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Abstract 15 

A number of studies have measured visual thresholds for detecting spatial distortions applied to images of natural 16 

scenes.  In one study, Bex (2010) measured sensitivity to sinusoidal spatial modulations of image scale. Here we 17 

measure sensitivity to sinusoidal scale distortions applied to the chromatic, luminance or both layers of natural-18 

scene images.  We first established that sensitivity does not depend on whether the undistorted comparison image 19 

was of the same or of a different scene. Next we found that when the luminance but not chromatic layer was 20 

distorted, performance was the same irrespective of whether the chromatic layer was present, absent or phase 21 

scrambled; in other words the chromatic layer, in whatever form, did not affect sensitivity to luminance-layer 22 

distortion.  However when the chromatic layer was distorted, sensitivity was higher when the luminance layer was 23 

intact compared to when absent or phase-scrambled. These detection threshold results complement the 24 

appearance of periodic distortions of image scale: when the luminance layer is visibly distorted, the scene appears 25 

distorted, but when the chromatic layer is visibly distorted, there is little apparent scene distortion.  We conclude 26 

that (a) observers have an in-built sense of how a normal image of a natural scene should appear, and (b) the 27 

detection of distortion in, as well as the apparent distortion of natural-scene images is mediated predominantly by 28 

the luminance not chromatic layer.   29 

 30 

1 Introduction 31 

When navigating the real world, be it a natural landscape or artificial environment, visual information is often spatially distorted.  32 

Distortions can arise in many ways (Fleming, Jäkel and Maloney, 2011; Schluter and Faul, 2014), for example they can be seen in the reflections from 33 

ripples on the surface of a lake (Fig 1a) or a curved metallic surface (Fig 1b).  Distortions can also arise when light is diffracted during transmission 34 

through a geometrically curved transparent medium, e.g., glass (Fig. 1c).  These spatial distortions are often modulated approximately sinusoidally; 35 

Fig. 1a illustrates a relatively high frequency example, Figs. 1b and c relatively low frequency examples. 36 



 37 

Fig. 1a, b and c.  Examples of spatially distorted images.  Image (a) was produced when the surrounding natural environment was 38 

reflected from the surface of rippling water, (b) shows the distorted reflection of a cup produced by a curved metallic surface and (c) 39 

shows the distorted pattern of a tablecloth as viewed though a transparent wine glass. 40 

 41 

A number of previous studies have measured observers’ sensitivity to various types of natural-scene distortion, including uniform whole-42 

image distortions (Kingdom, Field and Olmos, 2007), sinusoidally modulated distortions of scale (Bex, 2010) and distortion from blur (Wandell, 43 

1995; Sharman, McGraw and Peirce, 2013).  Kingdom et al. measured observers’ sensitivities to a variety of transformations applied uniformly 44 

across images of natural scenes.  The transformations included geometric (e.g., rotation, stretching), photometric (e.g., brightening, contrast-45 

reducing) and noise-addition (e.g., Gaussian, fractal). Two of the geometric transformations they tested, shear and stretch, may be considered spatial 46 

distortions.  Kingdom et al. found that for transformations equated in their Euclidean distance (the square root of the sum of squared differences 47 

between corresponding RGB pixels in the image pairs), observers were relatively insensitive to regularly experienced transformations, such as image 48 

translation, and relatively sensitive to uncommon transformations, such as the addition of noise.  Kingdom et al. opined that the visual system tended 49 

to discard information about commonly experienced transformations as part of the process of achieving perceptual invariance during image 50 

transformation.   51 

 52 

The transformations in Kingdom et al. were applied uniformly to the image.  Bex (2010), on the other hand, applied sinusoidal 53 

modulations of image distortion, specifically of scale, resulting in images containing periodic expansions and contractions.  He found that sensitivity 54 

to the distortions depended on a number of factors, including distortion spatial frequency, retinal eccentricity, the contrast of the scene and the 55 

particular scene structure -  for example observers were most sensitive to distortions in regions containing edges.  Bex demonstrated that the 56 

amplitude spectra of the distorted and undistorted stimuli were identical, thus ruling out this feature as a causal factor.  He concluded that the 57 

detection of distortions is a high-level visual process that relies on observers’ expectations of what is normal in natural scenes. 58 

