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Abstract

Parkinson’s is a neurological condition in which parts of the brain responsible for
movements becomes incapacitated over time due to the abnormal dopamine
equilibrium. Freezing of Gait (FOG) is one of the main Parkinson’s Disease (PD)
symptoms that affects patients not only physically but also psychologically as it
prevents them from fulfilling simple tasks such as standing up or walking. Different
auditory and visual cues have been proven to be very effective in improving the
mobility of People with Parkinson’s (PwP). Nonetheless, many of the available
methods require user intervention or devices to be worn, charged, etc. to activate

the cues.

This research suggests a system that can provide an unobtrusive facility to detect
FOG and falling in PwP as well as monitoring and improving their mobility using
laser-based visual cues casted by an automated laser system. It proposes a hew
indoor method for casting a set of two parallel laser lines as a dynamic visual cue
in front of a subject’s feet based on the subject’s head direction and 3D location in
a room. The proposed system controls the movement of a set of panf/tilt servo
motors and laser pointers using a microcontroller based on the real-time skeletal
information acquired from a Kinect v2 sensor. A Graphical User Interface (GUI) is
created that enables users to control and adjust the settings based on the user

preferences.

The system was tested and trained by 12 healthy participants and reviewed by 15
PwP who suffer from frequent FOG episodes. The results showed the possibility
of employing the system as an indoor and on-demand visual cue system for PwP
that does not rely on the subject’s input or introduce any additional complexities to
operate. Despite limitations regarding its outdoor use, feedback was very positive
in terms of domestic usability and convenience, where 12/15 PwP showed interest

in installing and using the system at their homes.
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Chapter 1: Introduction

1.1 Motivation

One of the main physical symptoms among PwP is FOG. Studies have shown that
a visual aid projected in front of a patient (e.g. lines, stairs, etc.) experiencing such

episodes could be beneficial to the “unfreezing” of those patients.

At the same time and within the last three years, there was an unparalleled bloom
in gaming machines capable of detecting the gamer and his/her gestures. The
most famous of these is the Microsoft Kinect that, although initially developed as
a “wireless joystick”, soon found its way into many other applications, including

medicine, healthcare, rehabilitation, etc.

This research proposes a system that takes advantage of the abilities of a
Microsoft Kinect, to improve the mobility and locomotion of PwP experiencing FOG
episodes. Moreover, it provides a facility for healthcare providers and doctors to
monitor the gait performance of their patients remotely. Additionally, the system
can detect fall incidents that are common among PwP and inform the people

responsible to take further actions if required.

1.2 Parkinson’s Disease

Parkinson’s disease (PD), caused by the depletion of dopamine in the substantia
nigra, is a degenerative neurological condition affecting the initiation and control
of movements, particularly those related to walking [1], [2]. There are many
physical symptoms associated with PD including akinesia, hypokinesia, and
Bradykinesia [3]. An additional symptom is FOG, usually presenting in advanced
stages of Parkinson’s [4]-[7]. FOG is one of the most debilitating and least
understood symptoms associated with Parkinson’s. It is exacerbated by several
factors including the need to walk through narrow spaces, turning as well as

stressful situations [7], [8].
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Parkinsons Disease

Non-Parkinson's

red nucleus

Substantia Nigra

Superior colliculus

Figure 1:1. The effect of PD (depletion of dopamine in the substantia nigra) on
human brain [9]

1.3 Freezing of Gait (FOG)

FOG is one of the most disabling symptoms in PD that affect its sufferers by
impacting their gait performance and locomotion. FOG is an episodic phenomenon
that prevents the initiation or continuation of a patient’s locomotion and usually
occurs in latter stages of PD where patients' muscles freeze in place as they are
trying to move [1], [6], [7], [10].

FOG and associated incidents of falling often incapacitate PwP and, as such, can
have a significant detrimental impact at both a physical and psychological level [6].
Consequently, the patient's quality of life decreases and health care and treatment
expenditures increase substantially [11]. A research study conducted by the
University of Rochester's Strong Memorial Hospital [12] showed that
approximately 30 % of PwP experience sudden, unexpected freezing episodes,
thus highlighting the high level of dependency that many PwP have on physical or
psychological strategies that may assist in alleviating FOG and help people start

walking again.
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Figure 1:2. PD physical symptoms [9]

1.4 Possible Treatments

There is no proven therapy to eradicate the PD or slow down its progression. As
a result, the focus of the medical therapy is on the treating or reducing the effect
of its symptoms [13]. There are different treatments available to improve PwP living
standards and help deal with the symptoms including supportive therapies,

medications and surgery.

Supportive therapies focus towards pain relieve using different methods including
physiotherapy that relieves joint pain and muscle stiffness as well as exercises
and occupational therapy that provide support for day-to-day activities of PwP and
programmes that help them maintain their independence. Moreover, supportive
therapies also cover dietary advice that would be beneficial to some extent for
symptom relieve. Lastly, speech and language therapy can also help PwP
improving speech impairment caused by the disease or reduce the patient’s

swallowing difficulties (dysphagia), also related to PD [14].

Medication are also beneficial in reducing the frequency or effect of PD’s main

symptoms including FOG and tremors. Nonetheless, there usually are possible
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short and long-term side effects in these methods. The three types of the

mainstream medication for PwP are [14]:

e Levodopa

Levodopa help the increase of dopamine production by the nerve cells; an agent
for message transmission between brain parts and nerves responsible of
controlling movement. Consequently, this would improve the patient’'s movement

irregularities and locomotion [13] [15].

e Dopamine agonists

These chemical act as a substitute for the imbalanced dopamine level in the brain,
that yields similar effect as levodopa. Dopamine agonists could have many side

effects including hallucinations and confusion [13], [15].

e Monoamine oxidase-B inhibitors

Monoamine oxidase-B (MOA-B) inhibitors aim at blocking the effect of an enzyme
responsible of breaking down dopamine. As a result, the dopamine level would be
increased. MOA-B can improve the PD symptoms and can be prescribed to be
used alongside other medications such as dopamine agonists or levodopa [13],
[15].

Finally, a pulse generator can be surgically implanted into the subject’s chest wall
connected using wires to a specific part of the brain. This acts as a deep brain
stimulation that produces a tiny electrical current which stimulates the brain in

order to ease PD symptoms [16].

1.4.1 Sensory Stimulation

Many studies suggest that auditory [17]-[20] and visual cues [10], [19]-[31] can
improve PwP’s gait performance, especially during FOG. Rubinstein et al., [32],
observed that in the presence of an external 'movement trigger’ (i.e., a sensory
cue), a patient’s self-paced actions such as walking, can be significantly improved;

a phenomenon known as ‘kinesia paradoxica’.
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1.5 Research Question

This study investigates the question of whether it is feasible to implement an
unobtrusive approach for real-time FOG monitoring, by utilising commercially
available 3D camera sensors based on the Microsoft Kinect architecture. The
research also studied the applicability of using the 3D sensing cameras in
conjunction with a moving laser projection system acting as a visual cue with the
aim of decreasing the frequency/duration of “freezing” episodes and improving the
mobility of patients diagnosed with Parkinson's disease. Studies have shown that
such an approach will be beneficiary on reducing the FOG episodes in PwP, both
in frequency and in duration. The system can also detect fall incidents that are
common among Parkinson’s disease patients and automatically alert

relatives/healthcare providers.

1.6 Aims and Objectives

The main aim of this study is to research on an affordable, reliable, and
unobtrusive system for monitoring/detecting FOG and fall incidents in PwP as well
as to provide mobility improvement and locomotion enhancement during a FOG
incident using an automatic and dynamic visual cueing system based on laser
projection. Additionally, different methods in detecting a subject’s footsteps, an

important part in unobtrusive FOG detection, is presented and evaluated.

The individual objectives of the project are:

e Toimprove PwP locomotion with an automatic and dynamic visual cue system.

e To build a user interface for healthcare providers and doctors to monitor the
patients’ activities remotely and get notification should a critical incident such
as unrecoverable fall happens.

e To investigate, through a focus group of real PwP on how such a combination
of discreet and inexpensive hardware can possibly assist PwP that have
frequent FOG episodes.

e To use a 3D sensing technology such as a Microsoft Kinect sensor to detect

and monitor PD FOG and fall incidents unobtrusively.
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The proposed research focuses on the sensory stimulation therapy and
rehabilitations side of the PD treatment using laser-based visual cues. In
conjunction with the current system, the project’'s researchers developed a
companion smartphone application and a client software that enables doctors,
healthcare providers and family members to monitor and receive notifications
regarding possible incidents. Upon the detection of a fall, the system can
automatically capture the event alongside an appropriate time stamp and notify a
relevant person via email, live video feed (through the smartphone companion

app), skype conversation or developed client software.

1.7 Contributions to Knowledge

This research study leads to improve upon existing and previous works by:

e Introducing two new footstep detection techniques one based on the
subject’s knee angle and one based on the subject’s ankle vertical height
to the ground; Reducing the Microsoft Kinect’s intrinsic inaccuracies in
skeletal data reading for the subject’s ankle vertical height to the ground
footstep detection technique; resulting in the increase in accuracy for the
footstep detection algorithm by introducing a new correction algorithm.

e Providing an automatic and remotely manageable monitoring system for

PwP gait analysis and fall detection.

1.8 Thesis Structure

This thesis consists of six chapters supplemented by references and appendices.

The outline and a brief description of each chapter are as follow:

Chapter 2: This chapter evaluates similar studies carried out in the field. these will

be analysed, and their shortcomings will be discussed.

Chapter 3: This chapter focuses on the description of technical terms and
technologies used in this project. Different technologies will be analysed and

evaluated. Their advantages and disadvantages will also be discussed.
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Chapter 4: This section focuses on the implementation phase of the proposed
approach including the execution of the prototype system both in hardware and
software level. Moreover, the algorithm employed in this study will also be

discussed.

Chapter 5: The aim of this chapter is to discuss the outcomes of this research
including the empirical results and evaluation of the research study product. The
data will be compared against the initial requirements and the aims and objectives
of the project and its effectiveness will also be discussed.

Chapter 6: In the final chapter the project carried out will be summarised and
compared against the initial aims. Additionally, the obstacles and issues
encountered during the project development as well as the future works would be

discussed.
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Chapter 2: Literature Review

2.1 Introduction

This literature review covers the existing research and studies that focused on
similar field as this research. Different studies in fall detection, especially in PwP
will be analysed; Solutions based on visual cue for locomotion improvement during
a FOG for PwP as well as systems for rehabilitations and monitoring of these
patients are reviewed. Approaches towards detecting PD symptoms including
FOG are discussed including sensor-based and computer vision methods.
Moreover, different procedures that help detecting FOG based on computer vision
approach such as footstep detection are evaluated. Finally, these studies are then

analysed, and their possible shortcomings will be discussed.

2.2 The Effect of Visual Cue on PD Locomotion

Many previous studies have developed methods for monitoring FOG behaviours
and intervening to improve motor symptoms with the use of external visual cues.
Many studies utilised computer vision technologies to minimize the need for
patients to wear measurement devices, which can be cumbersome and also have
potential to alter a person’s movement characteristics. Since the release of the
Microsoft Kinect camera several attempts have been made to use the Kinect
sensor as a non-invasive approach for monitoring PD-related gait disorders. Many
previous research studies have focussed on rehabilitation outcomes and

experimental methods for monitoring patients’ activities.

For instance, in Takag, et al., [33], a home tracking system was developed using
Microsoft Kinect sensors to help PwWP who experience regular FOG. The research
interconnected multiple Kinect sensors together to deliver a wider coverage of the
testing environment. The model operated by collectively gathering data from
multiple Kinect sensors into a central computer and storing them in a centralised
database for further analysis and processing. The research employed a model
based on the subject’s histogram colour and height together with the known

average movement delays between each camera. Nonetheless, as a Kinect
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camera produces a raw RGB data stream, analysing multiple Kinect colour data
stream for the histogram of colour in real-time requires a very powerful processor
and significant amount of computer memory. Moreover, the synchronisation

between each camera feed would add extra computation for this approach.

Previous research has demonstrated that dynamic visual cues (such as laser lines
projected on the floor) can deliver a profound improvement to walking
characteristics in PwP [20]. Furthermore, strong evidence now exists suggesting
that it is not only the presence of sensory information (or an external ‘goal’ for
movement) that ‘drives’ improvements/kinesia paradoxia, but rather the presence
of continuous and dynamic sensory information. This was first demonstrated by
Azulay et al., [34], who showed that the significant benefits to gait gained when
walking on visual stepping targets were lost when patients walked on the same
targets under conditions when the room was illuminated by strophic lighting; thus
making the visual targets appear static. Similar observations have also been made

in the auditory domain [3].

In Zhao et al., [35], in order to improve PwP’s gait performance, a visual cue
system was implemented based on a wearable system installed on subjects’
shoes. This system employed laser pointers as visual cues fitted on a pair of
modified shoes using a 3D printed caddy. The system consisted of pressure
sensors that detect the stance phase of gait and trigger the laser pointers when a

freeze occurs.

Figure 2:1. A pair of laser-mounted shoes for visual cue [35]
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While effective and intuitive to use, the reliance on any attachable/wearable
apparatus can be cumbersome and also required users to remember to attach
appropriate devices, even around the house; where many people experience

significant problems with FOG at times when they are not wearing their shoes.

In another approach based on wearable devices [36], the effect of a subject
mounted light device (SMLD) projecting visual step length markers on the floor
was evaluated. The study showed that a SMLD induced a statically significant
improvement on subjects’ gait performance. Nevertheless, it was suggested that
the requirement of wearing SMLD might lead to practical difficulties both in terms
of comfort and on the potential for the devices impacting on patients’ movements

characteristics.

In Velik et al., [31], the entire SMLD visual cue system included a backpack
consisting of a remotely-controlled laptop (needed to be carried by the subjects).
Although the SMLD method was employed, researchers added the 10 seconds

on-demand option to the “constantly on” visual cue casting.

Figure 2:2. A SMLD coupled with a controlling laptop and laser line projection
system for PD patient’s visual cue purposes [31]
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Moreover, similar to the aforementioned technologies, the laser visual cues are
always turned on, regardless of the subject’'s FOG status of gait performance.
McAuley et al., and Kaminsky et al., [22], [23], proposed the use of Virtual Cueing
Spectacles (VCS) that, similar to approaches that project targets on the floor;
project virtual visual targets on to a user’s spectacles. The use of VCS might
eliminate major disadvantages introduced by SMLD (or other wearable
approaches), but these systems still need to either be sensitive to a FOG onset,

or constantly turned on, even when not required.

In Griffin et al., [30], the effect of real and virtual visual cueing was compared and
it was concluded that real transverse lines casted on the floor are more impactful
than the virtual counterparts. Nonetheless, using VCS eliminates the shortcomings
in other techniques such as limitations in mobility, steadiness and symmetry. VCS
also has the advantage of being capable to be used at an external environment

when the patient is out and about.

Figure 2:3. A goggle used to project VCS [30]
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Figure 2:4. A VCS system virtual cue projection mechanism [23]

2.3 FOG Monitoring and Detection

Motor-related symptoms of PD have been the subject for assessment and
detection in rehabilitation and gait performance analysis research studies. There
have been several studies conducted towards the detection and characterising of

these symptoms, especially FOG in PwP using on-body sensors and wearables.

For instance, in Tripoliti et al., [37] a combination of six accelerometers and two
gyroscopes were placed on the PD patient’s body. The research employed four
stages and compared its approach against different signal processing techniques
and different sensor arrangements in order to achieve the optimal detection

success rate.

In Pepa et al., [38], a solution based on a smartphone was used utilising Fuzzy
Logic to gather gait related data in case of a FOG, whereas in Mazilu et al., [39],
a combination of wearable accelerometer and smartphones were used. Combined
with a machine learning technique, this latter approach managed to detect FOG
incidents with a 95 % success rate. This research aimed at using auditory cues for
mobility improvement of PwP. Once a FOG was detected, the system would

provide rhythmic cues to the patient.
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DETECTION

Figure 2:5. A pair of accelerometers and a smart phone used for gait analysis
and FOG assessments in PwP [39]

In Jovanov et al., [40], an inertial wearable sensor was attached to the patient’s
shoes for real-time gait monitoring in which upon detection of a FOG incident with
an average latency of 332 ms, the prototype system would send acoustic cues to
the wireless headset attached to the patient’s ear for stimulation. The sensor

consisted of a 3-axis accelerometer and 2-rotational gyroscope.
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Figure 2:6. Shoe-embedded inertial sensors for FOG assessment and gait
performance analysis. Upon a possible FOG detection, a wireless headset would
provide auditory cues [40]

In another attempt by Mazilu et al., [41], the correlation between a PD patient’s
wrist movements and a FOG incident has been examined. The study tried to place
the sensor in a more commonly worn area of the body (i.e. wrist) where usually a
watch is worn, in order to make the system more acceptable/adoptable and less

obtrusive.

In Niazmand et al., [42], accelerometer sensors were embedded in the subject’s
trousers based on MiMed-Pants in order to achieve a low-profile detection system
for FOG. Finally, in Handojoseno et al., [43], a FOG detection technique based on
EEG signals was used with relatively low detection rate of 75 %. In summary, the
employment of EEG has many limitations such as fixed location and long setup

and calibration time.

Since the release of Kinect for Windows SDK, many attempts have been made to
use of the Kinect sensor for PD related research. Most of the studies have focused
on rehabilitation purposes and experimental ways of monitoring patients’ activities.

In Galna et al., [44], a Kinect-based game was developed to encourage patients

to conduct daily activities for rehabilitation purposes in which as the user
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progresses, the difficulty of these activities would increase. The research

concluded that most of the participants enjoyed using the system while at the same

time could benefit from doing such activities.

Figure 2:7. A Kinect-driven rehabilitation and movement exercise game for PwP
[44]

In another study by Palacios-Navarro et al., [45], an augmented reality game was
developed based on the Microsoft Kinect for PwP. This tool aimed to help PwP
conducting several motion rehabilitation exercises. Nonetheless, the long-term
effect and efficiency of the product were not measured while the research
concluded that participants showed interest in using the system. Finally in Rocha
et al., [46], several body joint data were gathered both from healthy and PD
diagnosed subjects based on the Kinect's skeletal data. The data then were
analysed, and several gait parameters were extracted. By comparing the healthy
subject’s gait characteristics and PD counterparts, the study could assess motor-
related parameters in PwP. Although the approach proved to have a 96 % success
rate in distinguishing PD and non-PD subjects, the system required a lot of data
analysis and processing and does not offer a real-time solution.

