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Abstract 

Parkinson’s is a neurological condition in which parts of the brain responsible for 

movements becomes incapacitated over time due to the abnormal dopamine 

equilibrium. Freezing of Gait (FOG) is one of the main Parkinson’s Disease (PD) 

symptoms that affects patients not only physically but also psychologically as it 

prevents them from fulfilling simple tasks such as standing up or walking. Different 

auditory and visual cues have been proven to be very effective in improving the 

mobility of People with Parkinson’s (PwP). Nonetheless, many of the available 

methods require user intervention or devices to be worn, charged, etc. to activate 

the cues.  

This research suggests a system that can provide an unobtrusive facility to detect 

FOG and falling in PwP as well as monitoring and improving their mobility using 

laser-based visual cues casted by an automated laser system. It proposes a new 

indoor method for casting a set of two parallel laser lines as a dynamic visual cue 

in front of a subject’s feet based on the subject’s head direction and 3D location in 

a room. The proposed system controls the movement of a set of pan/tilt servo 

motors and laser pointers using a microcontroller based on the real-time skeletal 

information acquired from a Kinect v2 sensor. A Graphical User Interface (GUI) is 

created that enables users to control and adjust the settings based on the user 

preferences.  

The system was tested and trained by 12 healthy participants and reviewed by 15 

PwP who suffer from frequent FOG episodes. The results showed the possibility 

of employing the system as an indoor and on-demand visual cue system for PwP 

that does not rely on the subject’s input or introduce any additional complexities to 

operate. Despite limitations regarding its outdoor use, feedback was very positive 

in terms of domestic usability and convenience, where 12/15 PwP showed interest 

in installing and using the system at their homes. 
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1 Chapter 1: Introduction 

1.1 Motivation 

One of the main physical symptoms among PwP is FOG. Studies have shown that 

a visual aid projected in front of a patient (e.g. lines, stairs, etc.) experiencing such 

episodes could be beneficial to the “unfreezing” of those patients.  

At the same time and within the last three years, there was an unparalleled bloom 

in gaming machines capable of detecting the gamer and his/her gestures. The 

most famous of these is the Microsoft Kinect that, although initially developed as 

a “wireless joystick”, soon found its way into many other applications, including 

medicine, healthcare, rehabilitation, etc.  

This research proposes a system that takes advantage of the abilities of a 

Microsoft Kinect, to improve the mobility and locomotion of PwP experiencing FOG 

episodes. Moreover, it provides a facility for healthcare providers and doctors to 

monitor the gait performance of their patients remotely. Additionally, the system 

can detect fall incidents that are common among PwP and inform the people 

responsible to take further actions if required.  

 

1.2 Parkinson’s Disease 

Parkinson’s disease (PD), caused by the depletion of dopamine in the substantia 

nigra, is a degenerative neurological condition affecting the initiation and control 

of movements, particularly those related to walking [1], [2]. There are many 

physical symptoms associated with PD including akinesia, hypokinesia, and 

Bradykinesia [3]. An additional symptom is FOG, usually presenting in advanced 

stages of Parkinson’s [4]–[7]. FOG is one of the most debilitating and least 

understood symptoms associated with Parkinson’s. It is exacerbated by several 

factors including the need to walk through narrow spaces, turning as well as 

stressful situations [7], [8]. 
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Figure 1:1. The effect of PD (depletion of dopamine in the substantia nigra) on 
human brain [9] 

 

1.3 Freezing of Gait (FOG) 

FOG is one of the most disabling symptoms in PD that affect its sufferers by 

impacting their gait performance and locomotion. FOG is an episodic phenomenon 

that prevents the initiation or continuation of a patient’s locomotion and usually 

occurs in latter stages of PD where patients' muscles freeze in place as they are 

trying to move [1], [6], [7], [10]. 

FOG and associated incidents of falling often incapacitate PwP and, as such, can 

have a significant detrimental impact at both a physical and psychological level [6]. 

Consequently, the patient's quality of life decreases and health care and treatment 

expenditures increase substantially [11]. A research study conducted by the 

University of Rochester's Strong Memorial Hospital [12] showed that 

approximately 30 % of PwP experience sudden, unexpected freezing episodes, 

thus highlighting the high level of dependency that many PwP have on physical or 

psychological strategies that may assist in alleviating FOG and help people start 

walking again. 
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Figure 1:2. PD physical symptoms [9] 

 

1.4  Possible Treatments 

There is no proven therapy to eradicate the PD or slow down its progression. As 

a result, the focus of the medical therapy is on the treating or reducing the effect 

of its symptoms [13]. There are different treatments available to improve PwP living 

standards and help deal with the symptoms including supportive therapies, 

medications and surgery. 

Supportive therapies focus towards pain relieve using different methods including 

physiotherapy that relieves joint pain and muscle stiffness as well as exercises 

and occupational therapy that provide support for day-to-day activities of PwP and 

programmes that help them maintain their independence. Moreover, supportive 

therapies also cover dietary advice that would be beneficial to some extent for 

symptom relieve. Lastly, speech and language therapy can also help PwP 

improving speech impairment caused by the disease or reduce the patient’s 

swallowing difficulties (dysphagia), also related to PD [14]. 

Medication are also beneficial in reducing the frequency or effect of PD’s main 

symptoms including FOG and tremors. Nonetheless, there usually are possible 
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short and long-term side effects in these methods. The three types of the 

mainstream medication for PwP are [14]: 

• Levodopa 

Levodopa help the increase of dopamine production by the nerve cells; an agent 

for message transmission between brain parts and nerves responsible of 

controlling movement. Consequently, this would improve the patient’s movement 

irregularities and locomotion [13] [15]. 

• Dopamine agonists 

These chemical act as a substitute for the imbalanced dopamine level in the brain, 

that yields similar effect as levodopa. Dopamine agonists could have many side 

effects including hallucinations and confusion [13], [15]. 

• Monoamine oxidase-B inhibitors 

Monoamine oxidase-B (MOA-B) inhibitors aim at blocking the effect of an enzyme 

responsible of breaking down dopamine. As a result, the dopamine level would be 

increased. MOA-B can improve the PD symptoms and can be prescribed to be 

used alongside other medications such as dopamine agonists or levodopa [13], 

[15]. 

Finally, a pulse generator can be surgically implanted into the subject’s chest wall 

connected using wires to a specific part of the brain. This acts as a deep brain 

stimulation that produces a tiny electrical current which stimulates the brain in 

order to ease PD symptoms [16]. 

 

1.4.1 Sensory Stimulation 

Many studies suggest that auditory [17]–[20] and visual cues [10], [19]–[31] can 

improve PwP’s gait performance, especially during FOG. Rubinstein et al., [32], 

observed that in the presence of an external ’movement trigger’ (i.e., a sensory 

cue), a patient’s self-paced actions such as walking, can be significantly improved; 

a phenomenon known as ‘kinesia paradoxica’. 
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1.5 Research Question 

This study investigates the question of whether it is feasible to implement an 

unobtrusive approach for real-time FOG monitoring, by utilising commercially 

available 3D camera sensors based on the Microsoft Kinect architecture. The 

research also studied the applicability of using the 3D sensing cameras in 

conjunction with a moving laser projection system acting as a visual cue with the 

aim of decreasing the frequency/duration of “freezing” episodes and improving the 

mobility of patients diagnosed with Parkinson's disease. Studies have shown that 

such an approach will be beneficiary on reducing the FOG episodes in PwP, both 

in frequency and in duration. The system can also detect fall incidents that are 

common among Parkinson’s disease patients and automatically alert 

relatives/healthcare providers. 

 

1.6 Aims and Objectives 

The main aim of this study is to research on an affordable, reliable, and 

unobtrusive system for monitoring/detecting FOG and fall incidents in PwP as well 

as to provide mobility improvement and locomotion enhancement during a FOG 

incident using an automatic and dynamic visual cueing system based on laser 

projection. Additionally, different methods in detecting a subject’s footsteps, an 

important part in unobtrusive FOG detection, is presented and evaluated.  

The individual objectives of the project are: 

• To improve PwP locomotion with an automatic and dynamic visual cue system. 

• To build a user interface for healthcare providers and doctors to monitor the 

patients’ activities remotely and get notification should a critical incident such 

as unrecoverable fall happens. 

• To investigate, through a focus group of real PwP on how such a combination 

of discreet and inexpensive hardware can possibly assist PwP that have 

frequent FOG episodes. 

• To use a 3D sensing technology such as a Microsoft Kinect sensor to detect 

and monitor PD FOG and fall incidents unobtrusively. 
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The proposed research focuses on the sensory stimulation therapy and 

rehabilitations side of the PD treatment using laser-based visual cues. In 

conjunction with the current system, the project’s researchers developed a 

companion smartphone application and a client software that enables doctors, 

healthcare providers and family members to monitor and receive notifications 

regarding possible incidents. Upon the detection of a fall, the system can 

automatically capture the event alongside an appropriate time stamp and notify a 

relevant person via email, live video feed (through the smartphone companion 

app), skype conversation or developed client software.  

 

1.7 Contributions to Knowledge 

This research study leads to improve upon existing and previous works by: 

• Introducing two new footstep detection techniques one based on the 

subject’s knee angle and one based on the subject’s ankle vertical height 

to the ground; Reducing the Microsoft Kinect’s intrinsic inaccuracies in 

skeletal data reading for the subject’s ankle vertical height to the ground 

footstep detection technique; resulting in the increase in accuracy for the 

footstep detection algorithm by introducing a new correction algorithm. 

• Providing an automatic and remotely manageable monitoring system for 

PwP gait analysis and fall detection. 

 

1.8 Thesis Structure 

This thesis consists of six chapters supplemented by references and appendices. 

The outline and a brief description of each chapter are as follow: 

Chapter 2: This chapter evaluates similar studies carried out in the field. these will 

be analysed, and their shortcomings will be discussed. 

Chapter 3: This chapter focuses on the description of technical terms and 

technologies used in this project. Different technologies will be analysed and 

evaluated. Their advantages and disadvantages will also be discussed. 

 



 

24 | P a g e  
 

Chapter 4: This section focuses on the implementation phase of the proposed 

approach including the execution of the prototype system both in hardware and 

software level. Moreover, the algorithm employed in this study will also be 

discussed. 

Chapter 5: The aim of this chapter is to discuss the outcomes of this research 

including the empirical results and evaluation of the research study product. The 

data will be compared against the initial requirements and the aims and objectives 

of the project and its effectiveness will also be discussed. 

Chapter 6: In the final chapter the project carried out will be summarised and 

compared against the initial aims. Additionally, the obstacles and issues 

encountered during the project development as well as the future works would be 

discussed. 
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2 Chapter 2: Literature Review 

 

2.1 Introduction 

This literature review covers the existing research and studies that focused on 

similar field as this research. Different studies in fall detection, especially in PwP 

will be analysed; Solutions based on visual cue for locomotion improvement during 

a FOG for PwP as well as systems for rehabilitations and monitoring of these 

patients are reviewed. Approaches towards detecting PD symptoms including 

FOG are discussed including sensor-based and computer vision methods. 

Moreover, different procedures that help detecting FOG based on computer vision 

approach such as footstep detection are evaluated. Finally, these studies are then 

analysed, and their possible shortcomings will be discussed.  

 

2.2 The Effect of Visual Cue on PD Locomotion 

Many previous studies have developed methods for monitoring FOG behaviours 

and intervening to improve motor symptoms with the use of external visual cues. 

Many studies utilised computer vision technologies to minimize the need for 

patients to wear measurement devices, which can be cumbersome and also have 

potential to alter a person’s movement characteristics. Since the release of the 

Microsoft Kinect camera several attempts have been made to use the Kinect 

sensor as a non-invasive approach for monitoring PD-related gait disorders. Many 

previous research studies have focussed on rehabilitation outcomes and 

experimental methods for monitoring patients’ activities.  

For instance, in Takač, et al., [33], a home tracking system was developed using 

Microsoft Kinect sensors to help PwP who experience regular FOG. The research 

interconnected multiple Kinect sensors together to deliver a wider coverage of the 

testing environment. The model operated by collectively gathering data from 

multiple Kinect sensors into a central computer and storing them in a centralised 

database for further analysis and processing. The research employed a model 

based on the subject’s histogram colour and height together with the known 

average movement delays between each camera. Nonetheless, as a Kinect 
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camera produces a raw RGB data stream, analysing multiple Kinect colour data 

stream for the histogram of colour in real-time requires a very powerful processor 

and significant amount of computer memory. Moreover, the synchronisation 

between each camera feed would add extra computation for this approach.  

Previous research has demonstrated that dynamic visual cues (such as laser lines 

projected on the floor) can deliver a profound improvement to walking 

characteristics in PwP [20]. Furthermore, strong evidence now exists suggesting 

that it is not only the presence of sensory information (or an external ‘goal’ for 

movement) that ‘drives’ improvements/kinesia paradoxia, but rather the presence 

of continuous and dynamic sensory information. This was first demonstrated by 

Azulay et al., [34], who showed that the significant benefits to gait gained when 

walking on visual stepping targets were lost when patients walked on the same 

targets under conditions when the room was illuminated by strophic lighting; thus 

making the visual targets appear static. Similar observations have also been made 

in the auditory domain [3].  

In Zhao et al., [35], in order to improve PwP’s gait performance, a visual cue 

system was implemented based on a wearable system installed on subjects’ 

shoes. This system employed laser pointers as visual cues fitted on a pair of 

modified shoes using a 3D printed caddy. The system consisted of pressure 

sensors that detect the stance phase of gait and trigger the laser pointers when a 

freeze occurs.  

 

Figure 2:1. A pair of laser-mounted shoes for visual cue [35] 
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While effective and intuitive to use, the reliance on any attachable/wearable 

apparatus can be cumbersome and also required users to remember to attach 

appropriate devices, even around the house; where many people experience 

significant problems with FOG at times when they are not wearing their shoes.  

In another approach based on wearable devices [36], the effect of a subject 

mounted light device (SMLD) projecting visual step length markers on the floor 

was evaluated. The study showed that a SMLD induced a statically significant 

improvement on subjects’ gait performance. Nevertheless, it was suggested that 

the requirement of wearing SMLD might lead to practical difficulties both in terms 

of comfort and on the potential for the devices impacting on patients’ movements 

characteristics. 

In Velik et al., [31], the entire SMLD visual cue system included a backpack 

consisting of a remotely-controlled laptop (needed to be carried by the subjects). 

Although the SMLD method was employed, researchers added the 10 seconds 

on-demand option to the “constantly on” visual cue casting.  

 

 

Figure 2:2. A SMLD coupled with a controlling laptop and laser line projection 
system for PD patient’s visual cue purposes [31] 
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Moreover, similar to the aforementioned technologies, the laser visual cues are 

always turned on, regardless of the subject’s FOG status of gait performance. 

McAuley et al., and Kaminsky et al.,  [22], [23], proposed the use of Virtual Cueing 

Spectacles (VCS) that, similar to approaches that project targets on the floor; 

project virtual visual targets on to a user’s spectacles. The use of VCS might 

eliminate major disadvantages introduced by SMLD (or other wearable 

approaches), but these systems still need to either be sensitive to a FOG onset, 

or constantly turned on, even when not required. 