 59 

Fig. 2b shows the result of applying a spatial radial transformation to an undistorted image (Fig. 2a).  In this case the distortion is a barrel 60 

distortion, as produced, for example by a fisheye lens (Hecht, 2001).  Figs. 2c and 2d illustrate the same barrel distortion applied respectively to only 61 

the chromatic or luminance layer.  When the distortion is applied to the whole image (Fig. 2b) or just the luminance layer (Fig. 2d), the distorted 62 

image appears like a reflection on a curved, shiny, possibly metallic, surface.  On the other hand when only the chromatic layer is distorted (Fig. 2c) 63 

the resulting image is similar in appearance to the undistorted original, even though the disturbance to the colours is readily discernible.   In this case 64 

a ‘ghosting’ can be observed whereby the colours appear to be smeared across the luminance boundaries, with the apparent structure of the scene 65 

being largely unaffected.  This simple demonstration suggests that our sense of image scale distortion is largely mediated by luminance not 66 

chromatic information. 67 

 68 



The two main aims of the study are as follows.  First, we wanted to know whether sensitivity to image distortion reflects an in-built 69 

knowledge of what a “normal” scene looks like.  Second we wanted know whether the appearance of the distortions in Fig. 2 is also reflected in 70 

measures of sensitivity to image distortion. The approach of separately manipulating the chromatic and luminance components of images of natural 71 

scenes in order to compare their relative contribution to a perceptual attribute has been applied in a number of previous studies (Wandell, 1995; 72 

Yoonessi & Kingdom, 2008; Kingdom, 2011; Sharman, McGraw and Peirce, 2013).  As with Yoonessi & Kingdom’s (2008) study of uniform color 73 

transformations and Bex’s  (2010) study of periodic scale distortions, we use phase-scrambled versions of the images in order to determine whether 74 

scene structure is a factor in transformation/distortion sensitivity.  The potential importance of scene structure for detecting distortions applied to 75 

either or both of the luminance and chromatic layers becomes clear when one considers that in natural scenes most edges  are both luminance- and 76 

color-defined (Fine, MacLeod & Boynton, 2003;  Johnson, Kingdom & Baker, 2005;  Hansen and Gegenfurtner, 2009). 77 

 78 

 79 

Fig. 2.  The same scene subject to chromatic/luminance distortion.  Panel (a): original image.  Panel (b) is the result of applying a barrel 80 

distortion to (a).  Bottom panels are the result of applying the same barrel distortion to only the chromatic (c) or luminance layers (d) of 81 

the original.    82 

2. General methods 83 

2.1 Observers 84 



Seven observers participated in the experiments.  Author KW participated in all experiments.  Author SM participated in experiment 1 85 

only.  Author BJ participated in experiments 2, 3, and 4 only.  The remaining four observers were naive to the purpose of the experiments.  All 86 

observers had normal or corrected to normal (6/6) visual acuity.  All observers additionally had normal colour vision, as tested by the Ishihara 87 

Colour Test (Isshinkai Foundation, published by Kanehara & Co., Ltd, 2001).  88 

2.2 Equipment  89 

The stimuli were presented on a CRT Sony Multiscan Trinitron G400 monitor, driven by a ViSaGe graphics display system (CRS ltd, UK) 90 

hosted by a DELL Precision T1650 computer.  The display controlling software was programmed in C and utilised the ViSaGe Win32 application 91 

programming interface.  The display was gamma corrected using a colorCAL (CRS ltd, UK) controlled via the vsgDesktop software.  The spectral 92 

emission functions of the red (R), green (G) and blue (B) phosphors were measured using a SpectroCAL (CRS ltd, UK).  The CIE xyY coordinates of the 93 

R, G and B phosphors at maximum luminance outputs were; red: xyY=(0.62, 0.34, 16.6 cd m-2), green: xyY=(0.28, 0.61, 55.4 cd m-2) and blue: 94 

xyY=(0.15, 0.07, 7.6 cd m-2).  The stimuli were presented on a mid-grey background located at xyY=(0.29, 0.31, 40.2 cd m-2). The monitor was run 95 

with a refresh rate of 85 Hz and a resolution of 1280 x 1024 pixels, one pixel measured ~0.94 x 0.94 minute of arc at the viewing distance of 100 cm.   96 

