difficulty ensuring stable results and so on. Due to such weaknesses, 

better methods have been designed to improve the neural network. The support 

vector machine (SVM) is one of the supervised learning methods that are able to 

solve the recent problems. SVM can be applied for classification and regression. In 

this project, for model prediction, regression is the main focus [51]. In this method, 

the regression is named support vector regression (SVR). The theory of SVR was 

developed by Vapnik in 1997. It is known as one of the significant techniques in 

terms of solving regression problems [120, 121].  

The structure of support vector regression is similar to the SVM. In contrast, the 

SVR tries to fit a line or curve to the data by minimising the cost function. The SVR 
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developed a new technique to solve the fitting problems and minimise the error as 

well. The main structure of SVR is presented in Figure 4-8, where 𝑥 is the input data, 

𝐾(𝑥B,𝑥) is the kernel function, 𝛼	B� − 𝛼	B~ are support vector coefficients, 𝑏 is bias, 

and	𝑦 is the output. 

 

 

Figure 4-8: Support vector regression structure 

 

As can be seen from Figure 4-9, the strategy of SVR is to construct a hyperplane in 

high-dimensional space with consideration of constraints in order to create a 

boundary for data points with upper and lower bounds. The distance between the 

hyperplane and upper bound or lower bound is measured by 𝜺. The distance between 

the upper and lower bound is measured by }
R
𝑤 R. In reality, 𝑤 R is proposed as a 

regularization term or the flatness of the function that needs to be minimised.  
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Figure 4-9: Hyperplane with upper and lower bounds [122]   

The main aim of this technique is to minimise the margin by a loss function and 

place the hyperplane close to as many of the data points as possible. SVR can only 

act in a linear way, but by mapping the main space into the high-dimensional space, 

it can construct a set of hyperplanes close to all the data points to solve a non-linear 

model. In SVR, the set of training data includes predictor variables and observed 

values are considered. The main goal of this technique is to find a function 𝑓(𝑥) that 

deviates from 𝑦B by a value no bigger than 𝜺 at each training point of	𝑥. In the next 

section, the mathematical formulation of SVR in linear and non-linear conditions 

will be explained in detail.  

4.6.1. Linear Support Vector Regression 

Suppose a set of training data is D= 𝑥B, 𝑦B B
C where 𝑥B is the predictor variable, 𝑦B is 

the observed value, and n is the number of observations. Then, the linear function 

can be expressed in Equation (4-39), where 𝑥 is predictor variables, 𝑤 is a parameter 

to measure the hyperplane location between the margin, and 𝑏 is named bias and 

indicates the starting points of the hyperplane [122].  

 

𝑓 𝑥 = 𝑥𝑤 + 𝑏 (4-39) 
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Ensuring its flatness, 𝑓 𝑥  would be found by minimal norm value 𝑤 R, which can 

also be indicated as 𝑤´𝑤 . This is formulated as a convex optimization problem to 

minimise }
R
 𝑤´𝑤 by subjecting it to all residuals having a value less than 𝜺 , which is 

presented in 𝑦B − (𝑥B𝑤 + 𝑏) ≤ 𝜺. However, this function is not able to solve these 

constraints for all points because, as can be seen from Figure 4-10, the points which 

are outside the tube create errors. Therefore, in such a condition, slack variables 

(𝜉B�, 𝜉B~)	for the points which are far from the tube need to be introduced because the 

slack variables allow regression errors to exist up to values of 𝜉B�	and 𝜉B~. Locating 

the slack variables in an objective function is known as a primal formula, which is 

shown in Equation (4-40).  

 

Figure 4-10: Hyperplane with a point out of margin target [122]   

 Minimise: 

𝐽 𝑤 = }
R
 𝑤´𝑤 + 𝐶 	(𝜉B� + 𝜉B~)`

C¥}  

Subject to: 

⩝B :	𝑦B − 𝑥B𝑤 + 𝑏 ≤ 𝜺 +	𝜉B� 

⩝B :	 𝑥B𝑤 + 𝑏 − 𝑦B ≤ 𝜺 +	𝜉B
_ 

⩝B: 𝜉B� ≥ 0 

⩝B: 𝜉B~ ≥ 0 

(4-40) 
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𝐶 is a box constraint that determines the trade-off between the flatness of 𝑓 𝑥  and 

the amount up to which deviations larger than 𝜺 are tolerated. The positive or 

negative slack variables that control the penalty are imposed on the points that are 

located outside the epsilon margin and contribute to prevent overfitting. The linear 𝜺-

insensitive loss function 𝐿è(𝑓 𝑥 , 𝑦) is defined to ignore the errors of the points that 

are located within the margin	[52]. The loss function is described as follows: 

 

𝐿è =
0																																					if	 𝑦 − 𝑓 𝑥 ≤ 𝜀
𝑦 − 𝑓 𝑥 − 𝜀																				otherwise   

 

A Lagrange dual formulation is introduced to solve the optimization problem 

previously described. Indeed, in mathematical optimization, the minimization 

problem can be viewed by the primal and the dual problems, in which the solution to 

the dual problems provides a lower bound to the solution of the primal problem. The 

values of the primal and dual problems do not need to be equal and the difference is 

named the duality gap. However, when the problem is convex and it satisfies a 

constraint qualification condition, the solution of the dual problem provides the 

optimal solution to the primal problem. To obtain the dual formula, a Lagrange 

function introducing multipliers including 𝛼	B� and 𝛼	B~ for each data points	𝑥B is 

used. The dual formula can be expressed in Equation (4-41).  

 

𝐿(𝑎) =
1
2

(𝛼	B� − 𝛼	B~)(𝛼	�� − 𝛼	�~)
`

�¥}

`

B¥}

𝑥B𝑥� + 𝜀 𝛼	B� + 𝛼	B~ + 𝑦B(𝛼	B~ − 𝛼	B�)
`

B¥}

`

B¥}

 

 

 

 

(4-41) 
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Subject to the constraints: 

𝛼	B� − 𝛼	B~ = 0
`

B¥}

 

⩝B :	0 ≤ 𝛼	B� ≤ 𝐶 

⩝B :	0 ≤ 𝛼	B~ ≤ 𝐶 

The 𝑤 parameter can be described completely by a linear combination of the training 

points using Equation (4-42).   

 

𝑤 = 𝛼	B� − 𝛼	B~ 𝑥B

`

B¥}

 (4-42) 

  

Moreover, for obtaining the value of b, two main parameters are required. One is w, 

which is obtained from Equation (4-42) and the other is S (support vector), which 

can be considered by a constraint. Therefore, b can be determined in Equation (4-43). 

𝑏 =
1
𝑆 𝑦B − 𝑤´ − 𝑥B − 𝑠𝑖𝑔𝑛(𝛼	B� − 𝛼	B~)𝜀

B∈@

 

𝑆 = 𝑖 								0 < 𝛼	B� + 𝛼	B~ < 𝐶  

(4-43) 

 

The support vectors lead to the prediction of new values using the function in 

Equation (4-44). The Karush–Kuhn–Tucker (KKT) complementarity conditions are 

optimization constraints that are required for computing the optimal solutions. In 

linear regression, the conditions are described in Equation (4-45). 

 

𝑓 𝑥 = 𝛼	B� − 𝛼	B~ (𝑥B

`

B¥}

, 𝑥) + 𝑏 (4-44) 
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KKT condition 

⩝B :	𝛼	B� 𝜀	 +	𝜉B� − 𝑦B + 𝑥B𝑤 + 𝑏 = 0 

⩝B :	𝛼	B~ 𝜀	 +	𝜉B~ + 𝑦B − 𝑥B𝑤 − 𝑏 = 0 

⩝B: 𝜉B� 𝐶 − 𝛼	B� = 0 

⩝B: 𝜉B~ 𝐶 − 𝛼	B~ = 0 

These conditions show that all the data points inside the epsilon tube have Lagrange 

multipliers with 𝛼	B� = 0  and 𝛼	B~ = 0. If these coefficients are not zero, the 

corresponding value is named the support vector.  

4.6.2. Non-linear Support Vector Regression 

The support vector regression method is also able to solve non-linear problems. 

Selecting an appropriate non-linear function with the Lagrange dual formulation that 

was previously described provides a great solution in non-linear models. From 

Figure 4-11, a non-linear regression model can be mapped in high-dimensional 

feature space. Then, using an appropriate kernel function with the form of 

𝐺(𝑥}, 𝑥R) = 𝜑 𝑥} , 𝜑 𝑥R  is able to provide the solution, where 𝜑(𝑥) is a 

transformation that maps 𝑥  to the high-dimensional space. Three kernel functions 

are expressed by Equations (4-45) to (4-47).  

 

Figure 4-11: Mapping non-linear model into the feature space [122]   
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Linear (dot product)           𝐺(𝑥�, 𝑥Ý) = 𝑥B𝑥�   (4-45) 

    

Gaussian                           𝐺(𝑥�, 𝑥Ý) = 𝑒𝑥𝑝 − }
RíÖ

	 𝑋B − 𝑋�  (4-46) 

 

Polynomial                   𝐺(𝑥�, 𝑥Ý) = (1 + 𝑥B𝑥�)î, where	q	is	 2,3, . .  (4-47) 

 

The dual formula in non-linear regression replaces the predictors	(𝑥B, 𝑥�). Then non-

linear regression obtains the coefficients, which are minimised by a loss function in 

Equation (4-48).   

 

𝐿 𝑎 =
1
2

𝛼	B� − 𝛼	B~ 𝛼	�� − 𝛼	�~
`

�¥}

`

B¥}

𝐺(𝑥B, 𝑥�) + 𝜀 𝛼	B� + 𝛼	B~ − 𝑦B(𝛼	B� − 𝛼	B~)
`

B¥}

`

B¥}

 

 

Subject to  

𝛼	B� − 𝛼	B~ = 0
`

�¥}

 

⩝B :	0 ≤ 𝛼	B� ≤ 𝐶 

⩝B :	0 ≤ 𝛼	B~ ≤ 𝐶 

 

(4-48) 

The new value is predicted by the function in Equation (4-49).  

 

𝑓(𝑥) = 𝛼	B� − 𝛼	B~ 𝐺(𝑥B

`

B¥}

𝑥) + 𝑏 

 

 

(4-49) 
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KKT condition 

⩝B :	𝛼	B� 𝜀	 +	𝜉B� − 𝑦B + 𝑓(𝑥B) = 0 

⩝B :	𝛼	B~ 𝜀	 +	𝜉B~ + 𝑦B − 𝑓(𝑥B) = 0 

⩝B: 𝜉B� 𝐶 − 𝛼	B� = 0 

⩝B: 𝜉B~ 𝐶 − 𝛼	B~ = 0 

In the support vector regression, quadratic programming is used to find the 

multipliers including 𝛼	B� and 𝛼	B~ for each data point	𝑥B. Quadratic programming is 

the mathematical technique to solve the optimization problem, and it involves 

minimising the objective function subject to bounds. In this case, the quadprog 

function with a trust-region-reflective algorithm from MATLAB programming is 

used to solve bound-constrained problems. 