In Griffin et al., [30], the effect of real and virtual visual cueing was compared and 

it was concluded that real transverse lines casted on the floor are more impactful 

than the virtual counterparts. Nonetheless, using VCS eliminates the shortcomings 

in other techniques such as limitations in mobility, steadiness and symmetry. VCS 

also has the advantage of being capable to be used at an external environment 

when the patient is out and about. 

 

 

Figure 2:3. A goggle used to project VCS [30] 
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Figure 2:4. A VCS system virtual cue projection mechanism [23] 

 

 

2.3 FOG Monitoring and Detection 

Motor-related symptoms of PD have been the subject for assessment and 

detection in rehabilitation and gait performance analysis research studies. There 

have been several studies conducted towards the detection and characterising of 

these symptoms, especially FOG in PwP using on-body sensors and wearables. 

For instance, in Tripoliti et al., [37] a combination of six accelerometers and two 

gyroscopes were placed on the PD patient’s body. The research employed four 

stages and compared its approach against different signal processing techniques 

and different sensor arrangements in order to achieve the optimal detection 

success rate. 

In Pepa et al., [38], a solution based on a smartphone was used utilising Fuzzy 

Logic to gather gait related data in case of a FOG, whereas in Mazilu et al., [39], 

a combination of wearable accelerometer and smartphones were used. Combined 

with a machine learning technique, this latter approach managed to detect FOG 

incidents with a 95 % success rate. This research aimed at using auditory cues for 

mobility improvement of PwP. Once a FOG was detected, the system would 

provide rhythmic cues to the patient. 
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Figure 2:5. A pair of accelerometers and a smart phone used for gait analysis 
and FOG assessments in PwP [39] 

 

In Jovanov et al., [40], an inertial wearable sensor was attached to the patient’s 

shoes for real-time gait monitoring in which upon detection of a FOG incident with 

an average latency of 332 ms, the prototype system would send acoustic cues to 

the wireless headset attached to the patient’s ear for stimulation. The sensor 

consisted of a 3-axis accelerometer and 2-rotational gyroscope. 
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Figure 2:6. Shoe-embedded inertial sensors for FOG assessment and gait 
performance analysis. Upon a possible FOG detection, a wireless headset would 

provide auditory cues [40] 

 

In another attempt by Mazilu et al., [41], the correlation between a PD patient’s 

wrist movements and a FOG incident has been examined. The study tried to place 

the sensor in a more commonly worn area of the body (i.e. wrist) where usually a 

watch is worn, in order to make the system more acceptable/adoptable and less 

obtrusive.  

In Niazmand et al., [42], accelerometer sensors were embedded in the subject’s 

trousers based on MiMed-Pants in order to achieve a low-profile detection system 

for FOG. Finally, in Handojoseno et al., [43], a FOG detection technique based on 

EEG signals was used with relatively low detection rate of 75 %. In summary, the 

employment of EEG has many limitations such as fixed location and long setup 

and calibration time. 

Since the release of Kinect for Windows SDK, many attempts have been made to 

use of the Kinect sensor for PD related research. Most of the studies have focused 

on rehabilitation purposes and experimental ways of monitoring patients’ activities. 

In Galna et al., [44], a Kinect-based game was developed to encourage patients 

to conduct daily activities for rehabilitation purposes in which as the user 
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progresses, the difficulty of these activities would increase. The research 

concluded that most of the participants enjoyed using the system while at the same 

time could benefit from doing such activities. 

 

Figure 2:7. A Kinect-driven rehabilitation and movement exercise game for PwP 
[44] 

 

In another study by Palacios-Navarro et al., [45], an augmented reality game was 

developed based on the Microsoft Kinect for PwP. This tool aimed to help PwP 

conducting several motion rehabilitation exercises. Nonetheless, the long-term 

effect and efficiency of the product were not measured while the research 

concluded that participants showed interest in using the system. Finally in Rocha 

et al., [46], several body joint data were gathered both from healthy and PD 

diagnosed subjects based on the Kinect’s skeletal data. The data then were 

analysed, and several gait parameters were extracted. By comparing the healthy 

subject’s gait characteristics and PD counterparts, the study could assess motor-

related parameters in PwP. Although the approach proved to have a 96 % success 

rate in distinguishing PD and non-PD subjects, the system required a lot of data 

analysis and processing and does not offer a real-time solution. 

To our knowledge, these are the most representative research projects related to 

real-time, non-invasive detection and recognition of PwP symptoms, especially for 

FOG/tremor incidents. Most of the researchers have concentrated on helping the 

already diagnosed patients having a better-quality life. They have focused on the 

rehabilitation process by developing games or monitoring systems. Some used a 

device or a sensor to be attached to or worn by the patients in order to detect the 

symptoms. 
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2.3.1 Footstep detection 

Detecting footsteps plays an important role in gait cycle analysis and rehabilitation 

purposes, as many diseases feature physical symptoms, especially gait disorders. 

Having an unobtrusive gait detection system can significantly improve the 

accuracy of footsteps analysis, as due to the nature of the case, on-body sensors 

can sometimes be problematic and have a direct effect on the gait performance 

and behaviour. Different methods have been used in extracting accurate 

information related to footstep detection such as pressure-based mapping, in 

which foot contacts and foot-offs can be detected based on the variance in 

pressure in different areas of a foot sole [47], [48], inertial-based sensing using 

different wearable sensors attached to the body [68], [75], [76], instrumented 

treadmills [51]–[53] and computer vision [54], [55]. Most methods in gait analysis, 

especially footstep detection, are obtrusive and expensive to implement.  

As an alternative approach to the aforementioned techniques, one could consider 

the employment of unobtrusive depth cameras such as Microsoft Kinect v2. As the 

Kinect was designed as a replacement for conventional game controllers, it is very 

effective in reading body joints data, especially from upper extremities that are 

more active in a gaming session. Nevertheless, due to the Kinect’s intrinsic 

inaccuracies in data acquisition, particularly for lower extremities [56], innovative 

approaches have been made to compensate these issues. Moreover, due to the 

nature of some degenerative diseases such as PD that feature gait related 

symptoms including FOG, minor inaccuracies either greatly affect the data 

collection or render the entire acquired data unusable.  

Since the introduction of the Microsoft Kinect sensor, many studies have been 

conducted based on the Kinect camera with regards to gait performance analysis 

[57]–[63]. Nonetheless, the Kinect skeletal-based detection of footsteps in 

particular, is a challenging feat due to Kinect’s margin of error, especially for lower 

extremities [61]. Additionally there are disadvantages to this method such as 

higher computational power required for signal analysis and image processing and 

intrinsic data acquisition inaccuracies, especially in Kinect sensors [64]. Moreover, 

Kinect v2 in particular, lacks built-in features available in the first iteration of Kinect 

such as ‘Joint Filtering’ that could compensate the sensor’s erroneous data 

acquisition to some extent. This led to some innovation methods to compensate 

the Kinect’s aforementioned inaccuracies. For instance, in Ahmed et al., [65], a 

new Kinect-based gait recognition technique was used in which human gait 
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signatures were analysed using spatio-temporal changes in different skeletal 

joints’ angles. Having a joint relative angle for stride detection eliminates the Kinect 

sensor’s inaccuracies caused the subject’s direction or distance from the camera 

[59], [66]–[68].  The research used the spine joint as the reference point as its 

relative 3D coordination remains almost stationary during a gait cycle. 

Nevertheless, by employing such a technique, foot contacts and foot-offs phases 

will not be directly detected, but instead be estimated based on the distance and 

angle of skeletal joints.  

In Auvinet et al., [69], heel-strikes were estimated by calculating the distance 

between knees’ joint centre along the longitudinal walking axis. To eliminate the 

Kinect depth-map inaccuracies in localising joints according to a subject’s distance 

from the sensor during a gait cycle (especially for foot contact detection [61]), knee 

height was estimated based on anthropometric data. In another attempt by Geerse 

et al., [70], a series of four Kinect v2 sensors were placed in pre-determined 

locations to compensate each Kinect’s depth inaccuracies in farther distances and 

have an overall wider range of coverage. This method provided promising results 

but at the expense of using an array of Kinect v2 cameras that required precise 

alignment between each sensor and increased the cost considerably. Xu et al., 

[71] used a Kinect camera mounted on a treadmill while the subject performed gait 

cycles in order to keep the subject’s distance to the camera consistent. In Sun et 

al., [72] a rather innovative technique was employed by putting the subject in a 

Kinect-mounted cart to keep the subject’s distance from the Kinect consistent while 

walking.   

Most of the aforementioned methods can affect gait performance accuracy as they 

influence the subject’s natural way of walking, while others require expensive or 

difficult-to-implement improvisations. More importantly, some gait performance 

analysis and step-detection scenarios such as detecting FOG in PwP, mandate 

precise data reading; minor inaccuracies in joint localisation, may render the entire 

data reading pointless. This research on the other hand, analyses the data 

gathered from different subjects in different conditions in order to correct the 

Kinect’s joint-to-ground distance data reading issues according to camera’s 3D 

Cartesian Z-axis.  

This research proposed two new techniques in footstep detection, one using 

skeletal data and plane detection technique and another approach that is solely 

based on the subject’s knee joint angle to determine foot-offs and foot contacts, 
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regardless of the changes of signal acquisition accuracy due to the subject’s 

location or distance to the camera in a 3D environment. The research also 

evaluated the data gathered from different subjects in different conditions in order 

to correct the Kinect’s joint-to-ground distance data reading issues according to 

camera’s 3D Cartesian Z-axis. 

 

2.4 Fall Monitoring and Detection 

Similar to the technological developments described above, several attempts have 

been made to design automated methods for detecting falls in older adults based 

on a variety of techniques such as wearable devices  [73]–[76] and computer vision 

[77]–[79]. As falls are a major problem in PwP with FOG (during 2017 it was 

determined to be a top research priority for Parkinson’s UK [80]), such 

developments are particularly relevant, and should ideally be integrated with 

attempts to provide sensory cues for movement. The Microsoft Kinect was also 

used as a non-invasive approach for fall detection. Different techniques were used 

for fall detection such as the use of Kinect depth sensor [79], [81], skeleton tracking 

[58] and subject-to-floor distance determination. Additionally, some used a single 

Kinect sensor while some employed a system of multi-Kinect configuration to have 

a wider coverage. For instance, in Mastorakis et al., [81], the user’s body velocity 

and inactivity was taken into account that made the floor detection unnecessary 

for the fall detection due to the use of a 3D bounding box (the active area of 

interest). This removes the need for any environmental pre-knowledge such as a 

floor’s position or height.  
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Figure 2:8. Subject’s fall and inactivity detection based on 3D bounding box [81] 

 

Moreover, in Stone et al., [77], an algorithm was developed that determines a 

subject’s vertical state in each frame to trigger a detected fall using a decision tree 

and feature extraction. The research used 454 simulated falls and nine real fall 

incidents for the trial.  

In Gasparrini et al., [79], a set of raw depth data were used to extract human body 

features using a depth blob technique for each frame and by taking into account 

the position and distance of each blob from the others. Based on the implemented 

algorithm, a fall incident will be counted as positive if the head position is close to 

the ground by a certain threshold. This was feasible because the camera was 

place on the ceiling facing downwards (Figure 2:9). 
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Figure 2:9. A Kinect camera face-down approach for fall detection based on the 
raw depth data and head-to-floor proximity [79] 

 

Finally in Rusko et al., [82], different machine learning techniques including Native 

Bays, decision tree and Support Vector Machine (SVM) were used for fall detection 

in which the decision tree algorithm proved to be more accurate compared to other 

machine learning techniques used in the study with over 93.3 % success rate in 

detecting true positive fall incidents. 

In the current study, the project’s researchers describe a novel integrated system 

that not only features an unobtrusive monitoring tool for fall and FOG incidents 

using the Microsoft Kinect v2 camera, but also implements an Ambient Assistive 

Living (AAL) environment designed to improve patients’ mobility during a FOG 

incident using automatic laser based visual cue projection. Using a dynamically 

changing laser-based visual cue capable of casting lines according to patients’ 

orientation and position in a room, the system is capable of delivering bespoke 

and tailored sensory information for each user in a manner that eliminates any 

need to wear body-worn sensors.  

 



 

38 | P a g e  
 

2.5 Summary 

Footstep detection is an important measurement in rehabilitation and gait analysis 

studies, as many disorders feature symptoms that directly or indirectly affect 

patients’ gait cycle and walking style. There are different techniques used in 

detecting footstep and evaluating gait cycles based on on-body sensors that, 

although accurate, they can affect the subject’s walking style and consequently, 

the data reading as the subject must wear special clothing embedded with on-body 

sensors during the gait performance analysis. Consequently, an unobtrusive 

approach based on the Microsoft Kinect v2 sensor would be an ideal method that 

not only meets the aims and objectives of this research study, but also explores 

the importance of footstep detection for FOG analysis.  

Different fall detection methods have also been reviewed. From on-body sensors 

to computer vision-based approaches as well as different paths in computer vision-

based detection including heuristic and machine-vision. Additionally, the attempts 

towards analysing and evaluating the effect of different cueing system for FOG as 

well as detection and characterisation of FOG in PwP have also been reviewed. 

This laid the foundation of the methodology described in the following chapter to 

Introduce two new footstep detection techniques one based on the subject’s knee 

angle and one based on the subject’s ankle vertical height to the ground; Reducing 

the Microsoft Kinect’s intrinsic inaccuracies in skeletal data reading for the 

subject’s ankle vertical height to the ground footstep detection technique; resulting 

in the increase in accuracy for the footstep detection algorithm by introducing a 

new correction algorithm. Moreover, the research would provide an automatic and 

remotely manageable monitoring system for PwP gait analysis and fall detection. 
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3 Chapter 3: Background of Sensors 

Technology 

3.1 Introduction 

In this chapter, technologies used throughout this research will be explained and 

the reason behind their selection will be discussed. This chapter covers an in-

depth analysis of the Microsoft Kinect sensor, the main component for receiving 

data and input for this research. Moreover, all the available drivers and SDKs for 

the Kinect sensor are evaluated, and the best solution will be chosen accordingly. 

Additionally, this chapter focuses on different available approaches for utilising 

Kinect technologies to be used throughout this research. Different systems will be 

analysed and compared against others. Their advantages and disadvantages will 

also be evaluated. 

 

3.2 Microsoft Kinect 

Kinect is an add-on peripheral developed by Microsoft for its Xbox gaming console. 

It is a motion sensing apparatus that can take human natural body motions as an 

input. It consists of two cameras/sensors including a colour sensor and an Infrared 

(IR) depth sensor that receives and interprets IR signals, allowing it to work in the 

dark. By casting IR lights on objects and calculating the traverse time each beam 

takes to be bounced back and received by the sensor's IR receiver, a depth map 

can be drawn making motion sensing technology possible in a 3D environment. 

Many believe that the original idea of the Kinect sensor came from the previous 

attempts made by Sony for PlayStation EYE motion camera and Nintendo for Wii 

remote, which were aimed at broadening the audiences beyond hard-core/typical 

gamers. 