2.3 Stimuli 97 

All stimuli were pre-generated using MatLab (Mathworks, Natick, MA) prior to the psychophysical testing.  One hundred and fifty four 98 

digital photos were chosen from the McGill Calibrated Colour Image Database (Olmos and Kingdom, 2004).  Fig. 3a provides examples of the images 99 

employed. 100 

 101 
 102 

 103 



 104 

Fig. 3. (a) a pseudo-randomly selected subset of the 154 raw images employed in the study, illustrating the range of scene types, e.g. 105 

natural landscapes, foliage, flowers, urban scenes and human made objects is illustrated.  (b) a series of distortion frequencies 106 

(increasing along the positive horizontal axis) and distortion amplitudes (increasing along the positive vertical axis) applied to a single 107 

image.  These examples depict distortions well above threshold. 108 

 109 

The images were distorted by applying a sine-wave distortion algorithm.  The sinusoidal transformation was implemented in MatLab 110 

(Mathworks, Natick, MA) and applied to the image in both the horizontal and vertical directions simultaneously.  For given distortion frequency and 111 

amplitude the horizontal and vertical distortion amplitudes were equal.  The stimuli were pre-computed before each testing session as it took too 112 

much time to generate them on-line between trials.   A series of six distortion spatial frequencies were selected, from ~0.08 to 2.7 cycles/°, and for 113 

each frequency a range of distortion amplitudes were employed. The distortion algorithm was applied to pseudo-randomly selected square 114 

subsections (512 x 512 pixels) cropped from the raw images. In experiment 1 the algorithm was applied to both the luminance and chromatic layers 115 

of the raw cropped image simultaneously.  Examples of images distorted with various distortion amplitudes and frequency combinations are shown 116 

in Fig. 3b.  Note the distortions illustrated in this figure are largely above threshold.  In experiments 2, 3 and 4, the cropped images were first 117 

decomposed into their chromatic and luminance layers, then the distortion was applied just to one layer, chromatic or luminance, as required then 118 

the layers were recombined.  Phase-scrambling, if required, was always applied prior to adding any distortion.  Finally all stimuli had a circular 119 

Gaussian border applied to remove the sharp edge between itself and mid-grey background.  Each image was displayed for 200 ms and ramped on 120 

and off according to a sine wave to avoid any artifacts being produced by a spontaneous stimulus onset. 121 

 122 



2.4 Colour/luminance decomposition 123 

The colour/luminance decomposition of each image was achieved by converting each gamma corrected pixel’s RGB triplet into its 124 

corresponding YUV triplet.  This was achieved by multiplying each RGB triplet by a 3x3 RGB to YUV transformation matrix.  The Y layer of the YUV 125 

space contains the luminance information while the U and V layers contain the chromatic information.  Hence a distortion and/or phase scrambling 126 

can be applied to the luminance layer by manipulating the Y layer, then recombining it back into RGB space with the unaltered U and V layers via the 127 

inverse RGB to YUV transformation matrix.  On the other hand, a distortion and/or phase scrambling can be applied to both the chromatic layer (in 128 

RGB space) via manipulation of the U and V layers simultaneously before recombining them with the unaltered Y layer.  To isolate the luminance 129 

information in an image the chromatic U and V layers pixels were set to zero.  To isolate the chromatic information in the image the U and V layers 130 

were left unaltered, whist the Y layer was set to a constant value of 0.5, i.e., the background luminance, before the inverse transformation back to RGB 131 

space was applied.  Note that the resulting isoluminant images are likely to have small luminance artifacts, as no attempt was made to make 132 

corrections based on individual variations in the luminosity efficiency function (Wyszecki and Stiles, 2000). 133 

2.5 Phase scrambling 134 

Phase scrambled versions of the images were generated according to the method outlined by Kingdom and Yoonsessi (2008).  In this 135 

method, the absolute phases of the R, G and B layers were scrambled whilst preserving their relative phases. This ensured that as much colour 136 

information as possible was preserved in the scrambled images and that only the scene structure was destroyed.  The algorithm employed a 2D fast 137 

Fourier transform to extract the amplitude A and phase P spectra, defined by Eqn. 1 and 2, respectively.  The real and imaginary parts of each Fourier 138 

frequency component of the spectrum are F r and F i, respectively.  The frequency variables are ω x and ω y. 139 

 140 

𝐴 = √𝐹𝑟(ω𝑥, ω𝑦)2 + 𝐹𝑖(ω𝑥, ω𝑦)2                                                                                                     Eqn. 1 141 

 142 

𝑃 =  arctan (
𝐹𝑖(ω𝑥, ω𝑦)

𝐹𝑟(ω𝑥, ω𝑦)
)                                                                                                                  Eqn. 2 143 

