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Colour threshold discrimination ellipses were measured for a number of states of chromatic 

adaptation and a range of luminance levels using the Colour Assessment and Diagnosis 

(CAD) test. An analysis of these results was carried out by examining the cone excitation 

signals along the cardinal axes that correspond to detection thresholds in the +L‐M (reddish), 

−L+M (greenish), +S (bluish) and −S (yellowish) colour directions. The results reveal a 

strong linear relationship between the excitations induced by the adapting background field in 

each cone class and the corresponding changes needed for threshold detection. These findings 

suggest that the cone excitation change for threshold detection of colour signals is always the 

same for a given background excitation level (in any cone class), independent of the 

excitations generated in the other cone classes. These observations have been used to develop 

a model to predict colour detection thresholds for any specified background luminance and 

chromaticity within the range of values investigated in this study (e.g., luminances in the 

range 0.3 to 31 cd.m−2 and chromaticities within the gamut of typical CRT displays). 

Predicted colour thresholds were found to be in close agreement with measured values with 

errors that do not, in general, exceed the measured within‐subject variability.  

Introduction 

When the light reflected from an object differs in spectral composition to the surrounding 

background field, these spectral differences are reflected in the excitation levels produced in 

each class of photoreceptor. The colour discrimination performance of the human eye is 

strongly affected by both the luminance level and the spectral composition of the adapting 

light (Yeh et al., 1993; Yebra et al., 2001). Knowledge of the limits of colour discrimination 

is important in setting safety standards and guidelines in visually‐demanding workplace 

environments; for example, in aviation, rail and maritime transport. Varying conditions of 

illumination and chromatic adaptation are employed in different working environments and 

these will affect chromatic detection (Loomis and Berger, 1979; Hita et al., 1989). It is 

therefore of both fundamental and practical interest to be able to predict accurately how the 

subject’s colour detection performance changes with light level and chromatic adaptation. 

The Colour Assessment and Diagnosis (CAD) test (Rodriguez‐Carmona et al., 2005; Barbur 

et al., 2006) was used to measure colour detection threshold ellipses under different states of 

chromatic adaptation and background light levels. The advantage of this technique is that it 

isolates the use of colour signals in both normal trichromats and colour deficient observers by 

embedding the ‘isoluminant’ chromatic stimulus in dynamic luminance noise (Barbur, 2003). 

These threshold variations are analysed in terms of changes in L‐, M‐ and S‐cone excitation 

levels required for threshold in the +L‐M, ‐L+M, +S and –S directions. A model based on the 

measured threshold chromatic sensitivity data is proposed to extend these data to other states 

of chromatic adaptation and retinal luminance levels within the limits investigated. The 

model is based on the measured relationships between colour detection thresholds and the 

corresponding cone excitations generated when varying the spectral composition and 

intensity of the background field.  



Method 

Equipment 

The stimulus was displayed on a Multiscan 500PS Trinitron monitor (Sony Corporation, 

Tokyo, Japan); screen size 27° × 22°, using a frame rate of 75 Hz. The monitor was 

driven by an ELSA GLoria XL 30‐bit graphics card (ELSA Optical Technology Inc. Aachen, 

Germany). The controlling software ran on a desktop PC running MS‐DOS: the choice of 

operating system was to eliminate the risk of context switching, and hence ensure accurate 

timing for stimulus generation and display. Observers responded to the stimuli by pressing 

one of four buttons on a handheld control pad, this was connected to the PC via an PC30AT 

multifunction data acquisition card (Amplicon, Brighton, East Sussex, UK). A chin and 

forehead rest was used for convenience and to maintain a fixed eye to monitor distance of 

700 mm.  

The CAD test uses spatiotemporal luminance noise to isolate the detection of colour signals 

(Barbur, 2003). The stimulus is composed of a 5 × 5 square array of checks, of which 21 

are coloured and move diagonally in a randomly selected direction. The stimulus moves at a 

constant speed of ∼4°/s, over a visual angle of ∼2.9°, across a larger square region of 3.3° 

defined by dynamic luminance contrast noise. The stimulus colour as specified by its CIE (x, 

y) co‐ordinates had the same mean luminance as the background field and the Euclidian 

distance between background and test stimulus chromaticities provided a measure of colour 

signal strength. Sixteen different directions in CIE space were employed: 0, 22.5,…, 337.5°. 