In the proposed method, it is understood that 𝑤 and 𝑏 are two important parameters 

that can be found by a regularized empirical risk function. In this function, 

𝐶 	𝐿è(𝑓 𝑥 , 𝑦)	`
C¥} is measuring the empirical risk errors and }

R
 𝑤´𝑤	 is a 

regularization term or the flatness of the function that needs to be minimised for 

simplification of the model. Parameter C is the capacity of the SVR that decides the 

trade-off between the regularization term and the empirical risk. 𝜀 is the size of the 

hyper-dimensional cylinder that covers the function with the training data points. 

Indeed, SVR performs linear regression in high-dimensional feature space using 𝜀-

insensitive loss, and at the same time tries to reduce the model’s complexity by 

minimizing 𝑤´𝑤	. The minimization can be determined by introducing slack 

variables 𝜉B� , 𝜉B~		𝑖 = 1,…𝑛 since 𝜀-insensitive loss is equal to slack variables. The 

parameters C and  𝜀  are set by the designer during the training step for optimising 

the slack variables.  
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The 𝑤 will be obtained by applying quadratic programming to determine the alpha 

for each data point	𝑥B. 𝑏 is obtained by Equation (4-44), which involves the designed 

C, 𝜀 and the support vectors.  

In the case of a non-linear model, the model will be mapped in the feature space by a 

suitable kernel function. There are several kernel functions to solve the non-linear 

problem. In this study, a radial basis function (RBF) is used in this case, where 𝜎	is 

the dispersion coefficient, and it will be designed manually. The Karush–Kuhn–

Tucker (KKT) conditions are used to optimise the constraints, and then find the 

optimal solutions.  

These conditions state that all data points inside the epsilon tube have Lagrange 

multipliers with 𝛼	B� = 0  and 𝛼	B~ = 0. If these coefficients are not zero, the 

corresponding value will be named a support vector. Therefore, multiplying of the 

obtained 𝑤 to the support vectors gives the new 𝑦. In this approach, MATLAB 

programming is used for computation with the following steps.  

• Select the data as the 𝑥-axis and 𝑦-axis in the column 

• Define a hyperplane with high-dimensional space by designing the 

parameters including epsilon 𝜀 and C  

• Define the loss function with the considered constraints for minimization   

• Define the kernel function and design the sigma based on assumptions   

• Obtain the support vector coefficients with quadratic programming  

• Compute bias (b) by the obtained support vector coefficients and other 

parameters 

• Insert the desired 𝑥-axis points (load points) to find the desired 𝑦-axis points 

(desired power factor values)  
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Support vector regression has several strengths and weaknesses. The strengths are 

firstly that it can be trained easily and provides good generalization in theory and 

practice. It works well with a little training and creates the globally best model, 

unlike a neural network. It is able to scale well to high-dimensional data. In addition, 

the trade-off between the hyperplane and points failing to meet the target margin can 

be controlled explicitly. The weaknesses are the need to design the parameters C, but 

selecting an appropriate kernel function and finding its coefficient are the main 

weaknesses. Table 4-1 indicates the advantages and disadvantages of the considered 

methods explained in this chapter.  
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Table 4-1 The main features and issues of proposed methods 

Methods Advantages Disadvantages 

MCMD 

• PF against load can be estimated 
by only measured current 
 

• It only needs nominal reactive 
current and measured current 
from no-load to full/over-load 

• It is not suitable in a large 
induction motor as reactive 
power changes via motor load 

Kriging 

• It can interpolate the unknown 
points and respond very well in a 
smooth model 

• There is no restriction on the 
number of input data   

• High distance between pair 
points provides low accuracy in 
predicting points 
 

• It causes overfitting at over-load 
conditions because it is not able 
to extrapolate the over-loading 
points 

 

Regression 

• It is able to make several models 
by polynomial degrees and 
provide the best fitting 

 

• A smaller number of sample 
points creates bad fitting   

 
• Polynomial degrees are not able 

to extrapolate the points at over- 
load  

ANN 

• Selecting proper hidden layers 
sorts out the overshooting 
problem at over-load condition 

• Needing large ipud data 
• A assumption percentage in 

selection of validation and 
testing data 

• Several running times are needed 
to create the best fitting 
 

• After closing and opening the 
program, all data will be deleted 
and again several running 
require 

 
• It is not very good in case of 

exterpolation due to random 
selection of initializing the 
weights 

SVR 

• Good generalization 
• Works well with little training 
• Easily finds best model 
• Scales well in high-dimensional 

data 
• Controls the trade-off between 

complexity and errors 
• Identifies unseen points out of 

range 
• Provides an exact fitting model 

   

 

• Selects appropriate kernel 
function and designing the 
proper  parameters. 

• Selection of C is tricky  



Chapter 4: Estimation Techniques 
 

	 Page	120	
	

 

4.7. Summary 

In this chapter, the theory of the proposed techniques, including a method using the 

measured current and manufacturer’s data, Kriging, regression, an artificial neural 

network and support vector regression, are described in detail. In the measured 

current method, a numerical equation requiring the nominal reactive current and 

measured current from no-load to full-load is considered. In the Kriging and 

regression, statistical procedures are followed by introducing appropriate functions 

that will be applied in both methods respectively. In the artificial neural network, the 

multi-layer perceptron structure is presented. A back propagation algorithm with 

gradient descent methods is used to train the data. In the support vector regression, a 

hyperplane with high-dimensional space is presented. Also, a loss function is used to 

minimise and obtain the coefficients.  
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5.1. Introduction 

In this chapter, the results of the measured power factor in the 250 W, 10 HP and 100 

HP induction motors are presented. The results of the proposed methods, including a 

method using rgw measured current and manufacturer’s data, Kriging, regression, an 

artificial neural network and support vector regression, which are implemented in the 

considered induction motors, will be described separately. The results of the 

proposed methods in the induction motors will be compared in order to substantiate 

the performance of the support vector regression method.        

5.2. Results of Measured Power Factor  

From the practical work, the measured power factors of 250 W, 10 HP and 100 HP 

induction motors from no-load to full-load and over-load are indicated in Figures 5-

1, 5-2 and 5-3. It can be seen that the power factor in the three different induction 

motors changes exponentially from no-load to full-load and over-load conditions. 

Moreover, Figures 5-4, 5-5 and 5-6 illustrate the total harmonic distortion (THD) of 

the voltage and current in the considered induction motors.  

It is observed that the THDi and THDv in these induction motors are less than 4% 

and, according to the IEEE standard, if THD i&v is less than 4%, power factor 

distortion will be approximately unity and only the high reactive power consumption 

affects the power factor. The results of the measured power factor of the 100 HP 

induction motor from MATLAB/Simulink are shown in Figure 5-7. It is observed 

that the MATLAB/Simulink results are approximately close to the online power 

factor measured by the power analyser. The measured results at any loading point in 

both practical and simulation work are indicated in Table 5-1. It is observed that the 

measured results of the simulation compared with real measurement produced an 

average error of about 3%.   
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             Figure 5-1: Measured PF of IM 250 W 

	

    
                 Figure 5-2: Measured PF of IM 10 HP 

 

            Figure 5-3: Measured PF of IM 100 HP 

 

 

                Figure 5-4: Measured THD of IM 250 W 

 

                Figure 5-5: Measured THD of IM 10 HP 

 

              Figure 5-6: Measured THD of IM 100 HP 
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Measured PF vs Motor Load, IM250 W
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Measured PF vs Motor Load, IM10 HP
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Measured PF vs Motor Load, IM100 HP

20 40 60 80 100 120
1

1.5

2

2.5

3

3.5

4

Motor Load (%)

TH
D 

i&
v 

(%
)

 

 

THDi THDv IM 250W

20 40 60 80 100 120

0.5

1

1.5

2

2.5

3

3.5

Motor Load (%)

TH
Di

&v

 

 

THDi THDv IM 10HP

20 40 60 80 100 120

1

1.5

2

2.5

3

Motor Load (%)

TH
D

i&
v 

(%
)

 

 

THDv THDi IM 100HP



Chapter 5: Results and Discussion 
 

	 Page	124	
	

 

Figure 5-7: PF measurement by simulation and power analyser 

 

Table 5-1 Measured PF of IM 100 HP using MATLAB/Simulink  

Load 
(%) 

Experimental 
(PF) 

Simulation 
(PF) 

APE 
(%) 

20 0.294 0.329 10.811 
25 0.360 0.400 9.975 
30 0.422 0.458 7.882 
35 0.480 0.515 6.796 
40 0.547 0.574 4.824 
45 0.594 0.623 4.689 
50 0.636 0.656 3.094 
55 0.678 0.685 1.109 
60 0.707 0.711 0.591 
65 0.729 0.734 0.627 
70 0.750 0.754 0.531 
75 0.768 0.771 0.428 
80 0.777 0.786 1.157 
85 0.788 0.799 1.426 
90 0.798 0.810 1.531 
95 0.806 0.818 1.503 

100 0.814 0.826 1.416 
105 0.822 0.834 1.439 
110 0.828 0.84 1.429 
115 0.832 0.844 1.422 
120 0.837 0.848 1.297 

                                                                  MAPE: 3.046 
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5.3. Results of Measured Current Method 

It is understood that by measuring the motor current and using the nominal power 

factor from the nameplate of the induction motor, the power factor can be estimated 

at any loading. However, using this method produced errors. Since it works based on 

the nominal reactive current, it creates significant errors at many loading points 

because the reactive current is obtained from the nominal power factor and the 

nominal power factor provides a constant reactive current. However, in reality, the 

reactive current at no-load or light-load is not constant.  

As can be seen from Figures 5-8, 5-9 and 5-10, the reactive current of the 250 W, 10 

HP and 100 HP induction motors increase from no-load to full-load. The increase in 

the 250 W induction motor is quite small, at about 4 mA. In the 10 HP induction 

motor, there is a quite large variation of about 6A from no-load to over-load that 

produces a substantial error in the power factor estimation. Thus, this variation from 

no-load to full-load and over-load creates high errors in power factor estimation 

particularly in the medium and large induction motors due to the large magnetic 

field.   
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Figure 5-8: Measured reactive current in IM 250 W 

 

 

Figure 5-9: Measured reactive current in IM 10 HP 
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Reactive Current (IM250 W) vs Motor Load
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Reactive Current (IM10 HP) vs Motor Load 
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Figure 5-10: Measured reactive current in IM 100 HP 

 

Figures 5-11, 5-12, and 5-13 indicate the estimated power factor of the 250 W, 10 

HP and 100 HP induction motors from no-load to full-load conditions respectively. It 

can be seen that there are significant errors between the measured power factor and 

estimated power factor from no-load to full-load and over-load conditions. The error 

in the 250 W induction motor is low, but the errors in the 10 HP and 100 HP 

induction motors are extremely high.  

The low and high errors in the proposed induction motors are due to the different 

specifications with different sizes because the reactive current in the 10  HP and 100 

HP induction motors produced higher variation from no-load to full-load than in the 

250 W induction motor. This variation is the main cause of huge errors in the 

medium and large induction motors. 
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Figure 5-11: Estimated PF of IM 250 W using MCMD  

	

 
 

Figure 5-12: Estimated PF of IM 10 HP using MCMD  

 

20 30 40 50 60 70 80 90 100 110 120

0.4

0.5

0.6

0.7

0.8

0.9

1

Motor Load (%)

P
ow

er
 F

ac
to

r

 

 

Measured PF, IM250 W Estimated PF

20 30 40 50 60 70 80 90 100 110 120
0.5

0.6

0.7

0.8

0.9

1

Motor Load (%)

Po
we

r F
ac

to
r

 

 

Measured PF, IM10 HP Estimated PF



  Chapter 5: Results and Discussion 
 

	 Page	129	
	

 

Figure 5-13: Estimated PF of IM 100 HP using MCMD  

 
Table 5-2 indicates the error at any considered load point in percentage. It is 

observed that in the 250 W induction motor, the errors in the majority of load points 

are lower than 3%. Only the loads of  25 and 30 produced errors higher than 5%. 