 144 

The extracted phase spectrum subsequently had some randomly generated phase (in the range ±π) added to it, before being recombined with the 145 

amplitude spectrum and the inverse Fourier transform performed.  Any imaginary parts of the image produced as a side effect of rounding errors 146 

were discarded. 147 

2.6 Experimental procedure 148 

Distortion detection thresholds were obtained using a 2-IFC method and the method of constant stimuli.  There were two main conditions, 149 

termed Same and Different (not to be confused with the “Same-Different” psychophysical task).   In the Same condition the two images in each 150 

forced-choice pair were derived from the same image, i.e. the original plus a distorted version of the original.  In the Different condition the two 151 

images images were of different scenes.  Within each block the 6 distortion frequencies and 5 amplitudes were randomly interleaved.  With 5 repeats 152 

of each combination of distortion frequency and amplitude this resulted in 150 trials per block (6 x 5 x 5 = 150 trials).  There were four main 153 

conditions: Real-same, Real-different, Scrambled-same and Scrambled-different.  Each of these four conditions was run 10 times in experiment 1, 154 

and 4 times in experiments 2, 3 and 4, resulting in 50 and 20 trials per frequency-amplitude combination, respectably.  Psychometric functions of 155 

proportion correct versus distortion amplitude were fitted with a Weibull function using a maximum-likelihood criterion using the Palamedes 156 

toolbox (Prins and Kingdom, 2009).  The Weibull estimates threshold at a proportion correct of ~0.82.   157 



2.7 The different experiments 158 

The following section outlines the various combinations of colour, luminance, distorted and phase scrambled conditions.  Fig. 4 shows 159 

example stimuli.  160 

 161 

Experiment 1: Chromatic and luminance layers were both distorted.  Both real and phase scrambled images employed.   162 

 163 

Experiment 2: One or other alone of the chromatic or luminance layer was distorted, with the other layer unaltered.  Both real and phase scrambled 164 

images employed.   165 

 166 

Experiment 3: One or other alone of the chromatic or luminance layer was distorted, while the other layer was phase scrambled.   167 

 168 

Experiment 4: The chromatic or luminance layers were presented alone and distorted. 169 

 170 

 171 

 172 
 173 



 174 

Fig. 4. Top: unprocessed raw image.  Below: examples of the different distortion conditions used in the experiments. 175 

 176 

3. Results 177 

The following sections present for each experiment distortion amplitude thresholds as a function of the spatial frequency of the distortion 178 

in log-log space, with all plots spanning equal ranges on the mantissas and abscissas, with error bars ±2SEM (standard error of the mean).  All 179 

statistics are based on 2-tailed t-tests, with p-values Bonferroni corrected where appropriate. 180 



3.1 Experiment 1 (n = 5) 181 

In this experiment the distortion was applied equally to both chromatic and luminance layers.  The four conditions were: Real-Same, Real-182 

Different, Scrambled-Same, and Scrambled-Different (see experimental procedure).  No significant differences were found between the Real-Same 183 

and Real-Different or between the Scrambled-Same and Scrambled-Different conditions (Fig. 5a) (p-values ranged 0.21 ≤ p ≤ 0.45, i.e. all greater than 184 

0.05).  The Same and Different data were therefore combined and the resulting Real and Scrambled data is shown in Fig. 5b.   Over the four highest 185 

spatial frequencies tested (‘*’ in Fig. 5b), all corrected p-values were in the range 0.01 ≤ p ≤ .028, i.e. all less than 0.05.  At the lowest two spatial 186 

frequencies tested (‘†’ in Fig. 5b) no differences exists (both ps ≥ .13).  The slopes of the curves plotted in Fig. 5b are -0.97 and -1.1 for the real and 187 

scrambled stimuli, respectively, i.e. approximately -1.  This implies that the product of amplitude threshold and distortion frequency should produce 188 

flat functions when plotted as a function of distortion frequency.  Fig. 5c illustrates that this is the case, especially for the real image data.  This shows 189 

that the rate of change of distortion across space is the main factor limiting performance in this experiment. 190 

 191 

 192 

 193 

Fig. 5.  Panels (a) and (b) show distortion amplitude thresholds as function of distortion spatial-frequency, when both chromatic and 194 

luminance layers are distorted.  Panel (a) shows separately the Real-Same, Scrambled-Same, Real-Different and Scrambled-Different 195 

data.  For clarity error bars are not displayed, however the top right corner of (a) shows minimum and maximum errors (±2SEM).  Panel 196 