To our knowledge, these are the most representative research projects related to
real-time, non-invasive detection and recognition of PwP symptoms, especially for
FOG/tremor incidents. Most of the researchers have concentrated on helping the
already diagnosed patients having a better-quality life. They have focused on the
rehabilitation process by developing games or monitoring systems. Some used a
device or a sensor to be attached to or worn by the patients in order to detect the
symptoms.
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2.3.1 Footstep detection

Detecting footsteps plays an important role in gait cycle analysis and rehabilitation
purposes, as many diseases feature physical symptoms, especially gait disorders.
Having an unobtrusive gait detection system can significantly improve the
accuracy of footsteps analysis, as due to the nature of the case, on-body sensors
can sometimes be problematic and have a direct effect on the gait performance
and behaviour. Different methods have been used in extracting accurate
information related to footstep detection such as pressure-based mapping, in
which foot contacts and foot-offs can be detected based on the variance in
pressure in different areas of a foot sole [47], [48], inertial-based sensing using
different wearable sensors attached to the body [68], [75], [76], instrumented
treadmills [51]-[53] and computer vision [54], [55]. Most methods in gait analysis,

especially footstep detection, are obtrusive and expensive to implement.

As an alternative approach to the aforementioned techniques, one could consider
the employment of unobtrusive depth cameras such as Microsoft Kinect v2. As the
Kinect was designed as a replacement for conventional game controllers, it is very
effective in reading body joints data, especially from upper extremities that are
more active in a gaming session. Nevertheless, due to the Kinect’s intrinsic
inaccuracies in data acquisition, particularly for lower extremities [56], innovative
approaches have been made to compensate these issues. Moreover, due to the
nature of some degenerative diseases such as PD that feature gait related
symptoms including FOG, minor inaccuracies either greatly affect the data
collection or render the entire acquired data unusable.

Since the introduction of the Microsoft Kinect sensor, many studies have been
conducted based on the Kinect camera with regards to gait performance analysis
[57]-[63]. Nonetheless, the Kinect skeletal-based detection of footsteps in
particular, is a challenging feat due to Kinect's margin of error, especially for lower
extremities [61]. Additionally there are disadvantages to this method such as
higher computational power required for signal analysis and image processing and
intrinsic data acquisition inaccuracies, especially in Kinect sensors [64]. Moreover,
Kinect v2 in particular, lacks built-in features available in the first iteration of Kinect
such as ‘Joint Filtering’ that could compensate the sensor’s erroneous data
acquisition to some extent. This led to some innovation methods to compensate
the Kinect's aforementioned inaccuracies. For instance, in Ahmed et al., [65], a
new Kinect-based gait recognition technique was used in which human gait
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signatures were analysed using spatio-temporal changes in different skeletal
joints’ angles. Having a joint relative angle for stride detection eliminates the Kinect
sensor’s inaccuracies caused the subject’s direction or distance from the camera
[59], [66]-[68]. The research used the spine joint as the reference point as its
relative 3D coordination remains almost stationary during a gait cycle.
Nevertheless, by employing such a technique, foot contacts and foot-offs phases
will not be directly detected, but instead be estimated based on the distance and

angle of skeletal joints.

In Auvinet et al., [69], heel-strikes were estimated by calculating the distance
between knees’ joint centre along the longitudinal walking axis. To eliminate the
Kinect depth-map inaccuracies in localising joints according to a subject’s distance
from the sensor during a gait cycle (especially for foot contact detection [61]), knee
height was estimated based on anthropometric data. In another attempt by Geerse
et al., [70], a series of four Kinect v2 sensors were placed in pre-determined
locations to compensate each Kinect’'s depth inaccuracies in farther distances and
have an overall wider range of coverage. This method provided promising results
but at the expense of using an array of Kinect v2 cameras that required precise
alignment between each sensor and increased the cost considerably. Xu et al.,
[71] used a Kinect camera mounted on a treadmill while the subject performed gait
cycles in order to keep the subject’s distance to the camera consistent. In Sun et
al., [72] a rather innovative techniqgue was employed by putting the subject in a
Kinect-mounted cart to keep the subject’s distance from the Kinect consistent while

walking.

Most of the aforementioned methods can affect gait performance accuracy as they
influence the subject’s natural way of walking, while others require expensive or
difficult-to-implement improvisations. More importantly, some gait performance
analysis and step-detection scenarios such as detecting FOG in PwP, mandate
precise data reading; minor inaccuracies in joint localisation, may render the entire
data reading pointless. This research on the other hand, analyses the data
gathered from different subjects in different conditions in order to correct the
Kinect’s joint-to-ground distance data reading issues according to camera’s 3D

Cartesian Z-axis.

This research proposed two new techniques in footstep detection, one using
skeletal data and plane detection technique and another approach that is solely
based on the subject’s knee joint angle to determine foot-offs and foot contacts,
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regardless of the changes of signal acquisition accuracy due to the subject’s
location or distance to the camera in a 3D environment. The research also
evaluated the data gathered from different subjects in different conditions in order
to correct the Kinect’s joint-to-ground distance data reading issues according to

camera’s 3D Cartesian Z-axis.

2.4 Fall Monitoring and Detection

Similar to the technological developments described above, several attempts have
been made to design automated methods for detecting falls in older adults based
on a variety of techniques such as wearable devices [73]-[76] and computer vision
[77]-[79]. As falls are a major problem in PwP with FOG (during 2017 it was
determined to be a top research priority for Parkinson’s UK [80]), such
developments are particularly relevant, and should ideally be integrated with
attempts to provide sensory cues for movement. The Microsoft Kinect was also
used as a non-invasive approach for fall detection. Different techniques were used
for fall detection such as the use of Kinect depth sensor [79], [81], skeleton tracking
[58] and subject-to-floor distance determination. Additionally, some used a single
Kinect sensor while some employed a system of multi-Kinect configuration to have
a wider coverage. For instance, in Mastorakis et al., [81], the user’s body velocity
and inactivity was taken into account that made the floor detection unnecessary
for the fall detection due to the use of a 3D bounding box (the active area of
interest). This removes the need for any environmental pre-knowledge such as a

floor’s position or height.
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Figure 2:8. Subject’s fall and inactivity detection based on 3D bounding box [81]

Moreover, in Stone et al., [77], an algorithm was developed that determines a
subject’s vertical state in each frame to trigger a detected fall using a decision tree
and feature extraction. The research used 454 simulated falls and nine real fall
incidents for the trial.

In Gasparrini et al., [79], a set of raw depth data were used to extract human body
features using a depth blob technique for each frame and by taking into account
the position and distance of each blob from the others. Based on the implemented
algorithm, a fall incident will be counted as positive if the head position is close to
the ground by a certain threshold. This was feasible because the camera was
place on the ceiling facing downwards (Figure 2:9).
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Figure 2:9. A Kinect camera face-down approach for fall detection based on the
raw depth data and head-to-floor proximity [79]

Finally in Rusko et al., [82], different machine learning techniques including Native
Bays, decision tree and Support Vector Machine (SVM) were used for fall detection
in which the decision tree algorithm proved to be more accurate compared to other
machine learning techniques used in the study with over 93.3 % success rate in

detecting true positive fall incidents.

In the current study, the project’s researchers describe a novel integrated system
that not only features an unobtrusive monitoring tool for fall and FOG incidents
using the Microsoft Kinect v2 camera, but also implements an Ambient Assistive
Living (AAL) environment designed to improve patients’” mobility during a FOG
incident using automatic laser based visual cue projection. Using a dynamically
changing laser-based visual cue capable of casting lines according to patients’
orientation and position in a room, the system is capable of delivering bespoke
and tailored sensory information for each user in a manner that eliminates any

need to wear body-worn sensors.
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2.5 Summary

Footstep detection is an important measurement in rehabilitation and gait analysis
studies, as many disorders feature symptoms that directly or indirectly affect
patients’ gait cycle and walking style. There are different techniques used in
detecting footstep and evaluating gait cycles based on on-body sensors that,
although accurate, they can affect the subject’s walking style and consequently,
the data reading as the subject must wear special clothing embedded with on-body
sensors during the gait performance analysis. Consequently, an unobtrusive
approach based on the Microsoft Kinect v2 sensor would be an ideal method that
not only meets the aims and objectives of this research study, but also explores

the importance of footstep detection for FOG analysis.

Different fall detection methods have also been reviewed. From on-body sensors
to computer vision-based approaches as well as different paths in computer vision-
based detection including heuristic and machine-vision. Additionally, the attempts
towards analysing and evaluating the effect of different cueing system for FOG as
well as detection and characterisation of FOG in PwP have also been reviewed.
This laid the foundation of the methodology described in the following chapter to
Introduce two new footstep detection techniques one based on the subject’s knee
angle and one based on the subject’s ankle vertical height to the ground; Reducing
the Microsoft Kinect’s intrinsic inaccuracies in skeletal data reading for the
subject’s ankle vertical height to the ground footstep detection technique; resulting
in the increase in accuracy for the footstep detection algorithm by introducing a
new correction algorithm. Moreover, the research would provide an automatic and

remotely manageable monitoring system for PwP gait analysis and fall detection.
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Chapter 3: Background of Sensors

Technology

3.1 Introduction

In this chapter, technologies used throughout this research will be explained and
the reason behind their selection will be discussed. This chapter covers an in-
depth analysis of the Microsoft Kinect sensor, the main component for receiving
data and input for this research. Moreover, all the available drivers and SDKs for
the Kinect sensor are evaluated, and the best solution will be chosen accordingly.
Additionally, this chapter focuses on different available approaches for utilising
Kinect technologies to be used throughout this research. Different systems will be
analysed and compared against others. Their advantages and disadvantages will

also be evaluated.

3.2 Microsoft Kinect

Kinect is an add-on peripheral developed by Microsoft for its Xbox gaming console.
It is a motion sensing apparatus that can take human natural body motions as an
input. It consists of two cameras/sensors including a colour sensor and an Infrared
(IR) depth sensor that receives and interprets IR signals, allowing it to work in the
dark. By casting IR lights on objects and calculating the traverse time each beam
takes to be bounced back and received by the sensor's IR receiver, a depth map
can be drawn making motion sensing technology possible in a 3D environment.
Many believe that the original idea of the Kinect sensor came from the previous
attempts made by Sony for PlayStation EYE motion camera and Nintendo for Wii
remote, which were aimed at broadening the audiences beyond hard-core/typical

gamers.

Microsoft has made the Kinect sensor available beyond the Xbox 360 console to
home computers with a dedicated Software Development Kit (Kinect SDK) and
related documentations [83]. This enabled developers to take advantage of the
Kinect sensor hardware capabilities, creating a plethora of innovative applications;

many related to medicine and biomedical engineering.
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The Kinect sensor (Figure 3:1) has an IR emitter, which casts IR waves on the
object that can be later received by the IR depth receiver in order to render 3D

images.

Additionally, it features a set of four microphones known as Array Microphone,
which are aligned in a specific way to cancel out ambient noise and improve

sensitivity in pinpointing the source of the incoming signal.

Finally, yet importantly, it employs a motorised tilt to automatically change the

viewing angle based on the user’s vertical position.

IR Projector Indcikion Color Camera  |nfrared Camera

N\

L

i

Microphone Array

Figure 3:1. Microsoft Kinect v1 internal components [84]

By employing the depth sensor and a microphone array, the Kinect does not
require any glove or accessories to be worn by players in order to interpret their

movements; unlike other attempts made in movement-based controls.

The RGB sensor in the Kinect receives 2-dimensional colour video feeds for facial
recognition and Ul purposes. The four-microphone array, which is located along
the bottom of the horizontal bar, makes speech recognition possible with echo
cancellation and ambient noise suppression. The four microphones used in the
Kinect device are arranged in a way that minimise the environmental noise while

being able to pinpoint to the source of the voice location [85].
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Figure 3:2 demonstrates the Kinect’s two sensors, IR emitter and IR depth sensor
(monochrome CMOS sensor) that together can capture depth data from the
environment [85]. The Kinect, using these two sensors coupled with a trained
machine learning algorithm within its SDK, is able to recognise gestures and track
body joints and skeleton. The emitter, projects IR light so the receiver can capture
the reflected infrared signals for further processing. The emitter casts grid-
patterned infrared lights on the target, which leads to the creation of the depth map
information by the receiver. The generated depth map contains the information

about the position of the object in three dimensions [86].

Figure 3:2 Kinect Infrared Depth Sensor [86]

Many other depth-sensing systems similar to the Kinect, determine the depth map
of the scene based on the time it takes for the light to return to the receiver after
bouncing off objects in the sensor’s view also known as Time of Flight (ToF)
method. However, the Kinect encodes data in the IR light as it is sent and analyses
the distortions in the signal after it returns in order to get a more detailed 3D picture
of the scene in addition to the above method [85]. This 3D depth image is then

processed in software to perform human skeletal tracking.

The Kinect camera measures the depth data based on a triangulation process [87]
in which the IR emitter casts a single beam that splits into multiple beams using
diffraction grating in order to construct a dotted pattern of the scenery. The IR
receiver then captures the projected pattern, which is then compared against a
reference pattern made from a known distance plane saved on the Kinect’s
memory. Depending on the distance difference of the projected speckles and the

reference plane to the perspective centre of the IR camera, the projected speckles’
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position will be shifted in the baseline direction between the IR emitter and IR
receiver. This would result in a disparity image that enables the camera to

calculate the distance of each pixel from the corresponding disparity [88].
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Figure 3:3. Panel (a) is the perceived IR image by the Kinect. Panel (b)
represents the depth information for each pixel colour coded based on their
distance to the camera [88]
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Table 3:1 shows additional Kinect’s technical specifications.

Table 3:1. Microsoft Kinect Specifications [85][89]

Kinect Value

Viewing angle 43° vertical by 57° horizontal field of
view

Vertical tilt range +27°

Frame rate (depth and colour approx. 30 Hz

stream)

Audio format 16-kHz, 24-bit mono pulse code
modulation (PCM)

Audio input characteristics A four-microphone array with 24-bit

analogue-to-digital converter (ADC) and
Kinect-resident signal processing
including acoustic echo cancellation

and noise suppression

42 |Page



Accelerometer characteristics

A 2G/4G/8G accelerometer configured
for the 2G range, with a 1° accuracy

upper limit.

Depth Sensor Range

1.2 to 3.5 meters

Depth Image Stream

320 x 240 16-bit, 30 fps

Angular Field-of-View

57- horz., 43- vert.

Nominal spatial range

640 x 480 (VGA)

Nominal spatial resolution (at 2m 3 mm
distance)

Nominal depth range 0.8m-3.5m
Nominal depth resolution (at 2m 1 cm

distance)

Device connection type

USB (+ external power)

3.2.1 Open Source Drivers and SDKs

One of the examples of the attempts made in the Kinect open source driver
development was OpenNI Framework. It consisted of a series of Application
Programming Interfaces (APIs) for the use of programming natural interface
peripherals by making use of raw information received from the device’s
audio/video sensors. Because of its capability on interpreting raw visual and
auditory data and due to the fact that the Kinect is in fact a natural interface device,
the OpenNI framework became a good candidate for the Kinect open source

API/SDK/Driver project. The following figure demonstrates the interaction between

each component of a system based on the OpenNI Framework [90].
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Fig 3. OpenNI provides a layered abstraction for sensors and middleware to provide natural
interaction tracking.

Figure 3:4. OpenNI Framework [90]

The OpenNI organisation was responsible for developing the OpenNI framework.
OpenNI organisation is a non-profit, industry-driven community founded by

PrimeSense that was bought by Microsoft to develop the Kinect sensor.

PrimeSense was also behind the development of the NITE middleware. The NITE
middleware can be used in conjunction with the OpenNI API in order to gain
access to depth and RGB raw data from the Kinect sensor; it also makes feature
detection, joint tracking (skeleton), and gesture recognition possible. Table 3:2 is

the list of different open source Kinect drivers and SDKs.
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Table 3:2. Open Source Kinect Drivers and SDKs

Name Programming Platform Features
Language
OpenKinect/libfreenect C, Python, Linux, -Colour and
[91] actionscript, C#, Windows, depth images
C++, Java JNI Mac OS X Colourr and
and JNA, depth images
Javascript, -Accelerometer
CommonLisp data
-Motor and LED
control
-Fakenect

Kinect simulator
(libfreenect)
-Record colour,
depth, and
accelerometer

data inthe filee

CL NUI SDK and Driver C, C++, Windows  -Colour and
[92] WPF/C# depth images
-Accelerometer
data
-Motor and LED

control

Robot Operating System  Python, C++ Unix -Colour and
(ROS) Kinect [93] depth images
-Motor and LED

control

OpenNI/NITE Middleware C, C++ Windows, -User
[94] Linux, identification
Ubuntu -Feature
detection
-Gesture
recognition

-Joint tracking
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-Colour and
depth images
-Record colour
and depth data

in file

The OpenNI requires calibration before it is able to interpret joint position
information. This poses a serious disadvantage for the implementation of this
research as due to the nature of these projects, holding a pose for three seconds
or more for PwP is a difficult task. NITE implementation also requires a pose called

‘psi pose’ before it can function. Figure 3:5 demonstrates the ‘psi pose’.

Figure 3:5. Calibration of Psi Pose [95]

As mentioned before, the OpenNI’s calibration requirement is a major drawback
for clinical rehabilitation purposes. Additionally, previous attempts made on this
topic showed that the calibration of the subject’'s arm appeared to be problematic.
For instance in [86], it was concluded that the calibration tends to fail if the subject
does not hold her/his arms high enough or she/he did not bend the arms at exactly
a 90-degree angle. It was also concluded that this level of accuracy is not feasible
by most of the patients for this particular project. Developers are still investigating

the possibility of removing the calibration for the joint position accusation.
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The NITE implementation of OpenNI API can utilise up to 15 joints in which there
is a 3x3 matrix for each X, Y and Z angles. Additionally, the orientation may be
obtained at any given time; whereas in Microsoft official Kinect SDK, 20 joints can
be tracked simultaneously. The following figure shows the joints supported by the
NITE implementation alongside with their names, numbers, and orientations [94].
The position directions of each joint including X, Y and Z can be seen in in the
figure. From the Kinect sensor’s perspective, the negative X, Y and Z axes point

to the right, upward and forward (away from the sensor), respectively.

head
shoulder elbow hand
“LEFT” & ot IC (2 1% “RIGHT”

torso cenler (&

et righy hip

¥ @'_ right knee
4
k’ 'E.
C right foot

NOTE 1: Skeleton s front side is seen in this figure
NOTE 2: Upper arm is twisted such that if elbow is flexed
the lower arm will bend forwards towards sensor.