The threshold was measured along each direction using one of 16 interleaved staircases. For 

each presentation the stimulus motion direction was chosen randomly. A larger background 

field of angular subtense 27° × 22°, and luminance equal to that of the stimulus provided 

the adapting field. A number of discrete background chromaticities and luminance levels 

were investigated.  

The observer’s task was to press one of four buttons arranged as a square (in a four‐

alternative, forced‐choice procedure) to indicate the direction of movement (i.e., the button 

that corresponded to the corner of the square that the stimulus traveled towards). When 

unable to see the coloured stimulus, the observer was instructed to press any of the four 

buttons.  

Selection of background chromaticities and luminance levels 

Two main factors determined the choice of chromaticities for the twelve backgrounds 

employed in this study. The first was the chromaticities and the output luminance range of 

each of the monitor phosphors. At higher luminance levels the gamut of chromaticities 

available is reduced (Morovic, 2008), this limited the choice of background chromaticities for 

which colour detection thresholds could be measured. The second factor is the massive 

increase in colour detection thresholds at lower luminance levels (Walkey et al., 2001). This 

increase can cause the thresholds to fall outside the gamut of the display. The twelve 

background chromaticities were chosen to cover as much of the display gamut as possible, 

within its chromaticity and luminance limits, whilst also ensuring that the measured colour 

detection thresholds also fall within these limits. Colour threshold ellipses could be measured 

for nearly every selected background in the range 1–31 cd.m−2. At the lowest light level 

investigated, i.e., 0.3 cd.m−2, only four of the 12 backgrounds could be measured. A 



spectrally calibrated neutral density filter of optical density 1 unit was employed when testing 

at luminance levels of 3 cd.m−2 and below.  

Experimental procedure and data processing 

Four subjects took part in this study; all had normal colour vision according to the CAD test 

and also produced Nagel anomaloscope matches in the normal range. All subjects had 6/6 

vision or better and wore appropriate refractive correction, if required. Each observer carried 

out the CAD test for each background chromaticity and luminance level employed in the 

study. Adaptation to the uniform background field for 90 s preceded the tests, except those 

for the lowest background luminance levels when the subject adapted for 20 min. The 

testing was carried out over a number of sessions. The results for the four subjects were 

averaged for each background and luminance level and for each of the 16 colour directions 

tested. The measured ellipses become asymmetric at the very low light levels, mainly due to 

an increased threshold in the yellow direction, as also shown previously by Brown (1951). 

These observations have been taken to reflect differences in sensitivity for increments and 

decrements in S‐cone signals at low light levels (Walkey et al., 2001; Yebra et al., 2001). The 

ellipse‐fitting algorithm employed in this study predicts well the measured thresholds, but a 

(least‐squares) fitting algorithm with a non‐fixed center needs to be employed (Fitzgibbon 

et al., 1999) in order to preserve asymmetric elongations. This procedure yielded a result set 

containing the semi‐major, a, and semi‐minor, b, ellipse axes; the orientation of the major 

axis relative to the abscissa; and the fitted ellipse centre co‐ordinates (xo, yo). The coordinates 

in CIE space of Rt, Gt, Bt and Yt (shown in Figure 1) were determined using standard 

parametric ellipse equations (Salomon, 2005). These values are shown later to represent the 

thresholds in the +L‐M, ‐L+M, +S and –S directions, respectively, once transformed into 

cone excitation space. Figure 1 also shows the positions of these points relative to the 

background chromaticity (xbg, ybg) and fitted ellipse centre (xo, yo).  

 

 
Figure 1 

The four threshold coordinates Rt, Gt, Yt and Bt calculated from the fitted ellipse in CIE 

space, with respect to the ellipse orientation and fitted centre (xo, yo). The specified 

background coordinate is at (xbg, ybg). 

