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Attention and automation: New perspectives on mental underload and performance 

 

 

Abstract 

 

There is considerable evidence in the ergonomics literature that automation can 

significantly reduce operator mental workload.  Furthermore, reducing mental 

workload is not necessarily a good thing, particularly in cases where the level is 

already manageable.  This raises the issue of mental underload, which can be at least 

as detrimental to performance as overload.  However, although it is widely recognised 

that mental underload is detrimental to performance, there are very few attempts to 

explain why this may be the case.  It is argued in this paper that, until the need for a 

human operator is completely eliminated, automation has psychological implications 

relevant in both theoretical and applied domains.  The present paper reviews theories 

of attention, as well as the literature on mental workload and automation, to synthesise 

a new explanation for the effects of mental underload on performance.  Malleable 

Attentional Resources Theory proposes that attentional capacity shrinks to 

accommodate reductions in mental workload, and that this shrinkage is responsible 

for the underload effect.  The theory is discussed with respect to the applied 

implications for ergonomics research. 

 

KEYWORDS: Attention; Automation; Mental Workload; Resources; Working 

Memory 
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Introduction 

 

More than thirty years ago, the following warning was made to ergonomics 

researchers with respect to operators of automated systems: 

 

“They [human operators] will be on board for the versatility, adaptability and 

reliability they add to an automatic system.  They will be expected to observe 

the environment and use ‘programmed adaptive control’ to change plans.  

They will monitor instruments and repair malfunctioning components.  They 

will control in parallel with the automatic system and take over in the event of 

a failure.  What is the extent of the theory for predicting man-machine 

behaviour in these situations?  It is almost nil.”  (Young, 1969; p. 672) 

 

It would be unfair and inaccurate to suggest that the current state of theory is the 

same.  Nevertheless, it would also be optimistic to say that the theoretical waters are 

anything other than muddied.  Explanations for human performance with automated 

systems have ranged from effort (Desmond, Hancock & Monette, 1998; Matthews, 

Sparkes & Bygrave, 1996), through situation awareness (Endsley & Kiris, 1995; 

Kaber & Endsley, 1997) and trust (Lee & Moray, 1994; Parasuraman & Riley, 1997), 

to vigilance (Molloy & Parasuraman, 1996; Parasuraman, Mouloua, Molloy & 

Hilburn, 1996) and mental workload (Stanton, Young & McCaulder, 1997).  The 

general consensus (e.g., Wilson & Rajan, 1995) is that mental workload optimisation 

is crucial to maintaining effective task performance.  Such optimisation inevitably 

involves a balancing act between demands and resources of both task and operator.  

This paper focuses upon some of the factors which can affect such a balance.  
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Theories of attention and mental workload are drawn upon in an effort to describe and 

explain the effects of automation on performance. 

 

Background 

Automation is defined as “the execution by a machine agent (usually a computer) of a 

function that was previously carried out by a human” (Parasuraman & Riley, 1997; p. 

231).  Designers of complex systems often use the technology at their disposal to aid 

operators, and even relieve them of their duties to some extent, in an attempt to 

eliminate error and improve performance.  Since the vast majority of problems in 

safety-critical environments is popularly attributed to ‘human error’ (e.g., Coyne, 

1994, estimates this majority at 90% for traffic accidents), substituting the weak link 

in the system (i.e., the human) seems the logical thing to do. 

 

It is certainly true that automation can bring benefits of improved performance and 

efficiency in systems (Byrne, 1996, reports that automated flight decks are statistically 

safer than conventional aircraft).  Previous experience, though, suggests that the 

solution for improved performance and safety is not as simple as the installation of 

automation.  Modern technological systems are shifting the operator’s task burden to a 

psychological level, rather than a physical one.  In automating a task, then, the 

operator’s role is qualitatively changed, and this introduces a plethora of new 

concerns and problems (Kantowitz & Campbell, 1996; Stanton & Marsden, 1996). 

 

Performance problems with automation have variously been attributed to factors such 

as fatigue (Desmond et al., 1998; Matthews et al., 1996), vigilance (Molloy & 

Parasuraman, 1996; Parasuraman et al., 1996), or trust (Lee & Moray, 1994; 
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Parasuraman & Riley, 1997), to name but a few.  These literatures are beyond the 

scope of the present review, but are all symptomatic of operators being ‘out-of-the-

loop’ (Endsley & Kiris, 1995).  It is believed that simply removing the human from 

active control can have a direct bearing on their performance.  However, it is likely 

that there is a more general factor which can influence performance, since it is 

possible to find exceptions to all of these rules. 