Figure 3:6. NITE Tracked Joints [94]

The NITE/OpenNI also features tools for recording the Kinect raw RGB/depth data
and saving them as ‘.oni’ extension for further analysis. The built-in tool provided
by the API can play ‘.oni’ files visually. It is also possible to import the exported
stored information into other applications [96].

3.2.2 Microsoft Kinect SDK for Windows

The Kinect SDK for Windows has several important advantages compared to its

open source counterparts discussed above. The following table compares the
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features and capabilities of one of the well-adapted open source Kinect SDK
(OpenNI) with the Microsoft official Kinect SDK [96].

Table 3:3. Comparison of OpenNI and Microsoft Kinect SDK

Features OpenNI Microsoft
Raw depth and image data  Yes Yes
Joint position tracking Yes Yes
API-supported gesture Yes No
recognition

Save raw data stream to Yes No
disk

Joint tracking without No Yes
calibration

Development in C# No Yes
Audio processing including No Yes

speech recognition

Easy installation No Yes
Number of joints available 15 20
Quality of documentation Adequate Excellent

3.2.2.1Kinect for Windows Architecture

One of the most important advantages of using the Microsoft official SDK for Kinect
(Microsoft Kinect SDK for Windows) is the fact that it does not require calibration
in order to be able to perform subjects’ joint tracking. As mentioned before, other
open source SDKs mandate the subject to perform a calibration by holding their
arms in a specific position, which proved to be rather impractical and problematic
for this project’s purpose. The Microsoft Kinect SDK for Windows also delivers
results that are more accurate in terms of joint tracking thanks to its ability to track
20 joints at the same time. Moreover, the development in C# programming
language for this project had many advantages, since its library documentations
and forum community are one of the biggest among different programming
languages. Additionally, the Kinect installation and setup are a lot easier and the

API samples and documentations are more accessible.

Figure 3:7 shows the components used in Kinect for Windows SDK.
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Kinect for Windows SDK Architecture

alempleH

-~
L]
=
=
=
=
o
o
L

Bpoy] 1850

Kinect for Windows SDK ™ Windows Components

Figure 3:7. Microsoft Kinect for Windows SDK Architecture [97]

There are two different colour image palettes available in the official Kinect SDK
including RGB and YUV [98]. There are also different resolutions available to be
chosen for the depth and image streams. Although one could manually customise

the resolution based on a specific project's needs as well.

The resolution options for the depth map include 640x480, 320x420 or 80x60 pixel
frames [98]. During the evaluation, it was observed that each pixel from the depth
image feed also contains an indication of which human subject is present at that
position in the scenery. This was enabled by using the Microsoft Kinect SDK for
Windows machine learning algorithm that can distinguish pixels belonging to a

subject from the background [99].

As discussed earlier, the Microsoft Kinect SDK for Windows makes simultaneous
20 joints tracking possible. The figure below demonstrates the position of the

joints.
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Figure 3:8. Microsoft Kinect SDK for Windows Traceable Joints [100]

3.2.2.2 Supported Systems and Languages

The Microsoft Kinect SDK for Windows supports three programming languages
including Visual Basic.NET, C# and C++. The SDK can support Visual Basic.NET
and C# Dby using two dedicated Dynamic-Link Library (DLL) files called
‘Microsoft.Kinect.dll’ and ‘Microsoft.Speech.dll’ for visual and audio compatibilities,

respectively [84].

For C++ on the other hand, it allows the programming language to access directly

the hardware resources without any intermediate DLL files [84].

The system requirements for Microsoft Kinect SDK for Windows are as follow [84]:
Supported Operating Systems

Windows 7 or above

Hardware Requirements

32-bit (x86) or 64-bit (x64) processor

Dual-core 2.66-GHz or faster processor
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Dedicated USB 2.0 bus

2 GB RAM

A Microsoft Kinect for Windows sensor

Software Requirements

Microsoft Visual Studio 2010 Express or other Visual Studio 2010 edition or above
.NET Framework 4.0 or above

Note: To develop speech-enabled Kinect for Windows applications, the Microsoft
Speech Platform SDK v11 should be installed.

3.2.2.3 Supported Modes

There are two types of modes available in the Microsoft Kinect SDK for Windows.
The first one is the ‘Default’ mode, which as the name suggests is ideal for general
conditions that sets the viewable depth range to 800mm — 4000mm. The second
mode is known as ‘Near’ mode, which its functionality is similar to ‘macro’ mode
on digital cameras where it focuses on close objects and it sets the viewable depth
range to 400mm — 3000mm. In the Near mode, the sensor recognises objects from
40 centimetres to 4 meters away from the IR receiver. Figure 3:9 shows the

difference between the Default and Near modes in terms of distance sensitivity [2].

Distance from sensor (m)

00408 3 4 8
Default
Range
Near
Range
I Unknown
[ ]Too Near
Bl Too Far

I Normal Values

Figure 3:9. Kinect Default vs. Near mode in terms of distance of recognisable
objects [101]
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For subject’s position, the Microsoft Kinect SDK for Windows supports two modes
including ‘Standing’ and ‘Seated’ mode. The Standing mode is used when almost
all the 20 joints are visible to the depth sensor. The Seated mode as the name
suggests, is ideal for situations when the subject is seated or only its 10 upper
body joints (shoulders, elbows, wrists, arms and head) are visible to the depth
sensor [102]. The following figure shows both the Standing and Seated modes

including the trackable body joints.

Figure 3:10. Standing vs. Seated modes [102]

The Microsoft Kinect SDK for Windows also provides ‘Joint Filtering’ in which the
joints’ position tracked in the skeletal data can be smoothened across different
frames in order to improve stability and minimise jittering issues [102]. This can be
due to the Kinect’s intrinsic inconsistencies or decreases in signal acquisition over
longer range that will be discussed in more details in section 2.3.1 Footstep

detection.

3.2.2.4 The Human Tracking Mechanism

The mechanism behind the joint tracking system and subject tracking in the
Microsoft official SDK recognises joints by processing the data coming from the
depth sensor. It first makes up a rough estimation for each pixel in the depth map.

Then in adds the probability of that pixel being correct, known as ‘Confidence
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level’. After this, the system is able to select the most likely skeleton for that specific
subject. Microsoft employed a machine learning technique in order to improve the
Kinect joint and skeleton recognition capability. They used many people around
the world and recorded their movements and different poses using the Kinect
sensor. They then chose each correct joint position by hand from the stored
dataset and fed the information into the algorithm. They even used professional
motion capture emitters that can be worn by subjects to improve the accuracy of
the Kinect. By collecting and correcting all the information gathered, they trained
the algorithm to recognise the body joints successfully in almost all cases [99],
[103].

3.2.3 Microsoft Kinect v2

The Microsoft Kinect v2 (Figure 3:11) is the second iteration of the Kinect series
designed for the Xbox One gaming console as a replacement for conventional
gamepads released in 2014 by Microsoft Corporation. It is a ToF camera featuring
the ability to process data at two gigabits per second speed making it more
accurate compared to its predecessor; its depth and IR sensor resolution have
been increased to 512 x 424 and its colour sensor encompasses a 1080p

resolution video running at 30 frame per seconds (fps) [104].

Figure 3:11. Microsoft Kinect v2 [105]

The number of skeletal joints that the sensor can detect has been increased from
originally 20 to 25 (Figure 3:12). Moreover, the number of concurrent user
detection has also been increased from the originally two to six people. The

camera’s field of view has also been increased, enabling users to operate in a
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smaller area and closer to the sensor than before. Due to these enhancements,
the accuracy of data collection, especially in capturing skeletal information, has
been significantly improved. Nonetheless, the Kinect for Windows SDK 2.0
removed many features available to its predecessor such as ‘Joint Filtering’,

‘Standing/Seated mode and Default/Near mode.
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1 - Hip center (v1) / Spine base (v2) 11 - Right wrist 21— Spine shoulder (only v2)
2 —Spine (v1) / Spine middle (v2) 12 — Right hand 22 - Left hand tip (only v2)
3 — Shoulder center (v1) / Neck (v2) 13 - Left hip 23 — Left thumb (only v2)

4 — Head 14 — Left knee 24 — Right hand tip (only v2)
5 — Left shoulder 15— Left ankle 25— Right thumb (only v2)
6 — Left elbow 16 - Left foot

7 — Left wrist 17 — Right hip

8 — Left hand 18 — Right hip

9 — Right shoulder 19 — Right ankle

10 - Right elbow 20 — Right foot

Figure 3:12. Trackable body joints from the skeletal data Kinect v1 vs Kinect v2
[46]

3.3 Summary

This chapter aimed at discussing the state of the art of Kinect v1 and v2 sensors’
drivers, API, and SDKs. The technical details and the technologies involved in
image recognition process used by the Kinect sensor were discussed. Their
advantages and weaknesses over each other have been evaluated concluding
that the Microsoft Kinect SDK for Windows has many advantages over other open

source SDK tools. It also concluded that the official SDK is the ideal candidate for
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the project as it can recognise more body joints (25 for Kinect v2) simultaneously
and has the ability to track joints without the need of calibration. Additionally,
developing application using one of the Kinect SDK supported programming
languages (in this case, C#) proved to be a lot easier and the documentations and
samples from the community helped to deliver a better-quality software. Thus,
thanks to the improvements of the Kinect v2 compared to its predecessor, the

Kinect v2 based on Kinect for Windows SDK has been selected for this research.
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Chapter 4. Methodology

4.1 Introduction

In this chapter, the research’s experimental setup and conditions are explained.
Moreover, different types of fall detection methods including heuristic and machine
learning approaches are explored in order to find the most reliable method suitable
for this study. Furthermore, as a requirement for FOG detection, two approaches
in footstep detection one based on the subject’s ankles distance to the ground and
one based on indirect observation via subject’s knees angles during a gait cycle
are also evaluated. This chapter also focuses on the software design and
hardware prototype for the study including the GUI, serial connection and signal
differentiation, and data segmentation. Last but not least, the ethical approval

process is also mentioned.

4.2 Fall Detection

Automatic fall detection is one of the most widespread research topics in
healthcare and AAL as many physical conditions include falls as one of their main
symptoms. Having a system that can autonomously detect a fall incident could
decrease the risk of injuries and consequently the treatment expenditures.
Furthermore, it helps to evaluate gait performance and fall analysis and provides

valuable data for further studies.

There have been significant studies such as [73]-[76], [106], [107] with regards to
fall detection using different techniques over the past two decades, each with its
advantages and drawbacks. Some of the earliest approaches in fall detection were
based on wearable devices and attached sensors. Although accurate, they
mandate the user to carry extra devices, charge batteries, wear special clothing or
sensors to be attached to the body, making them uncomfortable to use. Moreover,
these apparatuses may interrupt the normal daily activity and consequently gait
performance analyses. In this research study, two different techniques (heuristic
and machine learning) were tested and compared using the Microsoft Kinect v2
sensor. The above techniques are fundamentally different in their performance

under diverse situations.
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4.2.1 Heuristic Approach

For the heuristic fall detection approach, an algorithm was developed to track a
subject's head 3D Cartesian coordinate location at all times. By using the Kinect
skeleton tracking, the spatio-temporal position of each joint, with respect to other
joints, can be determined. The proposed system holds the information of the
subject head's position and velocity in one second time buffer at all times. This is
required to calculate the average velocity of the subject’s head. Based on the
vector that the subject’'s head is moving towards and the distance between the
head and the floor, a fall incident can be detected if the average velocity reaches
1 m/s and the subject’'s head distance to ground is less than 10 cm. These
thresholds were determined experimentally during the testing phase; after setting
different values, the results proved that the above values provided the least false
positive detection rate. This minimises the chances for false positives’ occurrence
by not taking into account low-velocity falls such as laying down or high ground
distance incidents such as sitting on a chair. Additionally, the system is designed
to distinguish between different types of falls such as critical falls in which the
subject is unable to stand up and recover after the incident. This is achievable by
adding a timer that can be user-defined to set a threshold for the maximum time

elapsed before it reaches a critical falling point.

Figure 4:1 demonstrates the developed fall detection technique using the heuristic
approach. It shows a subject has fallen (on the floor) and the system recorded his
velocity, direction, and distance to the floor when an object partially blocked the
Kinect’'s camera view. Figure 4:2 shows the system’s capability to compensate

when the Kinect’'s camera field of view is partial obstructed.
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Height (m) Velocity (mm/s) Crientation
[ Export Data 0.05700000002 0.39516677497 Up
[] Enable Export

Figure 4:1. Heuristic approach software in action (objects partially blocking the
sensor’s view)
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Height (m) Velocity (mm/s) Orientation
[ Export Data | 0.29699999094 0.00319991981 Up
[] Enable Export

Figure 4:2. Heuristic approach software in action (partial obstructed field of view)

4.2.1.1 Floor Detection

As a part of the heuristic fall detection technique, the detection of the floor is
needed in order to calculate the subject’s head distance to the ground. A surface
floor can be determined by using the scalar equation of plane.

Equation 4:1. The scalar equation of plane

Ax+By+Cz+D=0

where A, B and C are the components of a normal vector that is perpendicular to
any vector in a given plane that are determined by the Kinect once at least a
subject is present in a scene and D is the height of the Kinect from the level of the
floor. Moreover, x, y and z are the 3D coordinates of a joint (subject’s head). Ax,
By, Cz and D are also provided by the Kinect SDK once a flat floor is detected by

the camera.
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Once the floor is determined, the distance of a given joint's 3D Cartesian

coordinate location to the floor can be yield as follows:

Equation 4:2. The Kinect’s skeletal joint distance to the ground
d_Ax+By+Cz+D
VA? + B% + (C?

4.2.1.2 Acceleration and Velocity

To determine the subject’s head fall acceleration and velocity, Euclidean distance

eguation was employed to calculate the distance changes over time.

Equation 4:3. The Kinect’s skeletal joint velocity

V& — 212+ (Vi — yii1)? + (2 — 2;1)?

where x;, y;, z; and x;_1, yi—1, Z;—1 are the current and past (one second

difference) subject's head 3D Cartesian coordinates, respectively.

4.2.2 Machine Learning Approach

For the machine learning approach, an AdaBoostTrigger machine learning
technique was implemented. It is an event detection technique that outputs a
discrete or binary result. It is based on an AdaBoost machine learning algorithm
that operates depending on its dataset and trainings, which combines a series of
weak classifiers into a final boosted output [108]. In case of this study, the weak
classifiers were determined automatically by the Kinect Visual Gesture Builder
(VGB), which is a software developed by Microsoft for Kinect v2 machine learning
training purposes [109]. A total of 29 minutes training videos based on 435 GB of
30 fps, 1080p uncompressed RGB and 424p depth data were recorded and stored
as a training dataset from the participants. Using Kinect VGB (Figure 4:3), these
videos were tagged frame by frame to specify a falling incident’s true positive (real
fall) and false positive (laying on the floor or sitting on a chair) moments. The

details of the number of false positives and true positives performed by the
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participants are mentioned in section 4.2.3. Even though VGB software is available
for developers, it only facilitates the machine learning and training process not the
detection phase. Thus, a system was developed to utilise the training set produced
by VGB software in order to detect the fall incidents. After the training phase, VGB
could automatically generate AdaBoost’s weak classifiers based on body joints’
vector, velocity, acceleration, and orientation in order to produce a discrete
outcome according to the tagged videos. The information was processed to
generate a series of weak and strong classifiers and calculate their confidence
levels. The generated results were given to the software that was written for the
machine learning approach to be compared against the real-time subject's
postures. Two factors (velocity and subject’'s head distance to the ground) were

used for the machine learning approach.

Kinect Studio j¢&———

Visual
Gesture
Builder

Recorded
Clips

Gesture

Database

Application

Gesture
Runtime

Figure 4:3. Visual Gesture Builder data flow diagram [109]
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Figure 4:4. Visual Gesture Builder software

Figure 4:4 demonstrates the video tagging training process. On the left, a true
positive fall is marked and tagged for training as shown by blue bars at the bottom;

on the right, colours represent the distance of 3D objects to the camera.

Figure 4:5 shows the developed software for fall detection using the machine
learning approach in action when a fall is about to happen, and the system shows
the confidence factors accordingly. Figure 4.6 depict the software behaviour when
a false positive fall has happened, and the system shows the confidence factors

accordingly.
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Velocity Confidence:

0.439183

Fall Floor Hit
Confidence:

0.5118148

[] Enable Export

Figure 4:5. Machine learning approach software in action (objects partially
blocking the sensor’s view)

Velocity Confidence:

0.3329355

Fall Floor Hit
Confidence:

0.4750551

[] Enable Export

Figure 4:6. Machine learning approach software in action (partial obstructed field
of view)
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4.2.3 Testing Environment and Subjects
The Kinect v2 sensor was placed at a height of one meter facing parallel to the
surface. Due to the Kinect v2 wider field of view, subjects were placed at a distance

range of one to two and a half meters.

Eleven healthy subjects (Table 4:1) participated in the trial for both heuristic
and machine learning approach. For each approach, each subject on average
performed six true positive and six false positive fall incidents. False positive
incidents were performed by laying down or sitting on the floor. For machine
training phase, extra postures were performed by each participant to train the
system to detect false positive.

Table 4:1. Test Subjects’ Characteristics (n=11; 8 males, 3 females)

Subject Range  Standard
Characteristics Deviation
Age 24-31 2.34
Height (cm) 163-187 8.31

Ankle Height (cm) 9.5-12.5 1.17

with Shoes
Weight (kg) 51-100 16.35
BMI (kg/m2) 17.3-30.1 3.83

4.3 FOG and Footstep detection

The Microsoft Kinect RGB-D sensor has been proven to be a reliable tool for gait
analysis and rehabilitation purposes. Although it is accurate for detecting upper
body part movements, even the second iteration of the Kinect sensor lacks the
accuracy when it comes to lower extremities. As detecting foot-off and foot contact

phases of a gait cycle is an important part of a gait performance analysis, using
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the Kinect for detecting these phases is problematic due to the Kinect’s intrinsic

inaccuracies.

The detection and analysis of FOG in PwP is an important step towards the main
goal of this research study, which is providing dynamic visual cues to the patients
during a FOG incident. Thus, two footstep detection techniques were used for this

study.

4.3.1 Joint Height Footstep detection

Eleven healthy subjects (Table 4:1) participated the trial in which they were asked
to walk in pre-defined paths while their skeletal data being captured and analysed
by the Kinect camera.