However, in the 10 HP induction motor, the errors in many loads are between 6% 

and 8%, except for loads 20 and 25, which are 10% and 15%. In addition, in the 100 

HP induction motor, the load from 25 to 50 produced higher errors of between 15% 

and 22%. The errors for the other load points are 7% and 11%. To obtain the error 

between the estimated points and measured points in percentage, the absolute 

percentage error (APE) in Equation (5-1) is used. 

 

𝐴𝑃𝐸 =
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑣𝑎𝑙𝑢𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒 ×100 (5-1) 
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Table 5-2 Estimated PF of IMs using MCMD from no-load to over-load 

Load 
(%) 

EPF 
(250 W) 

APE 
(%) 

EPF 
 (10 HP) 

APE 
(%) 

EPF  
(100 HP) 

APE 
(%) 

20 0.357 3.612 0.601 14.870 0.265 11.040 
25 0.432 5.045 0.659 10.276 0.462 22.073 
30 0.485 5.983 0.691 5.483 0.548 23.067 
35 0.594 3.571 0.784 9.823 0.619 22.418 
40 0.639 2.660 0.825 10.044 0.690 20.774 
45 0.683 2.548 0.840 7.110 0.729 18.607 
50 0.729 3.224 0.855 5.965 0.749 15.066 
55 0.749 1.508 0.887 6.503 0.760 10.757 
60 0.770 0.922 0.906 6.414 0.779 9.315 
65 0.800 2.012 0.919 6.552 0.791 7.827 
70 0.818 1.931 0.927 6.540 0.814 7.924 
75 0.844 2.926 0.939 6.998 0.819 6.298 
80 0.861 3.101 0.944 7.023 0.844 7.905 
85 0.871 2.917 0.950 7.483 0.851 7.404 
90 0.881 2.962 0.958 8.018 0.861 7.310 
95 0.892 3.049 0.961 8.136 0.871 7.421 

100 0.902 3.405 0.964 8.299 0.881 7.539 
105 0.910 3.197 0.9664 8.216 0.882 6.824 
110 0.915 2.676 0.9686 8.115 0.885 6.430 
115 0.924 2.901 0.9705 8.089 0.889 6.380 
120 0.929 2.851 0.972 7.716 0.891 6.082 

MAPE - 2.964 - 7.984 - 11.355 
 

Table 5-3 indicates the validity and accuracy of the method using the measured 

current in mean square error (MSE), mean absolute percentage error (MAPE) and 

accuracy. It is observed that MCMD produced an average error of about 2.964%, 

7.984% and 11.355% in the 250 W, 10 HP and 100 HP induction motors 

respectively.  

Table 5-3 Validity and accuracy of MCMD  

Method Validity IM 250 W IM 10 HP IM 100 HP 

MCMD 
MSE 5.20E-04 5.00E-03 7.2E0-3 

MAPE 2.964 7.984 11.355 
Accuracy 97.036% 92.016% 88.645% 

 

As a result, this method only worked well in the small induction motor due to the 

very small reactive current variation, which can approximately be considered 

constant.  
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However, this method is not reliable in estimating the power factor of medium and 

large induction motors because of the high reactive current variation, which produces 

high errors. In this research, statistical methods and intelligent techniques are 

implemented in different ranges of induction motors including 250 W, 10 HP and 

100 HP in order to determine the power factor against motor load properly. These 

methods need to add three inputs, namely the voltage, current and input power, at a 

few points from no-load to full-load, as shown in Table 5-4. 

5.4. Result of Kriging Method 

The results of the Kriging method show that the estimated power factor in the 250 

W, 10 HP and 100 HP induction motors are very close to the measured power factor 

from no-load to full-load conditions. However, the results at over-load conditions are 

far from the measured points. This is because Kriging is an interpolation technique 

and is not able to extrapolate the over-loading points. Figures 5-14, 5-15 and 5-16 

illustrate the estimated power factor of the considered induction motors from no-load 

to full-load and over-load conditions, where the blue and red line show the measured 

and estimated power factor against load respectively. Table 5-4 illustrates the values 

of the estimated power factor and the errors between the measured and estimated 

points in percentage at the desired load points. In the 250 W induction motor, the 

errors at the majority of load points are less than 0.2%. Only the loads of 20 and 25 

produced high errors of 1.309% and 0.980%. In the 10 HP induction motor, the 

minimum and maximum errors were presented at loads of 25 and 90, which were 

2.248% and 0.057% respectively. Moreover, from load 65 to 100, the errors were 

less than 3%. In the 100 HP induction motor, the Kriging produced errors of less 

than 3% at many load points. The errors of 1.111% and 0.025% at loads 35 and 95 

indicated the minimum and maximum. 
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However, the errors in the three induction motors from full-load to over-load 

increased to 12%. Therefore, the results confirmed that the Kriging in the 100 HP 

induction motor indicated low errors at many loads compared with the 250 W and 10 

HP induction motors.  

 

 
Figure 5-14: Estimated PF of IM 250W using Kriging  
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Figure 5-15: Estimated PF of IM 10HP using Kriging  

 

 

Figure 5-16: Estimated PF of IM 100HP using Kriging  
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Table 5-4 Estimated PF of IMs using Kriging from no-load to over-load 

Load 
(%) 

EPF 
(250 W) 

APE 
(%) 

EPF  
(10 HP) 

APE 
(%) 

EPF  
(100 HP) 

APE 
(%) 

20 0.375 1.309 0.504 1.620 0.294 0.061 
25 0.450 0.980 0.578 2.248 0.361 0.104 
30 0.514 0.034 0.651 0.426 0.424 0.407 
35 0.571 0.190 0.698 1.280 0.485 1.111 
40 0.623 0.090 0.740 0.367 0.542 0.744 
45 0.666 0.088 0.773 0.956 0.589 0.759 
50 0.707 0.150 0.801 0.437 0.636 0.043 
55 0.735 0.493 0.827 0.303 0.671 0.945 
60 0.762 0.191 0.840 0.942 0.706 0.134 
65 0.781 0.428 0.856 0.279 0.727 0.218 
70 0.802 0.023 0.863 0.362 0.748 0.210 
75 0.818 0.218 0.870 0.326 0.763 0.658 
80 0.834 0.020 0.876 0.235 0.775 0.285 
85 0.845 0.047 0.876 0.374 0.786 0.196 
90 0.853 0.215 0.881 0.057 0.795 0.319 
95 0.862 0.359 0.880 0.392 0.806 0.025 

100 0.870 0.157 0.881 0.375 0.812 0.302 
105 0.873 0.943 0.878 0.965 0.814 1.141 
110 0.844 5.306 0.848 4.682 0.784 5.734 
115 0.819 8.735 0.822 7.818 0.759 9.437 
120 0.797 11.745 0.799 10.847 0.737 12.477 

 

 

Although the Kriging method performed well in power factor estimation at unknown 

points from no-load to full-load conditions, the strategy of Kriging is geostatistical, 

where the computing distance between one unknown point and surrounding observed 

points is required. A high interval between two points creates a complexity with high 

errors. Table 5-5 illustrates the evaluation of the validity and accuracy of Kriging. 

MSE and MAPE are used to indicate the quality of the estimator and measure the 

prediction accuracy respectively. In this table, it is shown that Kriging can be a good 

estimator from no-load to full-load conditions and provided a satisfactory accuracy 

of 99% for the three different sizes of induction motors. However, it was not a good 

estimator at over-load conditions because it produced high error at each point from 

full-load to over-load, in which the errors indicated were between 6% and 7% for the 

proposed induction motors.    
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Table 5-5 Validity and accuracy of Kriging method  

Method Validity IM 250 W IM 10 HP IM 100 HP 

Kriging 
MSE 2.46E-03 1.13E-03 2.46E-03 

MAPE 3.488 3.3615 0.194 
Accuracy 96.509% 99.351% 96.20% 

 

Although this method mostly provided good performance from no-load to full-load 

conditions, in general, using this method is not reliable for modelling because only 

the distance between each observed pair of points and also the interval between 

observed points and a point that requires to be estimated are used to find a solution. 

A small interval between these points means the estimating point becomes more 

accurate.  

5.5. Results of Regression Method 

Polynomial regression, which works based on the relationship between the 

independent variable x and the dependent variable y, provides a weight value 

between variables which is known as a polynomial coefficient. Polynomial 

regression requires a few observed values of 𝑥 and 𝑦.  In this case, some points of the 

motor load and power factor are considered as 𝑥 and 𝑦. The coefficients between the 

two values need to be predicted because the predicted coefficient multiplied by the 

independent values in the 𝑥-axis leads to obtaining the unknown values in the y-axis.  

The accuracy of an unknown point depends on the number of polynomial orders; by 

increasing the order, the coefficient will be increased. Increasing the coefficients or 

orders makes the function more powerful, thus reducing the errors and creating a 

model with high fitness. The predicted coefficients within the 4th order in the 250 W, 

10 HP and 100 HP induction motors are presented in Table 5-6. 
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Table 5-6 Obtained coefficients of polynomial degrees in considered IMs 

IMs Orders 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 

250W 

1st order 0.0060 0.3310 - -  
2nd order -8.77E-05 0.0166 0.086 - - 
3rd  order 7.85E-07 -2.29E-4 0.0239 -0.0163 - 
4rd  order -9.65E-10 1.017E-06 -2.48E-04 0.0260 -0.0224 

10HP 

1st order 0.0062 0.3770 - -  
2nd order -1.212E-4 0.0195 0.131 - - 
3rd  order 1.415E-06 -3.544E-4 0.0298 0.0341 - 
4rd  order -1.056E-08 3.74E-06 - 5.20E-4 0.034 8.79E-3 

100HP 

1st order 0.0063 0.2498 - -  
2nd order -9.09E-05 0.0173 -0.0121 - - 
3rd  order 4.88E-07 - 1.8E-04 0.0220 -0.079 - 
4rd  order 1.33E-08 -2.74E-06 8.74E-05 0.0133 0.0108 

 

In the regression method, increase of the coefficients provides a desired model very 

close to the observed power factor curve. In this method, the 1st, 2nd, 3rd and 4th 

orders are tried and it is observed that the 4th order indicated the best fitting model in 

the proposed induction motors. The fitness of the existing models in the induction 

motors is presented in Table 5-7. The residual models of the polynomial degrees in 

the induction motors are shown in Figures 5-17, 5-18 and 5-19. 