 

These four CIE threshold coordinates along with the CIE background coordinates (not fitted 

ellipse center co‐ordinates) were transformed into their corresponding CIE XYZ tristimulus 
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values (Hunt, 1998). These in turn, were then transformed into L‐, M‐ and S‐cone excitations 

using Equation 1.  

                                               (Equation 1) 

The multiplier Q is a 3×3 matrix that is calculated using the method outlined by Golz and 

MacLeod (2003). We use the Stockman and Sharpe (2000) cone fundamentals and the 

measured relative radiance distributions of the red, green and blue phosphor guns of the Sony 

monitor as inputs. This method was verified by calculating cone excitations from first 

principles. The computation was performed by individually integrating over the visible 

spectrum the product of the L‐, M‐ and S‐cone fundamentals and the corresponding spectral 

radiance distributions needed to generate the specified background and target chromaticities. 

This procedure yielded the excitation in each cone class produced by targets and backgrounds 

which were found to be within 0.5% of the corresponding values computed using the Golz 

and MacLeod (2003) matrix method.  

Results 

All mean CAD measured ellipses in CIE space were transformed into the [L‐M]‐ vs S‐

excitation space and are shown in Figure 2. This plot shows the [L‐M]‐ vs S‐cone excitations 

in the horizontal plane as a function of background luminance (cd m−2) in the vertical plane. 

A linear model of cone excitation is assumed and hence the L:M:S cone excitation ratio 

remains constant as the background luminance level varies. This means that the ratio of [L‐

M] to S will also stay constant. For a given background chromaticity the co‐ordinates of the 

background excitations in the [L‐M]‐ vs S‐cone excitation plane fall onto a straight line as a 

function of background luminance. This curve will always point in the direction of the origin 

(0, 0, 0). Hence a diagonal straight line can be plotted through the 3D excitation space that 

represents a constant chromaticity, but varying luminance. This is illustrated by the black 

solid line in Figure 2, connecting the CIE (x, y): 0.305, 0.323 background chromaticity at 

different luminance levels.  
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Figure 2 

Measured ellipse data (averaged over four subjects) and represented as [L‐M]‐ vs S‐cone 

excitations are plotted as a function of background luminance. The black dots represent the 

mean measured data; the green crosses represent the projection of these measured points 

onto the zero luminance plane for clarity. The fitted ellipses for each background are shown 

in red and the black solid line shows how points of constant chromaticity plot over the 

luminance range investigated in this study. For the case illustrated, the black line 

corresponds to CIE (x, y)‐ coordinates 0.305, 0.323. 

 

Variation in detection thresholds 

L‐ and M‐cones.  The L‐, M‐ and S‐cone excitations were calculated for each background 

(Lb, Mb and Sb, respectively), at each of the luminance levels, along with the corresponding 

L‐, M‐ and S‐cone threshold excitations (Lt, Mt and St, respectively) in the +[L‐M], − [L‐M], 

+S and −S cardinal directions. The corresponding changes in L‐ and M‐cone excitations 

required for threshold in the +L – M direction are illustrated in Figure 3. The x‐axis 

represents the excitations produced in the L‐ and M‐cones (Lb and Mb) by the different 

background chromaticities and luminance levels employed. The y‐axis plots the increments in 

L‐ and M‐cones needed to reach threshold (δL and δM, respectively, where δL = Lt– Lb 

and δM = Mt– Mb). The slight clustering of the data points along the curves corresponds 

to the different background luminance levels employed.  
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Figure 3 

The changes required in L‐ and M‐cone excitations for threshold in the +L‐M cardinal 

direction vs the L‐ and M‐excitations produced by the backgrounds. The data shown 

represent the range of luminance levels and background chromaticities investigated in the 

study. 

 

The data show a strong linear relationship between the L‐ and M‐cone excitations produced 

by the background and the corresponding excitation changes required for threshold for all 

chromatic backgrounds and luminance levels in the measured range (r2 = 0.94 and 0.90 

for the L‐cone and M‐cones, respectively).  

Equations 2 and 3 are based on Figure 3 and are used by the model to predict the amounts by 

which the stimulus L‐cone excitation must increase (Equation 2) and the corresponding M‐

cone excitation must decrease (Equation 3) to reach threshold in the +L‐M direction, based 

only on the background excitations.  