Subjects were asked to walk in pre-defined paths: 12 per subject, by walking
towards the camera while having the Kinect camera’s angle at 0, 10, 22 and 45
degrees to the ground at Kinect’s height of 0.65, 1 and 1.57 metres to the ground,
while their skeletal data was captured and analysed by the Kinect camera. The
software was written in C# using Kinect for Windows SDK version 2.0.1410.19000.

For simplicity, this report only shows the subjects’ left ankle throughout the figures.

As an extra step, our Kinect v2 data acquisition was compared against a gold
standard Vicon T10 Mocap ToF camera. The Vicon and Kinect v2 recorded each
session simultaneously while the frame rate of the recorded data from the Vicon
camera was lowered down to match the Kinect v2 approximate 30 frames per
second. The Vicon camera was used to ensure that the initial measuring of the

subjects’ actual ankle height is accurate.

For each test, the first 10 seconds of the subject walking for our system to calculate
the correction algorithm were recorded. Subjects were asked to walk towards the
Kinect from the distance of 4.33 metres to 1.38 metre to the Kinect camera. The
collected data were used in the correction algorithm to rectify the Kinect’s intrinsic
inaccuracies mentioned previously, in order to provide more accurate subject’s
joint-to-ground data. Consequently, the results were used to detect subjects’
footsteps including foot-offs and foot contacts directly based on their ankles’

distance to the ground.
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4.3.1.1Correction Algorithm

As mentioned in section 2.3.1, in order to assist the system in correcting the
inconsistencies in the footstep detection algorithm, the relation between the
subject’s ankles Z-coordinates to the Kinect’'s sensor and subject’s ankles distance

to the ground was examined.

The first 10 seconds of the Kinect skeletal data, including the subject’s ankles
height to the ground and subject’s ankles distance to the camera for each test
subject, were recorded and filtered to include only standstill positions in order to
acquire a baseline of calculated ankles’ height to the ground. The data was then
run through a regression analysis by the developed system to adjust the depth-
map correction algorithm, which was based on geometrical transformation. A two-
point linear equation was used to estimate the correct ankle’s height to the floor at

any given time based on the subject’s ankle Z-axis distance from the camera.

Equation 4:4. Correlation between a joint’s Z-axis and Y-axis

3’_3’123’2_)’1
Z—2Z1 Zy—2Z4

where Z is the ankle’s Z-axis distance to the camera and y is ankle’s 3D Euclidean

distance to the ground at any given time. After an initial 10 seconds data recording
of all trials for the correction algorithm analysis, the value of y in Equation 4:4 was

calculated as follows:

Equation 4:5. Corrected value for a joint’s Y-axis

y =zx0.013 £ 0.05

Equation 4.5 is derived from simplifying and substituting numbers collected from

the initial 10 seconds of data recording in Equation 4:4.

The following equation was then used to correct the depth map stream data
reading. By applying the corrected y value yielded from Equation 4:5 to the

following equation, the true value of the d can be calculated as follows:
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Equation 4:6. Joint distance-to-ground correction technique

di=d;+(U—z)2

Zj
where d; is the corrected estimate of ankle’s distance to ground for the ith stride,
d; is the Kinect’'s measured distance of the subject’s ankle yielded from Equation
4:2, z; is the ankle’s Z-axis distance from the Kinect, and y; is the correction factor
for the ith stride. 1 is the maximum visible distance of Kinect in Z-axis and remains

consistent. All the values are in meters as detected by the Kinect’'s depth sensor.

4.3.1.2 Footstep detection Algorithm
Kinect skeleton data were used to calculate ankles’ joint 3D Cartesian coordinate
locations. Once a joint was localised using Kinect skeleton data, the surface floor

was determined based on the scalar equation of planes (Equation 4:1).

As Figure 4:7 demonstrates, ankles and feet are the only Kinect-discoverable
joints having significant displacement changes in relation to gait cycles while
retaining least errors compared to the movements of a human upper extremities.
As mentioned previously, although some studies [57] discussed methods based
on joints’ anterior and posterior displacement changes, this proposed method can
be used in scenarios that joints’ anterior and posterior displacement changes have
little correlation with gait cycles such as FOG incidents in PwP. As observed during
the study, Kinect's detection of ankles was less susceptible to noise and
inaccuracies compared to feet. A filter was applied to the signal in order to acquire
a baseline of subjects’ ankles and feet height only in a stand-still position. An
average inaccuracy was calculated based on the deviation between the estimated
ankles’ height and the actual ankles’ height. Moreover, the inaccuracy between
the estimated feet’s height and the actual feet’s height was also calculated. The
results showed 25.69 % and 44.43 % inaccuracies for all subjects’ ankles and feet,
respectively. Moreover, according to [56], it was concluded that in the lower
extremities, a subject’s feet are more susceptible to noise due to their close
distance to large planar surfaces. Thus, subjects’ ankles were chosen to evaluate

and track footsteps.
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Figure 4:7. Subject's joints height to the ground in a gait cycle

A foot-off event is considered to have occurred when a foot’s ankle 3D Euclidean
distance from the floor has increased to more than a particular threshold based on
the actual ankle’s height. Consequently, a foot contact event is triggered when the
ankle 3D Euclidean distance from the floor of the same foot has returned to its
original value in a time period of more than 250 ms. The empirically 250 ms timing
threshold was set to avoid the false positives flag ups due to the Kinect
inconsistencies and noise. The Euclidean distance of an ankle’s 3D Cartesian

coordinate location from the ground can be yielded based on Equation 4:2.

Figure 4:8 demonstrates the subject’s footstep detection process including foot-
offs and foot contacts. The algorithm loops at approximately 30 frames per second

while the Kinect camera is tracking the subject’s movements.
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Figure 4:8 Foot step detection algorithm flowchart

Figure 4:9 shows the calculated height of a subject's ankle using Equation 4:2
(before the correction was applied). The algorithm checks whether the subject’s
ankle height value is greater than the actual size of the subject’s ankle. If the result
was true, the algorithm then starts a timer to calculate the swing time. As soon as
the initial condition becomes false, the algorithm then stops the timer and
increment the number of footstep for each foot. Subjects were asked to move
towards the Kinect camera and remain still at different distances from the Kinect’'s

lens optical centre. The Kinect RGB feed was then aligned with its depth/skeleton

69|Page



feed using the Kinect coordinate mapping technique. The figure demonstrates the
Kinect’'s inaccuracies in detecting a subject’s ankle distance to the ground. Even
in standstill posture, as the subject’s Z coordinates (depth) to the Kinect’'s sensor
changes, the Kinect reads different value of the subject’s ankle distance to the

ground.
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Figure 4:9. Panel (a) shows a subject's left ankle height to the ground at different
distances from the Kinect camera. Panel (b) shows the subject’s ankle Z-axis

distance from the Kinect camera
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Figure 4:9 Panel (a) shows a subject's left ankle height to the ground at different
distances from the Kinect camera while the subject is walking towards the Kinect
camera before the correction was applied. The peaks in Panel (a) show the steps
taken by the subject. The dotted line represents the subject’s actual ankle height
in a stand still position. Panel (b) shows the same subject’s ankle Z-axis distance

from the Kinect camera during the same walking session.

It was observed that not only the subject's ankles height was changing in
accordance to its Z-axis distance from Kinect camera, but also the calculated
distance of the ankle from the floor was not consistent even in a stand-still position.
The study showed that as the subject’'s ankle Z-axis distance from the Kinect
camera decreases, the subject’s calculated ankle height to the ground also

decreases.

4.3.2 Knee Angle Based Footstep detection

4.3.2.1 Angle Determination

As studies previously noted, the Kinect skeletal joints relative 3D coordinates data
reading are less susceptible to noise and inaccuracies compared to their distance
to the ground data acquisition [4,13-15]. Thus, for each leg, a knee joint angle was
determined by considering the location of the neighbouring joints such as hip and
ankle in the Cartesian coordinate. The hip, the knee and the ankle position in a
Cartesian space are defined with three vectors, with the Kinect being at the origin
of the 3D space. This vector definition is expressed in Equation 4:7.
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Kinect

Figure 4:10. Determination of @ using hip and ankle joints

Equation 4:7. Knee joint 3D angle determination

Were v,;, and v, are the 3D vectors connecting the subject’s hip to the knee and
knee to the ankle, respectively that is also depicted in Figure 4:10. Moreover,

U, and U, are the unit vectors of vy, and 9,4, respectively.

4.3.2.2 Footstep detection Algorithm

A foot-off event is considered to have occurred when the knee angle of one foot
has decreased to less than a particular threshold, which was experimentally
acquired to be 170 degrees. Moreover, a foot contact is triggered when the knee
angle of the same foot has returned to its original value (170 > 6 < 180) within a
time period of more than 200 ms. The 200 ms timing window was set to avoid the

false positives flag ups due to the Kinect inconsistencies and noise.
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Figure 4:11. Step detection (foot-off and foot contact) process flowchart

Figure 4:11 demonstrates the subject’s footstep detection process including foot-
offs and foot contacts. The algorithm checks whether the subject’'s knee angle
value is lesser than the defined threshold. If the result was true, the algorithm then
starts a timer to calculate the swing time. As soon as the initial condition becomes
false, the algorithm then stops the timer and increment the number of footstep for
each foot. The algorithm loops at approximately 30 frames per second while the

Kinect camera is tracking the subject.

4.4 Software Development

The proposed system also includes a comprehensive Graphical User Interface
(GUI) that enables doctors and healthcare providers gather important information

about a patient’s gait performance such as stride time, steps in a given time and
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total number of steps in real-time. This data can be recorded and later exported to

a patient's database profile for future analysis and evaluations.

The developed software can also enable a user to log in and observe the patient’s

status as well as provide support should the patient require. Figure 4:12 illustrates

the network diagram facilitating the relay of video streams via the internet to the

smartphone and client applications.
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Figure 4:12. Network connection diagram including outgoing and incoming data

packets over the internet

A smartphone companion application was also developed for Universal Windows

Platform (UWP), that provided notification and a live video stream of a patient to

be monitored.
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Figure 4:13. Design of the system’s companion smartphone application

Figure 4:13 shows the design of the system’s smartphone companion application
for healthcare providers, doctors and carers. The application provides vital
information about the subject including the number of FOG incidents as well as
notification to the user if a critical fall incident occurs. Moreover, it provides the
remote user the ability to send visual or auditory cues during a FOG incident or
contact emergency services. Based on the user preference, the system can
contact a person in-charge via email or notifications in the companion smartphone
application including a live stream of the incident and the time stamp of the
incident’s date and time. A carer, once notified, can also initiate a Skype
conversation where he/she can talk to the patient and provide further support. The
carer or the person in-charge can be a member of a user defined list in the app
setting so only the users who are added can gain access to the patient's

information and provide remote support.

75|Page



4.4.1 FOG Detection

In a past study, [58] we have implemented a process of FOG detection in using
the gait cycle and walking pattern detection techniques published in [57], [110].
Once the developed system detects a FOG incident, it will turn on the laser-based
visual cues and start determining the appropriate angles for both vertical and
horizontal servo motors. After passing a user-defined waiting threshold or
disappearance of the FOG incident, the system returns to its monitoring phase by
turning off the laser projection and servo motors movements. Figure 4:14 shows

the GUI for the developed system application.

Figure 4:14. Graphical User Interface for the developed software

The left window shows a PD patient imitator during his FOG incident. The right
window shows that the subject is being monitored and his gait information is being
displayed to healthcare providers and doctors. As it can be seen in the ‘FOG
Status’ section displayed in the red rectangle, the system has detected a FOG
incident and activated the laser projection system to be used as a visual cue
stimulus. The red circled area shows the projection of laser lines in front of the
subjects according to its feet distance to the camera and body direction. The
developed system also allows further customisation including visual cues distance

adjustments to the front of the patient.

During the initial testing phase, 11 healthy subjects were invited, consisting of both
males and females ranging from ages 24-31, with the age mean of 27 and (SD) of
2.34, mean height of 174.45 and (SD) of 8.31 cm ranging from 163 to 187 cm.
They were asked to walk in pre-defined paths: 12 paths per subject, walking

towards the camera and triggering a FOG incident by imitating the symptom while
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having the Kinect camera positioned at a fixed location. The subjects’ skeletal data
were captured and analysed by the Kinect camera in real-time. The room that was
used for conducting the experiments consisted of different living room furniture to
mimic a practical use case of the device. This not only yields more realistic results,
but also tests the system in real-life scenarios where the subject is partially visible

to the camera and not all the skeletal joints are being tracked.

4.5 Hardware Development

4.5.1 Servo Motors Angle Detection

The Kinect v2 was used to determine the subjects’ location in a 3D environment
and localise the subject’s feet joints to calculate the correct horizontal and vertical
angles for servo motors. To determine the subject’s location, Kinect skeletal data
were used for joints’ 3D coordinate acquisition. A surface floor can be determined
by using the vector equation of planes (Equation 4:1). This is necessary to
automate the process of calculating the Kinect’s height to the floor that is one of

the parameters in determining vertical servo angle.

For vertical angle determination, the subject's feet 3D coordination was
determined and depending on which foot was being closer to the Kinect in Z-axis,
the system selects that foot for further calculations. Once the distance of the
selected foot to the camera was calculated, the vertical angle for the servo motor

is determined using the Pythagorean theorem, as depicted in

Figure 4:15. The subject’s skeletal joints’ distance to the Kinect on the Z-axis is
defined in a right-handed coordinate system, where the Kinect v2 is assumed to
be at origin with a positive Z-axis value increasing in the direction of Kinect’s point

of view.
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Figure 4:15. Vertical angle determination

where a is the Kinect’'s camera height to the floor that is the same as variable D
from Equation 4:1 and c is the hypotenuse of the right triangle, which is the
subject’s selected foot distance to the Kinect camera in the Z-axis. 0 is the
calculated vertical angle for the servo motor. Note that the position offsets in X and
Y axes between the Kinect v2 camera and laser pointers/servo motors were taken

into account to achieve the most accurate visual cue projection.

Figure 4:18 illustrates a subject’s lower extremities Z-axis distance to the Kinect
camera (Figure 4:15 variable c) while the subject is moving towards the camera.
It shows that the Kinect v2 determines a joint’'s Z-axis distance to the camera by
considering its height to the ground. i.e. the higher the value of a joint’s Y-axis to
the camera’s optical centre is, the farther the distance it has, to the camera in the
Z-axis. This indicates that unlike the Kinect's depth space, the Kinect skeletal
coordinate system does not calculate Z-axis distance (Figure 4:15 variable c) in a
perpendicular plane to the floor and as a result, the height of the points that in this

case are joints, are also considered.
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Figure 4:16. Subject’s lower body joints distance to the Kinect camera in the Z-

axis during a walking session

To test the Kinect v2 accuracy in determining both vertical and horizontal angles
according to the subject’s foot distance to the Kinect camera and body orientation,
a comparison between the aforementioned Vicon and Kinect camera was

performed.

Vicon T10/Kinect v2 Foot Joint Z Axis Distance
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Figure 4:17. Subject’s left foot distance to the camera in Z-axis using Kinect v2

and Vicon T10
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The above figure shows the Kinect v2 accuracy in determining a subject’s joint (left
foot) distance to the camera in Z-axis after applying our suggested correction
algorithms compared to a gold standard motion capture device (Vicon T10). It was
concluded that Kinect v2 skeletal data acquisition accuracy was very close (98.09
%) to the industry standard counterpart. The random noise artefacts in the signal

were not statistically significant and did not affect the vertical angle determination.

The subject’s body direction that determines the required angle for the horizontal
servo motor can be found via the calculation of rotational changes of two subject’s
joints including left and right shoulders. The subject’s left and right shoulder joints’
coordinates were determined using skeletal data and then fed to an algorithm to

determine the body orientation as follows:

L Shoulder , Subject

al .
| JES

Projected < N : R_Shoulder

Laser Lines ORI

Kinect, Servo motors
and laser pointers

Figure 4:18. Horizontal angle determination (note that Kinect sees a mirrored

image thus shoulders are reversed)

Equation 4:8. Horizonal Servo Motor Angle Determination

0,=|90%(sin!|shoulderA-shoulderB|)|
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where d in Figure 4:18 is the Z-axis distance difference to the camera between the

subject’s left and right shoulders.

Once the d based on the Equation 4:8 was calculated, the angle for the horizontal
servo motor (64) can be determined by calculating the inverse sine of 8. Depending
on the subject’s direction of rotation to the left or right, the result would be
subtracted or added from/to 90, respectively. This is because, in order to cast laser
lines in front of the subject, the horizontal servo motor should rotate in reverse

compared to the subject’s body rotation.

4.5.2 Motor Control

A serial connection was needed to communicate with the servo motors controlled
by the Arduino Uno microcontroller. The transmitted signal by the developed
application needed to be distinguished at the receiving point (i.e. Arduino
microcontroller) so each servo motor can act according to its intended angle and
signal provided. A multi-packet serial data transmission technique similar to [111]
has been developed. The data were labelled at the transmitter side, so the
microcontroller can distinguish and categorise the received packet and send
appropriate signals to each servo motor. The system loops through this cycle of
horizontal angle determination every 150 ms. This time delay was chosen as the
horizontal servo motor does not need to be updated in real-time due to the fact
that a subject is less likely to change its direction in very short intervals. This

ensures less jittery and smoother movement of horizontal laser projection.

4.5.3 Design of the Prototype System

A two-servo system was developed using an Arduino Uno microcontroller and two
class-3B 10mW 532nm wavelength green line laser projectors as shown in Figure
4:19a; green laser lines have been proven to be most visible among other laser
colours used as visual cues [112]. An LCD display has also been added to the
design that shows all the information with regards to vertical and horizontal angles
to the user. Figure 4:19c shows the developed prototype system used in the
experiment at different angles including the Kinect v2 sensor, pan/tilt servo motors,
laser pointers and the microcontroller. Figure 4:19b shows the top view of the
prototype system including the wiring and voltage regulators. A 3D printed caddy
was designed to hold the laser pointers (Appendix J).
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Figure 4:19. Developed prototype of the automatic visual cue system. a) The two
step motors controlling the horizontal and vertical alignment of the system. b) A
top view of the Kinect v2 combined with the micro controller and voltage

regulators c) A view of the prototype system in action

As mentioned before, a micro controller based on Arduino Uno was employed to
controller the movement of both horizontal and vertical servo motors as well as
providing signals to the laser pointers. The board was also used to provide
information to the LCD panel during the monitoring phase. Figure 4:20 illustrates
the schematic diagram of the designed prototype hardware and the connection
between each component.
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Figure 4:20. Schematic diagram of the designed prototype hardware
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4.6 Focus Group and Patients Participation

Once the prototype system including the hardware, software and algorithms were
chosen for the study, PwP where invited to participate in a focus group. The aim
of the focus group was to review the functionality and performance of the
developed system and provide valuable feedback on how to improve the prototype
system. Fifteen PwP (12 male, 3 female) participated in the focus group in which
seven PwP volunteered to directly interact with and evaluate the system. The 15

volunteers were split up in to three groups of five people.