 

One particular problem associated with automation is that of mental workload 

(MWL).  One of the purposes of automation is to reduce MWL, thereby improving 

performance.  If an operator is overloaded with demands, performance is likely to 

falter.  Intuitively, automation can help in such situations.  However, in many 

domains MWL is only excessive in exceptional circumstances, and automation 

simply relieves the operator of demands s/he can quite readily cope with (Reason, 

1998; 1990; Stanton & Marsden, 1996).  Ironically, then, automated systems have the 

potential for imposing mental underload.  It is precisely this problem which the 

present paper is concerned with.  Underload is at least as serious an issue as overload 

(Leplat, 1978; Schlegel, 1993), and can be detrimental to performance (Desmond & 

Hoyes, 1996).  However, its effects on performance, and the explanations for such, 

have not been fully documented as yet. 

 

The theoretical impetus for this review comes primarily from MWL.  This concept is 

inextricably linked with theories of attention.  The opinion here is that excessively 

low MWL can adversely affect performance.  The applied element of this research is 

concerned with how these potential effects on MWL and attention will affect 

performance.  Ultimately, such research should be able to provide recommendations 
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for the design of future systems.  By discovering adverse effects of automation in the 

largely uncharted territory of mental underload, one may contribute to designing for 

the user and optimise the performance of the system as a whole. 

 

The following literature review is structured to emphasise the theoretical elements of 

the research.  Relevant research in attention is summarised, paying particular attention 

to the original formulation of attentional resources theory and how it differs from 

other theoretical positions, such as working memory.  This provides the background 

for the ensuing discussions of automation and mental workload.  Finally, the review is 

used to synthesise a new theory of attention in an effort to parsimoniously describe, 

explain, and predict the effects of mental underload on performance. 

 

 

Attention 

 

Background 

The classic and often-cited early work is that of Kahneman (1973), who proposed a 

capacity model of attention as an alternative to bottleneck or filter theories (see 

Eysenck & Keane, 1990, for a review).  Essentially, the capacity model proposes a 

single resource view of attention - that is, attention is viewed as one whole pool of 

resources.  This pool has a finite limit, therefore the ability to perform two separate 

concurrent activities depends upon the effective allocation of attention to each.  

Interference between tasks depends upon the demands which each separately impose 

– when task demands drain the pool, performance will suffer. 
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Other researchers share the notion of a common resource pool.  Norman & Bobrow 

(1975) described how performance may be constrained by the quality of input (data-

limited) or by processing resources (resource-limited).  Again, this view holds that if 

the demands of two tasks exceed the upper limit of resources, interference will occur 

and performance will deteriorate.  Early researchers were of the opinion that the 

capacity limit may be susceptible to influences such as age, arousal, or mood (Hasher 

& Zacks, 1979; Humphreys & Revelle, 1984; Kahneman, 1973).  Long-term 

variations in these factors could depress the limit, with concomitant effects on 

performance. 

 

Later research found some major flaws with the single resource approach.  For 

instance, Wickens (1984; 1992) described experiments whereby two tasks were 

perfectly time-shared (i.e., performed concurrently) even when the difficulty of either 

was manipulated.  This was seen as a limitation of single resource theory, which 

predicted that difficulty manipulations should eventually lead to altered performance 

on one or both tasks.  Thus, multiple resources theory emerged (Wickens, 1984; 1992; 

Wickens & Liu, 1988).  Multiple resources theory posits that there are separate pools 

of resources along three dichotomous dimensions.  The first dimension is processing 

stages – early vs. late.  Perception and central processing (i.e., cognitive activity) are 

said to demand separate resources from response selection and execution.  The second 

dimension is input modalities - auditory vs. visual.  Performance of two simultaneous 

tasks will be better if one is presented visually and the other presented auditorily, 

rather than using the same modality for both.  Finally, the theory states that there are 

separate resources for whether a task is processed verbally or spatially.  This 

dichotomy also holds for response execution, whereby less dual-task interference 
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occurs if one task is responded to vocally and the other demands a manual response.  

Thus, there will only be a trade-off between task difficulty and performance to the 

extent that two concurrent tasks share resources on these dimensions (Wickens, 1992) 

- interference is a joint function of difficulty (resource demand) and shared processing 

mechanisms (resource competition). 