Microsoft has made the Kinect sensor available beyond the Xbox 360 console to 

home computers with a dedicated Software Development Kit (Kinect SDK) and 

related documentations [83]. This enabled developers to take advantage of the 

Kinect sensor hardware capabilities, creating a plethora of innovative applications; 

many related to medicine and biomedical engineering. 
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The Kinect sensor (Figure 3:1) has an IR emitter, which casts IR waves on the 

object that can be later received by the IR depth receiver in order to render 3D 

images. 

Additionally, it features a set of four microphones known as Array Microphone, 

which are aligned in a specific way to cancel out ambient noise and improve 

sensitivity in pinpointing the source of the incoming signal. 

Finally, yet importantly, it employs a motorised tilt to automatically change the 

viewing angle based on the user’s vertical position. 

 

 

Figure 3:1. Microsoft Kinect v1 internal components [84] 

 

By employing the depth sensor and a microphone array, the Kinect does not 

require any glove or accessories to be worn by players in order to interpret their 

movements; unlike other attempts made in movement-based controls.  

The RGB sensor in the Kinect receives 2-dimensional colour video feeds for facial 

recognition and UI purposes. The four-microphone array, which is located along 

the bottom of the horizontal bar, makes speech recognition possible with echo 

cancellation and ambient noise suppression. The four microphones used in the 

Kinect device are arranged in a way that minimise the environmental noise while 

being able to pinpoint to the source of the voice location [85]. 
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Figure 3:2 demonstrates the Kinect’s two sensors, IR emitter and IR depth sensor 

(monochrome CMOS sensor) that together can capture depth data from the 

environment [85]. The Kinect, using these two sensors coupled with a trained 

machine learning algorithm within its SDK, is able to recognise gestures and track 

body joints and skeleton.  The emitter, projects IR light so the receiver can capture 

the reflected infrared signals for further processing. The emitter casts grid-

patterned infrared lights on the target, which leads to the creation of the depth map 

information by the receiver. The generated depth map contains the information 

about the position of the object in three dimensions [86].  

 

Figure 3:2 Kinect Infrared Depth Sensor [86] 

 

Many other depth-sensing systems similar to the Kinect, determine the depth map 

of the scene based on the time it takes for the light to return to the receiver after 

bouncing off objects in the sensor’s view also known as Time of Flight (ToF) 

method. However, the Kinect encodes data in the IR light as it is sent and analyses 

the distortions in the signal after it returns in order to get a more detailed 3D picture 

of the scene in addition to the above method [85]. This 3D depth image is then 

processed in software to perform human skeletal tracking.  

The Kinect camera measures the depth data based on a triangulation process [87] 

in which the IR emitter casts a single beam that splits into multiple beams using 

diffraction grating in order to construct a dotted pattern of the scenery. The IR 

receiver then captures the projected pattern, which is then compared against a 

reference pattern made from a known distance plane saved on the Kinect’s 

memory. Depending on the distance difference of the projected speckles and the 

reference plane to the perspective centre of the IR camera, the projected speckles’ 
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position will be shifted in the baseline direction between the IR emitter and IR 

receiver. This would result in a disparity image that enables the camera to 

calculate the distance of each pixel from the corresponding disparity [88]. 

 

 

Figure 3:3. Panel (a) is the perceived IR image by the Kinect. Panel (b) 
represents the depth information for each pixel colour coded based on their 

distance to the camera [88] 

 

Table 3:1 shows additional Kinect’s technical specifications. 

 

Table 3:1. Microsoft Kinect Specifications [85][89] 

 

Kinect Value 
Viewing angle 43° vertical by 57° horizontal field of 

view 

Vertical tilt range ±27° 

Frame rate (depth and colour 

stream) 

approx. 30 Hz 

Audio format 16-kHz, 24-bit mono pulse code 

modulation (PCM) 

Audio input characteristics A four-microphone array with 24-bit 

analogue-to-digital converter (ADC) and 

Kinect-resident signal processing 

including acoustic echo cancellation 

and noise suppression 
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Accelerometer characteristics A 2G/4G/8G accelerometer configured 

for the 2G range, with a 1° accuracy 

upper limit. 

Depth Sensor Range 1.2 to 3.5 meters 

Depth Image Stream 320 x 240 16-bit, 30 fps 

Angular Field-of-View 57◦ horz., 43◦ vert. 

Nominal spatial range 640 x 480 (VGA) 

Nominal spatial resolution (at 2m 

distance) 

3 mm 

Nominal depth range 0.8 m - 3.5 m 

Nominal depth resolution (at 2m 

distance) 

1 cm 

Device connection type USB (+ external power) 

  

3.2.1 Open Source Drivers and SDKs 

One of the examples of the attempts made in the Kinect open source driver 

development was OpenNI Framework. It consisted of a series of Application 

Programming Interfaces (APIs) for the use of programming natural interface 

peripherals by making use of raw information received from the device’s 

audio/video sensors. Because of its capability on interpreting raw visual and 

auditory data and due to the fact that the Kinect is in fact a natural interface device, 

the OpenNI framework became a good candidate for the Kinect open source 

API/SDK/Driver project. The following figure demonstrates the interaction between 

each component of a system based on the OpenNI Framework [90]. 
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Figure 3:4. OpenNI Framework [90] 

 

The OpenNI organisation was responsible for developing the OpenNI framework. 

OpenNI organisation is a non-profit, industry-driven community founded by 

PrimeSense that was bought by Microsoft to develop the Kinect sensor. 

PrimeSense was also behind the development of the NITE middleware. The NITE 

middleware can be used in conjunction with the OpenNI API in order to gain 

access to depth and RGB raw data from the Kinect sensor; it also makes feature 

detection, joint tracking (skeleton), and gesture recognition possible.  Table 3:2 is 

the list of different open source Kinect drivers and SDKs.  
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Table 3:2. Open Source Kinect Drivers and SDKs 

Name Programming 

Language 

Platform Features 

OpenKinect/libfreenect 

[91] 

C, Python, 

actionscript, C#, 

C++, Java JNI 

and JNA, 

Javascript, 

CommonLisp 

Linux, 

Windows, 

Mac OS X 

-Colour and 

depth images  

Colourr and 

depth images 

-Accelerometer 

data 

-Motor and LED 

control 

-Fakenect 

Kinect simulator 

(libfreenect) 

-Record colour, 

depth, and 

accelerometer 

data inthe filee 

CL NUI SDK and Driver 

[92] 

C, C++, 

WPF/C# 

Windows -Colour and 

depth images 

-Accelerometer 

data 

-Motor and LED 

control 

Robot Operating System 

(ROS) Kinect [93] 

Python, C++ Unix -Colour and 

depth images 

-Motor and LED 

control 

OpenNI/NITE Middleware 

[94] 

C, C++ Windows, 

Linux, 

Ubuntu 

-User 

identification 

-Feature 

detection 

-Gesture 

recognition 

-Joint tracking 
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-Colour and 

depth images 

-Record colour 

and depth data 

in file 

 

The OpenNI requires calibration before it is able to interpret joint position 

information. This poses a serious disadvantage for the implementation of this 

research as due to the nature of these projects, holding a pose for three seconds 

or more for PwP is a difficult task. NITE implementation also requires a pose called 

’psi pose’ before it can function. Figure 3:5 demonstrates the ‘psi pose’. 

 

 

Figure 3:5. Calibration of Psi Pose [95] 

 

As mentioned before, the OpenNI’s calibration requirement is a major drawback 

for clinical rehabilitation purposes. Additionally, previous attempts made on this 

topic showed that the calibration of the subject’s arm appeared to be problematic. 

For instance in [86], it was concluded that the calibration tends to fail if the subject 

does not hold her/his arms high enough or she/he did not bend the arms at exactly 

a 90-degree angle. It was also concluded that this level of accuracy is not feasible 

by most of the patients for this particular project. Developers are still investigating 

the possibility of removing the calibration for the joint position accusation.  
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The NITE implementation of OpenNI API can utilise up to 15 joints in which there 

is a 3x3 matrix for each X, Y and Z angles. Additionally, the orientation may be 

obtained at any given time; whereas in Microsoft official Kinect SDK, 20 joints can 

be tracked simultaneously. The following figure shows the joints supported by the 

NITE implementation alongside with their names, numbers, and orientations [94]. 

The position directions of each joint including X, Y and Z can be seen in in the 

figure. From the Kinect sensor’s perspective, the negative X, Y and Z axes point 

to the right, upward and forward (away from the sensor), respectively. 

 

Figure 3:6. NITE Tracked Joints [94] 

 

The NITE/OpenNI also features tools for recording the Kinect raw RGB/depth data 

and saving them as ‘.oni’ extension for further analysis. The built-in tool provided 

by the API can play ‘.oni’ files visually. It is also possible to import the exported 

stored information into other applications [96]. 

 

3.2.2 Microsoft Kinect SDK for Windows 

The Kinect SDK for Windows has several important advantages compared to its 

open source counterparts discussed above. The following table compares the 
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features and capabilities of one of the well-adapted open source Kinect SDK 

(OpenNI) with the Microsoft official Kinect SDK [96]. 

 

Table 3:3. Comparison of OpenNI and Microsoft Kinect SDK 

Features OpenNI Microsoft 

Raw depth and image data Yes Yes 

Joint position tracking Yes Yes 

API-supported gesture 

recognition 

Yes No 

Save raw data stream to 

disk 

Yes No 

Joint tracking without 

calibration 

No Yes 

Development in C# No Yes 

Audio processing including 

speech recognition 

No Yes 

Easy installation No Yes 

Number of joints available 15 20 

Quality of documentation Adequate Excellent 

 

3.2.2.1 Kinect for Windows Architecture 

One of the most important advantages of using the Microsoft official SDK for Kinect 

(Microsoft Kinect SDK for Windows) is the fact that it does not require calibration 

in order to be able to perform subjects’ joint tracking. As mentioned before, other 

open source SDKs mandate the subject to perform a calibration by holding their 

arms in a specific position, which proved to be rather impractical and problematic 

for this project’s purpose. The Microsoft Kinect SDK for Windows also delivers 

results that are more accurate in terms of joint tracking thanks to its ability to track 

20 joints at the same time. Moreover, the development in C# programming 

language for this project had many advantages, since its library documentations 

and forum community are one of the biggest among different programming 

languages. Additionally, the Kinect installation and setup are a lot easier and the 

API samples and documentations are more accessible.  

Figure 3:7 shows the components used in Kinect for Windows SDK.  
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Figure 3:7. Microsoft Kinect for Windows SDK Architecture [97] 

 

There are two different colour image palettes available in the official Kinect SDK 

including RGB and YUV [98]. There are also different resolutions available to be 

chosen for the depth and image streams. Although one could manually customise 

the resolution based on a specific project's needs as well. 

The resolution options for the depth map include 640x480, 320x420 or 80x60 pixel 

frames [98]. During the evaluation, it was observed that each pixel from the depth 

image feed also contains an indication of which human subject is present at that 

position in the scenery. This was enabled by using the Microsoft Kinect SDK for 

Windows machine learning algorithm that can distinguish pixels belonging to a 

subject from the background [99]. 

As discussed earlier, the Microsoft Kinect SDK for Windows makes simultaneous 

20 joints tracking possible. The figure below demonstrates the position of the 

joints.  

 



 

50 | P a g e  
 

 

Figure 3:8. Microsoft Kinect SDK for Windows Traceable Joints [100] 

 

3.2.2.2  Supported Systems and Languages 

The Microsoft Kinect SDK for Windows supports three programming languages 

including Visual Basic.NET, C# and C++. The SDK can support Visual Basic.NET 

and C# by using two dedicated Dynamic-Link Library (DLL) files called 

‘Microsoft.Kinect.dll’ and ‘Microsoft.Speech.dll’ for visual and audio compatibilities, 

respectively [84]. 

For C++ on the other hand, it allows the programming language to access directly 

the hardware resources without any intermediate DLL files [84]. 

 

The system requirements for Microsoft Kinect SDK for Windows are as follow [84]: 

Supported Operating Systems 

Windows 7 or above 

Hardware Requirements 

32-bit (x86) or 64-bit (x64) processor 

Dual-core 2.66-GHz or faster processor 
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Dedicated USB 2.0 bus 

2 GB RAM 

A Microsoft Kinect for Windows sensor 

Software Requirements 

Microsoft Visual Studio 2010 Express or other Visual Studio 2010 edition or above 

.NET Framework 4.0 or above 

Note: To develop speech-enabled Kinect for Windows applications, the Microsoft 

Speech Platform SDK v11 should be installed. 

 

3.2.2.3  Supported Modes 

There are two types of modes available in the Microsoft Kinect SDK for Windows. 

The first one is the ‘Default’ mode, which as the name suggests is ideal for general 

conditions that sets the viewable depth range to 800mm – 4000mm. The second 

mode is known as ‘Near’ mode, which its functionality is similar to ‘macro’ mode 

on digital cameras where it focuses on close objects and it sets the viewable depth 

range to 400mm – 3000mm. In the Near mode, the sensor recognises objects from 

40 centimetres to 4 meters away from the IR receiver. Figure 3:9 shows the 

difference between the Default and Near modes in terms of distance sensitivity [2]. 

 

Figure 3:9. Kinect Default vs. Near mode in terms of distance of recognisable 
objects [101] 
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For subject’s position, the Microsoft Kinect SDK for Windows supports two modes 

including ‘Standing’ and ‘Seated’ mode. The Standing mode is used when almost 

all the 20 joints are visible to the depth sensor. The Seated mode as the name 

suggests, is ideal for situations when the subject is seated or only its 10 upper 

body joints (shoulders, elbows, wrists, arms and head) are visible to the depth 

sensor [102]. The following figure shows both the Standing and Seated modes 

including the trackable body joints. 

 

Figure 3:10. Standing vs. Seated modes [102] 

 

The Microsoft Kinect SDK for Windows also provides ‘Joint Filtering’ in which the 

joints’ position tracked in the skeletal data can be smoothened across different 

frames in order to improve stability and minimise jittering issues [102]. This can be 

due to the Kinect’s intrinsic inconsistencies or decreases in signal acquisition over 

longer range that will be discussed in more details in section 2.3.1 Footstep 

detection. 

 

3.2.2.4  The Human Tracking Mechanism 

The mechanism behind the joint tracking system and subject tracking in the 

Microsoft official SDK recognises joints by processing the data coming from the 

depth sensor. It first makes up a rough estimation for each pixel in the depth map. 

Then in adds the probability of that pixel being correct, known as ‘Confidence 
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level’. After this, the system is able to select the most likely skeleton for that specific 

subject. Microsoft employed a machine learning technique in order to improve the 

Kinect joint and skeleton recognition capability. They used many people around 

the world and recorded their movements and different poses using the Kinect 

sensor. They then chose each correct joint position by hand from the stored 

dataset and fed the information into the algorithm. They even used professional 

motion capture emitters that can be worn by subjects to improve the accuracy of 

the Kinect. By collecting and correcting all the information gathered, they trained 

the algorithm to recognise the body joints successfully in almost all cases [99], 

[103]. 

