

A Methodology for Developing Scientific Software

Applications in Science Gateways: Towards the Easy

Accessibility and Availability of Scientific

Applications

A thesis submitted for the degree of Doctor of Philosophy (Ph.D.)

By

Adedeji Oyekanmi Fabiyi

 Department of Computer Science

 November 2017

Abstract

ii

Adedeji Oyekanmi Fabiyi

Abstract

Distributed Computing Infrastructures (DCIs) have emerged as a viable and affordable

solution to the computing needs of communities of practice that may require the need to

improve system performance or enhance the availability of their scientific applications.

According to the literature, the ease of access and several other issues which relate to the

interoperability among different resources are the biggest challenges surrounding the use of

these infrastructures.

The traditional method of using a Command Line Interface (CLI) to access these resources is

difficult and can make the learning curve quite steep. This approach can result in the low

uptake of DCIs as it prevents potential users of the infrastructures from adopting the

technology. Science Gateways have emerged as a viable option that are used to realise the

high-level scientific domain-specific user interfaces that hide all the details of the underlying

infrastructures and expose only the science-specific aspects of the scientific applications to be

executed in the various DCIs. A Science Gateway is a digital interface to advanced

technologies which is used to provide adequate support for science and engineering research

and education. The focus of this study therefore is to propose and implement a Methodology

for dEveloping Scientific Software Applications in science GatEways (MESSAGE). This will

be achieved by testing an approach which is considered to be appropriate for developing

applications in Science Gateways.

In the course of this study, several Science Gateway functionalities obtained from the review

of literature which may be utilised to provide services for different communities of practice

are highlighted. To implement the identified functionalities, this study utilises the

methodology for developing scientific software applications in Science Gateways. In order to

achieve this purpose, this research therefore adopts the Catania Science Gateway Framework

(CSGF) and the Future Gateway approach to implement the methods and ideas described in

the proposed methodology, as well the essential services of Science Gateways discussed

throughout the thesis. In addition, three different set of scientific software applications are

utilised for the implementation of the proposed methodology. While the first application

primarily serves as the case study for implementing the methodology discussed in this thesis,

a second application is used to evaluate the entire process. Furthermore, several other real-life

Abstract

iii

Adedeji Oyekanmi Fabiyi

scientific applications developed (using two distinctly different Science Gateway

frameworks) are also utilised for the purpose of evaluation. Subsequently, a revised

MESSAGE methodology for developing scientific software applications in Science Gateways

is discussed in the latter Chapter of this thesis.

Following from the implementation of both scientific software applications which sees the

use of portlets to execute single experiments, a study was also conducted to investigate ways

in which Science Gateways may be utilised for the execution of multiple experiments in a

distributed environment. Finally, similar to making different scientific software applications

accessible and available (worldwide) to the communities that need them, the processes

involved in making their associated research outputs (such as data, software and results)

easily accessible and readily available are also discussed.

The main contribution of this thesis is the MESSAGE methodology for developing scientific

software applications in Science Gateways. Other contributions which are also made in

different aspects of this research include a framework of the essential services required in

generic Science Gateways and an approach to developing and executing multiple experiments

(via Science Gateway interfaces) within a distributed environment. To a lesser extent, this

study also utilises the Open Access Document Repository (OADR) (and other related

technologies) to demonstrate accessibility and availability of research outputs associated with

specific scientific software applications, thereby introducing the concept (and thus laying the

foundation) of an Open Science research.

Acknowledgements

iv

Adedeji Oyekanmi Fabiyi

Acknowledgements

First and foremost, I would like to thank God almighty for His sustenance and guidance

throughout the course of this work, and for the grace to complete this programme.

My heartfelt thanks and appreciation go to my supervisor, Prof. Simon Taylor, for his

attention, guidance, support and motivation from the beginning of this work. I count myself

fortunate to be one of his students and to work under his supervision. Many thanks to him for

always being there whenever his attention was needed. I would also like to show my

appreciation to my second supervisor, Dr. David Bell, for his precious advice.

My deepest gratitude goes to my parents, Hon. Justice John Afolabi Fabiyi (Rtd) and Mrs

Helen Taiwo Fabiyi, for the love, prayers, moral and financial supports. Without it, I would

not have been able to achieve this dream. Also, I would like to thank my adorable wife,

Princess Toluwalase Hannah Fabiyi, for her moral support, love and patience. Thank you

ever so much for making this journey an even more beautiful experience.

I would also like to acknowledge my gratitude to my friends, colleagues and staff in the

department of Computer Science at Brunel University. Special thanks go to Dr. Anastasia

Anagnostou and Dr. Nouman Chaudhry for their support and advice at various times in the

course of this work.

Last but not least, I would like to thank the Science Gateway development team at Catania

University, Italy, for the support they provided in granting access to the computing resources

utilised throughout the course of this work. Many thanks go to Prof. Roberto Barbera, Dr.

Bruce Becker and Dr. Mario Torrisi (in particular) for all the technical support that was

provided while deploying the portlets on the Science Gateway.

Thank you all…

Declaration

v

Adedeji Oyekanmi Fabiyi

Declaration

I hereby declare that the research presented in this thesis is my own work except where

otherwise stated, and has not been submitted for any other degree.

 Adedeji Oyekanmi Fabiyi

Declaration

vi

Adedeji Oyekanmi Fabiyi

Part of this thesis has been disseminated as below:

Fabiyi, A.O., Taylor, S.J., Anagnostou, A., Torrisi, M. and Barbera, R., 2016, September.

Investigating a Science Gateway for an Agent-Based Simulation Application Using REPAST.

In Distributed Simulation and Real Time Applications (DS-RT), 2016 IEEE/ACM 20th

International Symposium on (pp. 29-36). IEEE.

Taylor, S.J., Fabiyi, A., Anagnostou, A., Barbera, R., Torrisi, M., Ricceri, R. and Becker, B.,

2016, September. Demonstrating open science for modeling & simulation research. In

Distributed Simulation and Real Time Applications (DS-RT), 2016 IEEE/ACM 20th

International Symposium on (pp. 191-192). IEEE.

Taylor, S.J., Anagnostou, A., Fabiyi, A., Currie, C., Monks, T., Barbera, R. and Becker, B.,

2017, December. Open science: Approaches and benefits for modeling & simulation. In

Simulation Conference (WSC), 2017 Winter (pp. 535-549). IEEE.

Abbreviations

vii

Adedeji Oyekanmi Fabiyi

Abbreviations

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

ASC Astrophysics Scientific Collaboration

ASM Application Specific Module

BES Basic Execution Service

CAS Central Authentication Service

CLI Command Line Interface

COA Component Oriented Architecture

CoG Commodity Grid Toolkits

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CSGF Catania Science Gateway Framework

DCI Distributed Computing Infrastructure

DECIDE Diagnostic Enhancement of Confidence by an International Distributed

Environment

DEISA Distributed European Infrastructure for Supercomputer Applications

DOI Digital Object Identifiers

DSR Design Science Research

EGEE Enabling Grids for E-science in Europe

EGI European Grid Infrastructure

EJB Enterprise JavaBeans

Abbreviations

viii

Adedeji Oyekanmi Fabiyi

EU European Union

GCE Grid Computing Environments

GENIUS Grid Enabled web eNvironment for site Independent User Job

Submission

GISELA Grid Initiatives for e-Science virtual communities in Europe and Latin

America

GrIDP Grid Identity Pool

GPDK Grid Portal Development Toolkit

GRB Grid Resource Broker

GSI Grid Security Infrastructure

GSP Grid Service Provider

GUI Graphical User Interface

gUSE grid and cloud User Support Environment

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IaaS Infrastructure-as-a-Service

ICT Information and Communication Technologies

IdF Identity Federations

IdP Identity Providers

IM Infection Model

JDK Java Development Kit

JRE Java Runtime Environment

JSDL Job Service Description Language

Abbreviations

ix

Adedeji Oyekanmi Fabiyi

JSP Java Server Pages

JSR Java Specification Requests

LDAP Lightweight Directory Access Protocol

LEAD Linked Environments for Atmospheric Discovery

MDS Monitoring and Discovery System

MESSAGE Methodology for dEveloping Scientific Software Applications in

science GatEways

MPI Message Passing Interface

MVC Model View Controller

NIST National Institute of Standards and Technology

NWS Network and Weather Service

OADR Open Access Document Repository

OGCE Open Grid Computing Environment

OGF Open Grid Forum

OKF Open Knowledge Foundation

ORCID Open Researcher and Contributor ID

ORM Object Relational Mapping

PaaS Platform-as-a-Service

PDA Personal Digital Assistant

PRACE Partnership for Advanced Computing in Europe

PS Parameter Study

RAD Rapid Application Development

RAM Random Access Memory

Abbreviations

x

Adedeji Oyekanmi Fabiyi

REPAST Recursive Porous Agent Simulation Toolkit

RR Researcher Registries

SaaS Software-as-a-Service

SAGA Simple API for Grid Applications

SAML Security Assertion Markup Language

SDLC Software Development Life Cycle

SG Science Gateway

SOA Service Oriented Architecture

SSH Secure Shell

SSO Single Sign-On

SWMS Scientific Workflow Management System

UNICORE Uniform Interface to Computing Resources

USB Universal Serial Bus

VAS Virtual Application Service

VDS Virtual Data Systems

VM Virtual Machine

VO Virtual Organisation

VOMS Virtual Organisation Membership Service

VPN Virtual Private Network

WAN Wide Area Network

WEKA Waikato Environment for Knowledge Analysis

WRF Weather Research and Forecast

Abbreviations

xi

Adedeji Oyekanmi Fabiyi

WSDL Web Services Description Language

WS-PGRADE Web Service Parallel Grid Runtime and Developer Environment

XSEDE Extreme Science and Engineering Discovery Environment

Table of Contents

xii

Adedeji Oyekanmi Fabiyi

Table of Contents

Contents

Abstract ... ii

Acknowledgements .. iv

Declaration .. v

Abbreviations .. vii

Table of Contents .. xii

List of Tables .. xviii

List of Figures ... xix

Chapter 1: INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Context and Rationale ... 3

1.3 Research Motivation ... 6

1.4 Research Aim and Objectives ... 7

1.5 Audience and Scope .. 8

1.6 Research Methodology ... 9

1.7 Thesis Structure and Outline ... 10

1.8 Summary ... 12

Chapter 2: REVIEW OF LITERATURE .. 14

2.1 Overview ... 14

2.2 An Overview of Distributed Computing Infrastructures (DCI) .. 15

2.2.1 Grid Computing ... 17

2.2.2 Cloud Computing ... 22

2.2.3 Comparative study of Cloud and Grid Computing .. 28

2.2.4 Blockchain-Based DCI .. 29

2.3 Application Programming Interfaces (APIs) for Distributed Computing Infrastructures (DCIs)

 .. 29

Table of Contents

xiii

Adedeji Oyekanmi Fabiyi

2.3.1 Simple API for Grid Application (SAGA)... 29

2.3.2 RADICAL Cybertools ... 30

2.3.3 A Java Commodity Grid kit ... 30

2.3.4 DCI Bridge ... 31

2.4 Portal/Web Application Frameworks .. 31

2.4.1 GridSphere ... 31

2.4.2 Liferay .. 32

2.4.3 Spring Framework ... 32

2.4.4 Application Hosting Environment ... 33

2.4.5 GridSpace ... 33

2.5 Science Gateways ... 33

2.5.1 Science Gateway Frameworks ... 34

2.5.2 Application Specific Science Gateways (instances) .. 49

2.5.3 Early effort to develop Tools and Services that aid in enabling the Distributed Computing

Infrastructures ... 59

2.6 Workflow Management System .. 68

2.6.1 Types of workflow management system.. 69

2.7 Major Science Gateway Functionalities ... 73

2.8 Open Science Research ... 79

2.9 Summary ... 81

Chapter 3: RESEARCH METHODOLOGY .. 82

3.1 Overview ... 82

3.2 Research Approaches .. 82

3.2.1 Research Perspectives .. 83

3.2.2 Philosophical assumptions for the different research perspectives 84

3.3 Nature of the Research .. 86

3.4 Research Methodology ... 87

Table of Contents

xiv

Adedeji Oyekanmi Fabiyi

3.4.1 Design Science Research Methodology ... 88

3.4.2 Design Science Research Cycle ... 90

3.4.3 Rationale for choosing Design Science Research Methodology ... 93

3.5 Methodology for the different aspects of the Design Science Research 95

3.5.1 Awareness of Problem and Suggestion (Exploration) ... 95

3.5.2 Software Development (artefact design and development) ... 95

3.5.3 Evaluation and Conclusion (Reflective Evaluation) .. 97

3.6 Summary ... 97

Chapter 4: MESSAGE METHODOLOGY .. 98

4.1 Overview ... 98

4.2 Generic Framework for Science Gateway Services .. 98

4.2.1 Security Management .. 100

4.2.2 Job Management .. 102

4.2.3 Workflow Management ... 102

4.2.4 Data Management .. 103

4.3 Investigation of the different services of the Science Gateway .. 103

4.3.1 Security Management Service ... 103

4.3.2 Job Management Service ... 104

4.3.3 Workflow Management Service .. 104

4.3.4 Data Management Service ... 105

4.4 Proposed Methodology for Developing Scientific Software Applications in Science Gateways

 .. 105

4.5 Summary ... 110

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF

SINGLE EXPERIMENT .. 111

5.1 Overview ... 111

5.2 Case Study Overview – An Infection Model (1) .. 112

5.3 The Infection Model Portlet (For Single Experiments) .. 115

Table of Contents

xv

Adedeji Oyekanmi Fabiyi

5.4 Define Portlet Functionalities (2) .. 116

5.5 Requirements .. 117

5.5.1 Software Requirements (3.1) ... 117

5.5.2 Hardware Requirements (3.2) .. 119

5.5.3 Science Gateway Requirements (3.3) .. 120

5.6 Infection Model Portlet Design (6) ... 120

5.6.1 User Access .. 122

5.6.2 User Interface ... 123

5.7 Develop/Implement the Infection Model Portlet (7) ... 123

5.7.1 Agent-Based Simulation Portlet Mode .. 124

5.7.2 The Infection Model portlet Classes .. 125

5.8 Test the Portlet (9) .. 136

5.9 Case Study Overview – WEKA (J48) Classifier (1) ... 139

5.10 Define Portlet Functionalities (2) .. 141

5.11 Requirements .. 141

5.12 WEKA – J48 Portlet Design (6) ... 142

5.13 Develop/Implement the WEKA – J48 Portlet (7) ... 143

5.13.1 WEKA (J48) Classifier Portlet Modes ... 144

5.13.2 WEKA - J48 portlet Classes .. 145

5.13.3 Execution of the WEKA application to distributed infrastructure using the FutureGateway

API .. 147

5.14 Test the Portlet (9) .. 149

5.15 Case Study Overview (1) - A Visualisation Portlet for the Infection Model Simulation Output

Results ... 151

5.16 Define Portlet Functionalities (2) .. 151

5.17 Visualiser Portlet Design (6) ... 152

5.18 Develop/Implement the Portlet (7) ... 154

5.19 Test Portlet (9) .. 155

Table of Contents

xvi

Adedeji Oyekanmi Fabiyi

5.20 Summary ... 156

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF

MULTIPLE EXPERIMENTS .. 158

6.1 Overview ... 158

6.2 The Infection Model Portlet (For Multiple Experiments) ... 158

6.3 Portlet Functionalities ... 159

6.4 General Requirements ... 160

6.5 Infection Model (Parallel) Portlet Design ... 160

6.5.1 Job Collection .. 161

6.5.2 Parametric Job .. 161

6.5.3 Workflow N-1 .. 162

6.6 Develop/Implement the Portlet ... 166

6.6.1 The View Page ... 166

6.6.2 The InfectionModelParallelPortlet Class ... 167

6.7 Test the Portlet .. 168

6.8 Parallel Implementation of both the Infection Model Portlet and the Weka Portlet in the

Distributed Environment Layer .. 170

6.9 Summary ... 172

Chapter 7: PORTLET EVALUATION .. 174

7.1 Overview ... 174

7.2 Evaluation Process .. 175

7.3 The Design and Implementation of the Infection Model Portlet and WEKA - J48 Portlet (Re-

visited) .. 177

7.3.1 The design of the Infection Model Portlet and WEKA Portlet .. 178

7.3.2 The Implementation of the Infection Model Portlet and the WEKA Portlet 179

7.4 The Infection Model Portlet and the WEKA portlet in comparison with real life use-cases of the

Sci-GaiA project ... 181

7.5 The Infection Model Portlet and the WEKA Portlet in comparison to real life use-cases of the

CloudSME project .. 187

Table of Contents

xvii

Adedeji Oyekanmi Fabiyi

7.6 The Revised Methodology for Developing Scientific Applications in Science Gateways 190

7.7 Availability, easy access and/or retrieval of scientific research outputs in the context of an e-

Infrastructure: Demonstration of the Infection Model results (outputs) ... 193

7.8 Summary ... 197

Chapter 8: CONCLUDING DISCUSSION AND REMARKS .. 199

8.1 Overview ... 199

8.2 Research Summary ... 199

8.3 Research aim and objectives ... 202

8.4 Research Contributions ... 205

8.4.1 A Methodology for Developing Scientific Applications in Science Gateways 205

8.4.2 A Framework for the Major Science Gateway Services .. 206

8.4.3 Parallel Execution of jobs in Distributed Environments (The Science Gateway Approach)

 .. 207

8.4.4 A Foundation for Open Science Research ... 207

8.5 Research Limitations and Reflections ... 207

8.6 Future Work .. 208

References ... 210

Appendix A ... 225

Appendix B ... 238

Appendix C ... 290

Appendix D ... 295

Appendix E ... 298

Appendix F ... 301

Appendix G ... 303

List of Tables

xviii

Adedeji Oyekanmi Fabiyi

List of Tables

Table 2. 1 Grid Projects (Adapted from Baker, Buyya and Laforenza 2002).…………….……...…..18

Table 2. 2 List of Science Gateway Frameworks and their Functionalities.……...……………....…..48

Table 2. 3 Application Specific Science Gateways………...…………………………………………58

Table 2. 4 Scientific Workflow Management System Features and Components……………………72

Table 2. 5 Summary of the Attributes and Functionalities supported by the different DCI projects

discussed in the literature……………………………………………………………………………...74

Table 3. 1 Philosophical Assumption of Research Perspectives………………….…………………..85

Table 3. 2 Design Science Research Outputs…………………………………………………………89

Table 3. 3 Guidelines for Research Science Design…………………………………………………..91

Table 3. 4 The Correspondence between the Research Guidelines, DSR Cycle, DSR Outputs and the

identified Research Types……………………………….…………………………………………….93

Table 3. 5 Software Development Methodologies…………………………………………………….96

Table 5.1 Services Utilised by the Different Case Studies…………………………………………..139

Table 7. 1 Table Summary of the use-cases from both the Sci-GaiA project and the e-Infrastructures

for Africa project, and the corresponding e-Infrastructure resources that were utilised……………..183

List of Figures

xix

Adedeji Oyekanmi Fabiyi

List of Figures

Figure 2. 1 A Section of Distributed Systems and SG interface. Adapted (Foster et al., 2008)……...16

Figure 2. 2 Grid Computing Characteristics…………………………………………………………..19

Figure 2. 3 Grid Computing Layers. Adapted from (Foster et al., 2008)……………………………..20

Figure 2. 4 A view showing the Grid and Cloud elements with the Science Gateway Access

Layer………………………………………..……………………………………………...………….22

Figure 2. 5 Cloud Computing Characteristics…………………………………………………...……24

Figure 2. 6 Cloud Computing Service Models…………………………………………………..........25

Figure 2. 7 Cloud Computing Deployment Model……………………………………………………26

Figure 2. 8 Catania Science Gateway Framework Adapted from (Fabiyi et al., 2016)……………....36

Figure 2. 9 WS-PGRADE/gUSE architecture by (Balasko, Farkas and Kacsuk, 2013)……………...37

Figure 2. 10 Grid Project Timeline between 1988-2011 (Foster and Kesselman, 2010)…..…………63

Figure 3. 1 Stages in DSR methodology by (Vaishnavi, V. and Kuechler, W., 2015)………...……...92

Figure 4. 1 Generic Framework for Science Gateway Services……………………………………....99

Figure 4. 2 A Proposed Methodology for Developing Scientific Software Applications in Science

Gateways…………………………………………………………………………………..…………106

Figure 5. 1 Infection Model Use Case Diagram………...………………………………………...…121

Figure 5. 2 The Portlet Lifecycle…………………………………………………………………….130

Figure 5. 2 Infection Model Application Portlet Main Page……………………………………...… 136

Figure 5. 3 MyJobs portlet showing an ABMS job in RUNNING and DONE mode……………….138

Figure 5. 4 WEKA Use Case Diagram …………………………………………………………..….143

Figure 5. 5 WEKA (J48) Application Portlet Page……………………………………………….….149

Figure 5. 6 Myjobs portlet showing the output of the WEKA - J48 jobs in RUNNING and

COMPLETED modes………………………………………………………………………………..150

Figure 5. 7 Use Case Diagram for the Visualiser Portlet…………………………………………….153

Figure 5. 8 Visualiser Portlet Main Page………………………………………………………….....155

Figure 5. 9 Visualiser Portlet showing a Graphical View of the Infection Model Simulation Output

Result…...156

Figure 6. 1 Job Collection……………………………………………………………………………161

Figure 6. 2 Parametric Job…………………………………………………………………………...162

List of Figures

xx

Adedeji Oyekanmi Fabiyi

Figure 6. 3 Workflow N-1……………………………………………………………………………162

Figure 6. 4 Showing the JobCollection as a superclass of both WorkflowN1 and

JobParametric………………………………………………………………………………………...163

Figure 6. 5 JobCollection Java Class………………………………………………………………...164

Figure 6. 6 JobParametric Java Class………………………………………………………………...164

Figure 6. 7 WorkflowN1 Java Class…………………………………………………………………165

Figure 6. 8 Parallel Infection Model Application Portlet Page………………………………………169

Figure 6. 9 Parallel Infection Model Page showing 3 Simulation Runs……………………………..169

Figure 6. 10 MyJobs portlet showing different job statuses…………………………………………170

Figure 7. 1 The Revised Methodology for Developing Scientific Software Applications in Science

Gateways……………...…………….………………………………………………………………..191

Figure 7. 2 Open Access Repository showing the “Submit New Record” Page……..……………...194

Figure 7. 3 Information Describing the Submitted Research Output……………..…………………196

Figure A- 1 Spiral life-cycle (Boehm, 1988)………………………………...………………………226

Figure A- 2 Waterfall Model with Royce’s iterative feedback by (Ruparelia, 2010)……...………..227

Figure A- 3 List of Identity Federations……………………………………………………………..231

Figure A- 4 List of Identity Providers……………………………………………………………….232

Figure A- 5 Africa Grid Scince Gateway Login Page……………………………………………….233

Figure A- 6 Africa Grid Science Gateway Main Page………………………………………………234

Figure A- 7 Infection Model Portlet Landing Page………………………………………………….235

Figure A- 8 Open Science Repository Landing Page………………………………………………..236

Figure A- 9 Submit Research Documents using an Open Science Repository……………………...237

Figure D- 1 Infection Model Chain of Transmission………………………...……………………...295

Figure D- 2 Infection Model Chain of Infection 1…………………………...……………………...296

Figure D- 3 Infection Model Chain of Infection 2…………………………...……………………...296

Figure D- 4 Infection Model Chain of Disease Transmission…………….………….…...………...297

Figure D- 5 Infection Model Modes of Transmission………..……………...……………………...297

Figure E- 1 Interaction between Classes and Methods…….………………...……………………...298

Figure E- 2 Load a Portlet Page……………………...…….………………...……………………...299

Figure E- 3 Form Submission Action………………..…….………………...……………………...299

Figure E- 4 Infection Model Generic Portlet Class….…….………………...……………………...300

List of Figures

xxi

Adedeji Oyekanmi Fabiyi

Figure E- 5 Liferay MVC………………………………….………………...……………………...300

Figure F- 1 The FutureGateway API Server……………….………………...…...………………...301

Figure F- 2 The FutureGateway API Architecture.…….………..………...…..…………………...302

Figure F- 3 Portal Usage Scenario……………....…….………..………....…..………….………...302

Figure G- 1 Classifier Output…………………....…….………..………....…..………….………...303

Figure G- 2 WEKA – J48 Decision Tree..……....…….………..………....…..………….………...304

Chapter 1: INTRODUCTION

1

Adedeji Oyekanmi Fabiyi

Chapter 1: INTRODUCTION

1.1 Overview

The use of Distributed Computing Infrastructures (DCIs) can help to increase system

performance and enhance the availability of scientific software applications for different

communities of practice. Distributed Computing can be defined as a model in which

components located on networked computers communicate and coordinate their actions by

passing messages. This computing model ensures that scientists have infinite set of resources

to execute their scientific jobs more efficiently. However, using interfaces such as the

command line to access these infrastructures present a different set of challenges especially to

scientisits in different fields who are not necessarily Information and Communication

Technologies (ICT) expert users. Consequently, Science Gateways are now being used to

realise a high-level scientific domain-specific user interfaces which hide all the details of the

underlying infrastructures and exposes only the science-specific aspects of scientific

applications to be executed in the various DCIs. These Science Gateways are digital

interfaces to advanced technologies which are used to provide adequate support to science

and engineering research and education.

The research presented in this thesis is an investigation of the methods and approaches

that could benefit the development of scientific software applications in Science Gateways. In

particular, this thesis has emphasised on the development of methodologies for creating

scientific applications in Science Gateways which could ultimately be used (by different

communities of practice) for the execution of scientific jobs in a distributed environment.

These communities are network of peers with diverse skills and experience in an area of

practice or profession who may need to utilise these resources to achieve a common goal. In

addition, DCI resources (which are usually tightly coupled with associated Science

Gateways) are used to address the needs of researchers for digital services in terms of

networking, computing and data management. A variety of working methods based on the

shared use of ICT tools and resources across different domains are used for scientific

endeavours. The tools include high-speed research communication networks, powerful

computational resources (dedicated high performance computers, clusters, large numbers of

commodity PCs), grid and cloud technologies, data infrastructures (data sources, scientific

Chapter 1: INTRODUCTION

2

Adedeji Oyekanmi Fabiyi

literature), sensors, web based portals, scientific gateways and mobile devices. All the

aforementioned ICT tools are collectively known as e-Infrastructures.

Ultimately, the methodology presented in this thesis will therefore address the challenges

which developers may face in the process of developing scientific software applications in

Science Gateways for the different communities of practice. In light of the above, the focus

of this study is to understand and address the major issues, methods and processes involved in

the development of scientific software applications in the context of Science Gateways and e-

Infrastructures and thus establish a methodology which ultimately develops into a road map

for creating scientific applications in Science Gateways for scientific endeavours. The

proposed methodology is implemented and evaluated using a specific Science Gateway

framework and several real life scientific applications which are discussed much later in the

thesis.

In addition, this study also investigates and demonstrates an open science approach to

research by using the research outputs associated with specific scientific software application

(i.e an Infection Model simulation output results) used throughout this research. Therefore,

similar to making scientific software applications accessible and readily available, a

demonstration is presented to show how the associated research outputs can easily be

accessible to the communities that need them. This demonstration is performed by using the

Open Access Document Repository (OADR) and other enabling technologies such as Digital

Object identifiers (DOI), and the Open Researcher and Contributor ID (ORCID).

For an overview, this Chapter briefly describes the research context and rationale as well

as the research approach that is taken to conduct the study. This thesis investigates methods

and approaches for developing scientific software applications in Science Gateways and

examines alternative approaches to executing jobs in distributed environments, other than the

traditional method of the command line interface, etc. In view of this, this thesis introduces

the evolution of distributed systems from the early days of mainframe computing to the more

recent rise in the use of cloud computing. Furthermore, the research motivations, research

aim and objectives as well as the adopted research methodology which will be used to fulfil

the aim and meet the objectives are presented. This Chapter concludes with the structure of

the remainder of the document which discusses an overview of each Chapter in this thesis.

Chapter 1: INTRODUCTION

3

Adedeji Oyekanmi Fabiyi

1.2 Context and Rationale

There is a steady shift (with respect to the evolution of distributed computing) from

centralised/mainframe computing to cluster computing (in the 80’s/90’s) to grid computing

(in the 90’s and 00’s) and to the recent use of cloud computing. This evolution was made

possible due to the combined actions of the increased power of personal computers and the

growing influence of the internet. These efforts coupled with the reduction of the cost of

hardware/network allowed for such evolution. As a result, affordable computing resources

and powerful machines with large storage and memory capacity have become readily

available.

The evolution of these computing models therefore presents a new perspective for

many communities of practice who may need to collaborate with their peers or perform

experiments and obtain results promptly. For instance in Modelling and Simulation (M&S)

experiments, as models increase in size and complexity there could be need to increase

computational power as it may ultimately affect the execution time of an experiment. A

scientific domain of this nature could benefit immensely from performing operations and

executing scientific jobs in distributed environments (such as the cloud) as this will ensure

that not only will scientific jobs complete in a timely manner, but the scientific software

applications which are used to execute those jobs are easily accessible and readily available.

The easy accessibility and availability of these resources can therefore be fostered by using

high-level scientific domain-specific user interfaces which Science Gateways provide. In

light of the above, this research therefore proposes a systematic approach to developing

scientific software applications in Science Gateways for the execution of scientific jobs in

distributed environments. This systematic approach is a conceptual plan which is formulated

by analysing different use-case attributes, functionalities and requirements which were

identified from the review of literature.

For many decades, several application domains have made use of high-performance

computers to solve many scientific and technical problems and to execute complex

calculations (Limet, Smari and Spalazzi, 2015). Among them is the field of M&S

applications where scientific simulations generate complex codes where data size and

computation time (if not properly managed) could become a scientific barrier (Coullon and

Limet, 2015). Also, there has been a high increase in the use of High-Performance

Computing (HPC) in the field of life sciences and healthcare and more recently, HPC

Chapter 1: INTRODUCTION

4

Adedeji Oyekanmi Fabiyi

infrastructures are used in the mining of biomedical data with a special focus on the analysis

of genomics, interatomic data and the exploration of magnetic resonance images in

neurosciences (Cannataro, Guzzi and Sarica, 2013). Similarly, this research will also make

use of DCIs and HPC principles to execute an Infection Model (via a Science Gateway

interface) and the results obtained from the Infection Model will be analysed using WEKA’s

J48 classifier.

DCIs are used to provide services such as computational services, data services,

application services, information services and knowledge services, and it consists of features

that are used to provide potential users with a seamless computing environment (Baker,

Buyya and Laforenza, 2002). It is a process of federating the network, storage, and

computing resources across different institutions and making them available via well-defined

interfaces and protocols which are exposed by grid middlewares to various scientific

communities (Laure and Edlund, 2011). This approach therefore ensures that organisations

do not need to have their computing infrastructures situated at one location and can therefore

perform their computation on scalable and heterogeneous systems and across multiple

administrative domains. There are several general purpose Application Programming

Interfaces (API) for distributed resources which are used to provide levels of abstractions

over the different middleware implementations. Such APIs include Simple API for Grid

Application (SAGA) which is used to provide a level of abstraction over the various

middleware implementations by hiding resource access and complexities and enabling

interoperability between the different tools and applications (Merzky, Weidner and Jha,

2015). A similar tool to SAGA which can also be used to provide levels of abstraction over

the different middleware implementation is the Java Commodity Grid Kit (Java CoG Kit).

According to von Laszewski et al. (2001), the Commodity Grid projects is working to bridge

the gap between the different commodity distributed computing technologies and frameworks

by creating what is known as the Commodity Grid Toolkits (CoG Kits) which provide

mappings and interfaces between grid and specific commodity framework.

The use of distributed computing resources to perform experiments can help

(potentially) in allowing authorised scientists to access and execute scientific applications and

subsequently obtain results in a timely manner. However, the use of complex programming

languages can cause the deployment and use of these resources to be complicated and could

be a daunting experience in which users may have to cope with complex and sophisticated

Chapter 1: INTRODUCTION

5

Adedeji Oyekanmi Fabiyi

technologies such as job description languages, execution scripts, command line interface and

management of personal digital certificates. These requirements are quite cumbersome to

users (especially non-ICT expert users) and could make the learning curve to be very steep.

These access requirements may consequently prevent potential users from adopting the

technology.

To enable easy access and use of these resources (as well as improve the availability

of scientific software applications), the concept of Science Gateway has emerged as an

alternative solution. A Science Gateway is defined as a digital interface to advanced

technologies which is used to provide adequate support to science and engineering research

and education (Lawrence et al., 2015). They are used to provide access to community

resources including software, sensors, data, instrumentation and high-performance

computing. Science Gateways ensure that users do not have to worry about the complex

programming languages and other technical details which are earlier mentioned. As such all

the details are managed at a level where functions will take care of job execution and data

management activities (on different DCIs) thereby exempting users from the details of the

implementations of different middlewares.

The focus of this study therefore is to examine existing approaches for DCI access and to

propose a new approach for developing scientific applications in Science Gateways. There

are several portal frameworks in use which aid the rapid development of portlets in Science

Gateways. These frameworks include but not limited to Liferay, GridSphere, and Jetspeed.

The need to have these frameworks stem from the pervasiveness of many application specific

portals as well as the inability to reuse code in the presentation layer (Novotny, Russell and

Wehrens, 2004). Science Gateways are normally built on top of these portal frameworks in

order to aid in rapid portlet development.

Today, there are several Science Gateway frameworks in use that can efficiently help in

developing application specific Science Gateways for different scientific domain. A Science

Gateway framework is a platform which is used to offer a set of high-level grid and cloud

services in which interconnection between grids, clouds and scientific user communities is

achieved. They are usually equipped with Application Programming Interfaces (APIs), or set

of libraries to manage the use of the Science Gateways and the interaction with several

different kinds of DCI (Grid, Cloud, Clusters, HPC, etc). Based on the review of literature,

Chapter 1: INTRODUCTION

6

Adedeji Oyekanmi Fabiyi

some of the commonly used Science Gateway frameworks include WS-PGRADE/gUSE

Science Gateway framework, Catania Science Gateway Framework (CSGF), VineToolkit

Science Gateway framework and InSilicoLab framework. Several instances of these Science

Gateway frameworks have been implemented either as production or prototype gateway

instances for the different communities of practice and thus help in saving valuable resources

(such as development time and effort). These Science Gateway efforts are discussed in more

detail in Chapter 2.

Furthermore, to develop scientific software applications in Science Gateways several

aspects such as the functionalities and requirements of the scientific application needs to be

considered. A case in point is to consider ways in which scientific software applications are

developed in order to achieve some level of adequate performance gains. For instance, a

simulation experiment consisting of a substantial population of agents may be slow to

execute and the problem may be to find ways to keep execution time manageable. The use of

distributed systems can therefore help to enhance system performance. In addition, it will be

of immense benefit to investigate ways in which a Science Gateway may be used to execute

multiple experiments in a distributed environments. As a consequence, investigating the

different approaches to developing scientific software applications in Science Gateways and

executing them on DCIs (for single and multiple experiments) for different communities of

practice such as M&S is of great benefit.

1.3 Research Motivation

Even though much effort has gone in ensuring that communities of practice and scientific

domains can perform scientific experiments in an efficient manner and on a large scale or

resources (using DCI resources), accessing such environments may present a different set of

challenge most especially to scientists in different fields who are not necessarily ICT expert

users. Consequently, the ease of access and use of such environments therefore become really

important. However, the use of Science Gateways can help to improve accessibility of the

DCIs. This research is therefore motivated by the advances made in the area of distributed

computing resources and Science Gateways. Furthermore, several other distributed resources

can also come in play such as making provision for storing associated research data/outputs

as well as data obtained from the execution of scientific experiments for its easy find and

access. Using distributed environment in this way then becomes really paramount not only

for the ease of access and use of research software and applications but also for the

Chapter 1: INTRODUCTION

7

Adedeji Oyekanmi Fabiyi

accessibility and availability of other research elements such as research data and associated

data obtained from the execution of scientific applications.

1.4 Research Aim and Objectives

The aim of this research is to create a methodology for developing scientific software

applications in Science Gateways. To achieve this aim, the following research questions will

be addressed:

 (RQ1) What approach can be used to develop scientific software applications in

Science Gateways?

 (RQ2) What Science Gateway framework and SDLC approach are appropriate for

implementing the proposed methodology for developing scientific software

applications in Science Gateways?

 (RQ3) Is the developed methodology effective?

Furthermore, in order to achieve the aim and subsequently address the aforementioned

research questions, the following objectives will be met:

1. Conduct a literature review on the state of the art of Science Gateways, Web Portals,

Workflow Management Systems, DCI resources and other technologies that lend

themselves to the access and use of distributed systems.

2. Identify appropriate research methods for the entire research process as well as create

a methodology for developing scientific software applications in Science Gateways.

3. Implement the proposed methodology for developing scientific software applications

in Science Gateways in objective (2) using three different scientific software

applications. The first scientific application is the case study used to develop and

implement the ideas and methods described in the methodology, while the second

scientific application is used for its evaluation.

Chapter 1: INTRODUCTION

8

Adedeji Oyekanmi Fabiyi

4. Perform a thorough evaluation of both the proposed methodology in objective (2), and

the development and implementation of the scientific software applications in

objective (3), by comparing with the approach that was used in developing real life

use-cases of two Science Gateway projects.

5. Based on the evaluation in objectives (4), revise the methodology for developing

scientific software applications in Science Gateways which was proposed in objective

(2).

1.5 Audience and Scope

Science Gateways are typically used to realise the computing needs of different communities

of practice. As such, to realise a fully fuctional Science Gateway, several level of expertise

(for the creation, operation and usage of the Science Gateway) are required. The first

category of people that will benefit from reading this thesis are therefore the end-users (or

scientists) who may need to utilise the Science Gateway interface to execute their jobs and

thus require a basic understanding of the use of Science Gateways. The second category to

benefit are the Science Gateway developers. This category is further divided into Science

Gateway framework developers and Science Gateway instance developers. Both set of

developers will benefit immensly from the MESSAGE methodology presented in this thesis.

The final category to benefit are the Science Gateway operators who are tasked with the

deployment, configuration, running and maintenance of the Science Gateway services for

different user communities.

The focus of this study is to examine existing approaches for DCI access and to

propose a new approach for developing scientific applications in Science Gateways. Taking

into consideration the time available, attempt will be made to apply this new approach to

majority of the Science Gateway services identified in Chapter 2. The proposed methodology

is a generic framework which is applicable to different scientific applications and utilised

across different Science Gateway frameworks. However, due to time constraints, only one

Science Gateway framework is utilised. In addition, only two of the Science Gateway

services is implemented. Furthermore, the execution of jobs via the Science Gateway

interface is limited only in the use of one DCI (i.e the cloud). Lastly, this thesis is only

Chapter 1: INTRODUCTION

9

Adedeji Oyekanmi Fabiyi

beneficial to end-users, Science Gateway developers and Science Gateway operators as

earlier mentioned.

1.6 Research Methodology

In this section, a brief introduction to the research methodology that is adopted in this work is

explained and justified. According to Johnson (2006), if the final result of an experiment does

not support a hypothesis, it may be due to some flaws in the overall method being used. As

such, it is imperative that an appropriate research strategy is adopted. In addition, well-

formed and meaningful research questions will act as a guide to the entire research. The aim

of this research is to create a methodology for developing scientific software applications in

Science Gateways. To achieve this aim therefore, the Research Questions (RQs) mentioned in

Section 1.4 will be addressed.

According to Yin (2009), a case study is “an empirical inquiry that investigates a

contemporary phenomenon within its real-life context, especially where the boundaries

between the phenomenon and context are not clearly evident”. The case study methodology is

suited to different kinds of software engineering research as the object of study are often

contemporary and they help to provide deeper understanding of the phenomena under study

(Runeson and Höst, 2009). This type of research method follows four (4) distinct steps such

as Hypothesis generation, Method identification, Result compilation and Conclusion. While

the ideas to be tested by the research are explicitly identified at hypothesis generation stage,

the method identification stage clearly defines the methods that is used to establish the

hypothesis. Also, at the result compilation stage, the results of the experiment based on the

adopted method is presented. Lastly, conclusions (to support or reject the hypothesis) are

drawn based on the results. Consequently, the four major steps in this research includes:

1. Conduct a thorough literature review, identify gaps and form the hypothesis.

2. Propose a research methodology that will help to evaluate and establish the

hypothesis.

3. Formulate case studies that can be used to experimentally test/evaluate the

methodology.

4. Present results of evaluations and draw conclusion.

Chapter 1: INTRODUCTION

10

Adedeji Oyekanmi Fabiyi

The above approach is well suited to this study as it can help to progressively establish a

hypothesis of this nature (i.e. it is feasible to create a methodology for developing scientific

software applications in Science Gateways). Furthermore, the development of scientific

software applications in Science Gateways (such as an agent-based simulation application) is

the realisation of software-as-a-service for specific scientific domains. Therefore, the overall

process will also comprise of the development of a software artefact.

Design research is used to create such new software artefacts and according to

Vaishnavi and Kuechler (2009), the developed artefacts should upgrade on the existing

practices and deliver useful and efficient services. The different stages in the Design Science

Research (DSR) methodology include awareness of problem, suggestion, development,

evaluation and conclusion. This is also similar to the four major steps which are required in

DSR as discussed by Bilandzic and Venable (2011). These steps includes problem

identification, design, implementation, and evaluation. This research approach is associated

with human-made artefacts (in terms of construction and evaluation) in order to enhance

systems element (Myers, 1997).

The different stages of the Design Research also complement some of the steps

outlined by Johnson (2006) in the empirical research method. Therefore, a similar approach is

used in developing the Science Gateway artefacts. Consequently the DSR methodology

(which is discussed in great detail in Chapter 3) is adopted in this thesis.

1.7 Thesis Structure and Outline

This thesis is divided into seven Chapters as follows:

Chapter 1 presents the introduction to the thesis. It discussed the research context, research

motivation and rationale of the research. Furthermore, it identifies the aim and objectives of

the research and presents the research methodology that is adopted throughout the thesis to

fulfil those objectives and meet the aim. Finally, an overview of the entire thesis is presented.

Chapter 2 reviews the different technologies that lend themselves to the access and use of

distributed infrastructures such as Science Gateways, Web Portals and Workflow

Management Systems. It also surveyed the different DCI resources (such as cloud, grid and

clusters) and the back-end which provide access to these resources. Moreover, the various

Chapter 1: INTRODUCTION

11

Adedeji Oyekanmi Fabiyi

projects which have been undertaken in the aspect of Science Gateways and Scientific

Workflows are discussed. Furthermore, based on the different projects that were discussed,

several requirements and high level functionalities of the systems emerged. These high level

functionalities were therefore presented in Chapter 4 as the essential services of Science

Gateways.

Chapter 3 establishes the research methodology that is adopted in this study. It starts by

discussing the different research perspectives and assumptions and how they relate to the

study at hand. It also established the nature of the research by matching the research

questions with the research objectives which consequently resulted in three distinct research

types. A careful study reveals that a research methodology which is capable of incorporating

all three identified research types is the DSR. Furthermore, the approach that is used to

achieve the different research types is presented.

Chapter 4 identifies the essential services of generic Science Gateways and creates a

MESSAGE methodology for developing these services (for different scientific applications)

in Science Gateways. The review of literature presents the high level functionalities required

by different communities of practice. These high-level functionalities were referred to as the

essential Science Gateway services. This therefore provides a framework of Science Gateway

services which is discussed in detail and a methodology that may be used for developing

scientific software applications in Science Gateways (otherwise known as MESSAGE

methodology) is later presented.

Chapter 5 discusses the development/implementation of three different case studies (the

Infection Model portlet, WEKA - J48 portlet and the visualiser portlet) based on the

MESSAGE methodology that was proposed in Chapter 4. It presents the sequential version of

the scientific applications, i.e. portlets that could be used to execute single experiment in a

distributed environment. It starts by giving a general description of the use-cases, their

requirements, functionalities, core components and the adopted Science Gateway approach.

Lastly, it discusses the design and implementation of both applications by utilising relevant

aspects of a software development methodology such as the waterfall model.

In Chapter 6, the analysis and design of the parallel approach to job execution are discussed.

This Chapter presents the parallel versions of both portlets, i.e. portlets that could be used to

execute multiple experiments within a distributed environment. It introduces the different

Chapter 1: INTRODUCTION

12

Adedeji Oyekanmi Fabiyi

methods which the CSGF can use to execute jobs in parallel and discusses in great detail the

design and implementation of this portlet and how it may be used to execute multiple jobs in

distributed environments.

Chapter 7 presents the evaluation of the proposed MESSAGE methodology which

subsequently supports the aim of the thesis. Different approaches are utilised for the

assessment of both portlets. The first approach involves comparing the method used in

developing both the Infection Model portlet and the WEKA – J48 portlet. Secondly, the

method used for developing both portlets was compared with several scientific software

applications developed in two different Science Gateway projects (i.e. the Sci-GaiA project

and the CloudSME project). Consequently, a revised MESSAGE methodology for

developing scientific software applications in Science Gateways was proposed based on the

evaluation that was performed throughout the Chapter. Furthermore, it considers the

possibility that (more than the easy access to scientific software applications) communities of

practice may also require access to other research outputs which are generated as a result of

executing these scientific applications. This Chapter therefore concludes with the use of the

Infection Model simulation output results to demonstrate the access and retrieval of

simulation output results, using enabling technologies such as open access repositories, etc.,

and thus providing a basis for Open Science Research.

In Chapter 8, the summary and the conclusion of the thesis are discussed. A reflection is

made on how the different objectives have been met in order to achieve the research aim in

Chapter 1. More importantly, the contributions made throughout the research are highlighted.

Finally, this Chapter analyse the limitation of the research and presented the future work to be

undertaken.

1.8 Summary

This research is motivated by the advances made in the aspects of DCIs and Science

Gateways. Several scientific communities now make use of DCIs such as grids and clouds to

enable easy accessibility and availability of their scientific applications and to execute jobs in

more efficient ways. Science Gateways are used to provide user friendly interfaces that hide

all the details of the underlying infrastructure and exposes only the science-specific parts of

the applications to be executed in the various DCIs. This Chapter therefore discusses the

context and the rationale which has motivated this research. It also establishes the aim of this

Chapter 1: INTRODUCTION

13

Adedeji Oyekanmi Fabiyi

research which is to create a methodology for developing scientific software applications in

Science Gateways. To achieve this aim, it presents three research questions and five research

objectives. In addition, the research audience such as the end-users, Science Gateway

developers and Science Gateway operators as well as the scope of the research were

discussed. The research methodology that is adopted in order to achieve the objectives is also

briefly discussed. Lastly, it analyses the structure of the thesis with a brief description of each

Chapter.

Chapter 2: REVIEW OF LITERATURE

14

Adedeji Oyekanmi Fabiyi

Chapter 2: REVIEW OF LITERATURE

2.1 Overview

The aim of this research is to create a methodology for developing scientific software

applications in Science Gateways. This Chapter therefore provides the context of this aim

through a discussion of Science Gateways and its enabling technologies. It starts with the

commonly used distributed resources and their role in the support and execution of scientific

applications. Furthermore, it analyses the more generic Science Gateway frameworks and

how they are used to create application specific Science Gateways. In addition, it discusses

the different Scientific Workflow Management System (SWMS) in use and their role in the

execution of jobs in a distributed environment. This Chapter concludes with a summary of

the important features and functionalities that Science Gateways should possess as discussed

throughout the literature.

The increasing need to analyse huge amount of data, run large-scale simulations that

require large amount of Central Processing Unit (CPU) and the high demand for

computational power all points to a shift from a local or single system to a more

geographically dispersed set up. Consequently, Section 2.2 discusses an overview of the

distributed resources and places emphasis on the use of Grid and Cloud for the execution of

scientific jobs. Section 2.3 presents the application programming interfaces which provide the

necessary abstraction to the different middleware implementations and the underlying

infrastructures. To create Science Gateways for different user communities, a developer

either has to write the Science Gateway from scratch by making use of available portal

frameworks such as Liferay or customise an existing Science Gateway framework according

to the specific needs of each community. Consequently, Section 2.4 and Section 2.5 therefore

discuss some portal frameworks in use as well as the Science Gateway frameworks and

instances, respectively. Furthermore, Section 2.5 also reviews the early technologies and

projects (such as the Open Grid Collaboration Environment (OGCE) and Grid Portal

Development Toolkit (GPDK) which are used to provide access to distributed systems. More

than just simple job submissions and service calls some applications solving complex

problems such as scientific simulations require the creation and execution of scientific

workflows. Therefore, Section 2.6 briefly describes the common types of SWMS which

Chapter 2: REVIEW OF LITERATURE

15

Adedeji Oyekanmi Fabiyi

represents another technique being employed for the execution of scientific applications in

distributed environments. Section 2.7 captures the attributes and functionalities common to

all the technologies that help provide a transparent access to DCI resources as discussed

throughout this Chapter. Lastly, Section 2.8 introduces the concept of open research and the

major initiatives that support Open Science. A conclusion of the entire Chapter was done in

Section 2.9.

2.2 An Overview of Distributed Computing Infrastructures (DCI)

The need for more efficient approach to execute jobs and also to provide worldwide access to

scientific software applications suggest a move from centralised computing to a more

distributed environment. The management of the underlying physical resources of several

distributed systems is therefore really critical. Over the years, many computing models have

evolved to help with task execution and job management. The following section therefore

provides a summary of the commonly used computing models.

Advances in networking and distributed computing techniques have given rise to the

concept of Virtual Organisations (VO) where different organisations combine researches and

resources across traditional administrative and organisational domains (Laure and Edlund,

2011). This description is closely related to the concept of the Grid which was defined by

Foster, Kesselman and Tuecke (2001) as “the coordinated resource sharing and problem-

solving in dynamic multi-institutional virtual organisations.” Distributed environments are

inevitable as the world is nearly fully connected. Also, simple computing tasks on small data

sets where everything is local are a common place, however, as soon as more resources are

required, the principles of distributed computing become paramount. Furthermore, network,

storage and computing resources are made available across a big number of institutions to

different scientific communities via well-defined protocols and interfaces and are exposed by

software layers known as Grid middleware. The most popular and widely used Grid

middleware includes globus toolkit, gLite, and unicore. Other commonly used Grid

middleware also includes Legion and Condor.

Cloud computing (which is a more recent computing model) is usually provisioned

over the internet where services are delivered on demand to customers. It has several

deployment models (public, private, community, and hybrid) as well as service models

Chapter 2: REVIEW OF LITERATURE

16

Adedeji Oyekanmi Fabiyi

(software-as-a-service, platform-as-a-service, and infrastructure-as-a-service). These service

models are often overlaid above the hardware and network infrastructures and made available

to end users through a web interface or a language interfacing Application Programming

Interface (API).

Other equally important and widely used distributed computing infrastructures

include Cluster computing and Supercomputing. However, while Cluster computing and

Supercomputing are more focused on traditional non-service applications, Grid computing

(on the other hand) overlaps with other computing concepts (as shown in Figure 2.1) and is

considered of lesser scale than Super computers and the Cloud (Foster et al., 2008). The

Science Gateway layer in Figure 2.1 shows an alternative user friendly interface that can be

used to access all the different DCIs, which will be the main focus of this research.

Figure 2. 1 A Section of the Distributed Systems and the Science Gateway Interface Layer.

Adapted from (Foster et al., 2008)

Chapter 2: REVIEW OF LITERATURE

17

Adedeji Oyekanmi Fabiyi

2.2.1 Grid Computing

Grid computing is a flexible, secure and coordinated resource sharing among dynamic

collections of individuals, institutions and resources which are referred to as virtual

organisations (Foster, Kesselman and Tuecke, 2001). Baker, Buyya and Laforenza (2002)

discussed the state-of-the-art of grid computing, the different international efforts that have

been made and the technologies used in achieving this model. Grids are used to provide

services such as computational services, data services, application services, information

services and knowledge services. There are different aspects that characterise and idealise the

grid design features which are used to provide potential users with a seamless computing

environment. These include multiple administrative domains and autonomy, heterogeneity,

scalability and dynamicity/ adaptability. To realise a Grid, the integration of participating

software and hardware, the deployment of low-level and user-level middleware as well as the

development and optimisation of distributed application are considered to be key. In addition,

other components which are required for the formation of the Grid as discussed by the

authors include Grid fabric, core Grid middleware, user-level Grid middleware and Grid

applications and portals. Several Grid efforts that were developed (internationally) were

highlighted and thoroughly discussed by the authors. Some of these projects were also

highlighted in the work of Sadashiv and Kumar (2011). Among these projects are globus (a

type of Grid middleware that provides a set of API to the underlying services and resources),

legion (which provides users with a single and coherent virtual machine), Nimrod-G and

GRACE, GridSim, Gridbus, UNICORE, Information Power Grid and so on. Some of these

projects are therefore summarised in Table 2.1 below.

Chapter 2: REVIEW OF LITERATURE

18

Adedeji Oyekanmi Fabiyi

Table 2.1 Grid Projects (Adapted from Baker, Buyya and Laforenza 2002)

Chapter 2: REVIEW OF LITERATURE

19

Adedeji Oyekanmi Fabiyi

Grid Characteristics

According to (Bote-Lorenzo, Dimitriadis and Gómez-Sánchez, 2004) the origin of Grid

computing concept could be traced to the early 90's when efforts were first made to link

several supercomputing sites across the USA, by simply deploying gigabit testbeds. The term

“Grid” was coined in the mid-90's. It was derived from the notion of the electric power grid

to denote a proposed distributed computing infrastructure for advanced science and

engineering. This view of the Grid ensures that computing becomes pervasive and users can

therefore have access to computing resources such as storage, processor, data and

applications. More so, access is made with little or no knowledge of where resources are

located or what the underlying technologies, hardware and operating systems are.

Figure 2. 2 Grid Computing Characteristics

Grid computing is defined as an environment that provides the ability to share and

transparently access resources across a distributed and heterogeneous environment (Jacob et

al., 2005). The major problem that underlines the Grid concept is the coordinated resource

sharing (i.e. direct access to computers, software and data) and problem-solving in dynamic,

multi-institutional virtual organisations. Sharing in this way is highly controlled as resource

providers and consumers define very clearly all the terms associated with it. These terms

Chapter 2: REVIEW OF LITERATURE

20

Adedeji Oyekanmi Fabiyi

could include: what is shared, those allowed to share and the conditions under which sharing

may take place. A set of institutions defined by such sharing rules are collectively known as a

Virtual Organisation (VO). These VOs may differ tremendously in scope, purpose, structure

and size. Classical examples of VO include the application service providers and storage

service providers. In light of the above definition of Grid computing, (Bote-Lorenzo,

Dimitriadis and Gómez-Sánchez, 2004) and (Baker, Buyya and Laforenza, 2002) summarised

the Grid characteristics (as shown in Figure 2.2) as large scale, geographical distribution,

heterogeneity, resource sharing, multiple administrations, resource coordination and

(transparent/dependable/consistent/pervasive) access.

Grid Computing Layers

VO was earlier defined as same set of institutions which are collectively bound by the same

sharing rules. To support the creation of these VOs, a logical entity in which distributed

resources are discovered and shared as if they are from the same organisation must be

provisioned. In Grid computing, a set of standard protocols, middleware, toolkits and services

are defined. Grids enable protocols and services at different layers as shown in the Grid

protocol architecture in Figure 2.3.

Figure 2. 3 Grid Computing Layers. Adapted from (Foster et al., 2008)

Chapter 2: REVIEW OF LITERATURE

21

Adedeji Oyekanmi Fabiyi

The Fabric Layer is the interface to local control that enables the grid to facilitate and

provide access to different resources such as computational resources, storage resources,

network resources, catalogs and sensors. The fabric components are responsible for

implementing the local and resource-specific operations on specific resources which may

occur as a result of the sharing that happens at higher levels of operations.

The Connectivity Layer enables easy and secure communication and defines the core

communication and authentication protocols which are required for grid-specific network

transactions. Data exchange between Fabric layer resources is done via the communication

protocols and authentication protocols that are built on their services (i.e. communication

services) in order to provide cryptographically secured mechanisms for verifying the identity

of users and resources (Foster, Kesselman and Tuecke, 2001).

The Resource Layer enables the sharing of single resources, and it defines protocols for the

secure initiation, publication, discovery, negotiation, monitoring, accounting and control of

sharing operations on individual resources. This layer is built over the Connectivity layer and

is concerned primarily with individual resources only. The Resource Layer is categorised into

two main classes namely the Information protocols (used to obtain information about the

structure and state of a resource) and the Management protocols (used to negotiate access to

shared resources).

Collective Layer enables the coordination of multiple resources as opposed to the single

resource of the Resource Layer. It is built on top of the Resource Layer and the Connectivity

layer, and it captures interactions across collections of resources. It implements a wide variety

of Collective layer protocols and services (sharing behaviours) such as directory services,

collaboratory services, monitoring and diagnostic services, etc.

The Application Layer that comprises of user applications which were built on top of the

different protocols and APIs for the aforementioned layers. This Layer consists of the user

applications that operate within a VO environment. Applications are built based on the

services defined at each layer. Each layer may consist of well-defined protocols that enable

access to services such as resource discovery, resource management, data access, etc.

Chapter 2: REVIEW OF LITERATURE

22

Adedeji Oyekanmi Fabiyi

Figure 2.4 A view showing the Grid and Cloud elements with the Science Gateway Access

Layer

2.2.2 Cloud Computing

The Cloud computing paradigm has been compared to utility services such as gas and

electricity where such services are provided to the general public and made available

individually yet simultaneously. Cloud computing hints at a future where computing is done

not only on local computers but also on centralised facilities which are operated by third-

party compute and storage facilities. According to the National Institute of Standards and

Technology (NIST), Cloud computing is a model that is used to enable ubiquitous and on-

demand network access to a shared pool of computing resources such as networks, servers,

services, storage, and applications (Mell and Grance, 2011). They are usually provisioned and

released rapidly with minimal management effort.

Foster et al (2008) defined Cloud computing as a large-scale distributed computing

paradigm being driven by economies of scale whereby a host of “abstracted, virtualised,

dynamically-scalable, managed computing power, storage, platforms and services are

Chapter 2: REVIEW OF LITERATURE

23

Adedeji Oyekanmi Fabiyi

delivered on demand to customers over the internet”. Some key points have emerged from

these definitions which show Cloud computing to be different from the traditional computing

in that it is a specialised distributed computing paradigm that is massively scalable. In

addition, it can serve as an abstract entity which is used to deliver different levels of services

to customers. Lastly, its services are dynamically configured and delivered (on demand) and

it is driven by economies of scale. The term "Cloud computing" became popular in 2006 after

Eric Schmidt (the then CEO of Google) used it to describe the business model of providing

services over the internet.