They were invited to attend an event where the system’s capabilities were
demonstrated in terms of monitoring patient's FOG status, fall-detection, and
providing sensory cues for improving locomotion during FOG. Participants were
provided the opportunity to experience the system themselves as an option. They
were allowed to walk towards the camera while being monitored, assess the
system’s capabilities for visual cues projection and observe the dynamic laser lines
in action, as majority suffer frequent FOG. Moreover, the falling incidents were
simulated by a healthy adult to demonstrates the system’s fall detection and live
support capabilities. Seven of those 15 participants tested the system.
Nonetheless, all 15 of them observed the prototype system in operation. Seven
patients who volunteered to test the system were split in to three groups, attending

in three different sessions.

Participants were recruited from local support groups managed by Parkinson’s UK
(Appendix E). Potential participants were given written information about the study
and were invited to participate (Appendices F and G). They were reminded that
they were under no obligation to take part and could withdraw at any time. All
participants provided written and informed consent (Appendix C). All investigations
were carried out according to the principles laid down by the Declaration of Helsinki
of 1975, revised in 2008. Ethical approval for the research was granted by Brunel
University London’s ethics committee (Appendices B and D). A risk assessment
investigation was also conducted in order to assess the testing environment and

laser projection system (Appendix A).

The population age of the 15 PwP participating in the focus group ranged from 54-
78, with a standard deviation (SD) of 8.01 years of having PD, population (SD) of
4.99 ranging from 0.5 to 18 years and daily FOG frequency population (SD) of 4.31

ranging from 3 to 20 episodes (Table 4:2). The aim of the focus group was to
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review the developed system functionality and performance. During the sessions,
those who volunteered to test the system were instructed to walk towards the
camera in pre-defined paths within the distance range of 4.33 meters to 1.38 meter
while their gait and locomotion were being tracked by the developed system. The
Kinect was placed perpendicularly at a height of 1.57 meters from the ground.

Table 4:2. Patients Participants (* indicates those who volunteered to try them

system)

Patient Gender Age Years of PD  Average Daily
FOG
occurrence

S1 Male 60 9 3

S 2* Female 54 7 5

S3 Male 77 7.5 5

S 4* Male 72 18 15

S5 Male 74 8 20

S 6* Male 73 14 10

S7 Male 70 10 10

S8 Male 72 2 5

S 9* Female 72 17 10

S 10 Male 76 12 5

S11* Male 70 10 10

S12 Female 78 0.5 10

S13* Male 71 5 5

S 14* Male 92 2 10

S 15 Male 70 8 10

Mean N/A 72.06 8.66 8.86

4.7 Summary

This chapter provided the methodology used for conducting this study including
the implementation of different approaches required by this research. For fall
detection, two different methodologies including heuristic and machine learning
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were used. In order to estimate FOG events, footsteps occurrences were also
explored using two different methods one based on knee angle and one based on
the subject’s ankles height to the floor, in which a new correction algorithm was
introduced to address the Kinect’s intrinsic inaccuracies. Moreover, the prototype
design of the system including the software and hardware was developed during
this stage and put on test. Several PwP were also invited to test the prototype as
part of a focus group. The detailed information about the results of the experiments

will be explained in the next chapter.
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Chapter 5: Results and Discussion

5.1 Introduction

This capture covers the results and data found during this research. The conditions
for each experiment conducted in this study will be indicated and analysed.
Moreover, this chapter includes the comparison of the results of this study against

previous findings in related studies mentioned in the literature.

5.2 Experimental Setup

5.2.1 System Specifications

The system’s hardware specifications used in all the computations and collection
of the data phases as well as the machine learning and testing process are as

follow:

Model: Viglen Genie Full

CPU: Intel (R) Core(TM) i7-4790 CPU @ 3.60GHz

Internal Memory (RAM): 24.00 GB (23.8 usable) DDR3 in Dual Channel mode
Graphics Card: AMD FirePro W5000 (2 GB VRAM)

System Type: 64-bit Operating System, x64-based processor

Operating System: Windows 8 Enterprise upgraded to Windows 10 Education

The developed software was written in C# using Kinect for Windows SDK version
2.0.1410.19000 while the companion smartphone application was based on
Windows 10 Mobile (10.0; Build 10240) and the client software was developed

using Windows Presentation Foundation (WPF).

5.2.2 Testing Environment

A testing environment was used to carry out the trials as below:
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Figure 5:1. The testing environment: the subject is walking diagonally towards
the Kinect camera while his body joints are being tracked

The Kinect sensor was setup at different angles ranging from 0 to 45 (0, 10, 22
and 45) degrees to the ground and at different heights 0.65, 1 and 1.57 meters in
order to identify any possible differentiation in results based on the camera angle
and height factors.

For further evaluation of the system, its outputs had to be compared for accuracy
to a system considered as a golden standard. A series of eight synchronised Vicon
T10 motion capture cameras providing full room coverage were used alongside
the Kinect v2 camera. The test subjects were asked to walk in a pre-determined
path while their skeletal joints were being monitored by both the Kinect v2 and
Vicon cameras. Subjects also performed upper-body rotation while being in a

stand still position for the Kinect’s horizontal angle calculation.

Figure 5:2a shows the process of collaborating virtual markers attached to a
subject for Vicon cameras where a subject in a T-pose for her ankles height, as
well as her joints’ position to be calculated by both Vicon and Kinect systems. The
Vicon cameras and Kinect v2 captured each session simultaneously while the
frame rate of the recorded data from the Vicon cameras was lowered down to
match the Kinect v2 at approximately 30 frames per second.

Figure 5:2b and Figure 5:2c show real-time 3D data representation of both the
Vicon cameras and Kinect v2, respectively.
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Note that the motion capture suit used in the experiment were intended for the
Vicon cameras only as the Kinect v2 does not require any special clothing for its
skeletal detection system to function. Subjects were also asked to wear normal
clothing after the initial ankle measurement phase while their movements were

being recorded by Kinect v2 in different situations (camera heights and angles).

Figure 5:2. 3D data acquisition using Kinect v2 and Vicon T10 cameras

5.2.3 Test Cases
For the trial testing, 11 subjects (Table 4:1) participated by walking in pre-

determined paths in 12 walking sessions including diagonally walking towards the
camera, while their body data was being recorded and analysed by the system

using Kinect v2.

5.3 Kinect vl Frame Rate Analysis

The frame rate information was collected based on different options in the software
to determine the impact of each feature on the system performance as well as the
frequency of obtaining the joint positions. It was clear that if the sampling rate
decreases, there will not be enough data for the system’s algorithms to operate
effectively. The minimum frame rate required by the system to determine the joint

positions was low (between 5 to 10 FPS). It was observed that the use of depth
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imaging of the API decreases the frame rate by a huge factor. The following table
compares the obtained data frame rate from the system concerning different

settings.

Table 5:1. Frame rate comparison of different Kinect v1 capturing settings

Frame Rate 1 2 3 4 5 6 7 8

Analysis

Depth Image v v v v
640x480

Depth Image v v v v
320x240

One Subject in v v v v
the Scene

Two Subject in v 4 v v
the Scene

Live v v v v
Coordination

Feed Enabled

Minimum Frame 29 27 22 15 5 0 0 0
Rate (FPS)

Average Frame 295 289 254 16 6 0 0 0
Rate (FPS)

Maximum 30 30 27 23 8 0 0 0
Frame Rate
(FPS)

The following diagram demonstrates the effect of each capturing setting on the

system performance.
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Figure 5:3. System Performance in FPS

It was observed that when a second subject enters the field of view, the frame rate
dropped significantly. The system needs to do extra data processing for the
second individual and consequently, it slows down the overall system’s
performance. Currently there is no control over the number of tracking joint in the
API. Moreover, when the ‘Live Data Feed’ check box is enabled, the system halted
although it did not crash. The current implementation of the Kinect v1 sensor was

not capable of handling live feed information of three joints each in 3D.

As the result, either a very low resolution (320x240) had to be chosen to be used
in the final implementation of the application or one had to go with Kinect v2. As
mentioned before, although Kinect v2 has higher resolution (1080p) for its RGB
data stream and has many improvements over Kinect v1, it is missing a lot of built
in features in its API such as ‘Joint Filtering’. Nonetheless, by implementing the
developed correction algorithm, especially for the Joint-to-Ground footstep
detection technique, many of these missing features could be compensated. Thus,
the Kinect v2 was chosen for the use of this study as its advantages outweighs its

disadvantages.
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5.4 Fall Detection

During the experimentation stage of this research study, two different fall detection
approaches for the system have developed and evaluated. One based on a
heuristic design and one based on machine learning technique using
AdaBoostTrigger. Same dataset were used to train the machine learning algorithm
and test the heuristic method.

For heuristic approach, as expected, the system showed good results with high
accuracy. Although each subject’s fall incident had different characteristics in
terms of velocity and postures, the implemented algorithm detected 95.42 % of
falls successfully. Figure 5:4 shows a subject’s head fall velocity as detected by

the system.

Heuristic - Head Velocity
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Subject's Head Velocity (m/s)

Figure 5:4. Heuristic — Subject’s head fall velocity (true positives and false
positives are shown as green and red circles, respectively)

As the above figure shows, there are five major falls with considerable velocity
detected by the system. These data then were analysed by the algorithm and
compared to the subject mean head’s Y-axis height (Figure 5:5) to eliminate false
positives. Note that the subject’s height is measured as a 3D Cartesian coordinate

point located in the middle of the head.
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Figure 5:5. Heuristic — Subject’s head height to floor

In order for the system to detect a falling incident with higher accuracy, the signal

was filtered, normalised and the earlier-mentioned thresholds such as velocity,

acceleration and the subject’s head distance to ground were set in order to ignore

false positives. A conditional statement was applied to ignore signals when the

subject’s head distance to the ground is higher than 10 cm or its velocity is less

than 1 m/s.

Figure 5:6 shows the same subjects’ falling incidents after correction.

Note that the whole process is automatic and done in real-time by the developed

system.
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Figure 5:6.

Heuristic - Detected Falls

09 O O

08
07
06 O
05
04
03
02

0.1

1 201 401 601 801 1001 1201 1401 1601

Frames

Heuristic — Filtered true positive fall detection’s confidence level (true
positives are shown as green circles)
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As the above figure illustrates, the system managed to detect three discrete fall
incidents during the trial for the subject. The Y-axis shows the system's confidence
in fall detection with one being the absolute certainty. As the set of instructions for
fall detection algorithm was implemented in software, the heuristic approach
showed a similar result in both scenarios (one with objects partially blocking the
sensor’s view and one with partial obstructed field of view). Nonetheless, in partial
obstructed field of view condition, the accuracy of true positive detection was lower
depending on whether the subject’s fallen body was fully seen by the Kinect. In
both conditions, the obstructed joints’ 3D Cartesian coordinate location tracking
was compensated and predicted using ‘inferred’ state enumerate, a built-in feature
in the Kinect SDK. By implementing the ‘inferred’ joint state, the joint data were

calculated, and its location was estimated based on other tracked joints.

For machine learning approach, two factors were taken into account. The system
was built to calculate both velocity and the subject’s head closeness to the ground
by importing false positive, false negative and true positive tagged-video samples.
Results show that our system (mentioned in 4.2.3) required about 18 minutes to
calculate and process all training videos including 11 subjects’ fall incidents in
different conditions and 11 subjects’ false positive training videos. Overall, 435 GB
of 30 fps, 1080p uncompressed RGB and 424p depth video data were processed
by the system for a total of 29 minutes training videos. Figure 5:7 shows the
likelihood of the same subject reaching the threshold fall velocity as a confidence

level zero to one. False positives are shown with red circles.
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Figure 5:7. Machine learning — Subject’s fall velocity threshold confidence level
(false positives and true positives are shown as red and green circles,

respectively)

Figure 5:8 shows the confidence level for detecting the same subject’s distance to

the ground as a fall incident happens.
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Figure 5:8. Machine learning — Subject’s distance to the ground confidence level

As the above figure demonstrates, the machine learning approach proved

to be less accurate compared to the heuristic method due to the limited number of

subject’s samples [113].
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Figure 5:9. Number of true positives and flase positives detected by Kinect based
on the size of the training dataset [113]

The accuracy of an AdaBoostTrigger algorithm is highly dependent on the number
of training samples. Nevertheless, by introducing a second confidence factor into
the equation and merging both confidence factors, the system managed to cancel
out most of the false positives. Figure 5:10 shows the combined confidence level
for the subject’s fall on the floor and fall velocity. The graph shows that once the
two signals are combined, most of the false positive detection was weakened and
consequently, the successful detection signals have been boosted and
normalised. The green circles show true positive fall incidents with highest
confidence level whereas the red circle indicates an error in picking up a false

positive incident as a true positive.
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Figure 5:10. Machine learning — Fall detection overall confidence from combining
the threshold fall velocity and distance to the floor factors (false positives and
true positives are shown as red and green circles, respectively)

Figure 5:11 shows the data once the system passed it through a filter to

ignore signals, which either of the probability levels (threshold fall velocity or

subject’s distance to ground) is below 60 %.
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Figure 5:11. Machine learning — Filtered fall detections’ confidence level (true
positives and false positives are shown as green and red circles, respectively)

Combining two sets of conditions achieved a slightly higher detection rate.

Nevertheless, in order to observe a noticeable improvement in detection of true
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positives, the number of dataset and training data should be significantly increased
[113]. Overall, the system behaved differently for each testing trial. The algorithm

managed to detect a maximum of 88.33 % of true positive falls successfully.

Table 5:2 shows the results for each fall detection approach true positive success

rate for each participant.

Table 5:2. Heuristic and machine learning fall detection success rate comparison

Fall Detection  Heuristic (%) Machine Learning (%)

Approach
S1 94.98 88.12
S2 95.11 87.98
S3 95.62 88.21
S4 95.24 88.65
S5 95.10 87.86
S6 95.16 88.03
S7 96.21 88.45
S8 96.02 88.92
S9 95.35 88.37
S10 95.72 88.82
S11 95.21 88.29
Average 95.42 88.33

5.5 FOG and Footstep Detection

As a part of FOG detection for the developed system, two footstep detections
capable of detecting of foot-offs and foot contacts phases of a gait cycle were
developed and evaluated. One approach was based on direct footstep detection
technique using subject’s ankles distance to the ground and another based on the
subject’'s knees angle. For the former approach, due to the Kinect's intrinsic
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inconsistencies in data stream, a correction algorithm was also developed and

applied to maximise accuracy.

5.5.1 Ankle Distance to Ground Approach

Figure 5:12 shows that after the correction technique based on the two-point linear
eguation was applied, the data reading proved to be consistent, and the calculated
ankle’s height was closer to the actual measured height (in the most commonly
used range of 1.6 to 2.9 metres from the Kinect camera), regardless of the
subject’s location to the camera. The dotted line represents the subject’s actual

ankle height in stand still position
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Figure 5:12. Subject's left ankle height to the ground at different distances from
the Kinect camera after correction algorithm was applied. The dotted line

represents the subject’s actual ankle height in stand still position

9|Page



(a) Left Ankle Height

~——QOriginal ——Corrected

Height (m)

0.07
0.06

L0s
LSS
109
159
Los
LS
108
158

J;
[l

LoL
LSl
L0g
sz
LOE
LSE
Lok

Frames

(b) Left Ankle Height

——Corrected ——Distance From Camera

Height (m)
Distance (m)

1oL
1Sl
102
15
L0E
513
L0F
S

w w
= o

109
159
104
1S4
108
158

Frames

(c) Subject’s Walking path
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Figure 5:13. Comparison between the original and corrected subject ankle’s

height and the effect of the joint to the camera.

Figure 5:13 Panel (c) shows a subject’s walking path towards the Kinect camera.
The walking path consisted of two phases (t1) walking towards the Kinect camera
and (t2) moving away from the Kinect camera. The subject was at 45 degrees in
reference to the Kinect cameras. Figure 5:13 Panel (b) shows the subject’s left

ankle height to the ground and its Z-axis distance to the Kinect camera. The result
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showed that the ankle’s angle to the Kinect's camera references point does not
affect the data reading and the correction algorithm. Panel (a) compares the
subject’s left ankle height to the ground during gait analysis in both scenarios (with
and without the correction being applied). The dotted line represents the subject’s

actual ankle height in stand still position.

It was observed that the Kinect’'s height to the ground did not have any impact on
the data collection whereas its angle to the floor proved to have a statistically
significant effect on the data collection and readings. While the Kinect's data
collection and consequently the proposed correction algorithm accuracy were at
their highest when the Kinect’s angle to the floor was within the range of 15+3 and
45+3 degrees, angles higher/lower than this range proved to be problematic and
inaccurate. A possible explanation would be the effect of the Kinect’s limited field
of view on covering subjects’ joints and detecting floor plane during the entire gait

cycle.

Figure 5:14 illustrates the effect of different Kinect’s angle to ground on its data
collection accuracy and the proposed correction algorithm. The corrected data was

then used to calculate the gait characteristics and the number of footsteps.
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Subject C's Left Ankle Height Before Correction (Kinect Angle 80)
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Figure 5:14. Kinect data collection accuracy before and after the correction
algorithm being applied at different angle to the ground. The dotted line

represents the subject’s actual ankle height in stand still position.

Table 5:3 presents the Kinect v2 inaccuracies comparison for both before and after
the correction algorithm was applied. It is clear that the margin of error varies
between different subjects, which can be explained by different Kinect behaviour
in data collection based on subjects’ different shoes and trousers types, as well as

colours and materials. Nonetheless, the difference between subject’s actual and
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calculated ankle height deviation for all subjects fall under the estimated margin of

this study.