 

Multiple resources and working memory 

To any student of cognitive psychology, there would seem to be a degree of overlap 

between multiple resources theory and models of working memory (as described by 

Baddeley, 1990; Wickens, Gordon & Liu, 1998).  In particular, the verbal and spatial 

processing codes seem to correspond quite heavily with the phonological loop and the 

visuospatial sketchpad. 

 

Traditional models of memory (see e.g., Baddeley, 1990; Eysenck & Keane, 1990, for 

basic explanations) view attention as a filter, a perceptual selection mechanism 

whereby whatever is attended to gets transferred to short-term memory.  In contrast, 

working memory assigns short-term storage a more active role in cognition, acting as 

a kind of buffer between perception and long-term memory.  Information from each 

source is coordinated by the central executive, and is used to carry out whatever task 

is at hand. 

 

The distinction between working memory and attentional resources is therefore 

somewhat blurred, with both theories seeming to involve similar mechanisms.  

Multiple resources theory has moved the locus of attention from sensory and 

perceptual input to central processing and even response execution.  As such, the 
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theory is invading the territory of working memory.  Furthermore, according to 

Wickens (1992), information processing draws upon separate resources depending on 

whether the task is verbal or spatial.  By implication, this processing would involve 

the integration of information from the outside world and from experience.  This 

integration is exactly the function of working memory, which also separates 

processing according to verbal or spatial elements (Baddeley, 1986; 1990).  Finally, 

an additional element of confusion between multiple resources theory and working 

memory is introduced as the central executive component of working memory is often 

thought of as a supervisory attentional system (Baddeley, 1986; 1990).  By 

specifically using the term ‘attentional’, working memory theorists have surrendered 

to the invasion of their territory, and are themselves implying that working memory 

and attentional resources are somehow related. 

 

Unfortunately, there seems to be very little literature on distinguishing the two 

models.  In the undergraduate textbook, Wickens et al. (1998) describe at different 

points both working memory and multiple resources, with only a brief mention of 

working memory related to Wickens’ definition of central processing.  Furthermore, 

Baddeley’s own Working Memory book (1986) fails to mention multiple resources 

theory at any point, despite a self-admitted attempt to resolve concepts of working 

memory and attention.  Apparently, attention researchers are content to work with 

resource models without acknowledging working memory, and vice-versa. 

 

There are a few exceptions to this.  Conway & Engle (1994) argued that working 

memory capacity is indirectly related to attentional resources.  Retrieval from working 

memory depends upon the ability to inhibit irrelevant information, which is in itself 
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resource demanding.  This implies a distinction between the capacities of working 

memory and attentional resources, even though one is reflected in the other.  Some 

support for this was found in a study of intelligence (Necka, 1996).  Actual 

intelligence (as opposed to potential intelligence) was found to be determined by 

momentary values of attentional resources and working memory capacity.  These are 

affected by arousal - as arousal increases, so do attentional resources, but working 

memory capacity decreases.  Actual performance therefore depends on whether an 

optimal arousal level can be reached – the classic inverted-U curve of Yerkes & 

Dodson (1908). 

 

One interesting paper directly pits multiple resources theory against working memory 

as alternative explanations of interference effects in timing (Brown, 1997).  If a 

participant attempts to perform two similar tasks at the same time, their performance 

on each will be worse than when performing the tasks separately.  Usually, in the 

absence of any instructions to prioritise one task over the other, the interference effect 

will be symmetrical; that is, both tasks will be equally affected.  However, the 

interference effect when trying to maintain timing (i.e., make a response every 3s) 

with a concurrent nontemporal task (such as visual search, or tracking) seems to be 

asymmetrical.  Brown (1997) found that performance on search or tracking tasks was 

not affected by a simultaneous timing task, but timing performance was adversely 

affected by these concurrent tasks.  Mental arithmetic was the only concurrent task for 

which bidirectional interference was observed. 

 

Brown’s (1997) interpretation of multiple resources theory was that timing involves 

verbal resources at the perceptual/central stages, whereas search and tracking are 
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spatial tasks.  This argument, though, still fails to explain the asymmetry.  If anything, 

there should be minimal interference, as the tasks draw on separate resource pools.  In 

the event of an interference effect, it should affect both tasks in a similar manner, 

rather than affecting one task while leaving the other untouched.  On the other hand, 

working memory, with its central executive, can offer an explanation.  The central 

executive controls attentional and coordinational functions, such as allocating 

attention between dual tasks.  Mental arithmetic and timing both draw on the central 

executive, which is why bidirectional interference occurs between these two tasks.  