Cloud computing is similar to the earlier computing paradigm such as Grid in that it is

used to increase reliability, reduce the cost of computing, and increase flexibility whereby

computers are transformed from something that is bought and operated locally to one that is

exploited by third parties. According to Zhang, Cheng and Boutaba (2010), Cloud computing

is not a new technology but a rather new operations model which combine a set of existing

technologies to execute business in a different manner. Cloud computing provides several

features such as Zero up-front investment, low operational cost, highly scalable, easy access,

and reducing business risks and maintenance expenses. According to the National Institute of

Standards and Technology (NIST), there are some essential characteristics that a Cloud

model should possess. Furthermore, Cloud computing enables different service models as

well as deployment models which are briefly explained in the following sections.

Cloud Computing Characteristics

There are five (5) essential characteristics of a Cloud model (NIST, 2011). These are on-

demand self-service, broad network access, resource pooling, rapid elasticity and measured

service as shown in Figure 2.5 and are briefly described in the following section:

Chapter 2: REVIEW OF LITERATURE

24

Adedeji Oyekanmi Fabiyi

Figure 2. 5 Cloud Computing Characteristics

On-demand self-service: A consumer can provision computing capabilities in a unilateral

manner. These could involve the automatic provisioning of server time and network storage

without the need for the user to interact with each service provider.

Broad network access: This refers to resources that are hosted in a private Cloud network

which are usually operated within a company’s firewall and are available for access from a

wide range of devices. Client platforms such as mobile phones, laptops, tablets and

workstations are utilised over the network. The Cloud computing features enable broad

network access using standardised interfaces that operate with the aforementioned client

devices.

Resource pooling ensures the use of the same physical resources to service multiple

customers by securely separating the resources at the logical level. As such, virtualisation

techniques are used to pool cloud resources based on user requests. In light of this, different

physical and virtual resources are dynamically assigned and reassigned according to

consumer demand.

Rapid elasticity enables the elastic provisioning and release of capabilities. The level of

resource allocation may depend on the current need and it facilitates the changes to each

allocation to be effected in an efficient manner.

Measured Service: This service ensures that cloud systems have an effective and automatic

control and management of operational activities. It leverages on a metering capability at

some level of abstraction that is suited to the type of service. Monitoring, reporting and

resource usage are done transparently based on utilisation therefore users are charged based

on the number of computing hours being used.

Chapter 2: REVIEW OF LITERATURE

25

Adedeji Oyekanmi Fabiyi

Cloud Computing Service Models

In addition to the aforementioned five essential characteristics of a Cloud model, there are

several service models which are used by Cloud communities to categorise Cloud services as

shown in Figure 2.6. Above the hardware and network infrastructure, there are several end-

user service models such as Infrastructure as a service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS). These services are available to end users via a web

interface or language-interfacing Application Programming Interface (API) (Buyya et al.,

2009)

Figure 2. 6 Cloud Computing Service Models

SaaS enables Cloud consumers to release applications which are usually accessed through

networks from various clients (e.g. PDA, web browser) in a hosting environment, therefore

users do not need to install and run software on their devices. The overall management of

computing activities such as applications, infrastructure and operating systems is the

responsibility of the cloud provider. Consequently, the cloud consumers do not have control

over the cloud infrastructure. Examples of Saas include Google Docs, SalesForce.com,

Chapter 2: REVIEW OF LITERATURE

26

Adedeji Oyekanmi Fabiyi

Google Mail, etc.

PaaS facilitates the development of cloud services and applications directly on the PaaS

cloud by cloud consumers. It therefore provides a development platform which hosts both

completed applications (similar to SaaS) as well as in-progress cloud applications. As a

result, this layer consists of tools and programming languages and APIs for building and

delivering web applications and services. This could entail the entire software lifecycle such

as design, development, testing, deployment, hosting and maintenance. Examples of PaaS

include Google AppEngine, Microsoft Azure, AppFog, etc.

IaaS provisions the processing, storage, networks and other fundamental computing

resources where users can deploy and execute arbitrary software. The aforementioned ICT

infrastructures which are provided in the IaaS cloud are directly utilised by cloud consumers.

In terms of flexibility, this model is more flexible than the PaaS and the SaaS as it gives

customers higher control. Even though the cloud consumer does not manage or control the

underlying cloud infrastructure, they can exercise control over the operating systems, storage,

application deployment, etc. An example of IaaS is the Amazon's EC2.

Cloud Computing Deployment Models

Cloud computing also has four deployment models, in addition to the essential characteristics

and the service models that were discussed above. These models are categorised on the basis

of the owner of the infrastructure, the management team and the location or the end user

(Mell and Grance, 2011). These four main models (as shown in Figure 2.7) and discussed by

the authors, as well as the NIST, are summarised below as follows:

Figure 2. 7 Cloud Computing Deployment Model

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjdmOqjlNnTAhWEbRQKHTVHDdcQjRwIBw&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2F308919598_fig2_Figure-2-Cloud-computing-deployment-models-6&psig=AFQjCNH6LXf4WQ0q1x4_yUWOYHoL6yPlqw&ust=1494087287502977

Chapter 2: REVIEW OF LITERATURE

27

Adedeji Oyekanmi Fabiyi

Private cloud is operated and managed solely by a single organisation or by a third party.

They are provisioned to be used exclusively by a single organisation. They are usually set up

to maximise and optimise the utilisation of existing in-house resources. Furthermore,

organisations that are more concerned with data privacy and trust often tend to adopt this

kind of deployment model. It may either exist on or off the premises.

Public cloud infrastructure is provisioned for open use by the general public. This is the most

common type of Cloud computing deployment model and the cloud service provider has the

full ownership of its policy and charging cost. Examples of public Cloud services include

AppEngine, EC2, and S3 and they exist on the premises of the Cloud provider.

Community cloud consists of several organisations which share the same Cloud

infrastructure. This could also include organisations that share the same policies,

requirements, concerns and values. It may be owned and operated by one or more

organisations in the community or by a third party ownership. It may also either exist on or

off the premises.

Hybrid cloud consists of a combination of two or more of the aforementioned Cloud

deployment models, above. They are bound together by standardised or proprietary

technology that enables data and application portability. To optimise resources and thus

increase core competencies, organisations make use of the hybrid Cloud model. In this way,

core activities are controlled on-premise by using private cloud, while the more peripheral

business functions are marginalised onto other Clouds.

The above sections have discussed the most prominent distributed computing

technologies that are used to execute scientific tasks. In particular, Cloud computing is the

technology that is used to perform the execution of all the scientific application tasks in this

research. Other variations of distributed systems include Cluster computing and HPC

systems. According to (Limet, Smari and Spalazzi, 2015), HPC systems were introduced to

solve computationally intensive, technical and scientific problems. In addition, several

application domains now make use of HPC systems to execute complex calculations that

require the analysis of huge amount of data in their terabyte and petabyte range. The

historical developments of this system can be traced to Moore’s Law which states that “the

number of transistors on a microprocessor chip would double every two years or so”.

Chapter 2: REVIEW OF LITERATURE

28

Adedeji Oyekanmi Fabiyi

2.2.3 Comparative study of Cloud and Grid Computing

In this section, a comparison of the two prominent distributed computing models (such as

Cloud and Grid computing) is discussed. This comparison is based on the challenges of each

computing model, the applications they use and some of the tools that are utilised for the

design and development of such applications.

(Sadashiv and Kumar, 2011) defined Cloud computing as the application that is

delivered over the internet in the form of services as well as the corresponding software and

hardware used in providing those services. The challenges which may be experienced in

Cloud computing include dynamic scalability, multi-tenancy, querying and access,

standardisation, reliability/fault-tolerance, debugging/profiling, security/privacy, and power.

Some of the initiative projects that have been developed in this model include CERN, unified

Cloud Interface, Tclouds, OpenNebula, etc. In addition, various tools and products such as

Zenoss, Spring Roo, CloudSim/CloudAnalyst and Cloudera are used to aid in the

development of applications in the Cloud.

The authors defined Grid computing as the combination of different computers (from

multiple administration domains) in order to achieve a common goal or solve a particular

problem. Dynamicity, administration, development, accounting, heterogeneity, and

programming are some of the challenges that were discussed which are common to Grid

computing. Some of the applications and projects within Grid computing include advanced

manufacturing, oil reservoir simulation, particle physics research, globus, EGI-InSPIRE,

NASA Information Power Grid, etc. Also, tools listed by the authors for the implementation

of Grid computing include paradyn, nimrod-G, condor-G, globus, gridbus, legion and gridsim.

In addition to the above, the authors also defined Cluster computing as a collection of

parallel or distributed computers that are connected together using high-speed networks. They

are used as an alternative to supercomputers due to their ability to grant relatively cheaper

access to huge computational power. The challenges facing cluster computing include the

type of middleware used, its program, elasticity and scalability. Also, several projects such as

the Weather Research and Forecast (WRF), hadoop, nuclear simulation, etc., are said to be

implemented on this computing model. Some of the tools which are used to implement

cluster computing include nimrod, PARMON, condor, MPI/OpenMP, etc.

Chapter 2: REVIEW OF LITERATURE

29

Adedeji Oyekanmi Fabiyi

2.2.4 Blockchain-Based DCI

In addition to the above DCIs, there are other recent developments such as the emergence of

blockchain-based DCls such as Ethereum. Ethereum is a decentralized virtual machine which

runs programs called smart contracts upon user request. Contracts are written in a Turing-

complete bytecode language, called Ethereum Virtual Machine (EVM) bytecode (Atzei,

Bartoletti and Cimoli, 2017). In EVM, apart from several global parameters, most states are

stored in accounts. EVM has a partial map from addresses (160-bit words) to account states.

An account state contains code, storage, nonce, balance and the code is a sequence of bytes.

The storage is a mapping from a machine word (an EVM machine word has 256 bits) to a

machine word. A deployed Ethereum smart contract is public under adversarial scrutiny, and

the code is not updatable. Users send transactions to the Ethereum network in order to

perform activities such as create new contracts, invoke functions of a contract and transfer

ether to contracts or to other users. All the transactions are recorded on a public, append-

only data structure, called blockchain. The sequence of transactions on the blockchain

determines the state of each contract, and the balance of each user. In EVM, apart from

several global parameters, most states are stored in accounts. EVM has a partial map from

addresses (160-bit words) to account states (Hirai, 2017).

2.3 Application Programming Interfaces (APIs) for Distributed Computing

Infrastructures (DCIs)

In the above section, the different distributed computing paradigms which are used for the

execution of scientific applications are discussed. The following section will present the

different Application Programming Interfaces (API) which are used to provide a level of

abstraction over the different middleware implementations and their associated distributed

resources.

2.3.1 Simple API for Grid Application (SAGA)

Simple API for Grid Application (SAGA) as described by Merzky, Weidner and Jha (2015)

is a general purpose API for distributed resources used to provide a level of abstractions over

the different middleware implementations by hiding resource access and complexities and

enabling interoperability between the different tools and applications. The motivation for

having SAGA stems from the heterogeneity of resources. Therefore, defining a simple and

uniform access layer can ultimately provide support for diverse application requirements and

Chapter 2: REVIEW OF LITERATURE

30

Adedeji Oyekanmi Fabiyi

usage scenarios over a shared set of resources. The design objectives of SAGA include

managing system heterogeneity, support for common pattern usage and ease of use of the

available resources. The scope of SAGA includes job and data management, resource

information queries and communication abstractions. Several implementations of SAGA

exist in programming languages such as Java, C++ and Python.

2.3.2 RADICAL Cybertools

RADICAL Cybertools are a set of integrated, abstraction-based suite of well defined

capabilities which are developed for scalable, interoperable and sustainable support of

science on a range of HPC systems. It is the design, development and use of abstraction-

driven and standards-based solutions to large-scale compute and data-intensive scientific

problems (Gesing, Nabrzyski and Jha, 2014). It consists of two components namely

RADICAL SAGA and RADICAL-Pilot. While RADICAL-SAGA is a lightweight interface

that provides standards-based interoperable capabilities to the most commonly used

functionalities required to develop distributed appliocations, tools and services, RADICAL-

Pilot (on the other-hand) is a scalable and flexible system that supports application-level

resource management (Merzky, Weidner and Jha 2015).

2.3.3 A Java Commodity Grid kit

Another tool that is used to provide a level of abstraction to the different middleware

implementation is the Java Commodity grid kit (Java CoG Kit). According to (von Laszewski

et al., 2001), the Commodity Grid projects is working to bridge the gap between the different

commodity distributed computing technologies and frameworks by creating what is known as

the Commodity Grid Toolkits (CoG Kits) which provides mappings and interfaces between

Grid and particular commodity framework. The authors believed that Grid technologies

(which provides advance network services and multi-institutional environment for

applications that requires the coordinated use of multiple resources) and commodity

distributed computing technologies (that enables the rapid creation of client-server

application) can combine for the benefit of advanced scientific software applications. The

authors focused primarily on the Java CoG Kit and the use of Java for Grid computing. The

Java CoG Kit has been categorised based on increased functionalities of each component

where subsequent category reuses the lower-level components to facilitate an iterative

development of future components. The different components which are classified based on

Chapter 2: REVIEW OF LITERATURE

31

Adedeji Oyekanmi Fabiyi

their roles include low-level GUI interface, low-level utility components, common low-level

GUI components and application specific GUI components. This has helped in defining rich

set of classes that aid the developers with access to grid services and a range of GUI

elements.

2.3.4 DCI Bridge

WS-PGRADE is primarily a workflow management system. To extend existing resources for

job submission for the benefit of communities that do not need a workflow management

system the DCI Bridge (which is a component of the WS-PGRADE/gUSE system) can be

used (Balasko, Farkas and Kacsuk, 2013). This can transparently help to provide a standard

interface for job submission to different middlewares. The DCI Bridge is deployed in the

SHIWA and SCI-BUS projects and can potentially connect with any gateway via another

service known as the Basic Execution Service (BES) interface to provide access to different

set of DCIs, such as Grid, Cloud and Clusters. The DCI Bridge eliminates the need to use

different submitters for each DCI configuration. The BES interface is used to submit and

manage end-user workflows. Normally, several DCIs implement different types of job

submission protocols and a generic Science Gateway framework should be able to handle all

the different kinds of protocols. WS-PGRADE/gUSE Science Gateway framework uses the

DCI Bridge for this purpose.

2.4 Portal/Web Application Frameworks

A portal framework ensures the rapid development of portlets by enabling a generic portlet

repository where a large set of ready-to-use portlets are found. However, they do not provide

backends that support DCI access but they help in builing Science Gateway instances from

scratch. The two commonly used portal frameworks such as Gridsphere and Liferay along

with other web-based content management services are briefly discussed in the following

section.

2.4.1 GridSphere

According to Novotny, Russell and Wehrens (2004), GridSphere portal framework was

developed to improve on the lessons learnt from past Grid portal projects such as the Grid

Portal Development Kit (GPDK) and the Astrophysics Scientific Collaboratory (ASC) portal.

The authors developed a portal framework that will provide a model to ease the addition of

Chapter 2: REVIEW OF LITERATURE

32

Adedeji Oyekanmi Fabiyi

new functionalities and increase collaboration within communities. They also developed an

instance of the GridSphere portal (also known as the GridLab portal) to provide access to the

available services within the GridLab project. The motivation to develop the GridSphere

portal framework stems from the inability to reuse code in the presentation layer and also due

to the pervasiveness of many application specific portals or stove pipe web applications that

made code re-usability extremely difficult. Its architecture takes two forms: The first is the

general portal framework for assisting virtual organisations (such as scientists and project

developers) and the other architecture aids in the development of reusable modular

components otherwise known as portlets. The GridSphere portlet API inherits much of their

functionalities and methods from servlets such as init(), service() and destroy() methods and

makes use of the standard portlet modes such as view, edit, configure and help. The

GridSphere portal framework provides three primary core services such as the LoginService,

the UserManagerService and the AccessControlManagerService and enables some default set

of core portlets such as Login, User management, Account management, Account request,

etc.

2.4.2 Liferay

Liferay is a popular open source framework that enables users to create attractive web portals

(Sarang, 2009). It provides a runtime environment for hosting java based portal applications,

otherwise known as portlets. The web portals which Liferay enables usually consist of a wide

range of applications such as blogs, wikis, discussion forums, shared calendar, etc. According

to (Ardizzone et al., 2012), Liferay portal framework which offers an easy-to-use “web 2.0”

interface using AJAX and other presentation layer technologies is an award winning portlet

container. It has features such as GUI-based personalisation, drag-and-drop portlets, dynamic

navigation and an instant-add portlet library.

2.4.3 Spring Framework

The Spring Framework provides a comprehensive programming and configuration model for

modern java-based enterprise applications and on any kind of deployment platform. It can

serve as the backbone for the business object layer, or middle tier, of a J2EE web application.

Spring provides a web application context concept, a powerful lightweight container that

seamlessly adapts to a web environment and can be accessed from any kind of web tier,

whether Struts, WebWork, Tapestry, JSF, Spring web MVC, or a custom solution (Gupta and

Govil, 2010). A key element of the Spring framework is infrastructural support at the

Chapter 2: REVIEW OF LITERATURE

33

Adedeji Oyekanmi Fabiyi

application level. It focuses on the plumbing of enterprise applications so that teams can

concentrate on application-level business logic, without unnecessary ties to specific

deployment environment.

2.4.4 Application Hosting Environment

Application Hosting Environment (AHE) is a web services based environment for hosting

scientific applications on the Grid. It is a lightweight, easily deployable environment designed

to allow scientists to quickly and easily run unmodified, legacy applications on Grid

resources, managing the transfer of files to and from the Grid resource and allowing the user

to monitor the status of the application (Coveney et al., 2007). The functionality provided by

the AHE is application-centric: applications exposed as web services with a well-defined

standards-compliant interface. This allows the computational scientist to manage application

instances on a Grid in a transparent manner, thus greatly simplifying the user experience.

2.4.5 GridSpace

GridSpace, based on the component programming methodology and Semantic Grid initiative

achievements, employs decomposition, dynamic organization and semantic comparison

techniques in order to provide a new, abstract layer for programmers of Grid applications

(Gubała and Bubak, 2005). It refers to a focused Service Space where a group of related Grid

services forms a domain-specific Grid service community in order to facilitate dependable

collaboration through trust-driven service selection and semantic-based service discovery.

This approach sees the integration of Grid service, Semantic Grid, and Web2.0 to realise and

support service-orientation towards a radical transformation from resources to services.

GridSpace is therefore used as a platform for component-based Grid programming with use

of various tools employing semantic Grid concepts.

2.5 Science Gateways

A Science Gateway is defined as a digital interface to advanced technologies which is used to

provide adequate support to science and engineering research and education (Lawrence et al.,

2015). It is a set of tools, applications and data that has been integrated via a portal or suite of

applications and customised to meet the needs of a specific community, usually in a graphical

user interface. They are used to provide access to community resources such as software,

data, and high-performance computing and can also be used for collaborative activities. More

than just collection of applications, Science Gateways also enable users to store, manage,

Chapter 2: REVIEW OF LITERATURE

34

Adedeji Oyekanmi Fabiyi

catalogue and share large data collections or novel applications that cannot be found

elsewhere. There are different types of Science Gateways being used for specific purposes

such as the application specific Science Gateways for which the portal framework was

developed (to aid in the rapid development of portlets) and the user specific Science

Gateways such as the ones provided by the OGCE. Some of the Science Gateway

frameworks as well as the application specific Science Gateways are summarised in Table 2.2

and Table 2.3, respectively.

2.5.1 Science Gateway Frameworks

To develop Science Gateways for different scientific domains, it is important to adopt a

Science Gateway framework with the required back-end that will provide developers with the

necessary tools for building such web portals. In light of this, several frameworks have been

developed for the rapid development of Science Gateways for different communities of

practice. Such Science Gateway frameworks include but not limited to Catania Science

Gateway Framework (CSGF), WS-PGRADE/gUSE, GridPort, P-Grade, and VinetoolKit

(See Table 2.2). These aforementioned Science Gateway frameworks, most especially the

CSGF and the WS-PGRADE/gUSE, represent the most commonly used Science Gateway

framework in Europe. The following section therefore gives a brief discussion as follows:

2.5.1.1 The Catania Science Gateway Framework (CSGF)

The Catania Science Gateway Framework (CSGF) developed by (Barbera, Fargetta and

Rotondo, 2011) is one of the most commonly used Science Gateway framework in Europe.

This framework is built on the Liferay portal due to its extensible architecture which makes it

compatible and possible to be used with other authentication and authorisation frameworks

employed by most organisations. This work centres on the integration of different

technologies to develop Science Gateways for different user communities. They make

extensive use of Certificate Authorities (CA) and IDentity Federations (IDFs) to support a

common framework for managing access to resources by the different participating

organisations. Also, they make use of shibboleth system, a tool based on the OASIS Security

Assertion Markup Language (SAML), for the communication of user authentication,

entitlement and attribute information to support cross-organisation Single Sign-On (SSO).

This is to ensure the federation of different organisations with different authentication

policies and to allow users to access Grid resources based on the organisation they belong. A

Chapter 2: REVIEW OF LITERATURE

35

Adedeji Oyekanmi Fabiyi

big advantage of the CSGF is that (to submit jobs to the infrastructures) a user does not need

to have personal digital certificates or belong to any virtual organisations. Proxy certificates

which are mandatory to execute actions on the Grid are created using the robot certificates.

These robot certificates (which are special kinds of X.509 certificates) are stored on the e-

token server and (due to security reasons) can not be accessed by external parties. In addition

to using the Shibboleth system and Robot certificates, a LDAP server where different user

roles and groups are stored is also utilized. Also, the authors made use of a layer known as

Simple API for Grid Application (SAGA) and the Java implementation of the SAGA standard

(JSAGA) which abstracts the different middleware implementations. The framework for

Science Gateways which was developed in Catania is fully web-based and adopts official

worldwide standards and protocols through their most common implementations. Different

standards that are supported include JSR 168 and JSR 286 also known as portlets 1.0 and 2.0

standards, OASIS Security Assertion Markup Language (SAML) standard and it's shibboleth

and Simplephp implementations, the Lightweight Direct Access Protocol (LDAP) and its

OpenLDAP implementation, the Cryptographic Token Interface Standard and it's Cryptoki

implementation, and the Open Grid Forum (OGF) simple API for Grid applications (SAGA)

standard and it's JSAGA implementation.

CSGF merges different levels of security mechanisms and (based on the credentials)

users can access computing resources. It has been designed to address the needs of specific

scientific communities by making provision of the existing standards for the distributed

infrastructure needs and web/internet environments. The overall architecture of the CSGF

comprises of three main components mainly the AAI (which manages user authentication and

authorisation), web applications such as the JSR286 portlets and the Catania Cloud and Grid

Engine. Each of these components is made up of a core functionality of the framework which

adopts the most relevant standards to ensure the long term sustainability of the system. The

CSGF provides a full-featured environment that allows the creation of high-level user

interfaces which is able to submit e-Infrastructure jobs, access data and metadata content,

provide both secure and anonymous access to e-Infrastructure services and help potential

users in managing the technical details of the underlying infrastructures.

Chapter 2: REVIEW OF LITERATURE

36

Adedeji Oyekanmi Fabiyi

Figure 2. 8 Catania Science Gateway Framework Adapted from (Fabiyi et al., 2016)

Science Gateway/Liferay portlets

This presents an interface that contains the different scientific application which have been

ported on the Science Gateway. For the development of the basic element of the Science

Gateway, the JSR 286 standard (also known as “portlet 2.0”) was adopted (Bruno et al.,

2013b; Barbera et al., 2013). The award winning Liferay web portlet framework (which is the

most popular framework for building Science Gateways) is the portlet container being

utilised in the development process of all portlets in the CSGF. Some of its important features

include its rich, easy-to-use web 2.0 interface using AJAX and other presentation layer

technologies. It also features an instant-add portlet library, dynamic navigation, drag-and-

drop portlets and GUI-based personalisation.

eToken server

For the different distributed infrastructures (and based on the GSI security) all transactions

must be signed with proxies which are generated by standard X.509 digital certificates. To

Chapter 2: REVIEW OF LITERATURE

37

Adedeji Oyekanmi Fabiyi

achieve this feat using the Science Gateway technologies the eToken server, which is a

mechanism that generates on-the-fly proxies upon user request, was incorporated as part of

the Science Gateway framework. This eToken server generates proxies known as robot

certificates. The Robot certificates are standard digital certificates which are stored in USB

smart cards otherwise known as eTokens. As a result, robot certificates are mapped to

applications which users can then execute without making use of personal credentials since

different proxies are created according to the roles and privileges that were stored in the

LDAP registry.

Users Tracking and Monitoring

This module ensures that users who can access and execute jobs on the distributed resources

can not flout the underlying rules of any distributed architecture. It achieves this by directly

managing and tracking all user memberships and activities performed by each user of the

infrastructure. This key feature serves as a means to help in realising the traceability policies

that are required by the EGI specification which is one of the most important requirements of

the Grid Security Infrastructure. This specification ensures the non-repudiability of all Grid

operations made by the users of the infrastructure (Bruno et al., 2013b).

Users Tracking Database

This module (as shown in Figure 2.8) is tightly coupled with the users tracking and

monitoring and is used to store information on all DCI usage by each user being captured. It

controls the rate of DCI interactions being initiated via the Science Gateway. It is developed

to adhere to the strict rules of the EGI VO Portal Policy and EGI Grid Security Traceability

and Logging Policy (Ardizzone et al., 2012b).

Catania Grid and Cloud Engine

The core module of the CSGF is the Catania Grid and Cloud Engine. It makes use of standard

technologies to interact with the underlying distributed infrastructures via the Scientific

Gateway presentation layer. It handles all e-Infrastructure transactions. It is a generic

software module that connects the Science Gateway presentation layer with all underlying

distributed infrastructures and middleware. It enables developers to build new Science

Gateways simply by exposing an interface to the underlying infrastructures and middleware.

The Catania Grid and Cloud Engine software layer are made up of the job and data engine.

Chapter 2: REVIEW OF LITERATURE

38

Adedeji Oyekanmi Fabiyi

Both functions (job and data engine) can interact with the underlying infrastructures by

calling the JSAGA APIs for job and data management. By using standard technologies, the

Catania Grid and Cloud engine can serve as a major link between the underlying distributed

infrastructures and the Scientific Gateway presentation layer. By adopting standard

technologies such as SAGA (and their JSAGA implementation) developers can build new

Science Gateways in little or no time.

Job Engine

The Job engine is used to map job operations to JSAGA functions. It also allows users to

fully exploit e-Infrastructure job management services (Ardizzone et al., 2012b). This is the

most relevant aspect of the Catania Grid and Cloud Engine within the CSGF. Using the Job

engine, the whole life cycle of job execution is managed from the submission of jobs to the

retrieval of outputs. All Job requests received from the Science Gateway interface (for

submission and execution purposes) are managed by the Job engine. In addition to job

submission and management, it also handles job status checks and retrieval of outputs which

are incorporated as part of the JSAGA functionalities. It handles preliminary operations for

job execution such as the mapping of proxies to jobs, identifying available resource manager

and so on. In addition, it facilitates an interface to the eToken server for generating proxies

from robot certificates. To account for all user operations, it provides the User Tracking and

Monitoring module with all necessary input information to control Grid interactions.

Data Engine

The Data engine module maps JSAGA functions to data operations and allows users to fully

exploit e-Infrastructure data management services (Ardizzone et al., 2012b). For a data

service to be considered relevant, it must provide users with the possibility of arranging files

in folders and ordered in tree format in the same way file systems behave on a physical disk

(Bruno et al., 2013b). The Data engine therefore enables a direct transfer of services between

the Science Gateway and the DCIs. It provides client APIs that satisfy the standard protocol

of interacting with different storage elements within the framework.

SAGA/JSAGA interface

The CSGF offers a customisable environment which tailors the need of different user

communities. It was designed to address large user communities as well as support access to

Chapter 2: REVIEW OF LITERATURE

39

Adedeji Oyekanmi Fabiyi

different kinds of distributed systems using the Grid and Cloud Engine APIs simply by

exploiting the SAGA standards (Barbera et al., 2013). The SAGA/JSAGA enables the

creation of unique interfaces to different middleware stacks so that Science Gateways can

exploit resources of different DCIs. To perform middleware independent job and data

management and access the underlying infrastructure, the SAGA and its JSAGA

implementation is the adopted standard. Simple API for Grid Applications (SAGA) belongs

to a family of related standards which was specified by the Open Grid Forum (OGF) that

defines an application-programming interface (API) to incorporate specific distributed

computing functionalities. JSAGA library (which incorporates the three main features such as

security, file management and Job management) implements the SAGA specification by

providing a lightweight, modular and pluggable set of java libraries for interacting with the

underlying infrastructures and middleware. Consequently, the API aligns with all middleware

standards within the OGF standard.

The Science Gateway interface

The Science Gateway interface simply consists of the different functions to interact with both

the Catania Grid and Cloud Engine and the User Tracking DB.

Accessing the CSGF Science Gateways using the AAI Module

The CSGF consists of an AAI module that manages user authentication and authorisation. It

authenticates users that make use of Identity Providers (IdPs) and who are members of one or

more Identity Federations. It provides the user membership management for the portal by

making use of identity federations and identity providers. In CSGF, user authentication and

authorisation are managed by using these two different modules (Bruno et al., 2013b).

Identity federations consist of one or more identity providers as single entities. They are

made up of the agreements, standards, and technologies which enable the portability of

identity and entitlements across autonomous domains. By setting up and supporting a

common framework helps different organisations to manage access to online resources.

Identity providers are the entities that are used to identify users and authorise user

membership of a given community. The CSGF makes use of several supported IdPs and each

may belong to one or more Identity Federations. As such, SSO service is enabled across SPs

for each Identity Federations thereby enabling SSO across the supported identity providers in

the federation. Federations are supported based on the SAML 2.0 standard specifications and

Chapter 2: REVIEW OF LITERATURE

40

Adedeji Oyekanmi Fabiyi

its Shibboleth implementation and SimpleSAMLphp and for the support of different user

identities.

One of the most important requirements for having a Science Gateway is to ease the

access to distributed computing and storage resources. To fulfil this requirement and (at the

same time) satisfy the security level required by the distributed infrastructures, authentication

and authorisation mechanisms at various levels have been conceived to provide easy and

secure access to applications.

Authentication

IDF, whose aim include setting up and supporting a common framework for different

organisations to manage access to online resources, is made up of the agreements, standards,

and technologies that make the identities and privileges portable across autonomous domains

(Casarino et al., 2015). User authentication relies on Identity providers which in turn belong

to one or more IDF.

Two technologies which are instrumental to the actualisation of these security

mechanisms are the SAML (used to enable the federation of organisations that have different

authentication policies) and X.509 robot certificates (which ensure that individuals who do

not have a personal certificate can still access the required computing resources). One

important mechanism (the Lightweight Directory Access Protocol) is also used to map

authorised users to Grid resources. To comply with the rules of the EGI VO portal and EGI

Security Traceability and Logging Policy, the Science Gateway includes user tracking

database which stores each operation that is being performed via the Science Gateway. This

takes care of one of the most important requirements of the Grid Security Infrastructure, i.e.

the non-repudiability of Grid transactions.

There are different types of Identity Federations within the CSGF such as the “catch-

all” Identity Federation, known as Grid Identity Pool (GrIDP), which consists of both the

IdPs that do not already belong to a federation as well as the users of the Science Gateway

that are not registered with any IdPs (Bruno et al., 2013b). This is considered to be

particularly useful where the general public (who do not belong to any virtual organisation)

may need to access the e-Infrastructure for self-learning purposes. Within the GrIDP

Chapter 2: REVIEW OF LITERATURE

41

Adedeji Oyekanmi Fabiyi

Federation, there are the “Social Networks” Bridge Identity Providers that allow user

authentication by utilising the credentials which are used for authenticating to other well-

known social networks such as Facebook, Google+, etc. When a user is granted access to the

Science Gateway, they can then select the identity provider from the identity federation which

they belong. A new page (the Identity Provider login page) is presented where they can enter

their credentials which usually include the combination of username and password. If the user

is successful at this point, the Science Gateway control system will check if the user is in the

the LDAP registry which will then map their role with the registered user rights and thus

grant access.

Authorisation

While the user authentication is enabled by external services such as IdPs and IdFs (services

which are independent on the Science Gateway), the user authorisation on the other-hand

occurs at the Science Gateway level. When a user request is approved, they (together with

their roles and privileges) are stored in a LDAP-based registry. When a user has been granted

access to the Science Gateway, they can then sign on and execute jobs using the requested

portal application.

Robot Certificates

Another mechanism that has been implemented to ease the access to distributed computing is

the Robot certificates. This was introduced on the basis that the management of personal

digital certificates for accessing DCIs has proven to be extremely difficult to use (especially

for non-experts users) which may consequently hamper the adoption of the technology. The

Robot certificate was therefore introduced to make a smooth and transparent access to Grid

infrastructures (on behalf of users) by integrating them with traditional general purpose

portals and Science Gateways. These Robot certificates are often stored in smart cards

(temper-resistant devices) to improve security and avoid fraudulent use of the private keys

(Ardizzone et al., 2012b). The Robot certificates are often managed by a multi-threaded

server (otherwise known as e-Token server) which is created and configured to manage the

list of robot certificates.

Chapter 2: REVIEW OF LITERATURE

42

Adedeji Oyekanmi Fabiyi

LDAP-based Registry

This has been created to store and manage user roles and privileges for Science Gateway

users. This mechanism is used in mapping authorised users to Grid resources.

2.5.1.2 Web Services Parallel Grid Runtime and Developer Environment

Framework (WS-PGRADE/GUSE) workflow system

The work done by (Balasko, Farkas and Kacsuk, 2013) outlines an approach to developing

web based portals in which a generic purpose work flow management system otherwise

known as WS-PGRADE was developed. Based on the concept and the lessons learnt from the

first generation P-GRADE portal, this second generation P-GRADE portal introduced many

advanced features both at the work flow and the architecture level. This framework utilises a

multi-tier service architecture that can support various user communities/domains and

different types of DCIs. This includes the Architectural tier, the Middle tier and the

Presentation tier.

The Architecture tier (through the DCI Bridge job submission service) allows access

to different types of DCIs. The Middle tier contains gUSE services such as gUSE repository

which is used for the management, storage, sharing and execution of workflows and the

presentation tier is the layer that presents the graphical WS-PGRADE user interface. The

gUSE contains a set of services such as workflow storage, file storage, workflow interpreter,

gUSE information system and an application repository for realising the workflow

management backend of the portal. It adopts the DCI-Bridge (a standard BES interface) for

executing jobs on the different infrastructures. The WS-PGRADE portal uses three different

modes such as the End-User Mode (a generic yet simple interface), Application Specific

Module (that generates a web-based interface from scratch) and the Remote API (for users

who have their own interface but still wants to make use of the workflow management and

execution capability of WS-PGRADE/gUSE) for web portal development. All these

functionalities ensure that the WS-PGRADE has the tools, APIs and the interfaces that can

aid in the customisation of an application specific gateway.

Kacsuk (2011) summarised the most advanced features of the P-GRAGE Grid portal

and introduced the second generation P-GRADE portal known as WS-PGRADE. This Grid

portal, as discussed above by (Balasko, Farkas and Kacsuk, 2013), advances the first

Chapter 2: REVIEW OF LITERATURE

43

Adedeji Oyekanmi Fabiyi

generation P-GRADE portals by introducing a new workflow system and architecture

concepts and (though P-GRADE is declared as a generic-purpose e-science portal) it is

customised to create an application-specific gateway by using a module known as the

Application Specific Module for specific application/user domain. Furthermore, the author

compared the three major variants of the P-GRADE portal consisting of the original P-

GRADE and the NGS P-GRADE (first generation), and the WS-PGRADE (second

generation) which advances the first two portals by adding new and improved features such

as the gUSE repository, parameter sweep application, and a more sophisticated workflow

engine called Zen. The members of a user community can be classified into two categories of

Grid application developers (who develops grid applications) and end users (who executes

the available applications), and a Grid portal should support at least one or both of these

communities. In addition, an application repository is built with the Grid portal to enable

scientist to publish their templates for other members of the community thereby facilitating

collaborations between e-scientists and application developers. It adopts a user

interface/application/high-level services layer kind of architecture that overlays the high-level

services above the Grid middleware. The application layer resides on top of these high-level

services layer and finally, the graphical user interface layer is built on top of the other layers

as shown in Figure 2.9 below.

Figure 2. 9 WS-PGRADE/gUSE architecture by (Balasko, Farkas and Kacsuk, 2013)

Chapter 2: REVIEW OF LITERATURE

44

Adedeji Oyekanmi Fabiyi

WS-PGRADE is a generic purpose workflow-oriented graphical user interface. It is

used to create and run workflows on various DCIs such as Grids, Clouds and Clusters. It

makes use of two (2) API interfaces namely, the ASM API and the Remote API. This is used

to meet the needs of different user communities by creating application-specific Science

Gateways. According to Balasko et al. (2013) while the task of a Science Gateway is to hide

the details of the underlying middlewares from the users via an easy-to-use user interface,

workflow systems on the other-hand are used to enable the creation and management of

workflows consisting of a number of scientific applications. There are two main categories of

gateways namely: the generic DCI gateway frameworks which could be used by the different

scientific domain and the application-specific science gateways which target a well-defined

set of scientists working in the same field of science. Examples of other Generic DCI

gateway framework also include GridPort, P-GRADE, Vine Toolkit, and the CSGF (See

Table 2.2).

To create application specific gateways, there are two options available to the user.

Either write the gateway from scratch using portal frameworks such as Liferay or customise

an existing generic DCI gateway framework according to the needs of a particular scientific

domain. The latter approach is better due to the reduction in the production time and cost of

producing the gateway. WS-PGRADE was designed based on the lessons learnt from the 1st

generation P-GRADE portal. The WS-PGRADE framework is made up of three (3) main

tiers namely: the architecture tier, the middle tier and the presentation tier. The architecture

tier of the WS-PGRADE portal enables access to many different kinds of DCI through the

DCI Bridge job submission service. The middle tier, on the other hand, contains a high-level

gUSE services that enable the management, store and execution of workflows. Lastly, the

presentation tier provides the graphical WS-PGRADE user interface of the generic DCI

gateway framework which can easily be customised and extended.

Different types of users can utilise the generic DCI gateway framework. These are the

workflow developer who develops workflows for the end-user scientists, the end-user

scientist who does not bother with the details of the underlying infrastructures, the scientists

who only require some customisations to run their workflow applications (via the ASM API)

on DCIs, and the final set of users who do not require a user interface but simply want to

access the gUSE services and execute WS-PGRADE workflows directly via an API. The

Chapter 2: REVIEW OF LITERATURE

45

Adedeji Oyekanmi Fabiyi

most distinguishable feature of WS-PGRADE/gUSE in comparison to other Science Gateway

framework is that it is workflow-oriented. It has three (3) distinct features such as workflow

support, facilitation of multi-DCI workflow execution and enabling the customising of the

framework towards application specific Science Gateways.

Graphical User Interface – WS-PGRADE (Presentation Layer)

This tier provides the graphical WS – PGRADE user interface of the generic DCI gateway

framework. This layer can easily be customised according to the needs of different user

communities. There are different ways in which potential users can make use of the generic

DCI gateway framework.

The first categories include the workflow developer who simply develops workflows

for the end-user scientists. The activity of the workflow developer includes edit, configure

and run workflows and to support the work of the workflow developer, all these activities are

supported. After a workflow has been developed, it is uploaded to a repository and scientists

can access and make use of them.

The second category of users consists of the end-user scientists. These type of users

are not familiar with the features of the underlying DCI or of the structure of the workflow

that realises the applications they want to execute. Normally, the end-users only need to

download the required workflow from the application repository and parameterise it before

execution.

In addition, to support the development of application specific user interface or

specific portlets which is used for application specific requirements, an ASM API is provided

to aid the rapid customisation of portlets. For this third category of users, the WS-PGRADE

end-users user interface is replaced by the customised Application Specific user interface

which could then be used to access the gUSE services through the ASM API.

The fourth category is the set of users that already have their Application Specific UI

and simply want to employ the existing UI to access various DCIs. Finally, the fifth category

is the set of users that want to access the gUSE services without the use of a specific user

interface. These sets of users simply want to run WS-PGRADE workflows via a direct API

and the gUSE remote API was provided to facilitate it.

Chapter 2: REVIEW OF LITERATURE

46

Adedeji Oyekanmi Fabiyi

The Middle Layer (gUSE services)

The middle layer consists of all the gUSE services such as the workflow storage, file storage,

workflow interpreter, application repository and the gUSE information system. It was

originally developed to support the needs of application development for Grid computing on

different DCIs. It allows developers to easily specify the sequences of tasks (i.e. the

workflow) to be executed on different DCIs which are required by their application and

parallel execution. Since gUSE treats the computing resources of a Cloud as just another

DCI, it is therefore ideal for Cloud computing as well.

DCI – BRIDGE (Architecture tier) – Job submission service

The DCI Bridge is used to provide standard access to the aforementioned DCIs. The DCI

Bridge is developed to eliminate the need to adopt and use different submitters for as many

DCIs that need support. The major components of the DCI Bridge include the Resource

Registry, the Application Management, the Runtime System and the Monitor component all

of which could run within a tomcat based web container. To configure the accessible DCIs,

the resource registry subsystem provides an online configuration interface and sends

information about the configured resources to other external software components. The

Application Management subsystem gives the implementation of the Basic Execution Service

(BES) management port type thereby providing the possibility to supervise the software

based access of the BES factory service. The runtime system is used to accept all

standardised JSDL job description documents from the workflow interpreter service. DCI

Bridge (via a well defined communication interface) helps in enabling workflow management

systems to access various DCIs. The DCI Bridge utilises the OGSA Basic Execution Service

(BES) interface to submit jobs transparently into various DCIs.

2.5.1.3 The Vine Toolkit: A Java Framework for Developing Grid

Applications

An earlier web portal project known as the GridPortlets is said to have several shortcomings.

Among these is the support for only one Grid middleware (such as the Globus Toolkit), as the

extension of support for other middleware is said to be overly complicated. Also, GridPortlets

can only be used or tested within a web application server and is dependent on the elements

of the GridSphere Portal Framework which has to be managed by a portlet 1.0 API compliant

container at run time. It is this sort of problem that the Vine Toolkit seeks to address. Russell

Chapter 2: REVIEW OF LITERATURE

47

Adedeji Oyekanmi Fabiyi

et al. (2008) set out to develop a java-based framework that provides developers with an

easy-to-use, high-level API for Grid-enabling applications. Vine is said to include an API that

advances the original GridPortlets API and it is an actual general library that is deployed for

use on a number of platforms such as Java portlet 1.0 environments, Java Servlet, Java Web

Start, etc. Unlike the original GridPortlets, the VineToolkit has been developed to support

different middlewares and services such as gLite, globus Toolkit, GRIA, OGSA-DAI, SRB,

UNICORE and VOMS amongst others. According to (Russell et al., 2008), the Vine Toolkit

consists of a base API (the core project) and a programming model which serves as building

blocks for each sub projects that addresses major problem areas. Interfaces and classes are

contained within the Group Vine (where the user account management and registration

concepts are defined) and the Grid Vine (where Grid application development concepts are

described). At the time the Java SAGA 1.0 was still evolving the authors planned to work

with the SAGA group by simply wrapping the Vine Toolkit.

2.5.1.4 A Framework for Domain-Specific Science Gateways (InSilicoLab)

In another framework that was developed for building domain specific Science Gateways,

(Kocot et al., 2014) used several case studies/scientific domains such as computational

chemistry, cherenkov telescope array, simulations in astrophysics and bioinformatics to

gather what they considered as the requirements for the development of a gateway

framework. The Requestor-Message Broker-Worker architecture is designed to specify the

model of communication between the system components. While the Requestor is an entity

that defines the computation to be performed (i.e. a portal), the Worker is the actual program

that performs the computation. The Message Broker, on the other hand, is used to coordinate

the requests of both the Worker and the Requestor. The architecture of the framework,

otherwise known as the InSilicoLab, is composed of three layers namely: Domain Layer,

Mediation Layer and the Resource Layer. Even though the framework is usually integrated

with a standalone portal for a particular domain, it can however be composed of a larger

integration platform such as Liferay portal. The authors identified three types of processing

(such as batch operations, immediate operations and on-demand deployment of services)

from the case studies that were implemented with a processing model which also provides a

framework for creating domain/community specific gateways.

Chapter 2: REVIEW OF LITERATURE

48

Adedeji Oyekanmi Fabiyi

2.5.1.5 Science Gateway Framework (List and Comparisons)

Table 2.2 shows the features associated with the different Science Gateway Frameworks.

This table includes the relevant information about the different frameworks such as the

support for job management, workflow management, data management, and security

management. One advantage of customising existing Science Gatway frameworks is that they

already provide the required back-end with access to various DCIs which could help save

development time. Science Gateway instances or application specific Science Gateways

which are developed for different research communities are customised from existing Science

Gateway frameworks. Table 2.2 therefore shows a list of the Science Gateway frameworks

and their most widely adopted functionalities. These Science Gateway frameworks have been

explained in detail in the above section.

Table 2.2 List of Science Gateway Frameworks and their major functionalities (Adapted from

Balaz et al., 2013)

The above Table 2.2 shows the major Science Gateway frameworks which are used to

customise instances of Science Gateways otherwise known as application specific Science

Gateways. The table shows that, at a very high level, Science Gateways incorporates major

functionalities such as job management, workflow management, data management and

security management. Science Gateway Frameworks are therefore developed with a more

generic interfaces, providing user interface for generic features which may be needed by

different user communities and application specific Science Gateways. Each user community

typically requires specific functionalities according to their specific needs compared to the

original, more generic functionalities of the Science Gateway frameworks from which the

application specific Science Gateway are customised. Hence, different communities may also

opt to incorporate one or all of the functionalities described in Table 2.2.

Chapter 2: REVIEW OF LITERATURE

49

Adedeji Oyekanmi Fabiyi

2.5.2 Application Specific Science Gateways (instances)

An instance of a Science Gateway (otherwise known as application specific Science

Gateway) provides a simplified user interface that is highly tailored to the needs of a

particular scientific community. In order to develop an application specific Science Gateway,

a developer can either create from scratch or customise an existing Science Gateway

framework. However, many instances are created based on customising an existing Science

Gateway framework because creating the back-end with the necessary DCI access can be

time-consuming and there are existing Science Gateway frameworks and services which

could be utilised. This section will briefly explain some Science Gateway instances with

emphasis on the adopted Science Gateway framework.

2.5.2.1 The GISELA Science Gateways

The Grid Initiatives for e-Science virtual communities in Europe and Latin America

(GISELA) Science Gateway is an instance of the Catania Science Gateway Framework

(CSGF) that was developed by (Ardizzone et al., 2012). The reason for the low uptake of

Grid infrastructures despite the huge investment that has been made is mainly due to the

complexity of the technology used in accessing these environments especially for the non-

ICT expert users. They identified requirements such as simplicity, use of standards, re-

usability and easiness of use as the primary requirements that inspired their work. Based on

the CSGF framework that was used, as seen in the work of (Barbera, Fargetta and Rotondo,

2011), GISELA Science Gateway made an extensive use of Certificate Authorities, Identity

Federation, LDAP registry, Grid Engine (which comprises of the Job and Data Engine and

based on JSAGA) in order to support a common framework for managing access to resources

by the different participating organisations and thus establishing a standard way for user

authentication and authorisation for the running of jobs and data management. Several

implementation of the GISELA project based on the CSGF framework includes several

scientific domains such as life sciences, industry sciences, cultural heritage and the field of

mathematics.

2.5.2.2 The Decide Science Gateways

The Diagnostic Enhancement of Confidence by an International Distributed Environment

(DECIDE) project is another instance of a Science Gateway which was developed based on

the CSGF framework. According to (Ardizzone et al., 2011), the DECIDE Science Gateway

Chapter 2: REVIEW OF LITERATURE

50

Adedeji Oyekanmi Fabiyi

is developed to enable e-Health based on the European research network and Grid

infrastructures for European citizens by providing easy access to high-quality diagnosis and

prognosis service for Dementia Disease such as Alzheimer. The DECIDE architecture takes

the form of network connectivity, Grid computing resources and domain specific

applications. The Science Gateway which is built within the Liferay framework is fully

compliant with JSR 268 standard which makes it compatible with other portal frameworks.

Also, similar to the GISELA Science Gateway, as seen in the work of (Ardizzone et al.,

2012), and due to the Science Gateway framework that was used, the combined technologies

that led to the realisation of the DECIDE Science Gateway includes Certificate Authorities,

Identity Federation, LDAP registry, Grid Engine (which comprises of the Job and Data

Engine and based on JSAGA) to realise a common framework for managing access to

different resources. Apart from providing extensive support for gLITE middleware, adaptor

interfaces are designed through the use of JSAGA to make the extension of other

middlewares such as Globus Toolkit and UNICORE easy.

2.5.2.3 The agINFRA Science Gateway for Agricultural Sciences

agINFRA is another Science Gateway instance that has been developed on top of the CSGF.

According to (Bruno et al., 2013), the aim of the agINFRA Science Gateway is to introduce

the concept of open and participatory data-intensive science to the agricultural communities

by eliminating existing obstacles regarding data sharing and open access to scientific

information as well as facilitating the management of relevant data available within these

communities. The authors claimed that to overcome these obstacles/barriers, the widely

accepted standards used within the CSGF (such as SAGA and SAML) and several other

standards must be adopted. Several applications that were specifically developed and ported

on the agINFRA Science Gateway to help with data management activities within the

agricultural research communities include agrovoc tagging for indexing documents, WEKA

for data mining problems, R statistical analysis tool for statistical computing and graphics,

etc. Among the services integrated within the agINFRA Science Gateway portal are the

Italian Soil Information System, Annotate and Browse Soil Maps and the CLEVER Cloud.

2.5.2.4 “Social” Science Gateways to e-Infrastructures

Another effort that was made in the development of Science Gateways is seen in the work of

Carrubba et al (2013) which was built on the Catania Science Gateway Framework (CSGF).

Chapter 2: REVIEW OF LITERATURE

51

Adedeji Oyekanmi Fabiyi

The authors argued that despite the high availability of high-performance computing

infrastructures and the efforts being made to improve them, their uptake is still relatively low

when compared with potential users. Their low uptake was compared and contrasted with

social network sites which have seen a major surge in their usage. This surge was credited to

their intuitive and easy to use interfaces. As a result of this revelation, the aim of the authors

is to therefore develop a Science Gateway that is plugged directly into a social network so

that tools provided by the Science Gateway are directly accessed via the social network. This

is aimed at attracting a larger audience by utilising these user-friendly interfaces and

authenticating users of Science Gateways with same credentials used for their Social

Networks. To increase the number of potential users, facebook was the social network that

was chosen due to its high popularity and usage and it is also estimated that many potential

users of the DCIs are facebook users. The portal framework (Liferay) that was used in the

CSGF provides a complete set of API to interact with facebook which could be done by

either integrating the whole Science Gateway or individually porting the applications within

facebook. Two of the Science Gateways developed which may be accessed from within

facebook includes agINFRA Science Gateway, seen in the work of Bruno et al (2013a) and

GARR Science Gateway.

2.5.2.5 A Grid Portal with Robot Certificates for Bioinformatics

Phylogenetic Analyses

Some major work was also done in the aspect of simplification and user friendliness of

grid/grid portals for wider communities of users such as the work of Bogdanski et al (2007)

and Gesing et al (2011). Another work that was done to simplify the usability of grids is seen

in the work of Barbera et al (2011). The authors proposed an approach to grid security

whereby the process of retrieving Public Key Infrastructure of X.509 certificate is made easy

for users by adopting a technology called robot certificate. This approach to retrieve and

manage certificates is a standard approach which has been adopted in the Catania Science

Gateway Framework (CSGF) which was explained earlier. The new approach to managing

certificates will ensure that users who do not own a personal certificate and do not necessarily

belong to any virtual organisation can still access and make use of the Grid resources. These

robot certificates are usually stored on USB form factor smart cards, called e-tokens and the

e-tokens are plugged into e-token servers. These certificates are used to identify a person

responsible for an unattended service or a process acting as client and server for a virtual

Chapter 2: REVIEW OF LITERATURE

52

Adedeji Oyekanmi Fabiyi

research community. Robot certificates have been created and deployed on all regional

infrastructures so developers do not need to worry about it. All they need to do is to access

the VPN and the Science Gateway will connect to the robot certificate server, (otherwise

known as the e-token server) on behalf of the users in an easy and transparent manner. The

functionalities of the robot certificate are tested on the bioinformatics communities in order to

perform large-scale Bayesian Phylogenetic analyses on the Grid.

2.5.2.6 A Data-Centric Neuroscience Gateway: Design, Implementation,

and Experiences

An instance of a Science Gateway which is based on the Grid and Cloud user support

environment known as WS-PGRADE/gUSE framework (Balasko, Farkas and Kacsuk, 2013),

was used in creating the e-BioInfra Science Gateway. According to (Shahand et al., 2015), e-

BioInfra Science Gateway was built for the analysis of large scale biomedical data on the

Dutch e-science Grid. It is designed to help facilitate a simple interface where biomedical

researchers can make use of services such as community Grid certificate and semi-automatic

file transport. Due to the limitations of the e-BioInfra Science Gateway, such as the need to

support richer data resources and operations, a new Science Gateway was designed and

implemented specifically for the computational neuroscience research community of AMC.

The lessons learnt from the e-BioInfra Science Gateway meant that new Science Gateways

that is data-centric (in which everything revolves around data and meta-data) rather than

application-centric should be developed. They claimed the old e-BioInfra Science Gateway

has functionalities such as transparent authentication and authorisation, semi-automatic data

transfer and an extensive set of applications which were mainly centred on applications and

their underlying resources. This led to so many data-related errors where invalid input data

and inadequate file processing capability are claimed to be the ultimate cause. This

consequently resulted into the proposal of new Science Gateways which is data-centric and

provide all the necessary tools and services needed to interact with their data for the purpose

of data discovery, exploration, preparation and processing.

2.5.2.7 VisIVO Workflow-Oriented Science Gateway for Astrophysical

Visualization

Another Science Gateway instance based on the WS-PGRADE framework (a highly flexible

interface for the Grid User Support Environment) is built for the Astrophysics communities.

According to (Sciacca et al., 2013), a web-based workflow-enabled framework known as the

Chapter 2: REVIEW OF LITERATURE

53

Adedeji Oyekanmi Fabiyi

VisIVO Science Gateways that integrates on different Distributed Computing Infrastructures,

a large scale, multidimensional datasets and applications for visualisation and data filtering

has been developed. The VisIVO Science Gateway is developed to help with the

collaborative visualisation of sharing visualisation experiences as well as enabling the

reproduction of specific visualisation results. To obtain a robust analysis of large-scale

astrophysical datasets, complex workflows are created and executed on a variety of

infrastructures which are easily accessible to both astrophysical researchers as well as the

wider public. Several portlets running in a Liferay portal environment enables users to set up,

submit, run, and evaluate simple or sophisticated VisIVO scenarios for large-scale datasets

exploiting DCI resources. As a result of this technology, the shareable workflows and

reusable portlets of the gateway are exploited by both the astrophysicists and the wider

public.

2.5.2.8 MoSGrid Science Gateway for US and European Infrastructures

Another instance of a Science Gateway which has been developed on top of the gUSE/WS-

PGRADE framework and based on the Liferay portal framework is the Molecular Simulation

Grid (MoSGrid) Science Gateway. According to (Gesing et al., 2015), the original MoSGrid

Science Gateway which serves the computational chemistry community with interfaces for

jobs, workflow, data and metadata management has a few pre-configured workflows which

are dependent on the service-oriented Grid middleware (UNICORE). It also utilises SAML

assertions to provide a SSO mechanism for the different available resources. The authors

argued that to ensure MoSGrid Science Gateway can utilise the resources of the Extreme

Science and Engineering Discovery Environment (XSEDE) and Partnership for Advanced

Computing in Europe (PRACE), some modifications must be made to the original MoSGrid

Science Gateway. They highlighted the main challenges in areas such as security

mechanisms, distributed data management and workflows and subsequently proffered

solutions. Such solutions include using XSEDE to support user credentials as opposed to

using a Science Gateway credential and integrating iRODS for data management since the

XtreemFS used in the original distributed data management in MoSGrid is not available in

XSEDE and PRACE infrastructures. To resolve the issues surrounding workflow execution,

the authors installed Gromacs and NWChem which both serve as comprehensive and scalable

open-source solutions for large scale molecular simulations on the MoSGrid Science

Gateway.

Chapter 2: REVIEW OF LITERATURE

54

Adedeji Oyekanmi Fabiyi

Barbera et al (2007) set out to provide a problem-solving environment that will allow

scientists to access, execute and monitor applications running on Grid resources by simply

making use of a web browser. The Portal solution is based on Enabling Grids for E-science in

Europe (EGEE) project’s middleware Grid portal otherwise known as GENIUS Grid portal

and allows users to access the Grid services from various devices such as desktops, laptops,

cell phones, and Personal Digital Assistants (PDA), etc., and from anywhere in the world.

The Grid portal was implemented on top of the gLite middleware services and it utilises a

three tier model for its architecture. This architecture includes the client that runs on a web

browser on the user’s workstation, the server which comprises of a gLite user interface that

oversees the gLite middleware services used for submitting jobs and managing data on the

Grid and remote resources. The GENIUS Grid portal adopts the EngineFrame (a tool that

provides interfaces to activities that were once command line oriented) to provide a complete

separation between the user interface (front-end) and the grid-enabled business logic (back-

end). The authors also claimed that (in addition to job submission and data management)

other services that were integrated as part of the GENIUS portal include the interactive

services and security services.

Kertesz, Otvos and Kacsuk (2014) reports on the collaboration between scientists

from various disciplines to execute scientific workflows using web-based portals. More

specifically, the authors presented a general way of executing legacy biochemical

applications into parameterised scientific workflows, using web based portals to exploit the

computational power of the different participating DCIs. In porting the biochemical legacy

application, the WS-PGRADE portal framework was chosen. Consequently, the authors

presented a way of converting a legacy biochemical application into a parallel scientific

workflow application that can run on different DCIs. The functionalities of the WS-PGRADE

framework enable users to create jobs which are responsible for the generation of input data,

sub-workflows that contains jobs for executing different algorithms and a collector job that

gathers the output files of the sub-workflows.

Matsunaga et al. (2007) described an approach to Science Gateways, known as the In-

VIGO approach where virtualisation technologies are used to provision dynamic virtual

resources on demand in a distributed environment. It is a process where applications which

are accessible via user-friendly web interfaces can effectively be turned into Grid services. As

Chapter 2: REVIEW OF LITERATURE

55

Adedeji Oyekanmi Fabiyi

a result, the use of virtual application as Grid services along with a Virtual Application

Service (VAS) architecture for the generation, customisation, deployment, were described.

This is therefore different from other approaches used for building Science Gateways in the

sense that it utilises existing and novel technologies to virtualise resources (machine,

networks, application and data) as it decouples user environment from the physical resources.

The key features of the In-VIGO Science Gateway include facilitation of the dynamic

creation and execution environments, secure access to resources, applications and data,

virtual application and virtual application service.