 

3.2.3 Microsoft Kinect v2 

The Microsoft Kinect v2 (Figure 3:11) is the second iteration of the Kinect series 

designed for the Xbox One gaming console as a replacement for conventional 

gamepads released in 2014 by Microsoft Corporation. It is a ToF camera featuring 

the ability to process data at two gigabits per second speed making it more 

accurate compared to its predecessor; its depth and IR sensor resolution have 

been increased to 512 x 424 and its colour sensor encompasses a 1080p 

resolution video running at 30 frame per seconds (fps) [104].  

 

Figure 3:11. Microsoft Kinect v2 [105] 

 

The number of skeletal joints that the sensor can detect has been increased from 

originally 20 to 25 (Figure 3:12). Moreover, the number of concurrent user 

detection has also been increased from the originally two to six people. The 

camera’s field of view has also been increased, enabling users to operate in a 
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smaller area and closer to the sensor than before. Due to these enhancements, 

the accuracy of data collection, especially in capturing skeletal information, has 

been significantly improved. Nonetheless, the Kinect for Windows SDK 2.0 

removed many features available to its predecessor such as ‘Joint Filtering’, 

‘Standing/Seated mode and Default/Near mode.  

 

Figure 3:12. Trackable body joints from the skeletal data Kinect v1 vs Kinect v2 

[46] 

 

3.3 Summary 

This chapter aimed at discussing the state of the art of Kinect v1 and v2 sensors’ 

drivers, API, and SDKs. The technical details and the technologies involved in 

image recognition process used by the Kinect sensor were discussed. Their 

advantages and weaknesses over each other have been evaluated concluding 

that the Microsoft Kinect SDK for Windows has many advantages over other open 

source SDK tools. It also concluded that the official SDK is the ideal candidate for 
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the project as it can recognise more body joints (25 for Kinect v2) simultaneously 

and has the ability to track joints without the need of calibration. Additionally, 

developing application using one of the Kinect SDK supported programming 

languages (in this case, C#) proved to be a lot easier and the documentations and 

samples from the community helped to deliver a better-quality software. Thus, 

thanks to the improvements of the Kinect v2 compared to its predecessor, the 

Kinect v2 based on Kinect for Windows SDK has been selected for this research.  
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4 Chapter 4: Methodology 

4.1 Introduction 

In this chapter, the research’s experimental setup and conditions are explained. 

Moreover, different types of fall detection methods including heuristic and machine 

learning approaches are explored in order to find the most reliable method suitable 

for this study. Furthermore, as a requirement for FOG detection, two approaches 

in footstep detection one based on the subject’s ankles distance to the ground and 

one based on indirect observation via subject’s knees angles during a gait cycle 

are also evaluated. This chapter also focuses on the software design and 

hardware prototype for the study including the GUI, serial connection and signal 

differentiation, and data segmentation. Last but not least, the ethical approval 

process is also mentioned. 

 

4.2 Fall Detection 

Automatic fall detection is one of the most widespread research topics in 

healthcare and AAL as many physical conditions include falls as one of their main 

symptoms. Having a system that can autonomously detect a fall incident could 

decrease the risk of injuries and consequently the treatment expenditures. 

Furthermore, it helps to evaluate gait performance and fall analysis and provides 

valuable data for further studies. 

There have been significant studies such as [73]–[76], [106], [107] with regards to 

fall detection using different techniques over the past two decades, each with its 

advantages and drawbacks. Some of the earliest approaches in fall detection were 

based on wearable devices and attached sensors. Although accurate, they 

mandate the user to carry extra devices, charge batteries, wear special clothing or 

sensors to be attached to the body, making them uncomfortable to use. Moreover, 

these apparatuses may interrupt the normal daily activity and consequently gait 

performance analyses. In this research study, two different techniques (heuristic 

and machine learning) were tested and compared using the Microsoft Kinect v2 

sensor. The above techniques are fundamentally different in their performance 

under diverse situations.  
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4.2.1 Heuristic Approach 

For the heuristic fall detection approach, an algorithm was developed to track a 

subject's head 3D Cartesian coordinate location at all times. By using the Kinect 

skeleton tracking, the spatio-temporal position of each joint, with respect to other 

joints, can be determined. The proposed system holds the information of the 

subject head's position and velocity in one second time buffer at all times. This is 

required to calculate the average velocity of the subject’s head. Based on the 

vector that the subject’s head is moving towards and the distance between the 

head and the floor, a fall incident can be detected if the average velocity reaches 

1 m/s and the subject’s head distance to ground is less than 10 cm. These 

thresholds were determined experimentally during the testing phase; after setting 

different values, the results proved that the above values provided the least false 

positive detection rate. This minimises the chances for false positives’ occurrence 

by not taking into account low-velocity falls such as laying down or high ground 

distance incidents such as sitting on a chair. Additionally, the system is designed 

to distinguish between different types of falls such as critical falls in which the 

subject is unable to stand up and recover after the incident. This is achievable by 

adding a timer that can be user-defined to set a threshold for the maximum time 

elapsed before it reaches a critical falling point.  

Figure 4:1 demonstrates the developed fall detection technique using the heuristic 

approach. It shows a subject has fallen (on the floor) and the system recorded his 

velocity, direction, and distance to the floor when an object partially blocked the 

Kinect’s camera view. Figure 4:2 shows the system’s capability to compensate 

when the Kinect’s camera field of view is partial obstructed. 
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Figure 4:1. Heuristic approach software in action (objects partially blocking the 
sensor’s view) 
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Figure 4:2. Heuristic approach software in action (partial obstructed field of view) 

 

4.2.1.1  Floor Detection 

As a part of the heuristic fall detection technique, the detection of the floor is 
needed in order to calculate the subject’s head distance to the ground. A surface 
floor can be determined by using the scalar equation of plane. 

 

Equation 4:1. The scalar equation of plane 

 𝑨𝒙 + 𝑩𝒚 + 𝑪𝒛 + 𝑫 = 𝟎 

 

where 𝑨, 𝑩 and 𝑪 are the components of a normal vector that is perpendicular to 

any vector in a given plane that are determined by the Kinect once at least a 

subject is present in a scene and 𝑫 is the height of the Kinect from the level of the 

floor. Moreover, 𝒙, 𝒚 and 𝒛 are the 3D coordinates of a joint (subject’s head). 𝑨𝒙, 

𝑩𝒚, 𝑪𝒛 and 𝑫 are also provided by the Kinect SDK once a flat floor is detected by 

the camera. 
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      Once the floor is determined, the distance of a given joint’s 3D Cartesian 

coordinate location to the floor can be yield as follows: 

 

Equation 4:2. The Kinect’s skeletal joint distance to the ground 

𝒅 =
𝑨𝒙 + 𝑩𝒚 + 𝑪𝒛 + 𝑫

√𝑨𝟐 + 𝑩𝟐 + 𝑪𝟐
 

 

4.2.1.2  Acceleration and Velocity 

To determine the subject’s head fall acceleration and velocity, Euclidean distance 

equation was employed to calculate the distance changes over time.  

 

Equation 4:3. The Kinect’s skeletal joint velocity 

√(𝒙𝒊 − 𝒙𝒊−𝟏)
𝟐 + (𝒚𝒊 − 𝒚𝒊−𝟏)

𝟐 + (𝒛𝒊 − 𝒛𝒊−𝟏)
𝟐 

 

where 𝒙𝒊, 𝒚𝒊, 𝒛𝒊 and 𝒙𝒊−𝟏, 𝒚𝒊−𝟏, 𝒛𝒊−𝟏 are the current and past (one second 

difference) subject's head 3D Cartesian coordinates, respectively. 

 

4.2.2 Machine Learning Approach 

For the machine learning approach, an AdaBoostTrigger machine learning 

technique was implemented. It is an event detection technique that outputs a 

discrete or binary result. It is based on an AdaBoost machine learning algorithm 

that operates depending on its dataset and trainings, which combines a series of 

weak classifiers into a final boosted output [108]. In case of this study, the weak 

classifiers were determined automatically by the Kinect Visual Gesture Builder 

(VGB), which is a software developed by Microsoft for Kinect v2 machine learning 

training purposes [109]. A total of 29 minutes training videos based on 435 GB of 

30 fps, 1080p uncompressed RGB and 424p depth data were recorded and stored 

as a training dataset from the participants. Using Kinect VGB (Figure 4:3), these 

videos were tagged frame by frame to specify a falling incident’s true positive (real 

fall) and false positive (laying on the floor or sitting on a chair) moments. The 

details of the number of false positives and true positives performed by the 
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participants are mentioned in section 4.2.3. Even though VGB software is available 

for developers, it only facilitates the machine learning and training process not the 

detection phase. Thus, a system was developed to utilise the training set produced 

by VGB software in order to detect the fall incidents. After the training phase, VGB 

could automatically generate AdaBoost’s weak classifiers based on body joints’ 

vector, velocity, acceleration, and orientation in order to produce a discrete 

outcome according to the tagged videos. The information was processed to 

generate a series of weak and strong classifiers and calculate their confidence 

levels. The generated results were given to the software that was written for the 

machine learning approach to be compared against the real-time subject's 

postures. Two factors (velocity and subject’s head distance to the ground) were 

used for the machine learning approach.  

 

 

Figure 4:3. Visual Gesture Builder data flow diagram [109] 
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Figure 4:4. Visual Gesture Builder software 

 

Figure 4:4 demonstrates the video tagging training process. On the left, a true 

positive fall is marked and tagged for training as shown by blue bars at the bottom; 

on the right, colours represent the distance of 3D objects to the camera. 

 

Figure 4:5 shows the developed software for fall detection using the machine 

learning approach in action when a fall is about to happen, and the system shows 

the confidence factors accordingly. Figure 4:6 depict the software behaviour when 

a false positive fall has happened, and the system shows the confidence factors 

accordingly. 

 



 

63 | P a g e  
 

 

Figure 4:5. Machine learning approach software in action (objects partially 
blocking the sensor’s view) 

 

 

Figure 4:6. Machine learning approach software in action (partial obstructed field 
of view) 
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4.2.3 Testing Environment and Subjects 

The Kinect v2 sensor was placed at a height of one meter facing parallel to the 

surface. Due to the Kinect v2 wider field of view, subjects were placed at a distance 

range of one to two and a half meters. 

 Eleven healthy subjects (Table 4:1) participated in the trial for both heuristic 

and machine learning approach. For each approach, each subject on average 

performed six true positive and six false positive fall incidents. False positive 

incidents were performed by laying down or sitting on the floor. For machine 

training phase, extra postures were performed by each participant to train the 

system to detect false positive. 

 

  

Table 4:1. Test Subjects’ Characteristics (n=11; 8 males, 3 females) 

Subject 

Characteristics 

Range Standard 

Deviation 

Age 24-31 2.34 

Height (cm) 163-187 8.31 

Ankle Height (cm)  

with Shoes 

9.5-12.5 1.17 

Weight (kg) 51-100 16.35 

BMI (kg/m²) 17.3-30.1 3.83 

 

 

4.3 FOG and Footstep detection 

The Microsoft Kinect RGB-D sensor has been proven to be a reliable tool for gait 

analysis and rehabilitation purposes. Although it is accurate for detecting upper 

body part movements, even the second iteration of the Kinect sensor lacks the 

accuracy when it comes to lower extremities. As detecting foot-off and foot contact 

phases of a gait cycle is an important part of a gait performance analysis, using 
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the Kinect for detecting these phases is problematic due to the Kinect’s intrinsic 

inaccuracies. 

The detection and analysis of FOG in PwP is an important step towards the main 

goal of this research study, which is providing dynamic visual cues to the patients 

during a FOG incident. Thus, two footstep detection techniques were used for this 

study. 

 

4.3.1 Joint Height Footstep detection 

Eleven healthy subjects (Table 4:1) participated the trial in which they were asked 

to walk in pre-defined paths while their skeletal data being captured and analysed 

by the Kinect camera. 

Subjects were asked to walk in pre-defined paths: 12 per subject, by walking 

towards the camera while having the Kinect camera’s angle at 0, 10, 22 and 45 

degrees to the ground at Kinect’s height of 0.65, 1 and 1.57 metres to the ground, 

while their skeletal data was captured and analysed by the Kinect camera. The 

software was written in C# using Kinect for Windows SDK version 2.0.1410.19000. 

For simplicity, this report only shows the subjects’ left ankle throughout the figures.  

As an extra step, our Kinect v2 data acquisition was compared against a gold 

standard Vicon T10 Mocap ToF camera. The Vicon and Kinect v2 recorded each 

session simultaneously while the frame rate of the recorded data from the Vicon 

camera was lowered down to match the Kinect v2 approximate 30 frames per 

second. The Vicon camera was used to ensure that the initial measuring of the 

subjects’ actual ankle height is accurate.  

For each test, the first 10 seconds of the subject walking for our system to calculate 

the correction algorithm were recorded. Subjects were asked to walk towards the 

Kinect from the distance of 4.33 metres to 1.38 metre to the Kinect camera. The 

collected data were used in the correction algorithm to rectify the Kinect’s intrinsic 

inaccuracies mentioned previously, in order to provide more accurate subject’s 

joint-to-ground data. Consequently, the results were used to detect subjects’ 

footsteps including foot-offs and foot contacts directly based on their ankles’ 

distance to the ground. 
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4.3.1.1 Correction Algorithm 

As mentioned in section 2.3.1, in order to assist the system in correcting the 

inconsistencies in the footstep detection algorithm, the relation between the 

subject’s ankles Z-coordinates to the Kinect’s sensor and subject’s ankles distance 

to the ground was examined.  

The first 10 seconds of the Kinect skeletal data, including the subject’s ankles 

height to the ground and subject’s ankles distance to the camera for each test 

subject, were recorded and filtered to include only standstill positions in order to 

acquire a baseline of calculated ankles’ height to the ground. The data was then 

run through a regression analysis by the developed system to adjust the depth-

map correction algorithm, which was based on geometrical transformation. A two-

point linear equation was used to estimate the correct ankle’s height to the floor at 

any given time based on the subject’s ankle Z-axis distance from the camera.  

 

Equation 4:4. Correlation between a joint’s Z-axis and Y-axis 

 

𝑦 − 𝑦1

𝑧 − 𝑧1
=

𝑦2 − 𝑦1

𝑧2 − 𝑧1
  

 

where 𝑧 is the ankle’s Z-axis distance to the camera and 𝒚 is ankle’s 3D Euclidean 

distance to the ground at any given time. After an initial 10 seconds data recording 

of all trials for the correction algorithm analysis, the value of 𝒚 in Equation 4:4 was 

calculated as follows: 

 

 Equation 4:5. Corrected value for a joint’s Y-axis 

𝑦 = 𝑧  0.013 ± 0.05   

Equation 4:5 is derived from simplifying and substituting numbers collected from 

the initial 10 seconds of data recording in Equation 4:4. 