Simple visual search or tracking tasks, on the other hand, only use the visuospatial 

sketchpad.  Therefore, the nontemporal tasks do not suffer with a concurrent timing 

task, as the visuospatial sketchpad is essentially still dedicated to a single task.  

However, the mere introduction of a dual-task scenario draws on the coordination 

skills of the central executive, which also looks after temporal activities, hence the 

interference effect on timing.  Brown (1997) concludes that working memory and 

multiple resources both attempt to explain similar phenomena and rely on similar 

concepts, but working memory is distinct in its provision for general purpose 

resources.  Brown (ibid.) also hints, though, that there is some speculation on a 

general pool of resources in multiple resources theory, evidence for which has been 

cited elsewhere (see Matthews et al., 1996). 

 

Thus we see that the two theories are in fact very similar, but were derived from 

different paradigms and never the twain shall meet.  Most applications of multiple 

resources theory have been just that – applied, under the umbrella of ergonomics.  

Most theoretical work on attention focuses on selectivity or divided attention.  In 

considering a review of three decades of attention research, Baddeley (1986) 
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concludes that attention theories could not provide insights into the central executive, 

as most attention research is concerned with perception rather than the control of 

memory and action.  It is perhaps not surprising then that there has been very little 

overlap between these two otherwise very related areas of cognition. 

 

At present, then, there is very little to choose between multiple resources and working 

memory theories.  There is an area of common ground, though, in that both are 

ultimately concerned with performance, which is mediated in each mechanism by 

physiological arousal.  It is widely understood that there is a curvilinear relationship 

between arousal and performance (Kahneman, 1973; Yerkes & Dodson, 1908).  There 

is some speculation that this is due to two competing processes: a positive linear 

relation between arousal and attentional resources, and an inverse relation between 

arousal and working memory (Humphreys & Revelle, 1984; Necka, 1996).  If 

attentional resources are needed to make use of information in working memory 

(Conway & Engle, 1994; Hasher & Zacks, 1979), this would explain the inverted-U 

effect on performance.  Now, a similar relationship exists between MWL and 

performance, which partly forms the crux of this paper.  Before considering that, 

though, it is necessary to cover some background on MWL. 

 

Throughout this paper, the terms ‘resources’ and ‘capacity’ will generally be used in 

reference to attentional resource theories.  The working memory debate is left aside 

for a moment while the literature review continues, although it will be returned to at 

relevant points. 
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Attention and MWL 

Attentional resource theories form a useful basis for describing MWL (see Young & 

Stanton, 2001b, for a full review and definition of MWL).  These theories assume that 

individuals possess a finite attentional capacity which may be allocated to one or more 

tasks.  Essentially, MWL represents the proportion of resources required to meet the 

task demands (Welford, 1978).  If demands begin to exceed capacity, the skilled 

operator either adjusts their strategy to compensate (Singleton, 1989), or performance 

degrades.  Such a view makes clear predictions about mental workload in any given 

situation, and observations of performance or behaviour provide simple indications of 

mental workload. 

 

Although two tasks may impose different levels of mental workload, there may be 

little variation in the overt performance of each if both are within the total capacity of 

the operator.  However, changes in behaviour or operator state can still provide 

information about the level of mental workload.  Investing resources in a task is a 

voluntary and effortful process to meet demands, so performance can be maintained at 

the cost of individual strain or vice-versa (Hockey, 1997).  Excessive load can also 

affect selective attention, leading to narrowed or inefficient sampling (Liao & Moray, 

1993; Sanders & McCormick, 1993). 

 

Resource models of workload can therefore provide a rational framework for defining 

mental workload.  There is some debate, though, as to whether single resource models 

are more appropriate than multiple resource theory.  Firstly, multiple resource 

explanations of MWL are context dependent, derived in dual-task laboratory settings, 

making it difficult to draw quantitative predictions for real-world design problems 
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(Hancock & Caird, 1993; Liao & Moray, 1993).  In addition, multiple resource 

models do not consider nonattentional factors, such as experience (Selcon, Taylor & 

Koritsas, 1991).  As an alternative, Liao & Moray (1993) posited that a single channel 

MWL model is of more use in real world situations, which generally have more than 

two tasks.  However, they also stated that the multiple resource approach remains a 

superior model in purely dual task scenarios. 

 

In terms of design, many authors agree that a key goal is to maximise the match 

between task demands and human capacity (e.g., Bainbridge, 1991; Gopher & 

Kimchi, 1989; Lovesey, 1995; Neerincx & Griffioen, 1996).  For instance, Dingus, 

Antin, Hulse & Wierwille (1989) suggested some design improvements to reduce the 

demand of vehicle navigation displays (and hence their impact on the driving task).  