Table 5-7 Fitness of polynomial degrees in considered IMs 

Regression Fitness IM 
(250 W) 

IM 
(10 HP) 

IM 
(100 HP) 

1st order 

SSE 0.03628 0.1129 0.0367 
R-square 0.8798 0.7493 0.8855 
Adjusted R-square 0.8627 0.7134 0.8691 
RMSE 0.07199 0.127 0.0724 

2nd order 

SSE 0.00158 0.01002  7.9E-04 
R-square 0.9948 0.9778 0.9975 
Adjusted R-square 0.993 0.9703 0.9967 
RMSE 0.01623 0.04086 0.01144 

3rd order 

SSE 2.17E-05 3.60E-04 2.36E-04 
R-square 0.9999 0.9992 0.9993 
Adjusted R-square 0.9999 0.9987 0.9988 
RMSE 0.002081 0.008479 0.006866 

4th order 

SSE 2.05E-05 3.47E-05 2.90E-05 
R-square 0.9999 0.9999 0.9999 
Adjusted R-square 0.9999 0.9998 0.9998 
RMSE 0.002263 0.002946 0.002691 
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Figure 5-17: The residual models of the polynomial degrees in IM 250 W  

 

 
 

Figure 5-18: The residual models of the polynomial degrees in IM 10 HP 
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Figure 5-19: The residual models of the polynomial degrees in IM100 HP 
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from full-load to over-load conditions. The error results of the proposed induction 

motors from no-load to over-load are indicated in Table 5-9. 

 
 

Figure 5-20: Estimated PF of IM 250W using regression  

 
 

Figure 5-21: Estimated PF of IM10HP using regression 
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Figure 5-22: Estimated PF of IM100 HP using regression 
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Table 5-8 Estimated PF of IMs using regression from no-load to over-load  

Load 
(%) 

EPF 
(250 W) 

APE 
(%) 

EPF 
 (10 HP) 

APE 
(%) 

EPF 
 (100 HP) 

APE 
(%) 

20 0.377 1.857 0.508 0.750 0.292 0.445 
25 0.451 0.554 0.587 0.735 0.361 0.208 
30 0.517 0.638 0.652 0.266 0.426 0.954 
35 0.575 0.365 0.704 0.363 0.487 1.389 
40 0.625 0.448 0.747 0.583 0.542 0.765 
45 0.668 0.404 0.781 0.085 0.592 0.214 
50 0.706 0.014 0.807 0.411 0.636 0.070 
55 0.737 0.109 0.828 0.187 0.674 0.529 
60 0.764 0.157 0.844 0.432 0.706 0.116 
65 0.787 0.356 0.856 0.273 0.732 0.396 
70 0.806 0.410 0.866 0.056 0.752 0.385 
75 0.822 0.243 0.873 0.080 0.768 0.055 
80 0.835 0.072 0.878 0.011 0.780 0.366 
85 0.846 0.071 0.882 0.271 0.789 0.126 
90 0.856 0.070 0.884 0.343 0.796 0.174 
95 0.864 0.081 0.885 0.266 0.803 0.315 

100 0.872 0.160 0.885 0.153 0.812 0.286 
105 0.860 2.466 0.884 0.530 0.804 2.145 
110 0.848 5.0210 0.880 1.681 0.793 4.197 
115 0.833 7.722 0.874 3.572 0.778 6.542 
120 0.813 11.138 0.864 5.847 0.757 9.515 

 

The comparison results in this table indicate that the 4th order polynomial regression 

obtained results with errors less than 1% at many loading points in the 250 W, 10 HP 

and 100 HP induction motors. However, it is shown that the estimated power factor 

at over-load conditions produced large errors from full-load to over-load, where the 

errors in the 250 W induction motor were from 2.466% to 11.138%. In the 10 HP 

induction motor, the minimum and maximum errors observed were 0.530% at full-

load and 5.847% at over-load respectively. In the 100 HP induction motor, the errors 

gradually increased from 2.145% to 9.515% and the maximum load indicated the 

highest error.  

Table 5-9 presents the validity and accuracy of polynomial regression within four 

orders in the three induction motors. MSE, MAPE and accuracy are used to show the 

performance of the 1st, 2nd, 3rd and 4th orders. It is observed that the 4th order 
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performed very well compared with the 1st, 2nd and 3rd orders and it produces high 

accuracy in the three induction motors, with values of about 99.60%. 

Table 5-9 Validity and accuracy of regression results  

IMs Validity Polynomial Regression 
1st order 2nd order 3rd order 4th order 

250 W 
MSE 0.0049 8.01E-04 1.38E-05 7.60E-06 

MAPE 8.0028 2.4461 0.3765 0.3418 
Accuracy 91.972 97.554 99.623 99.658 

10 HP 
MSE 0.0123 0.0033 2.24E-04 7.88E-05 

MAPE 11.7005 5.219 1.178 0.5945 
Accuracy 88.3 94.781 98.822 99.4055 

100 HP 
MSE 0.0041 5.80E-04 5.37E-05 2.65E-04 

MAPE 9.7205 2.0519 0.88 0.9697 
Accuracy 90.280 97.95 99.12 99.030 

 

Table 5-10 presents the average errors with a comparison between MCMD, Kriging 

and regression. It is observed that the proposed methods in the 250 W induction 

motor  produced errors of less than 4%, where the error in MCMD is 3% and in the 

Kriging and regression methods is 3.5%. However, MCMD creates high errors of 

more than 8% in the 10 HP and 100 HP induction motors, while the errors of both 

Kriging and regression in the 10 HP induction motor and in the 100 HP induction 

motor are 3% and 2%, 4% and 3% respectively. Therefore, from this table it can be 

seen that regression in the 10 HP and 100 HP induction motors reduced the errors 

and performed very well compared with the MCMD and Kriging methods.  

Table 5-10 Validity and accuracy of all the proposed methods  

IMs Validity Methods 
MCMD Kriging Regression (4th) 

250 W 
MSE 5.20E-04 2.46E-03 7.60E-06 

MAPE 2.964 3.488 0.3418 
Accuracy 97.036 96.509 99.658 

10 HP 
MSE 5.00E-03 1.13E-03 7.88E-05 

MAPE 7.984 3.3615 0.5945 
Accuracy 92.016 96.637 99.4055 

100 HP 
MSE 7.2E0-3 2.46E-03 2.65E-04 

MAPE 11.355 3.790 0.969 
Accuracy 88.645% 96.205% 99.030% 
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5.6. Results of Artificial Neural Network  

In the artificial neural network, three kinds of samples are needed as inputs, namely 

training, validation and testing data. In these cases, 9 input data are selected, of 

which 5 points are as training, 2 points as testing and 2 points as validation. The 

training values are presented to the network and the network is adjusted according to 

its error. The validation is used to measure network generalization and stop training 

when the generalization has improved. Testing provides an independent measure of 

network performance during and after training.  

In addition, selecting the number of hidden layers and the least squares algorithm are 

important in order to fit the inputs and targets. Once the parameters have been 

selected, the algorithm can be run. The results in Figure 5-23 indicate that the neural 

network is not able to provide great results with one running time because the 

algorithm needs to run several times in order to back propagate the output and update 

the weights. In these cases, in order to verify the best results, 10 running times are 

considered for testing. It is observed that in the three different case studies more or 

fewer running times are required to create the best model with the lowest error. For 

example, in the 250 W induction motor with 10 running times, running five indicated 

a better model. However, for the 10 HP and 100 HP induction motors, running six 

and eight times provided high performance.         
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Figure 5-23: Error results of ANN considering IMs within 10 running times  
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Figure 5-24: Fitness of ANN in IM 250 W  
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Figure 5-25: Fitness of ANN in IM 10 HP 
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Figure 5-26: Fitness of ANN in IM 100 HP 
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In the artificial neural network, the predicted model based on some observed values 

estimated the power factor at any desired loading point. Figures 5-27, 5-28 and 5-29 

indicate the estimated power factor of the 250 W, 10 HP and 100 HP induction 

motors from no-load to full-load and over-load conditions. It is observed that the 

estimated results in the three induction motors are very close to the measured power 

factor. Although this method provided high performance from no-load to over-load 

conditions, several running times need to be applied in each case in order to achieve 

the best results.  

 

 

 

Figure 5-27: Estimated PF of IM 250 W using ANN 
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Figure 5-28: Estimated PF of IM 10 HP at using ANN 

 

 

Figure 5-29: Estimated PF of IM 100 HP using ANN 
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Table 5-14 indicates the estimated power factor of the proposed induction motors 

with errors from no-load to full-load and over-load conditions. In the 250 W 

induction motor, the error from loads of 35 to 45 is approximately 1%. However, the 

highest error is indicated at a load of 25 at 2.391%. The error from loads of 50 to 100 

is between 0.1% and 0.5%, except for a load of 65, at which the error is the lowest at 

about 0.026%. The errors from no-load to full-load gradually increased from 0.2% to 

0.72%.  In the 10 HP induction motor, the load of 20 presented the highest error of 

1.577%. The lowest error was produced at a load of 40 with 0.013%. At other loads, 

the errors produced are less than 0.5%. 

 In over-load conditions, the errors also increased from 0.57% to 1.43%. In the 100 

HP induction motor, the load of 35 shows the biggest error of about 1.650%, while 

the load of 60 generated the lowest error of 0.028%. The error at loads of 25, 70, 75, 

80 and 90 are approximately 0.1%. In addition, at loads of 20, 40, 55 and 65 the error 

indicated is about 0.2%. Loads of 45 and 95 indicated errors of 0.378% and 0.302% 

respectively. The loads of 105 and115 produced errors of 0.6% and loads of 110 and 

120 indicated errors of 0.23% and 1.9% respectively. It is observed that ANN not 

only produced great results from no-load to full-load, but also produced satisfactory 

results from full-load to over-load conditions.  

Therefore, the ANN using a back propagation algorithm is able to determine the 

unkwon values, which are outside the observed points. Even though the ANN 

presented acceptable results from no-load to full/over-load conditions, it had 

difficulty in catching these results because several running times need to be applied 

in order to obtain the best results, and also closing the program deletes the obtained 

results, such that again several new running times are needed to catch best model. 

This was a major problem as it required more time.   
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Table 5-14 Estimated PF of IMs using ANN from no-load to over-load  

 
Load 
(%) 

EPF 
 (250 W) 

APE 
(%) 

EPF 
 (10 HP) 

APE 
(%) 

EPF 
 (100 HP) 

APE 
(%) 

20 0.367 0.708 0.520 1.577 0.293 0.260 
25 0.443 2.391 0.594 0.538 0.359 0.107 
30 0.517 0.542 0.653 0.077 0.426 0.851 
35 0.580 1.276 0.701 0.827 0.488 1.650 
40 0.632 1.520 0.742 0.013 0.545 0.253 
45 0.673 1.158 0.778 0.322 0.596 0.378 
50 0.708 0.325 0.807 0.310 0.640 0.577 
55 0.737 0.163 0.829 0.048 0.676 0.218 
60 0.762 0.118 0.846 0.189 0.707 0.028 
65 0.784 0.026 0.858 0.047 0.731 0.292 
70 0.804 0.149 0.867 0.058 0.751 0.166 
75 0.821 0.134 0.872 0.126 0.766 0.181 
80 0.836 0.156 0.876 0.228 0.779 0.198 
85 0.848 0.330 0.878 0.102 0.789 0.074 
90 0.859 0.477 0.880 0.136 0.797 0.135 
95 0.868 0.392 0.881 0.250 0.804 0.302 

100 0.876 0.593 0.881 0.295 0.810 0.523 
105 0.883 0.202 0.882 0.567 0.817 0.595 
110 0.888 0.309 0.883 0.793 0.826 0.273 
115 0.893 0.469 0.883 0.905 0.837 0.624 
120 0.897 0.715 0.884 1.436 0.853 1.879 

 
 
Table 5-15 indicates the validity and accuracy of the ANN by MSE and MAPE. 