Table 5:3. Kinect v2 accuracy in detecting subjects’ ankle height before and after
the correction algorithm being applied

Subject Ankle Height Ankle Height
Number Inaccuracies Inaccuracies

without with

Correction Correction

(%) (%)

Right Left Right Left

1 23.45 23.78 4.02 4.38
2 14.56 16.62 3.60 4.78
3 29.36 28.28 5.91 5.03
4 30.11 34.40 7.50 8.26
5 31.47 29.44 3.52 5.51
6 25.01 21.79 1.56 1.38
7 23.19 23.05 7.73 8.42
8 29.49 29.55 3.74 497
9 31.31 29.57 5.52 6.86
10 30.02 29.18 8.19 8.97
11 15.09 16.55 2.68 3.01
Average 25.73 25.65 4.90 5.59
Standard 5.87 5.48 2.10 2.24
Deviation

A correction algorithm was applied to subjects’ ankles distance to the floor in order

to compensate for the Kinect’'s v2 inconsistencies in joints’ localisation, which
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ultimately made footstep detection based on skeletal data and plane detection
techniques possible. The initial ankle’s height data reading inaccuracies were
decreased after the correction algorithm was applied from 25.72 % and 25.66 %
(R/L ankle) to about 5.59 % and 4.91 % on average, among all subjects, therefore,
resulting in greater accuracy in footstep detection from the original 42.06 % and
43.65 %, to 79.37 % and 80.16 % on average, for right and left ankles, respectively,
among all subjects. It was studied that the effective range for the correction
algorithm was between 1.6 to 2.9 metres from the Kinect camera; in which before
and after this range, the data reading inaccuracies returned back to the original
values. Moreover, although the Kinect’'s height did not affect the data reading, the
camera’s angle had a statistically significant effect: it was observed that while the
camera’s angle to the floor facing downward is within the range of 15+3 and 45+3
degrees, the data were also at their highest accuracy. This can be due to the fact
that angles lower than 153 and higher than 45+3 degrees cannot cover most of
the subject’s joints and detecting floor plane in a frame due to the Kinect’s limited

field of view.

5.5.2 Knee Angle Approach

Eleven subjects were asked to walk in pre-determined paths while their skeletal
data was captured by Kinect v2, which was placed at different heights and angles
to the ground. Figure 5:15 illustrates a subject’s walking session and knee joints
behaviour during a gait cycle. It shows that in a standstill pose or a during foot
contact phase, the knee joint angle remains approximately at 176 degrees. The
acquired signal required no further processing as it had low Signal to Noise Ratio
(SNR) for gait performance analysis resulting in a low latency, low-resource

consumption footstep detection.
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Figure 5:15. Knee joint angle value during a gait cycle

Figure 5:16 shows the same subject’s walking session, walking towards the Kinect
v2 camera. It indicates that the knee joint angle reading remained unaffected by
the joint’s distance-to-Kinect changes, as it is relative to the subject’s skeletal

joints. The subject’s right knee data was omitted in the figure for simplicity.
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Figure 5:16. Knee joint angle and its distance to the camera during a gait cycle

The Knee joints angle performance during a gait cycle was compared against a
different footstep detection method based on the subject’s ankle joints distance-
to-ground (Figure 4:9), in order to evaluate how the footstep detection accuracy
has improved. The following figure shows the same walking session based on the

subject’s ankle joint distance-to-ground.
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Figure 5:17. Ankle joint distance-to-ground value during a gait cycle

As Figure 5:17 illustrates, not only joints height to the ground detection by the
Kinect v2 is noisy and less accurate, but also inconsistent and highly dependent

on subject’s distance to the camera due to the Kinect’'s aforementioned issues.

As mentioned previously, the Kinect v2 camera was placed at different distances
and angles compared to the ground plane. It was observed that different heights
from the ground (including 0.65, 1 and 1.57 meters) did not have any effect on the
knee joint angle measurement as long as the subject was within the Kinect v2
detection range. Different Kinect camera angles (0, 10, 22 & 45 degrees
compared to the ground plane) were also studied, in order to determine the
possibility of different outcomes. It was concluded that similar to the Kinect’s
height, the camera’s angle did not have a significant effect on the measurement
of the knee joint angle. Nonetheless, it was observed that as soon as a knee’s
next closest joint (such as hip or ankle) becomes undetected due to an obstruction
or limited field of view, the knee joint angle reading becomes unreliable. Thus, this
study did not cover the effect of angles larger than 45 degrees to the ground due

to the Kinect’s limited field of view.

It was also concluded that the footstep detection using solely the knee joint angle
is a reliable method to detect foot-offs and foot contacts phases of a gait cycle.

The system showed 86.37 % and 86.67 % accuracy for left and right foot,
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respectively, compared to the ankle joint distance-to-ground detection algorithm
accuracy of 43.65 % and 42.06 % for left and right foot, respectively. Moreover,
the proposed method had less footstep detection latency (200 ms) compared to

the 250 ms delay in the ankle joint distance-to-ground detection algorithm.

5.6 Laser System

As mentioned in the previous chapter, at the centre of this research is the creation
of a visual aid (a set of laser lines) to be projected in front of the patient
experiencing a FOG incident, in an attempt to provide a visual stimulant to assist
him/her taking the next step. The implementation of this relies in a set of two
independent servo motors (capable of moving horizontally and vertically) being
able to project the laser lines in front of the patient. This would mean that the
position and the orientation of the subject within the space have to be read and

taken into account.

Figure 5:18 demonstrates the calculated vertical angle based on the subjects’ feet
joints distance to the Kinect camera in Z-axis. The right foot has been omitted in

the graph for simplicity.
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Figure 5:18. Vertical servo motor angle relation to the subject’s foot joint distance

to the Kinect camera in Z-axis
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As Figure 5:18 demonstrates, the system provides highly accurate responses
based on the subject’s foot distance to the camera in Z-axis and the vertical servo

motor angle.

Subjects were also asked to rotate their body in front of the Kinect camera to test
the horizontal angle determination algorithm and as a result the horizontal servo
motor functionality. Figure 5:19 shows the result of the calculated horizontal angle

using Equation 4:8 for left and right direction.
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Figure 5:19. Horizontal servo motor angle changes according to the subject’s

body orientation and direction during a test

Figure 5:19 shows how the system reacts to the subject’s body orientation. The
horizontal angle determination proved to be more susceptible to noise compared
to the vertical angle calculation. The subject was asked to face the camera in a
stand still position while rotating their torso to the left and to the right in turns. This
is due to the fact that as the angle increases to more than 65 degrees, the farther
shoulder to the camera would be obstructed by the nearer shoulder and as a result,
the Kinect should compensate by approximating the whereabouts of that joint.
Nonetheless, this did not have any significant impact on the performance of the

system.
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A series of pan/tilt servo motors have been used alongside laser line projectors to
create a visual cuing system, which can be used to improve the mobility of PwP.
The use of the system eliminates the need to carry devices, helping patients to
improve their mobility by providing visual cues. It was observed that this system
can provide an accurate estimation of the subject’s location and direction in a room
and cast visual cues in front of the subject accordingly. The Kinect’s effective
coverage distance was observed to be between 1.5 to 4 meters form the camera,
which is within the range of the area of most of the living rooms, thus making it an
ideal device for indoor rehabilitation and monitoring purposes. To evaluate the
Kinect v2 accuracy in calculating the vertical and horizontal angles, a series of

eight Vicon T10 cameras were also used as a golden standard.

As a future improvement addressing to increase coverage of the system, the two
servo motors can be mounted on a rail attached to the ceiling capable of moving

around and projecting the lines in front of the patient.

5.7 Focus group try outs and used feedback

Fifteen patient having Parkinson's and experiencing frequent FOG were provided
by the Parkinson's UK institute, following an ethical approval by the University. The
participants, were instructed to walk towards a fix-positioned Kinect v2 camera in
a pre-determined path within the distance range of 4.33 meters to 1.38 meter in a
room hired for the focus group event (Figure 5:20) while their gait and their
movements were analysed by the developed system. Figure 5:20 shows the
process of testing the system by one participant while simulating a FOG. Images

are from the point of view of the Kinect camera.
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Figure 5:20. A PD patient volunteering to try out the system’s capabilities in
detecting FOG. Visual cues are projected in front of him, on the floor based on
his whereabouts

Figure 5:21 shows the design of the system’s smartphone companion application
for healthcare providers, doctors and carers. The application provides information
about the subject including the number of estimated FOG incidents as well as a
notification to a carer if a critical fall incident occurs. Moreover, it provides the carer
with the ability to send visual or auditory cues during a FOG incident or contact
emergency services. Based on the user preference, the system can contact a
relevant person via email or through notifications in the companion smartphone
application including a live stream of the incident and the time stamp of the relevant
date and time. An approved carer, once notified, can also initiate a Skype
conversation where he/she can talk to the patient and provide further support.
Figure 5:21 shows the system behaviour when a fall incident occurs. As Figure
5:21 depicts, the developed software was designed as an open-ended solution on
an UWP, that can provide other types of cues such as auditory cues to the patients.
However, while feasible, such additions are beyond the scope of this specific
study.
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Figure 5:21. System’s companion smartphone application in action

At the end of the session, participants were asked to provide feedback (Appendix
H and I) and complete a survey form in which the results are listed in the following

table:
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Table 5:4. Focus Group Questioner Feedback

Question Strongly Agree (%) Neither Disagree Strongly
agree (%) agreenor (%) disagree
disagree (%)

(%)

The system would be easy touse.  33.3 46.6 13.3 6.6 0

The system FOG detection was 20 66.6 13.3 0 0
accurate.
Auditory cue would also be 20 46.6 20 13.3 0

beneficial to be implemented.

The system fall detection was 53.5 47 0 0 0
accurate.
| am concerned about my privacy 0 0 20 40 40

when | use the system at home.

The overall system was helpful in 26.6 53.3 20 0 0
improving my mobility, especially

during a FOG.

The visual aid was helpful in 13.3 86.6 0 0 0

increasing my mobility and

walking performance.

| would use the system in my 40 40 20 0 0
house.

The results obtained in the above table related to fall detection are based on
demonstration made by a healthy participant not the volunteers. When asked
about the healthcare provider remote communication method with the patient
during a critical fall incident, eight patients suggested a telephone call while six
suggested a Skype video call and one remained neutral. While the prototype
system cost £137.69 to build excluding the controlling PC, patients suggested that
they would be willing to pay between £150-500 to have the system installed in their
homes. Nevertheless, if the prototype is released as a commercial device, other
economic factors including insurance, maintenance, and the necessity to install
multiple systems in different rooms would inevitably escalate the price. Finally,
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when asked about possible improvements to the final product, eight of the patients
suggested that a hybrid/portable method that can also provide outdoor visual cues,
would be very beneficial while seven wanted it to be as simple as possible to keep

the cost down and have a separate device for outdoor purposes.

The QR code (Appendix K) demonstrates the use of our system in action upon
detection of a FOG event by providing visual cues and notifications to doctors and

carers.

5.8 Summary

This chapter provided the empirical results and findings for the research verifying
the hypothesise provided in the previous chapter. After an in-depth analysis of the
Kinect vl capabilities and its performance, it was concluded the Kinect v2
introduces more advantages over its predecessor including higher frame rate and
resolution. Despite the fact that the Kinect v2 SDK was in beta phase and missing
a lot of built-in features, as the advantages of using it, outweighed its
shortcomings, thus, the Kinect v2 was chosen for this project. Moreover, for fall
detection, as mentioned before, due to the limited training dataset, and also due
to the relative simplicity of the detection (fall), heuristic approach was proven to be
more accurate in detecting true positive falls compared to the machine learning
counterpart. Additionally, as discussed, for footstep detection and consequently
the FOG tracking for patients, the knee angle method was chosen as the preferred
method for this study due to the fact that it lacks the inaccuracies and limitation of
the other method, which was based on the subject’s ankle height to the ground.
Combined with the developed hardware and software interface, the chosen
methods yielded promising results when the system was demonstrated to the

focus group and tested by some of the volunteers, based on their feedback.
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Chapter 6: Conclusions and Future Work

The aim of this study was to Introduce two new footstep detection techniques one
based on the subject’s knee angle and one based on the subject’s ankle vertical
height to the ground; Reducing the Microsoft Kinect's intrinsic inaccuracies in
skeletal data reading for the subject’s ankle vertical height to the ground footstep
detection technique; resulting in the increase in accuracy for the footstep detection
algorithm by introducing a new correction algorithm. Moreover, this research
aimed to provide an automatic and remotely manageable monitoring system for
PwP gait analysis and fall detection. The results of which would lead to the
development and evaluation of an integrated system capable of detecting falls and
FOG, providing visual cues orientated to a user’s position, and providing a range
of communication options. Based on the patients’ feedback, and in accordance
with previous research studies, it was concluded that our system can indeed be
helpful and used as a replacement to alternative, potentially less-capable
technologies such as laser canes and laser-mounted shoes. Due to the system
being an open-ended, proof of concept, the system’s coverage is limited to only
one axis. Nonetheless, future improvements can eliminate this constraint by
mounting the laser pointer, servo motors and the Kinect camera on a circular rail
attached to the ceiling capable of moving/rotating in accordance to the subject
position and direction in a room. Although this research was focused solely on the
automatic projection of dynamic visual cues, the system was designed to

accommodate additional features in future developments, such as auditory cues.

6.1 Conclusion

Overall, based on the patients’ feedback, the system represents a viable solution
for detecting fall incidents and providing help during a critical fall when the patient
is unattended. Furthermore, the system has the capacity to provide an unobtrusive
and automatic visual cue projection when needed at home during a FOG episode.

This study set out to explore the possibility of implementing an integrated system
based on Microsoft Kinect v2 capable of unobtrusively detecting falls and FOG
while providing remote support to the patients using developed applications. The

system was designed to provide visual cues in a form of laser lines in front of the
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patient upon the detection of FOG in order to improve locomotion. Additionally, this
research set out to conduct a comparison between different Kinect’'s open source
APIs such as OpenNI/NITE against the official Microsoft Kinect SDK for Windows
and investigated advantages and disadvantages for each SDK. It was concluded
that that the Microsoft official SDK for Windows was ideal for the implementation
of our project, as it does not require calibration before the joint tracking process
can take place. Nevertheless, OpenNI/NITE implementation proved to have a
reliable and more consistent joint tracking capabilities as well as a built-in support

for streamed image saving to the local disk for further analysis.

As mentioned before, the project’s researchers gathered joint coordination data
from our test subjects (male and female) with different heights, body builds, and
walking styles. During our analysis, it was found that our developed system was
able to identify the movement phases (e.g. moving, standing, sitting, etc.). Our
evaluations suggested that the consistency and stability of joint position tracking
data using Kinect v1 were acceptable when only one subject was present in the
field of view. However, the system efficiency, performance and consequently the
sampling rate dropped exponentially when an additional subject appeared in the
field.

Moreover, the ideal testing environment for such a project was investigated. By
studying the past projects reports and our experimental results it was concluded
that the increase in the subject’s distance from the sensor helped the consistency
of the joint tracking process. However, a distance further than 3.5 meters proved
to be problematic where the system was no longer able to identify different joint
positions. As mentioned earlier, the optimal subject’s distance from the Kinect v1
sensor was in the range of 2 to 2.5 meters. The ideal location of the camera was

proved to be at the height of 2.2 meters facing downward.

The rotation of the subject in different angles caused a huge decrease in the
system consistency to track joints. It was observed that having two or three Kinect
sensors interconnected to each other might solve the issue, as there would be a
360-degree coverage of the testing environment. Nevertheless, this approach
would require extra computation and preparations in terms of calibration between
the cameras as well as time synchronisation between data feeds from each

camera.
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The type and the colour of the subject’s clothes did not appear to make a significant
impact on the joint tracking quality. Nevertheless, more investigation is required

towards the effect of clothing on the Kinect’s recognition capabilities.

The aforementioned limitations of the Kinect v1 and the hardware enhancements
and improvements including a wider field of view, farther coverage, and higher
resolution in depth and colour data of the Kinect v2 proved it to be a better
candidate for the use on this project. Consequently, , a Kinect v2 has been used
for gait performance analysis and evaluation due to its higher accuracy.

For fall detection, two different approaches including heuristic and machine
learning (using AdaBoostTrigger algorithm) based on Microsoft Kinect v2 sensor
were implemented and evaluated. The efficiency and accuracy of both were

compared against one another in similar conditions.

Heuristic approach showed higher accuracy in terms of detection of true positive
falls as it works independent to the number of pre-operation training videos.
Heuristic algorithms are very efficient for discrete detections such as falls, as long
as the detection case is simple enough to be implemented algorithmically. On the
other hand, AdaBoostTrigger machine learning approach effectiveness is greatly
dependent on the number of training samples. Correct and accurate sample
tagging plays a significant role in reducing latency and increasing accuracy.
Nevertheless, the overall success rate of a machine learning algorithm with a small
training dataset can be increased by implementing and combining more

confidence factors.

Overall, the machine learning approach is ideal for detections that are more
sophisticated in terms of body movements and require a lot of thresholding and
variables such as complex and continues body gestures or gait disorders, but for
simpler cases such as fall detection, its disadvantages outweigh its benefits;
mainly due to its increased needs for system resources (i.e. CPU and memory) to
process information beforehand. Moreover, video tagging is a painstaking task and

requires a lot of time and training data.

Thus, it is concluded that for fall detection with a small number of training samples
(11), the heuristic approach provides results that are more accurate. Nonetheless,
by increasing the number of training data, the accuracy of the machine learning
algorithm would also be increased. Machine learning approach accuracy would be
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significantly higher in complex scenarios where a continuous and sophisticated

gesture needs to be detected.

Although the attempts undertaken on this research helped improving the accuracy
of footstep detection and joint 3D localisation at different distances, using only a
single Kinect v2 sensor and based on the ankle joint distance-to-ground, which
can be used in various gait analysis projects. It was concluded that for FOG
symptom detection in PwP, which requiring a higher accuracy in data reading for
footstep detection due to the nature of the symptoms, a more accurate technique

is needed, hence the implementation of a knee angle footstep detection.

In this thesis, a novel low-latency and low-resource approach in detecting
footsteps including foot-offs and foot contacts phases of a gait cycle based on a
subject’s knee joint angle was also introduced. It was concluded that neither the
camera’s height nor its angle to the ground has a significant impact on the data
acquisition of the subject’s knee joint angle, and as a result, on the footstep
detection process. Nonetheless, the detection of the proposed system was limited
to the Kinect v2 practical skeletal distance coverage (1.6 to 4 meters). Moreover,
the system showed a consistent measurement, as long as none of the knee’s
neighbouring joints (joints that are needed to be calculated for knee joint angle
determination) is obstructed or undetected by the Kinect v2 camera.

Overall, due to the low latency and high accuracy of this technique and the fact
that the system’s accuracy is unaffected by the Kinect v2 intrinsic inaccuracies or
its height or angle, the proposed system can be used for gait assessment
scenarios that require a high level of accuracy as it is capable of detecting subtle

movements.