These were primarily aimed at improving the availability of information on the 

displays, to be more compatible with the driver’s short glance strategy.  Similarly, 

Selcon, Hardiman, Croft & Endsley (1996) designed a visuo-spatial display for threat 

assessment in combat aircraft, maximising resource compatibility with the primary 

task.  It was found that this display increased spare attentional capacity compared to 

the previous text-based display.  Computer-based decision support can also reduce 

attention on the primary task (Hoyes, 1994, uses air traffic control as an example, 

however the principle is applicable across domains).  As modern technology in many 

working environments imposes more cognitive demands upon operators than physical 

demands (Singleton, 1989), the understanding of how MWL impinges on 

performance is critical.  With that in mind, the review now turns to an in-depth 

analysis of MWL with respect to a particular class of technology – automation. 
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Automation and Mental Workload 

 

Historically, the technological revolution has gradually removed the operators of 

many complex systems from front-line levels of control, to having their actions 

relayed via an intervening mass of computers and microprocessors.  In the extreme, 

the operator’s task is completely assumed by automation.  Instead of actively 

controlling the system, the operator of an automated system now becomes a passive 

monitor.  Intuitively, this should be an easier task and thereby facilitate performance 

improvements.  As with many areas of research, though, intuition is often proved 

wrong.  Seminal articles (Bainbridge, 1982; Norman, 1990; 1991; Reason, 1988; 

1990) have criticised automation for being designed inappropriately and degrading the 

skills of operators, and empirical studies have supported this position.  Active 

controllers have consistently demonstrated superior performance in failure detection 

than passive monitors (e.g., Desmond et al., 1998; Ephrath & Young, 1981; Kessel & 

Wickens, 1982; Wickens & Kessel, 1981; Young, 1969).  Early research attributed 

this advantage to the availability of proprioceptive information for the active 

controllers, which may contribute to an improved internal model of system operation 

(Ephrath & Young, 1981; Kessel & Wickens, 1982).  More recently, problems such as 

vigilance (Parasuraman, 1987), complacency (Parasuraman, Singh, Molloy, & 

Parasuraman, 1992), and trust (Lee & Moray, 1994; Muir & Moray, 1996) have been 

touted as causes for performance differences between manual and automated control.  

In particular, the effects of automation on MWL has been a well-explored avenue of 

research. 
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It may seem paradoxical, but automated systems can both reduce and increase MWL.  

For instance, it has been observed (Hughes & Dornheim, 1995) that glass cockpits in 

commercial aircraft have relieved workload in areas such as reduced display clutter, 

and more automated flight procedures.  Increased trust in the automation also serves 

to relieve MWL, as the operator does not feel such a burden of monitoring the system 

(Kantowitz & Campbell, 1996).  However, the same cockpit systems can increase 

workload by presenting operators with more options in their task and causing mode 

confusions (Hilburn, 1997).  This can lead to mental underload during highly 

automated activities such as cruise flight, but mental overload during more critical 

operations such as take-off and landing (Parasuraman et al., 1996).  Others have 

predicted that future systems could increase complexity (Labiale, 1997; Lovesey, 

1995) or excessively reduce demands (Roscoe, 1992; Schlegel, 1993) in both aircraft 

and cars. 

 

Extremes of MWL can create conditions of overload or underload, which may both be 

detrimental to performance (Wilson & Rajan, 1995).  The notion of an optimal level 

of MWL is based on attentional resource theory, whereby overload or underload can 

each cause psychological strain due to a mismatch between demands and capabilities 

(Byrne & Parasuraman, 1996; Gopher & Kimchi, 1989).  It is becoming accepted that 

optimal performance will be the reward for optimised demands (Hancock & Caird, 

1993). 

 

Overload occurs if the demands of a task are beyond the limited attentional capacity 

of the operator.  This can be worsened if the operator becomes stressed, as stress is 

itself resource demanding and can compound cognitive interference (Matthews & 
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Desmond, 1995).  Operators and automated systems are essentially members of the 

same team.  Effective performance in any team is dependent upon good coordination 

and communication.  However, automated systems are inherently bad at these tasks.  

The performance of the operator is hindered by the increase in processing load 

resulting from the additional task of collecting information about the system state.  