MSE is used to measure the performance of the ANN. MAPE gives a measure of the 

prediction accuracy of the proposed method. The MSE in the considered induction 

motors presented values of 2.09E-05, 4.17E-05 and 4.18E-05, and the MAPE 

indicated was 0.5195%, 0.6135% and 0.599% separately, from no-load to over-load 

conditions. 

 

Table 5-15 Validity and accuracy of the ANN 
 

Method Validity IM 250 W IM 10 HP IM 100 HP 

ANN 
MSE 2.09E-05 4.17E-05 4.18E-05 

MAPE 0.520 0.6135 0.599 
Accuracy 99.48% 99.39% 99.401% 
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5.7. Results of Support Vector Regression 

In the support vector regression, the load and power factor of the proposed induction 

motors at some points are determined as input data. The SVR based on these values 

constructed a hyperplane in high-dimensional space between the defined upper and 

lower bounds and created a model very close to the observed model. Selecting the 

Gaussian radial basis function and the parameters of SVR such as capacity (C), 

sigma and epsilon lead to make the model, where C is the capacity of the SVR; it is 

also known as a parameter regulator that determines the adjustment between the 

empirical risk and regularization term and tries to fit the model to the observed 

curve. Sigma is a dispersion coefficient of the Gaussian function, also known as the 

radial basis function (RBF).  

Epsilon is the size of the dimensional cylinder which indicates the error in the ε-

insensitive region and controls the width of the ε-insensitive zone. Therefore, the 

proper values of these parameters are able to provide a significant model fitting to 

the main model. In the literature, there are no general rules for choosing these 

parameters. Thus, this research presents the most common approach to find the best 

value of C and sigma.  To design the parameters, assumptions need to be made. 

Epsilon can be adjusted based on the smoothness of the main model so that whenever 

the main curve is smooth, the value of epsilon will be smaller. Epsilon cannot be 

larger than the target value because then good results cannot be expected. In 

addition, epsilon cannot be zero because then overfitting would occur. Therefore, a 

small epsilon must be chosen. Capacity and sigma, which are the main parameters, 

can be selected based on considering interval values. For instance, in these cases 

sigma is tested from 5 to 50 within three values of capacity (20, 30 and 40).  
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Table 5-16 indicates the results in mean square error, in which capacity and sigma 

with the values of 30 and 25 provided the best model of the power factor for the 

three considered induction motors. 

Table 5-16 Selection of SVR parameters for predicting model of PF in the IMs 
 

C Sigma 
IMs 250 W 

Training 
MSE(10E-04) 

IMs 10 HP 
Training 

MSE(10E-04) 

IMs 100 HP 
Training 

MSE(10E-04) 

20 

5 67.000 34.000 44.000 
10 37.000 19.000 22.000 
15 12.000 8.719 6.455 
20 1.528 2.184 0.939 
25 0.090 0.177 0.543 
30 0.041 0.892 0.439 
35 1.056 0.374 0.197 
40 2.624 0.098 0.091 
45 2.088 0.955 0.056 
50 0.682 1.768 0.041 

30 

5 67.000 34.000 44.000 
10 37.000 19.000 22.000 
15 12.000 8.715 6.455 
20 1.528 2.184 0.194 
25 0.074 0.028 0.045 
30 0.029 0.691 0.060 
35 0.361 0.474 0.210 
40 1.645 0.091 0.104 
45 2.669 0.142 0.452 
50 1.097 1.649 0.491 

40 

5 67.000 34.000 44.000 
10 37.000 19.000 22.000 
15 12.000 8.719 6.447 
20 1.528 2.180 0.938 
25 1.117 0.121 0.313 
30 0.205 0.518 0.507 
35 0.160 0.452 0.211 
40 1.458 0.076 0.131 
45 2.290 0.079 0.065 
50 1.333 0.990 0.047 

 

Figure 5-30 indicates the mean absolute percentage error by selecting sigma from 5 

to 50 with a fixed value of capacity of 30. In this figure, the results showed that 

selecting sigma with a value of 25 provides a better prediction model that is very 

close to the actual model of the power factor in the three considered induction 

motors.  
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The value of 25 also minimised the absolute percentage error to less than 1% in the 

three induction motors compared with other values. Therefore, this value is selected 

as an optimum value of sigma in the considered models.      

 

Figure 5-30: Observing the optimum value of sigma in the considered IMs 

 

Table 5-17 shows the designed parameters including capacity, sigma and epsilon in 

the considered IMs. The epsilon in all models is assumed to have the small value of 
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Table 5-17 Designed SVR parameters in the IMs 
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the power factor of the considered induction motors from no-load to full/over-load 

conditions can be estimated as well. 

 

Figure 5-31: Residual model of SVR in IM 250 W 

 

 

Figure 5-32: Residual models of SVR in IM 10 HP 
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Figure 5-33: Residual model SVR in IM 100 HP 
 

Table 5-18 presents the computed value of the correlation coefficient (R2) and MSE 

in the considered power factor curve of the induction motors in order to verify the 

fitness of the models and performance of the SVR method. The trained models in the 

three induction motors produced R2 very close to unity, which proved the best fitting. 

The root mean square error, which is the square of MSE, is used to measure the 

differences between the output and target values. It also represents the standard 

deviation between the observed and predicted model. This value in these cases is 

near zero, which also justified the performance of the SVR in terms of high fitness. 

The estimated power factors of the 250 W, 10 HP and 100 HP induction motors 

using SVR methods are presented in Figures 5-34, 5-35 and 5-36 respectively. It is 

observed that the estimated points in the considered induction motors are very close 

to the measured points, in which the blue line indicates the measured power factor 

and the red solid line illustrates the estimated power factor at the desired loading 

points from no-load to full-load and over-load conditions. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ut

pu
t

 

 

Target (IM 100HP)
Fit Target Data + Epsilon - Epsilon



  Chapter 5: Results and Discussion 
 

	 Page	157	
	

 
 

Table 5-18 Fitness of the models in IMs 
 

Fitness IM 
(250 W) 

IM 
(10 HP) 

IM 
(100 HP) 

R-Square 0.99997 0.99998 0.99994 
MSE 1.2E-06 1.36E-07 9.95E-07 

RMSE 0.00110 0.00037 0.00100 
 

 

 
 

Figure 5-34: Estimated PF of IM 250W using SVR 
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Figure 5-35: Estimated PF of IM 10 HP using SVR 

 

 
 

Figure 5-36: Estimated PF of IM 100 HP using SVR 
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Table 5-19 indicates the errors of the estimation results of the proposed induction 

motors from no-load to full-load conditions. In the 250 W induction motor, the errors 

from no-load to full-load are between 0.03% and 1.12%, where the minimum and 

maximum errors are indicated at loads of 100 and 20 respectively. From loads 20 to 

50, the errors are high, approximately between 0.2% and 1.2%. However, the errors 

from loads 50 to 100 gradually decrease and indicate values of between 0.2% and 

0.03%. In addition, the errors at over-load gradually increase from 0.14% to 0.18%, 

except for a load of 120, at which the error decreased to 0.011%. In the 10 HP 

induction motor, the highest error was produced at a load of 35 with 0.58%. The 

errors in ther majority of loads are less than 0.2%. The loads of 115 and 120 produce 

similar errors of 0.28%. The loads of 105 and 110 generated errors of 0.160% and 

0.034% respectively.  

 

Table 5-19 Estimated PF of IMs using SVR from no-load to over-load  
 

Load 
(%) 

EPF 
 (250 W) 

Error 
(%) 

EPF  
(10 HP) 

Error 
(%) 

EPF  
(100 HP) 

Error 
(%) 

20 0.374 1.122 0.511 0.157 0.291 0.963 
25 0.450 0.979 0.592 0.152 0.358 0.530 
30 0.518 0.734 0.654 0.138 0.398 0.075 
35 0.577 0.763 0.703 0.583 0.424 0.495 
40 0.628 0.940 0.743 0.040 0.486 1.316 
45 0.671 0.849 0.777 0.373 0.544 0.515 
50 0.707 0.283 0.806 0.248 0.595 0.202 
55 0.738 0.081 0.829 0.072 0.639 0.501 
60 0.763 0.039 0.846 0.201 0.676 0.222 
65 0.784 0.038 0.858 0.047 0.710 0.423 
70 0.803 0.112 0.867 0.115 0.731 0.301 
75 0.820 0.085 0.874 0.057 0.751 0.133 
80 0.835 0.060 0.879 0.091 0.766 0.261 
85 0.846 0.106 0.881 0.250 0.778 0.116 
90 0.855 0.035 0.882 0.125 0.788 0.038 
95 0.863 0.243 0.882 0.113 0.797 0.038 

100 0.871 0.034 0.883 0.136 0.806 0.012 
105 0.880 0.148 0.886 0.158 0.814 0.049 
110 0.890 0.157 0.890 0.034 0.822 0.061 
115 0.899 0.178 0.895 0.279 0.828 0.048 
120 0.903 0.011 0.895 0.279 0.838 0.107 
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In the 100 HP induction motor, loads of 20 and 40 presented the highest errors of 

0.963% and 1.316%. The errors for loads of 30, 90, 95 and 100 indicated the lowest 

error at less than 0.07%. At the over-load condition, the errors produced at loads of 

105 and 110 are 0.050% and 0.061%. However, the errors at loads of 115 and 120 

are 0.050% and 0.107% respectively. 

In summary, SVR in the three induction motors produced great results with overall 

errors less than 2% from no-load to full-load conditions. Although adjusting the SVR 

parameters is tricky, the SVR is able to estimate the power factor at unseen points 

and produces constant results with high performance from no-load to full-load and 

over-load conditions. Hence, the SVR method is not only faster but also more 

powerful, and performs with high accuracy in the estimation of unknown points 

between the observed points and unseen points in any models.  

The validity of both the ANN and SVR are presented in Table 5-20 by the MSE, 

MAPE and accuracy. The SVR produced MSE in the considered induction motors of 

5.18E-06, 3.16E-06 and 3.08E-06. In addition, it indicated MAPE of 0.2535%, 

0.179% and 0.214% separately. Although the ANN provided similar results to those 

of SVR, several running times were required to initialize the network in order to 

achieve the best results.   