The following equation was then used to correct the depth map stream data 

reading. By applying the corrected 𝒚 value yielded from Equation 4:5 to the 

following equation, the true value of the 𝒅 can be calculated as follows: 
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Equation 4:6. Joint distance-to-ground correction technique 

�̂�𝑖 = 𝑑𝑖 + (𝑙 − 𝑧𝑖)
𝑦𝑖

𝑧𝑖
 

where �̂�𝒊 is the corrected estimate of ankle’s distance to ground for the 𝑖th stride, 

𝒅𝒊 is the Kinect’s measured distance of the subject’s ankle yielded from Equation 

4:2, 𝒛𝒊 is the ankle’s Z-axis distance from the Kinect, and 𝒚𝒊 is the correction factor 

for the 𝑖th stride. 𝒍 is the maximum visible distance of Kinect in Z-axis and remains 

consistent. All the values are in meters as detected by the Kinect’s depth sensor. 

 

4.3.1.2  Footstep detection Algorithm 

Kinect skeleton data were used to calculate ankles’ joint 3D Cartesian coordinate 

locations. Once a joint was localised using Kinect skeleton data, the surface floor 

was determined based on the scalar equation of planes (Equation 4:1). 

As Figure 4:7 demonstrates, ankles and feet are the only Kinect-discoverable 

joints having significant displacement changes in relation to gait cycles while 

retaining least errors compared to the movements of a human upper extremities. 

As mentioned previously, although some studies [57] discussed methods based 

on joints’ anterior and posterior displacement changes, this proposed method can 

be used in scenarios that joints’ anterior and posterior displacement changes have 

little correlation with gait cycles such as FOG incidents in PwP. As observed during 

the study, Kinect’s detection of ankles was less susceptible to noise and 

inaccuracies compared to feet. A filter was applied to the signal in order to acquire 

a baseline of subjects’ ankles and feet height only in a stand-still position. An 

average inaccuracy was calculated based on the deviation between the estimated 

ankles’ height and the actual ankles’ height. Moreover, the inaccuracy between 

the estimated feet’s height and the actual feet’s height was also calculated. The 

results showed 25.69 % and 44.43 % inaccuracies for all subjects’ ankles and feet, 

respectively. Moreover, according to [56], it was concluded that in the lower 

extremities, a subject’s feet are more susceptible to noise due to their close 

distance to large planar surfaces. Thus, subjects’ ankles were chosen to evaluate 

and track footsteps. 
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Figure 4:7. Subject's joints height to the ground in a gait cycle 

 

A foot-off event is considered to have occurred when a foot’s ankle 3D Euclidean 

distance from the floor has increased to more than a particular threshold based on 

the actual ankle’s height. Consequently, a foot contact event is triggered when the 

ankle 3D Euclidean distance from the floor of the same foot has returned to its 

original value in a time period of more than 250 ms. The empirically 250 ms timing 

threshold was set to avoid the false positives flag ups due to the Kinect 

inconsistencies and noise. The Euclidean distance of an ankle’s 3D Cartesian 

coordinate location from the ground can be yielded based on Equation 4:2. 

 

Figure 4:8 demonstrates the subject’s footstep detection process including foot-

offs and foot contacts. The algorithm loops at approximately 30 frames per second 

while the Kinect camera is tracking the subject’s movements. 
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Figure 4:8 Foot step detection algorithm flowchart 

 

Figure 4:9 shows the calculated height of a subject's ankle using Equation 4:2 

(before the correction was applied). The algorithm checks whether the subject’s 

ankle height value is greater than the actual size of the subject’s ankle. If the result 

was true, the algorithm then starts a timer to calculate the swing time. As soon as 

the initial condition becomes false, the algorithm then stops the timer and 

increment the number of footstep for each foot. Subjects were asked to move 

towards the Kinect camera and remain still at different distances from the Kinect’s 

lens optical centre. The Kinect RGB feed was then aligned with its depth/skeleton 
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feed using the Kinect coordinate mapping technique. The figure demonstrates the 

Kinect’s inaccuracies in detecting a subject’s ankle distance to the ground. Even 

in standstill posture, as the subject’s Z coordinates (depth) to the Kinect’s sensor 

changes, the Kinect reads different value of the subject’s ankle distance to the 

ground. 

 

Figure 4:9. Panel (a) shows a subject's left ankle height to the ground at different 

distances from the Kinect camera. Panel (b) shows the subject’s ankle Z-axis 

distance from the Kinect camera 
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Figure 4:9 Panel (a) shows a subject's left ankle height to the ground at different 

distances from the Kinect camera while the subject is walking towards the Kinect 

camera before the correction was applied. The peaks in Panel (a) show the steps 

taken by the subject. The dotted line represents the subject’s actual ankle height 

in a stand still position. Panel (b) shows the same subject’s ankle Z-axis distance 

from the Kinect camera during the same walking session. 

It was observed that not only the subject’s ankles height was changing in 

accordance to its Z-axis distance from Kinect camera, but also the calculated 

distance of the ankle from the floor was not consistent even in a stand-still position. 

The study showed that as the subject’s ankle Z-axis distance from the Kinect 

camera decreases, the subject’s calculated ankle height to the ground also 

decreases. 

 

4.3.2 Knee Angle Based Footstep detection 

 

4.3.2.1  Angle Determination 

As studies previously noted, the Kinect skeletal joints relative 3D coordinates data 

reading are less susceptible to noise and inaccuracies compared to their distance 

to the ground data acquisition [4,13–15]. Thus, for each leg, a knee joint angle was 

determined by considering the location of the neighbouring joints such as hip and 

ankle in the Cartesian coordinate. The hip, the knee and the ankle position in a 

Cartesian space are defined with three vectors, with the Kinect being at the origin 

of the 3D space. This vector definition is expressed in Equation 4:7.  
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Figure 4:10. Determination of 𝜽 using hip and ankle joints 

 

Equation 4:7. Knee joint 3D angle determination 

 

�⃗⃗� 𝒌𝒉 = �⃗⃗� 𝒌 − �⃗⃗� 𝒉 

�⃗⃗� 𝒂𝒌 = �⃗⃗� 𝒂 − �⃗⃗� 𝒌 

𝜽𝒌 = 𝐜𝐨𝐬−𝟏(�⃗⃗� 𝒌𝒉 ∙  �⃗⃗� 𝒂𝒌) 

 

Were �⃗⃗� 𝒌𝒉 and �⃗⃗� 𝒂𝒌 are the 3D vectors connecting the subject’s hip to the knee and 

knee to the ankle, respectively that is also depicted in Figure 4:10. Moreover, 

�⃗⃗� 𝒌𝒉 and �⃗⃗� 𝒂𝒌 are the unit vectors of �⃗⃗� 𝒌𝒉 and �⃗⃗� 𝒂𝒌, respectively. 

 

4.3.2.2  Footstep detection Algorithm 

A foot-off event is considered to have occurred when the knee angle of one foot 

has decreased to less than a particular threshold, which was experimentally 

acquired to be 170 degrees. Moreover, a foot contact is triggered when the knee 

angle of the same foot has returned to its original value (170 > θ ≤ 180) within a 

time period of more than 200 ms. The 200 ms timing window was set to avoid the 

false positives flag ups due to the Kinect inconsistencies and noise.  
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Figure 4:11. Step detection (foot-off and foot contact) process flowchart 

Figure 4:11 demonstrates the subject’s footstep detection process including foot-

offs and foot contacts. The algorithm checks whether the subject’s knee angle 

value is lesser than the defined threshold. If the result was true, the algorithm then 

starts a timer to calculate the swing time. As soon as the initial condition becomes 

false, the algorithm then stops the timer and increment the number of footstep for 

each foot. The algorithm loops at approximately 30 frames per second while the 

Kinect camera is tracking the subject. 

 

4.4 Software Development 

The proposed system also includes a comprehensive Graphical User Interface 

(GUI) that enables doctors and healthcare providers gather important information 

about a patient’s gait performance such as stride time, steps in a given time and 
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total number of steps in real-time. This data can be recorded and later exported to 

a patient's database profile for future analysis and evaluations.  

The developed software can also enable a user to log in and observe the patient’s 

status as well as provide support should the patient require. Figure 4:12 illustrates 

the network diagram facilitating the relay of video streams via the internet to the 

smartphone and client applications. 

 

 

Figure 4:12. Network connection diagram including outgoing and incoming data 
packets over the internet  

 

A smartphone companion application was also developed for Universal Windows 

Platform (UWP), that provided notification and a live video stream of a patient to 

be monitored.  
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Figure 4:13. Design of the system’s companion smartphone application 

 

Figure 4:13 shows the design of the system’s smartphone companion application 

for healthcare providers, doctors and carers. The application provides vital 

information about the subject including the number of FOG incidents as well as 

notification to the user if a critical fall incident occurs. Moreover, it provides the 

remote user the ability to send visual or auditory cues during a FOG incident or 

contact emergency services. Based on the user preference, the system can 

contact a person in-charge via email or notifications in the companion smartphone 

application including a live stream of the incident and the time stamp of the 

incident’s date and time. A carer, once notified, can also initiate a Skype 

conversation where he/she can talk to the patient and provide further support. The 

carer or the person in-charge can be a member of a user defined list in the app 

setting so only the users who are added can gain access to the patient’s 

information and provide remote support. 
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4.4.1 FOG Detection 

In a past study, [58] we have implemented a process of FOG detection in using 

the gait cycle and walking pattern detection techniques published in [57], [110]. 

Once the developed system detects a FOG incident, it will turn on the laser-based 

visual cues and start determining the appropriate angles for both vertical and 

horizontal servo motors. After passing a user-defined waiting threshold or 

disappearance of the FOG incident, the system returns to its monitoring phase by 

turning off the laser projection and servo motors movements. Figure 4:14 shows 

the GUI for the developed system application. 

 

 

Figure 4:14. Graphical User Interface for the developed software 

The left window shows a PD patient imitator during his FOG incident. The right 

window shows that the subject is being monitored and his gait information is being 

displayed to healthcare providers and doctors. As it can be seen in the ‘FOG 

Status’ section displayed in the red rectangle, the system has detected a FOG 

incident and activated the laser projection system to be used as a visual cue 

stimulus. The red circled area shows the projection of laser lines in front of the 

subjects according to its feet distance to the camera and body direction. The 

developed system also allows further customisation including visual cues distance 

adjustments to the front of the patient.  

During the initial testing phase, 11 healthy subjects were invited, consisting of both 

males and females ranging from ages 24-31, with the age mean of 27 and (SD) of 

2.34, mean height of 174.45 and (SD) of 8.31 cm ranging from 163 to 187 cm. 

They were asked to walk in pre-defined paths: 12 paths per subject, walking 

towards the camera and triggering a FOG incident by imitating the symptom while 
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having the Kinect camera positioned at a fixed location. The subjects’ skeletal data 

were captured and analysed by the Kinect camera in real-time. The room that was 

used for conducting the experiments consisted of different living room furniture to 

mimic a practical use case of the device. This not only yields more realistic results, 

but also tests the system in real-life scenarios where the subject is partially visible 

to the camera and not all the skeletal joints are being tracked. 

 

4.5 Hardware Development 

 

4.5.1 Servo Motors Angle Detection 

The Kinect v2 was used to determine the subjects’ location in a 3D environment 

and localise the subject’s feet joints to calculate the correct horizontal and vertical 

angles for servo motors. To determine the subject’s location, Kinect skeletal data 

were used for joints’ 3D coordinate acquisition. A surface floor can be determined 

by using the vector equation of planes (Equation 4:1). This is necessary to 

automate the process of calculating the Kinect’s height to the floor that is one of 

the parameters in determining vertical servo angle. 

For vertical angle determination, the subject’s feet 3D coordination was 

determined and depending on which foot was being closer to the Kinect in Z-axis, 

the system selects that foot for further calculations. Once the distance of the 

selected foot to the camera was calculated, the vertical angle for the servo motor 

is determined using the Pythagorean theorem, as depicted in  

Figure 4:15. The subject’s skeletal joints’ distance to the Kinect on the Z-axis is 

defined in a right-handed coordinate system, where the Kinect v2 is assumed to 

be at origin with a positive Z-axis value increasing in the direction of Kinect’s point 

of view.  
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Figure 4:15. Vertical angle determination 

where a is the Kinect’s camera height to the floor that is the same as variable 𝑫 

from Equation 4:1 and c is the hypotenuse of the right triangle, which is the 

subject’s selected foot distance to the Kinect camera in the Z-axis. θ is the 

calculated vertical angle for the servo motor. Note that the position offsets in X and 

Y axes between the Kinect v2 camera and laser pointers/servo motors were taken 

into account to achieve the most accurate visual cue projection. 

Figure 4:18 illustrates a subject’s lower extremities Z-axis distance to the Kinect 

camera (Figure 4:15 variable c) while the subject is moving towards the camera. 

It shows that the Kinect v2 determines a joint’s Z-axis distance to the camera by 

considering its height to the ground. i.e. the higher the value of a joint’s Y-axis to 

the camera’s optical centre is, the farther the distance it has, to the camera in the 

Z-axis. This indicates that unlike the Kinect’s depth space, the Kinect skeletal 

coordinate system does not calculate Z-axis distance (Figure 4:15 variable c) in a 

perpendicular plane to the floor and as a result, the height of the points that in this 

case are joints, are also considered.  
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Figure 4:16. Subject’s lower body joints distance to the Kinect camera in the Z-

axis during a walking session 

To test the Kinect v2 accuracy in determining both vertical and horizontal angles 

according to the subject’s foot distance to the Kinect camera and body orientation, 

a comparison between the aforementioned Vicon and Kinect camera was 

performed. 

 

 

Figure 4:17. Subject’s left foot distance to the camera in Z-axis using Kinect v2 

and Vicon T10 
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The above figure shows the Kinect v2 accuracy in determining a subject’s joint (left 

foot) distance to the camera in Z-axis after applying our suggested correction 

algorithms compared to a gold standard motion capture device (Vicon T10). It was 

concluded that Kinect v2 skeletal data acquisition accuracy was very close (98.09 

%) to the industry standard counterpart. The random noise artefacts in the signal 

were not statistically significant and did not affect the vertical angle determination.  

The subject’s body direction that determines the required angle for the horizontal 

servo motor can be found via the calculation of rotational changes of two subject’s 

joints including left and right shoulders. The subject’s left and right shoulder joints’ 

coordinates were determined using skeletal data and then fed to an algorithm to 

determine the body orientation as follows: 

 

 

Figure 4:18. Horizontal angle determination (note that Kinect sees a mirrored 

image thus shoulders are reversed) 

 

Equation 4:8. Horizonal Servo Motor Angle Determination 

θ𝑯=|90±( sin-1|shoulderA-shoulderB|)| 
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where d in Figure 4:18 is the Z-axis distance difference to the camera between the 

subject’s left and right shoulders. 

Once the d based on the Equation 4:8 was calculated, the angle for the horizontal 

servo motor (θ𝑯) can be determined by calculating the inverse sine of θ. Depending 

on the subject’s direction of rotation to the left or right, the result would be 

subtracted or added from/to 90, respectively. This is because, in order to cast laser 

lines in front of the subject, the horizontal servo motor should rotate in reverse 

compared to the subject’s body rotation. 