Cobb et al. (2007) set out to build a Science Gateway for the TeraGrid resources to

support collaboration with the Spallation Neutron Source. The purpose of the Neutron

Science TeraGrid Gateway is for Neutron science users to run experiments, generate datasets,

remotely perform collaboration activities, perform data reduction, analysis and visualise

results and to achieve long-term data in repositories. As a result, they set out to develop a

Science Gateway to include all of the aforementioned features for the use of the Neutron

science community. In light of the above, they argued that a portal/gateway should make

scientists work as easy as possible by requiring no software installations, have user favourite

tools (and the ability for users to be able to add these tools), and the portal should also

address latency issues. These features were therefore designed and implemented as part of

their Gateway.

Wilkins-Diehr (2007) surveyed different community interfaces to Grid resources that

were deployed globally, such as generic interfaces for job submission and interfaces for

specific scientific domains. The primary purpose of their work was to gather researchers or

resource providers who are trying to provide Grid capabilities to a particular science

community via portals, web services on resources in operational Grid and get them to access

the Grid resources via the desktop. They utilised TeraGrid and conducted thorough interviews

with ten Science Gateways which were expected to make use of this Grid. Among the several

questions covered include: the type of middleware used, the utilised software applications,

the use of authentication, accounting plans and security issues and the different user

capabilities. Majority of their work is seen in the summary of the common features within

Science Gateways, the different development approaches and the technologies being used.

The different Science Gateways which were considered falls into one of three categories: the

Chapter 2: REVIEW OF LITERATURE

56

Adedeji Oyekanmi Fabiyi

Science Gateways providing specific services for different scientific domains, the Science

Gateways providing more generic mechanisms and the required technologies needed in the

implementation of Science Gateways. Several science portals discussed were built using a

variety of technologies such as OGCE portal toolkit, uPortal, GridSphere, and JetSpeed. In

addition, some projects (such as the LEAD portal) require the support for workflow execution

whereby access to weather prediction simulations and services running on remote resources is

facilitated. Other projects such as the GridSAT portal which provides an interface to complex

grid applications. Applications in this group require job management functionality for

Science Gateways and provide interface where users can have access to complicated code

that is executed on large number of DCI resources. For the more generic resource access

portals, projects such as the GENIUS Grid portal (which provides security, job submission

and data management functionalities) were discussed. Lastly, enabling technologies which

are used to provide transparent access to DCI resources were also discussed. The projects in

this category include Grid Resources for Industrial Applications (GRIA), Grid-enabled

Application Service Providers (GridASP), etc.

Gesing et al. (2011) reported on the aspect of simplification and user interaction of

portals. This research (similar to the work of Wilkins-Diehr, (2007)) is focused on the

contributions made on portals in life science field that sees the collaboration of various

scientists from different fields such as life science, bioinformatics and computer science. The

sole purpose of this is to create a platform to exchange ideas and share their experiences and

technological advances, in regards to portal development, in the field of molecular and

system biology. To illustrate the solutions used in these portals, the authors opted to use five

generic portals namely OGCE, VineToolkit, P-GRADE, Genius and GridPort. The authors

claimed that all the aforementioned portals (except Genius) are built on top of Gridsphere

portal framework due to its compliance with JSR 168 standards which makes it compatible

with other portal frameworks such as Liferay, IBM's Websphere and Apache's Jetspeed.

Comparisons were made for the different portals in the aspect of the functions they provide

such as VO certificate management, Grid data management, Grid resource monitoring,

information service and job execution monitoring. Other comparisons that were made include

the ability to support parameter sweep applications, workflow editors and workflow

execution.

Chapter 2: REVIEW OF LITERATURE

57

Adedeji Oyekanmi Fabiyi

Another research which aims at collecting experiences for the building of Science

Gateways gathered from different scientific areas is the Distributed European Infrastructure

for Supercomputer Applications (DEISA). In this paper, (Soddemann, 2007) described the

development process from the point of view of both project engineer and software architect

of the DEISA material sciences and plasma physics web portal application. This is a slightly

different approach to the work done by Thomas (2007), Gesing et al. (2011) and Wilkins-

Diehr (2007) in the sense that, instead of sharing experiences and exchanging ideas among

scientists from different fields, user requirements were sort out in order to combine current

efforts and advance the field. Potential users were involved in the specification of the

requirements for the use of remote supercomputing. At the end of the analysis, user

requirements include easy access to computing resources, easy way to submit jobs, the

creation of input files for complex applications and focus on performing experiments rather

than becoming Grid experts.

Welch et al. (2007) developed an approach to developing Science Gateways to

manage a community of users whereby the power to authorise individual users is being

handed to the community and thereby absolving the resource provider of the responsibilities.

Different communities make use of different security models from a traditional single-user

point of view, thus a security model for managing community accounts and organised by

authentication, authorisation, auditing and accounting (AAAA) which constitutes the four A's

of security was proposed. The authors’ motivation for having this kind of community

accounts stems from the fact that low-level interfaces such as a command line shell (used in

accessing resources) have a steep learning curve coupled with the burden placed on user

communities to maintain state for each user that utilises the resources.

Chapter 2: REVIEW OF LITERATURE

58

Adedeji Oyekanmi Fabiyi

Table 2.3 Application Specific Science Gateways

 Several other Science Gateways were also developed to support scientists of different

disciplines with the sole aim of granting access to computational resources in the easiest

possible ways. An example of this is seen in the work of Pierantoni et al., (2017) where it is

deemed that (since information can be missing or hard to isolate at the right layer) complex

and unstructured flow of actions and information poses difficulties in the development and

usage of Science Gateways. As such, the work concentrated on the design and

implementation of more flexible and user friendly Science Gateways and workflow

management systems. Zhao et al., (2017) conceived that the task of bringing data and tools

online into a Science Gateway environment is still daunting for domain science users.

Therefore, they developed a reusable geospatial data analysis building blocks for Science

Gateways which includes core components such as geospatial data management system

named iData, libraries for easy creation of geospatial data analysis tools hosted in the

gateway, GeoBuilder for creating GIS-enabled data exploration tools, and general purpose

tools for geospatial data processing and visualization. Elia et al., (2017) focuses on climate

change and biodiversity research by providing a Science Gateway for end-users with a highly

integrated environment, addressing mainly data analytics requirements. It is believed that to

better understand the mutual interaction between climate change and biodiversity there is a

strong need for multidisciplinary skills, tools and a large variety of heterogeneous, distributed

data sources. Kee and Schrock, (2018) based their work on the fact that several Science

Chapter 2: REVIEW OF LITERATURE

59

Adedeji Oyekanmi Fabiyi

Gateways have focused on technological tools. They therefore concentrated on the teams

behind the tools by creating a checklist for practitioners to access the functioning of an

existing team, or strategically design new teams. They believed that these checklist can help

domain scientists, center administrators, and computational technologists across tools,

projects, and domains reflect on the needs of their teams.

Other researchers such as Smith and Abeysinghe, (2017) concentrated on the aspect of

workflows by developing a Science Gateway for Parallel Hierarchic Adaptive Stabilized

Transient Analysis (PHASTA) software that supports modelling compressible, steady or

unsteady flows in 3D using unstructured Grids. This Science Gateway creates a searchable

archive of past jobs to support reproducibility. Similarly, Sciacca et al., (2017) developed a

framework that allows astronomers to process new generation surveys of the Galactic Plane

to build and deliver a model of Milky Wax Galaxy. As such, a Science Gateway (based on

WS-PGRADE/gUSE framework) that operates as a central workbench for the community

which helps to deal with the growing data size was developed. The design and

implementation of a unified scientific Cloud framework called Science Gateway Cloud was

implemented by Kim et al., (2017). This Science Gateway provides a broker between users

and providers and is able to process various scientific applications efficiently upon

heterogeneous cloud resources. Kiss et al., (2017) also developed a WS-PGRADE/gUSE

based Science Gateway that supports various application scenarios on multiple heterogenous

federated Clouds. They conceived that both scientific and commercial applications require

automated scalability and orchestration on Cloud computing resources. Thsir work therefore

centers on how an automated orchestration can be added to Cloud applications without major

reconstruction of application code.

2.5.3 Early effort to develop Tools and Services that aid in enabling the

Distributed Computing Infrastructures

This section discusses the early efforts that were made in order to enable access to distributed

resources (most especially to the grid utility computing). Several methods/approaches to

building Science Gateways have already been discussed in the previous sections. These

methods are seen in the form of frameworks which are used to design and develop simple and

intuitive user interfaces for accessing various DCIs. These interfaces are used to perform

useful operations such as job submission, user management, data management, and resource

monitoring and information discovery activities. Traditionally, an approach to accessing these

Chapter 2: REVIEW OF LITERATURE

60

Adedeji Oyekanmi Fabiyi

environments such as the command line interface is very complicated and often very difficult

to use most especially for the non-ICT expert users. This can effectively affect the uptake of

the technology as their complexities ensure that potential users are not naturally inclined to

make use of their services. An alternative to this complex interface therefore is the Science

Gateway which ensures that scientists are presented with a more familiar, simple but very

intuitive user interface where users can only focus on conducting experiments without having

to worry about the details of the underlying middleware and infrastructures that does their

computation. Before the emergence of Science Gateways however, several other projects

were developed and utilised in enabling access to the Grid utility computing which will thus

form the basis of discussion in this section. Some of these projects and their timeline are

summarised in Figure 2.10.

An early effort to develop Grid portals is seen in the work of Fox et al (2002) which

summarises the status of Grid Computing Environments (GCE) by analysing and categorising

the first-generation portal efforts. The authors argued that globus toolkit which is the most

widely used Grid middleware does not provide adequate support for building GCEs. As such,

they discussed other such building blocks for developing GCEs (other than the globus toolkit)

such as Java, CORBA, Python and Perl Community Grid interfaces. Other building blocks

also include the Grid Portal Development Toolkit (GPDK) which is a JavaBean suite that is

suitable for Java based GCE environments and was designed to support Java Server Pages

(JSP). Together with the Commodity Grid (COG) Toolkits, it provides the most widely used

framework for developing GCEs that make use of Globus middleware. GCEs were

categorised into two main classes namely Problem Solving Environment (PSE) or the

application portals and the shell-like system environments otherwise called the GCEShell

portals. While PSEs provide custom interfaces for specific sets of applications, GCEShell, on

the other hand, grants access to basic command for file manipulation activities. For all the

efforts made in GCE projects, a major flaw of this achievement was the fact that there were

no common portal programming interfaces which limited the amount of collaboration and

code sharing that could be done.

A gradual change began in the early 2002 when two important concepts such as the

reusable portal components known as portlets and web service architectures were introduced.

This was the period when portlet components became a Java standard where java portlet

Chapter 2: REVIEW OF LITERATURE

61

Adedeji Oyekanmi Fabiyi

components were standardized with the Java Specification Request JSR 168. As a

consequence, reusable functional components are provided based on standard-based portlets

which could then be shared between different portal installations. Alameda et al (2007) in

their work reported on the efforts of the Open Grid Computing Environments (OGCE)

collaboration where a ‘three-tiered architecture’ model of enterprise portal system was

introduced. These layers include the user interface tier, the service tier and the resource tier.

The OGCE collaboration is said to be built on this model and the general problem that needs

to be solved is summarised as the need to support container-independent portlet development,

simplifying development through abstraction layers of Grid clients and the need to support

user communities by integrating collaboration tools and services. Other research and

development efforts in the OGCE collaboration (in addition to the portlet development

environment) include the Grid computing abstraction layers (The JAVA COG KIT), advanced

grid services for information, science application and data management and services for

group collaboration.

Another early effort at developing computational science portals is seen in the Grid

Portal Development kit (GPDK) which was reported in the work of Novotny (2003). As

already discussed by Fox et al (2002), the authors noted that GPDK leverages off commodity

Web technology such as Java server Pages and servlets as well as existing globus/Grid

middleware infrastructure. The GPDK is said to provide several key reusable components for

accessing various Grid services in addition to facilitating the development of Grid portals.

Similar to the OGCE portals GPDK is based on the standard three-tier architecture however,

it adopts the one-three tier used by most Web application servers. The authors also

emphasised GPDK’s use of Model-View-Controller (MVC) design pattern in separating

control and user interface layer from the application logic. They also noted that the GPDK

(much like OGCE) utilises Java CoG toolkit to provide the necessary functionalities needed

to implement the various Grid services which was embedded within the core GPDK service

beans. GPDK was developed with the sole purpose of providing services such as submission,

cancellation and monitoring (job submission activities), storing and retrieving data to and

from a variety of storage resources (file transfer), resource discovery mechanisms to discover

hardware and software resources (information services) and the ability to perform operations

by securely authenticating to remote resources. These services are embedded within the

GPDK service beans.

Chapter 2: REVIEW OF LITERATURE

62

Adedeji Oyekanmi Fabiyi

Zhang, Kelley and Allen (2007) attempts to compare two Grid portal solutions namely

GridPortlets and OGCE collaboration, both used by portal developers to interact with Grid

middleware by providing many of the tools that portal developers need to build their

application-specific Grid portals. They set out to investigate the strengths, weaknesses and

the limitations of both solutions with a bid to providing an insight into the evolution of Grid

portal solutions. While GridPortlets implements its API using Java Commodity Grid Toolkit

(Java CoG) by providing a high-level interface for developers to access a range of Grid

services OGCE, on the other hand, utilises JavaCoG as its main API for accessing the Grid

resources. As already mentioned, the basis of the OGCE architecture is the pluggable

components in the form of service and portlets. While GridPortlets consist of many reusable

components for its user interface (which could be easily customised into other portlet-based

applications) OGCE on the other hand does not comply with the JSR-168 standard which

makes it a major disadvantage to portlet development as it is not interoperable with other

portlet container.

A Grid portal that leverages a set of high-level Globus-Toolkit-based Grid libraries,

otherwise known as the Grid Resource Broker (GRB) was discussed by Aloisio et al 2007. Its

primary goal is to hide the complexity of the underlying middleware by mediating between

the user request and Grid services. The GRB was considered necessary to bridge the gap

between the scientists and the Grid. The GRB is made up of such components as profile

manager, credential manager, resource finder, job assistant and job supervisor. The authors

utilised Liferay portal framework as the GRB portlet container as it provides a set of JSR-168

compliant APIs to develop portlets using a Model View Controller (MVC) based design

pattern.

Another research in the area of Grid web-based portal is seen in the work of Chrabakh

and Wolski (2007) which provides a web portal for solving satisfiability problems using the

national cyberinfrastructure. This was done with the sole purpose of providing a simple and

public interface (called the GridSAT) to complex Grid applications, which run on different

distributed computational resources in various national computing centres. The GridSAT is

implemented in the form of a master-client model where individual clients share intermediate

results by communicating directly with one another. They ascertained that GridSAT is made

up of five main components such as the resource manager, the job manager, the client

Chapter 2: REVIEW OF LITERATURE

63

Adedeji Oyekanmi Fabiyi

manager, the scheduler and the checkpoint server. In addition to these components, the

GridSAT also consist of the monitoring and discovery system (MDS) and the Network and

Weather Service (NWS) otherwise known as the external components which the master uses

to interact.

Figure 2.10 Grid Project Timeline between 1988-2011 (Foster and Kesselman, 2010)

Several application portals are created from a particular methodology for Grid portal

development. This approach is seen in the work of Thomas et al (2002) where an approach to

Grid portal development (otherwise known as GridPort) was used to create application

portals that support different user applications and communities. The authors described their

experiences in building and developing Grid portals which are all based on the GridPort

toolkit. The authors used the globus toolkit as its Grid middleware. As such, resources that

could run on globus is added to the portal system. Different aspects of the portal system

which supports the general requirements of various portals are represented as layers. These

include the clients, NPACI portals, portal services, Grid services and computer resources. The

portal system supports two categories of services that are accessible via any application

portal. These are information (machine status, load, and usage), and interactive services

(secure transactions that provide user with direct access to HPC resources). They also

summarised the functionalities of the GridPort based portals as: authentication, jobs and

commands, accounts and files.

Chapter 2: REVIEW OF LITERATURE

64

Adedeji Oyekanmi Fabiyi

Another attempt at coordinating and managing distributed computing, data and

resources, on distributed infrastructure is seen in the work of Youn et al (2007) on the

GEONGrid portal. In their approach, they designed and implemented GEON specific services

for building portlet components embedded in the Service Oriented Architecture (SOA). They

based their emphasis on the development of reusable services and portlet components that are

interchangeable between GEON member sites. Using the SOA, developers can create specific

implementations of service components and make provision for services which different

portals can share. The authors grouped the main portlet components into three different areas

such as account management for the administrator, resource management and science

applications and utility services for the portal user.

Akram et al (2007) also followed the approach of Youn et al (2007) of separating the

business logic from the presentation logic by using the Service Oriented Architecture (SOA)

approach. They ascertained that since portlets are compatible with J2EE, therefore they

provide additional capabilities necessary in the SOA. In addition, the authors described ways

in which the functionalities within a portal server (with the help of the Web service gateways)

are provided to support Grid applications. To carry out their task, i.e. build Council for the

Central Laboratory of Research Councils (CCLRC) portal infrastructure that will support

research facilities, they leverage on the work of the National Grid Service (NGS) and e-

HTPX portals.

Yang, Akram and Allan (2007) did a similar work to Youn et al (2007) and Akram et

al (2007) by recognising the need for a clear separation between the user interface, business

logic and data layers which could be defined using the J2EE component oriented architecture

(COA) and thus help draw a clear high-level picture of the architecture. In their approach, the

authors implemented both the business logic and data layers by defining session beans and

entity beans in a technology known as Enterprise JavaBeans (EJB). EJB is one of the most

important technologies in J2EE which provides the server side component architecture. Also,

the authors described ways of converting a COA based system to a service oriented

architecture (SOA) based system by exposing the EJB as web services.

A TeraGrid gateway for the Linked Environments for Atmospheric Discovery

(LEAD) was described in the work of Christie and Marru (2007). This application portal is

Chapter 2: REVIEW OF LITERATURE

65

Adedeji Oyekanmi Fabiyi

designed to make the most of grid resources for the sole purpose of exploring mesoscale

meteorological phenomena. They also described the various technologies such as fine-grained

capability based authorization, an application service factory toolkit and a web service based

workflow execution engine which they utilised in bringing complex and powerful tools to

educational and research networks. The LEAD portal is based on the Open Grid Computing

Environment (OGCE), a portal toolkit/solution that was earlier discussed in the work of

Alameda et al (2007) which provides utilities that are used to develop standards-compliant

portlets which are deployed in a Grid environment. A customised version of GridSphere is

used as the Portal container as it complies with the JSR-168 specifications for building

portlets. Similar to the OGCE portlets, it makes use of the JavaCoG Kit by providing an API

for contacting Grid services. The capabilities provided by the LEAD portal includes data

management, query tools, workflow configuration, workflow composition and workflow

monitoring.

Bogdanski et al (2007) in their work utilised what they termed the PROGRESS

project to address the need for a flexible and user-friendly Grid portal environment. In

addition to having a low-level grid management system such as GLOBUS or UNICORE

Toolkit which has been implemented using a Grid resource broker, the Grid Service provider

(GSP) was also integrated. This acts as an extra layer between the user interface (portals) and

the Grid resources. They ascertained the two most important services of the GSP as: Job

Submission Service and the Application Management service. The authors also attempted to

draw parallels between the PROGRESS approach and GridPort portal solution as described in

the work of Thomas et al (2002) by claiming that both systems attempt to coordinate low-

level services into more sophisticated services and tried to make provision for an integrated

high-level API that cuts across a number of low Grid level services.

Ogawa et al (2007) developed the GridASP framework to provide application

execution services by binding the application providers, service providers and resource

providers together. It also enables the Grid utility computing by realising the Grid-enabled

application service providers. According to Ogawa et al (2007), its principal aim is to enable

collaboration between diverse specialisations to improve return on investment and to assist

new businesses in taking advantage of the available technical know-hows. In addition to

using GridPort toolkit and GridSphere as the standard portal framework, the GridASP

Chapter 2: REVIEW OF LITERATURE

66

Adedeji Oyekanmi Fabiyi

framework is built on top of several other standard technologies such as the Apache Tomcat

Jetspeed-1 portal framework. The resultant GridASP realises a general purpose Grid portal by

providing a collection of services, scripts and tools and thus provide features such as job

management, data management, visualised workflow editor and resource brokering services.

Fabra et al (2015) proposed a management and execution framework that can

integrate different heterogeneous computing resources. Their research stems from a lack of

metadata to describe the resources in the Universia repository which complicates their

classification, search and recovery. To resolve this issue, the authors identified ADEGA

algorithm as a tool to semantically annotate the available educational materials across the

different platforms, such as Cloud, Grid and Clusters. The time required to achieve a

processing of up to 15 million educational resources was estimated to be more than 1600

years of CPU time.

In an attempt to provide users with a single point of access to HPC resource centres in

Europe, Oleksiak et al (2007) observed that most of the HPC centres in the HPC-Europa

project were already deployed with their individual site specific Grid infrastructures and HPC

and (as a result) an HPC-Europa portal that will provide a flexible, intuitive and transparent

user interface would be of utmost importance. Thus, the underlying infrastructures and the

heterogeneity (even of Grid middleware) of the resources and services provided are hidden

from the users. This framework is built on top of the Gridsphere portal framework and it

follows a separated business logic (portlet services) which is based on the Spring framework.

The fact that all the portlets included in the SPA are all JSR-168 standard compliant makes it

portable between portal containers/frameworks as seen with both Gridsphere and Spring

framework. The authors claimed that the support for the management of applications for

building Science Gateways for specific domains or groups of applications was also integrated

with the SPA portal. Functionalities provided by the SPA portal include job submission, job

monitoring and control, accounting, data management, authorization, and resource

information.

In order to integrate numerical response from thousands of large-scale earthquake

engineering computational simulations, a simple web-based computational portal framework

was developed by Youn et al (2014). The resultant framework enables access and use of high

Chapter 2: REVIEW OF LITERATURE

67

Adedeji Oyekanmi Fabiyi

performance computing resources. It also facilitates an environment that is able to upload

input model files, edit input model file, create job scripts, query running job status and

specify HPC job parameters. An effective and efficient simulation environment that helps

scientists in their daily work and speeds up scientific results/discoveries may be promoted

using the web-based science portal.

According to Binns et al (2007) the lack of sufficient access to advanced visualisation

resources prompted the development of visualisation gateway which provides simplified

access to these resources. In this work, the authors described the existing implementation of a

system known as Tgviz, which makes resources available to a wide range of users and

implemented on the OGCE and uPortal. Also, the ParaView portlet (an application that

supports models for processing and visualising large data sets) was discussed. They also

raised some potential technology and policy issues surrounding the TeraGrid resources, such

as security and data management and possible solutions to them.

Also similar to the work of Wilkins-Diehr (2007) and Gesing et al (2011), where

scientists from different fields gather together to exchange ideas and share experiences in

order to advance the field of Grid portals, is the work of Thomas (2007). The author

summarised the outcome of a workshop that focused on Grid Computing Portals and its

environments. The purpose of this workshop is to create an environment for portal developers

to share and exchange ideas in order to advance the field of Grid portals which consequently

resulted in a comprehensive survey of Grid portals. At this workshop, papers that were

presented fall into two categories of technologies (i.e. portal frameworks and SOA/Web

technologies, Grid usage, and sensors/instruments) and applications (i.e. water resource

management, coastal observation, computational material science, collaborative informatics

and geology). A component-based architecture based on portal frameworks such as Jetspeed,

the OGCE, GridSphere, Sakai and Java/EJB's, were used for most of the portal architectures.

This architecture includes the lowest layer that consists of the Grid and compute resources,

the Web/Grid service API layer, the portlet API layer and the Portal login layer. Tasks

performed by application portals include data access, job management, account and

credential management, visualisation of results and workflow management.

Chapter 2: REVIEW OF LITERATURE

68

Adedeji Oyekanmi Fabiyi

While several authors examined the access to the Grid environment by developing

methods and approaches for doing it, Jha et al (2013) on the other hand examined a wide

range of scientific applications in order to provide a better understanding of the different

abstractions in use and how they can be improved to support the future development,

deployment and execution of high performance scientific applications on a broad range of

infrastructures. In order to identify the common utilities, patterns and abstractions that exist

within the different scientific applications that were being considered, the authors surveyed

the existing models and methods in use. In their findings, it was discovered that there are no

single coherent means by which distributed applications are enabled as well as the lack of

generality in the different applications as a result of the various ad hoc solutions used for

developing and executing many distributed applications.

2.6 Workflow Management System

The previous sections discussed efforts that were made to facilitate the execution of scientific

applications on distributed systems from projects such as Grid portlets, web portals, GPDK,

OGCE, Science Gateway frameworks and their corresponding instances. In addition to the

aforementioned approaches, another method used to systematically execute these applications

on DCIs is the workflow management systems. Workflow is “the automation of business

process, in whole or in parts, during which documents, information or tasks are passed from

one participant to another for action according to a set of procedural rules” (Jablonski and

Bussler, 1996; Hollingsworth and Hampshire, 1995). They are usually done to model and

execute scientific experiments. Workflows are usually of two types namely concrete and

abstract workflows. The concrete workflow involves the listing of the tasks to be performed

together with the instructions required to carry out the tasks. The abstract workflow, on the

other hand, consists of the information about the task and how these tasks are interconnected.

According to Görlach et al. (2011) and Deelman et al. (2009) a scientific workflow

comprises of four major phases in its lifecycle. These are the composition, deployment,

execution and monitoring and the analysis step. A SWMS is therefore defined as means to

process workflows and organise data sets for many scientific computing scenarios. Several

SWMSs are now being used extensively in many scientific fields such as computational

engineering, astronomy, modelling and simulation, etc., to perform scientific operations.

Such SWMSs include Galaxy (Goecks, Nekrutenko and Taylor, 2010), Pegasus (Deelman et

al., 2015), Kepler, Swift (Zhao et al., 2007), Askalon (Fahringer et al., 2007), Chiron

Chapter 2: REVIEW OF LITERATURE

69

Adedeji Oyekanmi Fabiyi

(Ogasawara et al., 2013), Triana (Taylor et al., 2007), Taverna (Oinn et al., 2004) and the

SWMS Gateway framework such as the WS-PGRADE/gUSE (Kacsuk et al., 2012) which is

discussed in detail in Section 2.5. A brief discussion about these different types of SWMSs

will now be summarised as follows:

2.6.1 Types of workflow management system

Galaxy was developed for data intensive scientific research communities such as the bio-

informatics field. It is a web-based open source infrastructure project which is integrated on

the Cloud via the cloudMan middleware and is easily deployed on the Amazon EC2 (Afgan

et al., 2010). It is made up of different layers such as presentation, user services, Workflow

Execution Plan (WEP) generation and the infrastructure layers which are used for the

execution of scientific applications.

Pegasus is used in a wide variety of disciplines such as bioinformatics, astronomy, climate

modelling, etc. (Deelman et al., 2015). It is a WFMS that ensures that complex scientific

workflows are mapped onto distributed resources. A series of configurable refinements are

made to ensure that abstract workflows are transformed into executable workflows. It is

portable to different distributed infrastructures such as grid and cloud resources. Its main

components include mapper, local execution engine, remote execution engine, job scheduler,

and a monitoring facility. Similar to the Galaxy SWMS, it consists of different layers such as

presentation, user services, WEP generation and Infrastructure layer

Kepler is a workflow orchestration, composition and construction SWMS. It utilises different

workflow engine and workflow models to perform data modelling and analysis. It also

consists of the different layers such as presentation layer, user services layer, WEP generation

layer and the infrastructure layer. According to (Wang and Altintas, 2012) Kepler operates

with the Cloud via Kepler/Amazon EC2 actors and thus creates EC2 virtual machines and

Elastic block store volumes.

Swift is a SWMS that was developed from the GriPhyN Virtual Data Systems (VDS). It is

used for scheduling and optimising the execution of programs using a simple virtual data

language. For the execution of scientific workflows, it performs five major functions namely

program specification, scheduling, execution, provenance management and provisioning of

resources. In addition, it also consists of the different execution layers such as presentation,

Chapter 2: REVIEW OF LITERATURE

70

Adedeji Oyekanmi Fabiyi

user services, WEP generation and infrastructure layers. It can also provide dynamic

provisioning for Clusters, Grid and Cloud computing.

Askalon is a SWMS that was originally developed for the Grid environment. It supports the

composition and execution of scientific workflow applications and it is primarily used to

simplify the optimisation and development of Grid workflow applications that uses the Grid

computing power. However, it is now deployable in the cloud environment via the dynamic

creation of virtual machines (Fahringer et al., 2007). It utilises different layers for the

execution of scientific applications. These layers include the presentation, user service, WEP

generation and the infrastructure layers.

According to (Oinn et al., 2004) taverna is an SWMS open source myGrid project which was

developed to provide a high-level middleware that exploits grid technologies. It can invoke

services such as AXIs for web service applications and WSDL4J for data documentation. In

addition, it consists of the different layers such as the presentation, user services, WEP

generation and the infrastructure layers which are used for the execution of scientific

applications.

Chiron, an algebraic-based parallel scientific workflow engine, is designed for the execution

of parallel workflows in an HPC environment (Ogasawara et al., 2013). The algebraic

workflow is used to aid better distribution of scientific workflow execution in parallel. It also

consists of the presentation layer, user services layer, WEP generation layer and the

infrastructure layer. Chiron uses a Message Passing Interface (MPI) to enable communication

between processing nodes and could be deployed on the cloud through an extension known as

Scicumulus, which ultimately enables dynamic provisioning.

Triana is a Grid based problem-solving environment (PSE) and SWMS. It was first

developed for data analysis for gravitational waves project GEO 600 (Taylor et al., 2007) and

it integrates a variety of workflow construction and management components. It utilises a

drag-and-drop graphical workspace for workflow composition. It also consists of the

presentation layer, user service layer, WEP generation layer and the infrastructure layer

(which aids the deployment of computing resources in the grid or cloud) for execution of

scientific applications.

Chapter 2: REVIEW OF LITERATURE

71

Adedeji Oyekanmi Fabiyi

The WS-PGRADE/gUSE workflow management system is different from the

aforementioned SWMS in that it provides a framework for the rapid prototyping and

development of Science Gateways community of practices. It is open source software that is

used for research and commercial activities (Kiss et al., 2014). In addition to the presentation,

user service, WEP generation and the infrastructure layers, it also supports different aspects

of scientific workflows such as parameter sweep and meta-workflows. (For more on this

SWMS, see above sub-section 2.5.1 on WS-PGRADE/gUSE). The different SWMS features

and components are summarised in Table 2.4 below.

Chapter 2: REVIEW OF LITERATURE

72

Adedeji Oyekanmi Fabiyi

Table 2.4 Scientific Workflow Management System Features and Components

Chapter 2: REVIEW OF LITERATURE

73

Adedeji Oyekanmi Fabiyi

2.7 Major Science Gateway Functionalities

In this Chapter several projects (such as DCI Portals, grid portlets, SWMS, and Science

Gateway projects) which lend themselves to the transparent access of DCI resources are

discussed. These technologies are characterised by different attributes and functionalities

which are required by the communities that need them. They aid in the easy access to Cloud

and Grid resources and enable applications from within web browsers. They also help to hide

the details of the underlying infrastructure by exposing only the science-specific parts of the

scientific application to be executed in the various DCIs. These solutions which are often

presented in the form of web portals, Grid portlets, SWMS and Science Gateways, provide an

interface for running and executing scientific jobs on distributed resources. Research

communities are often aided by facilitating and delivering DCI services over the web and

these functionalities are embedded in web portals, which is one of the possible ways to access

remote computing resources being offered by DCI environments.

This section will give a summary of the high level functionalities of the technologies

that aid in the transparent access of the services provided by the DCIs as discussed

throughout the literature. Table 2.2 captures the commonly used Science Gateway

frameworks and their widely adopted functionalities. Table 2.5 will therefore integrate and

build on Table 2.2 by highlighting the most important and commomly used functionalities

across the different projects which have been discussed throughout the literature. Based on

the review of literature, the most important and commonly used functionalities which are

required for consuming the services provided by the DCI resources include security

management, job management, workflow management and data management. These

functionalities which are taken at a high level are summarised across the different projects

discussed earlier in this Chapter. These functionalities are presented in Table 2.5 below as

follows.

Chapter 2: REVIEW OF LITERATURE

74

Adedeji Oyekanmi Fabiyi

Table 2.5 Summary of the Attributes and Functionalities supported by the different DCI

projects discussed in the literature

DCI Project Low level

Functionalities,

User and DCI

Requirements

Security

Manageme

nt

Job

Submission

Manageme

nt

Workflow

Manageme

nt

Data

Manageme

nt

Section

Number/R

ef

PROGRESS

Approach Grid

portal

Job submission

service, data

management system

 -

 Yes

 -

 Yes

(2.5.3)

Bogdanski et

al (2007)

LEAD Portal Authorisation

framework,

Application service

factory, Web service

based workflow

system, data

management, query

tools, workflow

configuration,

workflow

composition,

workflow

monitoring.

 Yes

 -

 Yes

 Yes

(2.5.3)

Christie and

Marru

(2007)

GEONGrid

Portal

Data Registration

services, data

mediation services,

data integration

services, workflow

services, job

submission service,

job monitoring

service, certificate

management

services.

 Yes

 Yes

 Yes

 Yes

(2.5.3) Youn

et al (2007)

Web-based

Science Portal

for Earthquake

Engineering

(OpenSees)

Upload input model

file, create job script,

edit input model file,

specify HPC job

parameters, submit

large number of jobs,

query running job

status, store output

data

 -

Yes

 -

 Yes

CCLRC

(NGS) Portal

X-ray data

collection, access to

HPC resources,

GRAM job

submission, MDS

resource discovery,

GridFTP, batch job

monitor, Storage

 -

 Yes

 -

 Yes

 (2.5.3)

Akram et al

(2007)

Chapter 2: REVIEW OF LITERATURE

75

Adedeji Oyekanmi Fabiyi

resource broker

(SRB).

OGSA-DAI

portal

Data access, data

discovery, data

integration, uniform

interface to access

data.

 -

 -

 -

 Yes

Genius Grid

Portal

Security service, job

submission service,

data management

service, interactive

service.

 Yes

 Yes

 -

 Yes

(2.5.2)

Barbera et al

(2007)

NPACI portals

Information services,

interactive services-

access to HPC

resources, submit,

monitor, delete jobs,

manipulate

directories and files,

and manage

accounts.

 Yes

 Yes

 -

 Yes

(2.5.3)

Thomas et al

(2002)

NBCR Portal Advanced

computation, data

services,

visualisation

capabilities

 -

 Yes

 -

 Yes

Bayes, Basins

and Estauries

Portal

Authentication

service, job

submission, file

migration.

 Yes

 -

 -

 Yes

Grid Resource

Broker Portal

(GRB)

Profile manager,

credential manager,

resource finder, job

assistant, job

supervisor.

 Yes

 Yes

 -

 -

GridSAT Resource manager,

Job manager, client

manager, scheduler,

checkpoint server.

 -

 Yes

 -

 -

(2.5.3)

Chrabakh

and Wolski

(2007)

Grid

Computing

Environments

(GCE) portals

File transfer

management, job

submission and

monitoring, data

management, user

management.

 -

 Yes

 -

 Yes

(2.5.3)

Fox et al

(2002)

Grid Portal

Development

Security, job

submission/monitori

 (2.4.1)

Chapter 2: REVIEW OF LITERATURE

76

Adedeji Oyekanmi Fabiyi

kit (GPDK) ng, file transfer,

information services.

 Yes Yes - Yes Novotny,

Russell and

Wehrens

(2004)

Open Grid

Computing

Environments

(OGCE) portal

Information services,

job and file

management

services,

authentication

services.

 Yes

 Yes

 -

 Yes

(2.5.3)
Alameda et

al (2007)

Grid Portlets Single sign-on,

resource information

provider, job

submission, job

tracking, workflow

model, physical

file/replica

management.

 Yes

 Yes

 -

 Yes

(2.5.3)

Zhang,

Kelley and

Allen (2007)

DEISA SGs Easy access to

computing resources,

easy way to submit

jobs, check job

results, and perform

post-processing and

data analysis, non-

sophisticated and

intuitively usable

GUI, and the

creation of input files

for complex

applications.

 -

 Yes

 -

 Yes

(2.5.2.8)

Soddemann,

2007

Portals for life

sciences

Support for job

submission, support

for data

management.

 -

 Yes - Yes

VisIvo TGviz

Gateway

Data management

repository, repository

for fundamental

workflows, job

submission, data

management,

visualisation (to be

added)

 -

 Yes

 Yes

 Yes

(2.5.2.7)

Sciacca et

al., 2013

In-VIGO

approach

Secure/easy access to

resources/application

s and data, dynamic

provision of

execution

environments.

 -

 -

 -

 Yes

(2.5.2.8)

Matsunaga

et al.

(2007)

Chapter 2: REVIEW OF LITERATURE

77

Adedeji Oyekanmi Fabiyi

TeraGrid

Gateway

Easy access to run

experiments,

generate datasets,

perform data

reduction and

analysis, visualise

results, collaborate

with remote users

and archive long-

term data

repositories.

 -

 -

 -

 Yes

(2.5.2.8)

Cobb et al.

(2007)

HPC – Europa

Single Point of

Access (SPA)

SG

Ease of access to the

resources of HPC

centres in Europe,

provide transparent,

uniform, flexible and

intuitive user access

to HPC, uniform job

submission, and

security and

accounting.

 Yes

 Yes

 -

 -

(2.5.3)

Oleksiak et

al (2007)

A Data-

Centric

Neuroscience

Gateway

Unified, secure and

easy access to data

and meta-data (data

discovery,

exploration,

preparation and

processing),

automatic and

interoperable file

transport, automatic

provenance

information

collection and single

sign on.

 Yes

 -

 -

 Yes

(2.5.2.6)

Shahand et

al., 2015

Molecular

Simulation

Grid

(MoSGrid SG)

Easy and intuitive

user interfaces for

jobs, workflow

services, data and

meta data

management.

 -

 -

 Yes

 Yes

(2.5.2.8)

Gesing et

al., 2015

XSEDE/PRAC

E project

Security

mechanisms,

distributed data

management,

workflow services.

 Yes

 -

 Yes

 Yes

(2.5.2.8)

Gesing et

al., 2015

InSilicoLab

Framework

 -

 Yes

 Yes

 Yes

 Yes

Kocot et al.,

2014

(2.5.1.4)

Catania

Science

 - (2.5.1.1)

Barbera,

Chapter 2: REVIEW OF LITERATURE

78

Adedeji Oyekanmi Fabiyi

Gateway

Framework

(CSGF)

 Yes

 Yes Still being

developed to

include

workflow

 Yes Fargetta and

Rotondo,

2011

WS-

PGRADE/gUS

E

 -

 Yes

 Yes

 Yes

 Yes

(2.5.1.2)

Balasko,

Farkas and

Kacsuk,

2013

Vine Toolkit - Yes Yes - Yes (2.5.1.3)

Russell et al.

(2008)

The above Table 2.5 presents a summary of the most important and commonly used

functionalities across the different projects discussed earlier in the literature. These projects

aid in the easy access to the services offered by the distributed resources. While several

projects such as web portals and Grid portlets have earlier been used to provide access to DCI

resources (most especially to Grid utilities), Science Gateway framework on the other-hand is

a fairly recent concept used to provide a transparent access across different DCI resources.

According to Table 2.5, each of the aforementioned projects require at least one or

more of the major functionalities (as identified throughout the literature) for consuming the

services provided by DCI resources. Out of the 29 projects listed in the table, 16 require some

form of security management services such as security and accounting mechanisms, single

sign-on/authentication services and credential/certificate services. This accounts for more

than 50% of the entire project in Table 2.5 and therefore signifies the need for security

management functionalities in the framework of services required by DCI projects. Similarly,

22 projects require job management services such as job scheduler, job assistant and

supervisor, job tracking and uniform job submission and monitoring. More than 70% of the

projects in Table 2.5 require these services which therefore signify the need for job

management functionalities in the framework of services required by DCI projects. In

addition, 9 projects require workflow management services such as workflow configuration,

workflow composition and workflow monitoring. This accounts for about 30% of the entire

projects and hence, the need for workflow management functionalities. Finally, 27 projects

require data management services such as data and meta-data management, long term data

archiving, data registration and mediation, data analysis and file transfer which accounts for

Chapter 2: REVIEW OF LITERATURE

79

Adedeji Oyekanmi Fabiyi

90% of the entire project. Consequently, the need for data management functionalities is

therefore paramount in the framework of services required by DCI projects.

Table 2.5 therefore presents the high level functionalities which are utilised for

developing Science Gateways for the purpose of consuming the services offered by DCI

resources. Consequently, a Science Gateway should support these different functionalities

such that, since different DCIs support different types of security mechanisms, Science

Gateways should provide support for all the security mechanisms required by the different

DCIs. Similarly, different DCIs implement different types of job submission protocol

therefore a generic Science Gateway framework should be equipped to handle the different

submission protocols. In addition, Science Gateways should provide workflow editing and

execution services in order to support more advanced application types. Finally, different

DCIs apply different data access and management protocols and the more generic Science

Gateway frameworks should be equipped to handle all the protocols. Instances of Science

Gateways also known as application-specific Science Gateways are developed from scratch

to include one or more of the aforementioned high-level functionalities which may largely

depend on the services required by a given community of practice.

The entire Chapter 2 has discussed the technologies which can be used to aid the

transparent access of DCIs as well as identify the major Science Gateway functionalities

required by different communities of practice. More so, it discusses the different portal

technologies and Science Gateway frameworks that may be used for the implementation of

these functionalities within Science Gateways. However, throughout the literature, there are

no methodologies (which can provide the sequence of steps) to aid developers in the actual

implementation of their scientific applications in Science Gateways. The different

functionalities discussed in this section will serve as the basis for both the framework of

services required by Science Gateways and the proposed methodology which can be utilised

for developing these services in Science Gateways which is discussed in Chapter 4.

2.8 Open Science Research

This Chapter discusses the technologies that can aid the easy accessibility and availability of

scientific software applications to communities of practice worldwide. However, making use

of Science Gateways to execute scientific jobs on DCIs produces results or some form of

scientific data which can be further stored for purposes such as analysis, verification,

Chapter 2: REVIEW OF LITERATURE

80

Adedeji Oyekanmi Fabiyi

collaboration, reproduction, redistribution and reuse. Ideally, the software, data and results

presented in a scientific article should be available for other scientists to use, validate and

build upon for their own research (Taylor et al., 2016). Usually these research outputs do not

always make it to the public domain. Therefore, the reuse, replication and/or reproduction of

a scientific experiment may prove difficult.

Reproducibility refers to the fact that scientific findings are not singular events or

historical facts. It is the extent to which consistent results are observed when scientific studies

are repeated (Open Science Collaboration, 2012). In definite terms, reproducibility (and

relative terms such as repeatability and replicability) refers to whether research finding recur.

As such, scientific claims should not gain credence due to the status or authority of their

originator but by the replicability of their supporting evidence. According to (Baker, 2016),

more than 70% of researchers have tried and failed to reproduce another scientist’s

experiments, and more than half have failed to reproduce their own experiments.While some

of the scientists conceived that there is a significant crises of reproducibility, others believed

that the failure to reproduce published results means that the result is probably wrong.

However, most insist they still trust the published literature. According to (Pordes et al.,

2007), the Open Science Grid (OSG) provides a distributed facility where the consortium

members provide guaranteed and opportunistic access to shared computing and storage

resources. The innovative aspects of the project are the maintenance and performance of

collaborative (shared and common) petascale national facility for several users transferring

terabytes of data a day and providing robust and usable resources for different scientific

groups.

There are several initiatives promoting Open Science. One of these is the Energising

Scientific Endeavour through Science Gateways and e-Infrastructures in Africa (SciGaIA)

project. To support Open Science, and to promote Open Science in Africa, Sci-GaIA has

created the Open Science Platform (Taylor et al., 2016). Other initiatives include the Center

for Open Science (COS) that aims to promote Open Science research by making use of a

variety of software tools, workflows and data storage solutions to help researchers manage,

archive, discover and share research more openly. The Open Knowledge Foundation (OKF)

(a non-profit organisation) is yet another Open Science initiative which advocates open

knowledge, open data, transparency and civil participation. These initiatives help to promote

Chapter 2: REVIEW OF LITERATURE

81

Adedeji Oyekanmi Fabiyi

Open Science and ensure that research validation, reproduction, redistribution and reuse can

take place.

2.9 Summary

In this Chapter, a review of the literature of different technologies and projects which were

developed to aid the transparent access of DCIs was conducted. This ranges from API’s, Web

portals, Portal framework, Gridports, Science Gateway framework to the commonly used

SWMSs. This Chaper starts by discussing the various distributed resources and their role in

the support and execution of scientific applications. The different application programming

interfaces which are used to abstract the different middleware implementation and the

underlying infrastructure resources are also discussed. Furthermore, the different approaches

for developing Science Gateways (such as building portlets from scratch or customising an

existing Science Gateway framework) are discussed. Consequently, some of the most widely

used portal frameworks are presented. Developers may choose to build their gateways from

scratch (using portal frameworks) especially if the services are limited and the gateway is

trying to support the usage of a particular DCI. More so, Science Gateway frameworks which

are used to customise instances of Science Gateways for specific communities of practice are

discussed. These Science Gateway frameworks which include GridPort, P-Grade,

VinetoolKit, WS-PGRADE/gUSE and CSGF enable developers to build application specific

Science Gateways according to the different needs of user communities. In doing so, some or

the full power of an underlying Science Gateway framework can be exploited and hidden

behind an intuitive application-specific user interface. This process ensures that developers

who want to build such application specific gateway can achieve that in a faster and easier

way and thus help to save cost, time and manpower effort.

Furthermore, more than just simple job submissions, applications that solve complex

problems such as scientific simulations require the creation and execution of scientific

workflows. To this end, the different SWMSs are briefly analysed. This Chapter summarises

with the high-level services (such as security management, job management, workflow

management and data management) which generic Science Gateways should possess based

on the functionalities and attributes of the various technologies that are discussed. This

Chapter concludes with a brief discussion about open research and some major initiatives that

support Open Science.

Chapter 3: RESEARCH METHODOLOGY

82

Adedeji Oyekanmi Fabiyi

Chapter 3: RESEARCH METHODOLOGY

3.1 Overview

Chapter 3 discusses the philosophy behind the research and also justifies the research

methodology that was adopted throughout the study. The rest of this Chapter is organised as

follows. Section 3.2 discusses the concept of research in general - the different research

perspectives and the different philosophical assumptions that underpin the research

perspectives. In Section 3.3 the nature of the research was established and (by matching the

research questions with the research objectives) three fundamentally different research types

(Exploratory, Design and Development, and Reflective Evaluation) were utilised. Section 3.4

presents the adopted research methodology, the guidelines and outputs of the DSR as well as

justify the use of DSR approach throughout the section. The distinct nature of the research

types which is also captured in the DSR suggests the adoption and use of different

methodologies/approaches for achieving each research type. Section 3.5 therefore presents

the adopted methodology which was captured by the DSR and subsequently used to achieve

the three identified research types.

3.2 Research Approaches

A research is defined as an activity that helps in contributing to the understanding of a

phenomenon (Kuhn, 1996). This phenomenon is often conceived to be a collection of

behaviours which are specific to a given set of entities and which a researcher or a research

community has found to be interesting. Consequently, a research methodology then presents

the best applicable practices to specific issues and outlines the best ways that research could

be undertaken (Howell, 2012). Due to the considerable number of diverse communities that

contribute to Information System (IS) knowledge base such as engineering, psychology and

natural sciences, the area of Information System is dominated by multidisciplinary field

(Purao, 2002; Gregor, 2002). (Mingers, 2001; Robey, 1996) therefore investigated the issues

concerning diversity in IS such as the merits and demerits of adopting many different

research traditions. Consequently, the adoption of a suitable research approach then becomes

paramount to a successful research of this nature.

Chapter 3: RESEARCH METHODOLOGY

83

Adedeji Oyekanmi Fabiyi

3.2.1 Research Perspectives

According to (Stolterman, 2008; Fallman, 2003), there are four different types of research

paradigms, namely positivist, interpretive, critical and design science. However, DSR

according to (Vaishnavi, V. and Kuechler, W., 2015) is yet another set of synthetic and

analytical techniques and perspectives which compliments the positivist and interpretive

perspectives for performing research. In order to have a thorough understanding of the

different research perspectives, it is important to outline and analyse these perspectives from

different point of view. This is briefly discussed as follows:

Positivist: This is the prediction of human behaviour by making use of the principles of

natural sciences. Science, according to this view, is an objective, logical and systematic

method of analysis of phenomena in order to enable the accumulation of reliable knowledge

(Nuryatno, 2003). Positivist studies are therefore used primarily to test theories in a bid to

increase the productive understanding of the phenomena being studied. (Orlikowski and

Baroudi, 1991)

Interpretive: This is the principle of understanding the human behaviour based on

interpreting the lived experience. In contrast to the dualist/objectivist of the positivist

approach, Interpretive evolves transactional/subjective relations. These kinds of studies

assume that people create their subjective meanings while they interact with their world.

Critical: This approach is based on the transformation of the condition of the humanity of

people. It assumes that reality is socially constructed. These studies aim to critique the status

quo through structural contradictions with social systems and in the process, restrictive social

conditions are said to be alienated.

Design science: This approach (also known as the science of the artificial) is a body of

knowledge about the design of artificial (man-made) objects and phenomena/artefacts

designed to meet certain desired goals. DSR has been contrasted with the natural science

research. This was done by (Simon, 1996) in his book “The Sciences of the Artificial” where

he defined natural science as the body of knowledge about some class of things and objects of

phenomena in the world which describes how they behave and interact with each other.

Design science, on the other hand, is a body of knowledge about the design of artificial or

man-made objects and phenomena/artefacts which is designed to meet certain desired goals.

Chapter 3: RESEARCH METHODOLOGY

84

Adedeji Oyekanmi Fabiyi

These types of research are said to be the two predominant types. This is consistent with the

ontological beliefs (the different sets of philosophical assumptions are discussed in the next

section) where the phenomena under investigation is either assumed to be objective and

therefore independent of humans (natural), or they are subjective and therefore depends on

the actions of humans in creating and recreating them (artificial/man-made). It is a widely

held view that IS research is largely based on the natural science approach however,

(Carlsson, 2006) argued that (in order to advance the field) such research should be

complemented with the knowledge that is based on the design science approach.

3.2.2 Philosophical assumptions for the different research perspectives

To fully understand the basic assumptions and postulations of the different research

perspectives, three fundamental questions must be addressed by the paradigm of science.

These are ontological, epistemological and methodological. A fourth assumption, the

axiological philosophical assumption, was discussed by (Vaishnavi, V. and Kuechler, W.,

2015). The classification of these assumptions constitutes the philosophical stances that

researchers may adopt when doing their work. These philosophical assumptions are defined

as follows:

Ontology (beliefs about physical and social reality): These beliefs are associated with the

phenomena under investigation by ascertaining whether the empirical world is assumed to be

objective (i.e. independent of humans) or subjective (by depending on the action of humans

in creating it). As such, it is the study that simply describes the nature of reality.

Epistemology (beliefs about knowledge): This study explores the nature of knowledge by

simply ascertaining what knowledge depends on, and how researchers can be sure of what

they know. It therefore entails the criteria for the construction and evaluation of knowledge.

Methodologies: This indicates which research methods are appropriate for the generation

of valid empirical evidence. It simply investigates the possible ways or approaches that

researchers may choose to obtain knowledge.

Axiology (study of values): This study defines the value that is associated with a given

subject and their corresponding effects on the conduct of research. These values could be

held by an individual or groups of individuals and the reason behind such values.

Chapter 3: RESEARCH METHODOLOGY

85

Adedeji Oyekanmi Fabiyi

The different types of philosophical assumptions as they relate to all four research

perspectives (positivist, interpretive, critical and design) are therefore illustrated in Table 3.1

below.

Table 3. 1 Philosophical Assumption of Research Perspectives. (Vaishnavi, V. and Kuechler,

W., 2015)

The authors compared and contrasted the DSR and the positivist ontology where a

single, given composite system forms the unit of analysis. For DSR, even the problem

statement is subject to revision as the research effort proceeds. However, even though design

science researchers are comfortable with alternative world states, most of them believe in a

single, stable underlying physical reality that constrains the multiplicity of the world-states.

This is therefore consistent with the positivist research paradigm and the ontology

philosophical assumption.

In light of the discussion thus far and in the context of our research, the DSR which is

underpinned by a shift from positivist research is the most suitable approach that is chosen

for this research. Initially, from the positivist-ontology point of view, this research aim is to

explore a new approach to developing scientific software applications in Science Gateways.

This is considered as a single reality in this world and is therefore consistent with the

positivist philosophy. Furthermore, new approach to developing scientific software

applications in Science Gateways will be explored based on observing existing scientific facts

which, using subsequent experiments, could then be converted into knowledge. This is also

Chapter 3: RESEARCH METHODOLOGY

86

Adedeji Oyekanmi Fabiyi

consistent with the positivist-epistemology. In addition, a comparative study is performed on

the effectiveness of the proposed MESSAGE methodology which is, once more, compatible

with the positivist-methodology. Finally, a thorough evaluation of the system is performed to

predict the truth about its findings which are captured in the positivist-axiology.

3.3 Nature of the Research

To determine the nature of this research and subsequently the research type(s) that are

appropriate for addressing it, the research objectives as well as the research questions that

were identified in Chapter 1 are re-visited. Consequently, attempt is made to match the

research questions with the reseach objectives. It is believed that this approach will give more

clarity and will help to identify the adopted research type(s) for this study. The aim of this

research is to create a methodology for developing scientific software applications in Science

Gateways. This (as anticipated) is beneficial to different communities of practice to develop

their scientific applications and to ensure that potential users can adopt the DCI technology

without being deterred by the complexities of the underlying infrastructures.

As mentioned earlier, the research questions are matched to correspond to the

different research objectives that were identified in Chapter 1. As such, correlations made

between research questions and research objectives are highlighted below as follows:

1) RQ1 corresponds to the first identified research objective.

2) RQ2 corresponds to the second and third identified research objectives.

3) RQ3 corresponds to the fourth and fifth identified research objectives.

The above correspondence between research questions and research objectives shows

that all three research questions are fundamentally different in nature. As such, it is evident

that to address each of the research questions, different research types must be employed.

Exploratory research is used to investigate a problem that has not been clearly defined

(Shields and Rangarajan, 2013). Since the first question seeks the best approach for

developing scientific software applications in Science Gateways, this type of research is ideal

for RQ1 in order to explore alternative approach for developing scientific software

applications in Science Gateways. This exploration is done based on the related literatures on

Chapter 3: RESEARCH METHODOLOGY

87

Adedeji Oyekanmi Fabiyi

the different technologies and approaches that can enable the easy access to distributed

resources and thus help to achieve the first research objective.

Similarly, a relative research type is adopted to answer the second research question

(RQ2) which will consequently help to achieve our second and third research objectives.

Since both objectives involve processes which will lead to the development/actual

implementation of the artefact (i.e. the Infection Model portlet), there should be a different

methodology for this phase. There are a number of ways (in the form of software

development approaches) through which the design and development of software artefacts

can be achieved. The different approaches to software development and the adopted approach

for this research are briefly discussed and justified in Section 3.5.

Lastly, reflective assessment which is used for verification purposes will be used to

answer the last research question (RQ3). This question deals with the effectiveness of the

proposed MESSAGE methodology as well as the developed software artefacts. As a

consequence, this research type is suitable for conducting this research question and thus help

to achieve the last research objectives. In addition, empirical research methods which can

also be used for hypothesis generally starts with a given theory where the researcher

continuously tests the theory or develops it by practice in the real life scenario (Davis,

Eisenhardt and Bingham, 2007). According to Yin (2009), a case study is “an empirical

inquiry that investigates a contemporary phenomenon within its real-life context, especially

when the boundaries between the phenomenon and context are not clearly evident”. A case

study will therefore be used in this study to verify how effective the proposed MESSAGE

methodology is.

3.4 Research Methodology

In the previous section, three different research types were identified based on matching the

research questions and the research objectives in Chapter 1. The consequence of having three

distinctly different research types is that a research methodology that is capable of

incorporating all the identified research types must be adopted. DSR methodology which

gives a detailed description of how a typical DSR effort should proceed and consists of

different stages (such as awareness of the problem, suggestion, development, evaluation, and

conclusion) seems to be the most suitable approach for this type of research. As a result, a

Chapter 3: RESEARCH METHODOLOGY

88

Adedeji Oyekanmi Fabiyi

description of how DSR (which captures the three distinctly different research types) is

employed for this research is discussed in the following section.

3.4.1 Design Science Research Methodology

DSR was earlier defined as a research that is performed simply by using design as a research

method or technique. However, (Hevner and Chatterjee, 2010) gave a more detailed

definition of DSR which they described as a technology-oriented, problem-solving approach

that seeks to design artefacts which can help in defining ideas, practices, and products and

which can serve as a basis for analysing, designing, implementing, and using information

systems in an effective and efficient manner. The primary objective of DSR is to design

innovations (artefacts) for information systems research and these artefacts usually form the

basis of the outputs/outcomes of DSR. Furthermore, the outputs of design science is

classified into seven (7) distinct forms of constructs, models, framework, architectures,

design principles, methods and instantiations. These different outputs are explained in the

next section.

3.4.1.1 Outputs of Design Science Research

As already mentioned in the previous section, the output of DSR is the development of

software innovations (artefact). These artefacts can take several forms of outputs such as

constructs, models, framework, architectures, design principles, methods, and instantiations

each of which represents design science knowledge (Vaishnavi, V. and Kuechler, W., 2015).

The classification of DSR output as given by (Purao, 2002) and built upon by (March and

Smith, 1995) are given below as:

Constructs: They are the conceptual vocabulary of problem/solution domain. Constructs

are refined throughout the DSR cycle and are used during the conceptualisation of the

problem.

Model: This is a set of statements which are used to express the relationships between

constructs. It uses the construct to represent a real world simulation (such as a defined

problem and its solution).

Chapter 3: RESEARCH METHODOLOGY

89

Adedeji Oyekanmi Fabiyi

Method: This is made up of a set of steps or guidelines for performing a task. In order for a

solution statement model to be realized, methods serve as a goal directed plans for

manipulating constructs.

Instantiations: This is the implementation of an artefact with the use of constructs, model

and methods. While other types of artefacts are referred to as abstract artefacts, Instantiation,

on the other hand, is referred to as material artefacts. However, a design theory usually

consists of both the abstract artefacts as well as instantiations (material) artefacts. The

research output is therefore expected to take this very form. Table 3.2 summarises the

different DSR outputs based on the expected outputs of this research.

Table 3.2 Design Science Research Outputs

 Output Description
1 Constructs The conceptual vocabulary of a domain

2 Models A set of propositions or statements expressing

relationships between constructs

3 Methods A set of steps used to perform a task – how-to knowledge

4 Instantiations The operationalization of constructs, models and methods

and other abstract artefacts.