Table 5-20 Validity and accuracy of the ANN and SVR 
 

IMs Validity 
Methods 

ANN SVR 

250 W 
MSE 2.09E-05 5.18E-06 

MAPE 0.5195 0.2535 
Accuracy 99.480 99.750 

10 HP 
MSE 4.17E-05 3.16E-06 

MAPE 0.6135 0.179 
Accuracy 99.3865 99.820 

100 HP 
MSE 4.18E-05 3.08E-06 

MAPE 0.599 0.2135 
Accuracy 99.401 99.785 
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5.8. Obtaining Reactive Power Required to Improve Power Factor 

In this study, the estimated power factor at any loading point between no-load and 

over-load conditions obtained the required reactive power to improve the power 

factor in unity. In the power factor correction equation, the active power, initial 

power factor and target power factor have the main roles in this computation. The 

target power factor is considered as one. The initial power factor and input power are 

obtained synchronously by modelling techniques. Tables 5-21, 5-22 and 5-23 show 

the obtained power, power factor, K, which is a ratio of the required reactive power 

at any loading point (𝐾 = tan∅1 − tan∅2),	and the volt ampere reactive in the 250 

W, 10 HP and 100 HP induction motors. Although the amount of required reactive 

power at some loading points is small, in large scales, particularly at points of 

common coupling, the amounts between each loading point will be high, so a 

capacitors bank with different values needs to be considered. Consequently, using 

the proposed technique not only selects the proper size of capacitors at different 

loading points, but is also able to estimate the required reactive power in the future 

plan so as to enhance the reliability and security of distribution systems.  
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Table 5-21 Estimated kVAR in IM 250 W 

Load (%) EPF P (W) K VAR 
20.00 0.374 55.600 2.478 137.789 
25.00 0.450 69.500 1.987 138.116 
30.00 0.518 83.400 1.653 137.901 
35.00 0.577 97.300 1.416 137.764 
40.00 0.628 111.200 1.240 137.835 
45.00 0.671 125.100 1.104 138.161 
50.00 0.707 139.000 0.999 138.885 
55.00 0.738 152.900 0.916 140.014 
60.00 0.763 166.800 0.848 141.443 
65.00 0.784 180.700 0.791 142.934 
70.00 0.803 194.600 0.741 144.228 
75.00 0.820 208.500 0.697 145.371 
80.00 0.835 222.400 0.660 146.731 
85.00 0.846 236.300 0.629 148.740 
90.00 0.855 250.200 0.606 151.569 
95.00 0.863 264.100 0.586 154.675 
100.00 0.871 278.000 0.565 157.028 
105.00 0.880 291.900 0.541 157.789 
110.00 0.890 305.800 0.513 157.005 
115.00 0.899 319.700 0.488 156.103 
120.00 0.903 333.600 0.476 158.629 
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Table 5-22 Estimated kVAR in IM 10 HP 

Load (%) PF P (kW) K kVAR 
20.00 0.511 1.660 1.682 2.792 
25.00 0.592 2.075 1.361 2.825 
28.00 0.654 2.490 1.156 2.879 
30.00 0.703 2.905 1.012 2.940 
35.00 0.743 3.320 0.901 2.992 
40.00 0.777 3.735 0.810 3.025 
45.00 0.806 4.150 0.734 3.048 
50.00 0.829 4.565 0.675 3.080 
55.00 0.846 4.980 0.630 3.139 
60.00 0.858 5.395 0.598 3.227 
65.00 0.867 5.810 0.575 3.339 
70.00 0.874 6.225 0.557 3.466 
75.00 0.879 6.640 0.544 3.609 
80.00 0.881 7.055 0.536 3.783 
85.00 0.882 7.470 0.534 3.989 
90.00 0.882 7.885 0.534 4.213 
95.00 0.883 8.300 0.532 4.417 
100.00 0.886 8.715 0.524 4.571 
105.00 0.890 9.130 0.511 4.670 
110.00 0.895 9.545 0.500 4.771 
120.00 0.895 9.960 0.500 4.978 
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Table 5-23 Estimated kVAR in IM 100 HP 

Load (%) PF P(kW) K kVAR 
20.00 0.291 16.250 3.289 53.445 
25.00 0.358 20.313 2.606 52.944 
28.00 0.398 22.750 2.305 52.438 
30.00 0.424 24.375 2.136 52.065 
35.00 0.486 28.438 1.796 51.083 
40.00 0.544 32.500 1.544 50.168 
45.00 0.595 36.563 1.352 49.414 
50.00 0.639 40.625 1.203 48.890 
55.00 0.676 44.688 1.089 48.674 
60.00 0.710 48.750 0.992 48.379 
65.00 0.731 52.813 0.933 49.271 
70.00 0.751 56.875 0.881 50.083 
75.00 0.766 60.938 0.840 51.188 
80.00 0.778 65.000 0.808 52.490 
85.00 0.788 69.063 0.781 53.923 
90.00 0.797 73.125 0.757 55.358 
95.00 0.806 77.188 0.735 56.726 
100.00 0.814 81.250 0.714 58.001 
105.00 0.822 85.313 0.694 59.216 
110.00 0.828 89.375 0.676 60.432 
120.00 0.838 97.500 0.651 63.513 

 
 
5.9. Discussion 

As mentioned earlier, induction motors are extensively used in commercial and 

industrial areas that consume the majority of generated electrical energy. Induction 

motors require both active and reactive current and power for rotation and useful 

work. The active power depends on the mechanical load and variation of the 

mechanical load creates a change in the active power. However, the active power at 

no-load cannot be zero because a small amount of active power is required in shaft 

rotation, which is called friction loss. The mechanical load can increase until 

reaching the rated power or a maximum of 20% over it. Increase of the mechanical 

load higher than the rated power not only creates more losses and reduces the motor 

efficiency, but also produces high heat, which results in damage to the motor. 
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However, reactive power is a significant quantity in inductive loads, and it is always 

used to provide a magnetic field. In induction motors, reactive power is required for 

magnetization reactance to create a magnetic field for rotation. It is also required in 

stator and rotor leakage reactance. The experimental study showed that the reactive 

power or current also changes when the mechanical load increases or decreases, 

because variation of the mechanical load creates a change in the magnetic field.   

Since the power factor is a ratio between active and reactive power and will be 

changed by the load, it must be monitored because variation of the load generates a 

low power factor, which leads to a penalty charge for the user and energy losses in 

the grid systems. Utility companies are always concerned about a low power factor 

on the customer’s side. A low power factor increases the current and creates a huge 

equipment cost for utility companies. For this reason, a charge has been considered 

for customers with a low power factor. The consumer must therefore take 

responsibility for improving the low power factor to the desired level through its own 

reactive power generation. In order to prevent a penalty charge and energy loss, the 

power factor must be maintained at unity. In the induction motor, holding the 

mechanical load on the rated power can make it possible to maintain the power factor 

as the same as the nominal power factor from the nameplate, which may be enough 

to meet the requirement. However, reactive losses in in the induction motor winding 

and cable cause the power factor to become lower. 

The best solution to maintain the desired power factor is to control the reactive 

power. Reactive power compensation by a capacitors bank is the best way to keep 

the power factor at unity at any loading point. However, initial prediction of the 

reactive power required to meet the desired power factor is necessary in all the  

considered induction motors. For instance, since a large amount of induction motors 
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with different sizes are used in industry, capacitors banks are required to improve the 

power factor at different loading conditions. To design the capacitors bank, initial 

prediction of the required reactive power for each induction motor from no-load to 

full-load and over-load conditions is required.  

This prediction requires the initial power factor of each induction motor from no-

load to full-load and over-load conditions, because the initial value of the power 

factor indicates how much reactive power is needed to compensate the power factor 

in unity. In theory, there are several procedures to obtain the required reactive power. 

For instance, the nominal power factor from the motor nameplate can indicate the 

required reactive power for correcting the power factor to a desired value or the no-

load current from the manufacturer’s data can be considered, which can be reactive 

current. However, the experimental study showed that considering the nominal 

power factor creates under- and over-load correction. Under-correction indicates a 

low power factor that will lead to a penalty charge. Over-correction generates more 

reactive power or current than the motor needs. In this situation, self-excitation takes 

place due to generating a higher reactive current than the magnetizing reactance 

needs.  

Therefore, using this value is not suitable for finding the required reactive power at 

no-load and light load conditions. Since no-load current can be assumed as reactive 

current, it can be taken into account for obtaining the required reactive power or 

designing the size of capacitor. Nevertheless, when the motor load increases, the 

reactive current gradually increases such that the designed capacitor is not sufficient 

for full-load and over-load conditions. Therefore, using both values is suitable when 

the motor load is constant.  
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In the case of load variation, considering the input power and power factor 

synchronously is much more suitable to obtain the required reactive power for 

making a new power factor because in this approach involving the input power 

obtains the required reactive power at any loading point properly and prevents under- 

and over-correction at operating time. Therefore, in this method the power factor and 

input power at any loading point need to be determined. The experimental work 

found that, to measure these indices at any loading conditions, the motor load must 

be controlled at every single loading point during the measurement process. 

Otherwise, the device creates a numerical fluctuation, which makes it hard to read 

the measurement points. A power analyser is one of the significant measurement 

devices and is able to measure and store all components at every second with 

reasonable accuracy. However, to connect the power analyser, the induction motor 

needs to be shut down for a while and also it takes about an hour for the 

measurement process from no-load to full-load and over-load conditions.  

This connection process not only takes time, but may also create a huge cost for the 

motor’s user when the motor is out of service. Simulation work indicated that by 

using MATLAB/Simulink, the induction motor with a measurement device can be 

modelled in order to measure the voltage, current and power factor. However, in this 

approach, the induction motor parameters including the rotor and stator resistance, 

magnetization reactance and some other parameters are required to model the 

induction motor. As mentioned earlier, finding these parameters creates a difficulty 

for which locked and no-load tests and also some other techniques are needed.  

Hence, the aforementioned reasons proved the importance of power factor 

monitoring from no-load to full/over-load conditions. It is observed that many 

devices can be used to measure and record the power factor at every loading 
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condition. These devices had limitations in the case of cable connection, where the 

power must be cut off, and also because their cost may mean that they are not 

economical to use in some cases.  

In this research, several statistical methods, including Kriging and regression as 

numerical techniques and ANN and SVR as intelligent techniques, are introduced 

and analysed in terms of power factor estimation at any loading condition. In this 

project, to validate the proposed techniques several induction motors of sizes 250 W, 

10 HP and 100 HP are considered as case studies. A power analyser is used to 

measure and record all the components of the three phases including voltage, current, 

active and reactive power, power factor and harmonics, from no-load to over-load 

conditions.  

The connected power analyser stored all the components at 6-second intervals, 

providing 30 measurement points from no-load to over-load conditions. The input 

power measurement method is applied to obtain the motor load. MATLAB/Simulink 

is used to model the induction motors with the same specification of 100 HP in order 

to measure the power factor from no-load to full-load and over-load. In the 

simulation, the parameters of the 100 HP induction motor including resistance, 

reactance of the stator and rotor, and magnetizing reactance are added. The 

simulation results are compared with the results measured by the power analyser and 

it is shown that the simulation method produced an average error of about 3%. In 

addition, a method using measured current and the manufacturer’s data from 

reviewed paper is applied in three different ranges of induction motors including 250 

W, 10 HP and 100 HP. The measured current method was a numerical procedure that 

required two components [14].  
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The first was the nominal power factor from the data sheet or nameplate of the motor 

in order to calculate the nominal reactive current. The second was measurement of 

current from no-load to full-load condition. Then, using these components in 

numerical equations gives the power factor at any loading condition. In the induction 

motor, the motor current I is divided into two components, active current and 

reactive current. Active current is used for useful work and provides a linear 

correlation with the mechanical load from no-load to full-load. The reactive current 

is magnetization current and was used in the magnetization reactance. If the 

magnetization current or reactive current are assumed to be constant, the power 

factor can be estimated with this method.  