The results of this research also verified that it is possible to implement an
automatic and unobtrusive FOG monitoring and mobility improvement system
while being reliable and accurate at the same time. Nonetheless, there are many
limitations to this approach including the indoor aspect of it and the fact that it
requires the whole setup including the Kinect, servos, and laser projectors to be
included in the most communed areas of a house such as the living room and the
kitchen. Having said that, the affordability (the entire setup except the controlling
PC will cost £137.69), and ease of installation would still make it a desirable
solution should more than one setup need to be placed in a house. Nevertheless,

the system’s main advantages such as real-time patient’s monitoring, improved
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locomotion and patient’s mobility, unobtrusive and intelligent visual cue projection,
make it in overall, a desirable solution that can be further enhanced for future

implementations.

Additionally, the results of this research demonstrate the viability of using an
automatic and unobtrusive system for monitoring and improving the mobility of
PwP based on the Microsoft Kinect camera. The implementation of a visual cuing
system based on laser lines for improving FOG incidents in PwP has been
developed and reviewed by 15 PwP. Feedback provided regarding the usability of
the system showed promising results. All the participants either ‘agreed’ or
‘strongly agreed’ with the fact that the system’s visual cues are helpful in increasing
their mobility and walking performance. 86.6 % of those who tested the system,
were satisfied with the system’s FOG detection whereas 13.3 % neither agreed or

disagreed about the system’s competency in detecting FOG incidents.

Overall, compared to current commercially available alternative devices, this
system provides a broadly affordable solution while, theoretically, providing a
means of improving patients’ mobility unobtrusively. Moreover, this solution is one
of the few that can function in an automated fashion, both in terms of event
detection, cue provision and when establishing communication with third parties.
The user does not need to wear something, charge a device, carry anything or
switch it on or off. The ease of use and simple installation process compared to
other available solutions can make the system a desirable solution for indoor

assisting purposes as suggested by participants in the current study.

6.2 Future Work

This research laid the foundation to explore the feasibility of commercially available
apparatuses such as Microsoft Kinect sensor as a home monitoring service for
PwP as a rehabilitation fall detection tool. It also provided the possibility of using
an automatic and unobtrusive system to deliver on-demand visual cues based on
laser lines in front of a patient regardless of one’s position and orientation in a
room to improve one’s locomotion and gait performance during a FOG incident.
As a next step, one could improve the system’s coverage with a series of this
implemented system to be installed in PwP houses to cover most of the communal
areas or areas where the patient experiences the FOG the most. One could also

investigate the possibility of using such systems attached to a circular rail on a
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ceiling that can rotate and move according to the patient’s location, this removes
the need for extra setup in each room as the system can cover one direction at the
current stage. As mentioned before, this system was designed as an open-ended
platform to provide variety of supports for PwP in the future including auditory cues.
The system’s capabilities in providing such cues and the effect of them on PwP
can also be explored. Moreover, by coupling the system with other available
solutions such as laser-mounted canes or shoes, patients can use the
implemented system when they are at home while using other methods for outdoor
purposes. This requires integration at different levels such as smartphone

application and visual cues in order for these systems to work as intended.

Additionally, with the introduction of augmented reality apparatuses such as
Microsoft HoloLens, one could use Microsoft Kinect and the developed algorithms
to detect FOG in PwP while using the HoloLens to provide visual/auditory cues to
the patient. The implemented algorithms used in this research study can also be
improved, especially for machine learning fall detection. As mentioned before, by
having larger training dataset, the accuracy of the machine learning algorithm in
detecting true positive falls can be significantly improved. One could also use the
principal of Kinect-based machine learning tools including VGB, to implement

complex detection systems such as machine learning based FOG detection.
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A. Laser Project Registration and RA Class 3B-4 Form & risk

assessment

. | Brunel
% University
¥ London

Class 3B and 4 Lasers, Project Registration and Risk Assessment

Class 3B and Class 4 lasers are capable of causing eve injury to anyone who looks directly into the beam or its
specular reflections. In addition, diffuse reflections of a high-power (Class 4) laser beam can produce permanent eye
damage. High-power laser beams (Class 4) can burn exposed skin, ignite flammable materials, and heat materials that
release hazardous fumes, gases, debris, or radiation. Equipment and optical apparatus required to produce and control
laser energy may also introduce additional hazards associated with high voltage. high pressure, cryogenics, flammable
materials, toxic fluids. noise and other forms of radiation. Thus, each proposed experiment or operation involving a
laser must be evaluated to determine the hazards involved and the appropriate safety measures and controls required to
reduce the risk to an insignificant or low level. A copy of this assessment must be sent to the Radiation Protection
Office before the start of a project.

(Please complete one form per equipment and return to the Radiation Protection Office)
1. School/Dept Electronic & Computer 1.1 Room Number HWLL 307-02
Engineering
2. Project Supervisor: Dr. Banitsas

3. Names of personnel who use the laser system:

Mr. Amin Amini Maghsoud Bigy

4. Brief description of the project:

Optimisation of systems for Parkinson’s patient treatment. Through the use of a collimated laser projected on the
floor, we attempt to stimulate the patient’s brain in order to alleviate the debilitating effects of the disease.

5. Equipment Description:
Class of laser

2M (cylinder is the same as the 3M one but the driving circuit is

2M., limiting its power to SmW max)

3B (10 or 30mW max)

Model and Serial No. OFL196/197/198

Type (e.g. He-Ne) N/A

Power Used 3 Volts (Can be lowered down)
Max Output Power S W/30mW

Wavelength Range S37nm

Pulse Energy Used Not mentioned in the specs
Pulse Length Not mentioned in the specs
Pulse Repetition Rate:

Not mentioned in the specs

Specify Beamn Diameter and Shape L. .
- Visible Green Line Laser

Beam termination/stop [ Beam is spread to about 4 meters when mounted on a 2 meter post
6. Equipment Location:
Room No:

HWLL 307-02

Laser warsiag sign on door and :
ASer Warting sign ol door and area Awailable
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Is the laser beam totally enclosed? No

Is there a safety interlock? No

Is th Fail/Safe Design in place? Y:
S tere a bat & Lesign m places yes Both at hardware and software level Details are mentioned in the

following section.

Describe any other safety feature that is in place:

There are both software and hardware kill switches designed to avoid direct eye contact as well as to apply
instant shutdown.

Eyewear will be used during the experimentation. Below is the details for the eyewear:

Laser Safety Goggles EP1 190-540nm and 800-2000nm (Blue, Green, Infrared (IR) and Blu-ray Lasers).
The whole system including the laser modules can only be used with the research computer, which is
password protected and only operable in the presence of the main researcher.

Laser modules will be placed in container to ensure that the minimum 3cm distance is being considered.
Laser modules are only being used when nobody is presence in the room (usually at weekends) and only for
a very short period of time. The rest of the project does not need the lasers to be on.

‘When not being used, laser modules are kept safe in a locker.

The input voltage for the laser modules can be lowered down for experimental purposes to have the
minimum effect.

Laser safety signs will be put in place.

The laser will be facing a wall so the chance of direct or indirect contact will be zero.
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Class 3B and 4 Lasers — Hazard Control
7. Identification of Hazards Associated with Laser Radiation

7-1 | Are open or partially enclosed beams used during the following?

Initial setting up and beam alignment; Yes
Addition of new optical elements; No
Day to day operation; Yes
Maintenance No

If you have replied “Yes™ to any of the above, please provide an appropriate protocol/operating procedure giving
details of how the radiation risks are controlled. Enter the title of the protocol and attach to this assessment. You must
also complete the Section 9 of this document.

8. Identification of Hazards Additional to the Laser Hazards

8.1 | Electrical Hazards No
Most lasers contain high-veltage power supplies and often large capacitors/capacitor banks that
stove lethal amounts of electrical energy.

Are any special precautions/procedures required?

8.2 | Arelaser dyes used? No
Laser dves ars often toxic and'or carcinogenic chemicals dissolved in flammable solvenis

Give details, if “yes”.

8.3 | Are compressed gases and/or toxic gases used? No
Hazardous gases may be used in laser applications, i.e., excimer lasers (fluovine, hvdrogen chioride).
8.4 | Are cryvogenic fluids used? No

Cryogenic fluids can create hazardous situations. Adeguate ventilation must be provided.

8.5 |Is there a potential for fumes/vapours/Laser Generated Air Contaminants? No
When laser beams are sufficiently energised to heat up a target, the target may vaporise, creating hazardous fumes or
vapours that may need to be captured or exhausted.

8.6 |Is there a potential for significant UV/visible radiation? No
UV and visible radiation may be generated by laser discharge tubes, pump lamps or plasmas. The lavels produced may be
an eye and skin hagard

8.7 |Is there a potential for explosion? No
High-pressure arc lamps, filament lamps, and capacitors may explode if they fail during operation. Laser targets and
some optical components alse may shatter if heat cannet be dissipated quickly enough.

8.8 |Is there an ionising radiation hazard? Neo
X-rays can be produced from two main sources, high veltage vacuum tubes of laser powesr supplias such as rectifiers,
thyratrons, and electric discharge lasers. Awny power supplics that require more than 13 kV may produce x-rays.

8.9 | Other potential hazards not identified above, Please specify
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Class 3B and 4 Lasers — Hazard Control

9. Controlling Risks

If you have replied “Yes™ to any of the above, please complete the following section and provide an appropriate
protocol/operating procedure a COSHH and/or other assessments, giving details of how the associated risks are
controlled, using additional paper as necessary.

Hazard/Risks No Control Measures Remaining Risks
Insignificant | Low Medium
Minimal risk of
overexposure of Eye wear, hardware kill switch, software kill switch,
retina to the laser. physical barrier, physical limitations, operation time

Please enclose COSHH and other protocols as appropriate |

As the supervisor of this project I am satisfied that appropriate steps have been taken to put in place the identified
controls, reducing the risk to an insignificant level
/'/4
g )
T 2, AN
Supervisor's Signature: /// a4

o
/

Date 15/01/2016

N.B.  Ifthere are any changes in the procedure then the above RA musd and resubmitted to the RPO.
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B. Approval Letter from Brunel for inviting Parkinson's

patients

College of Engineering, Design and Physical Sciences Research Ethics Committee

Brunel University London

Br!"nEl_ Kingston Lane
University Usbridge
London UBS 3PH
United Kingdom

www _brunelacuk

7 November 2016

LETTER OF APPROVAL

Applicant: Mr Amin Amini Maghsoud Bigy
Project Title:  Using 3D sensing and projecting technology to improve the mobility of patients with Parkinson's disease

Refarence 4311-LR-Now/2016- 4354-2

Dear Mr Amin Amini Maghsoud Bigy
The Research Ethics Committee has consideradthe above application recently submitted by you

The Chair, acting under delegated authority has agreed that there is no objection on ethical grounds to the proposed study. Approval is given on the
understanding that the conditions of approval set out below are followed:

« The agreed protocol must be followed. Any changes to the protocol will reguire prior approval from the Committee by way of an application for an
amendment.

Please note that:

# Research Participant Information Sheets and (where relevant) flyers, posters, and consent forms should include a clear statement that research
ethics approval has been obtained from the relevant Research Ethics Committee

The Research Participant Information Sheets should include a clear statement that queries should be directed, in the first instance, to the Supervisor
(where relevant), or the researcher. Complaints, on the other hand, should be directed, in the first instance, to the Chair of the relevant Research
Ethics Committee.

Approval to proceed with the study is granted subject to receipt by the Committee of satisfactory responses to any conditions that may appear above
in addition to any subsequent changes to the protocol

The Research Ethics Committee reserves the right to sample and review documentation, including raw data, relevant to the study.

You may not undertake any research activity if you are not a registered student of Brunel University or if you cease to become registered, including
abeyance or temporary withdrawal. As a deregistered student you would not be insured to undartake research activity. Research activity includes the
recruitment of participants, undertaking consent procedures and collection of data. Breach of this requirement constitutes research misconduct and
is a disciplinary offence.

-

.

M ovittsn

Professor Hua Zhao
Chair

College of Engineering, Design and Physical Sciences Research Ethics Committee
Brunel University London

Page 1of 1
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C. Consent Form for Focus Group patrticipation

Brunel
University
London

CONSENT FORM

The participant should complete the whole of this sheet

Please tick the appropriate box
YES NO

Have you read the Research Participant Information Sheet?

Hinn

Have you had an opportunity to ask questions and discuss this study? I:I

Have you received satisfactory answers to all your questions?

Do you understand that you are free to withdraw from the study:
at any time?

without having to give a reason for withdrawing?

(where relevant, adapt if necessary) without affecting your
future care?
(Where relevant) I agree to my interview being recorded.

(Where relevant) I agree to the use of non-attributable direct quotes when
the study is written up or published.

HEgNINAEN
Jootdo

Do you agree to take part in this study?

Signature of Research Participant:

Date:

Name in capitals:

Witness statement (if necessary)

I am satisfied that the above-named has given informed consent.

Witnessed by:

Date:

Name in capitals:

Researcher name: A. Amini

Supervisor name: Dr. K. Banitsas

D. Approval of collaboration with Parkinson’s UK
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Amin Amini Maghsoud Bigy

From Konstantinos Banitsas

Sent: 01 November 2016 14:25

To: Amin Amini Maghsoud Bigy

Subject: FW: (RSN-London) Have your say - a new technology for improving freezing
Follow Up Flag: Follow up

Flag Status: Flagged

From: Isabelle Abbey-Vital

Sent: 11 October 2016 3:40 PM

To: Sophie Mclachlan

Subject: (RSN-London) Have your say - a new technology for improving freezing

NsoN|SUK
Research Support Network Eﬁﬁﬁ& ATTITUDES.

) Have yoursey Lo

Hello,

Dr. Konstantinos Banitsas, from Brunel University is developing a new technology to monitor and actively
assist people affected by Parkinson's to overcome freezing of gait, and he wants to invite from people
affected by Parkinson’s in London to help his develop this.

Background
Research has shown that visual and/or audio cues can assist individuals overcoming episode of freezing of
gait. Dr Banitsas has developed a new technology that is based on a type of sensor that can identify an

individual’s position and heading.

When the sensor detects a freezing episode, it will project a series of laser lines in front of the individual in
an attempt to help un-freeze their motion.

How can you get involved?

The researchers plan to run focus group meetings with local people affected by Parkinson's throughout
November to help them to shape this technology to be ready to take forward into a research project.

The aims of the focus groups are to:
I Give you an opportunity to see how the technology works

I Have an opportunity to try it yourself and make suggestions
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Provide feedback on how useful you think the technology is, how easy vou think it would be to use,
and any issues you can identify

These will be held at Brunel University and vour time and travel expenses will be reimbursed for attending
the meeting. Partners and carers are welcome to accompany yvou along to the meeting.

The information that you provide will be used to develop a research proposal for testing the effectiveness of
this technology for the wider use for the Parkinson’s community.

Who are they looking for?

People with Parkinson’s who experience freezing episodes and who are able and willing to travel to Brunel
University for a focus group meeting that will last approximately 2 hours.

If you are interested in attending please email Konstantinos on Konstantinos.Banitsas(@brunel.ac.uk or call
him on 01895266886 at the latest by Friday 29 October.

Please be aware spaces will be allocated on a first-come-first-serve basis.
Please do not hesitate to contact me should you have any questions about this opportunity.

Best wishes,
[sabelle

How can you help?

Dr Banitsas would like to involve people affected by Parkinson's in developing this technology, to help
identifying an issues with the system that might need improving.

Thev would like to invite you to attend focus group meeting at Brunel University, at a time convenient for
vou where you will:

Have an opportunity to see and test the technology

Provide feedback on the technology — including how useful it might be to you, how easy you think it
would be to use

[ Identify issues with the technology

Who do they need?

If you are

They would like to invite you to attend focus group meeting, at a time convenient for vou where

Felicity wants to hear from people affected by Parkinson's in Northem Ireland to know if you think this study

is important. To share your views please answer the below questions and email them to
f.hasson@ulster.ac.uk by Fridav 26 August.

Do you think this proposed study is needed?
Is there anything else you think it should focus upon?

1.
3. Do you have any other comments or suggestions?
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If you have any questions, please contact Dr Felicity Hasson on f.hasson@ulster.ac.uk or call 028 90 36
68095,

Best wishes,

[sabelle

I[sabelle Abbey-Vital

Research Involvement Officer
Parkinson's UK

Tel: 020 7963 9327

Email: iabbev-vital @parkinsons.org.uk

The Excellence Network Awards celebrate the services doing fantastic work driving up standards of care for people
affected by Parkinson's. Encourage the professionals you know to enter by 28 October 2016.

Parkinson's UK, 215 Vauxhall Bridge Road, London SW1V 1EJ
parkinsons.org.uk | facebook.com/parkinsonsuk | twitter.com/parkinsonsuk
/ 4 = - - \

!

-cE'irity_tim_e's Aviar;LS L%

Wwinner

‘We're the Parkinson's support and research charity. Help us find a cure and improve life for everyone affected by Parkinson's. Parkinson's UK is
the operating name of the Parkinson's Disease Society of the United Kingdom. A company limited by guarantee. Registered n England and Wales
(©48776). Registered office: 213 Vauxhall Bridge Road, Victoria, London, SW1V 1EJ. A charity registered in England and Wales (258197) and in
Scotland (SC037354).

Information from ESET NOD32 Antivirus, version of virus signature database 14261
(20161011)

The message was checked by ESET NOD32 Antivirus.

http://www.eset.com
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E. Patient and Public Involvement Request Form

\ A CURE. JOIN US.
PARKINSON'S™ CHANGE ATTITUDES. FIND 4

Patient and Public Involvement (PPI) request form

We can support good quality research which has potential deliver benefits for people affected by
Parkinson’s. We assess each request to ensure it meets our required standards. We need to fully
understand the purpose of the research and how the information gathered will be used.

Ultimately it will be at the discretion of the Parkinson’s UK research team whether the research is
eligible for support and how this is provided.

For more information please refer to our ‘Research Support Policy’.

If you want to involve people affected by Parkinson’s in your research but are not sure of
where to start, see our PPl Resource for Researchers or email us at
researchinvolvement@parkinsons.org.uk for tips and advice.

By helping to involve people affected by Parkinson’s through PPI, Parkinson’s UK is not taking any
responsibility for the research and is therefore not liable for any claims concerning negligence,
harm or oversight that might arise during the course of the research.