4.5.2 Motor Control 

A serial connection was needed to communicate with the servo motors controlled 

by the Arduino Uno microcontroller. The transmitted signal by the developed 

application needed to be distinguished at the receiving point (i.e. Arduino 

microcontroller) so each servo motor can act according to its intended angle and 

signal provided. A multi-packet serial data transmission technique similar to [111] 

has been developed. The data were labelled at the transmitter side, so the 

microcontroller can distinguish and categorise the received packet and send 

appropriate signals to each servo motor. The system loops through this cycle of 

horizontal angle determination every 150 ms. This time delay was chosen as the 

horizontal servo motor does not need to be updated in real-time due to the fact 

that a subject is less likely to change its direction in very short intervals. This 

ensures less jittery and smoother movement of horizontal laser projection. 

 

4.5.3 Design of the Prototype System 

A two-servo system was developed using an Arduino Uno microcontroller and two 

class-3B 10mW 532nm wavelength green line laser projectors as shown in Figure 

4:19a; green laser lines have been proven to be most visible among other laser 

colours used as visual cues [112]. An LCD display has also been added to the 

design that shows all the information with regards to vertical and horizontal angles 

to the user. Figure 4:19c shows the developed prototype system used in the 

experiment at different angles including the Kinect v2 sensor, pan/tilt servo motors, 

laser pointers and the microcontroller. Figure 4:19b shows the top view of the 

prototype system including the wiring and voltage regulators. A 3D printed caddy 

was designed to hold the laser pointers (Appendix J). 
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Figure 4:19. Developed prototype of the automatic visual cue system. a) The two 

step motors controlling the horizontal and vertical alignment of the system. b) A 

top view of the Kinect v2 combined with the micro controller and voltage 

regulators c) A view of the prototype system in action 

As mentioned before, a micro controller based on Arduino Uno was employed to 

controller the movement of both horizontal and vertical servo motors as well as 

providing signals to the laser pointers. The board was also used to provide 

information to the LCD panel during the monitoring phase. Figure 4:20 illustrates 

the schematic diagram of the designed prototype hardware and the connection 

between each component. 
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Figure 4:20. Schematic diagram of the designed prototype hardware  
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4.6 Focus Group and Patients Participation 

Once the prototype system including the hardware, software and algorithms were 

chosen for the study, PwP where invited to participate in a focus group. The aim 

of the focus group was to review the functionality and performance of the 

developed system and provide valuable feedback on how to improve the prototype 

system. Fifteen PwP (12 male, 3 female) participated in the focus group in which 

seven PwP volunteered to directly interact with and evaluate the system. The 15 

volunteers were split up in to three groups of five people. 

They were invited to attend an event where the system’s capabilities were 

demonstrated in terms of monitoring patient’s FOG status, fall-detection, and 

providing sensory cues for improving locomotion during FOG. Participants were 

provided the opportunity to experience the system themselves as an option. They 

were allowed to walk towards the camera while being monitored, assess the 

system’s capabilities for visual cues projection and observe the dynamic laser lines 

in action, as majority suffer frequent FOG. Moreover, the falling incidents were 

simulated by a healthy adult to demonstrates the system’s fall detection and live 

support capabilities. Seven of those 15 participants tested the system. 

Nonetheless, all 15 of them observed the prototype system in operation. Seven 

patients who volunteered to test the system were split in to three groups, attending 

in three different sessions.  

Participants were recruited from local support groups managed by Parkinson’s UK 

(Appendix E). Potential participants were given written information about the study 

and were invited to participate (Appendices F and G). They were reminded that 

they were under no obligation to take part and could withdraw at any time. All 

participants provided written and informed consent (Appendix C). All investigations 

were carried out according to the principles laid down by the Declaration of Helsinki 

of 1975, revised in 2008. Ethical approval for the research was granted by Brunel 

University London’s ethics committee (Appendices B and D). A risk assessment 

investigation was also conducted in order to assess the testing environment and 

laser projection system (Appendix A).  

The population age of the 15 PwP participating in the focus group ranged from 54-

78, with a standard deviation (SD) of 8.01 years of having PD, population (SD) of 

4.99 ranging from 0.5 to 18 years and daily FOG frequency population (SD) of 4.31 

ranging from 3 to 20 episodes (Table 4:2). The aim of the focus group was to 
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review the developed system functionality and performance. During the sessions, 

those who volunteered to test the system were instructed to walk towards the 

camera in pre-defined paths within the distance range of 4.33 meters to 1.38 meter 

while their gait and locomotion were being tracked by the developed system. The 

Kinect was placed perpendicularly at a height of 1.57 meters from the ground.  

 

 

Table 4:2. Patients Participants (* indicates those who volunteered to try them 
system) 

Patient Gender Age Years of PD Average Daily 

FOG 

occurrence 

S 1 Male 60 9 3 

S 2* Female 54 7 5 

S 3 Male 77 7.5 5 

S 4* Male 72 18 15 

S 5 Male 74 8 20 

S 6* Male 73 14 10 

S 7 Male 70 10 10 

S 8 Male 72 2 5 

S 9* Female 72 17 10 

S 10 Male 76 12 5 

S 11* Male 70 10 10 

S 12 Female 78 0.5 10 

S 13* Male 71 5 5 

S 14* Male 92 2 10 

S 15 Male 70 8 10 

Mean N/A 72.06 8.66 8.86 

 

 

4.7 Summary 

This chapter provided the methodology used for conducting this study including 

the implementation of different approaches required by this research. For fall 

detection, two different methodologies including heuristic and machine learning 
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were used. In order to estimate FOG events, footsteps occurrences were also 

explored using two different methods one based on knee angle and one based on 

the subject’s ankles height to the floor, in which a new correction algorithm was 

introduced to address the Kinect’s intrinsic inaccuracies. Moreover, the prototype 

design of the system including the software and hardware was developed during 

this stage and put on test. Several PwP were also invited to test the prototype as 

part of a focus group. The detailed information about the results of the experiments 

will be explained in the next chapter.  
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5 Chapter 5: Results and Discussion 

 

5.1 Introduction 

This capture covers the results and data found during this research. The conditions 

for each experiment conducted in this study will be indicated and analysed. 

Moreover, this chapter includes the comparison of the results of this study against 

previous findings in related studies mentioned in the literature. 

 

5.2 Experimental Setup 

5.2.1 System Specifications 

The system’s hardware specifications used in all the computations and collection 

of the data phases as well as the machine learning and testing process are as 

follow: 

Model: Viglen Genie Full 

CPU: Intel (R) Core(TM) i7-4790 CPU @ 3.60GHz 

Internal Memory (RAM): 24.00 GB (23.8 usable) DDR3 in Dual Channel mode 

Graphics Card: AMD FirePro W5000 (2 GB VRAM)  

System Type: 64-bit Operating System, x64-based processor 

Operating System: Windows 8 Enterprise upgraded to Windows 10 Education 

The developed software was written in C# using Kinect for Windows SDK version 

2.0.1410.19000 while the companion smartphone application was based on 

Windows 10 Mobile (10.0; Build 10240) and the client software was developed 

using Windows Presentation Foundation (WPF). 

 

5.2.2 Testing Environment 

A testing environment was used to carry out the trials as below: 
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Figure 5:1. The testing environment: the subject is walking diagonally towards 
the Kinect camera while his body joints are being tracked 

 

The Kinect sensor was setup at different angles ranging from 0 to 45 (0, 10, 22 

and 45) degrees to the ground and at different heights 0.65, 1 and 1.57 meters in 

order to identify any possible differentiation in results based on the camera angle 

and height factors.   

For further evaluation of the system, its outputs had to be compared for accuracy 

to a system considered as a golden standard. A series of eight synchronised Vicon 

T10 motion capture cameras providing full room coverage were used alongside 

the Kinect v2 camera. The test subjects were asked to walk in a pre-determined 

path while their skeletal joints were being monitored by both the Kinect v2 and 

Vicon cameras. Subjects also performed upper-body rotation while being in a 

stand still position for the Kinect’s horizontal angle calculation.  

Figure 5:2a shows the process of collaborating virtual markers attached to a 

subject for Vicon cameras where a subject in a T-pose for her ankles height, as 

well as her joints’ position to be calculated by both Vicon and Kinect systems. The 

Vicon cameras and Kinect v2 captured each session simultaneously while the 

frame rate of the recorded data from the Vicon cameras was lowered down to 

match the Kinect v2 at approximately 30 frames per second.  

Figure 5:2b and Figure 5:2c show real-time 3D data representation of both the 

Vicon cameras and Kinect v2, respectively. 
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Note that the motion capture suit used in the experiment were intended for the 

Vicon cameras only as the Kinect v2 does not require any special clothing for its 

skeletal detection system to function. Subjects were also asked to wear normal 

clothing after the initial ankle measurement phase while their movements were 

being recorded by Kinect v2 in different situations (camera heights and angles). 

 

 

 

 

 

Figure 5:2. 3D data acquisition using Kinect v2 and Vicon T10 cameras 

 

5.2.3 Test Cases 

For the trial testing, 11 subjects (Table 4:1) participated by walking in pre-

determined paths in 12 walking sessions including diagonally walking towards the 

camera, while their body data was being recorded and analysed by the system 

using Kinect v2.  

 

5.3 Kinect v1 Frame Rate Analysis 

The frame rate information was collected based on different options in the software 

to determine the impact of each feature on the system performance as well as the 

frequency of obtaining the joint positions. It was clear that if the sampling rate 

decreases, there will not be enough data for the system’s algorithms to operate 

effectively. The minimum frame rate required by the system to determine the joint 

positions was low (between 5 to 10 FPS). It was observed that the use of depth 
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imaging of the API decreases the frame rate by a huge factor. The following table 

compares the obtained data frame rate from the system concerning different 

settings. 

 

Table 5:1. Frame rate comparison of different Kinect v1 capturing settings 

Frame Rate 

Analysis 

1 2 3 4 5 6 7 8 

Depth Image 

640x480 

 

✓ 
 

✓ 

 

✓ 
 

✓ 

Depth Image 

320x240 

✓ 
 

✓ 
 

✓ 
 

✓ 

 

One Subject in 

the Scene 

✓ ✓ 

  

✓ ✓ 
  

Two Subject in 

the Scene 

  
✓ ✓ 

  

✓ ✓ 

Live 

Coordination 

Feed Enabled 

    

✓ ✓ ✓ ✓ 

Minimum Frame 

Rate (FPS) 

29 27 22 15 5 0 0 0 

Average Frame 

Rate (FPS) 

29.5 28.9 25.4 16 6 0 0 0 

Maximum 

Frame Rate 

(FPS) 

30 30 27 23 8 0 0 0 

 

The following diagram demonstrates the effect of each capturing setting on the 

system performance. 
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Figure 5:3. System Performance in FPS 

 

It was observed that when a second subject enters the field of view, the frame rate 

dropped significantly. The system needs to do extra data processing for the 

second individual and consequently, it slows down the overall system’s 

performance. Currently there is no control over the number of tracking joint in the 

API. Moreover, when the ‘Live Data Feed’ check box is enabled, the system halted 

although it did not crash. The current implementation of the Kinect v1 sensor was 

not capable of handling live feed information of three joints each in 3D. 

As the result, either a very low resolution (320x240) had to be chosen to be used 

in the final implementation of the application or one had to go with Kinect v2. As 

mentioned before, although Kinect v2 has higher resolution (1080p) for its RGB 

data stream and has many improvements over Kinect v1, it is missing a lot of built 

in features in its API such as ‘Joint Filtering’. Nonetheless, by implementing the 

developed correction algorithm, especially for the Joint-to-Ground footstep 

detection technique, many of these missing features could be compensated. Thus, 

the Kinect v2 was chosen for the use of this study as its advantages outweighs its 

disadvantages. 
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5.4 Fall Detection 

During the experimentation stage of this research study, two different fall detection 

approaches for the system have developed and evaluated. One based on a 

heuristic design and one based on machine learning technique using 

AdaBoostTrigger. Same dataset were used to train the machine learning algorithm 

and test the heuristic method. 

For heuristic approach, as expected, the system showed good results with high 

accuracy. Although each subject’s fall incident had different characteristics in 

terms of velocity and postures, the implemented algorithm detected 95.42 % of 

falls successfully. Figure 5:4 shows a subject’s head fall velocity as detected by 

the system. 

 

Figure 5:4. Heuristic – Subject’s head fall velocity (true positives and false 
positives are shown as green and red circles, respectively) 

 

 

As the above figure shows, there are five major falls with considerable velocity 

detected by the system. These data then were analysed by the algorithm and 

compared to the subject mean head’s Y-axis height (Figure 5:5) to eliminate false 

positives. Note that the subject’s height is measured as a 3D Cartesian coordinate 

point located in the middle of the head. 
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Figure 5:5. Heuristic – Subject’s head height to floor 

 

In order for the system to detect a falling incident with higher accuracy, the signal 

was filtered, normalised and the earlier-mentioned thresholds such as velocity, 

acceleration and the subject’s head distance to ground were set in order to ignore 

false positives. A conditional statement was applied to ignore signals when the 

subject’s head distance to the ground is higher than 10 cm or its velocity is less 

than 1 m/s. Figure 5:6 shows the same subjects’ falling incidents after correction. 

Note that the whole process is automatic and done in real-time by the developed 

system. 

 

Figure 5:6. Heuristic – Filtered true positive fall detection’s confidence level (true 
positives are shown as green circles) 
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As the above figure illustrates, the system managed to detect three discrete fall 

incidents during the trial for the subject. The Y-axis shows the system's confidence 

in fall detection with one being the absolute certainty. As the set of instructions for 

fall detection algorithm was implemented in software, the heuristic approach 

showed a similar result in both scenarios (one with objects partially blocking the 

sensor’s view and one with partial obstructed field of view). Nonetheless, in partial 

obstructed field of view condition, the accuracy of true positive detection was lower 

depending on whether the subject’s fallen body was fully seen by the Kinect. In 

both conditions, the obstructed joints’ 3D Cartesian coordinate location tracking 

was compensated and predicted using ‘inferred’ state enumerate, a built-in feature 

in the Kinect SDK. By implementing the ‘inferred’ joint state, the joint data were 

calculated, and its location was estimated based on other tracked joints.    

For machine learning approach, two factors were taken into account. The system 

was built to calculate both velocity and the subject’s head closeness to the ground 

by importing false positive, false negative and true positive tagged-video samples. 

Results show that our system (mentioned in 4.2.3) required about 18 minutes to 

calculate and process all training videos including 11 subjects’ fall incidents in 

different conditions and 11 subjects’ false positive training videos. Overall, 435 GB 

of 30 fps, 1080p uncompressed RGB and 424p depth video data were processed 

by the system for a total of 29 minutes training videos. Figure 5:7 shows the 

likelihood of the same subject reaching the threshold fall velocity as a confidence 

level zero to one. False positives are shown with red circles. 
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Figure 5:7. Machine learning – Subject’s fall velocity threshold confidence level 
(false positives and true positives are shown as red and green circles, 

respectively) 

 

Figure 5:8 shows the confidence level for detecting the same subject’s distance to 

the ground as a fall incident happens. 