                                   (Equation 2) 

                               (Equation 3) 

Similar sets of curves were produced for the –L+M direction using the same method. From 

these plots, Equations 4 and 5 were determined. These equations predict the positive/negative 

L‐ and M‐cone increments needed to reach threshold when S‐cone changes are absent or 

negligible.  

                                (Equation 4) 

                                 (Equation 5) 

Equations 2, 3, 4 and 5 illustrate that the L‐ and M‐cone excitation changes required for 

threshold are equal and opposite in the +L‐M and –L+M directions.  
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S‐Cones 

The change in the excitation of S‐cones needed to reach threshold in the +S direction follows 

a similar linear relationship (r2 = 0.96) as the L‐ and M‐cones do for the + and –[L‐M] 

directions, provided the relative S‐cone excitation produced by the background is above ∼9 

units, see Figure 4 and Equation 6. Below this value, the relationship between the S‐cone 

excitation produced by the background, and the change in S‐cone excitation (δS) required for 

threshold, can be described by the power curve (Equation 7) (r2 = 0.87). The background 

luminance levels that produced these low excitations ranged from 0.3 to 24 cd.m−2 (i.e., 

some chromaticities displayed at low luminance levels can produce similar excitations in a 

particular cone class to different chromaticities displayed at high luminance levels). The two 

equations needed to predict the measured threshold excitation increments in S‐cones as a 

function of background excitation are given below:  

                             (Equation 6) 

                              (Equation 7) 

 

 

 
 

Figure 4 
Change in S‐cone excitation required to reach threshold in the +S direction vs the S‐cone 

excitations produced by the backgrounds. The +S direction represents the mean orientation 

of the major axis of the threshold detection ellipse measured for each of the four subjects 

investigated in this study. The curve obeys a linear relationship (see Equation 6) for relative 

S‐cone excitations above ∼9 units and a power law relationship with a coefficient of 0.56 

(see Equation 7) for cone excitations below this value. Note that the corresponding changes 

in L‐ and M‐cones are approximately zero when thresholds are measured in the +S direction. 
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Figure 4 plots the measured S‐cone increments at threshold as well as the predictions based 

on Equations 6 and 7. The corresponding changes in L‐ and M‐cones in the blue direction 

have also been calculated and found to be negligible (see Figure 4). A similar method was 

used to produce equations that predict the S‐cone excitation change required in the –S 

direction.  

Reconstruction of ellipses 

The orientation of the measured fitted ellipses in the [L‐M]‐ vs S‐cone excitation space, 

relative to the +[L‐M] axis, is 90° ± 1.1° (mean ± S.D.). In view of this small 

variation, the assumption was made that all ellipses in the excitation space are aligned with 

their semi‐major axes parallel to the S‐cone excitation axis, consistent with Boynton et al. 

(1986) and Le Grand (1949). We calculated the change in cone excitation required for 

thresholds for each colour direction. Based on these thresholds and the 90° orientation, ellipse 

parameters were calculated.  

When using Equations 2 and 3 to predict the total [L‐M] excitation change in the +L‐M 

direction, the mean error between measured data and predicted threshold excitations was 

8.9% ± 6.2% (mean ± S.D.). The corresponding error in the –L+M direction was 

found to be 8.5% ± 7.1% (mean ± S.D.).  

As the CIE 1931 diagram is popular and used in many industries (Shevell, 2003; Valberg, 

2005) the ellipses were transformed back into CIE space using the inverse of Equation 1. The 

mean measured ellipse data (black dots) in CIE (x, y) space are shown for a range of 

background luminance levels: 1 (Figure 5); 3 (Figure 6); 8 (Figure 7) and 24 (Figure 8) 

cd.m−2, respectively. The predictions of the model are shown as red contours.  

 
Figure 5 

Model predictions of detection thresholds (shown in red) together with the measured 

thresholds (black dots) in the CIE 1931 space for a background luminance level of 1 cd 

m−2. 
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Figure 6 

Model predictions of detection thresholds (shown in red) together with the measured 

thresholds (black dots) in the CIE 1931 space for a background luminance level of 3 cd 

m−2. 