The computation process in MATLAB programming is done in five steps. The first 

is measurement of the motor current and active power at any possible loading point 

from no-load to full-load and over-load condition. The second is to take all the 

values of measured power and current into the input power measurement equation to 

calculate the motor load. The third step is to consider the nominal power factor from 

the motor nameplate in order to compute the nominal reactive power. The fourth step 

is to take all the measured values of current from no-load to full-load and over-load 

conditions.  

The fifth step,  the measured current and computed reactive current are inserted into 

the numerical equation for computation. The results of this method indicated a small 

error in the 250 W induction motor, but huge errors in the larger 10 HP and 100 HP 

induction motors from no-load to full/over-load conditions, because in the large 

induction motors, the variation of reactive current is higher than in the small 

induction motors due to the large magnetic field.  
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Although this method provided satisfactory performance in the small 250 W and 2.2 

kW induction motors because, in small induction motors, the reactive current is 

almost constant from no-load to full-load and over-load, it was not able to estimate 

the power factor in the large induction motors. In the large induction motors, the 

reactive current cannot be constant due to the large air gap which means that the 

reactive current changes from no-load to full-load and over-load. Kriging and 

regression methods are used to estimate the power factor and minimise the error. 

Kriging, which is an interpolation technique, was able to estimate the unknown 

values based on nearby observed values at surrounding locations and to weight the 

unknown points in order to minimise the error of a predicted value.  

Kriging is more applicable in cases where the distance between each observed point 

and an unknown point is to be known. In the Kriging method, calculation of weights 

is important. To obtain the weights, Kriging uses a semivariogram. As previously 

explained, the key point of this method is to apply a suitable semivariogram model to 

provide high output accuracy. In this study, selecting the exponential model was 

more applicable since it was similar to the power factor curve. Therefore, an 

exponential function with a Lagrange matrix obtained all the weights between the 

observed power factor and a target power factor. The obtained weights times the 

observed power factor provided the power factor at the desired loading points.  

The computation process in MATLAB programming is done in six steps. The first 

step needs to consider the computed load, which is obtained by the measured current 

method as the x-axis, and considers the power factor, which is computed by 

measurement of the current and input power at a few loading points from no-load to 

full-load condition as the y-axis. The second step computes the distance between 

each pair in the x-axis and makes it a 4 × 4 matrix.  
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The third step computes the distance between all x-axis points and a point that needs 

to be estimated. The fourth step selects an exponential function and inserts the 

semivariogram parameters from the computed distance in the x-axis. The fifth step 

adds the results obtained from the function and the results of the distance between all 

x-axis points and the point that needs to be estimated in the Lagrange matrix. The 

sixth step creates a loop function to iterate the algorithm in order to obtain the value 

at any desired loading point from no-load to full-load and over-load conditions.    

 Hence, the results of the Kriging method show that the estimated power factors in 

the 250 W, 10 HP and 100 HP induction motors are very close to the measured 

power factor from no-load to full-load conditions. However, the results at over-load 

conditions are far from the measured points. The reason is that Kriging is an 

interpolation technique and is not able to extrapolate the over-loading points. 

Although the Kriging method performed well in power factor estimation at unknown 

points from no-load to full-load conditions, the strategy of Kriging is geostatistical 

such that the computing distance between one unknown point and surrounding 

observed points is required. A large interval between two points creates a complexity 

with high errors. MSE and MAPE were used to indicate the quality of the estimator 

and measure the prediction accuracy of the Kriging method. 

 It is shown that Kriging can be a good estimator from no-load to full-load conditions 

and provided a satisfactory accuracy of 99% for the three different sizes of induction 

motor. However, it would not be a good estimator at over-load conditions due to 

producing high error at each point from full-load to over-load, where the errors 

indicated were between 6% and 7% in the proposed induction motors.  In spite of the 

fact that this method mostly provided good performance from no-load to full-load 

conditions, in general, using this method is not reliable for modelling because only 
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the distance between each observed pair of points and also the interval between 

observed points and a point needs to be estimated to find a proper solution. 

 A small interval between these points causes the estimating point to become more 

accurate. In regression, a polynomial technique, which works based on the 

relationship between the independent variable x and the dependent variable y, 

provided a weight value between variables, which is known as a polynomial 

coefficient. The polynomial regression required a few observed values of 𝑥 and 𝑦.  In 

this case, some points of the motor load and the power factor are considered as 𝑥 and 

𝑦. The coefficients between the two values are predicted because the predicted 

coefficient multiplied by the independent values in the 𝑥-axis contributed to obtain 

the unknown values in the y-axis. The accuracy of the regression was dependent on 

the number of polynomial orders; by increasing the order, the coefficient increased. 

Increase of the coefficients or orders made the function more powerful, allowing it to 

reduce the errors and create a model with high fitness. Increase of the coefficients 

provided a desired model very close to the observed power factor curve.  

In the regression, a polynomial function is applied in which the polynomial degrees 

had significant roles, such that each polynomial degree number created different 

models. Polyval and Polyfit in MATLAB programming are used to determine the 

polynomial coefficients and then create a model close to the observed model. The 

computation process follows four steps. The first step needs to consider the 

computed load, which is obtained by the measured current method as the 𝑥-axis, and 

to consider the power factor which is computed by measurement of the current and 

input power at a few loading points from no-load to full-load condition as the y-axis. 

The second step is to  define the polynomial equation and consider a Vandermonde 

matrix to generalize the equation.  
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The third step uses the polyval technique to predict the polynomial coefficients. The 

fourth step uses the polyfit technique to place the obtained coefficients in the 𝑥-axis 

value that in the 𝑦-axis the points needs to be determined. With increase of the 

polynomial degrees by following these steps, the fitted model is obtained. The 

evidence confirmed that the 4th order polynomial regression produced the best fitting 

to the observed power factor curve. 

Therefore, based on the existing model, the unknown power factor is estimated from 

no-load to full/over-load conditions. In this method, the errors between the estimated 

power factor and measured power factor from no-load to full-load are very small. 

However, there are huge gaps between the estimated and measured power factor 

from full-load to over-load. The results show that the 1st and 2nd orders in the three 

induction motors produced high errors. However, the 3rd  and 4th  orders obtained 

satisfactory results, very close to the measured power factor from no-load to full-load 

conditions.  

Although the number of orders is proportional to the number of independent values 

in the 𝑥-axis and the last order provides high performance in terms of best fitting, in 

such cases the 4th order performed very well, with lower average error in estimating 

the unknown power factor of induction motors from no-load to full-load conditions. 

In spite of the fact that polynomial regression can provide a high performance from 

no-load to full-load condition, in these cases, polynomial regression with any degree 

is not able to extrapolate over-load points very well and produces a dramatic drop in 

the results from full-load to over-load conditions. The comparison results in this 

table indicated that the 4th order polynomial regression obtained results with errors 

less than 1% at most of the loading points in the 250 W, 10 HP and 100 HP induction 

motors.  
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However, it is shown that the estimated power factor at over-load conditions 

produced large errors from full-load to over-load, with the errors in the 250 W 

induction motor ranging from 2.466% to 11.138%. In the 10 HP induction motor, the 

minimum and maximum error observed were 0.530% at full-load and 5.847% at 

over-load respectively. In the 100 HP induction motor, the errors gradually increased 

from 2.145% to 9.515%, and the maximum load indicated the highest error. MSE 

and MAPE are used to show the performance of 1st, 2nd, 3rd and 4th orders. It is 

observed that the 4th order performed very well compared with the  1st, 2nd and 3rd 

orders, producing high accuracy in the three induction motors of about 99.60%.  

The comparison between MCMD, Kriging and regression showed that the regression 

method in the 250 W induction motor produced errors of less than 4%, where the 

error in MCMD is 3% and in Kriging was 3.5%. However, MCMD creates high 

errors of more than 8% in the 10 HP and 100 HP induction motors, while the errors 

of both Kriging and regression in the 10 HP and 100 HP induction motors are 3% 

and 2%, 4% and 3% respectively. Therefore, it is observed that regression in the 10 

HP and 100 HP induction motors reduced the errors and performed very well 

compared with the MCMD and Kriging methods.  

Although both methods provided different techniques, where Kriging used an 

exponential function based on the distance between the measured points and 

prediction locations, and regression considered the correlation between the 

independent value and dependent value, which is modelled as an 𝑛L¤ degree 

polynomial, both the Kriging and regression methods estimated the power factor 

with extreme errors at over-load. The reason is that Kriging is an interpolation 

technique and is not able to extrapolate points from the considered points.  
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To optimize these issues, the study found intelligent techniques including ANN and 

SVR to estimate the power factor not only between the known observation, but also 

to at over-load conditions with acceptable performance. The artificial neural 

network, which is an intelligent technique, was able to generalize and create a 

desired model. The ANN contained neurons in which every neuron was connected to 

at least one other neuron. Each connected neuron was evaluated by a weight 

coefficient. The training process determined the weights. MLF, which is trained with 

a back propagation algorithm, was a significant element of the neural network. In 

MLF, some measured values are required for the network (input layer) as a training 

sample in order to find the weights. To update weights, the error between the 

predicted and actual output values is back propagated via the network. The back 

propagation algorithm is used to minimise the error and predict the coefficient. 

Selecting the appropriate number of neurons in the hidden layer led to a great 

performance. 

In this process, three kinds of samples were needed as inputs, including training, 

validation and testing data. In these cases, 9 input data are selected for training, of 

which 5 points are for training, 2 points for testing and 2 points for validation. The 

training values are presented to the network and the network is adjusted according to 

its error. The validation is used to measure network generalization and stop training 

when the generalization has improved. Testing provides an independent measure of 

network performance during and after training. In addition, selecting the most 

suitable number of hidden layers and the least squares algorithm are considered in 

order to fit the inputs and targets, where 2 neurons in the hidden layer and 

Levenberg–Marquardt as the training algorithm with 8–14 epochs provided a 

significant generalization with a small average squared error between the trained and 
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target values. The computation process involves six steps. The first step needs to 

consider the computed load, which is obtained by the measured current method, as 

the 𝑥-axis and considers the power factor, which is computed by measurement of the 

current and input power in a few loading point from no-load to full-load condition, as 

the 𝑦-axis. The second step is to make 𝑥 and 𝑦 into a column and define it in the 

neural network toolbox in MATLAB programming. Then, from those values, it 

considers 60% as training, 40% as testing and 40% as validation. The third step is to 

select the number of hidden layers based on the number of input data. The fourth step 

is to select an appropriate least squares method to train the network. The fifth step is 

to add the points in the 𝑥-axis column for the 𝑦-axis the value needs to be estimated. 

The sixth step is to run the algorithm several times in order to identify the best 

model. 