March and Smith (1995) built on the above by adding a fifth research output. This

research output is otherwise known as better theories-design theories. Even though the final

output of this research effort is in the form of an instantiation, it is imperative for the nature

of this research to also indicate several other DSR outputs produced in the course of

developing the final artefact. These outputs are briefly discussed in the following section.

3.4.1.2 Relating the DSR outputs to the final research output

Instantiations: The most suitable output which may be used to describe our DSR output is

seen in the form of an instantiation of the software artefact. As already discussed,

Instantiations make use of constructs, model and methods in the implementation and the

realisation of the artefacts in an environment. As a result, the nature of our research can also

indicate the existence of several other DSR outputs as follows:

Chapter 3: RESEARCH METHODOLOGY

90

Adedeji Oyekanmi Fabiyi

Constructs: This research attempts to explore new approaches to executing scientific

software applications on worldwide infrastructures and to ultimately create a methodology

for developing scientific software application in Science Gateways. It is intended to be of

immense benefit to different communities of practice. The third research question (RQ3)

deals with measuring how effective the proposed methodology is. This will project some

metrics that will help measure whether the proposed methodology has fulfilled the intended

purpose and therefore establish the constructs of the artefact.

Model: Based on the construct that was defined above, another output of this artefact

research is seen in the conceptual model that can be used to capture the relationships within

the components of the artefact for future research efforts. This may include the use of the

proposed methodology in developing scientific software applications for the different

scientific domain by adopting other Science Gateway frameworks.

Methods: This is made up of a set of steps or guidelines employed in answering the second

research question (RQ2). These steps and guidelines are explained in great detail in Section

3.5.

Furthermore, in order to understand the different forms that knowledge could take, it

is good to start by understanding the possible types of knowledge contribution of DSR. These

include Invention (inventing new solutions for new problems), Improvement (developing

new solutions for known problems), Adaptation (innovative adaptation of known solutions to

new problems) and Routine design (applying known solutions to known problems). Routine

design is said to be hardly considered as a significant research contribution and for a

knowledge contribution to be considered to be significant, it must be significant within the

current state of the knowledge in the research area.

3.4.2 Design Science Research Cycle

In order to achieve the desired research outputs and, consequently, the required artefacts,

adherence to well-specified processes is paramount. These set of processes serve as the basis

for a successful design and construction of an artefact and may involve the actual sequence of

events used in constructing an artefact (building) and ways of determining how well the

artefact performs (evaluation) (March and Smith, 1995). Nonetheless, the building and

evaluating processes are not very clearly stated. As a consequence, (Von Alan et al., 2004)

Chapter 3: RESEARCH METHODOLOGY

91

Adedeji Oyekanmi Fabiyi

further highlights the seven guidelines that are crucial to the successful building and

evaluation of artefacts. These guidelines are summarised in table 3.3.

Table 3. 3 Guidelines for Research Science Design

Furthermore, (Vaishnavi, V. and Kuechler, W., 2015) described a computable design

process model that should be followed which further builds on the processes that were

suggested by (March and Smith, 1995) and (Von Alan et al., 2004). This process is otherwise

known as the DSR cycle which is seen in Figure 3.1. This constitutes the different stages that

a design science researcher should go through in order to contribute new and true knowledge

as this needs to be the key focus of DSR.

According to Figure 3.1, the process steps for a DSR consist of five different stages of

Awareness of problem, Suggestion, Development, Evaluation, and Conclusion. Each of the

stages has a corresponding output in the form of proposal, tentative design, artefact,

performance measures, and results. The Awareness of the problem stage is where an

interesting research problem is identified either from multiple sources or new developments

in the industries. The corresponding output of this phase, as evident from the diagram, is a

proposal. The Suggestion phase, on the other hand, is the stage where new system

Chapter 3: RESEARCH METHODOLOGY

92

Adedeji Oyekanmi Fabiyi

functionalities/requirements are proposed and defined. The output here, along with a

proposal, is the Tentative design of the artefact. In addition, further development and

implementation of the Tentative design is done at the Development phase, and the output

here is the desired artefact. The Developmental phase is followed by a thorough evaluation of

the developed artefact which is based on the criteria that were made explicit in the Awareness

of the problem/ Proposal phase. The output of this phase is in the form of the different set of

measures that should be carried out on the developed artefact. The final phase of the DSR

cycle/process is the Conclusion phase where the results of the efforts are consolidated based

on the behaviour of the artefact and the new knowledge is categorised as either facts or used

as the basis for further research. The output here is the Results obtained from evaluating the

artefact.

Figure 3. 1 Stages in DSR methodology by (Vaishnavi, V. and Kuechler, W., 2015)

In order to determine how relative our research approach is, attempt has been made to

match the identified research types (Exploratory, Design and Development, and Reflective

Assessment) with the seven guidelines for constructing an artefact, by (Von Alan et al.,

2004), and the DSR cycle/process, by (Vaishnavi, V. and Kuechler, W., 2015). Table 3.4

below therefore shows how our research types correspond with the DSR cycle, DSR outputs

and the seven guidelines for constructing artefacts which have been discussed above. This

will therefore justify (and culminate into) the adoption of the DSR methodology.

Chapter 3: RESEARCH METHODOLOGY

93

Adedeji Oyekanmi Fabiyi

Table 3. 4 The Correspondence between the Research Guidelines, DSR cycle, DSR outputs

and the identified research types

Research Guidelines DSR Cycle DSR Outputs Identified Research

Types

1.Problem Relevance Awareness of problem Constructs Exploratory

2. Design as a search

process

Suggestion Models

Methods

Exploratory

3 -Research Rigor

-Design as an Artifact

Development Instantiation Design and Development

4 – Research Rigor

-Design Evaluation

Evaluation Design theories/better

theories

Reflective Evaluation

5–Research Contributions

-Communication of

Research

Conclusion Design theories/Better

theories

 -

3.4.3 Rationale for choosing Design Science Research Methodology

DSR is defined as the learning through building (creation) of an artefact. A careful study

reveals that the DSR cycle maps well with the three different research types (Exploratory,

Design and Development, and Reflective Evaluation) as well as the seven guidelines for

constructing an artefact which was suggested by (Von Alan, March et al. 2004) (see Table

3.4). As such, DSR appears to be the most suitable research methodology that may be used to

address all three different research types. Furthermore, according to (Purao 2002), and in

addition to the artefacts, design research offers two more types of research contributions such

as reproducible knowledge (a novel artefact which consist of the different DSR outputs that is

used to further improve the existing knowledge base) and methodologies and theories (which

present ways to support the phenomena of interest based on the development and use of the

novel artefact). As a result, DSR is the implementation of artefacts which could well be used

to improve theories and thus serve as a significant research contribution. The different stages

Chapter 3: RESEARCH METHODOLOGY

94

Adedeji Oyekanmi Fabiyi

of the DSR and how it maps with our three research types as well as the seven guidelines for

constructing an artefact is seen as follows:

In this research, the awareness of the problem phase (Proposal) involves the need to

create methodologies for developing scientific software applications and execute jobs in a

distributed environment, particularly, via a Science Gateway interface. As a consequence, the

major problem that is identified includes the non-availability of appropriate methods and

procedures for developing the major Science Gateway functionalities discussed in Section 2.7

of Chapter 2. In identifying this problem, this research made use of the Exploratory research

study (which is our first research type) and also employed the second guideline (the research

relevance) of the seven guidelines for constructing an artefact.

The suggestion phase (Proposal and Tentative design) relates to finding ways in

which scientific software applications are currently being developed and suggests

improvements based on the findings. Similar to the Awareness of the problem phase, our

Exploratory research study still applies in this phase and the sixth guideline (Design as a

search process) for constructing an artefact was employed to tackle this problem.

The development phase (Artefact) relates to the best possible ways for constructing

the actual artefact and, as such, the first guideline (Design as an Artefact) and the fifth

guideline (Research Rigor) were utilised. This also corresponds to the second research type

(design and development) which was earlier identified.

The evaluation phase (Performance measures) relates to the different measures for

evaluating our designed artefact based on the criteria which were set out in the proposal

phase. According to (Von Alan, March et al. 2004), evaluation is carried out based on metrics

such as accuracy, reliability, performance, completeness, functionality, usability, and

consistency. In addition, based on the guidelines for constructing an artefact, the third

guideline (Design evaluation) and the fifth (Research rigor) have been employed. This also

corresponds to the third research type (Reflective Assessment) which was earlier identified.

The final phase of our research, the conclusion phase (Results), is the stage where the

results of the first four processes of realising the artefact are discussed and generalisations are

made. Based on the seven guidelines for constructing artefacts, the fourth (Research

Chapter 3: RESEARCH METHODOLOGY

95

Adedeji Oyekanmi Fabiyi

contributions) and the seventh (Communication of research) guidelines was employed, which

also aligns with the third research type.

3.5 Methodology for the different aspects of the Design Science Research

We have already established three distinctly different research types based on the research

questions and the research objectives which are used in the course of this study. These are

Exploratory, Design and Development, and Reflective Evaluation studies. We have also

established a research method, known as the DSR methodology, which is employed to

address all the different types of research types. This methodology is also supported by the

seven guidelines that were given by (Von Alan et al., 2004) to be utilised for the successful

building and evaluation of artefacts and therefore provides a strong rationale for its adoption.

As a consequence, the methodology that is adopted for the different stages of DSR and thus

the different research types is described in the following subsections.

3.5.1 Awareness of Problem and Suggestion (Exploration)

As earlier discussed the output of the awareness of the problem phase which will form the

basis of a new research effort, is a formal or informal proposal. For the course of this study, a

proposal for the different attributes and functionalities (in the form of services) that Science

Gateways should possess was produced after a thorough review of the literature was carried

out in Chapter 2. This produced an awareness of the problem by presenting the essential

Science Gateway services and the need to have a systematic approach of developing these

services in Science Gateways. Suggestions based on the identified problems come in the form

of a tentative design. The design and implementation of the different case studies will

therefore be detailed in subsequent chapters of this thesis.

3.5.2 Software Development (artefact design and development)

The process of software development constitutes one of the most important aspects of the

entire research since it involves the sequence of steps that will lead to the realisation of the

actual artefact. As such, it is important to choose a suitable software development

methodology, otherwise known as software development lifecycle (SDLC) models or

software process models. According to (Boehm, 1988), SDLC models are important

primarily because they provide the necessary guidance on the order in which a software

project should perform the required tasks so as not to pursue the development and evaluation

Chapter 3: RESEARCH METHODOLOGY

96

Adedeji Oyekanmi Fabiyi

phases in the wrong order. This guidance is usually seen in the form of order, phases,

increments, prototypes and validation tasks which an artefact should follow to achieve the

desired output. Consequently, the choice of software methodology for developing specific

software artefact is of utmost importance.

In this section, a brief overview of the different SDLC models which may be used for

the realisation of a software artefact is presented. Furthermore, the choice of software

methodology which has been adopted for this research and the reason behind its selection is

justified. An overview of the SDLC models which was presented in the work of (Ruparelia,

2010) is seen in Table 3.5 as follows:

Table 3. 5 Software Development Methodologies

Methodology Merits De-merits

1. Spiral An improvement on the Waterfall

model

Subjective risk assessment

2. Rapid Prototyping Geared towards user satisfaction Limited testing is required

3. Waterfall It is very well documented It lacks flexibility

4. Object-Oriented Programming Can easily adapt to change Absence of object organization

5. Code and Fix Mostly adapted for small software Code is really expensive to maintain

6. Incremental Delivery Critical requirements are satisfied for

prompt use

Little or no user feedback

SDLC, which is generally used to describe the steps that must be followed within the

lifecycle process, is a conceptual framework that helps in the structure of the stages involved

in the development of an application from its initial feasibility study through to its

deployment. As shown in Table 3.5, there are different types of SDLC models currently in

use. However, the SDLC models which can be used for the development of the artefact such

as waterfall approach, and to a lesser extent the Rapid Application Development (RAD) and

Spiral approach are discussed in a bit more detail. (Check appendix A for the discussion of

the different software development methodologies).

Chapter 3: RESEARCH METHODOLOGY

97

Adedeji Oyekanmi Fabiyi

The very nature of this research makes the waterfall approach the ideal SDLC model

to adopt for the development of the artefact. Firstly, end-users are not required to test the

developed artefacts, therefore the much needed flexibility in adapting to user requirements,

which is often seen in other SDLC models such as RAD, is not of utmost importance.

Secondly, the waterfall approach is well suited for this research because the user

requirements which were defined at the early stages of the research remains consistent

throughout the research process and, since the aim of the research is to explore new

approaches to developing scientific software applications in Science Gateways, the ultimate

aim, therefore, is not the artefact but the proposed methodology. However, the artefacts are

used to implement different aspects of the proposed methodology.

3.5.3 Evaluation and Conclusion (Reflective Evaluation)

In order to address the evaluation and conclusion stage and thus evaluate the proposed

methodology for developing Science Gateways for communities of practice, a Reflecive

Assessment as well as an empirical enquiry (in the form of a case-study) which investigates a

contemporary phenomenon within its real life context is employed (Demeyer, 2011). This is

usually employed when the boundaries between the phenomenon and the context are not

clearly evident. Also, since we have employed the design science approach which is the

learning through building of an artefact, our hypothesis (it is feasible to create methodology

for developing scientific software applications in science Gateways) has to be empirically

studied. According to (Runeson and Höst, 2009), an empirical research tool is the case study

therefore, the proposed methodology is implemented by using real life scenarios to test and

evaluate ideas and theories.

3.6 Summary

This Chapter discusses and justifies the research methodology that was adopted throughout

this research. It starts by discussing the different research perspectives and philosophical

assumptions and how they relate to the study at hand. Furthermore, the nature of the research

was established and, by matching the research questions with the research objectives, three

fundamentally different research types (Exploratory, Design and Development, and

Reflective Assessment) were identified. In addition, it justifies the adoption of the DSR and

proposed the approach that is used to achieve the research types and, consequently, the

different aspects of the DSR.

Chapter 4: MESSAGE METHODOLOGY

98

Adedeji Oyekanmi Fabiyi

Chapter 4: MESSAGE METHODOLOGY

4.1 Overview

While the previous Chapter discusses the philosophy behind the research and the adopted

research methodology, this Chapter presents and analyses the essential services that a Science

Gateway should possess as well as propose a MESSAGE methodology that may be used to

develop the services in Science Gateways. The following Section 4.2 presents the different

Science Gateway services which are required for developing an application in a Science

Gateway for particular communities of practices (as identified in the review of literature).

Furthermore, these Science Gateway services are investigated using an exemplar Science

Gateway framework known as CSGF, which is discussed in Section 4.3. Section 4.4 presents

the proposed MESSAGE methodology for developing scientific software applications in

Science Gateways and the summary of the entire chapter is discussed in Section 4.5.

4.2 Generic Framework for Science Gateway Services

Chapter 2 identified four high-level functionalities/attributes, the approaches used for

developing and deploying these functionalities and established that the easy access to

distributed resources, specifically for the execution of scientific applications on distributed

resources, is the most important Science Gateway requirements.

This chapter proposes a MESSAGE methodology for developing scientific software

applications in Science Gateways. The proposed MESSAGE methodology will help to create

services in Science Gateway to be utilised by different user communities for performing

activities such as job submission, job monitoring, job retrieval, workflow execution, data

management, etc. To execute any kind of job on DCIs, users can simply utilise the Science

Gateway interface to perform the aforementioned activities which will help in ensuring that

users can focus solely on performing experiments without having to worry about the details

and complexities of the underlying infrastructures and services.

Science Gateways can help to deliver all the high-level functionalities and attributes

which are required by Science Gateways to execute and manage jobs for different scientific

communities within a distributed environment. Figure 4.1 consists of three main parts which

Chapter 4: MESSAGE METHODOLOGY

99

Adedeji Oyekanmi Fabiyi

shows the components necessary to execute jobs in DCIs. These include:

 Graphical User Interface

 SG Service Layer

 DCI Resources Layer (such as Cloud, Grid, HPC, etc.)

Figure 4. 1 Generic Framework for Science Gateway Services

In order to execute a scientific application in a distributed environment, end-users use a front-

end application with a graphical user interface. Consequently, users do not require to

understand the underlying infrastructure and framework of services but can focus solely on

the specifics of their own scientific experiment.

The Graphical user interface Layer presents a thin client which scientists or end-users could

use to interact with the required Science Gateway service in order to carry out the desired

scientific tasks. This is usually in the form of web interfaces on a workstation (such as

Chapter 4: MESSAGE METHODOLOGY

100

Adedeji Oyekanmi Fabiyi

Desktop/laptops/mobile apps) of a potential Science Gateway user.

The Science Gateway Service Layer (which consists of the different services which may be

implemented by the proposed MESSAGE methodology) is made up of the different high-

level functionalities and attributes of Science Gateways which are obtained from the review

of the literature. These include the security management, job management, workflow

management and data management.

The DCI Resources Layer consists of distributed resources such as Grid and Cloud and any

other resources in which a particular scientific application has been configured to run. This

type of configuration is normally done at the Science Gateway level where a developer can

specify the resources on which any given applications could be deployed.

The following section will discuss in detail the different Science Gateway services as

mentioned in the Science Gateway service layer. The Science Gateway service layer which

consists of the major functionalities that Science Gateways should possess include:

4.2.1 Security Management

One of the basic requirements of Science Gateways which was described throughout the

literature and incorporated as one of the major services of Science Gateways is security

management. Security service is of major importance as they have emerged as mediums

through which large numbers of user communities can easily and securely access resources at

a number of organisations. More so, as some of these resources may be utilised via a Science

Gateway interface to process data for communities of practice, especially where the data is of

sensitive nature, securing access to the gateway services, the infrastructures and the data

accessed by them becomes paramount. These security activities are often carried out to

prevent resource usage and leakage of vital information to unauthorised users and are usually

implemented in four different forms of authentication, authorisation, auditing and accounting

(AAAA). All these aforementioned security mechanisms are jointly used to define how

gateways are accessed, how access to each service is minimised, how the use of each service

is accounted for, and how each of the Science Gateway components are made secure.

Authentication mechanism is a service that is used to verify that users are actually

who they claim to be (i.e. a process of verifying the identity of a user or process). This

service usually precedes the other aforementioned security mechanisms as it serves as the

basis for establishing user authorisation privileges as well as the subsequent auditing and

Chapter 4: MESSAGE METHODOLOGY

101

Adedeji Oyekanmi Fabiyi

accounting that ensues. Usually, users first register via a site which then creates their

credentials/accounts (using the combination of user-name or email and a password) and

subsequently collects their vital information. A user is then able to perform subsequent log-on

to the Science Gateway using the credentials provided during registration. A user may log-on

to the Science Gateway after a successful registration process has taken place. There are other

means of providing user authentication such as single sign-on where external identity

providers may be used to identify users.

Authorisation mechanism is a service that gives permission to specific resources and

services. Once a user has successfully log-on, they still need to acquire permission to access

specific applications and services which are required to perform experiments in distributed

environments. User defined roles and privileges are usually stored in credential services such

as Lightweight Directory Access Protocol (LDAP), Virtual Organisation Membership Service

(VOMS), Central Authentication Service (CAS). Once the identity of the user has

successfully been verified, user roles are then mapped to those performing DCI transactions

using the aforementioned credential services. Consequently, access to resources (including

data and metadata) are controlled based on user access rights and the groups/communities

which they belong.

Auditing mechanism is a service that records and keeps all user activities for future

reference. In the event where the resource owner observes the use of the Science Gateway for

malicious activities, investigation must take place thereafter, to determine its cause and the

appropriate action that must be taken to prevent future occurrences. A prior record of all the

user activities will therefore enable such investigations to take place. The auditing

mechanisms will also ensure compliant with the European Infrastructure VO Portal and DCI

Security Traceability and Logging policies.

Accounting mechanism (which is less important than the other aforementioned

security mechanisms is frequently neglected and not usually supported) is a service that

enforces resource usage quotas, cycles, bandwidth, and other use policies. Communities

usually have agreements in place with the resource provider which normally grants

community allocations for the required services. Communities may desire to divide their

allocation among its members and, to achieve this, the community needs to know how much

Chapter 4: MESSAGE METHODOLOGY

102

Adedeji Oyekanmi Fabiyi

of the allocation each of the members has used. Using a Science Gateway in this way for

accounting can ensure that resources communicate the total consumption of each request on

its completion back to the Science Gateway which then makes it a natural place to keep track

of each user's total resource usage.

4.2.2 Job Management

Job management is one of the most important services that should be provided by a Science

Gateway. It may involve several aspects of job management such as submission, processing,

monitoring and the collection of final results/outputs. Science Gateways are used to facilitate

access to DCI resources to handle large-scale computations (usually performed in jobs) for

scientific applications.

Science Gateways provide facilities for the submission, monitoring and the output

retrieval (for both sequential and parallel jobs) to different DCIs. Such facilities can be

equipped to provide support for different DCIs as opposed to just having gateways which are

tightly bound to specific or small number of DCIs. Furthermore, different DCI's implement

different types of job submission protocols and Science Gateways should be equipped to

handle them all. Consequently, Science Gateways are now equipped to provide access to

several DCI types with different middlewares operated by different providers with different

policies and procedures. Science Gateways make use of several solutions for accessing and

submitting jobs on different DCI types. Two of the commonly used solutions include SAGA

(for accessing Globus, UNICORE, gLite, etc.) and DCI Bridge (for accessing GT2,

UNICORE, ARC, OpenStack, Eucalyptus, etc). These two solutions have already been

explained in detail in Chapter 2.

4.2.3 Workflow Management

Scientific workflow Management is used to execute applications that solve really complex

problems such as scientific simulations. In order to support these advanced types of

applications within Science Gateways, workflow composition, deployment, editing and

execution services should be provisioned. The different SWMS (such as Kepler, Swift,

Triana, etc.) which may be used to support such advanced applications is briefly discussed

and summarised in Chapter 2. More so, WS-PGRADE/gUSE Science Gateway (in particular)

which is designed to facilitate workflow management was described in great detail.

Chapter 4: MESSAGE METHODOLOGY

103

Adedeji Oyekanmi Fabiyi

4.2.4 Data Management

When jobs are executed, they usually generate a huge amount of data and therefore require

access to data storage. Also, the most important entity in scientific research activity is data.

Therefore, Science Gateways should be equipped with very effective data management

facilities. Furthermore, different DCI's may have different access protocols as different

scientific applications might be stored on different storage resources. As such, Science

Gateways should enable access to the most important storage types. This is mostly achieved

by hiding the technical details of accessing the different storage resources and providing an

easy to use interface via Science Gateways for managing, uploading, downloading and

transferring data between different types of storage resources. Science Gateways should also

enable easy data discovery by providing tools to query on metadata. Data operation activities

can be summarised to include storage, access control, metadata management, data sharing,

etc.

4.3 Investigation of the different services of the Science Gateway

This section investigates the different services of Science Gateways discussed in Figure 4.1

using one of the Science Gateway framework that was discussed in Chapter 2. The adopted

Science Gateway framework that was used in this research is the Catania Science Gateway

Framework (CSGF). The CSGF approach is used to investigate all the different Science

Gateway services that were identified such as security management, job management,

workflow management and data management as shown in Figure 4.1. According to the

literature (and based on the number of application-specific gateways or instances of the

gateway in use) CSGF along with WS-PGRADE/gUSE is one of the most commonly used

Science Gateway Frameworks. CSGF was chosen because it represents an exemplar gateway

which happens to cater for most of the services that were identified, and thus gives the

medium through which these services could be further investigated. In addition, it hides the

details and complexity of the underlying middleware and services from users by providing an

abstraction over the different middleware implementtions and underlying infrastructures.

4.3.1 Security Management Service

CSGF adopts three (3) levels of security mechanisms that allow users to access Science

Gateways and their associated DCI resources. In this approach of developing Science

Gateways, authentication and authorisation has been decoupled. For the authentication, the

Chapter 4: MESSAGE METHODOLOGY

104

Adedeji Oyekanmi Fabiyi

CSGF rely on the identity federation, the SAML standards and its Shibboleth

implementation.

The second level of security is provided by the LDAP server which performs the

authorisation of users who request access to the different resources of the DCIs. Unlike

authentication, authorisation is carried out at the Science Gateway level. For this process,

user roles and privileges are stored in the LDAP registry.

The third level of security is executed by the users tracking and monitoring database

(also See Chapter 2). This is the auditing process which is done to store all the user

information performed via a Science Gateway on every DCI transactions. It interacts directly

with the job engine to ensure that all user activities conducted on DCI resources are recorded.

The non-repudiability of Grid transactions which is one of the most important Grid Security

Infrastructure requirements is also achieved in this way. The user Tracking and Monitoring

database also realise the accounting mechanism of the Science Gateway by implementing

flow controls over the rate of interactions which are being executed and the number of job

submissions per Science Gateway user.

4.3.2 Job Management Service

The CSGF uses a module known as job engine of the Catania Grid and Cloud engine for job

management and the JSAGA API (also See Chapter 2) to submit jobs towards different DCIs.

The job engine manages the whole life cycle of the job execution right from the submission

stage until the final outputs are retrieved. The job engine maps all job operations to JSAGA

functionalities thereby allowing users the full use of the job management services. More than

just simple job submissions, job operations such as monitoring/status check and retrieval of

outputs are also mapped as part of JSAGA functionalities.

4.3.3 Workflow Management Service

The CSGF utilises Kepler for the execution of workflows in a distributed environment.

Kepler utilises different workflow engine and workflow models to perform data modelling

and analysis. It consists of the different layers such as presentation layer, user services layer,

WEP generation layer and the infrastructure layer. It operates with the cloud via

Kepler/Amazon EC2 actors and thus creates EC2 virtual machines and Elastic block store

volumes. (The CSGF is currently working on using Kepler but is yet to be fully implemented

within the framework. However, this could serve as a platform for conducting future work in

Chapter 4: MESSAGE METHODOLOGY

105

Adedeji Oyekanmi Fabiyi

this research (See future work discussion in Section 8.6 of Chapter 8).

4.3.4 Data Management Service

In the CSGF, all data operations are managed by a module known as data engine. Data

operations may include: upload from local storage to remote storage, download from remote

storage to local storage, 3rd party file transfer between two remote storages, update and edit

operations, etc. The data engine is a module within the Catania Grid and Cloud engine which

is used for data management and it uses the JSAGA API to execute the aforementioned data

operations. In addition, the data engine also enables the direct transfer between the Science

Gateway and all storage elements within the DCI environment. It ensures the possibility of

arranging files in folders in ways similar to the structure of file systems on the physical disk.

The Data Engine utilises an Object-Relational Mapping (ORM) library which provides a

framework that enables the mapping between the actual database instance (MySQL) tables

and each Java objects.

4.4 Proposed Methodology for Developing Scientific Software Applications in

Science Gateways

Some of the essential services which a Science Gateway should possess (as seen in Figure

4.1) have been discussed in Section 4.2. These functionalities include security management,

job management, workflow management and data management. As discussed earlier, the

investigation of these different services is done using a well-known Science Gateway

approach otherwise known as CSGF.

Several applications may need to adapt one or more of the aforementioned Science

Gateway services therefore a methodology for developing the applications and the services

they require becomes really paramount. Consequently, this section will outline a proposed

MESSAGE methodology that can be used to develop a scientific software application in

Science Gateways. A case study is developed to test and implement the proposed MESSAGE

methodology while a second case study will be used to examine its feasibility.

Chapter 4: MESSAGE METHODOLOGY

106

Adedeji Oyekanmi Fabiyi

Figure 4. 2 A Proposed Methodology for Developing Scientific Software Applications in

Science Gateways (MESSAGE)

The MESSAGE methodology in Figure 4.2 starts by analysing a simple case study in

(1) that is suitable for implementing the proposed MESSAGE methodology for developing

scientific software applications in Science Gateways. Different aspects of the case study such

as the scientific domain where it is applicable, the problem areas, the software use and how

different actors/users will interact and benefit from its use are discussed in the case study

description stage.

Chapter 4: MESSAGE METHODOLOGY

107

Adedeji Oyekanmi Fabiyi

The portlet functionalities in (2) define the major components of the portlet. Figure

4.1 captures both the back-end oriented Science Gateway services as well as the front-end

(graphical user interface) layer. The backend provides the necessary DCI access mechanisms

which are necessary to realise the typical gateway functionalities. Therefore, the major focus

in (2) is to define specialised user interfaces that will provide the required front-end for the

target user communities. This includes user interfaces for job submission, certificate

management, file and data management, etc., for the execution of jobs in DCIs. The choice of

user interface usually depends on the different communities of practice or the kind of

application that needs to be supported on the Science Gateway. In essence, each user

community typically requires tailored user interface functionalities based on their specific

needs or domain of science. Therefore, the portlet functionalities defined at this stage can

either be specific to the needs of a particular community or generic to different communities

of practice (which are already embedded within Science Gateway frameworks).

 The general requirements of the portlets is categorised into software requirements,

hardware requirements, Science Gateway requirements and user requirements. The software

requirements in (3.1) consist largely of both the operating systems (such as MS Windows or

Linux OS) and also partly consist of the software stacks required for enabling the Science

Gateway technologies. The hardware requirements in (3.2) on the other hand simply define

the required system resources (such as Grid and Cloud services) where scientific jobs will

ultimately be executed in a distributed environment. The Science Gateway requirements in

(3.3) define a suitable Science Gateway approach required for developing a portlet (i.e

whether the portlet is developed from scratch or customised from existing Science Gateway

framework and the adopted Science Gateway framework if the latter option is chosen).

However, the different user requirements that are incorporated within the user interface layer

and which usually defines the portlet functionalities are not defined at the requirements

section. The user interface (otherwise known as the Graphical User Interface) consists of the

front-end layer which may be utilised by a Science Gateway user in order to interact with the

back-end services of DCIs. Therefore, the user requirements are captured in the portlet

functionalities stage in (2).

Chapter 4: MESSAGE METHODOLOGY

108

Adedeji Oyekanmi Fabiyi

 Two different approaches may be adopted in order to develop and deploy fully

functional scientific software applications in Science Gateways. The first approach is the

decision point in (A) where developers can decide whether to develop portlet from scratch.

At this point, if a decision has been taken to create the portlet from scratch, appropriate portal

or web application framework, web container and database management system are

configured for use with the required backend services. However, this approach may be time

consuming as portal frameworks do not come with back-ends that support access to DCIs.

The second approach is the decision point in (B) where developers can identify suitable

Science Gateway framework (if a decision has been taken not to develop the portlet from

scratch). There are different Science Gateway Frameworks (discussed in Chapter 2) that

developers can utilise in order to develop their application specific Science Gateways. By

identifying a suitable Science Gateway framework, developers already have the required

configuration for specific portal or web application framework, web container and database

management system which are tightly coupled with the adopted Science Gateway framework.

This process initiates the customisation of the portlet in (4) by having the necessary

configurations for the development environment and the actual implementation can thus

begin. The option to develop application specific Science Gateways from existing Science

Gateway frameworks is better (in terms of time and effort) than developing scientific

applications from scratch as it is already provisioned with the necessary back-ends that

support access to different DCIs and realise the typical gateway functionalities such as job

submission management, security management, file and data management and workflow

management. In addition, this approach has the added advantage discussed in (A) where

portlets are built using portal frameworks such as Liferay portal, since Science Gateway

frameworks are already built on top of such portal frameworks. Developers can therefore

select any one of these approaches (i.e A or B) based on the type of application to be

developed as well as other factors such as time constraints.

 The Science Gateway software stacks are defined by web/portal framework (in 5.1),

web container (in 5.2) and database management system (in 5.3) which provide the various

enabling technologies essential for developing both the Science Gateway frameworks and the

application specific Science Gateways. This includes a portal or web application framework

for executing applications (such as Spring and Liferay), a web application container for

hosting the applications (such as glassfish and tomcat server) and a database management

Chapter 4: MESSAGE METHODOLOGY

109

Adedeji Oyekanmi Fabiyi

system (such as MySQL) that keeps track of users, service actions and states. Furthermore,

the configuration and use of the aforementioned software stacks is very important especially

for developers who have opted to develop their portlets from scratch. However, most of the

Science Gateway frameworks already come with the required configurations for specific

portal or web application framework, web container and database management system (in

addition to them being written on specific portal technologies). It is important to clarify here

that since the researcher has opted to customise from existing Science Gateway framework,

only one part of the MESSAGE methodology was tested. As part of the future work of this

research, the other part of of the MESSAGE methodology in 5.1, 5.2 and 5.3 where

developers need to develop Science Gateways from scratch, specify and set-up the different

configurations (for the web/portal framework, web container and database management

system) will be tested.

 There are two main advantages when developing portlets from existing Science

Gateway frameworks. The first is the provision of access to existing DCIs which is made

possible via modules that enable portlets to interact with different DCI resources. Examples

include the Grid and Cloud engine (which adopts the OGF standard SAGA and its JSAGA

implementation of the CSGF) and the DCI-Bridge which are both generic job submission

service that can submit jobs to all the major DCI types. Both of these modules have been

explained in great detail in Chapter 2. They are used to provide the DCI access mechanisms

which are required for the realisation of the Science Gateway services in Figure 4.1. They are

typically generic in nature and can thus be used for the development of different Science

Gateway instances. In a similar manner to the software stacks discussed above, these types of

modules are tightly coupled with specific Science Gateway frameworks which can ultimately

reduce the time needed to develop fully fletched application specific Science Gateways. The

second advantage of using already existing Science Gateway frameworks involve the

identification and configuration of the required DCI resources which are necessary to execute

scientific jobs. These DCI resources, which are usually tightly coupled with the associated

Science Gateway framework, are used to address the needs of researchers for digital services

in terms of networking, computing and data management. A variety of working methods

based on the shared use of ICT tools and resources across different domains are used for

scientific endeavours. These tools include high-speed research communication networks,

powerful computational resources (dedicated high performance computers, clusters, large

Chapter 4: MESSAGE METHODOLOGY

110

Adedeji Oyekanmi Fabiyi

numbers of commodity PCs), Grid and Cloud technologies, data infrastructures (data sources,

scientific literature), sensors, web based portals, scientific gateways and mobile devices. All

the aforementioned ICT tools are collectively known as e-Infrastructures.

 The actual process of developing the portlet captures the steps involved in creating the

software (within a portal context), from the design of the portlet in (6), develop/implement

the portlet in (7), deploy the portlet on specific Science Gateway in (8), till it finally gets

tested in (9). These different stages are captured in the second research type (Design and

Development) which was identified earlier in this chapter, where the use of waterfall

approach was justified as the ideal SDLC required to achieve this research type. Therefore,

some relevant stages of the waterfall approach such as the portlet design,

development/implementation, deployment and test are incorporated in the proposed

MESSAGE methodology. The underlying importance of the MESSAGE methodology is that

by having a generic methodology in place for developing scientific software applications in

Science Gateways, it will help in simplifying the development of scientific applications

across multiple scientific domains using different Science Gateway frameworks and

technologies.

4.5 Summary

This Chapter presented the services which are considered to be essential in Science

Gateways. In addition, it investigates how the identified services are being utilised by using a

specific Science Gateway framework. More importantly, it proposes a MESSAGE

methodology for developing scientific software applications (which make use of these

services) in Science Gateways. The identified services are based on high-level attributes and

functionalities that were identified from the various technologies and projects discussed in

Chapter 2.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

111

Adedeji Oyekanmi Fabiyi

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE

FOR THE EXECUTION OF SINGLE EXPERIMENT

5.1 Overview

In this Chapter, the Design and Implementation of three different case studies (an Infection

Model, WEKA - J48 and the Visualiser) are discussed. In particular, portlets that could

execute jobs (sequentially) in a distributed environment are analysed. This Chapter begins

with a general description of the first use-case (the Infection Model), its core components and

the portlet functionalities and also outlines the rationale for having and implementing a

Science Gateway for an Agent Based Modelling Simulation (ABMS) application.

To investigate some of the different identified Science Gateway services, Chapter 5 is

organised as follows. Section 5.2 presents an overview of the first case study (an Infection

Model). Section 5.3 introduces the first version of the portlet and Section 5.4 outlines the

portlet functionalities. Section 5.5 presents the portlet requirements such as software,

hardware, and Science Gateway requirements. Section 5.6 and Section 5.7 discusses the

design and implementation of the Infection Model portlet, respectively. A general discussion

of the use of the portlet on the Science Gateway is presented in Section 5.8. Furthermore, a

second case study (WEKA - J48) is introduced and analysed in Section 5.9. Section 5.10

outlines the portlet functionalities and Section 5.11 presents the general requirements which

further builds on the requirements defined for the first portlet. Section 5.12 discusses the

design of this portlet. The implementation of the portlet is presented in Section 5.13 and the

use and test of the WEKA - J48 portlet is discussed in Section 5.14. Finally, the processes

involved in porting a visualiser portlet (that is used for the analysis of the simulation output

results of the Infection Model portlet) are also discussed. The Case study description is

presented in Section 5.15 and Section 5.16 analyses the portlet functionalities. The design and

implementation of the portlets are presented in Section 5.17 and Section 5.18, respectively.

Finally, the use of the portlet is described in Section 5.19 and Section 5.20 discusses the

summary of the entire chapter.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

112

Adedeji Oyekanmi Fabiyi

5.2 Case Study Overview – An Infection Model (1)

The SIR model is used to model the flow of people between three states: Susceptible (S),

Infected (I), and Removed (R) (Boccara and Cheong, 1992). Based on diseases status, the

individuals are divided into the three different disjoint groups. The Susceptible groups are

those individuals who are not infected but are capable of contacting the disease and become

infected. The Infected group are the individuals who are capable of transmitting the disease to

susceptibles and the Removed are the individuals who have the disease and are dead, or

isolated, or have recovered and are permanently immune. According to (Hethcote, 1976), the

SIR model without vital dynamics might be appropriate for describing an endermic outbreak

during a short time period, whereas the vital dynamics would be appropriate over a longer

time period. Vital agent diseases such as small pox may have occasional large outbreaks in

certain communities and yet be endemic at a low level in large population groups. The SIR

model is used where individuals infect each other directly (rather than through a disease

vector). An individual who recovers from the illness is also modeled to have perfect

immunity to the disease thereafter and contact between people is also modeled to be random.

Resistance against an infectious disease is the protection that reduces an individual’s risk of

contracting the disease (Reluga and Medlock, 2007). Usually, the rate that people become

infected is proportional to the number of people who are infected and the number of people

who are susceptible. If there are lots of people infected, the chances of a susceptible coming

into contact with someone who is infected is high. Likewise, if there are very few people who

are susceptible, the chances of a susceptible coming into contact with an infected is lower

(since most of the contact would be between the non-susceptible people, either infected or

resistant).

ABMS is an approach to modelling systems that comprise of autonomous, interacting

agents (Macal, North 2005). Advances in computational resources enable (across a variety of

application domains) a growing number of agent-based models. An agent is considered as

any independent component whose behaviour could range from primitive reactive decision

rules to complex adaptive intelligence. In a more practical sense, an agent may be

autonomous and self-directed, modular or self-contained, social and interacting with other

agents (Macal, North 2009). This constitutes properties and attributes that an agent can

possess. The different applications which the principles of ABMS can apply may therefore

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

113

Adedeji Oyekanmi Fabiyi

vary from modelling agent behaviour in consumer markets, supply chains, stock markets, to

mitigating the threat of bio-warfare and predicting the spread of epidemics.

More specifically, the effective control of the transmission of infections requires a

thorough understanding of the determinants and patterns which resulted in the spread of such

infections. Over the years, scientists have used simulation techniques to develop computer

models to model the interactions between individuals and their social networks. These

simulation techniques could range from deterministic to stochastic models. ABMS is used by

different scientific domains to study the behaviour of adaptive systems and usually complex

social networks. However, once a simulation has been developed, there may be challenges in

how a community of practice can quickly execute it and get results promptly especially with

Agent-based models consisting of large populations of agents. Therefore, efforts could be

hampered by performance considerations since an important criterion for ABMS is that, to be

amenable to comprehensive and systematic analysis they must be able to run quickly (Collier,

Ozik et al. 2015).

To demonstrate how Science Gateways may be used to execute jobs on DCIs, a

demonstration Infection Model is developed. The Infection Model which is implemented

using the well-known agent-based modelling simulation platform (otherwise known as the

Recursive Porous Agent Simulation Toolkit (REPAST) Simphony) is an example of an

Agent-based simulation infection model. This case study was chosen due to its features and

also its tendency to help investigate some of the Science Gateway services that were

presented in Chapter 2. The aim of the demonstration (using the Infection Model) is to show

how scientists can access an ABMS simulation that is used to study the behaviour of

infections with an annual outbreak. Three (3) different types of agents represent an entire

population namely the infected, susceptible and the recovered population and agents are

randomly located in a simulation environment. Susceptible agents try to avoid contact with

infected agents. When an infected agent approaches a cell with susceptible agents, it infects

one (randomly) selected agent. This susceptible agent then becomes infected and can infect

other susceptible agents. The size of the population of infected, susceptible and recovered

agents are the input parameters that the user can modify to experiment with different initial

conditions. The user can also specify the time (in years) that the simulation will run.

Consequently, the infection model portlet has four (4) input parameters namely:

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

114

Adedeji Oyekanmi Fabiyi

Simulation period: This specifies the number of years the simulation will run. By default,

the infection model has been pre-set to run for twenty years.

Recovered Size: This field specifies the initial recovered population. This is the initial

healthy population which have immunity and cannot be infected immediately. However, after

establishing contact with the infected population, they lose their immunity and become

susceptible to infection.

Infected Size: This field is used to specify the initial infected population. Infected population

can infect susceptible population upon contacting them. They (however) recover after a

period of time and become healthy.

Susceptible Size: This specifies the initial susceptible population. Susceptible counts can be

infected when contacted by infected population. If more than one susceptible agent is in the

proximity of an infected agent, only one is infected.

In the context of this research, an experiment can be defined as the process whereby a

potential Science Gateway user can specif the different input parameters (defined above) via

the Science Gateway interface in order to study the behaviour of infections with an annual

outbreak. Therefore, starting with an initial population of 1500 susceptible agents, 20 infected

and 0 recovered, when an infected agent approaches a susceptible agent, it becomes infected

and if there are more than one susceptible count in the cell, only one (randomly selected

count) is infected. Infected agents recover after a period of time (uniform distribution) and

become healthy with a level of immunity. Recovered counts immunity decreases every time

they are approached by an infected count and when immunity becomes 0, the recovered agent

becomes susceptible and can be infected.

In the implementation of the Infection Model portlet, potential users can select a

specific set of input parameters and execute the simulation on DCIs from an interface that

hides the complexity of the underlying middlewares and infrastructures. This is achieved (in

parts) by developing a simple but intuitive user interface (otherwise known as portlet which is

deployed on the Science Gateway) for running and analysing simulation experiments of an

ABMS model on different DCIs.

The evolution of distributed systems have ensured that scientists have a large set of

resources to run jobs and obtain results in good time. Simulation experiments with a

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

115

Adedeji Oyekanmi Fabiyi

considerable number of agents can now be run on distributed systems by distributing the

agents among computer nodes which also reduces any potential memory pressure as the

number of agents per computer node becomes lower. In this way, the power of clusters and

other High-Performance Computing resources are leveraged to distribute a model across

processes. In particular, advances in networking and distributed computing techniques where

different organisations can combine researches and resources across multiple administrative

and organisational domains (which is realised in Grid Computing) have changed the way

scientists perform their experiments. This has evolved into complex international Information

and Communications Technology (ICT) systems referred to as e-Infrastructures. Authorised

scientists can therefore access their simulation and increase computational power by using

distributed computing resources in this way to effectively perform experiments. On the other

hand, the deployment and use of these resources are extremely complex and could be quite a

daunting experience which could, in turn, prevent non-ICT expert users from adopting the

technology. Historically, users often have to access resources by maintaining their own

software or make use of complex programming languages via a command-line interface

(Lawrence, Zentner et al. 2015), and may have to deal with other complex technical issues

such as: job service description languages, execution scripts and the management of personal

digital certificates across different administrative domains.

Two main issues therefore emanate from the adoption of distributed systems. The first

issue is the easiness of access to these environments, while the second issue relates to the

interoperability of the underlying infrastructures and middlewares. Consequently, the first

iteration focused on developing a simple but intuitive user interface otherwise known as

Science Gateway for running and analysing simulation experiments of an ABMS model on

different DCIs. This is the view that by making use of this Science Gateway, users (especially

non-ICT expert users) can easily access and execute their jobs on the distributed systems

without prior knowledge/details of the underlying infrastructures and middlewares.

5.3 The Infection Model Portlet (For Single Experiments)

The first version of the Science Gateway (a portlet that can execute an ABMS jobs

sequentially on an e-Infrastructure) is designed by considering two major inputs. These are:

 The points noted in the first two steps of the DSR cycle (Awareness of the problem

and suggestion), and

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

116

Adedeji Oyekanmi Fabiyi

 The user requirements of the ABMS portlet (as detailed in the user requirements

section) of both users and the communities that could potentially benefit from its use.

Consequently, the implementation was then carried out based on the design that

ensued.

Accordingly, findings obtained from the review of literature show that fully fledged

Science Gateways can be developed either by building from scratch (by making use of

standard portal building technologies) or customising an existing Science Gateway

framework to suit the needs of specific communities of practice. This usually starts with the

collection of the necessary information relating to the needs of specific communities. Such

needs could vary from identifying the various ways in which users/scientists carry out

experiments and the use of the underlying infrastructures required to execute their jobs

(usually the requirements and functionalities of the user interface), to what e-Infrastructure

resources are necessary to support the community of practice. The need for different e-

Infrastructure resources could vary with different communities of practice who may require

access to sensors, instrumentation, high-speed communication networks, powerful

computational networks, storage resources and high performance computing facilities.

Usually (and for different communities of practice that were identified for an African project

known as ei4africa) a questionnaire-based approach is used to identify and collect necessary

information regarding the different needs of each community.

For the Infection Model however, such information is collected by examining and

identifying the most important features of the model (which consists of the different input

parameters) and several consultations with a simulation expert. Other requirements were also

identified due to the researcher’s knowledge of the subject area which made it easier to

project the necessary simulation needs.

5.4 Define Portlet Functionalities (2)

This section constitutes the system functionalities from the users’ point of view as well as

defines the different user requirements that justify the need to have an infection simulation

portlet. As mentioned earlier, the researchers’ knowledge in this area, coupled with the direct

interaction with the developer of the Infection Model presented the opportunity to collect

detailed information that captures the necessary user requirements of the Infection Model.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

117

Adedeji Oyekanmi Fabiyi

Generally, in order for Science Gateways to support a particular community of practice,

the various needs must be specified and analysed. These needs, in large parts, constitute the

user requirements on the one-hand as well and the system requirements on the other. For the

Infection Model (for instance), to specify ways in which a Science Gateway can be used

requires that different simulation needs must be identified. Usually, a simulation would often

require the upload of data or model, execution management, the collection of output/result

and, in some cases, perform visualisation activities on the collected output/result. Based on

the general system requirements and the components which make up the Infection Model the

following deductions are made for the user interface requirements. A potential user of the

portlet will:

 Be able to easily access the Infection Model portlet page on the Science Gateway.

 Be able to specify different input parameters of the Infection Model.

 Be able to perform and execute jobs of the Infection Model on DCIs.

 Be able to monitor jobs for statuses and updates.

 Be able to download outputs/results of simulation experiments.

 Be able to analyse the result of simulation experiments via a visualiser portlet page.

It is important to note that the user requirements that were identified here are consistent with

the first two stages of the design research cycle (Awareness of the problem and suggestion

stage) which emphasised on the identification of interesting research problem and the ensuing

new system functionalities that should be defined. All the aforementioned requirements are

incorporated at the graphical user interface of the portlet.

5.5 Requirements

The following section will discuss the requirements specification stage of a fully functional

ABMS Science Gateway by defining the requirements of the portlets at different levels. This

will include the software requirements, hardware requirements and the generic Science

Gateway framework which binds all the requirements together.

5.5.1 Software Requirements (3.1)

To develop a fully-fledged Science Gateway, i.e. integrate scientific case studies through the

pervasive adoption of web technologies and standards and make them available to their end

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

118

Adedeji Oyekanmi Fabiyi

users through Science Gateways, the required stacks of software framework at different

levels must be considered. These Science Gateway stack may include an application server

which hosts the individual components, a runtime environment that executes the web

applications, a database management system that keeps track of users, service actions and

states, and a specialised library which provides an interface to various kinds of computing

and data endpoints.

 There are several options available to developers. The application server/runtime

environment consists of different implementations such as the Python/Django, Ruby/Ruby on

Rails, Java, NodeJs/JavaScript etc. The various database types may include the use of

MySQL, PostGresSQL, and Oracle, while the specialised library necessary to provide the

interface to the different kinds of endpoints could require the developer to either write his/her

native interface or make use of the available standard that governs different interfaces such as

SAGA. There are different implementations (such as Java and Python) of the SAGA

standard. However, the Java stack was chosen as the language of choice for the

implementation of all the essential Science Gateway stacks. For the specific selection of

components that have been chosen for the development of the ABMS Science Gateway, the

following implementations have been adopted for the different Science Gateway stacks:

 In terms of the website/portal builder, the Liferay portal system (an open source

application container) and its software development kit were chosen (Liferay portal

bundle and SDK). The Java stack was chosen due to the existence of well-known and

documented standards, particularly, the JSR 168 and JSR 286. These standards make

portlets portable between application server portal frameworks.

 Just beneath the portal stack, there is the specialised library which translates the

actions of the portal to the actions to be conducted on the computing infrastructures.

There are standard APIs to this functionality and since the adopted implementation is

a Java stack, the JSAGA implementation was chosen. Ideally, it is desirable to exploit

as many computational resources as possible but since each of these resources have

unique interfaces for authentication and authorisation, resource discovery, job

submission and management, data movement/storage, and accounting, it is therefore

necessary to have an interface that is common to the available resources. JSAGA

therefore provides the Java implementation of the SAGA standard that allows a

unique interface to most of these functionalities and is independent of the actual

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

119

Adedeji Oyekanmi Fabiyi

remote type. This is the library that enables the transmission of calls from the Science

Gateway and submits those calls, after having translated them appropriately into lots

of different kind of target infrastructures. These may include DCI such as production

Grids, single or distributed Cloud sites, in the case of the federated Cloud of the EGI,

or a single HPC centre with direct access via SSH.

 In terms of the execution environment/application server, the Java stack (Java JRE

and JDK) which translates into a runtime environment and a Java development kit is

utilised. Several Java application servers (also known as servlet or web container) are

available for both commercial and open source. Several open source options are

available such as Jetty, Geronimo, Tomcat, JBoss and Glassfish. However, the choice

application server that was chosen is the Glassfish application server.

 For the database management system, MYSQL database was chosen due to its

ubiquity and for the simple reason that the right configuration of MYSQL is already

present in CSGF.

5.5.2 Hardware Requirements (3.2)

Two different methods that is used to execute the ABMS jobs on the distributed systems are:

 n Virtual Machines (VMs) with 1 core each at different cloud sites used for sequential

job execution and;

 n VMs with M cores each at different cloud sites used for parallel job execution.

The sequential execution sees the mapping of ABMS jobs to VMs with single core across

multiple Cloud sites, while the parallel execution maps ABMS jobs to VMs with multiple

cores across different Cloud sites. The execution of jobs is performed primarily by using the

EGI federated Cloud (a federation of institutional private Clouds that offers Cloud services to

researchers in Europe and worldwide). Job execution can also be done with a single system

that can scale up to user needs, integrate with multiple providers to give resilience, prevent

vendor lock-in and enable resource provision that is targeted towards the research

community. The EGI Federated Cloud enables standards-based federation of IaaS Cloud

which exposes a set of independent Cloud services which are accessible to users that utilise a

common standard profile and allows deployment of services across multiple providers and

capacity bursting. The EGI federated Cloud have three different types of members namely

user communities, technology vendors, and resource providers. The resource providers make

use of different Cloud management framework such as OpenStack, OpenNebula, Synnefo,

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

120

Adedeji Oyekanmi Fabiyi

Cloudstack, etc., to build and manage Cloud computing platforms for public and private

Clouds.

5.5.3 Science Gateway Requirements (3.3)

It was earlier mentioned that fully-fledged Science Gateways are either built from scratch

(which could take a lot of time and effort) or customised from existing Science Gateway

frameworks. These Science Gateway frameworks consist of Science Gateway stacks and

make use of standards as already discussed in the case of the CSGF above. To develop the

Infection Model portlet the CSGF approach, whose core components comprise of the Catania

Grid and Cloud Engine, is adopted. The CSGF has an interface for interacting with the

embedded portlets (known as the Science Gateway interface) as well as the interface for

exploiting the computational resources of the different DCI's (JSAGA interface). It helps to

submit jobs, retrieve data, and interact with the different DCIs. It therefore provides

functionalities such as enabling secure access to the gateway, submitting simple jobs,

monitoring job statuses, managing data storage, transfers and retrieval activities and making

sure that submitted jobs are executed on the targeted infrastructures. Much of the

functionalities which are required by either the user agreement of the remote computing

federation or particular user communities have to be provided by the portal stack. CSGF

provides extra Java libraries that ensure compliance with EGI Grid and FedCloud

infrastructures, amongst others.

5.6 Infection Model Portlet Design (6)

The Infection Model design is done based on the portlet functionalities which were presented

in Section 5.4 above. Other requirements such as the software requirements, system

requirements and the CSGF all combine to constitute the required building blocks necessary

for the implementation of a fully-fledged ABMS Science Gateway. Consequently, the

prototype design starts with the user interface based on the user requirements necessary for

executing ABMS jobs. This design represents an approach which constitutes all the

requirements needed to facilitate and execute a simulation job on distributed systems starting

with the access requirements, the specification of the input parameters, job execution

(data/model upload) and the subsequent collection of outputs and the visualisation of results.

The design process starts by considerig the standard approach to authenticating and

authorising a user to the Science Gateway irrespective of the application being accessed,

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

121

Adedeji Oyekanmi Fabiyi

which is facilitated and constitutes a major part of the CSGF. In addition, it provides the

capability of supporting the specification of different input parameters (Simulation Period,

Recovered Count, Susceptible Count, and Infected Count) that constitutes the ABMS

Infection Model portlet. All the information which are collected via the Infection Model

portlet are submitted to the distributed systems and executed using a standard interface

(JSAGA API/Libraries) of the CSGF. Furthermore, it makes provision for a dedicated portlet

where the statuses of all submitted jobs (running and done jobs) are displayed and monitored.

As such, a user can retrieve the output of their experiments for subsequent analysis. Finally,

the retrieved outputs can be analysed by the user's local visualiser or uploaded to the

Infection Model visualiser which is provisioned on the Science Gateway. Figure 5.1 shows an

overview of the system processes.

Figure 5.1 Infection Model Use Case Diagram

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

122

Adedeji Oyekanmi Fabiyi

It is important to note from the use case diagram and consequently the system design

process that both the sequential and parallel approach has been taken into consideration.

However, the parallel execution of ABMS jobs which largely constitute a part of the entire

process is examined and documented in Chapter 6. For the remainder of this chapter, the

complete design and implementation of the sequential approach to developing the ABMS

portlet in Science Gateways will therefore be described. By examining the above Figure 5.1,

the different stages that will realise the above functionalities is described as follows:

1) The user seeks to access the Science Gateway.

2) Science Gateway takes the user through an authentication and authorisation procedures.

3) A user submits his/her credentials to the Science Gateway for access.

4) Based on the user roles and privileges, Science Gateway presents the desired

portlet/application to the user.

5) The user can view portlet, specify different input parameters and submit jobs.

6) Science Gateway, using a pilot script, can collect input parameter being specified through

the user interface and submit jobs to e-Infrastructure.

7) Science Gateway gives job statuses, and a user can monitor and download the outputs of

jobs.

8) The user can visualise the simulation output results.

9) Procedure ends.

From the above sequence of steps, six main building blocks could be derived to

represent and implement the initial prototype architecture. These include user access, user

interface, pilot-script.sh, pre-configured virtual machine, myjobs portlet and the ABMS

Visualiser. In addition, steps 1-4 above which captures the procedures for user access is built

as part of the CSGF and represents the standard authentication and authorisation process for

all embedded applications/portlets. Steps 5-8 captures the execution of jobs (i.e. the

specification of Infection Model jobs via the portlet’s interface, job monitoring and the

collection and visualisation of simulation output results).

5.6.1 User Access

This is the standard access procedure (steps 1-4 above) within the CSGF which handles both

user authentication and authorisation. Users that want to access the Science Gateway for the

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

123

Adedeji Oyekanmi Fabiyi

first time must register by filling out a dedicated web form. This is done by specifying the

identity federation and the identity provider which the user belongs and, once this request is

confirmed by the user, it is forwarded to the portal administrators. The administrators will

determine whether to accept or reject this request and, if the request is granted the user

information is stored on a module known as the LDAP registry. The user is either notified

that they are successful or that request has been denied. When a user attempts to log-on to the

Science Gateway, they redirected to a web page where they are prompted to select their

respective identity federations and identity providers. A log-in page is presented afterwards

and the user can submit their credentials (consisting of a combination of username and

password). After a successful verification, the Science Gateway then checks to see if the user

is registered on the LDAP registry (by checking what roles and privileges they have on the

Science Gateway). Users who belong to different organisations may have different roles and

privileges for each application on the Science Gateway and for the community it was

developed. Therefore, a user is presented with the web page of an application and thus able to

run jobs on the DCIs based on the roles and privileges.

5.6.2 User Interface

This module gives a general description of the ABMS Infection Model which includes the

aim of the model and the tool that was used in its actual implementation. It gives the user a

brief description of the different input parameters which are specified, coupled with how the

ABMS Infection Model portlet may be utilised. Finally, it facilitates a way to specify the

different input parameters of the ABMS Infection Model portlet (such as Simulation Period,

Recovered Count, Susceptible Count, and Infected Count). The user interface is designed to

simply enable authorised users to select from a pre-defined set of experiments which are

specified by the developer.

5.7 Develop/Implement the Infection Model Portlet (7)

After defining the general requirements such as software requirements, hardware

requirements, the Science Gateway Framework and the design process of the ABMS portlet,

the following section will describe a detail implementation of the Infection Model application

using the CSGF. To implement the user interface of the Infection Model portlet the CSGF,

which utilises the Liferay portal framework, is adopted. Liferay consists of many inbuilt

applications called portlets. The Infection Model portlet was deployed in a portlet named

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

124

Adedeji Oyekanmi Fabiyi

Infection Model. This portlet utilises several classes such as the AppInfrastructureInfo class

(which stores the required information necessary to submit a job to a give infrastructure), the

AppPreferences class (for storing all the values of portlet preferences), the AppLogger class

(for displaying information about the console outputs) and most importantly the myRepast-

infection-portlet class (main portlet class which extends and overrides the GenericPortlet

class methods). In addition to the different classes used by the Infection Model portlet,

several Java Server Pages (JSP) are used to present the desired views/pages to the Science

Gateway users. These include the View page (which presents the user interface of the

Infection Model portlet), the Edit page (for the Infection Model customisation), the Help page

(for displaying instructions on how to use the Infection Model portlet) and the Submit page

(for informing users about each successful job submission). For the implementation of the

portlet, the following section will discuss the different classes which make up the portlet.