(b) shows data collapsed for the Real-Same and Real-Different, and for the Scrambled-Same and Scrambled-Different conditions. The 197 

symbol * indicates a significant difference between the Real and Scrambled conditions.  Data is the average across 5 subjects and error 198 

bars are ±2SEM calculated across subjects’ thresholds, i.e. are not errors on the fitted psychometric function thresholds.   Panel (c) shows 199 

the same data as in panel (b) but plotted as the product of threshold amplitude and distortion frequency versus distortion frequency. 200 

2.2 Experiment 2 (n = 3) 201 

In this experiment only one layer, chromatic or luminance, was distorted.  No significant differences were found between the Real-Same 202 

and Real-Different conditions, nor between the Scrambled-Same and Scrambled-Different conditions (corrected p-values ranged 0.16 ≤ p ≤ 0.56, i.e. 203 

all greater than 0.05).  Data was subsequently collapsed for both the chromatic (Fig. 6a) and luminance (Fig. 6b) conditions.  A significant difference 204 

was found between the Real and Scrambled images when the chromatic layer only was distorted (p=.008); the detection of chromatic distortions in 205 

phase scrambled images being more difficult to detect.  But there was no difference between the Real and Scrambled thresholds for the luminance 206 

defined distortions (p=.31).  Almost significant (p=.06) were the lower thresholds for the luminance compared to chromatic distortions at the three 207 

highest frequencies.  Finally, thresholds for phase-scrambled luminance distortions were significantly lower than for phase-scrambled chromatic 208 

distortions (p<.001). 209 



 210 

Fig. 6.  Thresholds for detecting distortions when applied only to (a) the chromatic and (b) the luminance layer, as a function of distortion 211 

frequency.  Thresholds for Real stimuli are plotted in red, Scrambled stimuli in green. 212 

3.3 Experiment 3 (n = 2) 213 

In this experiment one or other of the chromatic and luminance layers was distorted, while the other layer was phase-scrambled.  Fig. 7a 214 

shows plots for the two subjects, BJ and KW tested, while Fig. 7b plots the mean values across the two subjects.  Thresholds for detecting chromatic 215 

distortions with the luminance layer undistorted but phase-scrambled (purple curves) were significantly higher (p<.001) than thresholds for 216 

detecting luminance distortions with the chromatic layer undistorted but phase scrambled (dark grey curves).  Moreover, the decline in thresholds 217 

with distortion spatial frequency on the log-log plots was steeper for the luminance compared to chromatic distortions.   218 

 219 

 220 

Fig. 7.  Distortion thresholds for real images with either the chromatic or luminance layer distorted, with the other layer phase-221 

scrambled.  Panel (a) shows data for two subjects BJ and KW, while panel (b) shows mean thresholds across subjects. Chromatic layer 222 

thresholds are plotted in purple, luminance layer thresholds in dark grey. 223 

 224 

3.4 Experiment 4 (n = 2) 225 

Here, the chromatic and luminance layers were presented on their own, resulting in respectively isoluminant and isochromatic, in the 226 

latter case specifically achromatic stimuli.   Fig. 8a shows individual data for BJ and KW, while Fig. 8b plots the mean values.  Thresholds for detecting 227 



chromatic layer distortions were significantly higher (p=.007) than thresholds for detecting luminance distortions.  As with experiment 3 there is a 228 

steeper decline in thresholds with distortion spatial frequency for the luminance compared to chromatic distortions. 229 

 230 

 231 

Fig. 8.  Distortion detection thresholds for chromatic and luminance layers in isolation.  Panel (a) shows plots of thresholds for BJ and KW, panel (b) 232 

shows mean thresholds. Chromatic thresholds are plotted in purple, achromatic thresholds in dark grey. 233 

 234 

3.5 Comparison of results 235 

To better grasp the significance of the results from experiments 2, 3 and 4, Fig. 9a and b compares their data.  Consider first the data from 236 

experiments 3 and 4.   No significant differences were found (p = .08) between chromatic distortion detection thresholds measured in the presence of 237 

a phase scrambled luminance layer and distortion detection thresholds for isoluminant stimuli (red and green curves in Fig. 9a, respectively).  238 