  Consequently, the estimated results illustrated that NNBP provided a great fitting 

from no-load to over-load. In spite of the fact that NNBP produced results very close 

to the measured points with small error, it has to be applied several times to initialize 

the network to find the best solution. Obtaining the best result in this way creates the 

difficulty that the program needs to be closed and opened again to enable the several 

running times that are required to find the best model. This is a major disadvantage 

of the ANN method. MSE and MAPE are applied to show the accuracy of this 

method, where MSE is used to measure the performance of the ANN and MAPE 

shows a measure of the prediction accuracy of the proposed method. The MSE in the 

considered induction motors presented values of 2.09E-05, 4.17E-05 and 4.18E-05, 

and also the MAPE indicated was 0.5195%, 0.6135% and 0.599% respectively from 

no-load to over-load conditions. 
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In the support vector regression, the load and power factor of the proposed induction 

motors at some points are determined as input data. The SVR based on these values 

constructed a hyperplane in high-dimensional space between the defined upper and 

lower bounds and created a model very close to the observed model. The SVR 

method constructs a hyperplane in order to minimise the generalization error 

between the defined upper and lower bounds. The coefficients of the SVR equation 

are obtained by minimising the regularized risk equation. In the risk function, C and 

epsilon must be assumed, where C is the regularization constant that measures the 

trade-off between empirical risk and the flatness of the model. Epsilon defines the 

upper and lower bounds. A kernel function, which is the most widely used in SVR, is 

considered to solve the minimization. In this function, sigma is selected manually, 

where the value of sigma is tested within each 5 intervals in order to find the 

optimum value to achieve the best model.  

Proper design of sigma in the kernel function has a positive effect on the model, and 

the value of 25 is considered in the 250 W, 10 HP and 100 HP induction motors. As 

the original model was smooth, the epsilon considered had the small value of 

0.00015. The selected capacity was 30 in the 250 W, 10 HP and 100 HP induction 

motors as well. From these predicted models, the unknown values of the power 

factor of the considered induction motors from no-load to full/over-load conditions 

can be estimated properly. In the SVR method, the computation involves seven steps.  

The first step is to select the input data defined on 𝑥 and 𝑦 in a column. The second 

step is to design a hyperplane with high-dimensional space by selecting proper SVR 

parameters. The third step is to define a loss function with the considered constraints 

for minimization. The fourth step is to define a kernel function and predict a sigma 

value based on assumptions.  
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The fifth step is to obtain the support vector coefficient with a quadratic program. 

The sixth step is to compute bias from the obtained support vector coefficients and 

other parameters. The seventh step is to insert the desired 𝑥 points (load points) to 

find the desired 𝑦 points (desired power factor values). 

As a result, SVR in the three induction motors produced great results with overall 

errors less than 2% from no-load to full-load conditions. In spite of the fact that 

adjusting the SVR parameters is tricky, the SVR is able to estimate the power factor 

at unseen points and produce constant results with high performance from no-load to 

full-load and over-load conditions. Hence, the SVR method is not only faster, but 

also more powerful and reliable through the modelling techniques. MSE and MAPE 

demonstrated the accuracy of the SVR, with MSE values of 5.18E-06, 3.16E-06 and 

3.08E-06 in the considered induction motors, and MAPE values of 0.2535%, 0.179% 

and 0.214% respectively.  

Even though the ANN and SVR methods provided similar estimated results at some 

load points, SVR indicated significantly better performance in time and accuracy, 

and once the parameters of SVR were adjusted, it produced fixed output results. In 

spite of the fact that two neurons in one hidden layer provide good generalization, 

several running times are required to identify the best fitting. However, SVR is not 

only faster, but also required just one run to produce results close to the measured 

power factor from no-load to full- and over-load conditions. 

 Figure 5-37 presents a comparison of the error results between the considered 

methods. It is confirmed that numerical techniques including Kriging and regression 

produced high errors of more than 3% in the three induction motors from no-load to 

over-load conditions. However, the intelligent techniques of ANN and SVR 

minimised the errors in the three cases, at less than 1%.    
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 In addition, it can be seen from Figure 5-38 that MCMD created high errors 

particularly in medium and large induction motors. MATLAB/Simulink produced an 

average error of about 3%. However, SVR reduced the errors to less than 0.5% at 

any loading point.   

 

Figure 5-37:  Comparison of results of recent methods with SVR 

 

 

Figure 5-38: Comparison of results of MATLAB/Simulink and MCMD with SVR  

IM 250W IM10HP IM100HP
0

1

2

3

4

Er
ro

r (
%

)

Kriging Regression ANN SVR

IM 250W IM10HP IM100HP
0

2

4

6

8

10

12

Er
ro

r (
%

)

 

 

MCMD Simulink SVR



  Chapter 5: Results and Discussion 
 

	 Page	180	
	

Consequently, the obtained results proved that the SVR method can be a beneficial 

technique in electrical systems for the following reasons.    

Ø Reduces the time and provides high performance in predicting the power 
factor at every single loading point 

 
Ø Eliminates the permanent device and performs very well in offline and 

online monitoring 
 
Ø Is able to store more data as well as data logger devices  
  
Ø Is capable of monitoring the power factor versus motor load from no-load 

to full-load conditions 

 
Ø Determines the power factor even at uncertain loading points from full-

load to over-load conditions   
 

Ø Is able to find the optimum value of the required reactive power for 
power factor correction at different load conditions. 

 
5.10. Summary 

In this chapter, the results of the measured power factor of the considered 250 W, 10 

HP and 100 HP induction motors are presented. Also, the results of 

MATLAB/Simulink are shown and compared with the power factor measured by a 

power analyser. The results of the proposed methods, including the measured current 

method, Kriging, regression, a neural network and support vector regression, in the 

considered induction motors are presented separately. It is observed that the neural 

network and support vector regression methods estimated the power factor of the 

considered induction motors from no-load to full-load and over-load conditions with 

high performance compared with conventional techniques, and that the support 

vector regression demonstrated greater speed and robustness than the neural network. 
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6.1. Conclusions  

This chapter summarises the main contributions that have been made in this research. The 

motivation of this research is presented in the thesis and is outlined in the first chapter. There 

is a tendency to believe that a remarkable amount of enhancement needs to be implemented 

in electrical systems in order to meet energy-saving requirements. Since the majority of loads 

are inductive, the power factor must be monitored and maintained toward unity with regard to 

energy losses. For that reason, more state-of-the-art estimation techniques such as the support 

vector regression method are planned to be deployed within various induction motors to 

predict the power factor at any loading point and to be able to obtain the amount of required 

reactive power for achieving a unity power factor at loads with a low power factor. 

Ultimately, such mathematical techniques could potentially affect the electrical system at the 

steady state condition. In addition, although measurement devices can help to monitor the 

power factor, in many cases they create difficulties due either to the need to disconnect the 

power to connect the device, or to access limits in the network.  

In spite of the fact that the impedance of individual induction motors can be used to obtain 

the power factor, first the equivalent circuit parameters are required in order to obtain the 

impedance. Chapter 2 presents a comprehensive review of past research surrounding the issue 

of power factor determination and the latest proposed solutions for estimating the power 

factor at any loading point using intelligent techniques. This completed evaluation represents 

the first contribution of the thesis, which reveals that many of the methods proposed in past 

research have looked into the scalability, difficulty and mostly the requirements for 

implementation of these proposed techniques in different case studies. In this thesis, chapter 3 

covers and reviews the evaluation of induction motor characteristics against load and 

provides a complete description of the power factor versus load, which could be valuable for 

understanding power factor behaviour and means of improvement.  
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Several empirical techniques for computing the motor load and power factor by measurement 

of voltage and current waveforms are presented. MATLAB/Simulink is used as a simulation 

tool for modelling the induction motor and to determine the power factor from no-load to 

full-load and over-load conditions. The equivalent circuit parameters of the induction motor 

are needed for this simulation. In addition, three different sizes of induction motors, 250 W, 

10 HP and 100 HP, are considered for online power factor measurement from no-load to full-

load and over-load conditions to validate the proposed method. These completed 

measurements represent the second contribution. In the measurement process, a power 

analyser with a recorder and load controller are connected to the induction motor for 

measurement.  

Methods of power factor correction in a single induction motor or even group induction 

motors are presented in full. As the third original contribution of this research, the recent and 

latest proposed estimation techniques, including a method using the measured current and 

manufacturer’s data, Kriging, regression, an artificial neural network and support vector 

regression, are implemented in different induction motors for power factor estimation. The 

overall structure and process of the proposed techniques are illustrated in chapter 4. Chapter 5 

presents the results and discusses the methods implemented in the considered induction 

motors. 

 The results of the measured current method indicated a better performance in the 250 W 

induction motor compared with the 10 HP and 100 HP induction motors because the operated 

reactive current from no-load to full-load approximately corresponded to the reactive current 

computed from the nominal power factor, which is used in the mathematics, and was almost 

constant. This method was weak in medium and large induction motors where the reactive 

current is not constant from no-load to full-load and over-load conditions. Kriging and 

regression methods are implemented in the considered induction motors to resolve the 
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measured current method; Kriging used a semivariogram technique and regression used a 

polynomial technique to predict the power factor from no-load to full-load and over-load 

conditions. The results showed that both methods created an overshoot problem at the over-

load condition. Kriging and regression methods are only able to interpolate the points 

between observed points. To resolve this issue, intelligent techniques including an artificial 

neural network and support vector regression are used, both of which are able to extrapolate 

unseen points. 

 In this case, the artificial neural network used 5 points for training, 2 points for testing and 2 

points for validation with 2 hidden neurons. The results indicated that the neural network 

predicted the power factor of the induction motors from no-load to full-load and over-load 

conditions very well. However, the algorithm has to be run many times to achieve 

satisfactory results. This is a significant disadvantage of the neural network method that in 

many cases creates a difficulty. Furthermore, the support vector regression method, which is 

one of the most recently developed evolutionary algorithms, indicated the high performance 

in different conditions.  

The support vector regression method also was applied in the considered induction motors. 

The results showed that this method predicted the power factor at any loading point from no-

load to full-load and also full-load to over-load better than others. The parameters of support 

vector regression have significant roles in the accuracy of estimation. Proper design of the 

parameters produced satisfactory results that were very close to the measured points. The 

comparison between the recent methods and the proposed method showed that support vector 

regression is faster and also provided a greater performance with high accuracy at any desired 

loading point. Consequently, it can be asserted that support vector regression is a significant 

method to obtain accurate values of the power factor at any loading conditions.  
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Then, the obtained values determine the proper size of capacitors and thus help to correct the 

power factor to the desired values without under- or over-correction.   

6.2. Future Research  

The work presented in this thesis has fulfilled all of the research aims that were initially 

defined. However, there are plenty of areas to extend this work in order to enhance the ideas 

and methods that have been developed. Further investigation into the optimization techniques 

can be undertaken in order to find the parameters of support vector regression in various case 

studies. As demonstrated in chapter 4, a wide range of estimation techniques are used for 

determining the induction motor power factor against loading. These include Kriging, 

regression, artificial neural networks and support vector regression. It would be appropriate to 

conduct a comprehensive study and investigate a hybrid algorithm to estimate the power 

factor carve of induction motors by adding power rating.  

A hybrid algorithm can extend and enhance the performance of the method, in order to design 

a proper model that is able to predict the power factor of induction motor with different rated 

power. Also, in the future work various induction motors needs to be tested to validate the 

hybrid algorithm. As discussed in chapter 2, many researchers have stated that, although the 

power factor is the cosine angle between the voltage and current waveforms, the presence of 

total harmonic distortion of the voltage and current in a non-linear load affects the power 

factor and must therefore be taken into account. Further research is required to analyse the 

total harmonic distortion of the voltage and current and seek a proper solution to determine 

the harmonics, and then obtain the true power factor against load. Further investigation is 

required with regard to a self-excitation and power factor correction against load at the right 

time. 
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