Furthermore, the components of the main class (myRepast-infection-portlet) and the various

JSP pages are discussed. Finally, the relationship between the main class (myRepast-

infection-portlet) and how it interacts and make use of the different JSP pages are presented.

5.7.1 Agent-Based Simulation Portlet Mode

The portlet specification defines three portlet mode: VIEW, EDIT and HELP (Fabiyi et al.,

2016)

A. View Mode: Generates a mark-up and presents the normal user interface of a portlet.

B. Edit Mode: Allows for the customisation of an application and the setting of

preferences.

C. Help Mode: Outlines the ABMS functionalities by specifying the portlet usage

instructions.

Consequently, the different pages of the ABMS portlet have been developed using the view

page and the submit page. These pages have been developed primarily by utilizing such

programming languages as HTML5 and JavaScript. This is discussed as follows:

5.7.1.1 The View Page

The view page consists of the normal user interface of the ABMS portlet. This page

incorporates some or most of the requirements that were specified at the user requirement

stage. It starts with a general description of the Agent-Based Simulation Infection Model, its

implementation, how to utilize the portlet and the communities that could potentially benefit

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

125

Adedeji Oyekanmi Fabiyi

from its use. It also facilitates and enables potential users to specify the different input

parameters. However, for this version of the portlet, a set of experiments have been pre-

defined and hard-coded. Therefore potential users can only select and run experiments from

amongst the available experiments that are specified within the portlet. This is due to the

limited resources which was available at the time of developing this portlet and to prevent

users from making excessive or unrealistic use of the computing infrastructures. The

Infection Model portlet consists of a total of five experiments and a user may specify input

parameters by simply selecting from pre-defined sets, after which the job may be submitted

and executed on the DCIs by clicking the submit button provisioned on the user interface.

The view page is mandatory both at the Science Gateway level (production) and the

development stage of the portlet.

5.7.1.2 The Submit Page

The submit page informs the user of any successful job submission. It presents the job

identifier and informs the user where the output of jobs are to be retrieved. This component is

a dedicated portlet known as MyJobs portlet. It also includes a link to run new applications

which ultimately redirects users back to the View page. The submit page is mandatory both at

the Science Gateway level and the development stage of the portlet.

5.7.2 The Infection Model portlet Classes

These include: The AppInfrastructureInfo class, the AppPreferences class, the AppLogger

class and myRepast-infection-portlet class.

5.7.2.1 The AppInfrastructureInfo Class

This class stores the required information for the portlet to submit a job to a given

infrastructure. This include the use of different variables to store information such as

enableInfrastructure, nameInfrastructure, acronymInfrastructure, bdiiHost, wmsHosts,

pxServerHost, pxServerPort, pxServerSecure, pxRobotId, pxRobotVO, pxRobotRole,

pxRobotRenewalFlag, pxUserProxy, and softwareTags. A brief description of each of the

variables (of the AppInfrastructureInfo) and the given default values are given as follows:

enableInfrastructure is used to enable or disable an infrastructure. The assigned default value

is set to a boolean string.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

126

Adedeji Oyekanmi Fabiyi

nameInfrastructure stores the infrastructure name. The assigned default value is set to

“Infrastructure name”.

acronymInfrastructure stores the Infrastructure acronym. The assigned default value is

“Infrastructure acronym”.

bdiiHost stores the topBDII host name. The assigned default value is set to “BDII host”.

wmsHosts is used for storing a separated list of the enabled WMSs. The assigned default

value is “WMS host”.

pxServerHost stores the eTokenServer hostname. The assigned default value is set to “Robot

proxy server host”.

pxServerPort stores the etoken server port number. The assigned default value is set to

“Robot proxy server port”.

pxServerSecure stores the eTokenServer secure connection flag. The assigned default value is

set to “Robot proxy server secure flag”.

pxRobotID stores the Robot proxy identifier. The assigned default value is set to “Robot

proxy id”.

pxRobotVO stores the Robot proxy VO. The assigned default value is set to “Robot proxy

VO”.

pxRobotRole stores the Robot proxy role. The assigned default value is set to “Robot proxy

Role”.

pxRobotRenewalFlag stores the Robot proxy renewal flag. The assigned default value is set

to “Robot proxy renewal flag”.

pxUserProxy holds a path to a user Proxy for test job submissions. The assigned default value

is set to “User proxy”

SoftwareTags stores a separated list of software tags. The assigned default value is set to

“Software tags”.

In addition, there are several methods that are defined by the AppInfrastructureInfo

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

127

Adedeji Oyekanmi Fabiyi

class such as the InfrastructureInfoToAppInfrastructureInfo (which aligns GridEngine

infrastructureInfo with the AppInfrastructureInfo), updateInfrastructureInfo (updates the

GridEngine infrastructure object by making use of the AppInfrastructureInfo instance), copy

(to make a full copy of a given InfrastructureInfo object), updateInfrastructureValue

(evaluates a given AppInfrastructure item name with the given item value) and

getInfrastructureInfo (which returns the GridEngine InfrastructureInfo object initialised with

the data that is contained in the AppInfrastructureInfo). Furthermore, it also defines a set()

and get() method for each of the AppinfrastructureInfo fields which are defined above and

required for setting particular infrastructures within the myRepast-infection-portlet class.

5.7.2.2 AppPreferences Class

The AppPreferences class is used to store the values of each portlet preferences. The first

time the portlet is started, the init() method of the myRepast-infection-portlet class will

initialise the portlet preferences values with the corresponding init variables. The use of

variables to store different portlet preferences include: gridOperationDesc, portletVersion,

logLevel, gridOperationId, numInfrastructures, appInfrastructuresInfo,

sciGwyUserTrackingDB_Hostname, sciGwyUserTrackingDB_Username,

sciGwyUserTrackingDB_Password, sciGwyUserTrackingDB_Database, jobRequirements

and the pilotScript.

In addition to having the corresponding get() and set() methods of the AppPreferences

class field mentioned above, which is used by the myRepast-infection-portlet for specifying

the portlet preferences, there are also equally important methods such as specify the current

infrastructure number (setNumInfrastructures/getNumInfrastructures()), switch to the

previous infrastructure (switchPreviousInfrastructure()), switch to the next infrastructure

(switchNextInfrastructure()), delete the current infrastructure (delCurrInfrastructure()), add a

new infrastructure to the infrastructure list (addNewInfrastructure()) and update

appPreferences value of a given preference item (updateValue()).

5.7.2.3 The AppLogger Class

The AppLogger class wraps the apache.common log object which allows the user to

enable/disable logs according to a given log level. The higher the level the more verbose the

produced output is. The different log level of the AppLogger Class includes Trace, Debug,

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

128

Adedeji Oyekanmi Fabiyi

Info, Warn, Error, and Fatal. Although developers can use system.out.println to print out their

console outputs, the use of Java logs is highly desirable. Java Log object offers different

output levels to show information. Each AppLogger fields define a method and the

AppLogger class also defines another method (the setLogLevel) which allows the portlet to

print out all logs types equal to or below the given log level according to the priority. Each

AppLogger field accepts a string as parameter consisting of the proper message to show.

AppLogger class uses the LogLevel enumerated types to express the log level verbosity. The

AppLogger field and their associated values are illustrated in Appendix C1.

5.7.2.4 The myRepast-Infection-portlet Class

The Infection Model is deployed in a portlet named Infection Model portlet. myRepast-

infection-portlet represents the main class of the ABMS portlet which extends and overrides

the GenericPortlet class methods (i.e. myRepast-infection-portlet extends GenericPortlet).

The most important methods within this class include init(), processAction() and render()

methods as seen in Figure 5.2. This class provides ways of managing user interaction with the

portlet using the combination of Actions and Views. In addition, it provides means of

managing different portlet preferences that are stored in the AppPreferences class as well as

displaying application information simply by using the log objects. Lastly, it facilitates the

method that is used to execute jobs within a distributed infrastructure by utilising the

GridEngine methods.

In order to manage the different portlet modes and the corresponding views (i.e.

different portlet pages) to display, myRepast-infection-portlet utilises Actions enumeration

which constitutes the action status mode (ACTION_ACTIVATE, ACTION_INPUT,

ACTION_SUBMIT and ACTION_PILOT) and its corresponding Views enumeration

(VIEW_ACTIVATE, VIEW_INPUT, VIEW_SUBMIT and VIEW_PILOT) represents the

view modes necessary to manage the application. It defines the AppInit class which stores all

the data that is required to submit a job in a distributed infrastructure. Furthermore, the

AppInput class that stores all the application input values are also defined. This contains all

the input parameters that are specified by the user via the Infection Model portlet main page,

such as the simulation period, recovered size, infected size and the susceptible size as defined

in Section 5.2. The constructor of this class is created and the input parameters are set to

empty strings. In order to retrieve the given application values or manage the user input fields

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

129

Adedeji Oyekanmi Fabiyi

(via the Infection Model portlet main page), a method, getInputForm(), is used to manage all

the enumerated types containing all the JSP input parameters of the Infection Model.

Another important method within myRepast-infection-portlet class is the init()

method (See Figure 5.2). This method is called when the portlet is installed for the first time

or when restarting the portal server. The default values from within the WEB-INF/portlet.xml

file is assigned to the application preferences and if the preference values already exist, the

default settings are overwritten. To load the default values from the WEB-INF/portlet.xml,

the Generic class init() method is overwritten and the application default value is set. The

AppPreferences object that stores the Application preferences is instantiated as:

 AppPreferences appInitPreferences = new AppPreferences(_log);

This object is used within the init() method to initialise the Application preferences as shown

in Appendix C2.

Furthermore, the SciGwyUserTrackingDB_Hostname, SciGwyUserTrackingDB_Username,

SciGwyUserTrackingDB_Password, SciGwyUserTrackingDB_Database, JobRequirements

and the PilotScript are set and obtained using a similar approach. To load infrastructure

settings the information stored in the AppInfrastructure class which are necessary to submit a

job to a given infrastructure are obtained.

5.7.2.5 The processAction() and the render() methods

Two really important methods in myRepast-infection-portlet class are the processAction()

and the render() methods. The render() methods consist of the doView(), doEdit() and

doHelp() method. These methods, along with the init() method, constitute the most important

methods within myRepast-infection-portlet class. The java code of the Agent-Based

Simulation application showing all the aforementioned methods is therefore illustrated in

Appendix C3. Figure 5.2 depicts the entire life-cycle of the Infection Model portlet

components. The most important exchange occurs between the processAction() and the

render() methods. The processAction() method is responsible for the actions which take place

when the user utilises the input form, while the render() method simply present the user with

the appropriate interface as a consequence of the user actions.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

130

Adedeji Oyekanmi Fabiyi

Figure 5. 2 The Portlet Lifecycle

5.7.2.6 The processAction() method

The processAction() method enables the Infection Model portlet to process an action request.

It is normally called upon each user interaction (i.e. could be a submit button within a JSP

page). It determines the current application mode via the actionRequest value, which is a

PortletStatus variable and determines the appropriate view mode to assign by using the

ActionResponse, which is another PortletStatus variable that is read by the doView(),

doEdit() and the doHelp() method, accordingly. This method is of the form:

processAction (ActionRequest request, ActionResponse response)

Within this method, the username is specified and the application path name is

determined. It also determines the current portlet mode and forwards the state to the response,

according to JSR168/286 standard portlet modes (VIEW, EDIT and HELP) which were

discussed in sub-section 5.7.1. To switch the different portlet modes, the actionStatus value is

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

131

Adedeji Oyekanmi Fabiyi

taken from the calling JSP file, through the PortletStatus parameter. The corresponding

VIEW mode is stored and the portlet status will thus be registered as render parameter. This

is represented as:

String actionStatus = request.getParameter(“PortletStatus”).

If the actionStatus parameter is null or empty, the default action is the ACTION_INPUT

(input form). This happens the first time the portlet is viewed.

The VIEW Mode is the normal portlet mode where portlet content is shown to the user. It

shows the different actions which may be performed according to the different possible

statuses. The actionStatus is used to switch between the different actions

(ACTION_ACTIVATE, ACTION_INPUT, ACTION_PILOT, and ACTION_SUBMIT) that

were mentioned earlier. This will consequently lead to the different VIEWS (VIEW_INPUT,

and VIEW_SUBMIT) to be set using the setRenderParameter() method. When the portlet

status is view mode, (i.e. a user is currently on the view.jsp page, and they perform an action),

it initiates the processAction() method and all input parameters being passed by the user are

retrieved via the ActionRequest. The processAction() then performs an action and calls the

RenderRequest which in turn calls the doView() method. Consequently, the doView() method

then performs an action and calls the view JSP page.

The EDIT Mode is used to view and set-up the portlet preferences which are stored within

the AppPreferences and the AppInfrastructureInfo classes. The edit mode is called after the

user has sent the actionURL which was generated by the doEdit() method. It includes

methods to store new preferences or to simply effect the changes that were made for the

preference settings. The AppPreferences object that stores the Application preferences (See

the AppPreferences class) is instantiated as follows:

AppPreferences appPreferences = new AppPreferences(_log);

This object is used to set all the values in the AppPreferences and the AppInfrastructureInfo

classes which are necessary to store the required information that the portlet can use to

submit a job to a given infrastructure. If the portlet is operating in the Edit mode, the render

Request calls the doEdit() method which then sets the configuration variables and calls the

necessary edit JSP page.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

132

Adedeji Oyekanmi Fabiyi

The HELP Mode is used to display the portlet usage instructions and is simply called by

using the doHelp() method. If the portlet is operating in the Help mode, the doHelp() method

is initiated, and the help JSP page is displayed accordingly. However, It is also possible to call

a JSP page from another JSP page without using the processAction() method. When the user

is on the view.jsp page, the RenderRequest is called which bypasses the processAction() as

the doView() method calls the necessary view JSP page.

5.7.2.7 The render() methods

The render() methods consists of the doView(), the doHelp(), and the doEdit() methods.

The doView() method

This method is responsible for assigning the appropriate application view. The view mode is

taken from the renderRequest instance by the PortletStatus parameter or is automatically

assigned according to the application status or default view mode. This is of the form:

doView(RenderRequest request, RenderResponse response). The current view status which

comes from the processAction is of the form:

String current View = request.getParameter(“PortletStatus”).

Different actions may be performed according to the different possible view modes. The

currentView is used to switch between the different views (VIEW_ACTIVATE,

VIEW_INPUT, VIEW_SUBMIT, and VIEW_PILOT) of the Infection Model portlet. When

the currentView of the portlet is VIEW_INPUT, the PortletRequestDispatcher object,

(dispatcher) is used to display the input.jsp page (the view page described earlier) using the

getRequestDispatcher() method. Similarly, when the currentView of the portlet is

VIEW_SUBMIT, the PortletRequestDispatcher object (dispatcher) is used to display the

submit.jsp page.

The doEdit() method

This method will display the current preference values which are stored in the

AppPreferences class and the AppInfrastructureInfo class. It will obtain the current

preference values, the current infrastructure and the total number of infrastructures. The

actionURL and the current preference may then be passed to the edit.jsp page (described in

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

133

Adedeji Oyekanmi Fabiyi

sub-section 5.7.1) and the preference values and the infrastructure data will then be sent. The

PortletRequestDispatcher object (dispatcher) is used to display the edit.jsp page using the

getRequestDispatcher() method.

The doHelp() method

This method is used to call the help.jsp page which is responsible for displaying the portlet

information. The PortletRequestDispatcher object (dispatcher) is used to display the help.jsp

page simply by using the getRequestDispatcher() method.

5.7.2.8 The interaction between the methods of the myRepast-infection-

portlet class

The Infection Model Java code (myRepast-infection-portlet) extends the GenericPortlets

class and overrides methods such as init(), processAction() and the render() methods

(doView(), doEdit(), doHelp()). It makes use of two main methods to exchange data to and

from the JSP pages. This exchange occurs between the processAction() and the render()

methods as seen in Figure 5.2. These methods enable the exchange of parameters between the

user and a portlet. The processAction() method is responsible for the action being performed

by the user in the input forms and the render() method determines the interface that is being

shown to the user as a consequence of the actions being performed on the input page.

Elements of the processAction() and the render() methods include the ActionRequest and the

RenderRequest, respectively. The processAction() receives an input parameter using the

ActionRequest and prepares the render object for the view methods. The RenderRequest on

the other hand is the inputs for the view methods.

5.7.2.9 The interaction between the myRepast-Infection portlet class and

the ABMS application JSP pages

To enable an interaction between the JSP pages of the Infection Model portlet and the Java

code, form statements are used to send parameters between the Java code (myRepast-

infection-portlet) and the JSP pages of the Infection Model portlet. This interaction sees a

continuous data exchange between the myRepast-infection-portlet class and the JSP pages

(which present the necessary user interface of the ABMS application back to the user) and

this interaction occur when users make use of the Infection Model portlet. All the java input

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

134

Adedeji Oyekanmi Fabiyi

fields are placed in the JSP code web form to implement the flow of data from the JSP pages

of the application to the java code. This is illustrated as <form action=<portlet: actionURL

portlet Mode=view> In addition, within the java code (myRepast-infection-portletclass) the

input interface values are obtained with the methods: doView/doHelp/doEdit (RenderRequest

request...)

In order to obtain the parameters, the string param i= request.getParameter(param

name i) is set, where param name i is the portlet status and param i is the current view. For

the exchange of data between the Java code and the JSP pages, the input interface values

inside the Java code are obtained using doView()/doHelp()/doEdit() (RenderRequest request)

and to obtain the parameters, we just set string param i=request.setAttribute (param name i,

param value I) Within the JSP page, the parameter values are loaded with <jsp:useBean

id=param name k class=<variable type k>scope=request>

5.7.2.10 Method that submits the Infection Model Portlet jobs to different

DCIs

This section discusses how myRepast-infection-portlet of the Infection Model submits jobs to

different DCIs using the Catania Grid and Cloud Engine. One advantage of the CSGF is that

jobs are submitted to different DCIs through the Grid and Cloud Engine simply by using the

Java implementation of the Simple API for Grid Access (JSAGA) which abstracts the

different middleware layers. This ensures that users can simply submit and execute jobs

without having to know the details of the underlying infrastructures and middlewares. To

submit a job, the submitJob() method of the GridEngine is defined and the Multi-

Infrastructure Job Submission object is initialised as shown in Appendix C4. The GridEngine

uses two different types of constructors. The constructor that takes no database arguments is

used for production environments, while the constructor which takes the

SciGwyUserTrackingDB parameters (below) is normally used for development purposes. In

order to switch-on the constructor which is used by the production environment, the portlet

parameters in Appendix C5 are set to an empty string. The GridEngine Multi-Infrastructure

Job Submission object for the production environment is therefore initialised as:

miJobSubmission = new MultiInfrastructureJobSubmission();

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

135

Adedeji Oyekanmi Fabiyi

Having set the portlet parameters to an empty string, the constructor is simply set to

void. However, for the development environment, the different portlet parameters which

constitutes the database requirements are described in Appendix C6. The variables described

in Appendix C6 are defined for the required database parameters and passed as arguments to

the constructor and initialised as follows:

miJobSubmission = new MultiInfrastructureJobSubmission(arg1,arg2,arg3);

Furthermore, the GridEngine job description object (jobDesc) is defined and used in

specifying the executable, application' arguments, the output directory, the std-output file, the

std-error file, output files and the input files as illustrated in Appendix C7. The

GEJobDescription object (jobDesc) for the Infection Model portlet is therefore specified as

arguments within the GridEngine Multi-Infrastructure Job Submission object for both

production and development environments, respectively as:

miJobSubmission = new

MultiInfrastructureJobSubmission(jobDesc);

miJobSubmission = new

MultiInfrastructureJobSubmission(arg1,arg2,arg3,jobDesc);

In addition, the portal IP address required by the UserTrackingDB is obtained. All enabled

infrastructures are assigned to the Infection Model portlet and the details required to submit

jobs (such as the application executable, executable arguments, etc) are defined. Furthermore,

the GridEngine Multi-Infrastructure Job Submission object (miJobSubmission) is used to

specify the Infection Model portlet job initialisation settings. Once the requirements

necessary for the submission of the Infection Model portlet has been defined and its settings

specified, the job is then ready for submission. This submission is done simply by using the

submit obAsync() method of the GridEngine Multi-Infrastructure Job Submission where the

necessary details are passed as arguments as illustrated in Appendix C8.

5.7.2.11 Deploy the Portlet (8)

In order to deploy the portlet, a pre-configured Virtual Machine (VM) image is provisioned

with the Infection Model together with all its dependencies (such as the REPAST libraries

and the Java runtime installation). These dependencies are deployed within the pre-

configured VM. The Pilot_script.sh (See appendix A2) consisting of the instructions to start a

simulation resides in the portlet context and is uploaded to the remote VM as soon as it

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

136

Adedeji Oyekanmi Fabiyi

becomes available. This image is used to start a VM on a remote cloud site from the several

infrastructures available in the portlet configuration whenever the user submits a simulation

job via the Science Gateway. The VM image is started whenever a simulation job is

submitted and, according to the parameters being passed to the job, the execution is

performed.

The final stage of the deployment process involves the creation of war files from the

main Java class of the Infection Model and the different JSP pages described above. This war

file will run on a glassfish domain under the Liferay portal. From the control panel (on the

Liferay portal) the plugins installation page is used to install a new portlet (which in this case

is the Infection Model portlet).

Figure 5. 3 Infection Model Application Portlet Main Page

5.8 Test the Portlet (9)

The Infection Model has been deployed in a portlet known as Infection Model and, along

with other portlets belonging to different communities of practice, ported on the Africa Grid

Science Gateway (See Figure 5.3). The Africa Grid Science Gateway is a standard based web

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

137

Adedeji Oyekanmi Fabiyi

2.0 demonstrative platform that hosts the portlets developed the different communities of

practice to be executed on a worldwide e-Infrastructure. The Infection Model portlet will aid

potential users in conducting experiments by specifying input parameters (such as the ones

described in Section 5.2), running experiments, monitoring and obtaining results, efficiently.

The application also has a demonstration graph tool that allows users to analyse the results of

an output file and thus see the graphical visualisation of their results. This ultimately shows

that Science Gateways can be developed and used to support complex simulations in an

incredibly easy to use manner.

As mentioned earlier, procedures for both the authentication and authorisation to the

Africa Grid Science Gateway involves a standard which is similar to all the embedded

applications. A user of the Science Gateway can access its main page by using the web link

at https://sgw.africa-grid.org/. To access and make use of any application on the Science

Gateway, such as the Infection Model portlet, users have to send a request to obtain federated

credentials issued by identity providers. If a request is granted, users can sign-on to the

Science Gateway and run jobs (via the top right corner of the Science Gateway) simply by

using their new federated credentials. This will present a user with the page consisting of the

different identity federations and they can choose the one they belong. Furthermore, the user

is re-directed to another page composed of various identity providers. Different identity

providers have been embedded within a particular identity federation and (similar to the

identity federations) users can select the identity provider which they belong from their

respective identity federation. When a user has successfully obtained a federated credential, it

may be used to access the Science Gateway from the log-in page. After each successfully log-

on, users can access the desired application such as the Infection Model portlet at

https://sgw.africa-grid.org/infection-model which is shown in Figure 5.3.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

138

Adedeji Oyekanmi Fabiyi

Figure 5. 4 MyJobs portlet showing an ABMS job in RUNNING

and DONE mode

The first page that is presented after a successful login to the Science Gateway is the

landing page of the desired application (See Figure A-7). This is where the description of the

Infection Model portlet can be found. The run icon at the bottom corner of the page presents

the main page of the Infection Model portlet at https://sgw.africa-grid.org/run-repast where

users can specify all the input parameters defined in Section 5.2 and run their experiments as

seen in Figure 5.3. It is worth noting that the page can only be accessed by users who have

successfully completed the sign-on process which was earlier described. After the parameters

have been specified the experiment is run by clicking the provisioned submit button.

Consequently, the Grid and Cloud engine, using the JSAGA, can submit the jobs on different

DCIs without users knowing the details of the implementation of the underlying middleware.

After each submission, users are notified that jobs have been successfully submitted. To

check the status of each jobs on the MyJobs portlet, a dedicated portlet where the statuses of

all “RUNNING” jobs and “DONE” jobs (as shown in Figure 5.4) can be found. A “DONE”

job status is represented by a small folder icon indicating that the job is ready for collection

and users can download the Infection Model output results for subsequent analysis.

https://sgw.africa-grid.org/run-repast

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

139

Adedeji Oyekanmi Fabiyi

Table 5.1 Services Utilised by the Different Case Studies

5.9 Case Study Overview – WEKA (J48) Classifier (1)

In this section, a second case study is ported to the Science Gateway. This case study is the

Waikato Environment for Knowledge Analysis (WEKA). More specifically, the J48

algorithm of WEKA is analysed, designed, implemented and ported on the Science Gateway

to further examine and implement some of the services that were identified in the literature.

The J48 algorithm is utilised (via the Science Gateway) to analyse any simulation output

result obtained from the Infection Model portlet described in the earlier sections. This

sequence of events can potentially be used to demonstrate how Science Gateways may be

used to support workflow management. WEKA is a state-of-the-art facility designed to aid in

the application of machine learning techniques to real-world data sets (Garner 1995). It is an

open source software for data mining under the GNU General public licence. It was

developed at the University of Waikato in New Zealand to be open source and is thus, freely

available. It consists of different machine learning algorithms for data mining tasks. Data

mining which involves the systematic analysis of large data set is a technique that is often

used to drill a database to extract meaning from available data (Bhargava, Sharma et al.

2013). The data required by WEKA may be obtained from various sources such as files,

URLs and databases and it supports different file formats such as ARFF (which is WEKA’s

file format), CSV, LibSVM’s format, and C4.5’s format (Hall, Frank et al. 2009). Using the

WEKA interface, users can perform operations such as pre-processing, association, filtering,

classification, clustering visualisation and regression. These operations constitute the various

techniques/algorithms that are available for data mining. As such, the WEKA system is a

collection of inter-dependent programs which are bound together by a common user interface.

These programs are categorised into data set processing, machine learning schemes and

output processing (Garner 1995). The consequence of having a generic interface that WEKA

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

140

Adedeji Oyekanmi Fabiyi

provides (for different operations and techniques required for data mining tasks) is that

wealth of interactive tools for data manipulation, result visualisation, database linkage, and

cross-validation and comparison of rule sets are readily available to complement the basic

machine learning tools (Holmes, Donkin et al. 1994).

For the purpose of this study a classification algorithm, known as the J48 decision

tree-inducing algorithm (WEKA implementation of C4.5) is explored. There are some

prominent machine learning algorithms that are used in modern computing applications and a

common use for these algorithms often involve decision-based classification and adaptive

learning over a training set (Drazin, Montag 2012). The J48 Algorithm which is one of such

prominent machine learning algorithms is a decision tree that serves as a decision modelling

tool which graphically displays the classification process of a given input for a given output

class labels. In data mining such decision tree models are used to examine the data and

induce both the tree and its rules used in making predictions (Bresfelean 2007). Decision

trees such as the J48 are commonly used to classify data into distinct groups which generate

the strongest separation in the values of the dependent variable and thereby providing an

easily interpretable separation. Another commonly used decision tree construction algorithm

is the ID3 (an attribute-based machine learning algorithm) which creates a decision on a

training set of data. The C4.5 algorithm is an evolution of the ID3 algorithm which contains

supplementary programming that helps to address the issues encountered in the ID3

algorithm. However, this study will primarily focus on how J48 algorithm (via a Science

Gateway interface) is applied to the Infection Model simulation output results or any other

real-world data sets and executed in a distributed environment via Science Gateway

interfaces.

Consequently, the system design and implementation of the J48 portlet will ensure

that users/scientists can upload their output file to the Science Gateway, select the necessary

filters and set the appropriate test options. Finally, the J48 algorithm can be applied to data

sets executed on the distributed infrastructure. Similar to the Infection Model portlet, this

design is achieved by capturing all the functionalities associated with the J48 algorithm in a

user interface (portlet), which is then ported on the Science Gateway. Furthermore, all the

dependencies and libraries associated with the J48 algorithm is deployed in a pre-configured

VM on the infrastructure. The VM is dedicated to executing all WEKA related jobs within a

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

141

Adedeji Oyekanmi Fabiyi

distributed environment.

5.10 Define Portlet Functionalities (2)

This section constitutes the functionalities of WEKA portlet from the users’ point of view as

well as defines the different user requirements which justify the need to have a portlet for

performing WEKA analysis. This sort of analysis can either be performed on the output of

the Infection Model portlet obtained from executing an ABMS job on DCIs (via the Science

Gateway), or any other related datasets. In order to specify ways in which a Science Gateway

may be used to support WEKA analysis, the different ways of using WEKA must be

identified. Usually, a user should be able to upload a file via the portlet user interface, select

the appropriate filters and test options associated with WEKA and apply the required

algorithm to each dataset (which in this case is the J48). Based on the user requirements

specification for this portlet therefore, the following deductions are made. A potential user

will:

 Be able to easily access the WEKA portlet page on the Science Gateway.

 Be able to upload the Infection Model simulation output result or any other related

datasets (via the Science Gateway) for WEKA analysis.

 Be able to select appropriate filters, test options and algorithms associated with

WEKA analysis and apply to the uploaded dataset.

 Be able to perform and submit these jobs on DCIs.

 Be able to monitor jobs for statuses and updates.

 Be able to download outputs/results of WEKA experiments.

All the aforementioned user requirements are incorporated at the graphical user interface

of the WEKA portlet and ported for use on the Africa Grid Science Gateway. The processes

involved in the design and implementation of this portlet are discussed in the following

section.

5.11 Requirements

This section will discuss the requirements for the realisation of a fully functional WEKA

portlet. It is important to note here that the WEKA portlet will make use of a similar Science

Gateway framework used to develop the Infection Model portlet which provides a standard

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

142

Adedeji Oyekanmi Fabiyi

set of requirements for the software, system and Science Gateway for all its applications. This

Science Gateway framework (otherwise known as the futuregateway API) is an evolution of

the CSGF. The different requirements (such as software (3.1), hardware (3.2) and Science

Gateway (3.3)) which was defined for the Infection Model portlet in Section 5.5 therefore

apply.

5.12 WEKA – J48 Portlet Design (6)

The WEKA - J48 portlet design is similar to the design processes described for the Infection

Model portlet. However, this design will include additional functionalities such as the upload

of files, selection of filters and test options as well as the application of the J48 algorithm.

Therefore, the different stages that will realise these functionalities (in addition to those

defined for the Infection Model portlet) are as follows:

1) The user seeks to access the Science Gateway.

2) Science Gateway takes the user through an authentication and authorisation procedures.

3) A user submits his/her credentials to the Science Gateway for access.

4) Based on the user roles and privileges, Science Gateway presents the desired

portlet/application to the user (J48 portlet).

5) The user can view the portlet, upload files, select the appropriate filters, test option and

algorithm and submit jobs to e-Infrastructure.

6) Science Gateway (using a pilot script) can collect the input parameters specified via the

user interface and submits job to e-Infrastructure.

7) Science Gateway gives job statuses and users can monitor and download the outputs of

jobs.

8) Procedure ends.

From the above sequence of steps, five main building blocks (which are similar to the

Infection Model portlet) are derived to represent and implement the initial prototype

architecture. These include user access, user interface, pilot-script.sh, pre-configured virtual

machine, and myjobs portlet. The steps above are similar to the ones defined for the Infection

Model portlet, except for step (5) where users also need to view portlet, upload input data,

select appropriate filters, test option and algorithm and submit jobs to e-Infrastructure. Step

(5) and (6) captures the execution process defined in Figure 5.5 (i.e. upload files, select the

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

143

Adedeji Oyekanmi Fabiyi

appropriate filters, choose test option and algorithm and the final job execution on DCIs as

well as the use of a pilot script to collect specified input parameters).

Figure 5. 5 WEKA Use Case Diagram

5.13 Develop/Implement the WEKA – J48 Portlet (7)

It was earlier mentioned that the software and hardware requirements for the WEKA - J48

case portlet are similar to the requirements that were defined for the Infection Model portlet

in Section 5.5 above. The design process of the WEKA - J48 portlet as well as the adopted

Science Gateway Framework have therefore been discussed in Section 5.5. The next step will

describe the implementation of the portlet using the Future Gateway technologies (which is

an evolution of the CSGF). In the Future Gateway technologies however, portal technologies

are not tightly coupled with the Science Gateway framework. Developers may utilise existing

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

144

Adedeji Oyekanmi Fabiyi

portal or any web technologies which is available to them. However, similar to the Infection

Model portlet, the Liferay portal framework was utilised for the implementation of the

WEKA - J48 Classifier, although the Future Gateway provides a solution which is portal

independent and communities of practice may utilise existing portal or technology that

already serves their branch of science. The WEKA – J48 was deployed in a portlet named

WEKA - J48 (See https://sgw.africa-grid.org/j48). It utilises several classes such as the

AppPreferences class (for storing all the values of portlet preferences), the

ConfigurationActionImpl class, the FutureGatewayClient class, the Response class and most

importantly the WJ48Portlet class (which is the main portlet class that extends and overrides

the GenericPortlet class methods). It also defines additional java classes such as the AppInput

class, the InputFile class, the Link class, the OutputFile class, and the Task class. In addition

to the different classes used by the WEKA – J48 portlet, different Java Server Pages (JSP) are

used for presenting the desired views to the Science Gateway user. This primarily includes

the view page (which presents the user interface of the portlet) and the submit page (which is

used for informing users of each successful job submission).

5.13.1 WEKA (J48) Classifier Portlet Modes

The following sections will discuss in detail the implementation of the WEKA – J48 portlet

by expanding on both the aforementioned classes and the different JSP pages that were

utilised in the implementation of the portlet. Even though the portlet specification defines

three main portlet modes (VIEW, EDIT and HELP), the WEKA – J48 portlet is designed to

include only two modes (i.e. the view and the submit pages).

5.13.1.1 The View Page

The view page consists of the user interface of the J48 portlet. It incorporates the basic user

requirements needed for WEKA analysis as specified at the user requirements stage. This

page starts by defining the general use of the portlet as well as a general description of the

WEKA application. It will utilise the multi-part form to provision the upload of data sets or

the output files which are required for WEKA analysis. Furthermore, it facilitates the

selection of the desired classifier that users may need to apply on data sets (which in this case

is the J48 classifier) as well as the test option necessary for the analysis. It also facilitates a

submit button for the submission of jobs to the different DCIs. This page was developed and

utilised both at the Science Gateway level (production) and at the portlet developmental

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

145

Adedeji Oyekanmi Fabiyi

stage.

5.13.1.2 The Submit Page

The submit page is mandatory and implemented both at the Science Gateway level and the

development stage of the portlet. Similar to the Infection Model portlet, the submit page of

the WEKA – J48 portlet informs the user of any successful job submission being made

towards the DCIs.

5.13.2 WEKA - J48 portlet Classes

There are several Java classes used in the implementation of the JSON files that are required

for the execution of the WEKA application. These include the AppPreferences Class, the

ConfigurationActionImpl Class, the FutureGatewayClient Class, the Response Class and the

WJ48Portlet class. Other classes which are specific to the execution of jobs (in a distributed

environment) include the AppInput Class, the InputFile Class, the Link Class, the OutputFile

class and the Task Class.

5.13.2.1 The AppPreferences

The AppPreferences class defines all the values needed by the portlet to submit jobs to the

Future gateway. This class stores information such as the FutureGateway Host (fgHost),

FutureGateway Port (fgPort), FutureGateway API version (fgAPIVersion), Application Id

(applicationid) and the pilotScript. The class defines several methods to set and get the

different values which are required to submit jobs towards a distributed environment.

5.13.2.2 ConfigurationActionImpl

This class consists of the exchanges between the processAction and the render method. It

defines a method that is used to store all the application preferences such as the fgHost,

fgPort, fgAPIVersion, application id and the pilotscript.

5.13.2.3 FutureGatewayClient

The FutureGatewayClient defines the attributes of a particular client which are required by

the target host (i.e. FutureGateway). This may include the fgEndpoint, fgAPIversion, the

WebResource (apiResource), and the client. It also defines the different set() and get()

methods which aid in submitting jobs in a distributed environment. In addition, this class has

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

146

Adedeji Oyekanmi Fabiyi

a createTask() method (that accepts a parameter such as appInput) which will call the create

task API and thus pass the input file. It defines a method to return the id of a specific task as

defined in the task class.

5.13.2.4 AppInput Class

This class is the representation of the task to be performed which contains all the necessary

attributes needed by the FutureGateway to submit WEKA jobs within a distributed

infrastructure. The FutureGateway API returns a JSON file whenever a task (consisting of the

AppInput class) is submitted. This JSON file represents an instance of the task class. Each

submission to the distributed infrastructure will instantiate these attributes. These attributes

include the Application (which is an identifier for the application in the FutureGateway),

Description (used to describe the application), Arguments, Input_files (files that are needed

by the application) and the Output_files (which consists of files created by the application). It

also consists of methods for getting and setting the aforementioned AppInput objects. A

JSON property is included to instruct the library that get() method will create outputs in

JSON format.

5.13.2.5 InputFile

Similar to the AppInput, this class also contains the necessary attributes that the

FutureGateway utilise to execute jobs in a distributed environment. This class has two major

attributes such as the name (which is used to specify the name of the input file that is

uploaded) and the status. It also defines the set() and get() methods that enable the retrieval of

these attributes.

5.13.2.6 OutputFile Class

The attributes of the OutputFile class is returned by the FutureGateway API's. These

attributes include: Name (which is the name of the input file which has been specified within

the InputFile) and the URL (which is returned by the FutureGateway when each output is

ready). The set () and get () methods for both Name and URL (which are used for retrieving

attributes) are also defined within the class and the FutureGateway generates the required

URL when the outputFile is ready.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

147

Adedeji Oyekanmi Fabiyi

5.13.2.7 Task

The task also includes all the required attributes needed by the FutureGateway to submit jobs

within a distributed environment. These attributes are returned to the user by the

FutureGateway API. These attributes include the Status, Application, Date, Description,

Output_Files, Links, User, Input_Files, id, and arguments. Within the class, the different set ()

and get () methods of the attributes are defined and utilised by the FutureGateway API's. The

Status attribute is important as it represents the status of each task. When a job is submitted, it

is equivalent to creating a task in the FutureGateway which in turn has a Status.

5.13.2.8 WJ48Portlet Class

This is the main Java class of the WEKA - J48 portlet. This class extends the generic portlet

class and overrides the different class methods.

5.13.3 Execution of the WEKA application to distributed infrastructure using the

FutureGateway API

FutureGateway APIs are services that enable the interaction of web applications with the

associated back-end distributed infrastructures, thus providing the necessary platform for the

front-end web services and the back-end interfaces. A simple demonstration of how the

FutureGateway API's is used to submit and execute a WEKA - J48 job in distributed

environment is seen in the analysis below.

To submit a WEKA - J48 job, a JSON file containing the description of the

application is defined. A CURL command is then used to send this file to the FutureGateway

API which is described in Appendix C9.

From the illustration in Appendix C9, the CURL command (using the POST method)

is used to send the JSON file which describes the WEKA application to the FutureGateway.

The JSON file consists of the application to be performed, the description of the application,

input_files needed by the FutureGateway, the arguments necessary to execute the application

and the expected output_files that is returned by the FutureGateway. All the aforementioned

attributes of the JSON file are defined within the Task Class (defined above) as well as the

AppInput Class. As such, this JSON file represents an instance of the task class. Generally,

whenever an application needs to be sent to the FutureGateway, it takes the format defined

above, however, the arguments depend on the type of analysis to be performed. For the above

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

148

Adedeji Oyekanmi Fabiyi

WEKA application, the missing value filters, weather.data and weka.classifiers.J48 classifiers

have been passed as arguments. Also, the InputFile class has two main attributes such as the

Name and the Status of the application. In the JSON file above the name of the input file that

was uploaded is weather.arff. This indicates to the FutureGateway to expect an input file

named weather.arff.

It was earlier noted that the FutureGateway returns an output each time a JSON file is

passed using the CURL command. This command is used to make an HTTP request to the

FutureGateway server. Once the weather.arff file is passed to the FutureGateway using the

CURL command (above) the output which the FutureGateway returns is illustrated in

Appendix C10.

The output returned by the FutureGateway is a JSON file that contains the attributes

of the WEKA Task Class. From the FutureGateway output, the status of the Task is given as

“WAITING”. This is as a result of the status of the weather.arff file which is returned as:

“NEEDED” even though the status of the pilot_script.sh file has already returned: “READY”.

The weather.arff file whose status is “NEEDED” is the file that needs to be uploaded to the

FutureGateway server and until this file is available, the Task can not start executing, and

hence the status will remain as “WAITING”. Once the weather.arff file has been uploaded

(via the WJ48 portlet) on the Science Gateway and the submit button has been utilised, this

will call the submit process action that creates the AppInput. Once the input file (weather.arff)

has been uploaded and ready and the status is no longer “WAITING” the CURL command

can then be used to submit the file to the FutureGateway. This is illustrated below as:

curl -i -F "file[]=@weather.arff"

"http://151.97.41.48/v1.0/tasks/103/input?user=afabiyi"

Therefore, by specifying the input sandbox consisting of all the files which may be

uploaded and by calling the upload file method in the WJ48 portlet class, the weather.aff file

is uploaded to the FutureGateway. The deployment (8) of the WEKA – J48 portlet on the

Liferay portal (i.e. the generation and execution of WEKA war files to run on a glassfish

domain under the Liferay portal) is the same as the procedures described for the Infection

Model portlet above.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

149

Adedeji Oyekanmi Fabiyi

5.14 Test the Portlet (9)

The WEKA application has been deployed in a portlet known as WEKA - J48 portlet. It is

ported on the Africa Grid Science Gateway along with the Infection Model portlet and other

portlets belonging to different communities of practice (See Figure 5.6). Also, this portlet can

be accessed at https://sgw.africa-grid.org/j48.

Figure 5. 6 WEKA (J48) Application Portlet Page

This portlet may be used by scientists to analyse specific datasets with the C4.5

algorithm using J48 which is WEKA's implementation of decision tree learner. More

specifically, the generated dataset which is obtained from the Infection Model portlet is

analysed using the WEKA – J48 and thus performing data mining operation on the output of

simulation results. The portlet could help users conduct their experiments by using the

functionalities (i.e. file upload, filters, desired classifier, test option, and job submission) as

defined on the view page described above.

Similar to the Infection Model Portlet and other portlets which has been embedded on

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

150

Adedeji Oyekanmi Fabiyi

the Africa Grid Science Gateway, the process of authentication and authorisation to the

portlet has already been explained in great detail in Section 5.8 above. When a user has

successfully logged on to the Science Gateway, the WEKA - J48 portlet may be accessed at

https://sgw.africa-grid.org/run-j48 and used to performed data mining on a given data set.

Such analysis may only be performed on .arff and .csv file formats. The landing page of the

portlet presents a general description of the application and the run icon at the bottom corner

is the link to the main page of the application. The WEKA – J48 portlet main page in Figure

5.6 includes all the functionalities needed to submit and perform data mining operations on

Infection Model simulation output result. Similar to the Infection Model portlet, users are

notified after each successful job submission and results is retrieved from the MyJobs portlet.

This stores the status of the WEKA jobs in a “RUNNING” mode as well as “COMPLETED”,

respectively as shown in Figure 5.7. In addition, the analysis of the simulation output result

using the WEKA – J48 portlet as well as the discussion of the output analysis can be found in

Appendix G.

Figure 5. 7 Myjobs portlet showing the output of the WEKA - J48 jobs in RUNNING and

COMPLETED modes.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

151

Adedeji Oyekanmi Fabiyi

5.15 Case Study Overview (1) - A Visualisation Portlet for the Infection Model

Simulation Output Results

Visualisation is a desirable feature to have within Science Gateways. It often helps

communities of practice in examining the outcome of their experiments by visualising

input/output data for the purpose of generating and extracting new insight and information

based on the output/result of a job. More so, applications solving complex problems could

generate terabytes or even petabytes of datasets and such volume of data therefore pose

significant challenges for data analysts. Scientific visualisation therefore represents a crucial

step in understanding, interpreting and verification of the outcome. It also accounts for a

process which includes the qualitative, comparative, as well as the quantitative stages of data

analysis, result presentation and the public engagement that ensues. Science Gateways can

therefore be used as the medium to seamlessly integrate datasets as well as the tools needed

for its interactive visualisation. The ABMS visualiser thus presents an example of how CSGF

can visualise the results or outcome of a scientific experiment and provision it via the Science

Gateway.

To facilitate data analysis activities on each simulation output result of the Infection

Model, a simple visualisation tool is provisioned on the Science Gateway. This tool will

enable users to create a visualisation of the simulation output results obtained from the

execution of the Infection Model portlet. For each simulation run that is performed on the

Science Gateway, users are able to generate a graphical view of networks among the different

agents within a specified population size.

5.16 Define Portlet Functionalities (2)

This section constitutes the functionalities of a visualisation portlet from the point of view of

potential users. The major functionality of the portlet involves performing data analysis on

the Infection Model simulation output results. These visualisations are meant to help users in

examining complex system data and events. In order to specify ways in which a Science

Gateway can be used to support simulation output results, different ways of using a

visualisation tool must be specified. Usually, a user is able to access the portlet interface and

select a file or dataset in the appropriate file format (such as CSV), via the portlet user

interface. Furthermore, a user is able to upload the file to generate a graphical view of

networks among the different agents within a specified population size. Finally, a user will

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

152

Adedeji Oyekanmi Fabiyi

also be able to edit the chart after the graph has been generated. Based on the user

requirements specification for this portlet therefore, the following deductions are made. A

potential user will:

 Be able to easily access the visualisation portlet page on the Science Gateway.

 Be able to select the Infection Model simulation output result (in CSV format), via the

Science Gateway, for subsequent analysis.

 Be able to upload the Infection Model simulation output file on the Science Gateway

and generate a graphical view of the network between all the different agents.

 Be able to edit the resultant chart after the graph has been generated.

The above user requirements are incorporated at the graphical user interface of the

visualisation portlet and ported on the Africa Grid Science Gateway. In order to implement a

visualisation application as a service on the Science Gateway, two main approaches are

considered. This includes the client side and the server side visualisation. For the server side

visualisation, a computer program is used on the server to render the visual representation of

the data. This visual representation can then be sent to the client as an image to be viewed

with a web browser. In the client-side implementation however, all the implementation is

done on the client side and the data is transferred to the client and visualised by specific

software such as a web browser. For the Infection Model visualiser therefore, the client side

implementation is used to render a graphical view of each simulation output result via a

Science Gateway interface.

5.17 Visualiser Portlet Design (6)

The visualiser portlet design is similar to the design processes described for the Infection

Model portlet. However, this design will include functionalities to upload files (such as the

Infection Model simulation output result), view and edit graph. Therefore, the different stages

that will realise these functionalities (in addition to those defined for the Infection Model

portlet) is as follows:

1) The user seeks to access the Science Gateway.

2) Science Gateway takes the user through an authentication and authorisation procedures.

3) A user submits his/her credentials to the Science Gateway for access.

4) Based on the user roles and privileges, Science Gateway presents the desired

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

153

Adedeji Oyekanmi Fabiyi

portlet/application to the user (Visualiser portlet).

5) The user can view the portlet, upload files and generate graph.

6) The user can edit the resultant graph.

7) Procedure ends.

From the above sequence of steps, two main building blocks is derived to represent

and implement the prototype architecture. These include user access and the user interface.

The steps above are similar to the ones defined for the Infection Model portlet, except users

are not required to submit, monitor and download jobs. However, users can upload their input

data (such as the Infection Model simulation output results), view and edit graph as shown in

Figure 5.8.

Figure 5. 8 Use Case Diagram for the Visualiser Portlet

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

154

Adedeji Oyekanmi Fabiyi

 The visualiser portlet is different from other portlets (utilised in this study) in that it

represents a service which is implemented and rendered on the client side. It is developed to

support the activities of the Infection Model portlet such as generating a graphical view of the

simulation output results. Therefore, it does not require the execution of jobs on the DCI,

neither does it need to be customised from specific Science Gateway framework. This portlet

simply make use of the JQuery-CSV and google visualisation API for its implementation.

The procedures for implementating the portlet will be described in the following section.

5.18 Develop/Implement the Portlet (7)

To implement the visualiser portlet, the JQuery-CSV and google visualisation API is utilised

as opposed to the APIs provided by the Science Gateway framework as seen in the case of the

Infection Model portlet. The jQuery-CSV library enables the transformation of a sting of csv

data into the appropriate format for Google’s visualisation library. The details of the

implementation of the visualizer portlet (using the JQuery-CSV and google visualisation API)

is briefly discussed in this section as follows:

The implementation process begins with the utilisation of the various functions that

the google visualisation API support. It uses the ChartWrapper class to wrap the chart and

handle all loading, drawing and Datasource querying for the class. This class is used to

expose methods for setting values on the chat as well as drawing it. It can also be used to save

a chart for reuse. It also simplifies reading from a data source as it does not require the need

for a query callback handler. The fixOptions function is used to set the options on the chart

wrapper so that it draws correctly. The chart editor is used to automatically enable animations

which does not look right with the ChartRangeFilter as well as set the

hAxis.viewWindowMode to 'pretty', which may not work well with continuous axes. The

ChartEditor class is used to open an in-page dialog box that enables a user to customise a

visualisation on the fly. To utilise the ChartEditor, the charteditor package in

google.charts.load() is loaded. In addition, a ChartWrapper object that defines the chart for

the user to customise is created. Furthermore, a new ChartEditor instance is created and the

ChartEditor.openDialog() is called having passed in the ChartWrapper. To update the chart in

the code, the setChartWrapper() is called. Finally, the drawChart() function is used to

transform the CSV file into a format that is suitable for google’s visualisatioin library.

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

155

Adedeji Oyekanmi Fabiyi

Figure 5. 9 Visualiser Portlet Main Page

5.19 Test Portlet (9)

The main page of the visualiser portlet on the Africa Grid Science Gateway can be viewed at

https://sgw.africa-grid.org/visualize-infection-model-result (also See Figure 5.9). Analysis is

done simply by making use of the Infection Model demonstration graph tool which allows

users to see the graphical visualisation of the results. A simple demonstration of this service is

a JQuery-CSV and google visualisation API where data file may be loaded in order to

visualise large data sets. This can thus help produce a fully functional visualisation tool which

may be ported on the Science Gateway and utilised by a particular application specific

domain or community of practice. To visualise any output, the text file is uploaded to produce

a graph of one element over the other (e.g. population variance over time) as shown in Figure

5.10. The ABMS visualiser is used to capture images and visualise the output of the ABMS

Infection Model. This presents an interface where users can simply upload and visualise the

output of the ABMS Infection Model such as the infection_model_simulation_output.txt file.

Consequently, when a job is ready and the simulation output result is collected, a user

can upload the result using the Infection Model visualisation tool on the Science Gateway,

https://sgw.africa-grid.org/visualize-infection-model-result

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

156

Adedeji Oyekanmi Fabiyi

and a graphical view of the job output is generated. Further analysis may also be performed

on the simulation output results by applying machine learning techniques using the WEKA

application tool which has been discussed earlier in Section 5.9.

Figure 5. 10 Visualiser Portlet showing a Graphical View of the Infection Model Simulation

Output Result

5.20 Summary

In this Chapter, the details of the design and implementation of the adopted scientific

software applications (ABMS, WEKA and Infection Model Visualiser) are analysed. In the

description of the process involved in the design and implementation of the first case study,

the portlet functionalities and the general requirements of the portlets (software, hardware

and the Science Gateway requirements) are presented. This was closely followed by the

detailed steps/processes involved in the actual design and implementation of the ABMS

portlet. In addition, the deployment, demonstration and test of the actual Infection Model

portlet is performed and the results are presented.

In the later stages of this Chapter, a second case study is ported on the Science

Gateway. This case study is WEKA’s J48 Classifier which was adopted to help with analysing

Chapter 5: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF SINGLE

EXPERIMENT

157

Adedeji Oyekanmi Fabiyi

the simulation output results obtained from the Infection Model portlet. Furthermore, it can

also be used to evaluate the method of the Infecion Model portlet by comparing the approach

taken to implement both portlets. It therefore plays different roles in serving as a viable case-

study as well as help in performing analysis on the simulation output results (obtained from

the Infection Model case study) or other associated data sets. In a similar manner to the

Infection Model, the steps involved in the design and implementation of the second use-case

(WEKA’s J48 Classifier), as well as the processes involved in the use of the actual portlet,

test and results are discussed in great detail. Finally, the processes involved in porting a

visualiser portlet (for analysing the Infection Model portlet simulation output results) was

also discussed which is similar to the first two case studies.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

158

Adedeji Oyekanmi Fabiyi

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE

FOR THE EXECUTION OF MULTIPLE EXPERIMENTS

6.1 Overview

This Chapter discusses the design and implementation of the parallel approach for both

portlets (i.e. the Infection Model portlet and the WEKA - J48 Portlet) discussed in Chapter 5.

It begins with a simple description of the parallel version of the Infection model portlet, as

well as the general requirements (in addition to the ones that were discussed in Chapter 5)

and the design and implementation processes that was utilised in the realisation of this

version of portlet.

Following from the previous portlets therefore, this Chapter builds on the work in

Chapter 5 by developing applications in Science Gateways for the execution of jobs (in

parallel) both at the user interface level (for the Infection Model portlet) and the DCI level

(for the Infection Model Portlet and the WEKA – J48 portlet). Chapter 6 is therefore

organised as follows. First, the general description of the parallel approach used for both

portlets was discussed in Section 6.2. Section 6.3 highlights the portlet functionalities and

Section 6.4 describes the general requirements, in addition to the ones defined for the

sequential versions of the portlets in Chapter 5. Section 6.5 outlines the design process that

was utilised in this version of the portlet. This includes the different job compositions (such

as the Workflow N-1, Job collection and Job parametric) that made up the parallel portlet.

Furthermore, Section 6.6 describes the process involved in the implementation of this

version of portlet (by using the different JSP pages, the different java classes and the adopted

cloud and grid engine method) for the execution of parallel jobs. The resultant portlet and its

test was presented in Section 6.7. In Section 6.8, the second layer of parallelism which was

done at the DCI level for both Infection Model and WEKA – J48 portlet were highlighted.

6.2 The Infection Model Portlet (For Multiple Experiments)

The parallel version of the Infection Model portlet also utilises the different input parameters

similar to the ones defined in the sequential version of the portlet discussed in Chapter 5.

That is, this version of the portlet also consists of input parameters such as simulation period,

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

159

Adedeji Oyekanmi Fabiyi

recovered count, infected count and susceptible count. However, in the implementation of the

parallel version (which is explained in more detail in the following section) the Infection

Model portlet allows users to run multiple jobs, simultaneously (i.e. users are able to specify

multiple experiments to run within a distributed environment). Once a user has specified the

desired number of jobs to be executed in parallel using the portlet user interface, a table

consisting of the different field for each parameter is automatically generated which can then

be populated by specifying the different input parameters.

The parallel implementation of the Infection Model portlet is divided into two levels.

The first level parallelism is the user interface layer of the portlet (already described above),

where users can specify and submit multiple jobs (simulation runs) at any given period.

However, the parallelism at this level will only be implemented for the |Infection Model

portlet. The second level parallelism however is implemented at the DCI layer which sees an

efficient use of HPC resources. At this level, parallelism is performed for both the Infection

Model portlet and the WEKA – J48 portlet. Both portlets are deployed to run on multiple

instances of VMs with several core processors as opposed to simply just running on a single

instance of machines. As such, VMs with multiple cores (at different cloud sites) are utilised

for the execution of both versions of the portlet.

6.3 Portlet Functionalities

The functionalities of the Infection Model portlet have been defined in Section 5.4 (in

Chapter 5). However, based on the general portlet requirements and the components of this

version of portlet, the following deductions are made for the user interface requirements. A

potential user of the portlet will:

 Be able to easily access the Infection Model portlet page on the Science Gateway.

 Be able to specify the number of experiments to run (in parallel) and the different

input parameters on the Science Gateway.

 Be able to execute and submit jobs of the Infection Model on DCIs.

 Be able to monitor jobs for statuses and updates.

 Be able to download outputs/results of simulation experiments.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

160

Adedeji Oyekanmi Fabiyi

6.4 General Requirements

The portlet requirements such as the software, hardware and the Science Gateway

requirements (for the parallel version) are similar to the ones defined for the sequential

versions of both portlets in Section 5.5. For the parallel version however (as part of the user

requirements) users will be able to specify input parameters on their own accord without

being limited to a defined set of experiments. Furthermore (as discussed in the hardware

requirements section in Chapter 5) VMs with multiple cores are utilised at the DCI layer to

execute jobs in parallel. Also, as already mentioned in the above Section 6.3, the user

interface is designed such that a user can specify and execute multiple experiments at any

given time. Furthermore, the excess availability of cloud resources at the time of developing

this version of the portlet ensure that users are not restricted in the number of experiments

they may want to perform.

6.5 Infection Model (Parallel) Portlet Design

The design process for this version of portlet is largely similar to the one that was discussed

in the first version of the Infection Model portlet. It utilises the five major building blocks

(discussed in Chapter 5) which were derived from the initial prototype architecture. These

include the user access, the user interface, the pilot-script.sh, pre-configured VMs, and

MyJobs portlet. These building blocks which form a major part of the design process of this

version of the portlet have already been explained in great detail in Chapter 5. However, in

addition to the aforementioned building blocks, this design process incorporates a major

approach that enables the execution of multiple Infection Model experiments within a

distributed environment. The embedded approach is seen as part of the process in which

CSGF framework conducts the execution of parallel jobs in general. The different stages that

will realise the above functionalities is described below as follows:

1) The user seeks to access the Science Gateway.

2) Science Gateway takes the user through an authentication and authorisation procedures.

3) A user submits his/her credentials to the Science Gateway for access.

4) Based on the user roles and privileges, Science Gateway presents the desired

portlet/application to the user.

5) The user can view the Infection Model portlet.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

161

Adedeji Oyekanmi Fabiyi

6) The user can specify the number of jobs to run (in parallel) as well as the different input

parameters and submit jobs to DCIs.

7) Science Gateway (using a pilot script) can collect input parameter being specified through

the user interface and submits to e-Infrastructure.

8) Science Gateway gives job statuses and user can monitor and download the outputs of

jobs.

9) Procedure ends.

For the purpose of implementing this version of the portlet, the CSGF framework

defines and incorporates several ways of executing parallel jobs (otherwise known as special

jobs) within a distributed environment. These different approach is discussed below as

follow:

6.5.1 Job Collection

Job collections are set of independent jobs which run in parallel. This parallel application

spawns N sub-jobs. When all the jobs are successfully completed the whole collection

becomes DONE. The result of the execution of a job collection in a DCI is an archive

containing all the output files for each job as seen in Figure 6.1.

Figure 6.1 Job Collection

6.5.2 Parametric Job

The parametric jobs are set of jobs that run in parallel which have the same executable (i.e.

pilot-script.sh) but consists of different arguments (such as the input parameters). This type of

parallel application spawns N sub-jobs and when all jobs are successfully completed, the

whole parametric job becomes DONE. Similarly, the result of the parametric job is an archive

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

162

Adedeji Oyekanmi Fabiyi

consisting of the output file for each job as seen in Figure 6.2.