This is further complicated by the extent of the operator’s knowledge about the 

system.  In the event of manual takeover, the operator must be acutely aware of the 

system state, so as to match their actions to those which the computer is executing.  If 

the user misperceives the state of the system, s/he could end up in a conflict with the 

computer for control.  In sum, a lack of feedback, an increase in vigilance demands 

(Hancock & Verwey, 1997), and increased decision options in a given situation 

(Hilburn, 1997) are all ways in which automation can overload the operator. 

 

Conversely, those susceptible to stress or fatigue may find their performance to be 

worse in conditions of underload, as there is a failure to mobilise compensatory effort 

appropriately to cope with the demands (Desmond et al., 1998; Matthews & 

Desmond, 1997).  Underload has also been associated with passivity, with optimal 

MWL reflecting a need to exercise a level of control (Hockey, Briner, Tatersall & 

Wiethoff, 1989).  The consequences of excessively low mental demands are not often 

given the consideration they merit, despite being at least as serious as those of mental 

overload (Hancock & Parasuraman, 1992).  Indeed, underload is possibly of greater 

concern, as it is more difficult to detect than overload (Hancock & Verwey, 1997).  

There is some evidence that errors and workload are related according to a U-shaped 

function (Desmond & Hoyes, 1996).  This suggests that operators might use less 

efficient strategies in such circumstances, and are failing to match their effort 
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appropriately to the task.  Although there is widespread concern about mental 

underload, and even some evidence to justify this, very few researchers seem to be 

actively involved in exploring the issue. 

 

There has been a small amount of empirical work directed at automated vehicle 

systems, with implications for mental underload.  A handful of studies (e.g., de 

Waard, van der Hulst, Hoedemaeker & Brookhuis, 1999; Desmond et al., 1998; 

Stanton et al., 1997) used driving simulators to explore the effects of automation 

failure on driver performance.  Performance in the automated conditions was 

consistently inferior to manual control conditions, and was generally associated with 

reductions in MWL. 

 

The curvilinear relation between MWL and performance is reminiscent of that 

between arousal and performance.  However, where there is some explanation of the 

latter association (invoking attentional resources and working memory, discussed 

above), there is precious little theory underpinning the effects of MWL on 

performance.  It could be, of course, that MWL and arousal are intimately related 

themselves, thus the same mechanism is responsible for performance variations.  

Indeed, many physiological measures of MWL depend on this link.  However, the 

link is not perfect, and the measures may dissociate due to larger influences such as 

muscle movements or circadian rhythms.  So, there must be a more direct connection 

between MWL and performance.  Returning to the arousal issue, it was discussed 

previously that this may affect attentional resources and working memory, resulting in 

the inverted-U relation with performance.  It could be, then, that MWL affects 
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attentional resources in the same way.  This premise is the basis for the theory which 

will be proposed in the closing section of this paper. 

 

 

Malleable Attentional Resources Theory 

 

On the basis of the literature review presented here, the authors offer a new hypothesis 

centred around the issue of mental underload with automation.  The hypothesis states 

that mental underload can lead to performance degradation due to shrinkage of 

attentional resources.  This hypothesis is encapsulated in a concept proposed here as 

malleable attentional resources theory (MART). 

 

Thus far we have seen that automation can reduce MWL, and also that automation can 

adversely affect performance compared to manual control.  Extrapolating from these 

results leads to the suggestion that mental underload can be detrimental to 

performance, just as mental overload can.  Although a link between mental underload 

and performance has yet to be firmly established, there is a strong belief in the 

literature that underload should be considered at least as seriously as overload (e.g., 

Hancock & Parasuraman, 1992). 

 

Many of the papers on MWL cited above describe the dangers of underload in terms 

of potential degradation of performance.  With a few notable exceptions, though (e.g., 

Desmond et al., 1998; Matthews & Desmond, 1997), there is a gap in the literature for 

explanations of why mental underload should be detrimental to performance.  

Although we have not considered other explanations (such as situation awareness, 
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vigilance, fatigue, or trust) in any detail, we believe that turning to the core literature 

in attention can provide a parsimonious answer which can encompass all of these. 

 

Applied research on attention implicitly assumes that the size of resource pools is 

fixed.  Capacity may change with long-term fluctuations in arousal, mood, or age 

(Hasher & Zacks, 1979; Humphreys & Revelle, 1984; Kahneman, 1973), but in most 

applied experiments on attention these factors are assumed to be stable within 

participants.  Performance on primary or secondary tasks therefore simply depends on 

demand not exceeding some arbitrary maximum.  There is a possibility, though, that 

this limit may change in the relatively short term, depending on task circumstances.  