 
Figure 7 

Model predictions of detection thresholds (shown in red) together with the measured 

thresholds (black dots) in the CIE 1931 space for a background luminance level of 8 cd 

m−2. 
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Figure 8 

Model predictions of detection thresholds (shown in red) together with the measured 

thresholds (black dots) in the CIE 1931 space for a background luminance level of 24 cd 

m−2. 

The predicted cone excitations required for threshold were compared to the corresponding 

excitations computed for the measured data to assess the differences between the measured 

and predicted thresholds. The results reveal the smallest differences for the +L‐M direction 

and the largest differences for the +S direction (as outlined in Table 1).  

 

Table 1.  Mean and maximum (model predictions) cone excitation errors for each cone class 

in the +L‐M and −S colour directions 

Direction Cone type Mean ± S.D. (%) Maximum error (%) 

+L‐M L 0.49 ± 1.13 5.36 

+L‐M M 1.27 ± 2.80 13.13 

+L‐M S 1.93 ± 1.67 6.94 

−S L 0.67 ± 1.32 6.46 

−S M 0.74 ± 1.46 7.34 

−S S 4.51 ± 2.55 9.57 

 

The maximum errors occur when predicting the threshold excitations for the lowest 

background luminance level (0.3 cd.m−2). These errors combine when ellipses are predicted 

in CIE space. Figure 9 shows the percentage differences between predicted and fitted ellipse 

parameters in CIE space as a function of background luminance. At luminance levels above 3 

cd.m−2 there is no significant change in the accuracy of the predicted ellipse parameters. The 

mean errors for the predicted semi‐major axes, semi‐minor and orientation above 3 cd.m−2 

are ∼ 6.8%, 5.6% and 5.7%, respectively. Below 3 cd.m−2 the errors are larger, particularly 

for the semi‐major axis of the ellipse, which also shows increased inter‐subject variability in 

measured thresholds.  
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Figure 9 

Mean errors for each set of predicted ellipse parameters (when grouped by background 

luminance level). Each error reflects the difference between the measured and the 

corresponding prediction for that parameter based on the mean fitted ellipse. The large 

errors are restricted to the semi‐major axis and reflect the larger inter‐subject variability in 

S‐cone excitation at threshold. 

 

Comparison with Macadam’s ellipses 

MacAdam (1942) performed an experiment in which observers made a series of colour 

matches. A fixed reference colour was presented and the observers’ task was to adjust a 

second colour next to it in a 2° comparison field until it matched the reference colour. Using 

the same reference colour the observers made repeated colour matches along different 

directions in colour space and the standard deviations of the matches for a number of colour 

directions were calculated. It was discovered that plotting the standard deviations with 

respect to the reference colour on the CIE 1931 chromaticity diagram produced an ellipse. In 

total, 25 reference colours were used and hence 25 ellipses were produced. The reference and 

test fields were presented at a luminance of approximately 48 cd.m−2: over the course of the 

experiment we have to assume that some chromatic adaptation to the stimulus occurred. 

Performing the same analysis on MacAdam’s data we find similar relationships between the 

excitations produced by the reference field, and the change in cone excitations required to 

produce the standard deviations MacAdam measured in many directions. There is a 

significant difference in size between MacAdam’s ellipses and the ellipses measured using 

the CAD test. This is largely due to the use of standard deviations estimated from repeated 

matches to quantify threshold changes in MacAdam’s method, whereas the CAD test 

measures colour detection thresholds using a four‐alternative, forced‐choice procedure based 

on a two‐down, one‐up staircase method (Levine, 2000). If the MacAdam’s ellipses are all 

scaled by ∼4.5 along their semi‐major and minor axis, the set of ellipses become comparable 

to those predicted by the model, although this is out of the luminance range of the model 

based on the luminance levels tests. Le Grand (1949) also analysed MacAdam’s data for only 

one isoluminant plane investigated using two sets of cone fundamentals (König and Fick) to 

determine the corresponding cone excitations. Our results are largely consistent with Le 
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Grand’s findings. Their analysis reveals similar changes in threshold S‐cone excitation with 

S‐cone background signal as demonstrated in our study. Le Grand also showed (using both 

sets of fundamentals) that the orientations of the ellipse’s semi‐major axes align themselves 

with the S‐cone excitations axis (referred to as the ‘B’ axis).  