Figure 6.2 Parametric Job

6.5.3 Workflow N-1

Workflow N-1 is a special kind of job that consists of two different levels of jobs. The first

level of jobs is a set of independent jobs that run in parallel and the final (collector) jobs

aggregate all the first level job outputs and generate a file output. As such, workflow N-1 is a

parallel application that spawns N sub-jobs and waits until they are correctly completed

before submitting a new job. The input files of this new job are effectively the outputs of the

N sub-jobs. When all the first level jobs are successfully completed then the final job is

submitted. When the final job becomes DONE, the whole workflow is considered to be

completed as shown in Figure 6.3.

Figure 6.3 Workflow N-1

Generally, to manage special (parallel) jobs with Catania Grid and Cloud Engine, the

parametric job and the workflow N-1 are designed to be subclasses of the job collection class

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

163

Adedeji Oyekanmi Fabiyi

as illustrated in Figure 6.4. This is mainly due to the simple reason that most behaviours of

both parametric job and workflow N-1 are common to the job collection.

Figure 6.4 Showing the JobCollection as a superclass of both Workflow N-1 and

JobParametric

The JobCollection java class consists of different attributes and handles the behaviour

of the job collection. It is responsible for performing actions such as job creation, status

updating and closing the collection when all the jobs are DONE. Figure 6.5 shows some

methods of this class which handles all the functionalities for developing scientific

applications (in parallel) in Science Gateways.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

164

Adedeji Oyekanmi Fabiyi

Figure 6.5 JobCollection Java Class

The JobParametric java class handles the behaviour of the parametric job. It extends

the job collection class and inherits all the behaviours and attributes that are defined in this

class. In addition, it defines a new attribute (as shown in Figure 6.6) that specifies the single

executable for the parametric jobs. It also defines a method that returns the executable as

shown below:

Figure 6.6 JobParametric Java Class

The workflow N-1 java class handles the behaviour of the workflow N-1. It extends

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

165

Adedeji Oyekanmi Fabiyi

and inherits all the attributes and methods defined in the JobCollection class as shown in

Figure 6.7. In addition, it defines new attributes such as the final job id, the

GEJobDescription and the inputFilePrefixes as illustrated in the Figure 6.7 below. It also

overrides some JobCollection methods such as the updateJobCollectionStatus (since the

behaviour of the workflow N-1 class is different from the job Collection class).

Figure 6.7 Workflow N-1 Java Class

To develop a portlet that can submit and execute ABMS jobs (in parallel) within a

distributed environment, the parametric job portlet is utilised. This choice is taken because

the Infection Model has one single executable (pilot-script.sh) and is specified with different

input parameters which therefore suits the attributes of a parametric job. As mentioned earlier

the JobParametric class is a subclass of the JobCollection class and utilises some of the

methods within the JobCollection class (in addition to the methods defined within its own

class) for the implementation of the Infection Model portlet. The actual implementation of

this portlet is carried out in the following Section 6.6.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

166

Adedeji Oyekanmi Fabiyi

6.6 Develop/Implement the Portlet

Similar to the first version of the Infection Model portlet, the ABMS parallel portlet utilises

the Liferay Portal Framework for the development of the user interface and the Catania Grid

and Cloud Engine for the execution of jobs within a distributed environment. The Infection

Model portlet was deployed in a portlet named “Parallel Infection Model”. In a similar

manner to the sequential version of the portlet discussed in Chapter 5, it utilises several

classes such as the AppInfrastructureInfo class (for storing the required information necessary

to submit a job to a given infrastructure), the AppPreferences class (for storing all the values

of portlet preferences) and most importantly the InfectionModelParallelPortlet class (which

consist of the main portlet class that extends and overrides the GenericPortlet class methods).

In addition to the aforementioned java classes, different JSP was used for presenting the

desired views to the Science Gateway users. These include the view page, the edit page, the

help page and the submit page, which have all been discussed in Chapter 5. However, for the

implementation of this version of the portlet, only the view page and the

InfectionModelParallelPortlet class are utilised and explained in great detail. The other the

java classes (AppPreferences and AppInfrastructureInfo) follows the same procedures that

were defined in the sequential version of the portlet. Finally, the relationship between the

main class (InfectionModelParallelPortlet) and how it interacts with the view page is similar

to the sequential version of the portlet described in Chapter 5.

6.6.1 The View Page

The view page of the parallel version consists of the standard user interface of the ABMS

portlet. Similar to the sequential version this portlet also incorporates most of the

functionalities that were specified at the user requirements stage which are described in

Chapter 5. It begins with a brief description of the parallel version of the portlet and the

different ways in which the portlet is utilised. However, rather than having a pre-defined set

of jobs where users can select and run experiments, this version has been designed such that

users can simply insert the number of parallel jobs they wish to run. Subsequently, a table

consisting of the different input parameters is generated which may be used to populate the

various fields according to their specification. (Here, the input parameters are not pre-defined

with the assumption that there is an unlimited resources at user’s disposal for the execution of

jobs in a distributed environment).

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

167

Adedeji Oyekanmi Fabiyi

6.6.2 The InfectionModelParallelPortlet Class

The same methods discussed in the sequential version of the portlet such as processAction()

and the render() methods and the corresponding view methods (doView(), doEdit() and

doHelp()) which are discussed in Chapter 5 are utilised in the InfectionModelParallelPortlet

class. However, the method which the GridEngine uses to submit jobs in the sequential

version is different from the one used in the parallel version of the portlet. All the methods

discussed in the parametric jobs in Section 6.5 above are used to submit and execute the

ABMS jobs. This entire process will therefore be illustrated as follows:

The infrastructures needed by the ABMS portlet to submit and execute jobs are assigned and

enabled as follows:

InfrastructureInfo[] infrastructuresInfo = appPreferences.getEnabledInfrastructures();

In addition, the job description is defined within the submitJobCollection method and a new

array list of the job description object (otherwise known as descriptions) is created. This array

consists of the description of each job which belongs to the jobCollection. Furthermore, the

set() method is used to specify the standard output and the standard error. Finally, the

description object is added to the list as illustrated in Appendix C11.

To submit the parametric job, the JobParametric object (known as a collection) is

created. Also, the constructor for the jobParametric class which is similar to the jobCollection

is defined. Furthermore, the job descriptions and the string representing the single

executables are passed as arguments. This is illustrated below:

JobCollection collection = new JobParametric (appInput.getUsername(),

appInput.getJobLabel(), "/tmp", descriptions, pilotScript);

In addition, the GridEngine JobCollectionSubmission job submission object (otherwise

known as tmpJobCollectionSubmission) is created. The constructor of the

JobCollectionSubmission is defined and the parametric job object (collection) is passed as an

argument. This is illustrated in Appendix C12. The above illustration shows that the

development environment requires the database parameters (DBNM, DBUS, DBPW) which

are defined and passed as arguments to the constructor. The production environment however,

which comes after the else part, only requires the parametric job object (collection) as its

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

168

Adedeji Oyekanmi Fabiyi

argument. Notice that it does not take the database parameters as its arguments.

Consequently, the Infection Model job can be submitted to the different DCIs by calling the

submitJobCollection() method on the JobCollectionSubmission object

(tmpJobCollectionSubmission) as follows:

tmpJobCollectionSubmission.submitJobCollection (enabledInfrastructures,

portalIPAddress, applicationId);

6.7 Test the Portlet

The parallel version of the Infection Model is deployed in a portlet known as “Parallel

Infection Model”. This was ported to the Africa Grid Science Gateway along with the

sequential version of the Infection Model and WJ48 portlets (See Figure 6.8). Similar to the

sequential version, this portlet is used by potential users to conduct their ABMS experiments

in a distributed environment. By making use of this portlet, users can specify input

parameters, execute jobs and obtain results via the MyJobs portlet. However, rather than

facilitating users to specify and submit one single job or simulation run at a given period of

time (as seen in the first version of the system) this portlet will allow users to specify multiple

jobs at any given period.

The process of authentication and authorisation to the Science Gateways follow a

similar approach to the sequential version of the portlet which was earlier described in

Chapter 5. Parallel job executions can simply be achieved by specifying the number of

experiments to be performed in parallel, via the portlet user interface. The ‘OK’ button

automatically generates a field in tabular form based on the number of experiments that was

specified by the user as demonstrated in the Figure 6.9.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

169

Adedeji Oyekanmi Fabiyi

Figure 6.8 Parallel Infection Model Application Portlet Page

Figure 6.9 Parallel Infection Model Page showing three (3) Simulation Runs

The above Figure 6.9 shows that three (3) experiments were specified using the

“insert number of parallel jobs field”. This automatically generates three (3) fields where the

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

170

Adedeji Oyekanmi Fabiyi

different input parameters (Simulation Period, Recovered Count, Infected Count, and

Susceptible Count) are specified. It was earlier stated that (for this version of the portlet) a

parametric approach is adopted such that the parallel job will consist of the same executable

(pilot-script.sh), but with different arguments (input parameters). Therefore, the three (3)

experiments will spawn three (3) different jobs as seen in Figure 6.9. After each job

submission, users can retrieve jobs from MyJobs Portlet. This portlet will display the status of

all three (3) jobs either as CREATED, RUNNING, and DONE (See Figure 6.10).

Figure 6.10 MyJobs portlet showing different job statuses

A job which has been executed in parallel is said to be successful when all the three

(3) individual jobs have successfully completed and their statuses have changed to a small

folder icon as shown in Figure 6.10. When the job has successfully completed, it can then be

retrieved via the MyJobs portlet for subsequent analysis.

6.8 Parallel Implementation of both the Infection Model Portlet and the Weka

Portlet in the Distributed Environment Layer

The above sections describe in detail the parallel implementation of the Infection Model

portlet at the user interface level. The parallelism at this level (user interface level) enables

potential users to specify and submit multiple experiments at any given time towards a

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

171

Adedeji Oyekanmi Fabiyi

distributed environment as opposed to the portlet that was discussed in Chapter 5 where users

can only specify and submit one experiment. However (for the WEKA – J48 portlet) such

level of parallelism is not applicable or required since potential users always have to upload

files (to be used for WEKA analysis) on the Science Gateway. Therefore, the only parallel

approach for the WEKA – J48 portlet is implemented at the DCI level where multiple core

processors are utilised for the execution of WEKA jobs. This can be contrasted to using

single cores to implement the sequential version of the portlets described in Chapter 5 where

VMs with 1 core each at different cloud sites were utilised.

For the implementation of the parallel version of the portlets however, both the Infection

Model and WEKA applications are deployed to run on VMs with multiple instances. As such,

VMs with multiple cores at different cloud sites are utilised for the execution of this version

of portlets. This implementation therefore takes two forms:

1) Currently, the Infection Model portlet has five simulation runs on the Science

Gateway, but an additional five simulation runs are replicated to make a total of ten.

The parallelisation can therefore be performed as follows:

Experiment 1: 10 replications / 10 per instance / 1 instance used.

Experiment 2: 10 replications / 5 per instance / 2 instances used.

Experiment 3: 10 replications / 2 per instance / 5 instances used.

Experiment 4: 10 replications / 1 per instance / 10 instances used.

2) For the WEKA – J48 portlet, cores with multiple instances were utilised for the

execution of specific data sets (such as weather data or the simulation output result) to

be used for WEKA analysis which may be uploaded via the WEKA – J48 portlet. See

discussions of the analysis of the simulation output result using WEKA – J48 in

Appendix G.

These experiments are done in a similar fashion to the performance test that was

conducted using the gUSE/WS-PGRADE platform (which represents another Science

Gateway Framework that was described in Chapter 2) where the same set of parallelism was

performed for the Infection Model on the Science Gateway. The performance test on both

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

172

Adedeji Oyekanmi Fabiyi

infrastructures (CSGF and the gUSE/WS-PGRADE Science Gateway Framework) can

therefore provide an avenue to compare these two Science Gateway frameworks.

This study (in large parts) has concentrated on the accessibility and availability of

scientific software applications to communities of practice (via the use of DCI resources) by

creating a MESSAGE methodology for developing such scientific applications in Science

Gateways. Usually, executing scientific applications in a DCI environment is not always easy

and may often involve the use of some complex or sophisticated programming languages for

the execution of jobs. The entire process which usually requires a steep learning curve may

be a hindrance to adopting these technologies. Consequently, this thesis has focused on

ensuring that scientists and researchers across the world can access and use scientific

applications running on the distributed computing resources of e-Infrastructures. By using the

DCI resources in this way to enable easy access to scientific applications, how can other

(related) research outputs such as the simulation output results be easy to access and readily

available to communities that need them? An approach used to enable this process is

discussed in a section in Chapter 7.

6.9 Summary

In this Chapter, the approach that was taken to design and implement the parallel version of

both the Infection Model portlet as well as the WEKA – J48 portlet were discussed. This

Chapter begins by presenting a description of the parallel portlet as well as discuss the

general requirements of the portlet (in addition to the requirements described in the previous

Chapter). It also presents the functionalities of the portlet by building on the functionalities

described for the first version of the portlet.

 In addition, it presents the different layers that make up the parallel approach for the

execution of jobs in a distributed environment. These involve two levels of parallelism such

as the user interface layer (which was implemented for the Infection Model portlet and where

users can specify multiple simulation runs at any given time) and the DCI layer (that was

implemented for both the Infection Model Portlet as well as the WEKA – J48 portlet). The

DCI layer made use of VMs with multiple cores (at different cloud sites) to execute jobs

which are triggered by each portlets.

Chapter 6: DESIGN AND IMPLEMENTATION OF MESSAGE FOR THE EXECUTION OF MULTIPLE

EXPERIMENTS

173

Adedeji Oyekanmi Fabiyi

Furthermore, special kind of parallel jobs which comprise of Workflow N-1, Job

collection and Job parametric are thoroughly discussed in this Chapter. Ultimately, the

implementation of the portlet (using the different JSP pages, the classes involved and the

adopted cloud and grid engine method) are later presented. Furthermore, it also discusses the

use of the portlet to execute and submit multiple simulation jobs at any given time.

 The next Chapter will now attempt to evaluate the Infection Model portlet and the

WEKA – J48 portlet as well as the MESSAGE methodology that was used in implementation

of both portlets. The first evaluation is done by comparing the development processes of both

portlets, while the second approach will utilise real life scientific use-cases from two EU

projects (such as the CloudSME project and the Sci-GaIA projects) for the evaluation

process.

Chapter 7: PORTLET EVALUATION

174

Adedeji Oyekanmi Fabiyi

Chapter 7: PORTLET EVALUATION

7.1 Overview

This Chapter discusses the evaluation of the portlets and the methods that were utilised

throughout this research to test different aspects of the MESSAGE methodology proposed in

Chapter 4. In conducting this evaluation, varieties of approach were adopted. The first

approach compares the methodology used to implement both Infection Model portlet and the

WEKA – J48 portlet. The second approach (on the other hand) compares the methododology

used in implementing individual portlets with the approach taken to develop different

scientific applications in two EU funded projects. Both projects have been tasked with

developing Science Gateways for the various communities of practice that may need them.

This series of evaluation in this chapter will consequently lead to a revised version of the

MESSAGE methodology discussed in Section 7.6.

Therefore, on the back of the previous Chapters, this Chapter is organised as follows.

First, the overall approach that was adopted to evaluate the methods used in developing both

portlets is analysed in Section 7.2. Section 7.3 describes the first approach used for the

evaluation process, which compares the method for developing both the first case study (the

Infection Model portlet) and the second case study (WEKA – J48 portlet). Furthermore, it

compares the methododology used to develop both case studies with the developement of the

use-cases of the first EU project (Sci-GaiA project). In the Sci-GaiA project, the use-cases

were developed using similar Science Gateway framework (CSGF/FutureGateway API) that

was adopted in the development of both the Infection Model portlet and the WEKA – J48

portlet. This was discussed in Section 7.4. Similarly, Section 7.5 compares the methodology

for implementing both use-cases with the approach which was utilised in the development of

all the applications of the second EU-project (CloudSME project). The applications in this

project utilised a different Science Gateway Framework otherwise known as the gUSE/WS-

PGRADE Science Gateway Framework. Finally, the MESSAGE methodology which was

proposed in Chapter 4 was re-visited and (based on the evaluation) a revised MESSAGE

methodology for developing scientific software applications in Science Gateways was

proposed in Section 7.6. This Chapter concludes (in Section 7.7) with the use of the Infection

Model simulation output result to demonstrate the easy access and retrieval of other

Chapter 7: PORTLET EVALUATION

175

Adedeji Oyekanmi Fabiyi

associated research outputs or results. This demonstration was done by using enabling

technologies such as Open Access Document Repository (OADR), Digital Object Identifiers

(DOI) and the Open Researcher and Contributor ID (ORCID), in the context of e-

Infrastructures.

7.2 Evaluation Process

To determine the relevance as well generalise the approach that was taken in this research, an

evaluation of the entire research process is analysed. The Cambridge English dictionary

defines evaluation as: “to judge or calculate the quality, importance, amount or value of

something”. In terms of evaluating IT system however, (Farbey, Land et al. 1999) defines IT

evaluation as “a process or group of parallel processes which take place at different points in

time or continuously for searching and for making explicit, quantitatively or qualitatively, all

the impacts of an IT project and the programme and strategy of which it is a part”. In light of

the above definition, a thorough evaluation of the method that was utilised in this research

will therefore help to establish the validity and potential of the method and approach and thus

provide an avenue for generalisation. The criteria which the researcher has followed to

evaluate the overall method is established in this section as follows.

Reflective Assessment was utilised in the evaluation of the ideas and principles

described in the MESSAGE methodology. This process was done by reflecting on the lessons

learnt in applying the approach discussed in the MESSAGE methodology to the different

case studies utilised throughout this research. Consequently, some important questions (such

as: what the implementations reveal) came to light. Furthermore, by comparing the

experiences in creating both the Infection Model and WEKA - J48 portlets helps to determine

the different approaches that were taken, or whether the same approach has simply been

utilised for the implementation of both portlets. In addition, other questions that came to light

from these assessments also include: Is there enough evidence with the three different

implementations and are there enough information to substantiate the claims that were set out

in the MESSAGE methodology? Furthermore, the methodologies that were used in other

Science Gateway projects were also evaluated either by referring to project manuals

consisting of the implementation details of the use-cases, or through direct interactions with

developers that were involved in those projects. Subsequently, the information obtained from

this interactions were then compared with the approach described in the MESSAGE

methodology.

Chapter 7: PORTLET EVALUATION

176

Adedeji Oyekanmi Fabiyi

To measure the quality, effectiveness and most importantly the generalisability of the

approach that was utilised in this thesis, a comparative method was adopted. To test the ideas

and methods that were developed in this thesis, two different case studies were developed and

implemented. Firstly, the methodology that was utilised in the development of both case

studies (Infection Model and WEKA) were compared and contrasted. By reflecting on the

lessons learnt in the development/implementation of both portlets (having utilised the

proposed MESSAGE methodology) raises different questions. Secondly, some real-life case

studies implemented using the CSGF/FutureGateway Science Gateway Framework are

classified and analysed. Furthermore, the method and approach that was utilised in the

realisation of these case studies are discussed. Consequently, the methodology that was

employed in the realisation of both case studies is compared with the method that was utilised

throughout the first EU project. Lastly, in a similar manner to the real-life case studies

developed using the CSGF/FutureGateway Science Gateway framework, some use-cases

from the Cloud based Simulation platform for Manufacturing and Engineering (CloudSME)

project which were implemented using the gUSE/WS-PGRADE Science Gateway framework

approach were also analysed. The approach that was adopted in the development of the

different use-cases of this project (CloudSME) is also compared with both case studies that

were utilised in this study. Since the scientific applications of the CloudSME project were

implemented using a different Science Gateway approach (known as the gUSE/WS-

PGRADE), this comparison is therefore considered to be key in the generalisation of the

proposed MESSAGE methodology. Finally, once a systematic comparison of the different

sets of case studies is performed using the three different approach described above (and the

evaluation of the Science Gateway methodology is complete), the MESSAGE methodology

proposed in Chapter 4 is revised.

As mentioned earlier, two different sets of real life case studies were employed in the

evaluation of the MESSAGE methodology. The first set consists of the case studies in the

Africa Grid Science Gateway which were implemented using the CSGF/FutureGateway

Science Gateway framework approach, while the second set includes case studies from the

CloudSME project that were implemented using the gUSE/WS-PGRADE Science Gateway

framework. The Africa Grid Science Gateway is a standard web 2.0 demonstrative platform

that was developed to show the different applications which were earlier identified by the

past ei4Africa and the current Sci-GaIA projects. Sci-GaIA is a H2020 project which was

Chapter 7: PORTLET EVALUATION

177

Adedeji Oyekanmi Fabiyi

funded by the European Commission (DG CONNECT) in order to promote the development

and use of e-Infrastructures in Africa. CloudSME (on the other hand) is yet another Science

Gateway project which establishes a cloud-based simulation platform that enables the use of

state-of-the-art, simulation technology as Software as a Service (SaaS) in the cloud. As such,

manufacturing and engineering SMEs can get access to a pay-per-use, one-stop-shop for

simulation applications that are built on top of several Cloud and HPC resources and

technology layers. It is important to note here that the case studies in the Africa Grid Science

Gateway (which were implemented using the CSGF/FutureGateway Science Gateway

framework) are directly related to this research since a similar Science Gateway framework

was adopted for the implementation of the different case studies. This is explained in more

detail in the following sections.

7.3 The Design and Implementation of the Infection Model Portlet and

WEKA - J48 Portlet (Re-visited)

The Infection Model portlet is designed to enable users to specify different input parameters

to execute jobs in a distributed environment. As such, each specification represents a single

replication (or run) for each experiment to be executed. Subsequently, experiments are

performed and results are obtained using VMs with a single core processor in a Cloud

environment. The parallel version of the Infection Model portlet is designed to perform

multiple experiments (multiple runs/replications) via the Science Gateway interface.

Parallelisation is therefore implemented both at the user interface level as well as the DCI

layer. Consequently, replications/runs are executed over VMs with multiple core processors

within a Cloud environment.

The WEKA – J48 portlet on the other hand was designed to enable users to analyse

specific input data, or the simulation output result obtained from the Infection Model portlet,

via the Science Gateway. Similar to the sequential version of the Infection Model portlet, the

WEKA – J48 portlet is used to perform experiments using VMs with single core processor

within a cloud environment. In addition, the parallel version of the WEKA – J48 portlet (via

the DCI layer) can enable the execution of WEKA jobs over multiple core processors within

a cloud environment. While the design of both portlets follow a similar approach such that

same logical steps were followed in their design (i.e. the sequence of steps that is used to

realise the functionalities of both portlets which was defined in Chapter 5), their

Chapter 7: PORTLET EVALUATION

178

Adedeji Oyekanmi Fabiyi

implementation however followed slightly different approaches. The similarities as well as

the differences are consequently discussed in the following sections.

7.3.1 The design of the Infection Model Portlet and WEKA Portlet

To test the approach described in the MESSAGE methodology and to subsequently execute

different aspects of the Science Gateway framework of services (using the proposed

MESSAGE methodology) a case study (an Infection Model) was utilised in the early sections

of Chapter 5. Furthermore, a second case study was later introduced in the latter part of

Chapter 5 which is used to further test and investigate the different ideas that were described

in the proposed MESSAGE methodology. Based on the nature of both case studies, their

design and implementation followed precise patterns as discussed in Chapter 5.

In the design of both portlets (Infection Model and WEKA – J48), the general

approach which was taken was such that potential users of both portlets will be able to

perform specific operations based on the user requirements specifications defined in Chapter

5. Both portlets follow a general sequence of steps for the realisation of the functionalities

which are defined based on the user requirement sections. Furthermore, this sequence of steps

give rise to six major building blocks which are initially derived to represent or implement

the prototype architecture of the first portlet (Infection Model). This includes user access,

user interface, pilot-script.sh, pre-configured virtual machine, myjobs portlet and the ABMS

Visualiser (in the case of the Infection Model portlet). However, these six building blocks

were later found to be paramount and applicable to the design of the second case study

(WEKA). The different stages which was used for the design of both portlets could therefore

be described as follows:

1) The user seeks to access the Science Gateway.

2) Science Gateway takes the user through an authentication and authorisation procedures.

3) A user submits his/her credentials to the Science Gateway for access.

4) Based on the user roles and privileges, Science Gateway presents the desired

portlet/application to the user.

5) A user is either able to view portlet, specify different input parameters and submit jobs to

DCIs (in the case of the Infection Model portlet), or view portlet, upload files, and select

appropriate filters, test options and algorithm and then submit their jobs to e-Infrastructure (in

Chapter 7: PORTLET EVALUATION

179

Adedeji Oyekanmi Fabiyi

the case of the WEKA – J48 portlet).

6) Science Gateway, using a pilot script, can collect input parameter being specified through

the user interface and submits to e-Infrastructure.

7) Science Gateway gives job statuses, and a user can monitor and download the outputs of

jobs.

8) User is able to generate graph view of simulation output results (in the case of the

Infection Model portlet).

9) Procedure ends.

As seen from the above sequence of steps, starting from the need to access the

Science Gateway to the point where an execution has been performed (and the overall job

procedure ends) the different stages used for the realisation of both scientific software

applications remain the same. The only difference is the type of job being performed in step

five, i.e the specification of the different input parameters and the submission of jobs to DCIs

(in the case of the Infection Model portlet) and the file uploads, selection of appropriate

filters, test options and algorithm, and submission of jobs to DCIs (in the case of the WEKA

– J48 portlet). Also, users may want to visualise the output of simulation results which was

facilitated for the Infection Model portlet only, using another portlet (otherwise known as the

visualiser portet). Apart from the two points mentioned above, the logical sequence of steps

for both portlets remain the same. The revelation from the above sequence of steps is such

that the approach taken to design the Infection Model as well as the WEKA – J48 portlet is

generic to both sets of scientific applications.

7.3.2 The Implementation of the Infection Model Portlet and the WEKA Portlet

The Infection Model portlet and WEKA portlet adopted a similar Science Gateway

framework (described in Chapter 2) for developing both scientific software applications in

Science Gateways. However, while the Infection Model application adopted the CSGF

methods for both the sequential and parallel versions of the portlet, the WEKA – J48 portlet

(on the other hand) utilised the FutureGateway API technologies to execute jobs in a

distributed environment. These jobs may be executed using the method of the GridEngine

Multi-Infrastructure Job Submission (in the case of the CSGF adopted for the Infection

Model portlet) and the various methods defined for the FutureGateway APIs which were

utilised for the implementation of the WEKA – J48 portlet (as discussed in Chapter 5).

Chapter 7: PORTLET EVALUATION

180

Adedeji Oyekanmi Fabiyi

For the CSGF, the Grid and Cloud Engine (a generic software module which uses

standard technologies to interconnect the Scientific Gateway presentation layer with the

underlying distributed infrastructures) is tightly coupled with the JSAGA (a java library) to

physically enable access to various DCIs. This method of communication is only possible

with Java libraries. For the FutureGateway however, portlets are not directly linked to the

Grid Engine but instead utilises the Restful API via another module known as the API server.

In this evolution of the CSGF, the API server is tasked with connecting to the GridEngine to

execute user request on the distributed Infrastructure. The Grid and Cloud Engine are

modified to support many JSAGA adaptors and the ones implemented for the FutureGateway

includes SSH (for remote hosts and clusters), rOCCI (for generic clouds and EGI fedCloud),

WMS (for EMI-gLite Grid Infrastructure) and Tosca (for SaaS/PaaS/IaaS). These different

adaptors ensure that the FutureGateway provides executor interfaces accordingly. As a result,

the API server can interact with any other SAGA implementation or a different module

altogether in order to target specific DCIs.

 By using these different methods (as seen in the CSGF and the FutureGateway APIs)

for accessing web-based computational services, the following points have therefore come to

light:

1. A steady move from the use of rudimentary methods such as command line interfaces for

interacting with DCI resources.

2. Web-based content management technologies such as Liferay portal and their associated

portlets when tightly coupled with a specific execution module (which can provide physical

access to DCIs such as the Grid and Cloud Engine of the CSGF), can help enable easy access

to computational web-based services. The CSGF approach provides a solution in which a

portal technology (such as Liferay portals) is proposed. It also makes use of the Java

implementation of the SAGA standard and therefore ensures that any method of

communication with the targeted DCIs is only possible via the java libraries. This approach is

adopted for both the sequential and the parallel version of the portlets that were developed for

the Infection Model.

3. FutureGateway (on the other-hand) is largely developed to enable a solution that is not

completely dependent on portal technologies. Therefore, communities of practice can utilise

an existing portal or any web technology (which may already be in use) in their own local

Chapter 7: PORTLET EVALUATION

181

Adedeji Oyekanmi Fabiyi

domain. Furthermore, API server is responsible for interacting with the Grid Engine and not

portlets (as seen in the case of CSGF). In addition, the use of Restful APIs for the interaction

with the targeted infrastructures is performed using different programming languages as

opposed to the CSGF approach where the java libraries is tightly coupled with SAGA. The

WEKA – J48 portlet is therefore developed using this approach. Even though a portal

framework (such as Liferay) was also chosen as the platform of choice for developing the

WEKA – J48 portlet, this option is more flexible and can therefore be used with any other

web technologies.

The different approaches show a steady evolution in the way in which web-based

access to computational services is viewed, from the early days of windows client using Java

programs to web-based content using Liferay portals or similar content management system

and to the more recent use of RESTful-APIs for the interactions with DCI resource.

7.4 The Infection Model Portlet and the WEKA portlet in comparison with

real life use-cases of the Sci-GaiA project

Section 7.3 briefly discusses the approaches that were taken to develop both portlets by

comparing the methods used in the design and implementation of both the Infection Model

portlet and the WEKA – J48 portlet. In this section however, an attempt is made to evaluate

both versions of the Infection Model portlet and the WEKA – J48 portlet within the context

of real case study scenarios. This evaluation is performed by comparing the adopted

approaches used in the creation of both portlets with some real-life case studies developed

and deployed on different Science Gateways for different communities of practice. More

importantly, these case studies have been developed using either the CSFG or the more recent

FutureGateway APIs. They were supported by Sci-GaiA - a project aimed at creating a

sustainable foundation of educational materials and the procedures for the management of

Science Gateways and e-Infrastructures in Africa and beyond.

These sets of case studies specify different requirements such as security

requirements, user requirements, software requirements, data requirements and system

requirements as defined by the communities who need them. The mandatory security

requirements necessary to access these applications include the different privacy levels,

certification and access mechanism which the Science Gateway adopts to safeguard the

different scientific software application on the Science Gateway. The mechanisms in place

Chapter 7: PORTLET EVALUATION

182

Adedeji Oyekanmi Fabiyi

for both the Catania Science Gateway Framework and the FutureGateway API for

authenticating and authorising users to the scientific software applications on the Science

Gateway (as adopted by the aforementioned scientific applications) have been thoroughly

discussed in Chapter 2. The user requirements, on the other hand, consist largely of the GUI

requirements where users can specify, run and execute jobs on different DCIs. The need to

utilise some web-based content (such as Liferay portal) or any other web-based content

management already in use by a specific scientific domain to facilitate access to DCIs have

earlier been explained. Furthermore, data requirements may involve all data related activities

between the frontend and the backend or the runtime data transfers (and storage during

execution) which are facilitated by the Grid and Cloud Engine of the Catania Science

Gateway Framework (discussed in Chapter 2).

The required software stack may depend on different scientific software applications

and may vary from an application server (For hosting the individual

components/applications) and the need for database connectivity to keep track of users,

service actions and states. Finally, the system requirements may vary from one scientific

software application to another and may include access to different DCIs such as clusters,

grids, desktop grids and cloud resources or resources such as sensors/instrumentation, data

repository, data analysis support, etc. These DCI resources may help communities of practice

to alleviate the need for more CPU, memory or storage requirements as required by each

scientific software application. These resources (as required by these communities) are

therefore summarised in Table 7.1 below.

Table 7.1 presents a summary of the different scientific applications that are

supported by the Sci-GaiA project. It shows the classification of different applications based

on the scientific domain which they belong and most importantly the different DCIs that were

exploited by each of these applications.

Chapter 7: PORTLET EVALUATION

183

Adedeji Oyekanmi Fabiyi

Table 7.1 Summary of the use-cases from both the Sci-GaiA project and the e-Infrastructures

for Africa project, and the corresponding e-Infrastructure resources that were utilised.

Scientific

Use-Cases

SW

Access

Support

Data

Repo

Supp

ort

Support

for

Powerful

Comp.

Resources

Data

Analys

is

Suppo

rt

Peer

Collabo

ration

Support

Connection

to Sensors

and

Instrument

ation

Scientific

Domain

Main

Characteristi

cs

Education E-

library &

MOOC

platform

YES YES NO NO NO NO IM Publications,

Reviews, E-

library

Addis Ababa

Riverside

Monitoring

System

YES YES YES YES NO NO Earth River, Riverside

Monitoring

e-

AgriSERVICO

MM

YES YES YES YES NO NO Agriculture Disseminate

information to

farmers

SGW-based

plant Tissue

YES YES YES YES NO NO Agriculture Plant tissue data

Documentation

& Archiving of

Open Data

YES YES NO NO NO NO IM Meta-Data

Archiving,

Documentation

of survey Data

sets.

ACEPRD Plant

Repository

YES YES NO NO NO NO Health Pharmaceuticals

Plant Derived

Medicines,

Plant

Repository

Real Time

Meteorological

Data Repository

YES YES NO NO NO YES Earth Atmospheric

Dataset

Framework for

NGS Data

Analysis

YES NO YES YES NO NO Health Next Generation

Sequencing,

Data Processing

Interactive

Pipeline for

Genome

YES YES YES YES NO NO Health Genome/DNA

Study

Drug, Design,

Discovery,

Development

Platform Repo

YES YES NO NO NO NO Health Drug

Products/Repo

Web Based

Predictive

Defuzzifier

YES NO YES YES NO NO Health Fuzzy Logics

IBIS

Framework

YES NO YES YES YES NO Health Biological Data

Chapter 7: PORTLET EVALUATION

184

Adedeji Oyekanmi Fabiyi

MIPAR

Extension

YES YES YES YES NO NO Health Medical

Images/Image

Repo

REPAST YES YES YES NO NO NO Health Infection Model

iGrid Portal YES YES NO NO NO NO IM Smart Grid

WRF

Integration

YES YES YES YES NO YES Earth Weather

Research,

Forecasting

Model.

WEKA YES NO YES NO NO NO Health Breast Cancer

Datasets/Data

Mining Tasks

Kenya National

Public Health

Gateway

YES NO YES YES NO NO Health Data on

Motorbike

accidents,

Public Health

Experts

Speech

Recognition

System

YES YES YES NO NO NO IM Speech

Recognition

System

TTA

Collaboration

Platform

YES YES YES NO YES NO IM Collaboration

Platform

In the above Table 7.1 are the different set of scientific use-cases/applications which span

four (4) different sets of scientific domains. These scientific domains include health,

agriculture, environment, and information management. A classification was therefore

performed based on these different scientific domains and their need for different DCIs to

conduct their scientific experiments. Scientific needs may therefore fall into one or more

categories such as:

1) The need to support access to software applications for performing experimentation.

2) The need to support access to large data sources.

3) The need for more powerful computational resources.

4) The need to connect to specialised instrumentation for analysis.

5) The need to collaborate with other scientists across the world.

Conventionally, Science Gateways enable scientific domains to seamlessly exploit the

aforementioned distributed computing and storage resources via a common interface which is

normally configured to fulfil the specific requirements of the particular community of

Chapter 7: PORTLET EVALUATION

185

Adedeji Oyekanmi Fabiyi

practice. As a result, scientists or potential users can focus on their scientific goals and thus

worry less on the required DCIs. The diverse set of scientific applications (together with their

associated e-Infrastructural needs) ensure that processes such as software provisioning are

complex and difficult to manage. The above Table 7.1 shows that several scientific

applications require different types of e-Infrastructure resources. These e-Infrastructures are

used to support several e-Science activities and operations such as the global collaborations

between scientists and researchers across many various fields, fuelled by sophisticated

software applications and supported by advanced Information and Communication

Technologies (ICT). These ICT which combines to collectively form the e-Infrastructures

include but not limited to high-speed research communication networks, powerful

computational resources (such as dedicated high-performance computers, clusters, and large

numbers of commodity PCs), Grids and Cloud technologies, data infrastructures (data

sources, scientific literature), sensors, web-based portals, scientific gateways and mobile

devices. All these resources have been captured and adapted as required by the different

communities shown in Table 7.1.

The above Table 7.1 indicates that majority of the communities need easy access to

scientific software applications as well as an extra access to data repository. These software

applications are enabled via a Science Gateway to allow multiple users across the world to

access and execute applications in an e-Infrastructure environment. Science Gateways which

is at the very heart of this research are often integrated via a portal or a suite of applications

(usually in a graphical user interface) which could be further customised to meet the needs of

specific communities such as the ones listed above. The resources which are represented in

Table 7.1 are mostly back-end services which are required for the execution of the scientific

software applications and thus form a major part in the development of applications within

Science Gateways in general.

The need for the easy access and use of scientific software application was identified by

most of the different communities of practice as shown in Table 7.1 where the support for an

easy access to these applications is prioritised by the majority of the communities.

Furthermore, the support for more powerful computational resources is also of utmost

importance as shown in Table 7.1. Across many different fields the need for an

interdisciplinary global collaboration between scientists and researchers (which has been

fuelled by these sophisticated software applications) ensures the need for powerful computers

Chapter 7: PORTLET EVALUATION

186

Adedeji Oyekanmi Fabiyi

to run these applications. A few of the communities only require the access to sensors and

instrumentation. However, a considerable amount of these scientific applications also require

an extra support for both data repository as well as the capability for future data analysis

activities.

Consequently, the different scientific applications represented in Table 7.1 are divided

into two categories. The first category of applications represents the communities that require

an easy access and use of their scientific application in the context of e-Infrastructures. In

addition, they also require the need for powerful computers to execute these applications.

This category of applications was developed using the Catania Science Gateway Framework

approach which is tightly coupled with a particular web-based content management (such as

the Liferay portal) and adopts the Catania Grid and Cloud Engine for interacting with the

various DCIs via the JSAGA interface. The method that was used in the development of

Infection Model portlet (which has been explained in great detail in Chapter 5 and briefly

discussed in Section 7.3) is similar to the approach that was used to develop the last seven

use-cases in Table 7.1. The second category of applications (the first 13 use-cases in Table

7.1) represent the communities that mostly require (in addition to the need for an easy access

to their scientific applications and the use of powerful computers for their execution) the

access to data repository as well as data analysis capabilities. These applications therefore

constitute the second group of scientific applications. This group of applications were

developed using the FutureGateway API approach where portlets development are not tightly

coupled with a particular content management system and communities of practice may

therefore opt to utilise an existing portal or any other web technologies already in use in their

local domain. Furthermore, the use of Restful APIs for interacting with the targeted

infrastructures is done using varieties of programming languages as opposed to the use of

Java libraries as seen in the CSGF approach. This approach used in developing these

applications is similar to the one used for porting the WEKA application to the Science

Gateway which was briefly discussed in Section 7.3 and detailed in Chapter 5. Although the

Liferay portal framework was used in the development of the WEKA – J48 portlet, this

approach for developing applications has the flexibility of adopting other similar web

technologies. It also has the flexibility of using APIs to execute jobs on the DCIs.

In light of the above discussions, it is clear the proposed MESSAGE methodology in

Chapter 4 took into consideration only the computational aspect of job execution. However,

Chapter 7: PORTLET EVALUATION

187

Adedeji Oyekanmi Fabiyi

majority of the scientific applications in Table 7.1 falls under the second category where the

easy access and use of scientific applications and powerful computational resources are

equally as important as the need to have data repository and data analysis capabilities when

porting scientific software applications in Science Gateways. Consequently, these additional

capabilities are included as part of the revised MESSAGE methodology for developing

scientific software applications in Science Gateways which is reviewed in the latter sections

of this Chapter.

7.5 The Infection Model Portlet and the WEKA Portlet in comparison to real

life use-cases of the CloudSME project

Similar to the Sci-GaiA project which supports the execution and management of different

scientific applications, the CloudSME simulation platform also supports the development and

deployment of scientific software applications across multiple clouds and mostly to facilitate

the use of High-Performance Computing. In particular, many simulation software vendors

who have identified different needs (in the context of e-Infrastructures) for their simulation

applications have developed cloud-based versions of their software. This activity is

performed in close collaboration with their end-user partners in the CloudSME case study

experiments with a view to developing applications with partners and potentially across the

European manufacturing and engineering sector.

More importantly, the development and deployment of the different scientific

software applications which are discussed in this section are supported by a well-known

Science Gateway framework (otherwise known as the gUSE/WS-PGRADE) which has been

explained in great detail in Chapter 2. The CloudSME project therefore presents different set

of case studies which are developed and executed on DCIs using a different Science Gateway

Framework other than the Catania Science Gateway Framework and FutureGateway APIs.

Similar to the case studies that were supported in the Sci-GaiA project, the CloudSME

case studies have specified different security requirements, user requirements, software

requirements, data requirements and system requirements. The different scientific software

application needs and requirements have been explained in Section 7.4 above. The

CloudSME case studies which were supported in the project include twelve (12) distinct case

studies and comprises of different communities such as Environment fluid mechanics,

Business process modelling by simul8, Simulation application templates by simul8, 3D scan

Chapter 7: PORTLET EVALUATION

188

Adedeji Oyekanmi Fabiyi

insole design, Aircraft maintenance by 2Moro solutions, Accessing Cloud for emissions

reduction (ACER), Cloud-based simulation models for freight transport intermodals

terminals, ComfortFeet in safety shoes, Cloud-based workflow for CFA and FEA simulation,

Development and application of Cloud-based simulation template for the Craft brewing

industry, Simulation-based optimisation of business processes and Inventory analysis and

simulation forecasting cloud-based software.

The majority of the use-cases which were supported in the aforementioned CloudSME

project are mostly simulation software applications. Therefore, they share similar or same

functionalities, requirements and DCI resources as well as other resources which are required

for their development, deployment and the subsequent execution in a distributed

environment. All the aforementioned use-cases provide simulation and modelling support

capabilities for the different communities in the context of e-Infrastructures. Since the use-

cases are fundamentally similar in nature (i.e. simulation software applications), their e-

Infrastructure requirements usage is mostly summarised below as:

 The need to provide support for a Graphical User Interface service where users can

develop and execute complex workflows as well as monitor their results. This

capability is enabled by the WS-PGRADE (the graphical user interface service). The

available GUIs include the Workflow Developer UI, End-User User Interface and the

Application Specific User Interface. There is also the option of running the GUIs on

the cloud or on the desktop.

 The need to provide mechanisms for customising portals according to specific

requirements based on specific scientific domain (which is mainly powered by

Liferay portal).

 The need to secure access to these resources using mechanisms such as certificate

and access mechanisms, etc. as provided by the WS-PGRADE/gUSE framework.

 The need to provide support for runtime data transfers and storage during these

simulation activities as well as provide support for archived data storage and

management which could range from 100MB to 1TB per user.

Chapter 7: PORTLET EVALUATION

189

Adedeji Oyekanmi Fabiyi

 The need to provide support for powerful computational resources in order to ensure

that the connection between the frontend and backend is reasonably fast most

especially, where running simulation experiments are concerned.

 The need to execute these scientific simulation software on federated Cloud resources.

 Additionally, to ensure that users can create and run workflows on various DCIs

(supported for the aforementioned applications), the DCI Bridge service (described in

Chapter 2) which enables access to most of the popular European DCIs is utilised.

This therefore provided the needed support for accessing various DCIs.

The above e-Infrastructure need or use for each scientific simulation application in the

CloudSME project draws some parallels with the requirements that were defined and utilised

throughout the development and implementation of both the Infection model portlet and the

WEKA – J48 portlet. It is also consistent with the requirements that were defined in the Sci-

GaiA projects which was earlier discussed. The comparison of the Infection Model portlet

and the WEKA – J48 portlet with the CloudSME project and the Sci-GaiA project, and the

similarities in the methods used therefore show the generic nature of the proposed

MESSAGE methodology in Chapter 4. As such, this process has demonstrated the generic

nature of the MESSAGE methodology such that it is applicable to the different scientific

software applications executed and managed across two of the Science Gateway frameworks

that was discussed in Chapter 2.

The MESSAGE methodology in Chapter 4 however, took into consideration just the

computational aspect of developing and deploying scientific software applications in Science

Gateways. But, as revealed by the scientific case studies of the Sci-GaiA projects and the

CloudSME projects, while some scientific software applications require extra support for data

analysis (most especially in the Sci-GaiA project), majority of the scientific software

applications require an extensive support for data repositories in the case of both projects.

Nonetheless, the MESSAGE methodology remains a generic methodology which may be

utilised to develop scientific software applications in Science Gateways by using the different

Science Gateway Frameworks discussed in Chapter 2. However, for the revised MESSAGE

methodology, data repository/data analysis capabilities are incorporated as part of the overall

process. This will consequently serve as the revised MESSAGE methodology for developing

Chapter 7: PORTLET EVALUATION

190

Adedeji Oyekanmi Fabiyi

scientific software applications in Science Gateways which is discussed in the following

section.

7.6 The Revised Methodology for Developing Scientific Applications in

Science Gateways

In the above Section 7.4 and 7.5 attempts are made to analyse the adopted methods in the

development of the different sets of scientific software applications in Science Gateways.

More so, the general requirements and functionalities needed for the development and

deployment of these applications are discussed. These different sets of applications are

developed using two Science Gateway frameworks. Consequently, the development of these

applications was done by customising the Science Gateway framework which the different

projects have adopted (namely the CSGF/FutureGateway API framework and the gUSE/WS-

PGRADE Science Gateway framework). Therefore, the development of these applications

followed a similar pattern based on the Science Gateway framework that was adopted.

However, the system functionalities and the e-Infrastructure resources in use may vary

depending on the type of scientific application being developed. Furthermore, the adopted

portal/web framework, web container and the utilised database management system are

discussed. In addition, the job executors that were adopted by each application are also

analysed. The adoption and use of a particular Science Gateway framework by each of these

applications ensures the automatic use of a job executor which could either be DCI-bridge (in

the case of the use-cases of the CloudSME project) or the Grid/Cloud

engine/JSAGA/FutureGateway API (in the case of the use-cases of the Sci-GaiA project).

For the Sci-GaiA project however, in addition to the e-Infrastructure resources which

are commonly in use, most of the scientific software applications also require access to data

repository and data analysis capabilities. These are peculiar to the communities of practice

who want to utilise all aspects of their research (such as data, software, results/research

outputs) and make them visible to other communities for validation, re-use and collaboration

purposes.

Chapter 7: PORTLET EVALUATION

191

Adedeji Oyekanmi Fabiyi

Figure 7.1 The Revised Methodology for Developing Scientific Software Applications in

Science Gateways (MESSAGE)

 The MESSAGE methodology in Figure 7.1 shows the revised approach to the

MESSAGE methodology for developing scientific software applications in Science Gateways

which was proposed and discussed in Chapter 4. The proposed MESSAGE methodology

describes the processes involved in developing an application in Science Gateways, from the

Chapter 7: PORTLET EVALUATION

192

Adedeji Oyekanmi Fabiyi

case study description to the final deployment of portlet on the Science Gateway. However,

the proposed MESSAGE methodology focused more on developing customised user

interfaces for different user communities as well as the computational aspect of job

execution. In the Sci-GaiA project that was discussed in Section 7.4, the majority of the

scientific software applications also require the capability to connect with data repositories to

store different kinds of research outputs such as data, software, results, etc. In essence, jobs

require access to data storage when they are executed. Therefore, the MESSAGE

methodology in Chapter 4 is revised to facilitate this capability as shown in Figure 7.1.

Consequently, more than just attempting to make scientific software applications easily

accessible and readily available worldwide, this approach also facilitates the accessibility and

availability of the associated research outputs which are generated as a result of utilising

associated scientific software applications.

The idea of making research outputs easily accessible and available (worldwide) is

known as open science. Open science aims to promote open access to all research artefacts.

The issues surrounding open science, and efforts or endeavours to make scientific research

easily accessible and available to the scientific communities that could benefit from its use is

what the Sci-GaiA project aims to achieve. In addition to Sci-GaiA, there are similar

initiatives that aim to promote open science, such as the Open Knowledge Foundation (OKF)

and the Center for Open Science.

It is important to note here that while the MESSAGE methodology in Figure 7.1

provides a foundation for open science, the concept of open science is actually beyond the

scope of this research. In developing the processes which can potentially aid with the

development and deployment of scientific software applications and make them accessible

and available to other communities, the associated research outputs such as the related data

and final results (generated from the execution of the aforementioned scientific applications)

can also benefit from a similar approach. This approach will ensure that all associated

research products are easily accessible and readily available for the purpose of future

validation, collaboration and re-use. In the following section, the Infection Model simulation

outputs is used to demonstrate the procedures which are required to make research outputs

easily accessible and available (worldwide) by utilising enabling technologies such as the

Open Access Document Repository (OADR), Digital Object identifiers (DOI) and the Open

Researcher and Contributor ID (ORCID) in the context of e-Infrastructures.

Chapter 7: PORTLET EVALUATION

193

Adedeji Oyekanmi Fabiyi

7.7 Availability, easy access and/or retrieval of scientific research outputs in

the context of an e-Infrastructure: Demonstration of the Infection Model

results (outputs)

It was earlier mentioned that potential users of an e-Infrastructure may need the platform for

a number of activities such as access to more powerful computer to run applications,

specialised HPC resources, specialised instrumentation for analysis, large data sources,

sensors for data collection and access to software. By using a valid credential/certificate the

procedures for making an ABMS software readily available and easily accessible (via a

science gateway interface) have (thus far) been presented in this thesis.

In addition to making ABMS scientific software easily accessible and readily

available to international communities (by leveraging on the different DCI resources), other

related research outputs such as ABMS model, data and final results (such as the simulation

output results) can also be made available and accessible by using appropriate e-

Infrastructure resources. A typical ABMS experiment may include the use of the software

package, the simulation runs, generated data and output collection for subsequent analysis.

All of these aforementioned entities could (more or less) serve as the outputs necessary for

modelling/simulation experiments. Another research output may be the final report of an

experiment (such as a scientific paper) which could be published in a conference or journal

(Taylor, Fabiyi et al. 2016). Usually, the aforementioned research outputs are not readily

available for public use except for published papers which could be available for free or

subject to certain access agreement. However, to encourage the replication, reproduction and

reuse of scientific research, such research outputs and methods must be openly

available/shared. Consequently, this can benefit other aspects of research such as

collaboration and validation processes.

In this section, the simulation output (results) obtained from the different simulation

runs of the Infection Model portlet is used to demonstrate how research outputs are accessible

and readily available to research communities. This approach is enabled by using different

technology stacks such as Digital Object identifiers (DOI), Researcher Registries (RR), and

the Open Access Data Repositories (OADR). An Open Access Data Repository (OADR) is a

repository for storing or depositing all research outputs. Conventionally, all objects stored on

the OADR have DOIs assigned to them. DOIs are persistent digital identifiers of objects

Chapter 7: PORTLET EVALUATION

194

Adedeji Oyekanmi Fabiyi

which are usually assigned by agencies with permission to assign them. As such, the outputs

of a simulation (or data) also have DOIs assigned. All the aforementioned technology stacks

have been made available by an initiative which promotes open science (Energising Scientific

Endeavour through science gateways and e-Infrastructures in Africa - Sci-GaIA) to make

accessible and available all the relevant research output. Consequently, the following section

will demonstrate the use of DOI and OADR on the simulation outputs/results of the Infection

Model portlet and how these research outputs are accessible and readily made available to the

communities that need them.

Figure 7.2 Open Access Repository showing the “Submit New Record” Page

The OADR may be located at http://oar.sci-gaia.eu/. Similar to the other DCIs,

depositing and submitting documents to the OADR requires users of the infrastructure to be

an authorised user of the repository. The authentication process to the repository also follows

a similar approach to the Infection Model portlet on the Africa Grid Science Gateway which

was earlier described in Chapter 5. By clicking on the submit tab on the OADR (See

Appendix A.5), different resource types such as datasets, images, audio/video recordings,

posters, presentations and software can be uploaded. However, for this demonstration the five

different datasets which are obtained from the simulation runs of the Infection Model portlet

Chapter 7: PORTLET EVALUATION

195

Adedeji Oyekanmi Fabiyi

is explored. On the submit page, datasets is chosen as the type of document to be submitted

and (on the proceeding page) ‘Datasets Sci-GaIA’ is selected as the category where the

content should be submitted (See appendix A.6). Subsequently, by clicking on the ‘Submit

new record’ button, a page which consists of the submission form which is used for reserving

a DOI for the Infection Model portlet outputs is presented as shown in Figure 7.2. A DOI may

be entered either in the DOI input field (if the researcher already has one) or generated

automatically by clicking the ‘Reserve a DOI’ button. In the case of the Infection Model

simulation output results, DOIs were simply reserved for the five datasets.

Furthermore, the resource title, author(s) of the resource, type of resource, category of

the project, abstract and date of the resource and the applicable licence for the resource are

specified for the Infection Model outputs. Finally, the Infection Model outputs are uploaded

and submitted to the OADR by clicking on the “finish submission button”. After this

submission, each simulation output result is assigned a reference (such as

DATASETSSCIGAIA-2017-003) as well as a URL (https://oar.sci-gaia.eu/record/577). As

the submission and publication of the research product on the OAR are not automatic, the

simulation output results are inserted in a bibliographic task queue where subsequent

execution can take place. This is to ensure that the managers of the OAR can analyse the

submitted research products such as its meta-data information. Subsequently, the publication

is made and the research output can thus become visible worldwide. An example of a reseach

output that was deposited in the OAR for a graphical visualisation tool for REPAST Infection

Model document can be found at http://dx.doi.org/10.15169/sci-gaia:1460675843.23 and the

virtual appliance to simulate an Infection Model implemented with using REPAST simphony

can be found at http://dx.doi.org/10.15169/sci-gaia:1455182324.71.

 To demonstrate the accessibility of such research outputs for the Infection Model

therefore, the list of outputs and their corresponding DOIs from an earlier work by (Taylor,

Fabiyi et al. 2016), in which the same sets of Infection Model research outputs were

deposited on the OAR are presented below as follows:

REPAST Infection Model Virtual Appliance http://dx.doi.org/10.15169/sci-gaia:1455182324.71

Graphical Visualisation Tool for REPAST Infection Model http://dx.doi.org/10.15169/sci-gaia:1457432416.29

REPAST Infection Model Experiment 1 Results http://dx.doi.org/10.15169/sci-gaia:1499112700.66

REPAST Infection Model Experiment 2 Results http://dx.doi.org/10.15169/sci-gaia:1499114566.48

http://dx.doi.org/10.15169/sci-gaia:1460675843.23
http://dx.doi.org/10.15169/sci-gaia:1455182324.71
http://dx.doi.org/10.15169/sci-gaia:1455182324.71
http://dx.doi.org/10.15169/sci-gaia:1457432416.29
http://dx.doi.org/10.15169/sci-gaia:1499112700.66
http://dx.doi.org/10.15169/sci-gaia:1499114566.48

Chapter 7: PORTLET EVALUATION

196

Adedeji Oyekanmi Fabiyi

REPAST Infection Model Experiment 3 Results http://dx.doi.org/10.15169/sci-gaia:1499114874.12

REPAST Infection Model Experiment 4 Results http://dx.doi.org/10.15169/sci-gaia:1499115090.39

REPAST Infection Model Experiment 5 Results http://dx.doi.org/10.15169/sci-gaia:1499115487.71

The general information for this submission as well as the references to the research outputs

have been represented in Figure 7.3.

Figure 7.3 Information Describing the Submitted Research Output

Finally, the Infection Model research outputs which are now visible and easily

accessible worldwide is uniquely identified to a particular researcher who has deposited the

research outputs on the OADR. This is made possible using the Open Researcher and

Contributor ID (ORCID) (also see https://orcid.org/) which provides a persistent digital

identifier that ensures that one researcher is distinguished from another. In addition, the

ORCID also provides an automatic link between all of an individual researcher’ professional

activities and thus ensures that all their work are recognised. By making use of this unique ID

therefore ensures that researchers are able to claim their work/outputs. Thus the researcher’s

ORCID is orcid.org/0000-0002-7797-8272 and the link to the public record submitted is

http://orcid.org/0000-0002-7797-8272.

http://dx.doi.org/10.15169/sci-gaia:1457432005.33
http://dx.doi.org/10.15169/sci-gaia:1457432005.33
http://dx.doi.org/10.15169/sci-gaia:1499115090.39
http://dx.doi.org/10.15169/sci-gaia:1499115487.71
http://orcid.org/0000-0002-7797-8272

Chapter 7: PORTLET EVALUATION

197

Adedeji Oyekanmi Fabiyi

To conclude this Chapter, the different aspects of the MESSAGE methodology which

has been tested through the implementation of the case studies in Chapter 5 is highlighted. It

is important to note here that only one part of the MESSAGE methodology has been tested

due to the decision of the researcher to customise an existing Science Gateway framework as

opposed to developing the Science Gateways from scratch. As such, the use case description

(1), define portlet functionalities (2) and the different software (3.1), hardware (3.2), and

Science Gateway (3.3) are demonstrated. Also, at the decision point in (A), the researcher

opted not to develop the portlet from scratch which consequently led to the decision point in

(B) where a suitable Science Gateway framework is identified. At this point, the decision to

customise the portlet from an existing Science Gateway framework (4) is made. Also, the

easy accessibility and availability of the associated research outputs was demonstrated,

therefore the decision point in (C) explores the possibility of an extra need for data

repository. The use of data repository in (6) was therefore included as part of the MESSAGE

methodology and was demonstrated using the simulation output results. In addition, the

different stages involved in the actual implementation of the portlet using a suitable SDLC

was demonstrated in the design of the portlet (7), develop/implement the portlet (8), deploy

the portlet on specific Science Gateway (9) and test the portlet (10). However, the other part

of the MESSAGE methodology (in web/portal framework (5.1), web container (5.2) and

database management system (5.3)) where the researcher needs to develop the Science

Gateways from scratch by specifying and setting up the different configurations (for the

web/portal framework, web container and database management system) will be tested as

part of the future work in this research.

7.8 Summary

 In this Chapter, the method that was used to develop the Infection Model portlet as well as

the WEKA – J48 portlet was thoroughly evaluated. There are different approaches which

have been utilised for the evaluation of both portlets. The first approach involves comparing

the method for developing both the Infection Model portlet and the WEKA – J48 portlet.

Secondly, the method used for developing both portlets was compared with the development

of several applications of two different EU projects (i.e. the Sci-GaiA project and the

CloudSME project).