 

 

Figure 5:8. Machine learning – Subject’s distance to the ground confidence level 

 

 As the above figure demonstrates, the machine learning approach proved 

to be less accurate compared to the heuristic method due to the limited number of 

subject’s samples [113].  
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Figure 5:9. Number of true positives and flase positives detected by Kinect based 
on the size of the training dataset [113] 

 

The accuracy of an AdaBoostTrigger algorithm is highly dependent on the number 

of training samples. Nevertheless, by introducing a second confidence factor into 

the equation and merging both confidence factors, the system managed to cancel 

out most of the false positives. Figure 5:10 shows the combined confidence level 

for the subject’s fall on the floor and fall velocity. The graph shows that once the 

two signals are combined, most of the false positive detection was weakened and 

consequently, the successful detection signals have been boosted and 

normalised. The green circles show true positive fall incidents with highest 

confidence level whereas the red circle indicates an error in picking up a false 

positive incident as a true positive. 
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Figure 5:10. Machine learning – Fall detection overall confidence from combining 
the threshold fall velocity and distance to the floor factors (false positives and 

true positives are shown as red and green circles, respectively) 

 

 Figure 5:11 shows the data once the system passed it through a filter to 

ignore signals, which either of the probability levels (threshold fall velocity or 

subject’s distance to ground) is below 60 %. 

 

Figure 5:11. Machine learning – Filtered fall detections’ confidence level (true 
positives and false positives are shown as green and red circles, respectively) 

  

 Combining two sets of conditions achieved a slightly higher detection rate. 

Nevertheless, in order to observe a noticeable improvement in detection of true 



 

98 | P a g e  
 

positives, the number of dataset and training data should be significantly increased 

[113]. Overall, the system behaved differently for each testing trial. The algorithm 

managed to detect a maximum of 88.33 % of true positive falls successfully. 

Table 5:2 shows the results for each fall detection approach true positive success 

rate for each participant. 

 

Table 5:2. Heuristic and machine learning fall detection success rate comparison 

Fall Detection 

Approach 

Heuristic (%) Machine Learning (%) 

S1 94.98 88.12 

S2 95.11 87.98 

S3 95.62 88.21 

S4 95.24 88.65 

S5 95.10 87.86 

S6 95.16 88.03 

S7 96.21 88.45 

S8 96.02 88.92 

S9 95.35 88.37 

S10 95.72 88.82 

S11 95.21 88.29 

Average 95.42 88.33 

 

5.5 FOG and Footstep Detection 

As a part of FOG detection for the developed system, two footstep detections 

capable of detecting of foot-offs and foot contacts phases of a gait cycle were 

developed and evaluated. One approach was based on direct footstep detection 

technique using subject’s ankles distance to the ground and another based on the 

subject’s knees angle. For the former approach, due to the Kinect’s intrinsic 
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inconsistencies in data stream, a correction algorithm was also developed and 

applied to maximise accuracy. 

 

5.5.1 Ankle Distance to Ground Approach  

Figure 5:12 shows that after the correction technique based on the two-point linear 

equation was applied, the data reading proved to be consistent, and the calculated 

ankle’s height was closer to the actual measured height (in the most commonly 

used range of 1.6 to 2.9 metres from the Kinect camera), regardless of the 

subject’s location to the camera. The dotted line represents the subject’s actual 

ankle height in stand still position 

 

Figure 5:12. Subject's left ankle height to the ground at different distances from 

the Kinect camera after correction algorithm was applied. The dotted line 

represents the subject’s actual ankle height in stand still position 
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Figure 5:13. Comparison between the original and corrected subject ankle’s 

height and the effect of the joint to the camera. 

 

Figure 5:13 Panel (c) shows a subject’s walking path towards the Kinect camera. 

The walking path consisted of two phases (t1) walking towards the Kinect camera 

and (t2) moving away from the Kinect camera. The subject was at 45 degrees in 

reference to the Kinect cameras. Figure 5:13 Panel (b) shows the subject’s left 

ankle height to the ground and its Z-axis distance to the Kinect camera. The result 
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showed that the ankle’s angle to the Kinect’s camera references point does not 

affect the data reading and the correction algorithm. Panel (a) compares the 

subject’s left ankle height to the ground during gait analysis in both scenarios (with 

and without the correction being applied). The dotted line represents the subject’s 

actual ankle height in stand still position.  

It was observed that the Kinect’s height to the ground did not have any impact on 

the data collection whereas its angle to the floor proved to have a statistically 

significant effect on the data collection and readings. While the Kinect’s data 

collection and consequently the proposed correction algorithm accuracy were at 

their highest when the Kinect’s angle to the floor was within the range of 15±3 and 

45±3 degrees, angles higher/lower than this range proved to be problematic and 

inaccurate. A possible explanation would be the effect of the Kinect’s limited field 

of view on covering subjects’ joints and detecting floor plane during the entire gait 

cycle. 

 Figure 5:14 illustrates the effect of different Kinect’s angle to ground on its data 

collection accuracy and the proposed correction algorithm. The corrected data was 

then used to calculate the gait characteristics and the number of footsteps.  
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Figure 5:14. Kinect data collection accuracy before and after the correction 

algorithm being applied at different angle to the ground. The dotted line 

represents the subject’s actual ankle height in stand still position.  

Table 5:3 presents the Kinect v2 inaccuracies comparison for both before and after 

the correction algorithm was applied. It is clear that the margin of error varies 

between different subjects, which can be explained by different Kinect behaviour 

in data collection based on subjects’ different shoes and trousers types, as well as 

colours and materials. Nonetheless, the difference between subject’s actual and 



 

107 | P a g e  
 

calculated ankle height deviation for all subjects fall under the estimated margin of 

this study. 

 

Table 5:3. Kinect v2 accuracy in detecting subjects’ ankle height before and after 
the correction algorithm being applied 

Subject 

Number 

Ankle Height 

Inaccuracies 

without 

Correction 

(%) 

Ankle Height 

Inaccuracies 

with 

Correction 

(%) 

 Right Left Right Left 

1 23.45 23.78 4.02 4.38 

2 14.56 16.62 3.60 4.78 

3 29.36 28.28 5.91 5.03 

4 30.11 34.40 7.50 8.26 

5 31.47 29.44 3.52 5.51 

6 25.01 21.79 1.56 1.38 

7 23.19 23.05 7.73 8.42 

8 29.49 29.55 3.74 4.97 

9 31.31 29.57 5.52 6.86 

10 30.02 29.18 8.19 8.97 

11 15.09 16.55 2.68 3.01 

Average 25.73 25.65 4.90 5.59 

Standard 

Deviation 

5.87 5.48 2.10 2.24 

 

A correction algorithm was applied to subjects’ ankles distance to the floor in order 

to compensate for the Kinect’s v2 inconsistencies in joints’ localisation, which 
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ultimately made footstep detection based on skeletal data and plane detection 

techniques possible. The initial ankle’s height data reading inaccuracies were 

decreased after the correction algorithm was applied from 25.72 % and 25.66 % 

(R/L ankle) to about 5.59 % and 4.91 % on average, among all subjects, therefore, 

resulting in greater accuracy in footstep detection from the original 42.06 % and 

43.65 %, to 79.37 % and 80.16 % on average, for right and left ankles, respectively, 

among all subjects. It was studied that the effective range for the correction 

algorithm was between 1.6 to 2.9 metres from the Kinect camera; in which before 

and after this range, the data reading inaccuracies returned back to the original 

values. Moreover, although the Kinect’s height did not affect the data reading, the 

camera’s angle had a statistically significant effect: it was observed that while the 

camera’s angle to the floor facing downward is within the range of 15±3 and 45±3 

degrees, the data were also at their highest accuracy. This can be due to the fact 

that angles lower than 15±3 and higher than 45±3 degrees cannot cover most of 

the subject’s joints and detecting floor plane in a frame due to the Kinect’s limited 

field of view. 

 

5.5.2 Knee Angle Approach 

Eleven subjects were asked to walk in pre-determined paths while their skeletal 

data was captured by Kinect v2, which was placed at different heights and angles 

to the ground. Figure 5:15 illustrates a subject’s walking session and knee joints 

behaviour during a gait cycle. It shows that in a standstill pose or a during foot 

contact phase, the knee joint angle remains approximately at 176 degrees. The 

acquired signal required no further processing as it had low Signal to Noise Ratio 

(SNR) for gait performance analysis resulting in a low latency, low-resource 

consumption footstep detection. 
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Figure 5:15. Knee joint angle value during a gait cycle 

Figure 5:16 shows the same subject’s walking session, walking towards the Kinect 

v2 camera. It indicates that the knee joint angle reading remained unaffected by 

the joint’s distance-to-Kinect changes, as it is relative to the subject’s skeletal 

joints. The subject’s right knee data was omitted in the figure for simplicity.  

 

  

Figure 5:16. Knee joint angle and its distance to the camera during a gait cycle 

The Knee joints angle performance during a gait cycle was compared against a 

different footstep detection method based on the subject’s ankle joints distance-

to-ground (Figure 4:9), in order to evaluate how the footstep detection accuracy 

has improved. The following figure shows the same walking session based on the 

subject’s ankle joint distance-to-ground.  
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Figure 5:17. Ankle joint distance-to-ground value during a gait cycle 

 

As Figure 5:17 illustrates, not only joints height to the ground detection by the 

Kinect v2 is noisy and less accurate, but also inconsistent and highly dependent 

on subject’s distance to the camera due to the Kinect’s aforementioned issues.   

As mentioned previously, the Kinect v2 camera was placed at different distances 

and angles compared to the ground plane. It was observed that different heights 

from the ground (including 0.65, 1 and 1.57 meters) did not have any effect on the 

knee joint angle measurement as long as the subject was within the Kinect v2 

detection range.  Different Kinect camera angles (0, 10, 22 & 45 degrees 

compared to the ground plane) were also studied, in order to determine the 

possibility of different outcomes. It was concluded that similar to the Kinect’s 

height, the camera’s angle did not have a significant effect on the measurement 

of the knee joint angle. Nonetheless, it was observed that as soon as a knee’s 

next closest joint (such as hip or ankle) becomes undetected due to an obstruction 

or limited field of view, the knee joint angle reading becomes unreliable. Thus, this 

study did not cover the effect of angles larger than 45 degrees to the ground due 

to the Kinect’s limited field of view.  

It was also concluded that the footstep detection using solely the knee joint angle 

is a reliable method to detect foot-offs and foot contacts phases of a gait cycle. 

The system showed 86.37 % and 86.67 % accuracy for left and right foot, 
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respectively, compared to the ankle joint distance-to-ground detection algorithm 

accuracy of 43.65 % and 42.06 % for left and right foot, respectively. Moreover, 

the proposed method had less footstep detection latency (200 ms) compared to 

the 250 ms delay in the ankle joint distance-to-ground detection algorithm.  

 

5.6 Laser System 

As mentioned in the previous chapter, at the centre of this research is the creation 

of a visual aid (a set of laser lines) to be projected in front of the patient 

experiencing a FOG incident, in an attempt to provide a visual stimulant to assist 

him/her taking the next step. The implementation of this relies in a set of two 

independent servo motors (capable of moving horizontally and vertically) being 

able to project the laser lines in front of the patient. This would mean that the 

position and the orientation of the subject within the space have to be read and 

taken into account.  

Figure 5:18 demonstrates the calculated vertical angle based on the subjects’ feet 

joints distance to the Kinect camera in Z-axis. The right foot has been omitted in 

the graph for simplicity.   

 

 

Figure 5:18. Vertical servo motor angle relation to the subject’s foot joint distance 

to the Kinect camera in Z-axis 
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As Figure 5:18 demonstrates, the system provides highly accurate responses 

based on the subject’s foot distance to the camera in Z-axis and the vertical servo 

motor angle. 

Subjects were also asked to rotate their body in front of the Kinect camera to test 

the horizontal angle determination algorithm and as a result the horizontal servo 

motor functionality. Figure 5:19 shows the result of the calculated horizontal angle 

using Equation 4:8 for left and right direction. 

 

Figure 5:19. Horizontal servo motor angle changes according to the subject’s 

body orientation and direction during a test 

Figure 5:19 shows how the system reacts to the subject’s body orientation. The 

horizontal angle determination proved to be more susceptible to noise compared 

to the vertical angle calculation. The subject was asked to face the camera in a 

stand still position while rotating their torso to the left and to the right in turns. This 

is due to the fact that as the angle increases to more than 65 degrees, the farther 

shoulder to the camera would be obstructed by the nearer shoulder and as a result, 

the Kinect should compensate by approximating the whereabouts of that joint. 

Nonetheless, this did not have any significant impact on the performance of the 

system. 
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A series of pan/tilt servo motors have been used alongside laser line projectors to 

create a visual cuing system, which can be used to improve the mobility of PwP. 

The use of the system eliminates the need to carry devices, helping patients to 

improve their mobility by providing visual cues. It was observed that this system 

can provide an accurate estimation of the subject’s location and direction in a room 

and cast visual cues in front of the subject accordingly. The Kinect’s effective 

coverage distance was observed to be between 1.5 to 4 meters form the camera, 

which is within the range of the area of most of the living rooms, thus making it an 

ideal device for indoor rehabilitation and monitoring purposes. To evaluate the 

Kinect v2 accuracy in calculating the vertical and horizontal angles, a series of 

eight Vicon T10 cameras were also used as a golden standard.  

As a future improvement addressing to increase coverage of the system, the two 

servo motors can be mounted on a rail attached to the ceiling capable of moving 

around and projecting the lines in front of the patient. 

 

5.7 Focus group try outs and used feedback 

Fifteen patient having Parkinson's and experiencing frequent FOG were provided 

by the Parkinson's UK institute, following an ethical approval by the University. The 

participants, were instructed to walk towards a fix-positioned Kinect v2 camera in 

a pre-determined path within the distance range of 4.33 meters to 1.38 meter in a 

room hired for the focus group event (Figure 5:20) while their gait and their 

movements were analysed by the developed system. Figure 5:20 shows the 

process of testing the system by one participant while simulating a FOG. Images 

are from the point of view of the Kinect camera. 
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Figure 5:20. A PD patient volunteering to try out the system’s capabilities in 
detecting FOG. Visual cues are projected in front of him, on the floor based on 

his whereabouts  

 

Figure 5:21 shows the design of the system’s smartphone companion application 

for healthcare providers, doctors and carers. The application provides information 

about the subject including the number of estimated FOG incidents as well as a 

notification to a carer if a critical fall incident occurs. Moreover, it provides the carer 

with the ability to send visual or auditory cues during a FOG incident or contact 

emergency services. Based on the user preference, the system can contact a 

relevant person via email or through notifications in the companion smartphone 

application including a live stream of the incident and the time stamp of the relevant 

date and time. An approved carer, once notified, can also initiate a Skype 

conversation where he/she can talk to the patient and provide further support. 

Figure 5:21 shows the system behaviour when a fall incident occurs. As Figure 

5:21 depicts, the developed software was designed as an open-ended solution on 

an UWP, that can provide other types of cues such as auditory cues to the patients. 