Furthermore, no significant differences were found between luminance distortion detection thresholds measured in the presence of a phase-239 

scrambled chromatic layer and distortion detections for the pure luminance stimuli (red and green curves in Fig. 9b, respectively).  This implies that 240 

observers were able to disregard the phase-scrambled “noise” in the irrelevant layer, irrespective of whether observers were detecting chromatic or 241 

luminance distortion. 242 

On the other hand, if we compare experiments 2 with 3 and 2 with 4 one can see that observers were significantly more sensitive to 243 

chromatic distortions if the undistorted luminance structure was present (see blue curve in Fig. 9a; experiment 2 vs. 3: p = 0.01, experiment 2 vs. 4: p 244 

= .03).  Whereas, detection thresholds for luminance distortions did not improve with the presence of undistorted chromatic structure (see blue 245 

curve in Fig. 9b).  Surprisingly, as Fig. 9b illustrates, luminance thresholds are equal for a given distortion frequency, over the whole range (all p-246 

values in range: 0.17 ≤ p ≤1, (corrected upper p-value: 1.21)).  Consequently, luminance distortion detection thresholds are independent of whether 247 

they are presented with an unaltered chromatic layer (experiment 2), a phase-scrambled chromatic layer (experiment 3), or in isolation (experiment 248 

4). 249 



 250 

Fig. 9.  Comparison of thresholds for experiments 2, 3 and 4.  Panel (a) plots the chromatic distortion data while panel (b) plots the luminance 251 

distortion data.  The blue curve in (a) shows chromatic distortion thresholds in the presence of an undistorted luminance layer and in (b) vice versa. 252 

The red curve 9n (a) shows chromatic distortion detection in the presence of a phase scrambled luminance layer and in (b) vice versa. The green 253 

curved in (a) shows isoluminant and in (b) isochromatic distortion detection thresholds.  254 

 255 

4 Discussion 256 

The following summarizes the main findings of the experimental part of the study. 257 

1. Sensitivity for detecting sinusoidal distortions applied to the whole image (i.e. to both luminance and chromatic layers) is the same 258 

regardless of whether the undistorted comparison image is of the same or of a different scene.   259 

2. Sensitivity for detecting whole-image distortions is higher for phase-scrambled compared to unscrambled scenes. 260 

3. Distortion detection sensitivity increases (thresholds decline) as the distortion frequency increases, for both real and phase-scrambled 261 

scenes.  262 

4. Sensitivity for detecting distortions is higher when the luminance layer is distorted compared to when the chromatic layer is distorted, 263 

especially at high distortion frequencies. 264 

5. Sensitivity for detecting luminance layer distortions is independent of whether the chromatic layer is undistorted, phase scrambled or 265 

absent.   266 

6. Sensitivity for detecting chromatic distortions is highest when the undistorted luminance structure is present. 267 

 268 

Experiment 1 showed that for both real and phase-scrambled images, sensitivity for detecting sinusoidal distortions was independent of 269 

whether the comparison image was of the same or of a different scene.  This implies that observers posses an internal representation of what is 270 

‘normal’ in a natural scene, a conclusion also reached by Bex (2010).  Although no difference was found between real and phase-scrambled 271 

thresholds for the two lowest distortions frequencies tested, at higher distortion frequencies observers were more sensitive to the distortions in the 272 

phase-scrambled images, also consistent with Bex’s findings. The result is ostensibly consistent with Kingdom et al.’s (2007) conclusion that in 273 

general we are least sensitive to transformations that are normally experienced, i.e. the ones in real not phase-scrambled scenes.  Unfortunately for 274 

the generality of this conclusion however, at least some types of image transformation show worse performance with phase-scrambled images, for 275 

example images subject to uniform colour transformations, such as rotations in colour space (Yoonessi and Kingdom, 2008). 276 

 277 

An alternative explanation for the superiority in performance with the phase-scrambled images to that following Kingdom et al. (2007) is as 278 

follows.  Applying distortion to a phase-scrambled image imposes structure on a stimulus that is relatively unstructured, whereas with the real image 279 

the structure is imposed on an already structured stimulus.  Thus the observer’s task can be loosely described as structure detection with the phase-280 



scrambled images as opposed to structure discrimination with the real-scene images.  The analogy here is the difference between contrast detection 281 

and contrast discrimination: detecting a stimulus versus a blank requires less contrast than discriminating two high-contrast stimuli differing in 282 

contrast (e.g. Bradley and Ohzawa, 1986). 283 

 284 

Experiment 2 on the other hand revealed a very different pattern of results.  When only the chromatic layer was distorted (Fig. 6a), 285 