While the Sci-GaiA project developed its use-cases using similar Science Gateway

framework to the Infection Model and the WEKA application, the use-cases of the

Chapter 7: PORTLET EVALUATION

198

Adedeji Oyekanmi Fabiyi

CloudSME project on the other-hand utilised a different Science Gateway Framework

(known as the gUSE/WS-PGRADE Science Gateway Framework). To generalise the

MESSAGE methodology, its application and use by other Science Gateway framework

(discussed in Chapter 2) is therefore justified. This was demonstrated by comparing with the

scientific applications that were developed using gUSE/WS-PGRADE Science Gateway

Framework in the second EU project. Consequently, a revised MESSAGE methodology is

proposed based on the evaluation that was performed throughout this Chapter. This Chapter

wraps up with a demonstration of how research outputs such as the Infection Model

simulation output results (in addition to their associated scientific applications) can be easily

accessible and readily available to scientists and researchers for further scientific activities

such as for collaboration and/or validation purposes. Such enabling technologies utilised in

the context of e-Infrastructures as discussed in this Chapter include OADR, DOI and ORCID.

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

199

Adedeji Oyekanmi Fabiyi

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

8.1 Overview

In this Chapter, a summary of the major highlights of the entire thesis is discussed in Section

8.2. Also, based on the research aim and objectives that were identified in Chapter 1, Section

8.3 discusses how those objectives were met in order to achieve the aim of the thesis. More

importantly, the contributions of this research is emphasised and discussed in Section 8.4.

Furthermore, while the research limitations and reflections are presented in Section 8.5,

Section 8.6 (on the other hand) discusses the future research possibilities based on conducting

this study.

8.2 Research Summary

This research study was motivated by the fact that several potentials and capabilities of the

advanced Information and Communication Technologies (ICT) may not be adequately

harnessed due to the approaches and methods provided by traditional means for accessing

them. Several issues relating to easy accessibility and availability of these resources therefore

present a major setback for the adoption of these resources by the communities that may

benefit from their use. The concept of Science Gateways which are “community specific set

of tools, applications and data which are integrated via a portal or suite of applications,

usually in a graphical user interface and further customised to meet the needs of a specific

community” have been introduced to simplify access and to overcome the initial difficulties

that were faced by the users of the infrastructures (Ardizzone et al., 2012).

 In light of this, the hypothesis in this research is therefore the feasibility of creating a

methodology for the development of scientific software applications in these Science

Gateways which can subsequently be used for accessing these infrastructures. To achieve

this, a research methodology which consists of a mix of DSR as well as a reflective

evaluation study was identified very early on in this research. Three distinctly different

research types based on the research questions and the research objectives were used in the

course of this study. These research types include Exploratory, Design and Development, and

Reflective Evaluation. A careful study of the different methodologies however, reveals that

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

200

Adedeji Oyekanmi Fabiyi

the DSR cycle maps well with the aforementioned research types which further justify the use

of the adopted research methodology.

According to the literature, the ease of access to distributed resources is one of the

major needs of most communities of practice (with respect to the adoption of several of these

DCIs) as the perceived complexities of understanding and managing the underlying

infrastructure and software could prove challenging. In addition, a further review of the

literature and the major highlights obtained from Chapter 2 reveals the high level

functionalities of generic Science Gateways. These include security management, job

management, workflow management and data management. In Chapter 4, these

functionalities are simply referred to as the generic framework of Science Gateway services.

The MESSAGE methodology (in Chapter 4) was created by considering two major

aspects of Science Gateways namely the front-end and the back-end components. The front-

end component is typically designed to serve users and to provide the necessary user interface

for target user communities. The back-end component, on the other hand, enables the

necessary DCI mechanisms and manages jobs as well as service calls. The sequence of steps

that were used to realise this methodology (to cater for both software and hardware

components) begin with the general requirement specifications (such as software, hardware

and the Science Gateway requirements) which are typically required to support specific

scientific software applications. Furthermore, the process emphasised the need to define

system functionalities, which could be specific to the needs of a particular community (and

could vary from one community to another), or generic to different communities of practice.

 In the proposed MESSAGE methodology, the next stage of the process flow describes

Science Gateway approaches which could be utilised to develop and deploy fully functional

applications in Science Gateways. The first approach is to develop the portlet from scratch

with the aid of specific portal or web application framework while the second approach

involves customising application specific Science Gateways from existing Science Gateway

frameworks. There are several Science Gateway frameworks available to customise from,

most of which were discussed in Chapter 2. In addition, the need to adopt different software

stacks (such as the portal framework, the web application container and the database

management system), in the development of these scientific software applications was

emphasised. The process flow concludes with the latter stages of the MESSAGE

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

201

Adedeji Oyekanmi Fabiyi

methodology which captures the step involved in the actual software creation (within a portal

context), from the design of the portlet to its deployment on the Science Gateway. The

relevant aspects of the adopted SDLC (Waterfall model) was adapted to capture this phase.

 In order to implement the MESSAGE methodology, three different scientific

applications (Infection Model, WEKA - J48 classifier and the Visualiser) were utilised. The

Infection Model application which was implemented using the well-known Agent-Based

modelling simulation platform (REPAST) Simphony was ported on the Africa Grid Science

Gateway. The Infection Model (which studies the behaviour of infections with an annual

outbreak) was utilised in order to implement several aspects of the MESSAGE methodology

and to demonstrate how scientists may easily access an ABMS simulation application,

worldwide. The first version of the Infection Model portlet presents the sequential version of

the system which is used to execute jobs (sequentially) in a distributed environment. The

second application (i.e. the WEKA - J48 classifier) on the other hand was utilised for two

main reasons. First of all, it serves as a case study to be used to evaluate the methods and

processes which was used in developing the Infection Model. Secondly, the WEKA - J48

classifier was chosen in order to demonstrate the process of workflow management service in

Science Gateways. This demonstration is such that the Infection Model simulation output

results will be used as the input file to be analysed by the WEKA - J48 portlet and this

processes will be managed by the Science Gateway and any associated workflow

management system.

 Another aspect of this research is the parallel implementation of the Infection Model

portlet which was ported to the Science Gateway. This second version of the Infection Model

portlet allows users to run multiple experiments simultaneously. Furthermore, the parallelism

that was performed at the DCI layer sees the use of VMs with multiple cores to execute these

scientific applications. A similar level of parallelism was also performed for the WEKA - J48

portlet albeit at the DCI layer.

 The MESSAGE methodology and the methods and approaches that were utilised for

developing both scientific applications (Infection Model and WEKA - J48 classifier) in the

Africa Grid Science Gateway were evaluated using case studies from two different EU

projects. These different sets of use-cases were developed and implemented using two

different Science Gateway Frameworks. These Science Gateway frameworks are the Catania

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

202

Adedeji Oyekanmi Fabiyi

Science Gateway framework/FutureGateway APIs and the gUSE/WS-PGRADE Science

Gateway frameworks. While the first set of case studies were developed using a similar

Science Gateway framework which was used to develop the Infection Model portlet and the

WEKA – J48 portlet, the second sets of case studies on the other-hand were developed using

the gUSE/WS-PGRADE Science Gateway Framework. The decision to compare the

approaches described in the MESSAGE methodology with case studies that were developed

using different Science Gateway Frameworks was considered really crucial to the whole

evaluation process as it helps to generalise the MESSAGE methodology.

 The evaluation that was performed based on comparing the method that was used for

developing different applications of the EU projects with the Infection Model and the WEKA

J48 classifier shows that the majority of the use-cases in the EU projects require support for

data repositories/data analysis capabilities. The MESSAGE methodology is thus revised to

include this capability. In addition, the use of data repository in this way to store other

research outputs such as (software, data, and results) encourages collaboration, validation and

re-use of research outputs. This notion is referred to, in one of the EU projects, as Open

Science. In essence, the use of Open Access Document Repository and other enabling

technologies such as Digital Object Identifiers (DOI) and the Open Researcher and

Contributor ID (ORCID) can aid with the easy accessibility and availability of this research

outputs. The aforementioned technologies and how they can enable the easy access and

retrieval of research outputs are demonstrated by using the Infection Model simulation

outputs. Even though the concept of Open Science is beyond the scope of this research, the

revised MESSAGE methodology (in Chapter 7) can provide a foundation for Open Science

Research.

8.3 Research aim and objectives

The aim of this research was to explore new approaches to developing scientific software

applications in Science Gateways. To achieve this aim, the following research questions were

addressed:

 (RQ1) What approach can be used to develop scientific software applications in

Science Gateways?

A thorough review of the literature shows that even though there are existing

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

203

Adedeji Oyekanmi Fabiyi

Science Gateway frameworks for developing application specific Science

Gateways, there are no methodologies in place to guide their actual

development. The MESSAGE methodology was therefore proposed and

implemented to cater for these needs.

 (RQ2) What Science Gateway framework and SDLC approach are appropriate for

implementing the proposed methodology for developing scientific software

applications in Science Gateways?

A review of the literature also shows the different Science Gateway

frameworks that can be used for the implementation of application specific

Science Gateways. However, the CSGF was considered as an exemplar

Science Gateway framework which caters for the different Science Gateway

functionalities that were identified in Chapter 2. In addition, relevant aspects

of the Waterfall software development approach was also utilised.

 (RQ3) Is the developed methodology effective?

A Reflective Assessment was done in order to evaluate the MESSAGE

methodology. By reflecting on the approaches utilised for the development of

the different case studies utilised in this research as well as the different

approaches adopted in two different EU projects (discussed in Chapter 7),

shows that the MESSAGE methodology is effective in its use for portlet

development. The generic nature of the MESSAGE methodology was also

established.

In order to achieve the aim and subsequently address the above research questions, five

objectives were identified. These objectives were met through the different Chapters of this

thesis as follows:

1. Conduct a literature review on the state of the art of Science Gateways, Web Portals,

Workflow Management Systems, DCIs, and all other technologies that lend

themselves to the easy access and use of distributed resources.

Chapter 2 presented the literature review which provides the state of the art of

all the related technologies such as Science Gateways, Web portals, Workflow

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

204

Adedeji Oyekanmi Fabiyi

Management systems and DCI resources. This Chapter provided the foundation on

which the entire thesis was founded.

2. Develop a research methodology that will be utilised throughout this research as well

as create a methodology for developing scientific software applications in Science

Gateways.

Chapter 3 discussed the philosophy and nature of the research and went on to

justify the selection of the DSR methodology as the adopted research methodology for

the entire research. Chapter 4, on the other hand, analysed the major functionalities

that a Science Gateway should possess (based on the review of literature in Chapter

2). These functionalities are otherwise known as the generic framework of Science

Gateway services. The MESSAGE methodology which could help (potentially) in

facilitating one or more of these services for specific communities of practice was

later proposed in Chapter 4.

3. Implement the methodology for developing scientific applications in Science

Gateways in objective (2), using three different scientific software applications. The

first scientific application is the case study that is utilised for the implementation of

the proposed ideas and methods described in the MESSAGE methodology, while the

second scientific application is the case study that is used for its evaluation.

In Chapter 5, three different scientific software applications were used to

implement the proposed MESSAGE methodology for developing scientific

applications discussed in Chapter 3. These scientific applications include an Infection

Model, WEKA J48 classifier and the Infection Model Visualiser. The sequential and

parallel versions of these applications were ported on the Africa Grid Science

Gateway and the process involved in their development was documented throughout

Chapter 5 and 6, respectively.

4. Perform a thorough evaluation of both the proposed methodology in objective (2), and

the development and implementation of the scientific applications in objective (3), by

comparing with the approach that was used in developing real life use-cases of two

Science Gateway projects.

In Chapter 7, the first stage of evaluation that was carried out involved a

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

205

Adedeji Oyekanmi Fabiyi

comparison of the methods and approaches that were used to develop the Infection

Model portlet and the WEKA – J48 portlet. The second stage of evaluation however

compared the development processes of several use-cases from two EU projects with

the proposed MESSAGE methodology for developing Science Gateways in Chapter

4, and subsequently the methododology used in developing both the Infection Model

and the WEKA – J48 portlet.

5. Based on the evaluation in objectives (4), revise the methodology for developing

scientific software applications in Science Gateways which was proposed in objective

(2).

The evaluation that was performed in objective (4) shows that several of the

communities of practice (especially in the Sci-GaiA project) require extra support for

data repository and data analysis capabilities. This capability was therefore added to

the revised version of the MESSAGE methodology for developing scientific software

applications in Science Gateways that was proposed in objective (2).

8.4 Research Contributions

This Section presents the major contribution and three other contributions which were made

and discussed throughout this thesis. This thesis generated the following significant

contribution as follows:

8.4.1 A Methodology for Developing Scientific Applications in Science Gateways

The main contribution of this thesis is the creation of a MESSAGE methodology for

developing scientific software applications in Science Gateways. The proposed MESSAGE

methodology in Chapter 4 describes the processes involved in developing scientific software

applications in Science Gateways, from the general description of the use case, portlet

functionalities, specification of different requirements, and the selection of appropriate

Science Gateway approach to the adoption and use of relevant aspects of software

development methodology. The MESSAGE methodology comprises of two phases. The first

phase deals with the actual implementation of portlets with the backends that support DCIs.

This is performed by either customising an existing Science Gateway framework (which

already comes with those backends) or develop them from scratch by defining their

configurations. The second phase is the adoption and use of relevant software development

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

206

Adedeji Oyekanmi Fabiyi

methodology. As such, the MESSAGE methodology is neither a Science Gateway

Framework nor a software development methodology. Nonetheless, it combines both

approaches in its development processes.

While the MESSAGE methodology provides a general guide for developing scientific

software applications across different Science Gateway frameworks, the revised MESSAGE

methodology in Chapter 6 however, also facilitates the extra use of data repositories which is

used to store different kinds of research outputs such as data, software and results (obtained

as a consequence of utilising a Science Gateway to execute scientific applications) for easy

accessibility and availability and for the purpose of future research collaborations, validation

and reuse.

The MESSAGE methodology can aid developers in accelerating the development of

their portlets and thus help save development time and effort. This can be achieved by

customising an existing Science Gateway framework (which comprise the part that was

demonstrated in this research). The methodology can also help in identifying the similarities

between different scientific applications, thereby simplifying the development process.

Lastly, the MESSAGE methodology can help to develop a portlet from scratch (which

comprise of the parts that will be demonstrated in the future work). However, this approach

can take considerable amount of time and effort to implement.

8.4.2 A Framework for the Major Science Gateway Services

This thesis also presents functionalities that a Science Gateway should possess (such as

security management, job management, workflow management and data management) which

are referred (in Chapter 4) as the generic framework of services provided by Science

Gateways. These services which were summarised in the review of the literature can either be

specific to a community of practice or generic to different communities of practice. Once a

community has identified the necessary Science Gateway service or set of services as

required by their scientific domain, the revised MESSAGE methodology in Chapter 6 can

therefore be used to develop the application on the Science Gateway.

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

207

Adedeji Oyekanmi Fabiyi

8.4.3 Parallel Execution of jobs in Distributed Environments (The Science

Gateway Approach)

As revealed in the review of the literature, many communities of practice require effective

and efficient means of executing scientific jobs in DCIs. In this thesis, a major Science

Gateway capability was proposed and implemented in which communities of practice can

execute multiple experiments simply by using the Science Gateway interface. More so,

communities that make use of ABMS applications can perform multiple simulation runs at

any given time. This capability was implemented by adapting the CSGF Grid and Cloud

Engine functionalities to cater for these needs.

8.4.4 A Foundation for Open Science Research

This thesis began with an attempt to make scientific software applications easily accessible

and available, worldwide. Much later in this research, there was also an opportunity to further

investigate ways in which other research outputs (such as data, software and results) can be

treated in a similar manner to the scientific software applications (i.e. make them easily

accessible and available). The principles of Open Science were demonstrated (using the

Infection Model simulation outputs/results) by utilising enabling technologies such as Open

Access Document Repository (OADR), Digital Object identifiers (DOI) and the Open

Researcher and Contributor ID (ORCID). This research (to a lesser extent) therefore

contributes to Open Science by laying a foundation for which future Open Science research

may be conducted. It also compliments the work done by other Open Science initiatives such

as the Center for Open Science (COS) that aims to promote Open Science research by

making use of a variety of software tools, workflows and data storage solutions to help

researchers manage, archive, discover and share research more openly. Another initiative that

aims to promote Open Science is the Open Knowledge Foundation (OKF) which is a non-

profit organisation that advocates open knowledge, open data, transparency and civil

participation.

8.5 Research Limitations and Reflections

One limitation of this research is that the MESSAGE methodology was only applied in three

case studies. To fully utilise majority of the functionalities of Science Gateways (depicted as

services in this thesis), it is desirable to apply the MESSAGE methodology to more case

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

208

Adedeji Oyekanmi Fabiyi

studies and test all the major Science Gateways services that were captured in Chapter 4 such

as the workflow management system service.

 Another limitation is the use of a single Science Gateway framework (Catania Science

Gateway Framework/FutureGateway APIs) for the development and implementation of the

three scientific software applications that were utilised throughout this research. It is also

desirable to utilise other prominent Science Gateway Frameworks discussed in Chapter 2

(such as the gUSE/WS-PGRADE) to implement some of the Science Gateway services

discussed in Chapter 4.

 On a side note, this research started with the ambition of creating an avenue for

comparing Science Gateway methods and approaches by using some of the Science Gateway

Frameworks (discussed in Chapter 2) to implement several of the Science Gateway services

identified in Chapter 4 by adopting the MESSAGE methodology. However, given the time

specified to finish a PhD study it is now evident that (at the early stages of this research) the

researcher may have underestimated the time required to get this done. In the following

section however, future work will now consider the aforementioned points.

8.6 Future Work

Firstly, the generic nature of the revised MESSAGE methodology (which was discussed in

Chapter 7) has been established. Therefore, other Science Gateway frameworks are able to

utilise the MESSAGE methodology for developing applications and services for their

associated communities. Future work will attempt to utilise the proposed MESSAGE

methodology for developing both scientific applications (i.e. the Infection Model and

WEKA) using a different Science Gateway framework other than the Catania Science

Gateway Framework/FutureGateway APIs. To do this therefore, the gUSE/WS-PGRADE or

any other Science Gateway framework discussed in Chapter 2 will be adopted.

Additionally, beyond just simple job submissions and service calls, applications

solving complex problems like scientific simulations require the creation and execution of

scientific workflows. Among the different Science Gateway services that were discussed in

Chapter 4, the services offered by Workflow Management System (in particular) are yet to be

explored. In this research, WEKA J48 classifier was adopted for two main reasons. The first

is to serve as a case study that would be used to evaluate the processes and methods involved

in developing the Infection Model portlet, and secondly to demonstrate the principles of

Chapter 8: CONCLUDING DISCUSSION AND REMARKS

209

Adedeji Oyekanmi Fabiyi

workflow management using Science Gateways. Future work will therefore investigate the

effects of using parameter sweep involving the use of both scientific applications.

A Parameter Study (PS) is a methodical process of changing various model

parameters which are then automatically run on one or several simulation models for each

parameter combination. To demonstrate this, the Infection Model portlet will be executed (by

specifying and executing different simulation runs on the Science Gateway) and the

generated results will be used as an input file to be further analysed by the WEKA – J48

portlet on the Science Gateway. The Kepler Workflow Management System (which has been

described in great detail in Chapter 2, and serves as a workflow orchestration, composition

and construction and focuses on data modelling and analysis) will be utilised along with the

Science Gateway interface to execute and manage such complex jobs.

References

210

Adedeji Oyekanmi Fabiyi

References

Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko, A. and Taylor, J., 2010,

December. Galaxy CloudMan: delivering cloud compute clusters. In BMC

bioinformatics, Vol. 11, No. 12, p. S4. BioMed Central.

Akram, A., Chohan, D., Meredith, D. and Allan, R., 2007. CCLRC portal infrastructure to

support research facilities. Concurrency and Computation: Practice and Experience,

19(6), pp.751-766.

Alameda, J., Christie, M., Fox, G., Futrelle, J., Gannon, D., Hategan, M., Kandaswamy, G.,

von Laszewski, G., Nacar, M.A., Pierce, M. and Roberts, E., 2007. The Open Grid

Computing Environments collaboration: portlets and services for science gateways.

Concurrency and Computation: Practice and Experience, 19(6), pp.921-942.

Aloisio, G., Cafaro, M., Carteni, G., Epicoco, I., Fiore, S., Lezzi, D., Mirto, M. and

Mocavero, S., 2007. The grid resource broker portal. Concurrency and Computation:

Practice and Experience, 19(12), pp.1663-1670.

Ardizzone, V., Barbera, R., Calanducci, A., Fargetta, M., Ingrà, E., Porro, I., La Rocca, G.,

Monforte, S., Ricceri, R., Rotondo, R. and Scardaci, D., 2012. The DECIDE science

gateway. Journal of Grid Computing, 10(4), pp.689-707.

Ardizzone, V., Bruno, R., Calanducci, A., Fargetta, M., Ingrà, E., La Rocca, G., Monforte, S.,

Pistagna, F., Ricceri, R., Rotondo, R. and Scardaci, D., 2014. The GISELA science

gateway.

Atzei, N., Bartoletti, M. and Cimoli, T., 2017. A survey of attacks on Ethereum smart

contracts (SoK). In International Conference on Principles of Security and Trust, pp.

164-186. Springer, Berlin, Heidelberg.

Baker, M., 2016. 1,500 scientists lift the lid on reproducibility. Nature News, 533(7604),

p.452.

References

211

Adedeji Oyekanmi Fabiyi

Baker, M., Buyya, R. and Laforenza, D., 2002. 'Grids and Grid technologies for wide-area

distributed computing', Software: Practice and Experience, 32(15), pp. 1437-1466.

Balasko, A., Farkas, Z. and Kacsuk, P., 2013. Building science gateways by utilizing the

generic WS-PGRADE/gUSE workflow system. Computer Science, 14(2), p.307.

Balaz, A., Cauhé, E., Chen, H., Jovanovic, P., Kacsuk, P., Loureiro-Ferreira, N., Lovas, R.,

Olabarriaga, S., Shahand, S., Sudholt, W., Vudragovic, D., 2013. EGI-InSPIRE Science

Gateway Primer. Available at: https://documents.egi.eu/document/1463 (Accessed:

10/08/2016)

Barbera, R., Falzone, A., Ardizzone, V. and Scardaci, D., 2007, June. The GENIUS Grid

portal: its architecture, improvements of features, and new implementations about

authentication and authorization. In Enabling Technologies: Infrastructure for

Collaborative Enterprises, 2007. WETICE 2007. 16th IEEE International Workshops on

pp. 279-283. IEEE.

Barbera, R., Bruno, R., Calanducci, A., Messina, A., Pappalardo, M. and Passaro, G., 2013,

April. The earthserver project: Exploiting identity federations, science gateways and

social and mobile clients for big earth data analysis. In EGU General Assembly

Conference Abstracts, Vol. 15.

Barbera, R., Fargetta, M. and Rotondo, R., 2011, March. A simplified access to grid

resources by science gateways. In Proceedings of the International Symposium on Grids

and Clouds, Taipei (2011), Proceedings of Science (ISGC 2011 & OGF 31) p. 23.

Barbera, R., Andronico, G., Donvito, G., Falzone, A., Keijser, J.J., Rocca, G.L., Milanesi, L.,

Maggi, G.P. and Vicario, S., 2011. 'A grid portal with robot certificates for

bioinformatics phylogenetic analyses', Concurrency and Computation: Practice and

Experience, 23(3), pp. 246-255.

Bhargava, N., Sharma, G., Bhargava, R. and Mathuria, M., 2013. 'Decision tree analysis on

j48 algorithm for data mining', Proceedings of International Journal of Advanced

Research in Computer Science and Software Engineering, 3(6).

https://documents.egi.eu/document/1463

References

212

Adedeji Oyekanmi Fabiyi

Bilandzic, M. and Venable, J., 2011. 'Towards participatory action design research: adapting

action research and design science research methods for urban informatics', The Journal

of Community Informatics, 7(3).

Binns, J., DiCarlo, J., Insley, J.A., Leggett, T., Lueninghoener, C., Navarro, J. and Papka,

M.E., 2007. 'Enabling community access to TeraGrid visualization resources',

Concurrency and Computation: Practice and Experience, 19(6), pp. 783-794.

Boccara, N. and Cheong, K., 1992. Automata network SIR models for the spread of

infectious diseases in populations of moving individuals. Journal of Physics A:

Mathematical and General, 25(9), p.2447.

Boehm, B.W., 1988. 'A spiral model of software development and enhancement', Computer,

21(5), pp. 61-72.

Boehm, B. and Turner, R., 2003. Balancing Agility and Discipline: A Guide for the

Perplexed, Portable Documents. Addison-Wesley Professional.

Bogdanski, M., Kosiedowski, M., Mazurek, C., Rabiega, M. and Wolniewicz, M., 2007.

'Flexibility and user-friendliness of Grid portals: the PROGRESS approach',

Concurrency and Computation: Practice and Experience, 19(6), pp. 827-838.

Bote-Lorenzo, M.L., Dimitriadis, Y.A. and Gómez-Sánchez, E., 2004. Grid characteristics

and uses: a grid definition. In Grid Computing, pp. 291-298. Springer, Berlin,

Heidelberg.

Bresfelean, V.P., 2007. 'Analysis and predictions on students’ behavior using decision trees

in Weka environment', Proceedings of the ITI. , 25-28.

Bruno, R., Allegri, G., Andronico, G., Barbera, R., Bitelli, F., Budano, A., Calanducci, A.,

Celli, F., Costantini, E. and Fargetta, M., 2013b. 'The agINFRA Science Gateway for

Agricultural Sciences', pos proceedings of science, pp. 20 pp.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I., 2009. 'Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility', Future Generation Computer Systems, 25(6), pp. 599-616.

References

213

Adedeji Oyekanmi Fabiyi

Cannataro, M., Guzzi, P.H. and Sarica, A., 2013. 'Data mining and life sciences applications

on the grid', Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,

3(3), pp. 216-238.

Carlsson, S.A., 2006. 'Towards an information systems design research framework: A critical

realist perspective', Proceedings of the First International Conference on Design Science

Research in Information Systems and Technology, Claremont, CA. , 192-212.

Carrubba, C., Fargetta, M., Rotondo, R. and Barbera, R., 2013, March. “Social” Science

Gateways to e-Infrastructures. In The International Symposium on Grids and Clouds

(ISGC) Vol. 2013.

Casarino, C., Russo, G., Candiano, G., La Rocca, G., Barbera, R., Borasi, G., Guatelli, S.,

Messa, C., Passaro, G. and Gilardi, M.C., 2015. 'A GEANT4 web‐based application to

support Intra‐Operative Electron Radiotherapy using the European grid infrastructure',

Concurrency and Computation: Practice and Experience, 27(2), pp. 458-472.

Chrabakh, W. and Wolski, R., 2007. 'The GridSAT portal: a Grid Web-based portal for

solving satisfiability problems using the national cyberinfrastructure', Concurrency and

Computation: Practice and Experience, 19(6), pp. 795-808.

Christie, M. and Marru, S., 2007. 'The LEAD Portal: a TeraGrid gateway and application

service architecture', Concurrency and Computation: Practice and Experience, 19(6),

pp. 767-781.

Cobb, J.W., Geist, A., Kohl, J.A., Miller, S.D., Peterson, P.F., Pike, G.G., Reuter, M.A.,

Swain, T., Vazhkudai, S.S. and Vijayakumar, N.N., 2007. 'The Neutron Science

TeraGrid Gateway: a TeraGrid science gateway to support the Spallation Neutron

Source', Concurrency and Computation: Practice and Experience, 19(6), pp. 809-826.

Collier, N., Ozik, J. and Macal, C.M., 2015. 'Large-scale agent-based modeling with repast

hpc: A case study in parallelizing an agent-based model', European Conference on

Parallel Processing. Springer, 454-465.

References

214

Adedeji Oyekanmi Fabiyi

Coullon, H. and Limet, S., 2016. The SIPSim implicit parallelism model and the SkelGIS

library. Concurrency and Computation: Practice and Experience, 28(7), pp.2120-2144.

Coveney, P.V., Saksena, R.S., Zasada, S.J., McKeown, M. and Pickles, S., 2007. The

application hosting environment: lightweight middleware for grid-based computational

science. Computer Physics Communications, 176(6), pp.406-418.

Davis, J.P., Eisenhardt, K.M. and Bingham, C.B., 2007. Developing theory through

simulation methods. Academy of Management Review, 32(2), pp.480-499.

Deelman, E., Gannon, D., Shields, M. and Taylor, I., 2009. 'Workflows and e-Science: An

overview of workflow system features and capabilities', Future Generation Computer

Systems, 25(5), pp. 528-540.

Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R.,

Chen, W., da Silva, R.F. and Livny, M., 2015. 'Pegasus, a workflow management system

for science automation', Future Generation Computer Systems, 46, pp. 17-35.

Demeyer, S., 2011, September. Research methods in computer science. In ICSM, p. 600.

Drazin, S. and Montag, M., 2012. Decision tree analysis using weka. Machine Learning-

Project II, University of Miami, pp.1-3.

Elia, D., Nuzzo, A., Nassisi, P., Fiore, S., Blanquer, I., Brasileiro, F.V., Rufino, I.A.,

Seijmonsbergen, A.C., Anders, N.S., de Oliveira Galvao, C. and de BL Cunha, J.E.,

2017. A Science gateway for biodiversity and climate change research. PeerJ PrePrints,

5, p.e2834.

Fabiyi, A.O., Taylor, S.J., Anagnostou, A., Torrisi, M. and Barbera, R., 2016, September.

Investigating a Science Gateway for an Agent-Based Simulation Application Using

REPAST. In Distributed Simulation and Real Time Applications (DS-RT), 2016

IEEE/ACM 20th International Symposium on pp. 29-36. IEEE.

Fabra, J., Hernández, S., Otero, E., Vidal, J.C., Lama, M. and Álvarez, P., 2015. 'Integration

of grid, cluster and cloud resources to semantically annotate a large-sized repository of

References

215

Adedeji Oyekanmi Fabiyi

learning objects', Concurrency and Computation: Practice and Experience, 27(17), pp.

4603-4629.

Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J.,

Siddiqui, M., Truong, H.L. and Villazon, A., 2007. Askalon: A development and grid

computing environment for scientific workflows. In Workflows for e-Science, pp. 450-

471. Springer, London.

Fallman, D., 2003, April. Design-oriented human-computer interaction. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pp. 225-232. ACM.

Farbey, B., Land, F. and Targett, D., 1999. 'Moving IS evaluation forward: learning themes

and research issues', The Journal of Strategic Information Systems, 8(2), pp. 189-207.

Foster, I. and Kesselman, C., 2010. The History of the grid. computing, 20(21), p.22.

Foster, I., Kesselman, C. and Tuecke, S., 2001. 'The anatomy of the grid: enabling scalable

virtual organizations', International Journal of High Performance Computing

Applications, 15(3): 200-222.

Foster, I., Zhao, Y., Raicu, I. and Lu, S., 2008, November. Cloud computing and grid

computing 360-degree compared. In Grid Computing Environments Workshop, 2008.

GCE'08, pp. 1-10. Ieee.

Fox, G.C., Gannon, D. and Thomas, M., 2002. A summary of grid computing environments.

Concurrency and Computation, 14(13/15), pp.1035-1044.

Garner, S.R., 1995, April. Weka: The waikato environment for knowledge analysis. In

Proceedings of the New Zealand computer science research students conference, pp. 57-

64.

Gesing, S., Hemert, J.V., Kacsuk, P. and Kohlbacher, O., 2011. Special Issue: Portals for life

sciences—Providing intuitive access to bioinformatic tools. Concurrency and

Computation: Practice and Experience, 23(3), pp.223-234.

References

216

Adedeji Oyekanmi Fabiyi

Gesing, S., Krüger, J., Grunzke, R., Herres-Pawlis, S. and Hoffmann, A., 2015, June.

Challenges and modifications for creating a mosgrid science gateway for us and

european infrastructures. In Science Gateways (IWSG), 2015 7th International Workshop

on pp. 73-79. IEEE.

Gesing, S., Nabrzyski, J. and Jha, S., 2014, June. Gateways to high-perfomance and

distributed computing resources for global health challenges. In Humanitarian

Technology Conference-(IHTC), 2014 IEEE Canada International, pp. 1-5. IEEE.

Goecks, J., Nekrutenko, A. and Taylor, J., 2010. Galaxy: a comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the life

sciences. Genome biology, 11(8), p.R86.

Görlach, K., Sonntag, M., Karastoyanova, D., Leymann, F. and Reiter, M., 2011.

'Conventional workflow technology for scientific simulation', in Guide to e-Science.

Springer, pp. 323-352.

Gregor, S., 2002. 'Design theory in information systems', Australasian Journal of Information

Systems, 10(1).

Gubała, T. and Bubak, M., 2005, September. GridSpace–semantic programming environment

for the grid. In International Conference on Parallel Processing and Applied

Mathematics, pp. 172-179. Springer, Berlin, Heidelberg.

Gupta, P. and Govil, M.C., 2010. Spring Web MVC Framework for rapid open source J2EE

application development: a case study. Interface, 2(6), pp.1684-1689.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H., 2009. 'The

WEKA data mining software: an update', ACM SIGKDD explorations newsletter, 11(1),

pp. 10-18.

Hethcote, H.W., 1976. Qualitative analyses of communicable disease models. Mathematical

Biosciences, 28(3-4), pp.335-356.

Hevner, A. and Chatterjee, S., 2010. Design research in information systems: theory and

practice, Vol. 22. Springer Science & Business Media.

References

217

Adedeji Oyekanmi Fabiyi

Hirai, Y., 2017, April. Defining the ethereum virtual machine for interactive theorem provers.

In International Conference on Financial Cryptography and Data Security, pp. 520-535.

Springer, Cham.

Hollingsworth, D. and Hampshire, U., 1995. 'Workflow management coalition: The

workflow reference model', Document Number TC00-1003, 1.

Holmes, G., Donkin, A. and Witten, I.H., 1994, November. Weka: A machine learning

workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second

Australian and New Zealand Conference on pp. 357-361. IEEE.

Howell, K.E., 2012. An introduction to the philosophy of methodology. Sage.

Jablonski, S. and Bussler, C., 1996. Workflow management: modeling concepts, architecture

and implementation (Vol. 392). London: International Thomson Computer Press.

Jacob, B., Brown, M., Fukui, K. and Trivedi, N., 2005. 'Introduction to grid computing', IBM

redbooks.

Jha, S., Cole, M., Katz, D.S., Parashar, M., Rana, O. and Weissman, J., 2013. 'Distributed

computing practice for large-scale science and engineering applications', Concurrency

and Computation: Practice and Experience, 25(11), pp. 1559-1585.

Johnson, C., 2006. 'What is research in computing science?' Department of Computer

Science, University of Glasgow (Glasgow Interactive Systems Group (GIST)), pp.

Available online http://www.cnitblog.com/cyberfan/articles/1662.html (Accessed:

26/08/2017).

Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K. and

Marton, I., 2012. WS-PGRADE/gUSE generic DCI gateway framework for a large

variety of user communities. Journal of Grid Computing, 10(4), pp.601-630.

Kacsuk, P., 2011. 'P-GRADE portal family for grid infrastructures', Concurrency and

Computation: Practice and Experience, 23(3), pp. 235-245.

http://www.cnitblog.com/cyberfan/articles/1662.html

References

218

Adedeji Oyekanmi Fabiyi

Kee, K.F. and Schrock, A.R., 2018. Best social and organizational practices of successful

science gateways and cyberinfrastructure projects. Future Generation Computer

Systems.

Kertesz, A., Otvos, F. and Kacsuk, P., 2014. 'A case study for biochemical application

porting in european grids and clouds', Concurrency and Computation: Practice and

Experience, 26(10), pp. 1730-1743.

Kim, S.H., Kang, D.K., Kim, W.J., Chen, M. and Youn, C.H., 2017. A science gateway cloud

with cost-adaptive VM management for computational science and applications. IEEE

Systems Journal, 11(1), pp.173-185.

Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A., Farkas, A., Gesmier, G. and

Terstyanszky, G., 2017. MiCADO—Microservice-based Cloud Application-level

Dynamic Orchestrator. Future Generation Computer Systems.

Kiss, T., Kacsuk, P., Takács, É., Szabó, Á., Tihanyi, P. and Taylor, S.J., 2014. Commercial

use of ws-pgrade/guse. In Science Gateways for Distributed Computing Infrastructures,

pp. 271-286. Springer, Cham.

Kocot, J., Szepieniec, T., Wójcik, P., Trzeciak, M., Golik, M., Grabarczyk, T., Siejkowski, H.

and Sterzel, M., 2014. A framework for domain-specific science gateways. In eScience

on Distributed Computing Infrastructure, pp. 130-146. Springer, Cham.

Kuhn, T.S., 1996. 'The Structure of Scientific Revolution, Chicago.

Laure, E. and Edlund, A., 2012. 'The e-infrastructure ecosystem: Providing local support to

global science', Large-Scale Computing Techniques for Complex System Simulations, 80,

pp. 19.

Lawrence, K.A., Zentner, M., Wilkins‐Diehr, N., Wernert, J.A., Pierce, M., Marru, S. and

Michael, S., 2015a. 'Science gateways today and tomorrow: positive perspectives of

nearly 5000 members of the research community', Concurrency and Computation:

Practice and Experience, 27(16), pp. 4252-4268.

References

219

Adedeji Oyekanmi Fabiyi

Limet, S., Smari, W.W. and Spalazzi, L., 2015. 'High-performance computing: to boldly go

where no human has gone before', Concurrency and Computation: Practice and

Experience, 27(13), pp. 3145-3165.

Macal, C.M. and North, M.J., 2009. 'Agent-based modeling and simulation', Winter

simulation conference. Winter simulation conference, 86-98.

Macal, C.M. and North, M.J., 2005, December. Tutorial on agent-based modeling and

simulation. In Simulation conference, 2005 proceedings of the winter, pp. 14-pp. IEEE.

March, S.T. and Smith, G.F., 1995. 'Design and natural science research on information

technology', Decision Support Systems, 15(4), pp. 251-266.

Matsunaga, A.M., Tsugawa, M.O., Adabala, S., Figueiredo, R.J., Lam, H. and Fortes, J.A.B.,

2007. 'Science gateways made easy: the In-VIGO approach', Concurrency and

Computation: Practice and Experience, 19(6), pp. 905-919.

Mell, P. and Grance, T., 2011. 'The NIST definition of cloud computing'.

Merzky, A., Weidner, O. and Jha, S., 2015. SAGA: A standardized access layer to

heterogeneous distributed computing infrastructure. SoftwareX, 1, pp.3-8.

Mingers, J., 2001. 'Combining IS research methods: towards a pluralist methodology',

Information systems research, 12(3), pp. 240-259.

Myers, M.D., 1997. 'Qualitative Research in Information Systems', MIS Quarterly. Available:

http://www.qual.auckland.ac.nz/ (Accessed: 25/04/2017).

Novotny, J., 2003. 'The Grid Portal Development Kit', in Grid Computing. John Wiley &

Sons, Ltd, pp. 657-673.

Novotny, J., Russell, M. and Wehrens, O., 2004. 'GridSphere: a portal framework for

building collaborations', Concurrency and Computation: Practice and Experience,

16(5), pp. 503-513.

http://www.qual.auckland.ac.nz/

References

220

Adedeji Oyekanmi Fabiyi

Nuryatno, M.A., 2003. The Call for Paradigm Shift in Qualitative Research from Positivism

and Interpretive to Critical Theory. Hermēneia. Jurnal Kajian Islam Interdisipliner, 1(2),

pp.24-50.

Ogasawara, E., Dias, J., Silva, V., Chirigati, F., Oliveira, D., Porto, F., Valduriez, P. and

Mattoso, M., 2013. 'Chiron: a parallel engine for algebraic scientific workflows',

Concurrency and Computation: Practice and Experience, 25(16), pp. 2327-2341.

Ogawa, H., Itoh, S., Sonoda, T. and Sekiguchi, S., 2007. 'GridASP: an ASP framework for

Grid utility computing', Concurrency and Computation: Practice and Experience, 19(6),

pp. 885-891.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,

K., Pocock, M.R., Wipat, A. and Li, P., 2004. 'Taverna: a tool for the composition and

enactment of bioinformatics workflows', Bioinformatics (Oxford, England), 20(17), pp.

3045-3054.

Oleksiak, A., Tullo, A., Graham, P., Kuczyński, T., Nabrzyski, J., Szejnfeld, D. and Sloan,

T., 2007. HPC‐Europa single point of access as a framework for building science

gateways. Concurrency and Computation: Practice and Experience, 19(6), pp.851-866.

Open Science Collaboration, 2015. Estimating the reproducibility of psychological science.

Science, 349(6251), p.aac4716.

Open Science Collaboration, 2012. An open, large-scale, collaborative effort to estimate the

reproducibility of psychological science. Perspectives on Psychological Science, 7(6),

pp.657-660.

Orlikowski, W.J. and Baroudi, J.J., 1991. 'Studying information technology in organizations:

Research approaches and assumptions', Information systems research, 2(1), pp. 1-28.

Pierantoni, G., Frost, G., Gesing, S., Olabarriaga, S., Jaghoori, M., Terstyanski, G. and

Arshad, J., 2017, June. A model for information and action flows connecting science

gateways to distributed computing infrastructures. In CEUR Workshop Proceedings,

Vol. 1871. CEUR Workshop Proceedings.

References

221

Adedeji Oyekanmi Fabiyi

Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Avery, P., Blackburn,

K., Wenaus, T., Würthwein, F. and Foster, I., 2007. The open science grid. In Journal of

Physics: Conference Series, Vol. 78, No. 1, p. 012057. IOP Publishing.

Purao, S., 2002. Design research in the technology of information systems: Truth or dare.

GSU Department of CIS Working Paper, pp.45-77.

Reluga, T.C. and Medlock, J., 2007. Resistance mechanisms matter in SIR models.

Mathematical Biosciences and Engineering, 4(3), p.553.

Robey, D., 1996. 'Research commentary: diversity in information systems research: threat,

promise, and responsibility', Information systems research, 7(4), pp. 400-408.

Runeson, P. and Höst, M., 2009. 'Guidelines for conducting and reporting case study research

in software engineering', Empirical software engineering, 14(2), pp. 131-164.

Ruparelia, N.B., 2010. 'Software development lifecycle models', ACM SIGSOFT Software

Engineering Notes, 35(3), pp. 8-13.

Russell, M., Dziubecki, P., Grabowski, P., Krysinśki, M., Kuczyński, T., Szjenfeld, D.,

Tarnawczyk, D., Wolniewicz, G. and Nabrzyski, J., 2007, September. The vine toolkit:

A java framework for developing grid applications. In International Conference on

Parallel Processing and Applied Mathematics, pp. 331-340. Springer, Berlin,

Heidelberg.

Sadashiv, N. and Kumar, S.D., 2011, August. Cluster, grid and cloud computing: A detailed

comparison. In Computer Science & Education (ICCSE), 2011 6th International

Conference on pp. 477-482. IEEE.

Sarang, P., 2009. Practical liferay: Java-based portal applications development. Apress.

Sciacca, E., Bandieramonte, M., Becciani, U., Costa, A., Krokos, M., Massimino, P., Petta,

C., Pistagna, C., Riggi, S. and Vitello, F., 2013, February. Visivo workflow-oriented

science gateway for astrophysical visualization. In Parallel, Distributed and Network-

Based Processing (PDP), 2013 21st Euromicro International Conference on pp. 164-

171. IEEE.

References

222

Adedeji Oyekanmi Fabiyi

Sciacca, E., Vitello, F., Becciani, U., Costa, A., Hajnal, A., Kacsuk, P., Farkas, Z., Marton, I.,

Molinari, S., Di Giorgio, A.M. and Schisano, E., 2017. VIALACTEA science gateway

for Milky Way analysis. Future Generation Computer Systems.

Shahand, S., Benabdelkader, A., Jaghoori, M.M., Mourabit, M.A., Huguet, J., Caan, M.W.A.,

van Kampen, A.H.C. and Olabarriaga, S.D., 2015. 'A data-centric neuroscience gateway:

design, implementation, and experiences', Concurrency and Computation: Practice and

Experience, 27(2), pp. 489-506.

Shields, P.M. and Rangarajan, N., 2013. A playbook for research methods: Integrating

conceptual frameworks and project management. New Forums Press.

Simon, H.A., 1996. The sciences of the artificial. MIT press.

Smith, C.W. and Abeysinghe, E., 2017, July. The PHASTA Science Gateway: Web-based

Execution of Adaptive Computational Fluid Dynamics Simulations. In Proceedings of

the Practice and Experience in Advanced Research Computing 2017 on Sustainability,

Success and Impact, p. 70. ACM.

Soddemann, T., 2007. 'Science gateways to DEISA: user requirements, technologies, and the

material sciences and plasma physics gateway', Concurrency and Computation: Practice

and Experience, 19(6), pp. 839-850.

Stolterman, E., 2008. 'The nature of design practice and implications for interaction design

research', International Journal of Design, 2(1).

Taylor, I., Shields, M., Wang, I. and Harrison, A., 2007. The triana workflow environment:

Architecture and applications. In Workflows for e-Science, pp. 320-339. Springer,

London.

Taylor, S.J., Fabiyi, A., Anagnostou, A., Barbera, R., Torrisi, M., Ricceri, R. and Becker, B.,

2016, September. Demonstrating open science for modeling & simulation research. In

Distributed Simulation and Real Time Applications (DS-RT), 2016 IEEE/ACM 20th

International Symposium on pp. 191-192. IEEE.

References

223

Adedeji Oyekanmi Fabiyi

Thomas, M., 2007. 'Special Issue: Workshop on Grid Computing Portals (GCE 2005)',

Concurrency and Computation: Practice and Experience, 19(12), pp. 1563-1570.

Thomas, M., Dahan, M., Mueller, K., Mock, S., Mills, C. and Regno, R., 2002. 'Application

portals: practice and experience', Concurrency and Computation: Practice and

Experience, 14(13-15), pp. 1427-1443.

Vaishnavi, V. and Kuechler, W., 2015. Design Research in Information System. Available at:

http://desrist.org/design-research-in-information-systems/ (Accessed: 23/03/2016).

Vaishnavi, V. and Kuechler, W., 2009. 'Design Science Research in Information Systems',

DESRIST.org. Available at: http://desrist.org/desrist (Accessed: 06/07/2017).

Von Alan, R.H., March, S.T., Park, J. and Ram, S., 2004. 'Design science in information

systems research', MIS quarterly, 28(1), pp. 75-105.

Von Laszewski, G., Foster, I., Gawor, J. and Lane, P., 2001. A Java commodity grid kit.

Concurrency and Computation: practice and experience, 13(8‐9), pp.645-662.

Wang, J. and Altintas, I., 2012. 'Early cloud experiences with the kepler scientific workflow

system', Procedia Computer Science, 9, pp. 1630-1634.

Welch, V., Barlow, J., Basney, J., Marcusiu, D. and Wilkins-Diehr, N., 2007. 'A AAAA

model to support science gateways with community accounts', Concurrency and

Computation: Practice and Experience, 19(6), pp. 893-904.

Wilkins‐Diehr, N., 2007. Special issue: science gateways—common community interfaces to

grid resources. Concurrency and Computation: Practice and Experience, 19(6), pp.743-

749.

Yang, X., Akram, A. and Allan, R.J., 2007. 'Developing portals/portlets using Enterprise

JavaBeans for Grid users', Concurrency and Computation: Practice and Experience,

19(12), pp. 1633-1641.

Yin, R.K., 2009. Case study research: design and methods. 4th edn. London: SAGE.

http://desrist.org/design-research-in-information-systems/
http://desrist.org/desrist

References

224

Adedeji Oyekanmi Fabiyi

Youn, C., Baru, C., Bhatia, K., Chandra, S., Lin, K., Memon, A., Memon, G. and Seber, D.,

2007. 'GEONGrid portal: design and implementations', Concurrency and Computation:

Practice and Experience, 19(12), pp. 1597-1607.

Youn, C., Lu, J., Elgamal, A. and Baru, C., 2014. 'Development of web-based science portal

for large-scale computing collaboration in earthquake engineering', Concurrency and

Computation: Practice and Experience, 26(18), pp. 2907-2916.

Zhang, Q., Cheng, L. and Boutaba, R., 2010. 'Cloud computing: state-of-the-art and research

challenges', Journal of internet services and applications, 1(1), pp. 7-18.

Zhang, C., Kelley, I. and Allen, G., 2007. 'Grid portal solutions: a comparison of GridPortlets

and OGCE', Concurrency and Computation: Practice and Experience, 19(12), pp. 1739-

1748.

Zhao, L., Song, C., Kalyanam, R., Biehl, L., Campbell, R., Delgass, L., Kearney, D., Wan,

W., Shin, J., Kim, I.L. and Ellis, C., 2017. GABBs-Reusable Geospatial Data Analysis

Building Blocks for Science Gateways.

Zhao, Y., Hategan, M., Clifford, B., Foster, I., Von Laszewski, G., Nefedova, V., Raicu, I.,

Stef-Praun, T. and Wilde, M., 2007, July. Swift: Fast, reliable, loosely coupled parallel

computation. In Services, 2007 IEEE Congress on pp. 199-206. IEEE.

Appendix A

225

Adedeji Oyekanmi Fabiyi

Appendix A

A1 Software Development Methodologies

Rapid Application Development

Rapid Application Development (RAD) is a methodology that uses prototyping as a

mechanism for iterative development. In order to cope with change, coupled with the demand

for faster but cheaper software development, RAD was introduced. This is an improvement

over the more traditional methodologies such as Waterfall and Spiral models. RAD involves

the rapid development of a version of the system for the purpose of evaluating at the early

stages of the software process. This evaluation is usually done against the defined user

requirements to allow further refinements if necessary. RAD is often used in a broader, more

generic sense that encompasses a variety of techniques (such as Agile, Scrum, Extreme

Programming, Joint Application Development, etc.) aimed at speeding software

development. The major advantages that this model could offer include: The process of

identifying weaknesses and strengths in a software by giving potential users early opportunity

to evaluate and provide feedback, and the use of the system prototype to carry out

experiments to measure the feasibility of a proposed design, etc.

Spiral Model

In spiral model, the software process is represented as a spiral with each loop demonstrating a phase

of the software development process. The spiral model attempts to address two main difficulties of the

waterfall model. Firstly, the two design stages are deemed unnecessary in some cases and, secondly,

in order to account for software reusability or the identification of issues at an early stage, the top-

down approach needs to be more flexible. The model often begins with a cycle in the form of several

iterations that spiral out from small beginnings. Each cycle within the spiral often goes through four

different stages as shown in Figure A-1 below. These stages include: Determining objectives,

identifying and resolving risks, Development and testing, and planning the next iteration.

Appendix A

226

Adedeji Oyekanmi Fabiyi

Figure A-1 Spiral life-cycle (Boehm, 1988)

Waterfall Model

The waterfall model provides a platform for defining and analysing software requirements

prior to any design or development activities. It is used as the basis for most software

acquisition standards both in government and in the industry sector. (Boehm and Turner,

2003). The waterfall model is an improvement over an earlier model, known as the stage-

wise model. These improvements include the need to provide feedback loops between

different stages as well as adapting these feedbacks to successive stages, and also an initial

incorporation of prototyping in the software lifecycle. Basically, for waterfall model,

cascading occurs from one stage to another, right from when the system requirements have

been defined to the operation and maintenance stage. These stages are seen in Figure A-2

below.

Appendix A

227

Adedeji Oyekanmi Fabiyi

Figure A-2 Waterfall Model with Royce’s iterative feedback by (Ruparelia, 2010)

According to (Ruparelia, 2010), one aspect of waterfall model is its requirement for

documentation. This documentation acts as a prerequisite for the commencement of the

different stages of the waterfall model which includes: requirement documentation during the

requirements stage, preliminary design specification during the preliminary design stage,

interface design specification during the design stage, final design specification that is

actively revised and updated for each cycle of the design phase, test plan during the design

stage, and operational manual or instruction during the deployment stage. Even though these

documents give a detailed understanding of what is required at every stage of the cycle,

nevertheless, the fully elaborated documents implies the need for the completion of one stage

of the cycle before moving on to the next one. Furthermore, the lack of flexibility in adapting

to users changing requirements seems to be one drawback that is witnessed in this approach.

As a consequence, it is recommended for projects whose requirements are very well defined

or unlikely to change during the entire development process.

A2 Pilot_script.sh

The pilot script for the ABMS Infection Model portlet has two main functions. First, it

performs a simulation using the parameters that would be specified or passed in by the user,

using the user interface module described above. Secondly, it creates an archive containing

the output file for the executed ABMS jobs and collects all generated output files into a single

Appendix A

228

Adedeji Oyekanmi Fabiyi

tar.gz file known as simulation_output.txt. This is shown below as follows:

+#!/bin/sh

 +#

 +# myRepast-infection - portlet pilot script

 +#

 +# The following script does:

 +# o Perform a simulation using the provided parameters

 +# o Create an archive containinG the output file.

 +#

 +# Author: adedeji.fabiyi@brunel.ac.uk

 +#

 +

 +SW_NAME="repast" # Software name

 +

 +echo "--"

 +echo "Job execution starts on: '"$(date)"'"

 +

 +echo "---[HOME directory]-------------------------------"

 +ls -l $HOME

 +

 +echo "---[Working directory]-------------------------"

 +mkdir output

 +ls -l $(pwd)

 +

 +/bin/bash $HOME/$SW_NAME/simulation.sh $1 $2 $3 $4 $5 > stdout

 +

 +#

 +# Following statement produce the simulation_output file

 +#

 +OUTFILE=simulation_output.txt

 +echo "--" > $OUTFILE

 +echo "Simulation started at: '"$(date)"'" >> $OUTFILE

 +echo "" >> $OUTFILE

 +echo "#################[START LOG]##################" >> $OUTFILE

 +echo "" >> $OUTFILE

 +cat stdout >> $OUTFILE

 +echo "#################[END LOG]##################" >> $OUTFILE

 +echo "" >> $OUTFILE

 +echo "Simulation ended at: '"$(date)"'" >> $OUTFILE

 +echo "--" >> $OUTFILE

 +echo "" >> $OUTFILE

 +

Appendix A

229

Adedeji Oyekanmi Fabiyi

 +#

 +# Collect all generated output files into a single tar.gz file

 +#

 +tar cvfz myRepast-infection-Files.tar.gz $OUTFILE output/ 77097 81145

Appendix A

230

Adedeji Oyekanmi Fabiyi

A3 Application Portlet Pages

Myjobs Portlet

This is a dedicated module that shows the status of all executed jobs. Running jobs are

monitored, and the outputs of all completed jobs could be retrieved for analysis by using a

dedicated portlet known as MyJobs. (MyJobs portlet can be seen in Figure 5.4 and 5.7).

The Edit Page

The Edit page is primarily used by the developer to customise the ABMS application as well

as setting the portlet preferences. Since the settings of preferences are done within the portlet

context, this page is not required by the Science Gateway user. It is only used for the

specification and to set the preferences such as the type of infrastructure (name and

description of the infrastructure) where the jobs would run, and thus consisting of all the

variables that were stored by the AppInfrastructureInfo class (AppInfrastructureInfo class

would be described in a later section).

The Help Page

The Help page is primarily used at the development stage and not necessarily by the Science

Gateway user. It defines the ABMS functionalities i.e. the usage instructions of the portlet.

It's also used to display other information such as the portlet licence information.

Appendix A

231

Adedeji Oyekanmi Fabiyi

A4 Granting Access to the Africa Grid Science Gateway (IDPs and IDFs)

Figure A-3 List of Identity Federations

Appendix A

232

Adedeji Oyekanmi Fabiyi

Figure A-4 List of Identity Providers

Appendix A

233

Adedeji Oyekanmi Fabiyi

Figure A-5 Africa Grid Science Gateway Login Page

Appendix A

234

Adedeji Oyekanmi Fabiyi

Figure A-6 Africa Grid Science Gateway Main Page

Appendix A

235

Adedeji Oyekanmi Fabiyi

Figure A-7 Infection Model Portlet Landing Page

Appendix A

236

Adedeji Oyekanmi Fabiyi

A5 The Open Access Repository

 Figure A-8 Open Science Repository Landing Page

Appendix A

237

Adedeji Oyekanmi Fabiyi

A6 Submit Research Document of the Open Access Repository

Figure A-9 Submit Research Documents using an Open Science Repository

Appendix B

238

Adedeji Oyekanmi Fabiyi

Appendix B

B1 Sample Infection Model Main Class

import java.io.*;

 import java.net.*;

 import java.util.Calendar;

 import java.text.SimpleDateFormat;

 // Importing portlet libraries

 import javax.portlet.*;

 // Importing liferay libraries

 import com.liferay.portal.kernel.util.WebKeys;

 import com.liferay.portal.theme.ThemeDisplay;

 import com.liferay.portal.model.User;

 // Importing Apache libraries

 // Importing GridEngine Job libraries

 import it.infn.ct.GridEngine.Job.*;

 import it.infn.ct.GridEngine.JobResubmission.GEJobDescription;

 import it.infn.ct.GridEngine.Job.MultiInfrastructureJobSubmission;

 /**

 * This is the class that overrides the GenericPortlet class methods

 * You can create your own application just customizing this code skeleton

 * This code provides mainly a full working example on:

 * 1) How to manage user interaction managing the Actions/Viewa combination

 * 2) How to manage portlet preferences and help pane

 * 3) How to print application information using the Log object

 * 4) How to execute a distributed application with GridEngine

 *

 * @author Adedeji Fabiyi(COMETA)

 */

 public class myRepast_infection_portlet extends GenericPortlet {

 // Instantiate the logger object

 AppLogger _log = new AppLogger(myRepast_infection_portlet.class);

Appendix B

239

Adedeji Oyekanmi Fabiyi

 // This portlet uses Aciont/Views enumerations in order to

 // manage the different portlet modes and the corresponding

 // view to display

 // You may override the current values with your own business

 // logic best identifiers and manage them through: jsp pages and

 // this java code

 // The jsp parameter PortletStatus will be the responsible of

 // portlet mode switching. This parameter will be read by

 // the processAction method (actionRequest) who will select

 // then the proper view mode. The doView method will read this

 // value (renderResponSe) assigning the correct view mode.