However, while feasible, such additions are beyond the scope of this specific 

study. 
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Figure 5:21. System’s companion smartphone application in action 

 

At the end of the session, participants were asked to provide feedback (Appendix 

H and I) and complete a survey form in which the results are listed in the following 

table: 
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Table 5:4. Focus Group Questioner Feedback 

Question Strongly 
agree (%) 

Agree (%) Neither 
agree nor 
disagree 

(%) 

Disagree 
(%) 

Strongly 
disagree 

(%) 

The system would be easy to use. 33.3 46.6 13.3 6.6 0 

The system FOG detection was 

accurate. 

20 66.6 13.3 0 0 

Auditory cue would also be 

beneficial to be implemented. 

20 46.6 20 13.3 0 

The system fall detection was 

accurate. 

53.5 47 0 0 0 

I am concerned about my privacy 

when I use the system at home. 

0 0 20 40 40 

The overall system was helpful in 

improving my mobility, especially 

during a FOG. 

26.6 53.3 20 0 0 

The visual aid was helpful in 

increasing my mobility and 

walking performance. 

13.3 86.6 0 0 0 

I would use the system in my 

house. 

40 40 20 0 0 

 

The results obtained in the above table related to fall detection are based on 

demonstration made by a healthy participant not the volunteers. When asked 

about the healthcare provider remote communication method with the patient 

during a critical fall incident, eight patients suggested a telephone call while six 

suggested a Skype video call and one remained neutral. While the prototype 

system cost £137.69 to build excluding the controlling PC, patients suggested that 

they would be willing to pay between £150-500 to have the system installed in their 

homes. Nevertheless, if the prototype is released as a commercial device, other 

economic factors including insurance, maintenance, and the necessity to install 

multiple systems in different rooms would inevitably escalate the price. Finally, 
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when asked about possible improvements to the final product, eight of the patients 

suggested that a hybrid/portable method that can also provide outdoor visual cues, 

would be very beneficial while seven wanted it to be as simple as possible to keep 

the cost down and have a separate device for outdoor purposes. 

 

The QR code (Appendix K) demonstrates the use of our system in action upon 

detection of a FOG event by providing visual cues and notifications to doctors and 

carers. 

 

5.8 Summary 

This chapter provided the empirical results and findings for the research verifying 

the hypothesise provided in the previous chapter. After an in-depth analysis of the 

Kinect v1 capabilities and its performance, it was concluded the Kinect v2 

introduces more advantages over its predecessor including higher frame rate and 

resolution. Despite the fact that the Kinect v2 SDK was in beta phase and missing 

a lot of built-in features, as the advantages of using it, outweighed its 

shortcomings, thus, the Kinect v2 was chosen for this project. Moreover, for fall 

detection, as mentioned before, due to the limited training dataset, and also due 

to the relative simplicity of the detection (fall), heuristic approach was proven to be 

more accurate in detecting true positive falls compared to the machine learning 

counterpart. Additionally, as discussed, for footstep detection and consequently 

the FOG tracking for patients, the knee angle method was chosen as the preferred 

method for this study due to the fact that it lacks the inaccuracies and limitation of 

the other method, which was based on the subject’s ankle height to the ground. 

Combined with the developed hardware and software interface, the chosen 

methods yielded promising results when the system was demonstrated to the 

focus group and tested by some of the volunteers, based on their feedback. 
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6 Chapter 6: Conclusions and Future Work 

 

The aim of this study was to Introduce two new footstep detection techniques one 

based on the subject’s knee angle and one based on the subject’s ankle vertical 

height to the ground; Reducing the Microsoft Kinect’s intrinsic inaccuracies in 

skeletal data reading for the subject’s ankle vertical height to the ground footstep 

detection technique; resulting in the increase in accuracy for the footstep detection 

algorithm by introducing a new correction algorithm. Moreover, this research 

aimed to provide an automatic and remotely manageable monitoring system for 

PwP gait analysis and fall detection. The results of which would lead to the 

development and evaluation of an integrated system capable of detecting falls and 

FOG, providing visual cues orientated to a user’s position, and providing a range 

of communication options. Based on the patients’ feedback, and in accordance 

with previous research studies, it was concluded that our system can indeed be 

helpful and used as a replacement to alternative, potentially less-capable 

technologies such as laser canes and laser-mounted shoes. Due to the system 

being an open-ended, proof of concept, the system’s coverage is limited to only 

one axis. Nonetheless, future improvements can eliminate this constraint by 

mounting the laser pointer, servo motors and the Kinect camera on a circular rail 

attached to the ceiling capable of moving/rotating in accordance to the subject 

position and direction in a room. Although this research was focused solely on the 

automatic projection of dynamic visual cues, the system was designed to 

accommodate additional features in future developments, such as auditory cues. 

 

6.1 Conclusion 

Overall, based on the patients’ feedback, the system represents a viable solution 

for detecting fall incidents and providing help during a critical fall when the patient 

is unattended. Furthermore, the system has the capacity to provide an unobtrusive 

and automatic visual cue projection when needed at home during a FOG episode. 

This study set out to explore the possibility of implementing an integrated system 

based on Microsoft Kinect v2 capable of unobtrusively detecting falls and FOG 

while providing remote support to the patients using developed applications. The 

system was designed to provide visual cues in a form of laser lines in front of the 
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patient upon the detection of FOG in order to improve locomotion. Additionally, this 

research set out to conduct a comparison between different Kinect’s open source 

APIs such as OpenNI/NITE against the official Microsoft Kinect SDK for Windows 

and investigated advantages and disadvantages for each SDK.  It was concluded 

that that the Microsoft official SDK for Windows was ideal for the implementation 

of our project, as it does not require calibration before the joint tracking process 

can take place. Nevertheless, OpenNI/NITE implementation proved to have a 

reliable and more consistent joint tracking capabilities as well as a built-in support 

for streamed image saving to the local disk for further analysis. 

As mentioned before, the project’s researchers gathered joint coordination data 

from our test subjects (male and female) with different heights, body builds, and 

walking styles. During our analysis, it was found that our developed system was 

able to identify the movement phases (e.g. moving, standing, sitting, etc.). Our 

evaluations suggested that the consistency and stability of joint position tracking 

data using Kinect v1 were acceptable when only one subject was present in the 

field of view. However, the system efficiency, performance and consequently the 

sampling rate dropped exponentially when an additional subject appeared in the 

field. 

Moreover, the ideal testing environment for such a project was investigated. By 

studying the past projects reports and our experimental results it was concluded 

that the increase in the subject’s distance from the sensor helped the consistency 

of the joint tracking process. However, a distance further than 3.5 meters proved 

to be problematic where the system was no longer able to identify different joint 

positions. As mentioned earlier, the optimal subject’s distance from the Kinect v1 

sensor was in the range of 2 to 2.5 meters. The ideal location of the camera was 

proved to be at the height of 2.2 meters facing downward. 

The rotation of the subject in different angles caused a huge decrease in the 

system consistency to track joints. It was observed that having two or three Kinect 

sensors interconnected to each other might solve the issue, as there would be a 

360-degree coverage of the testing environment. Nevertheless, this approach 

would require extra computation and preparations in terms of calibration between 

the cameras as well as time synchronisation between data feeds from each 

camera. 



 

120 | P a g e  
 

The type and the colour of the subject’s clothes did not appear to make a significant 

impact on the joint tracking quality. Nevertheless, more investigation is required 

towards the effect of clothing on the Kinect’s recognition capabilities. 

The aforementioned limitations of the Kinect v1 and the hardware enhancements 

and improvements including a wider field of view, farther coverage, and higher 

resolution in depth and colour data of the Kinect v2 proved it to be a better 

candidate for the use on this project.  Consequently, , a Kinect v2 has been used 

for gait performance analysis and evaluation due to its higher accuracy. 

For fall detection, two different approaches including heuristic and machine 

learning (using AdaBoostTrigger algorithm) based on Microsoft Kinect v2 sensor 

were implemented and evaluated. The efficiency and accuracy of both were 

compared against one another in similar conditions. 

Heuristic approach showed higher accuracy in terms of detection of true positive 

falls as it works independent to the number of pre-operation training videos. 

Heuristic algorithms are very efficient for discrete detections such as falls, as long 

as the detection case is simple enough to be implemented algorithmically. On the 

other hand, AdaBoostTrigger machine learning approach effectiveness is greatly 

dependent on the number of training samples. Correct and accurate sample 

tagging plays a significant role in reducing latency and increasing accuracy. 

Nevertheless, the overall success rate of a machine learning algorithm with a small 

training dataset can be increased by implementing and combining more 

confidence factors.  

Overall, the machine learning approach is ideal for detections that are more 

sophisticated in terms of body movements and require a lot of thresholding and 

variables such as complex and continues body gestures or gait disorders, but for 

simpler cases such as fall detection, its disadvantages outweigh its benefits; 

mainly due to its increased needs for system resources (i.e. CPU and memory) to 

process information beforehand. Moreover, video tagging is a painstaking task and 

requires a lot of time and training data. 

Thus, it is concluded that for fall detection with a small number of training samples 

(11), the heuristic approach provides results that are more accurate. Nonetheless, 

by increasing the number of training data, the accuracy of the machine learning 

algorithm would also be increased. Machine learning approach accuracy would be 
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significantly higher in complex scenarios where a continuous and sophisticated 

gesture needs to be detected. 

Although the attempts undertaken on this research helped improving the accuracy 

of footstep detection and joint 3D localisation at different distances, using only a 

single Kinect v2 sensor and based on the ankle joint distance-to-ground, which 

can be used in various gait analysis projects. It was concluded that for FOG 

symptom detection in PwP, which requiring a higher accuracy in data reading for 

footstep detection due to the nature of the symptoms, a more accurate technique 

is needed, hence the implementation of a knee angle footstep detection.  

In this thesis, a novel low-latency and low-resource approach in detecting 

footsteps including foot-offs and foot contacts phases of a gait cycle based on a 

subject’s knee joint angle was also introduced. It was concluded that neither the 

camera’s height nor its angle to the ground has a significant impact on the data 

acquisition of the subject’s knee joint angle, and as a result, on the footstep 

detection process. Nonetheless, the detection of the proposed system was limited 

to the Kinect v2 practical skeletal distance coverage (1.6 to 4 meters). Moreover, 

the system showed a consistent measurement, as long as none of the knee’s 

neighbouring joints (joints that are needed to be calculated for knee joint angle 

determination) is obstructed or undetected by the Kinect v2 camera.   

Overall, due to the low latency and high accuracy of this technique and the fact 

that the system’s accuracy is unaffected by the Kinect v2 intrinsic inaccuracies or 

its height or angle, the proposed system can be used for gait assessment 

scenarios that require a high level of accuracy as it is capable of detecting subtle 

movements. 

The results of this research also verified that it is possible to implement an 

automatic and unobtrusive FOG monitoring and mobility improvement system 

while being reliable and accurate at the same time. Nonetheless, there are many 

limitations to this approach including the indoor aspect of it and the fact that it 

requires the whole setup including the Kinect, servos, and laser projectors to be 

included in the most communed areas of a house such as the living room and the 

kitchen. Having said that, the affordability (the entire setup except the controlling 

PC will cost £137.69), and ease of installation would still make it a desirable 

solution should more than one setup need to be placed in a house. Nevertheless, 

the system’s main advantages such as real-time patient’s monitoring, improved 
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locomotion and patient’s mobility, unobtrusive and intelligent visual cue projection, 

make it in overall, a desirable solution that can be further enhanced for future 

implementations. 

Additionally, the results of this research demonstrate the viability of using an 

automatic and unobtrusive system for monitoring and improving the mobility of 

PwP based on the Microsoft Kinect camera. The implementation of a visual cuing 

system based on laser lines for improving FOG incidents in PwP has been 

developed and reviewed by 15 PwP. Feedback provided regarding the usability of 

the system showed promising results. All the participants either ‘agreed’ or 

‘strongly agreed’ with the fact that the system’s visual cues are helpful in increasing 

their mobility and walking performance. 86.6 % of those who tested the system, 

were satisfied with the system’s FOG detection whereas 13.3 % neither agreed or 

disagreed about the system’s competency in detecting FOG incidents.  

Overall, compared to current commercially available alternative devices, this 

system provides a broadly affordable solution while, theoretically, providing a 

means of improving patients’ mobility unobtrusively. Moreover, this solution is one 

of the few that can function in an automated fashion, both in terms of event 

detection, cue provision and when establishing communication with third parties. 

The user does not need to wear something, charge a device, carry anything or 

switch it on or off. The ease of use and simple installation process compared to 

other available solutions can make the system a desirable solution for indoor 

assisting purposes as suggested by participants in the current study.  

 

6.2 Future Work 

This research laid the foundation to explore the feasibility of commercially available 

apparatuses such as Microsoft Kinect sensor as a home monitoring service for 

PwP as a rehabilitation fall detection tool. It also provided the possibility of using 

an automatic and unobtrusive system to deliver on-demand visual cues based on 

laser lines in front of a patient regardless of one’s position and orientation in a 

room to improve one’s locomotion and gait performance during a FOG incident. 

As a next step, one could improve the system’s coverage with a series of this 

implemented system to be installed in PwP houses to cover most of the communal 

areas or areas where the patient experiences the FOG the most. One could also 

investigate the possibility of using such systems attached to a circular rail on a 
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ceiling that can rotate and move according to the patient’s location, this removes 

the need for extra setup in each room as the system can cover one direction at the 

current stage. As mentioned before, this system was designed as an open-ended 

platform to provide variety of supports for PwP in the future including auditory cues. 

The system’s capabilities in providing such cues and the effect of them on PwP 

can also be explored. Moreover, by coupling the system with other available 

solutions such as laser-mounted canes or shoes, patients can use the 

implemented system when they are at home while using other methods for outdoor 

purposes. This requires integration at different levels such as smartphone 

application and visual cues in order for these systems to work as intended.  

Additionally, with the introduction of augmented reality apparatuses such as 

Microsoft HoloLens, one could use Microsoft Kinect and the developed algorithms 

to detect FOG in PwP while using the HoloLens to provide visual/auditory cues to 

the patient. The implemented algorithms used in this research study can also be 

improved, especially for machine learning fall detection. As mentioned before, by 

having larger training dataset, the accuracy of the machine learning algorithm in 

detecting true positive falls can be significantly improved. One could also use the 

principal of Kinect-based machine learning tools including VGB, to implement 

complex detection systems such as machine learning based FOG detection. 
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A. Laser Project Registration and RA Class 3B-4 Form & risk 

assessment
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B. Approval Letter from Brunel for inviting Parkinson's 

patients
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C. Consent Form for Focus Group participation 

 

D. Approval of collaboration with Parkinson’s UK 
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E. Patient and Public Involvement Request Form 

 



 

147 | P a g e  
 

 



 

148 | P a g e  
 

 



 

149 | P a g e  
 

F. Invitation to Focus Group Days 
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G. Invitation to Participate to the focus groups 
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H. Participant Information Sheet 
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I. Participant Feedback Form 
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J. 3D design for laser pointers’ mount 

 

 

 

 

 

 

 

 

 

 

 

 

 

K. QR code for the system’s demonstration video 
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https://tinyurl.com/kinect4pwp 