Conclusion 

We have shown that even when the differences in chromatic adaptation are large, a strong 

linear relationship exists between the background L‐, M‐ and S‐cone excitations, and the 

corresponding increments required for threshold in each colour direction. Based on the 

findings from this study, this relationship exists over at least ∼2 log units for the L‐ and M‐

cones and slightly less for S‐cones, but a correction can be applied at low light levels to 

extend the predictive range for S‐cones. Using these derived relationships it is possible to 

predict the cone excitations required for threshold detection of colour signals along the +L‐M, 

‐L+M, +S and –S cardinal directions, at least within the chromaticity range and luminance 

levels associated with typical display applications. These excitations can be used to predict 

the discrimination ellipse parameters in CIE space with small errors of ∼6% over most of the 

range. Predictions of yellow and blue thresholds are less accurate below 3 cd.m−2, but these 

thresholds also show larger inter‐subject variability when measured experimentally.  

At a high background luminance level, the L‐cone excitations of the stimulus in the red and 

green colour directions need only increase/decrease by ∼0.4%; at the lower luminance levels 

the increase needed can be as large as ∼1.4%. The M‐cone stimulus excitation also only 

requires a small change for threshold in the +L‐M and –L+M directions. A change of only 

∼0.65% is required at the highest light level; at the lowest light levels this change can be as 

large as ∼2.3%. The S‐cone excitation at threshold requires much larger changes (i.e., an 

increase/decrease of ∼6%) relative to the signals generated in S‐cones by the background for 

either the yellow or the blue colour directions. This change can be as large as ∼25% for 

background luminance levels below 3 cd.m−2.  

The findings from this study suggest that the required changes in L‐ and M‐cone excitations 

at threshold are small. The need for only small changes to reach threshold may account for 

the linear relationships observed in Figures 3 and 4, as well as the other cardinal directions. 

The same is true for the S‐cones at background luminance levels above 3 cd.m−2 for each 

condition of chromatic adaptation, even though S‐cones require a slightly larger change in 

excitation to reach threshold. For the lower background luminance levels investigated (<3 

cd.m−2) the linear relationship derived for the S‐cones (Equation 6) is no longer appropriate. 

S‐cone excitations can still be predicted for the lower background excitation levels by 

applying Equation 7.  

The data show that provided the background cone excitation in a particular cone class 

remains unaltered, changes in chromatic adaptation are equivalent to changes in luminance. 

The following example taken from the measured data helps to clarify this finding. The L‐, M‐ 

and S‐cone excitations produced by the background CIE (x, y): 0.305, 0.323 at a luminance 

of 24 cd.m−2 are 15.976, 9.225, and 28.221, respectively. The L‐, M‐ and S‐cone excitations 

produced by the background CIE (x, y): 0.215, 0.175 at the lower luminance of 8 cd.m−2 are 

5.308, 3.515 and 28.976, respectively. Due to this particular difference in chromaticity and 

luminance there is a large difference in the L‐ and M‐cone excitations that the two 

backgrounds produce (33.2% and 38.1% respectively). These two conditions of chromatic 
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adaptation produce almost identical S‐cone excitations of 28.221 and 28.976 (a difference of 

only 2.6%). The S‐cone excitation required for threshold in the +S direction for the first 

background is 30.169, and 31.015 for the second background (a difference of only 1.2%). 

There are also small differences in the S‐cone excitation required for threshold in the +L‐M, 

−L+M and −S directions between the two states of 1.0%, 1.2% and 0.1%, respectively.  

These observations suggest that when threshold detection of coloured signals is involved, the 

state of chromatic adaptation only affects the measured thresholds through changes in 

absolute cone excitation levels. No significant interaction of signals generated in different 

cone classes is therefore involved. The results suggest that cone signal changes needed for 

threshold detection are always the same for a given background cone excitation level (in any 

cone class), independent of the excitation generated in the other cone classes.  
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