This introduces the concept of malleable attentional resource pools.  Evidence is 

accumulating that simply reducing demand is not necessarily a key to improving 

performance.  It is proposed that resources may actually shrink to accommodate any 

demand reduction, in a converse of the ‘work expands to fill the time available’ tenet.  

This could explain the apparent degradation of attention and performance observed in 

low demand tasks.  If the maximum capacity of an operator has been limited as a 

consequence of the task, it is not surprising that they cannot cope when a critical 

situation arises (see Figure 1).  MART therefore potentially explains why mental 

underload can lead to performance degradation, whilst remaining grounded in 

established theories of attention. 
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Figure 1: Pictorial representation of performance differences under a 
malleable attentional resources hypothesis. 

 

 

In Figure 1, the bars represent the level of MWL and, by the logic of MART, the 

respective attentional capacity of the operator.  The heavy line indicates the level of 

attentional resources a failure event would demand.  As can clearly be seen, this is 

within the capacity of the high MWL operator, but beyond that at low MWL.  It is for 

this reason that performance in responding to critical situations is predicted to be 

worse in conditions of mental underload. 

 

Imagine someone driving a fully automated car.  This is a situation which 

considerably reduces MWL.  Assuming an attentional demand model of MWL (cf. 

Liao & Moray, 1993; Young & Stanton, 2001b), this translates to low demand on 

resources.  Now, MART posits that the size of the relevant resource pool will 
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temporarily diminish, as it is not required.  This could result in poorer performance on 

any subsidiary tasks, or problems if the driver is suddenly faced with increased 

demand (e.g., if the automation fails). 

 

The idea that the level of task demands can influence cognitive processing has been 

hinted at in previous research.  Buck, Payne & Barany (1994) quoted the ‘par 

hypothesis’ to explain some of their results.  This states that, as demands fluctuate, 

operators increase or decrease the amount of effort invested in a task to maintain 

performance at a set level.  This level represents an operator’s personal par for that 

task.  There is some support for this notion.  Liao & Moray (1993) found that 

participants invest more effort with higher time pressure, which may increase 

capacity.  Conversely, Desmond & Hoyes (1996) concluded that a decrease in 

performance at low levels of demand might be due to a failure to mobilise effort 

appropriately to match the task.  MART reflects these attitudes, but is a little more 

parsimonious with respect to current knowledge.  Being grounded in theories of 

attention, it does not have to appeal to extraneous concepts such as effort or 

motivation. 

 

MART is also consistent with other theories of performance, such as working 

memory.  The inverted-U relationship between arousal and performance was 

discussed previously as being due to competing processes of attentional resources and 

working memory.  It has already been argued that MWL does not necessarily 

correlate with arousal directly, but the malleable resources perspective suggests that 

MWL can have the same influence, by affecting attentional capacity.  In that respect, 
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the hypothesis is by no means radical or novel, but simply taking existing ideas from 

the basic literature and applying them in a new domain. 

 

A further implication concerns the traditional views of demand-performance 

relationships.  Fixed capacity models assume that performance remains at ceiling, and 

is data-limited, as long as demands remain within the attentional capacity of the 

operator (Norman & Bobrow, 1975; Stokes, Wickens & Kite, 1990).  Performance 

only begins to decline as the task demands approach the maximum resource 

availability.  This is the very essence of the dual-task approach.  Because two tasks 

can vary in objective difficulty, yet remain within the total capacity of the operator, 

overt performance differences will not be observed.  A secondary task can assess 

remaining capacity once the primary task has taken its toll, and can therefore 

differentiate between such levels of difficulty.  However, MART predicts that instead, 

performance is largely resource-limited for the full range of task demands.  This 

would explain why some researchers (e.g., Roscoe, 1992) have found an inverted-U 

relation between task demands and performance.  At low levels of demand, attentional 

capacity is reduced, artificially limiting the performance ceiling.  If task demands 

exceed the maximum capacity of the operator, performance degrades.  Only at 

medium levels of demand are resources (and hence performance) optimised.  These 

ideas are best understood in figures 2 and 3. 
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Figure 2: Relation between task demands and performance under a fixed 
capacity model (adapted from Stokes et al., 1990). 

 

Figure 2 represents the textbook approach, in which performance remains constant 

until task demands begin to exceed capacity, reflecting the invariance of the capacity 

upper limit.  However, in figure 3, the theory of malleable attentional resources has 

been applied to depress the upper capacity limit at lower task demands.  This also 

limits the performance ceiling, effectively creating the classic inverted-U relation 

between task demands and performance. 
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Figure 3: Relation between task demands and performance under a malleable 
attentional resources model. 