Please return your completed form to researchinvolvement@parkinsons.org.uk

Contact details

Name Dr. Konstantinos Banitsas
Job Title Senior Lecturer, Researcher
Research Institution Brunel University Department Electronic & Computer
Engineering
Telephone 01895266886, Email Konstantinos.Banitsas@brunel.ac
07890450501 .uk

Background to your research

Plain English title Using Microsoft's Kinect system to assist Parkinson's patients having
frequent FOG episodes

A plain English description of the study and its aims (max 250 words; including research area, projected
study length if known and any suitable links to online information about the research)

Recently, at Brunel University, we have developed a system that can not only monitor a patient experiencing FOG
but can actively assist him/her on overcoming those symptoms. It is based on Microsoft's Kinect sensor, a small box
having two cameras, that can identify the position and heading of the patient. It will constantly monitor the patient's
attitude and when it detects a FOG episode, it will project a series of laser lines in front of the patient in an attempt
to un-freeze his/her motion. In addition, the system can support a fall detection where if the user does not respond
vithin a preset time frame, it will initiate a Skype conversation with a designated. The following videos provide some
information of our research

https://youtu.be/[2HNjgd4pw5M

https://youtu.be/xrXCzRYMNw8

The focus group study to evaluate this system, will take place at Brunel University within November and will last
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about two weeks

How will your research help people affected by Parkinson's in the future? (in 2 or 3 sentences)

Research has shown that visual and/or auditory cues can assist overcoming a FOG episode. As this is
system that requires nothing to be worn, charged, carried, etc, it is envisioned that when installed in a
patient's premises, it will help by reducing the effects of FOG episodes.

Have you secured funding for your research? If yes, who is supplying the funding? If no, when and
where are you applying for funding?

A budget has set aside to be used for the patients that will participate in this research. This is part of the
IDEA project funding, supported by Brunel University's Healthcare technologies research group

Do you have ethical approval for your study at this stage? (If yes, please provide Not yet. it is
this as an attachment). Please refer to INVOLVE's statement on the requirements submitted pending
for ethical approval for PPI.

approval within the
next few days

PPI in your research

At what stage of your research would you like to involve people affected by Parkinson's? (please see all

that apply)
r Identifying and prioritizing C Disseminating
. Commissioning - Implementing
¥ Designing and managing © Evaluating impact
r Undertaking " Other (please specify):

How would you like to invelve people affected by Parkinson’s in your project? (such as completing a
survey, attending focus/steering groups, reviewing documentation)

Attending focus groups, fill out surveys, provide feedback after testing the prototype

What will you be asking the PPI contributors to do?

Provide feedback and identify issues that might need improving. Also, suggest new functions that we can
include to our system

Are you looking for people with specific characteristics or experience? (such as early-onset, experience
of participating in research)

As this prototype is mostly addressing patients experiencing often FOG, It will be beneficial to prioritise
involving more of those

What will be the expected time commitment for PP = How many people fitting the criteria are you looking
volunteers? for?

2-3 hours 5-15

Are you looking for people who live in a specific When is the deadline for recruiting PPI

location? (e.g. city/region or UK-wide) contributors?

%]
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A CURE. JOIN US.
PARKINSON'S ™ CHANGE ATTITUDES. FIND A

London, preferably west London End of Oct 2016 so we can invite patients within
Nov 2016
Will PPI expenses be reimbursed? Yes. Also they will
be compensated
with £50

Does this PPI role require ethical approval? (If so please provide a copy) Yes, a copy will
follow in the next

few days

Feedback and Acknowledgement
How do you plan to feedback to the PPI contributors on the impact they have had?

Through emails
How will you inform those taking on the PPI role of the research outcomes once the study is complete?

Emails of results and journal papers

How do you plan to acknowledge the PPI contributors? (as a contributor, co-applicant, authorship)

ras a contributor
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F. Invitation to Focus Group Days

Invitation to our focus group

Using MS Kinect to reduce FOG episodes

Dear Participant,

Thank you very much for agreeing to assist us with the evaluation of our prototype. This research
aims at reducing the symptoms of Freezing Of Gait for people affected by Parkinson's disease. Your
participation will help us improve our prototype and possibly add new functions to it before making

it available to the healthcare providers.

There are three dates in November that the meetings will take place: Monday 21th, Monday the
28th and Tuesday the 29th. By now, | would have already called all of you and you would have
decided on one of these three dates.

The time for the focus group would be 10am
Below are some information about your visit to Brunel University:
How to find us:

Brunel University is located near the town of Uxbridge. The post code is UB8 3PH. Depending on
your mode of travel, you may find the following useful:

ACCOMMODATION

<
2
£
S
8

Brunel University London et Ner weers:
Kingston Lane S S Urvensd
Usi

= = Bz

Travelling by car:

From the M4: Leave the M4 at Junction 4, follow signs to Uxbridge (A408) and Brunel University. Those taking the
M25 should join the M4 or M40.
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From the A40/M40: At Swakeleys Roundabout take B483 exit to Uxbridge. Follow signs across two mini-
roundabouts.

Parking

To avoid paying for parking, you must first report to the University's main reception, at the Eastern Gateway
building (on the right side of the attached map). They will ask you for the registration of your car and the name
and telephone number of the person you are visiting at Brunel (Dr. Konstantinos Banitsas, 66886). They will then
give you a parking permit for the day with a code that will open the gate. Please park at any parking space
indicated by a red dot. If you have any problems, please call me on my mobile (07830450501) and | will send a
student to assist you.

Travelling by bus:

From Uxbridge bus station (next to underground station)

U3 (alight Cleveland Road)

U1 to West Drayton, U4 and U7 (alight Kingston Lane)

From Heathrow Central

A10 Heathrow Fast, every 15 minutes, journey time approx. 25 minutes (alight The Greenway and use river
footpath to campus)

From West Drayton railway station

U3 (alight Cleveland Road)

U1 (alight Kingston Lane)

Travelling by train

By underground (London Transport)

Take the westbound Metropolitan Line to Uxbridge (approx. 40 mins from Baker Street station).
Or take the westbound Piccadilly Line to Uxbridge (approx. 45-50 mins from Earl’s Court station).
You can then take a taxi, bus (see above for recommended bus services) or walk to campus.

Travelling by rail

West Drayton (First Great Western Link) is the nearest mainline station, approx 1.5 miles from the campus.
Services run from London Paddington (approx. 20 mins journey time) or from the West (Bristol).

West Ruislip Station (Chiltern Railways) is the mainline service from London Marylebone (approx. 20 mins
journey time) and the North (Aylesbury, Banbury and Birmingham) and is approx. 4 miles from the campus.From
the M4

Leave the M4 at Junction 4, follow signs to Uxbridge (4408) and Brunel University. Those taking the M25 should
join the M4 or M40.

From the A40/M40

At Swakeleys Roundabout take B483 exit to Uxbridge. Follow signs across two mini-roundabouts.

From the M4

Leave the M4 at Junction 4, follow signs to Uxbridge (4408) and Brunel University. Those taking the M25 should
join the M4 or M40.

From the A40/M40

At Swakeleys Roundabout take B483 exit to Uxbridge. Follow signs across two mini-roundabouts.

Where is the meeting taking place

The focus groups will convene at the Michael Sterling building, first floor, room 152. This is at the

centre of the map attached and is also indicated with a red arrow. There is a lift that you can use if
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needed. Please allow some time to find the building as the Brunel University campus is quite large. |
will be standing by in case you have any problems. You can use my mobile phone number
(07890450501) so | can send one of my students to assist you.

What to expect on the day

We will meet in the above mentioned room. There will be about five patients in each group, many
with their carers. You will be given a simple statement to sign indicating that you accept to
participate in this focus group. My students and | will give you a demonstration of our system. You
are not required to try it yourselves but if you feel like it, you are free to do so.

| am interested in your feedback about how to make this system better and more tailored to your

needs.
At the end, we will distribute a questionnaire and ask for your opinion.
All the information will be anonymised and kept in a secure server.

The plan is that the meeting will last for about two hours. After that you will be free to go. If you

need a taxi, we would be happy to call one for you or help you in any other way possible.

Travelling expenses

Apart from a £50 gift card that you will get as a gesture of appreciation for helping us out with our

research, you will be compensated for your travelling expenses as well.
If you came by car, please provide me with a
If you used train or bus, please

Finally, if you have used a taxi, please keep receipts

Sincerely yours

Dr. Konstantinos Banitsas
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G. Invitation to Participate to the focus groups

Brunel
University
London

Dr. Konstantinos Banitsas

Department of Electronic & Computer Eng
College of Engineering, Design & Physical sciences
UB8 3PH, Uxbridge

Tel. 01895266886

Mob. 07890450501
konstantinos.banitsas@brunel.ac.uk

Invitation to participate in the evaluation of a prototype system

designed to assist FOG in Parkinson's disease patients

As you may know, at Brunel University a number of research groups are investigating on ways of assisting
Parkinson's disease patients on their everyday tasks. Recently we have developed a system that can not only
monitor a patient but can actively assist him/her on overcoming the common symptom of Freezing Of Gait (FOG).
Before starting our research, we have talked to patients such as yourselves and they have explained that for several
of the methods used so far, the patient has to wear something, carry a device, remember to charge it, etg;

something considered as a nuisance.

We have developed a completely novel approach. It is based on Microsoft's Kinect sensor, a small box having two
cameras, that can identify the position and heading of the patient. It will constantly monitor the patient's attitude
and when it detects a FOG episode, it will project a series of laser lines in front of the patient in an attempt to un-
freeze his/her motion. In addition, the system can support a fall detection where if the user does not respond within
a preset time frame, it will initiate a Skype conversation with a designated carer. All these are achieved without any
wires, charging processes or anything that has to be put on or carried.

| have given two demonstrating videos of our prototype to Mrs. Jeanne Phillips so you can have an initial idea of our

research.
We need your help to evaluate our system!

We would be delighted to have you visiting Brunel University and trial this system. We would like to hear what you

like about this or how the system can be improved (or add new features to it).

The whole visit should not take more than 1-2 hours. You will be compensated for your travelling expenses. Food will

also be available on the day and a cash/voucher for £50 will also be given for your participation.

Please communicate either with me or with Mrs. Jeanne Phillips if you are interested in helping this research.

Further details about the times and venues will be given following your responses.
Thank you in advance

Dr. Konstantinos Banitsas
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H. Participant Information Sheet

Brunel
University
London

PARTICIPANT INFORMATION SHEET

Using 3D sensing and projecting technology to improve the mobility of patients with
Parkinson's disease

Invitation Paragraph

You are being invited to take part in a focus group to investigate the effectiveness of using
Microsoft Kinect camera for improving the mobility of Parkinson’s disease sufferers based
on visual cues. Before you decide, it is important for you to understand why the research
is being done and what it will involve. Please take time to read the following information
carefully and discuss it with others if you wish. Ask me/us if there is anything that is not
clear or if you would like more information. Take time to decide whether or not you wish to
take part. Each participant will be given a copy of the information sheet and a signed
consent form to keep.

What is the purpose of the study?

Parkinson’s disease:

Parkinson is a progressive neurological condition in which part of the brain becomes
progressively more damaged over many years. Brain’s nerve cells make a vital chemical called
Dopamine in order to be able to communicate with each other and send signals to their
neighbour nerve cells; it helps the brain to perform its important tasks such as: Controlling
movement and motor functions and possibly other functions related to feeling and mood.

A research conducted by the University of Rochester's Strong Memorial Hospital (Presented
at the American Academy of Neurology's 51st annual meeting, Apr 1999) shown that about
30% of Parkinson's disease sufferers experience a sudden freeze (FOG) where patients’
muscles literally freeze in place as they are trying to walk. (rochester.edu, 1999).

The cause of the freezing which affects about 500,000 adults in only the United States is still a
mystery. But scientists have realised that using laser pointers with regards to the patient’s
position and coordinates can be effective to overcome the problem by stimulating their brains
functionality. Figure below demonstrates how simple guiding lines can help overcome the
FOG moments.

The idea is to develop a system to employ 3D-sensing capabilities of a set of interconnected
Kinects alongside with 3D laser projectors to

1. Detect the (FOG) moment using image processing techniques.

2. Help the patient to overcome the problem by projecting laser patterns or auditory cues
based on the patient's 3D position.

3. detect falling and subsequently calling a healthcare provider or a person in charge to
monitor the incident in real-time and act accordingly.

By using a Kinect camera, we will be able to pin point a patient’s 3D position in a room. The
system then uses this information to determine the patient’s direction and its path. Using
image processing techniques, the FOG moment will be detected and then the laser projectors
will be informed to cast 3D patterns in front of the patient with regards to its intention and
direction. The pattern can be a path, a highly visible grid on a stair case or a set of flashing
indicators on both objects and the floor.
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We conclude that by binding the Kinect capabilities (or “Kinect for Xbox One” which is more
precise but yet to be released) with a laser projection system, it is possible to unfreeze patients
experiencing FOG. Lasers can be useful as the patterns are not fixed and can be changed based
on different situations.

At this point, we are going to present our system’s capabilities to patients diagnosed with
Parkinson's disease for evaluation and feedback purposes.

The recording process should not take more than one day.

Why have been invited to participate?

The trial requires participants with the following characteristics:

Diagnosed with Parkinson’s Disease

Experiencing FOG symptoms

No significant visual impairment

No other neurological condition that may impact on walking (e.g. stroke, MS)

S e I I

In the case that the participant wishes to try out the system, we need him/her to be able
to:

walk independently with or without a walking aid (stick)

0 walk 10 m repeatedly (with rest breaks)

[}

Do I have to take part?

As participation is entirely voluntary, it is up to you to decide whether or not to take part. If
you do decide to take part, you will be given this information sheet to keep and be asked to
sign a consent form. If you decide to take part, you are still free to withdraw at any time and
without giving a reason.

Where is the showcase event location?

The event will take place at Brunel University London Michael Sterling Building room 152
(MCST152)

On what dates and at what time should I be available if I take part?
We have three days available for you to choose starting from 10:00 for two hours as follows:

0 Monday 21% of November 2016
1 Monday 28%of November 2016
I Tuesday 29* of November 2016
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What will happen to me if [ take part?

The showcase will take two hours of a specific day. You will be given a choice of three different
days. If you decide to try out the system, you will be walking in pre-defined paths and
evaluate our system capabilities in improving your mobility in case of a Freezing of Gait
(FOG) incident. At the end of the trial, you will be providing the researchers with your opinion
and feedback on how useful the system is and how our prototype system can be improved.
The event will be taking place at Brunel University London Your time will be compensated

with a £50 gift card and your travelling expenses will be paid.
What do I have to do?

. Just give your opinion on our prototype. If you decide to try it out, you will be walking

through corridors for a very short period of time.

What are the possible disadvantages and risks of taking part?

There would not be any significant risks involved.

What if something goes wrong?

You are encouraged to take a friend/relative with you at the time of this study
Will my taking part in this study be kept confidential?

The evaluation feedback gathered from all participants will be released in further reports as
possible journal publications or conference proceedings. Any information will be kept on an
encrypted hard drive in a secure locker and will be deleted after five years. Nobody apart
from the project main researcher would have access to the raw data. There will not be any
identifiable information save/recorded during the whole trial process.

What will happen to the results of the research study?

The result of this participation including improvement feedback will be gathered from all
participants in the trial and will be released in further reports as possible journal publications
or conference proceedings.

Who is organising and funding the research?
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The whole project will be conducted at Brunel University London by the project’s main

researcher and the project supervisor.

What are the indemnity arrangements?

N/A as this is a focus group

Who has reviewed the study?

Brunel University London Research Ethics Committee.

Include a passage on the University’s commitment to the UK Concordat on Research

Integrity

‘Brunel University is committed to compliance with the Universities UK Research Integrity
Concordat. You are entitled to expect the highest level of integrity from our researchers
during the course of their research.’

Contact for further information and complaints

Should you had any question, query or complain, please contact:

Project supervisor:

Dr. Konstantinos Banitsas (konstantinos.banitsas@brunel.ac.uk)

Project main researcher:

Mr. Amin Amini Maghsoud Bigy (amin.amini@brunel.ac.uk)

References:
1. Healthwise. (2010). What is Parkinson's disease? Available:

http://www.webmd.com/parkinsons-disease/tc/parkinsons-disease-topic-overview.
[Accessed: 12-06-2013].
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3. Evaluation of Kinect joint tracking for clinical and in-home stroke rehabilitation
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4. Microsoft. (2013). Kinect for Windows Sensor Components and Specifications.
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|. Participant Feedback Form

"« | Brunel
g5 | University
M London

Thank you for your participation in the focus group. Please answer the following questions:

1. Participant Information:

Age:
Gender:
How long have you been diagnosed with Parkinson’s disease?
How often do you experience Freezing of a Gait (FOG), if any, per day?
What methods, if any, do you use to improve your mobility during a FOG incident?
2. The system was easy to use.
D Strongly disagree EI Disagree D Neither agree not disagree El Agree |:] Strongly agree
3. The accuracy of the system is efficient.
D Strongly disagree D Disagree D Neither agree not disagree E] Agree D Strongly agree

4. Apart from visual aids, I would consider auditory aids such as music to be helpful.
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D Strongly disagree [ pisagree [ ] Neither agree not disagree D Agree [ | Strongly agree

5. Using a similar laser technology for projecting 3D staircases is also helpful.

|:| Strongly disagree I:I Disagree |:| Neither agree not disagree D Agree |:| Strongly agree

6. The system fall detection was accurate.

D Strongly disagree D Disagree |:| Neither agree not disagree D Agree |:| Strongly agree

7. Which method do you prefer the system to use in order to contact a doctor or a

healthcare provider in case of fall incidents?

I:' Calling l:l Skype l:l SMS

8. If you were to pay for this, what would be your estimate of cost?

9. What methods do you use to assist you during your FOG incidents?

10. I am concerned about my privacy when I use this system.
[[] swongly disagree []pisagree [ ] Neither agree not disagree [ ] Agree [] swongly agree

11. In which room/area around your house do you experience FOG the most?
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12. In which scenarios do you experience FOG the most?

13. What additional functionalities would you like the prototype to have if any?

14. What functions in the prototype do you think might be unnecessary if any?
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15. The overall system was helpful in improving my mobility, especially during a
Freezing of Gait (FOG)

D Strongly disagree [ pisagree [ ] Neither agree not disagree |:| Agree [ ] Strongly agree

16. The visual aid was helpful in increasing my mobility and walking performance

D Strongly disagree I:I Disagree |:| Neither agree not disagree D Agree I:l Strongly agree

17. I would use the system in my house

I:I Strongly disagree D Disagree D Neither agree not disagree D Agree |:| Strongly agree

18. Do you have any suggestions for making the system more effective and
comfortable?
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J. 3D design for laser pointers’ mount

K. QR code for the system’s demonstration video
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https://tinyurl.com/kinect4pwp
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