performance was worse with the phase-scrambled compared to the real scenes, and when only the luminance layer was distorted, performance was 286 

no better with the phase-scrambled compared to real scenes (Fig. 6b).   How can we explain the discrepancy in results between the two 287 

experiments?   The likely reason is that with the real but not phase-scrambled scenes, when the distortion is applied to just one layer, the undistorted 288 

layer provides a visible structure against which the presence or absence of distortions in the other layer can be compared.   The real beneficiary of 289 

this process is colour: in the presence of in-tact luminance structure, distortions to the chromatic layer are easily detected, and at low frequencies as 290 

easily detected as luminance layer distortions (Fig. 6).  With the structure of the image removed with phase-scrambling, distortion to the chromatic 291 

layer becomes much more difficult to detect. 292 

 293 

Threshold results  294 

 295 

A main experimental finding is that we are relatively insensitive to distortions to the chromatic layer.  There are a number of possible 296 

reasons.  First, if the amount of chromatic contrast relative to luminance contrast in natural scenes is low, we would expect sensitivity to chromatic 297 

distortions to also be relatively low.  While doubtless a contributing factor, relatively low chromatic contrast is unlikely to be the sole cause.  It does 298 

not, for example, explain why we are relatively good at detecting distortions to the chromatic layer when luminance structure is present, particularly 299 

at low distortion frequencies.  A second possible contributory reason for the relatively poor chromatic distortion sensitivity is that in natural scenes 300 

colour is more sparse than luminance, meaning that chromatic information tends to be formed into relatively larger patches than luminance 301 

information (Yoonessi, Kingdom & Alqawlaq, 2008).   This means that more of the image regions in the chromatic compared to luminance layer are 302 

devoid of edges and thence not subject to the effects of distortions.  A third possible reason is the relative insensitivity of the chromatic system to high 303 

spatial frequencies (Mullen , 1985). 304 

 305 

The appearance of image distortion 306 

 307 

The experiments in this study measured thresholds, i.e. performance measures, using a conventional forced-choice task.  How do the 308 

experimental results square with the appearance of image distortion as discussed earlier in relation to Fig. 2?    We argue that there may be more to 309 

the appearance of Fig. 2 than mere lack of sensitivity to chromatic image distortions.  In the natural world a large proportion of images reaching the 310 

eye are formed by light that has previously been reflected from the surfaces of other objects (Mandelstam, 1926; Kerker, 1969).  Diffuse reflections 311 

occur when light is reflected equally in all directions, as for a Lambertian surface, with the result that the surface appears matte.  Specular reflections 312 

on the other hand differ from diffuse reflections in that they are highly directional, with light reflected from the surface at an angle opposite to that of 313 

the incident light.  An example of an ideal specular surface is a mirror, while a shiny metallic surface or glossy paint is a close approximation.   314 

Do some surfaces predominately produce reflections that are composed largely of achromatic information, i.e., can colour information be 315 

lost during the process of reflecting an image?  Different surfaces possess difference spectral reflectance curves, that is differences in the proportion 316 

of light reflected from a surface as a function of the light’s wavelength.   Spectral reflectance curves can reveal the selective absorption of a material; 317 

for example, copper and gold reflect almost 100% of long wavelength light, while only around 40% of short wavelength light (from violet to cyan).  318 

On the other hand, water reflects mostly high energy light from the bluish region of the spectrum.  Hence, reflections originating from a number of 319 

materials would appear to have reduced colour spectra.  Therefore the visual system might rely more on luminance than colour when dealing with 320 

patterns of specular reflection in order to encode the surface shape of curved, metallic objects, and this might in part explain the appearance of Fig. 2. 321 



Conclusion 322 

 323 

Our results suggest that human observers have an internal undistorted representation of the world, probably acquired via experience that 324 

can be relied upon when making judgments as to whether a scene, natural or artificial, has been spatially distorted.  Luminance defined distortions 325 

are equally as salient regardless of whether the accompanying chromatic information is distorted, undistorted or phase scrambled.  Chromatic 326 

distortions on the other hand are in general harder to detect, except in the presence of undistorted luminance structure.  Our relative inability to use 327 

chromatic information to detect natural-scene spatial distortions is commensurate with the observation that the visual system appears to rely on 328 

luminance cues to encode the shapes of curved, metallic surface from the pattern of their specular reflections.   329 

 330 
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