 

Adopting a malleable attentional resources position would therefore help to explain 

the results from a number of studies in which performance and MWL are positively 

correlated (e.g., Moss & Triggs, 1997; Roscoe, 1992; Scallen, Hancock & Duley, 

1995; Thornton, Braun, Bowers & Morgan, 1992).  Indeed, even basic memory 

research reviewed by Baddeley (1986) could be interpreted as support for MART.  A 

positive correlation between memory span and concurrent reasoning was explained in 

terms of the demanding influence of error-correction, but the results are also 

consistent with a change in resource capacity. 

 

On the basis of MART, it is predicted that excessively low mental workload, such as 

may be presented by automation, could result in a reduction of attentional resources.  

Young & Stanton (2001a) used a neat measure of resource capacity (figure 4) to 

demonstrate that this was indeed the case.  By comparing eye movements to 
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responses to a secondary task, it was found that attentional capacity directly 

correlated with MWL.  This was the first investigation into MART, and provided 

enough proof to warrant further investigations. 

 

STcr where AR = Attention Ratio 
STt  ST = Secondary Task 
  cr = correct responses 

AR = 
 

  t = time 
 

Figure 4: Derivation of Attention Ratio by Young & Stanton (2001a), used to 
infer attentional resource capacity.  Number of correct responses on a 
secondary task were divided by total duration of glances directed at that task. 

 

If enough support is found for MART, it will have far-reaching implications for both 

theoretical and applied researchers.  Multiple resources theory (cf. Wickens, 1992), 

and many studies based upon it, have implicitly assumed that the size of resource 

pools is invariant across tasks.  The conclusions of such studies often hinge upon the 

assumption that the total demands of primary and secondary tasks equals a constant.  

For instance, timesharing or multitasking experiments tend to infer that performance 

decrements are simply indicative of maximal capacity boundaries being exceeded 

(e.g., Brown, 1978; Buck & Ings, 1997; Harms, 1991; Liao & Moray, 1993; Liu, 

1996).  These inferences do not account for the possibility of the capacity limit 

adjusting to demands.  Many such studies using dual- or multiple-task techniques to 

assess mental workload and performance may have to be reassessed.  It may no longer 

be possible to directly compare different primary tasks against each other using the 

same secondary task.  Although an increase in secondary task responses would still 

indicate an easier primary task, this cannot then be extrapolated to make absolute and 

quantitative deductions about the resource demands of the primary task.  By virtue of 
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the fact that the addition of primary and secondary task demands no longer equals a 

constant, the whole dual-task methodology is thrown into turmoil. 

 

For applied researchers, there is now a parsimonious theoretical explanation for the 

effects of underload on performance.  The idea of an optimal level of MWL (Hancock 

& Caird, 1993) is clearly supported, with performance suffering if demands are either 

too low (underload) or too high (overload).  Starting with underload conditions, 

malleable attentional resources theory predicts that gradual increases in demands 

would facilitate performance.  Such facilitation is particularly evident if suddenly 

required to assume additional tasks (or resume control of an automated system).  The 

operator who had been working under higher demands (and therefore increased 

attentional capacity) will cope better with an emergency situation than the 

underloaded operator.  Indeed, this is probably the single most important prediction of 

MART.  If resources have shrunk in response to reduced task demands, a sudden 

increase in demand – even if it is within the ordinary capacity of the operator – cannot 

be tolerated.  Given the initial support for MART under normal operations (Young & 

Stanton, 2001a), the logical next step would be to perform a structured investigation 

of performance when reclaiming control from automation in a failure scenario.  

Although many authors have tackled this (e.g., de Waard et al., 1999; Desmond et al., 

1998; Nilsson, 1995; Stanton et al., 1997), the issue has not yet been specifically 

approached with malleable attentional resources in mind. 

 

In sum, the present paper has taken a back-to-basics approach to analysing the 

theoretical literature, and used it to arrive at a new explanation for the effects of 

mental underload on performance.  To the authors’ knowledge, the connection 
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between mental workload and attentional resource size has not been made previously, 

despite the fact that similar ideas have been echoed for physiological arousal.  This is 

probably due to the fact that since the conception of a resource model of attention, 

applied research has simplified matters by implicitly assuming that resources are 

fixed, thus hindering theoretical progress.  By considering basic theory, though, 

applied research will also benefit.  Malleable attentional resources theory represents 

an effort towards that goal, in the hope of advancing knowledge in both theoretical 

and applied domains. 
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