 //

 // At first boot the application will be in ACTIVATE status

 // that means the application still requires to be registered

 // into the GridEngine' UsersTrackingDB' GridOperations table

 // Once registered the defaul view mode will be the VIEW_INPUT

 /**

 * Actions enumeration contains the possible action status mode

 * managed by the application. Action modes are stored into the 'PortletStatus'

 * parameter inside the actionRequest object

 */

 private enum Actions {

 ACTION_ACTIVATE // User (Admin) activated the portlet

 ,ACTION_INPUT // User asked to submit a job

 ,ACTION_SUBMIT// User asked to return to the input form

 ,ACTION_PILOT // The user did something in the edit pilot screen pane

 }

 /**

 * Views enumeration contains the possible view mondes managed b

 * the application. View modes are stored into the parameter 'PortletStatus'

 * inside the renderResponse object

 */

Appendix B

240

Adedeji Oyekanmi Fabiyi

 private enum Views {

 VIEW_ACTIVATE // Show acrivation pane (called 1st time only)

 ,VIEW_INPUT // View containing application input fields

 ,VIEW_SUBMIT // View reporting input value // View reporting the job submission

 ,VIEW_PILOT // Shows the pilot script and makes it editable

 }

 /**

 * Instanciate the AppPreferences object that stores the Application preferences

 *

 * @see AppPreferences

 */

 AppPreferences appPreferences = new AppPreferences(_log);

 AppPreferences appInitPreferences = new AppPreferences(_log);

 /**

 * This class contains all the necessary data to submit a job inside

 * a distributed infrastructure. Each submission will instantiate this

 * object

 */

 class AppInit {

 String default_prefvalue;

 public AppInit() {

 default_prefvalue = "";

 }

 } // App_Init

 // Instanciate the App_Init object

 //public App_Init appInit = new App_Init();

 //

 // Application input values

 //

 class AppInput {

 String inputValue;

 String inputValue2;

Appendix B

241

Adedeji Oyekanmi Fabiyi

 String inputValue3;//Text for application input field

 String inputValue4;

 String inputValue5;

 String username;

 String timestamp;

 String jobIdentifier;

 String inputSandbox_inputFile;

 public AppInput() {

 inputValue = "";

 inputValue2= "";

 inputValue3= "";

 inputValue4= "";

 inputValue5= "";

 username = "";

 timestamp = "";

 jobIdentifier = "";

 inputSandbox_inputFile = "";

 }

 } // App_Input

 // Liferay portal data

 // Classes below are used by this portlet code to get information

 // about the current user

 public String portalName="localhost"; // Name of the hosting portal

 public String appServerPath; // This variable stores the absolute path of the Web

 applications

 // Other misc valuse

 // (!) Pay attention that altough the use of the LS variable

 // the replaceAll("\n","") has to be used

 public static final String LS = System.getProperty("line.separator");

 // Users must have separated inputSandbox files

 // these file will be generated into /tmp directory

 // and prefixed with the format <timestamp>_<user>_*

Appendix B

242

Adedeji Oyekanmi Fabiyi

 // The timestamp format is:

 public static final String tsFormat = "yyyyMMddHHmmss";

 // This variable holds the GridEngine' GridOperation identifier

 // associated to this application

 int gridOperationId=-1;

 //----------------------------

 // Portlet Overriding Methods

 //----------------------------

 /**

 * The init method will be called when installing the portlet for the first time

 * or when restarting the portal server.

 * This is the right time to get default values from WEBINF/portlet.xml file

 * Those values will be assigned into the application preferences as default values

 * If preference values already exists for this application the default settings will

 * be overwritten

 *

 * @see AppInfrastructureInfo

 * @see AppPreferences

 *

 * @throws PortletException

 */

 @Override

 public void init()

 throws PortletException

 {

 // Load default values from WEBINF/portlet.xml

 appInitPreferences.setGridOperationDesc (""+getInitParameter("gridOperationDesc"));

 appInitPreferences.setPortletVersion (""+getInitParameter("portletVersion"));

 appInitPreferences.setLogLevel (""+getInitParameter("logLevel"));

 appInitPreferences.setNumInfrastructures(""+getInitParameter("numInfrastructures"));

 appInitPreferences.setGridOperationId (""+getInitParameter("gridOperationId"));

 // Get the number of infrastructures to load

Appendix B

243

Adedeji Oyekanmi Fabiyi

 int numInfra=appInitPreferences.getNumInfrastructures();

 _log.info("Number of infrastructures: '"+numInfra+"'");

 // Load infrastructure settings

 for(int i=0; i<numInfra; i++) {

 int j=i+1;

 appInitPreferences.setInfrastructure(

 i

 , ""+getInitParameter(j+ "_enableInfrastructure")

 , ""+getInitParameter(j+ "_nameInfrastructure")

 , ""+getInitParameter(j+"_acronymInfrastructure")

 , ""+getInitParameter(j+ "_bdiiHost")

 , ""+getInitParameter(j+ "_wmsHosts")

 , ""+getInitParameter(j+ "_pxServerHost")

 , ""+getInitParameter(j+ "_pxServerPort")

 , ""+getInitParameter(j+ "_pxServerSecure")

 , ""+getInitParameter(j+ "_pxRobotId")

 , ""+getInitParameter(j+ "_pxRobotVO")

 , ""+getInitParameter(j+ "_pxRobotRole")

 , ""+getInitParameter(j+ "_pxRobotRenewalFlag")

 , ""+getInitParameter(j+ "_pxUserProxy")

 , ""+getInitParameter(j+ "_softwareTags")

);

 } // Load infrastructure settings

 appInitPreferences.setSciGwyUserTrackingDB_Hostname(""+getInitParameter

("sciGwyUserTrackingDB_Hostname"));

 appInitPreferences.setSciGwyUserTrackingDB_Username(""+getInitParameter

("sciGwyUserTrackingDB_Username"));

 appInitPreferences.setSciGwyUserTrackingDB_Password(""+getInitParameter

("sciGwyUserTrackingDB_Password"));

 appInitPreferences.setSciGwyUserTrackingDB_Database(""+getInitParameter

("sciGwyUserTrackingDB_Database"));

 appInitPreferences.setJobRequirements (""+getInitParameter("jobRequirements"));

Appendix B

244

Adedeji Oyekanmi Fabiyi

 appInitPreferences.setPilotScript (""+getInitParameter("pilotScript"));

 // Assigns the log level

 _log.setLogLevel(appInitPreferences.getLogLevel());

 // Show loaded values into log

 _log.info(appInitPreferences.dump());

 } // init

 /**

 * This method allows the portlet to process an action request; this method is normally

 * called upon each user interaction (i.e. A submit button inside a jsp' <form statement)

 * This method determines the current application mode through the actionRequest value:

 * 'PortletStatus' and then determines the correct view mode to assign through the

 * ActionResponse 'PortletStatus' variable that will be read by the doView

 * This method will also takes care about the std JSR168/286: EDIT and HELP portlet modes.

 *

 * @param request ActionRequest object instance

 * @param response ActionResponse object instance

 *

 * @throws PortletException

 * @throws IOException

 */

 @Override

 public void processAction(ActionRequest request, ActionResponse response)

 throws PortletException, IOException

 {

 _log.info("calling processAction ...");

 // Determine the username

 ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute

(WebKeys.THEME_DISPLAY);

 User user = themeDisplay.getUser();

 String username = user.getScreenName();

 // Determine the application pathname

 PortletSession portletSession = request.getPortletSession();

Appendix B

245

Adedeji Oyekanmi Fabiyi

 PortletContext portletContext = portletSession.getPortletContext();

 appServerPath = portletContext.getRealPath("/");

 // Show info

 _log.info("appUserName : '"+username +"'"

 +LS+"appServerPath : '"+appServerPath+"'"

);

 // Determine the current portlet mode and forward this state to the response

 // Accordingly to JSRs168/286 the standard portlet modes are:

 // VIEW, EDIT, HELP

 PortletMode mode = request.getPortletMode();

 response.setPortletMode(mode);

 // Switch among different portlet modes: VIEW, EDIT, HELP

 // any custom modes are not covered by this template

//----------

 // VIEW Mode

 //

 // The actionStatus value will be taken from the calling jsp file

 // through the 'PortletStatus' parameter; the corresponding

 // VIEW mode will be stored registering the portlet status

 // as render parameter. See the call to setRenderParameter

 // If the actionStatus parameter is null or empty the default

 // action will be the ACTION_INPUT (input form)

 // This happens the first time the portlet is shown

 // The PortletStatus variable is managed by jsp and this java code

 //----------

 if (mode.equals(PortletMode.VIEW)) {

 // The VIEW mode is the normal portlet mode where normal portlet

 // content will be shown to the user

 _log.info("Portlet mode: VIEW");

 String actionStatus=request.getParameter("PortletStatus");

 // Assigns the default ACTION mode

 if(null==actionStatus

Appendix B

246

Adedeji Oyekanmi Fabiyi

 || actionStatus.equals(""))

 actionStatus=""+Actions.ACTION_INPUT;

 // Different actions will be performed accordingly to the

 // different possible statuses

 AppInput appInput = null;

 switch(Actions.valueOf(actionStatus)) {

 case ACTION_ACTIVATE:

 _log.info("Got action: 'ACTION_ACTIVATE'");

 // Called when activating the portlet for the first time

 // it will be used to save the gridOperationId value

 // into the application preferences

 gridOperationId=Integer.parseInt(request.getParameter("gridOperationId"));

 _log.info("Received gridOperationId: '"+gridOperationId+"'");

 // If the application is registered go to the VIEW_INPUT

 // and the application will no longer go to the ACTIVATE pane

 if(gridOperationId > 0) {

 storePreferences(request);

 response.setRenderParameter("PortletStatus",""+Views.VIEW_INPUT);

 }

 break;

 case ACTION_INPUT:

 _log.info("Got action: 'ACTION_INPUT'");

 // Assign the correct view

 response.setRenderParameter("PortletStatus",""+Views.VIEW_INPUT);

 break;

 case ACTION_PILOT:

 _log.info("Got action: 'ACTION_PILOT'");

 // Stores the new pilot script

 String pilotScript=request.getParameter("pilotScript");

 pilotScript.replaceAll("\r", "");

 storeString(appServerPath+"WEB-INF/job/"+appPreferences.getPilotScript(),pilotScript);

 // Assign the correct view

Appendix B

247

Adedeji Oyekanmi Fabiyi

 response.setPortletMode(PortletMode.EDIT);

 break;

 case ACTION_SUBMIT:

 _log.info("Got action: 'ACTION_SUBMIT'");

 // Get current preference values

 getPreferences(request,null);

 // Create the appInput object

 appInput = new AppInput();

 // Stores the user submitting the job

 appInput.username=username;

 // Determine the submissionTimeStamp

 SimpleDateFormat dateFormat = new SimpleDateFormat(tsFormat);

 String timestamp = dateFormat.format(Calendar.getInstance().getTime());

 appInput.timestamp=timestamp;

 // Process input fields and files to upload

 getInputForm(request,appInput);

 // Following files have to be updated with

 // values taken from textareas or from uploaded files:

 // input_file.txt

 //updateFiles(appInput);

 // Submit the job

 submitJob(appInput);

 // Send the jobIdentifier and assign the correct view

 response.setRenderParameter("PortletStatus",""+Views.VIEW_SUBMIT);

 response.setRenderParameter("inputValue", "" + appInput.inputValue);

 break;

 default:

 _log.info("Unhandled action: '"+actionStatus+"'");

 response.setRenderParameter("PortletStatus",""+Views.VIEW_INPUT);

 } // switch actionStatus

 } // VIEW

 //----------

Appendix B

248

Adedeji Oyekanmi Fabiyi

 // HELP Mode

 //

 // The HELP mode used to give portlet usage HELP to the user

 // This code will be called after the call to doHelp method

 //----------

 else if(mode.equals(PortletMode.HELP)) {

 _log.info("Portlet mode: HELP");

 }

 //----------

 // EDIT Mode

 //

 // The EDIT mode is used to view/setup portlet preferences

 // This code will be called after the user sends the actionURL

 // generated by the doEdit method

 // The code below just stores new preference values or

 // reacts to the preference settings changes

 //----------

 else if(mode.equals(PortletMode.EDIT)) {

 _log.info("Portlet mode: EDIT");

 // Retrieve the current ifnrstructure in preference

 int numInfrastructures=appPreferences.getNumInfrastructures ();

 int currInfra =appPreferences.getCurrPaneInfrastructure();

 _log.info(

 LS+"Number of infrastructures: '"+numInfrastructures+"'"

 +LS+"currentInfrastructure: '"+currInfra +"'"

 +LS);

 // Take care of the preference action (Infrastructure preferences)

 // <,>,+,- buttons

 String pref_action=""+request.getParameter("pref_action");

 _log.info("pref_action: '"+pref_action+"'");

 // Reacts to the current infrastructure change and

 // determine the next view mode (return to the input pane)

Appendix B

249

Adedeji Oyekanmi Fabiyi

 if(pref_action.equalsIgnoreCase("next")) {

 appPreferences.switchNextInfrastructure();

 _log.info("Got next infrastructure action; switching to: '"+

appPreferences.getCurrPaneInfrastructure()+"'");

 }

 else if(pref_action.equalsIgnoreCase("previous")) {

 appPreferences.switchPreviousInfrastructure();

 _log.info("Got prev infrastructure action; switching to: '"+

appPreferences.getCurrPaneInfrastructure()+"'");

 }

 else if(pref_action.equalsIgnoreCase("add")) {

 appPreferences.addNewInfrastructure();

 _log.info("Got add infrastructure action; current infrastrucure is now: '"+

appPreferences.getCurrPaneInfrastructure()+"'");

 }

 else if(pref_action.equalsIgnoreCase("remove")) {

 appPreferences.delCurrInfrastructure();

 _log.info("Got remove infrastructure action; current infrastrucure is now: '"+

appPreferences.getCurrPaneInfrastructure()+"' and infrastructures are now: '"+

appPreferences.getNumInfrastructures()+"'");

 }

 else if(pref_action.equalsIgnoreCase("done")) {

 // None of the above actions selected; return to the VIEW mode

 response.setPortletMode(PortletMode.VIEW);

 response.setRenderParameter("PortletStatus", ""+Views.VIEW_INPUT);

 }

 else if(pref_action.equalsIgnoreCase("viewPilot")) {

 // None of the above actions selected; return to the VIEW mode

 response.setPortletMode(PortletMode.VIEW);

 response.setRenderParameter("PortletStatus",""+Views.VIEW_PILOT);

 response.setRenderParameter("pilotScript"

 ,updateString(appServerPath+"WEB-INF/job/"+appPreferences.getPilotScript()));

Appendix B

250

Adedeji Oyekanmi Fabiyi

 }

 else {

 // No other special actions to do ...

 }

 // Number of infrastructures and Currentinfrastructure values

 // may be changed by add/delete,<,> actions

 int newCurrInfra =appPreferences.getCurrPaneInfrastructure();

 int newNumInfrastructures=appPreferences.getNumInfrastructures ();

 // Store infrastructure changes

 String infrastructuresInformations="";

 // Preference settings (logLevel has been taken above)

 String newpref_logLevel = ""+request.getParameter("pref_logLevel");

 String newpref_gridOperationId = ""+request.getParameter("pref_gridOperationId");

 String newpref_jobRequirements = ""+request.getParameter("pref_jobRequirements");

 String newpref_pilotScript = ""+request.getParameter("pref_pilotScript");

 //LIC

 String newpref_sciGwyUserTrackingDB_Hostname = ""+request.getParameter

("pref_sciGwyUserTrackingDB_Hostname");

 String newpref_sciGwyUserTrackingDB_Username = ""+request.getParameter

("pref_sciGwyUserTrackingDB_Username");

 String newpref_sciGwyUserTrackingDB_Password = ""+request.getParameter

("pref_sciGwyUserTrackingDB_Password");

 String newpref_sciGwyUserTrackingDB_Database = ""+request.getParameter

("pref_sciGwyUserTrackingDB_Database");

 // Store infrastructure changes only if the user did not select the delete button

 if(newNumInfrastructures >= numInfrastructures) {

 // Current infrastructure preference settings

// Assign the

new variable to

the preference

object

 appPreferences.setLogLevel (newpref_logLevel);

Appendix B

251

Adedeji Oyekanmi Fabiyi

 appPreferences.setGridOperationId(newpref_gridOperationId);

 appPreferences.setJobRequirements(newpref_jobRequirements);

 appPreferences.setPilotScript (newpref_pilotScript);

 //LIC

 appPreferences.setSciGwyUserTrackingDB_Hostname

(newpref_sciGwyUserTrackingDB_Hostname);

 appPreferences.setSciGwyUserTrackingDB_Username(newpref_sciGwyUser

TrackingDB_Username);

 appPreferences.setSciGwyUserTrackingDB_Password(newpref_sciGwyUser

TrackingDB_Password);

 appPreferences.setSciGwyUserTrackingDB_Database(newpref_sciGwyUser

TrackingDB_Database);

 // Store new preferences

 storePreferences(request);

 } // EDIT Mode

 //----------

 // EDIT Mode

 //

 // Any custom portlet mode should be placed here below

 //----------

 else {

 // Unsupported portlet modes come here

 _log.warn("Custom portlet mode: '"+mode.toString()+"'");

 } // CUSTOM Mode

 } // processAction

 /**

 * This method is responsible to assign the correct Application view

 * the view mode is taken from the renderRequest instance by the PortletStatus patameter

 * or automatically assigned accordingly to the Application status/default view mode

 *

 * @param request RenderRequest instance normally sent by the processAction

 * @param response RenderResponse used to send values to the jsp page

Appendix B

252

Adedeji Oyekanmi Fabiyi

 *

 * @throws PortletException

 * @throws IOException

 */

 @Override

 protected void doView(RenderRequest request, RenderResponse response)

 throws PortletException, IOException

 {

 _log.info("calling doView ...");

 response.setContentType("text/html");

 // Get current preference values

 getPreferences(null,request);

 gridOperationId=Integer.parseInt(appPreferences.getGridOperationId());

 _log.info("GridOperationId: '"+gridOperationId+"'");

 // currentView comes from the processAction; unless such method

 // is not called before (example: page shown with no user action)

 // In case the application is not yet register (gridOperationId<0)

 // the VIEW_INITIALIZE pane will be enforced otherwise the

 // VIEW_INPUT will be selected as default view

 String currentView=request.getParameter("PortletStatus");

 if(currentView==null) currentView="VIEW_INPUT";

 if(gridOperationId<0) currentView="VIEW_ACTIVATE";

 // Different actions will be performed accordingly to the

 // different possible view modes

 switch(Views.valueOf(currentView)) {

 // The following code is responsible to call the proper jsp file

 // that will provide the correct portlet interface

 case VIEW_ACTIVATE: {

 _log.info("VIEW_ACTIVATE Selected ...");

 /*

 * Following statements requires a patch on the GridEngine not yet included and related

 * to the application auto registration feature (see code appAutoRegistration.java)

Appendix B

253

Adedeji Oyekanmi Fabiyi

 *

 // Portlet uses the couple (portalName,GridOperationDesc)

 // to be identified by the GridEngine UserTrackingDB

 // VIEW_INITIALIZE checks if the Application is already

 // registered or not

 try {

 UsersTrackingDBInterface utDB = new UsersTrackingDBInterface();

 Company company = PortalUtil.getCompany(request);

 portalName = company.getName();

 String operationDesc = appPreferences.getGridOperationDesc();

 int utId = utDB.registerOperation(portalName, operationDesc);

 PortletPreferences portletPreferences= request.getPreferences();

 // Show values ...

 _log.info(LS+"Check configuration"

 +LS+"--------------------"

 +LS+"utId : '"+utId+"'"

 +LS+"portalName : '"+portalName+"'"

 +LS+"operationDesc : '"+appPreferences.getGridOperationDesc()+"'"

); // _log

 // Show the registration page

 request.setAttribute("gridOperationDesc", operationDesc);

 request.setAttribute("gridOperationId", utId);

 request.setAttribute("portal", portalName);

 request.setAttribute("appPreferences",appPreferences);

 PortletRequestDispatcher dispatcher=getPortletContext().getRequestDispatcher

("/activate.jsp");

 dispatcher.include(request, response);

 }

 catch (PortalException ex) {

 _log.error("Got exception: '"+ex.toString()+"'");

 }

 catch (SystemException ex) {

Appendix B

254

Adedeji Oyekanmi Fabiyi

 _log.error("Got exception: '"+ex.toString()+"'");

 }

 * Application autoregistration feature

 */

 }

 break;

 case VIEW_INPUT: {

 _log.info("VIEW_INPUT Selected ...");

 PortletRequestDispatcher dispatcher=getPortletContext().getRequestDispatcher

("/input.jsp");

 dispatcher.include(request, response);

 }

 break;

 case VIEW_PILOT: {

 _log.info("VIEW_PILOT Selected ...");

 String pilotScript = request.getParameter("pilotScript");

 request.setAttribute("pilotScript", pilotScript);

 PortletRequestDispatcher dispatcher=getPortletContext().getRequestDispatcher

("/viewPilot.jsp");

 dispatcher.include(request, response);

 }

 break;

 case VIEW_SUBMIT: {

 _log.info("VIEW_SUBMIT Selected ...");

 String inputValue = request.getParameter("inputValue");

 request.setAttribute("inputValue", inputValue);

 PortletRequestDispatcher dispatcher = getPortletContext().getRequestDispatcher

("/submit.jsp");

 dispatcher.include(request, response);

 }

 break;

 default:

Appendix B

255

Adedeji Oyekanmi Fabiyi

 _log.info("Unknown view mode: "+currentView.toString());

 } // switch

 } // doView

 /**

 * This method is responsible to retrieve the current Application preference settings

 * and then show the edit.jsp page where the user can edit the Application preferences

 * This methods prepares an actionURL that will be used by edit.jsp file into a <input ...>

 * As soon the user press the action button the processAction will be called going in EDIT

 * This method is equivalent to the doView method

 *

 * @param request Render request object instance

 * @param response Render response object isntance

 *

 * @throws PortletException

 * @throws IOException

 *

 */

 @Override

 public void doEdit(RenderRequest request,RenderResponse response)

 throws PortletException,IOException {

 response.setContentType("text/html");

 _log.info("Calling doEdit ...");

 // Get current preference values

 getPreferences(null,request);

 // Get the current infrastructure and the number of infrastructure

 int currInfra =appPreferences.getCurrPaneInfrastructure();

 int numInfrastructures=appPreferences.getNumInfrastructures();

 // ActionURL and the current preference value will be passed to the edit.jsp

 PortletURL pref_actionURL = response.createActionURL();

 request.setAttribute("pref_actionURL",pref_actionURL.toString());

 // Send preference values

 request.setAttribute("pref_logLevel" ,""+appPreferences.getLogLevel ());

Appendix B

256

Adedeji Oyekanmi Fabiyi

 request.setAttribute("pref_numInfrastructures",""+appPreferences.getNumInfrastructures ());

 request.setAttribute("pref_currInfrastructure",""+appPreferences.getCurrPaneInfrastructure());

 request.setAttribute("pref_gridOperationId" ,""+appPreferences.getGridOperationId ());

 request.setAttribute("pref_gridOperationDesc" ,""+appPreferences.getGridOperationDesc ());

/**

 * This method just calls the jsp responsible to show the portlet information

 * This method is equivalent to the doView method

 *

 * @param request Render request object instance

 * @param response Render response object isntance

 *

 * @throws PortletException

 * @throws IOException

 */

 @Override

 public void doHelp(RenderRequest request, RenderResponse response)

 throws PortletException,IOException {

 _log.info("Calling doHelp ...");

 response.setContentType("text/html");

 request.setAttribute("portletVersion",appPreferences.getPortletVersion());

 PortletRequestDispatcher dispatcher=getPortletContext().getRequestDispatcher("/help.jsp");

 dispatcher.include(request, response);

 } // doHelp

 //----------------------------

 // Portlet Standard Methods

 //----------------------------

 /**

 * This method is used to retrieve from the Application preferences the

 * GridEngine' GridOperations identifier associated to this application

 * Such index is automatically created when registering the application

 * with the couple (portalName,applicationDesc)

 * The portal name is automatically extracted from the Application

Appendix B

257

Adedeji Oyekanmi Fabiyi

 * The portal description is defined in the default parameters (portlet.xml)

 * This method can be called by processAction or doViewe evakuating one of the

 * corresponding actionRequest or renderRequest object instances

 *

 * @param actionRequest an ActionRequest instance or,

 * @param renderRequest a RenderRequest instance

 * @return The GridOperationId associated to this application or -1 if the application is not yet

registered

 *

 * @see AppPreferences

 *

 private String getPrefGridOperationId(ActionRequest actionRequest

 , RenderRequest renderRequest) {

 PortletPreferences portletPreferences;

 String prefOperationId="";

 if(null != actionRequest) {

 portletPreferences= actionRequest.getPreferences();

 prefOperationId = portletPreferences.getValue("pref_gridOperationId","-1");

 }

 if(null != renderRequest) {

 portletPreferences= renderRequest.getPreferences();

 prefOperationId = portletPreferences.getValue("pref_gridOperationId","-1");

 }

 return prefOperationId;

 }

 */

 /**

 * This method Uses the AppPreference object settings to store Application preferences

 *

 * @param request ActinRequest instance (called by the processAction)

 *

 * @throws PortletException

Appendix B

258

Adedeji Oyekanmi Fabiyi

 * @throws IOException

 */

 void storePreferences(ActionRequest request)

 throws PortletException, IOException{

 _log.info("Calling storePreferences ...");

 // Stored preference content

 String storedPrefs="Stored preferences:"

 +LS+"-------------------"

 +LS;

 // The code below stores all the portlet preference values

 PortletPreferences prefs = request.getPreferences();

 if(prefs!=null) {

 String logLevel =appPreferences.getLogLevel ();

 String gridOperationId =appPreferences.getGridOperationId ();

 int numInfrastructures =appPreferences.getNumInfrastructures ();

 int currPaneInfrastructure=appPreferences.getCurrPaneInfrastructure();

 String gridOperationDesc =appPreferences.getGridOperationDesc ();

 prefs.setValue("pref_logLevel" , ""+logLevel);

 prefs.setValue("pref_gridOperationId" , ""+gridOperationId);

 prefs.setValue("pref_gridOperationDesc" , ""+gridOperationDesc);

 prefs.setValue("pref_numInfrastructures", ""+numInfrastructures);

 prefs.setValue("pref_currInfrastructure", ""+currPaneInfrastructure);

 storedPrefs+="pref_logLevel : '"+logLevel +"'"

 +LS+"pref_gridOperationId : '"+gridOperationId +"'"

 +LS+"pref_gridOperationDesc : '"+gridOperationDesc +"'"

 +LS+"pref_numInfrastructures : '"+numInfrastructures +"'"

 +LS+"pref_currInfrastructure : '"+currPaneInfrastructure+"'"

 +LS;

 // For each preference infrastructure

 for(int i=0; i<numInfrastructures; i++) {

 int j=i+1;

 storedPrefs=LS+"Infrastructure #"+j

Appendix B

259

Adedeji Oyekanmi Fabiyi

 +LS+"--------------------"

 +LS;

 String enableInfrastructure =appPreferences.getEnableInfrastructure (i);

 String nameInfrastructure =appPreferences.getNameInfrastructure (i);

 String acronymInfrastructure=appPreferences.getAcronymInfrastructure(i);

 String bdiiHost =appPreferences.getBdiiHost (i);

 String wmsHost =appPreferences.getWmsHosts (i);

 String pxServerHost =appPreferences.getPxServerHost (i);

 String pxServerPort =appPreferences.getPxServerPort (i);

 String pxServerSecure =appPreferences.getPxServerSecure (i);

 String pxRobotId =appPreferences.getPxRobotId (i);

 String pxRobotVO =appPreferences.getPxRobotVO (i);

 String pxRobotRole =appPreferences.getPxRobotRole (i);

 String pxRobotRenewalFlag =appPreferences.getPxRobotRenewalFlag (i);

 String pxUserProxy =appPreferences.getPxUserProxy (i);

 String softwareTags =appPreferences.getSoftwareTags (i);

 // Set preference values

 prefs.setValue("pref_"+j+"_enableInfrastructure" ,enableInfrastructure);

 prefs.setValue("pref_"+j+"_nameInfrastructure" ,nameInfrastructure);

 prefs.setValue("pref_"+j+"_acronymInfrastructure",acronymInfrastructure);

 prefs.setValue("pref_"+j+"_bdiiHost" ,bdiiHost);

 prefs.setValue("pref_"+j+"_wmsHosts" ,wmsHost);

 prefs.setValue("pref_"+j+"_pxServerHost" ,pxServerHost);

 prefs.setValue("pref_"+j+"_pxServerPort" ,pxServerPort);

 prefs.setValue("pref_"+j+"_pxServerSecure" ,pxServerSecure);

 prefs.setValue("pref_"+j+"_pxRobotId" ,pxRobotId);

 prefs.setValue("pref_"+j+"_pxRobotVO" ,pxRobotVO);

 prefs.setValue("pref_"+j+"_pxRobotRole" ,pxRobotRole);

 prefs.setValue("pref_"+j+"_pxRobotRenewalFlag" ,pxRobotRenewalFlag);

 prefs.setValue("pref_"+j+"_pxUserProxy" ,pxUserProxy);

 prefs.setValue("pref_"+j+"_softwareTags" ,softwareTags);

// Dumps the

Appendix B

260

Adedeji Oyekanmi Fabiyi

infrastructure

preferences

 storedPrefs+= " pref_"+j+"_enableInfrastructure : '"+enableInfrastructure +"'"

 +LS+" pref_"+j+"_nameInfrastructure : '"+nameInfrastructure +"'"

 +LS+" pref_"+j+"_acronymInfrastructure: '"+acronymInfrastructure+"'"

 +LS+" pref_"+j+"_bdiiHost : '"+bdiiHost +"'"

 +LS+" pref_"+j+"_wmsHosts : '"+wmsHost +"'"

 +LS+" pref_"+j+"_pxServerHost : '"+pxServerHost +"'"

 +LS+" pref_"+j+"_pxServerPort : '"+pxServerPort +"'"

 +LS+" pref_"+j+"_pxServerSecure : '"+pxServerSecure +"'"

 +LS+" pref_"+j+"_pxRobotId : '"+pxRobotId +"'"

 +LS+" pref_"+j+"_pxRobotVO : '"+pxRobotVO +"'"

 +LS+" pref_"+j+"_pxRobotRole : '"+pxRobotRole +"'"

 +LS+" pref_"+j+"_pxRobotRenewalFlag : '"+pxRobotRenewalFlag +"'"

 +LS+" pref_"+j+"_pxUserProxy : '"+pxUserProxy +"'"

 +LS+" pref_"+j+"_softwareTags : '"+softwareTags +"'"

 +LS;

 } // for each preference infrastructure

 String jobRequirements=appInitPreferences.getJobRequirements();

 String pilotScript =appInitPreferences.getPilotScript ();

 prefs.setValue("pref_jobRequirements", jobRequirements);

 prefs.setValue("pref_pilotScript" , pilotScript);

 //LIC

 String sciGwyUserTrackingDB_Hostname=appPreferences.getSciGwy

UserTrackingDB_Hostname();

 String sciGwyUserTrackingDB_Username=appPreferences.getSciGwyUserTrackingDB_

Username();

 String sciGwyUserTrackingDB_Password=appPreferences.getSciGwy

UserTrackingDB_Password();

 String sciGwyUserTrackingDB_Database=appPreferences.getSciGwy

UserTrackingDB_Database();

 prefs.setValue("pref_sciGwyUserTrackingDB_Hostname",sciGwy

Appendix B

261

Adedeji Oyekanmi Fabiyi

UserTrackingDB_Hostname);

 prefs.setValue("pref_sciGwyUserTrackingDB_Username",sciGwy

UserTrackingDB_Username);

 prefs.setValue("pref_sciGwyUserTrackingDB_Password",sciGwy

UserTrackingDB_Password);

 prefs.setValue("pref_sciGwyUserTrackingDB_Database",sciGwy

UserTrackingDB_Database);

 storedPrefs+= "pref_jobRequirements : '"+jobRequirements +"'"

 +LS+"pref_pilotScript : '"+pilotScript +"'"

 +LS+"pref_sciGwyUserTrackingDB_Hostname: '"+sciGwyUserTrackingDB_Hostname+"'"

 +LS+"pref_sciGwyUserTrackingDB_Username: '"+sciGwyUserTrackingDB_Username+"'"

 +LS+"pref_sciGwyUserTrackingDB_Password: '"+sciGwyUserTrackingDB_Password+"'"

 +LS+"pref_sciGwyUserTrackingDB_Database: '"+sciGwyUserTrackingDB_Database+"'"

 +LS;

 // Store preferences

 prefs.store();

 } // pref !=null

 // Show saved preferences

 _log.info("Stored preferences"

 +LS+"------------------"

 +storedPrefs

 +LS);

 } // storePreferences

 /**

 * This method fills the appPreferences values retrieving them frorm the

 * portlet preference object.

 * This method can be called by both processAction or doView methods

 * in case no preference values are yet defined the default settings loaded

 * by the init method will be used

 *

 * @param actionRequest an ActionRequest instance or,

 * @param renderRequest a RenderRequest instance

Appendix B

262

Adedeji Oyekanmi Fabiyi

 *

 */

 private void getPreferences(ActionRequest actionRequest

 ,RenderRequest renderRequest) {

 _log.info("Calling: getPreferences ...");

 PortletPreferences prefs=null;

 if(null!=actionRequest)

 prefs = actionRequest.getPreferences();

 else if(null != renderRequest)

 prefs = renderRequest.getPreferences();

 else _log.warn("Both render request and action request are null");

 if (null != prefs) {

 appPreferences.updateValue("logLevel",""+prefs.getValue("pref_logLevel",

appInitPreferences.getLogLevel ()));

 appPreferences.updateValue("gridOperationId",""+prefs.getValue

("pref_gridOperationId",

appInitPreferences.getGridOperationId ()));

 appPreferences.updateValue("gridOperationDesc",""+prefs.getValue

("pref_gridOperationDesc", appInitPreferences.getGridOperationDesc ()));

 appPreferences.updateValue("numInfrastructures",""+prefs.getValue

("pref_numInfrastructures",""+appInitPreferences.getNumInfrastructures()));

 // Now retrieves the infrastructures information

 int numInfras=appPreferences.getNumInfrastructures();

 _log.info("getpref: num infra="+numInfras);

 // For each infrastructure ...

 // The preference name is indexed with the infrastructure number: 1,2,...

 String infrastructuresInfrormations="";

/**

 * This method takes as input a filename and will transfer its content inside a String variable

 *

 * @param file A complete path to a given file

 * @return File content into a String

Appendix B

263

Adedeji Oyekanmi Fabiyi

 * @throws IOException

 */

 private String updateString(String file) throws IOException {

 String line;

 StringBuilder stringBuilder = new StringBuilder();

 BufferedReader reader = new BufferedReader(new FileReader (file));

 while((line = reader.readLine()) != null) {

 stringBuilder.append(line);

 stringBuilder.append(LS);

 }

 return stringBuilder.toString();

 }

 /**

 * This method will transfer the content of a given String into a given filename

 *

 * @param fileName A complete path to a file to write

 * @param fileContent The string content of the file to write

 * @throws IOException

 */

 private void storeString(String fileName,String fileContent) throws IOException {

 BufferedWriter writer = new BufferedWriter(new FileWriter(fileName));

 writer.write(fileContent);

 writer.close();

 }

 /**

 * This enumerated type contains all JSP input items to be managed

 * by the getInputForm method

 *

 * @see getInputForm

 */

 void getInputForm(ActionRequest request, AppInput appInput) {

 // Retrieve from the input form the given application values

Appendix B

264

Adedeji Oyekanmi Fabiyi

 appInput.inputValue = (String) request.getParameter("inputValue");

 appInput.inputValue2 = (String) request.getParameter("inputValue2");

 appInput.inputValue3 = (String) request.getParameter("inputValue3");

 appInput.inputValue4 = (String) request.getParameter("inputValue4");

 appInput.jobIdentifier = (String) request.getParameter("JobIdentifier");

 // Show into the log the taken inputs

 System.out.println(

 LS + "Taken input parameters:"

 + LS + "-----------------------"

 + LS + "myValue: '" + appInput.inputValue + "'"

 + LS + "myValue2: '" + appInput.inputValue2 + "'"

 + LS + "myValue3: '" + appInput.inputValue3 + "'"

 + LS + "myValue4: '" + appInput.inputValue4 + "'"

 + LS + "JobIdentifier: '" + appInput.jobIdentifier + "'"

 + LS);

 } // getInputForm

 /**private enum inputControlsIds {

 * file_inputFile // Input file textarea

 * ,inputFile // Input file input file

 * ,JobIdentifier // User defined Job identifier

 };

 */

 /**

 * This method manages the user input fields managing two cases

 * distinguished by the type of the input <form ... statement

 * The use of upload file controls needs the use of "multipart/form-data"

 * while the else condition of the isMultipartContent check manages the

 * standard input case. The multipart content needs a manual processing of

 * all <form items

 * All form' input items are identified by the 'name' input property

 * inside the jsp file

 *

Appendix B

265

Adedeji Oyekanmi Fabiyi

 * @param request ActionRequest instance (processAction)

 * @param appInput AppInput instance storing the jobSubmission data

 */

 /**void getInputForm(ActionRequest request,AppInput appInput) {

 *if (PortletFileUpload.isMultipartContent(request))

 * try {

 * FileItemFactory factory = new DiskFileItemFactory();

 * PortletFileUpload upload = new PortletFileUpload(factory);

 * List items = upload.parseRequest(request);

 * File repositoryPath = new File("/tmp");

 * DiskFileItemFactory diskFileItemFactory = new DiskFileItemFactory();

 * diskFileItemFactory.setRepository(repositoryPath);

 * Iterator iter = items.iterator();

 * String logstring="";

 * while (iter.hasNext()) {

 * FileItem item = (FileItem)iter.next();

 * String fieldName =item.getFieldName();

 * String fileName =item.getName();

 * String contentType=item.getContentType();

 * boolean isInMemory =item.isInMemory();

 * long sizeInBytes=item.getSize();

 * // Prepare a log string with field list

 * logstring+=LS+"field name: '"+fieldName+"' - '"+item.getString()+"'";

 * switch(inputControlsIds.valueOf(fieldName)) {

 * case file_inputFile:

 * appInput.inputFileName=item.getString();

 * processInputFile(item,appInput);

 * break;

 * case inputFile:

 * appInput.inputFileText=item.getString();

 * break;

 * case JobIdentifier:

Appendix B

266

Adedeji Oyekanmi Fabiyi

 * appInput.jobIdentifier=item.getString();

 * break;

 * default:

 * _log.warn("Unhandled input field: '"+fieldName+"' - '"+item.getString()+"'");

 * } // switch fieldName

 * } // while iter.hasNext()

 * _log.info(

 * LS+"Reporting"

 * +LS+"---------"

 * +LS+logstring

 * +LS);

 * } // try

 * catch (Exception e) {

 * _log.info("Caught exception while processing files to upload: '"+e.toString()+"'");

 * }

 * // The input form do not use the "multipart/form-data"

 * else {

 * // Retrieve from the input form the given application values

 * appInput.inputFileName=(String)request.getParameter("file_inputFile");

 * appInput.inputFileText=(String)request.getParameter("inputFile");

 * appInput.jobIdentifier=(String)request.getParameter("JobIdentifier");

 * } // ! isMultipartContent

 * // Show into the log the taken inputs

 * _log.info(

 * LS+"Taken input parameters:"

 * +LS+"-----------------------"

 * +LS+"inputFileName: '"+appInput.inputFileName+"'"

 * +LS+"inputFileText: '"+appInput.inputFileText+"'"

 * +LS+"jobIdentifier: '"+appInput.jobIdentifier+"'"

 * +LS);

 } // getInputForm

 */

Appendix B

267

Adedeji Oyekanmi Fabiyi

 /**

 * This method is called when the user specifies a input file to upload

 * The file will be saved first into /tmp directory and then its content

 * stored into the corresponding String variable

 * Before to submit the job the String value will be stored in the

 * proper job inputSandbox file

 *

 * @param item

 * @param appInput AppInput instance storing the jobSubmission data

 */

 /**void processInputFile(FileItem item,AppInput appInput) {

 * // Determine the filename

 * String fileName = item.getName();

 * if(!fileName.equals("")) {

 * // Determine the fieldName

 * String fieldName = item.getFieldName();

 *

 * // Create a filename for the uploaded file

 * String theNewFileName = "/tmp/"

 * +appInput.timestamp

 * +"_"

 * +appInput.username

 * +"_"

 * +fileName;

 * File uploadedFile = new File(theNewFileName);

 * _log.info("Uploading file: '"+fileName+"' into '"+theNewFileName+"'");

 * try {

 * item.write(uploadedFile);

 * }

 * catch (Exception e) {

 * _log.error("Caught exception while uploading file: 'file_inputFile'");

 * }

Appendix B

268

Adedeji Oyekanmi Fabiyi

 * // File content has to be inserted into a String variables:

 * // inputFileName -> inputFileText

 * try {

 * if(fieldName.equals("file_inputFile"))

 * appInput.inputFileText=updateString(theNewFileName);

 * // Other params can be added as below ...

 * //else if(fieldName.equals("..."))

 * // ...=updateString(theNewFileName);

 * else { // Never happens

 * }

 * }

 * catch (Exception e) {

 * _log.error("Caught exception while processing strings: '"+e.toString()+"'");

 * }

 * } // if

 } // processInputFile

 */

 /**

 * Before to submit the job this method creates the inputSandbox files

 * starting from users' input fields (textareas or uploaded files)

 *

 * @param appInput AppInput instance storing the jobSubmission data

 */

 /**void updateFiles(AppInput appInput) {

 * // First of all remove all possible ^Ms from Strings

 * appInput.inputFileText=appInput.inputFileText.replaceAll("\r","");

 * // Now save string content into files

 * // This must be done for each input sandbox file

 * try {

 * appInput.inputSandbox_inputFile="/tmp/"

 * +appInput.timestamp

 * +"_"

Appendix B

269

Adedeji Oyekanmi Fabiyi

 * +appInput.username

 * +"_input_file.txt"

 * ;

 * FileWriter fwInput=new FileWriter(appInput.inputSandbox_inputFile);

 * BufferedWriter bwInput = new BufferedWriter(fwInput);

 * bwInput.write(appInput.inputFileText);

 * bwInput.close();

 * }

 * catch (Exception e) {

 * _log.error("Caught exception while creating inputSandbox files");

 * }

 } // updateFiles

 */

 /**

 * -- WARNING ---

 * (DEPRECATED) This method will be left only for some future commits

 * --

 * This method sends the job into the distributed infrastructure using

 * the GridEngine methods

 *

 * @param appInput AppInput instance storing the jobSubmission data

 */

 void __submitJob(AppInput appInput) {

 // GridEngine' MultiInfrastructure job submission object

 MultiInfrastructureJobSubmission miJobSubmission=null;

 //

 // Initialize the GridEngine Multi Infrastructure Job Submission object

 //

 // GridEngine uses two different kind of constructors. The constructor

 // taking void type as argument is used for production environments, while

 // the constructor taking SciGwyUserTrackingDB parameters is normally used

 // for development purposes. In order to switch-on the production constructor

Appendix B

270

Adedeji Oyekanmi Fabiyi

 // just set to empty strings the following portlet init parameters:

 // sciGwyUserTrackingDB_Hostname

 // sciGwyUserTrackingDB_Username

 // sciGwyUserTrackingDB_Password

 // sciGwyUserTrackingDB_Database

 //

 if(null != appPreferences.getSciGwyUserTrackingDB_Hostname()

 && !appPreferences.getSciGwyUserTrackingDB_Hostname().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Username()

 && !appPreferences.getSciGwyUserTrackingDB_Username().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Password()

 && !appPreferences.getSciGwyUserTrackingDB_Password().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Database()

 && !appPreferences.getSciGwyUserTrackingDB_Database().equals("")

) {

 String arg1="jdbc:mysql://" + appPreferences.getSciGwyUserTrackingDB_Hostname() +

 "/" + appPreferences.getSciGwyUserTrackingDB_Database();

 String arg2=appPreferences.getSciGwyUserTrackingDB_Username();

 String arg3=appPreferences.getSciGwyUserTrackingDB_Password();

 miJobSubmission = new MultiInfrastructureJobSubmission(arg1,arg2,arg3);

 _log.info("MultiInfrastructureJobSubmission [DEVEL]\n"

 +LS+" Arg1: '" + arg1 + "'"

 +LS+" Arg2: '" + arg2 + "'"

 +LS+" Arg3: '" + arg3 + "'"

);

 }

 else {

 miJobSubmission = new MultiInfrastructureJobSubmission();

 _log.info("MultiInfrastructureJobSubmission [PROD]");

 }

 // Assigns all enabled infrastructures

 InfrastructureInfo[] infrastructuresInfo=appPreferences.getEnabledInfrastructures();

Appendix B

271

Adedeji Oyekanmi Fabiyi

 for(int i=0; i<infrastructuresInfo.length; i++) {

 _log.info("Adding infrastructure #"+(i+1)

 +" - Name: '"+infrastructuresInfo[i].getName()+"'"+LS);

 miJobSubmission.addInfrastructure(infrastructuresInfo[i]);

 }

 // Check the enabled infrastructures

 if(infrastructuresInfo.length > 0) {

 // Application Id

 int applicationId=Integer.parseInt(appPreferences.getGridOperationId());

 // Grid Engine' UserTraking needs the portal IP address

 String portalIPAddress="";

 try {

 InetAddress addr = InetAddress.getLocalHost();

 byte[] ipAddr=addr.getAddress();

 portalIPAddress= ""+(short)(ipAddr[0]&0xff)

 +":"+(short)(ipAddr[1]&0xff)

 +":"+(short)(ipAddr[2]&0xff)

 +":"+(short)(ipAddr[3]&0xff);

 }

 catch(Exception e) {

 _log.error("Unable to get the portal IP address");

}

 // Job details

 String executable="/bin/sh"; // Application executable

 String arguments =appPreferences.getPilotScript(); // executable' arguments

 String outputPath="/tmp/"; // Output Path

 String outputFile="myRepast-infection-Output.txt"; // Distributed application standard output

 String errorFile ="myRepast-infection-Error.txt"; // Distrubuted application standard error

 String appFile ="myRepast-infection-Files.tar.gz"; // Hostname output files (created by the pilot script)

 // InputSandbox (string with comma separated list of file names)

 /**String inputSandbox=appServerPath+"WEB-INF/job/" //

 * +appPreferences.getPilotScript() // pilot script

Appendix B

272

Adedeji Oyekanmi Fabiyi

 * +","+appInput.inputSandbox_inputFile // input file

 *

 *;

 */

 // OutputSandbox (string with comma separated list of file names)

 String outputSandbox=appFile; // Output file

 // Take care of job requirements

 // More requirements can be specified in the preference value 'jobRequirements'

 // separating each requirement by the ';' character

 String jdlRequirements[] = appPreferences.getJobRequirements().split(";");

 int numRequirements=0;

 for(int i=0; i<jdlRequirements.length; i++) {

 if(!jdlRequirements[i].equals("")) {

 jdlRequirements[numRequirements] = "JDLRequirements=("+jdlRequirements[i]+")";

 numRequirements++;

 _log.info("Requirement["+i+"]='"+jdlRequirements[i]+"'");

 }

 } // for each jobRequirement

 // Other job initialization settings

 miJobSubmission.setExecutable (executable); // Specify the executeable

 miJobSubmission.setArguments (arguments); // Specify the application' arguments

 miJobSubmission.setOutputPath (outputPath); // Specify the output directory

 miJobSubmission.setOutputFiles(outputSandbox); // Setup output files (OutputSandbox)

 miJobSubmission.setJobOutput (outputFile); // Specify the std-outputr file

 miJobSubmission.setJobError (errorFile); // Specify the std-error file

 /*if(null != inputSandbox // Setup input files (InputSandbox) avoiding empty inputSandboxes

 * && inputSandbox.length() > 0)

 * miJobSubmission.setInputFiles(inputSandbox);

 *if(numRequirements>0) // Setup the JDL requirements

 * miJobSubmission.setJDLRequirements(jdlRequirements);

 */

 // Submit Job

Appendix B

273

Adedeji Oyekanmi Fabiyi

 miJobSubmission.submitJobAsync(appInput.username, portalIPAddress, applicationId,

appInput.jobIdentifier);

 // Show log

 // View jobSubmission details in the log

 _log.info(

 LS+"JobSent"

 +LS+"-------"

 +LS+"Portal address: '"+portalIPAddress+"'"

 +LS+"Executable : '"+executable +"'"

 +LS+"Arguments : '"+arguments +"'"

 +LS+"Output path : '"+outputPath +"'"

 +LS+"Output sandbox: '"+outputSandbox +"'"

 +LS+"Ouput file : '"+outputFile +"'"

 +LS+"Error file : '"+errorFile +"'"

 //+LS+"Input sandbox : '"+inputSandbox +"'"

 +LS); // _log.info

 } // numInfra > 0

 else {

 _log.warn(

 LS+"There are no enough enabled infrastructures!"

 +LS+"It is impossible to send any job"

 +LS+"Configure the application preferences in order to setup"

 +LS+"or enable at least one infrastructure."

 +LS);

 } // numInfra == 0

 } // __submitJob

 /**

 * -- WARNING ---

 * (DEPRECATED) This method will be left only for some future commits

 * --

 * This method sends the job into the distributed infrastructure using

 * the GridEngine methods

Appendix B

274

Adedeji Oyekanmi Fabiyi

 *

 * @param appInput AppInput instance storing the jobSubmission data

 */

 void submitJob(AppInput appInput) {

 // Job details

 String executable="/bin/sh"; // Executable

 String arguments =appPreferences.getPilotScript() + // Script

 " " + appInput.inputValue + // Arguments

 " " + appInput.inputValue2 +

 " " + appInput.inputValue3 +

 " " + appInput.inputValue4 ;

 String outputPath="/tmp/"; // Output Path

 String outputFile="myRepast-infection-Output.txt"; // Distributed application standard output

 String errorFile ="myRepast-infection-Error.txt"; // Distrubuted application standard error

 String appFile ="myRepast-infection-Files.tar.gz"; // Hostname output files (created by the pilot script)

 // InputSandbox (string with comma separated list of file names)

 String inputSandbox=appServerPath+"WEB-INF/job/pilot_script.sh"; //

 // +appPreferences.getPilotScript(); // pilot script

 // +","+appInput.inputSandbox_inputFile; // input file;

 // OutputSandbox (string with comma separated list of file names)

 String outputSandbox=appFile; // Output file

 // Take care of job requirements

 // More requirements can be specified in the preference value 'jobRequirements'

 // separating each requirement by the ';' character

 // The loop prepares a string array with GridEngine/JSAGA compliant requirements

 String jdlRequirements[] = appPreferences.getJobRequirements().split(";");

 int numRequirements=0;

 for(int i=0; i<jdlRequirements.length; i++) {

 if(!jdlRequirements[i].equals("")) {

 jdlRequirements[numRequirements] = "JDLRequirements=("+jdlRequirements[i]+")";

 numRequirements++;

 _log.info("Requirement["+i+"]='"+jdlRequirements[i]+"'");

Appendix B

275

Adedeji Oyekanmi Fabiyi

 }

 } // for each jobRequirement

 // Prepare the GridEngine job description

 GEJobDescription jobDesc = new GEJobDescription();

 jobDesc.setExecutable (executable); // Specify the executeable

 jobDesc.setArguments (arguments); // Specify the application' arguments

 jobDesc.setOutputPath (outputPath); // Specify the output directory

 jobDesc.setOutput (outputFile); // Specify the std-output file

 jobDesc.setError (errorFile); // Specify the std-error file

 jobDesc.setOutputFiles(outputSandbox); // Setup output files (OutputSandbox) (*)

 jobDesc.setInputFiles (inputSandbox); // Setut input files (InputSandbox)

 // GridEngine' MultiInfrastructure job submission object

 MultiInfrastructureJobSubmission miJobSubmission=null;

 //

 // Initialize the GridEngine Multi Infrastructure Job Submission object

 //

 // GridEngine uses two different kind of constructors. The constructor

 // taking no database arguments is used for production environments, while

 // the constructor taking SciGwyUserTrackingDB parameters is normally used

 // for development purposes. In order to switch-on the production constructor

 // just set to empty strings the following portlet init parameters or form

 // the portlet preferences:

 // sciGwyUserTrackingDB_Hostname

 // sciGwyUserTrackingDB_Username

 // sciGwyUserTrackingDB_Password

 // sciGwyUserTrackingDB_Database

 //

 if(null != appPreferences.getSciGwyUserTrackingDB_Hostname()

 && !appPreferences.getSciGwyUserTrackingDB_Hostname().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Username()

 && !appPreferences.getSciGwyUserTrackingDB_Username().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Password()

Appendix B

276

Adedeji Oyekanmi Fabiyi

 && !appPreferences.getSciGwyUserTrackingDB_Password().equals("")

 && null != appPreferences.getSciGwyUserTrackingDB_Database()

 && !appPreferences.getSciGwyUserTrackingDB_Database().equals("")

) {

 String DBNM="jdbc:mysql://" + appPreferences.getSciGwyUserTrackingDB_Hostname() +

 "/" + appPreferences.getSciGwyUserTrackingDB_Database();

 String DBUS=appPreferences.getSciGwyUserTrackingDB_Username();

 String DBPW=appPreferences.getSciGwyUserTrackingDB_Password();

 miJobSubmission = new MultiInfrastructureJobSubmission(DBNM,DBUS,DBPW,jobDesc);

 _log.info("MultiInfrastructureJobSubmission [DEVEL]\n"

 +LS+" DBNM: '" + DBNM + "'"

 +LS+" DBUS: '" + DBUS + "'"

 +LS+" DBPW: '" + DBPW + "'"

);

 }

 else {

 miJobSubmission = new MultiInfrastructureJobSubmission(jobDesc);

 _log.info("MultiInfrastructureJobSubmission [PROD]");

 }

 // Assigns now all enabled infrastructures

 InfrastructureInfo[] infrastructuresInfo=appPreferences.getEnabledInfrastructures();

 for(int i=0; i<infrastructuresInfo.length; i++) {

 _log.info("Adding infrastructure #"+(i+1)

 +" - Name: '"+infrastructuresInfo[i].getName()+"'"+LS);

 miJobSubmission.addInfrastructure(infrastructuresInfo[i]);

 }

 // Check the enabled infrastructures

 if(infrastructuresInfo.length > 0) {

 // GridOperations' Application Id

 int applicationId=Integer.parseInt(appPreferences.getGridOperationId());

 // Grid Engine' UserTraking needs the portal IP address

 String portalIPAddress="";

Appendix B

277

Adedeji Oyekanmi Fabiyi

 try {

 InetAddress addr = InetAddress.getLocalHost();

 byte[] ipAddr=addr.getAddress();

 portalIPAddress= ""+(short)(ipAddr[0]&0xff)

 +":"+(short)(ipAddr[1]&0xff)

 +":"+(short)(ipAddr[2]&0xff)

 +":"+(short)(ipAddr[3]&0xff);

 }

 catch(Exception e) {

 _log.error("Unable to get the portal IP address");

 }

 // Setup job requirements

 if(numRequirements>0)

 miJobSubmission.setJDLRequirements(jdlRequirements);

 // Ready now to submit the Job

 miJobSubmission.submitJobAsync(miJobSubmission.getInfrastructure(), appInput.username

 ,portalIPAddress

 ,applicationId

 ,appInput.jobIdentifier

);

 // Show log

 // View jobSubmission details in the log

 _log.info(

 LS+"JobSent"

 +LS+"-------"

 +LS+"Portal address: '"+portalIPAddress+"'"

 +LS+"Executable : '"+executable +"'"

 +LS+"Arguments : '"+arguments +"'"

 +LS+"Output path : '"+outputPath +"'"

 +LS+"Output sandbox: '"+outputSandbox +"'"

 +LS+"Ouput file : '"+outputFile +"'"

 +LS+"Error file : '"+errorFile +"'"

Appendix B

278

Adedeji Oyekanmi Fabiyi

 // +LS+"Input sandbox : '"+inputSandbox +"'"

 +LS); // _log.info

 } // numInfra > 0

 else {

 _log.warn(

 LS+"There are no enough enabled infrastructures!"

 +LS+"It is impossible to send any job"

 +LS+"Configure the application preferences in order to setup"

 +LS+"or enable at least one infrastructure."

 +LS);

 } // numInfra == 0

 } // submitJob

 } // myRepast_infection_portletcic

B2 Sample Infection Model Portlet JSP Pages

<portlet:defineObj

ects />

 <%

 // Gets the current timestamp

 java.util.Date date = new java.util.Date();

 %>

 <%

 // Below the descriptive area of the REPAST simulation web form

 %>

 <table>

 <tr>

 <td valign="top">

 <img align="left" style="padding:10px 10px;"

src="<%=renderRequest.getContextPath()%>/images/Repast_logo_100h.p

ng" />

 </td>

 <td align="justify">

Appendix B

279

Adedeji Oyekanmi Fabiyi

 The aim of this demonstration model is to show how a science gateway

could support the study of the spread of disease or infections in a

population.

 The Repast-infection-model is implemented in Repast

Simphony. The aim of this example model is to study the behaviour of

infections

 with an annual outbreak according to several input parameters.

 </td>

 </tr>

 <tr>

 <td colspan="2" align="justify">

 The parameters are:

 Simulation Period - specifies how many years the simulation

will run for.

 Recovered Count - specifies the initial healthy population.

Healthy population have immunity and cannot be infected immediately.

 However, after a number of contacts with infected population, they lose

their immunity and become susceptible to infection.

 Infected Count - specifies the initial infected population.

Infected population can infect susceptible population upon contacting

them.

 They recover after a period of time and become healthy.

 Susceptible Count - specifies initial susceptible population.

Susceptible population can be infected when contacted by infected

 population. We assume that if more than one susceptible agent is in the

proximity of an infected agent, only one will be infected.

 The output of the simulation is the amount of each population (Recovered,

Infected and Susceptible) over time.

 </td>

 </tr>

Appendix B

280

Adedeji Oyekanmi Fabiyi

 <tr>

 <td colspan="2" align="justify">

 How to use the Infection Model

 Select an experiment to run from the drop down box (in a full

application users would be able to enter their own parameters).

 Note the Simulation Identifier. You will need this to identify the results

from the experiment that you are about to run.

 Press Submit. This will submit the experiment to the

computers of the e-Infrastructure that you are using.

 Go to MyWorkSpace (menu bar above). Select

MyJobs. Your current experiments will be listed here.

 When the job is complete then you can download by clicking on the icon

on the right of the job.

 Unzip your results file. The download is in tgz zipped format. Use a tool

like 7-zip (www.7-zip.com) to unzip

the file.

 Each results file will contact output{timestamp}.csv. This

contains how each population varies over time.

 To visualise it, select Visualise from the left hand side menu and

upload the text file to produce a graph of population variance over

time.

 </td>

 </tr>

 <tr>

 <td colspan="2" align="justify">

 Please fill the following form and then press the 'SUBMIT' button

to launch this application.

 Requested inputs are:

 </td>

 </tr>

Appendix B

281

Adedeji Oyekanmi Fabiyi

 </table>

 <%

 // Below the application submission web form

 //

 // The <form> tag contains a portlet parameter value called 'PortletStatus'

the value of this item

 // will be read by the processAction portlet method which then assigns a

proper view mode before

 // the call to the doView method.

 // PortletStatus values can range accordingly to values defined into Enum

type: Actions

 // The processAction method will assign a view mode accordingly to the

values defined into

 // the Enum type: Views. This value will be assigned calling the function:

setRenderParameter

 //

 %>

 <center>

 <form action="<portlet:actionURL portletMode="view"><portlet:param

name="PortletStatus" value="ACTION_SUBMIT"/></portlet:actionURL>"

method="post">

 <table>

<tr

>

 <td style="width: 40%">Select

experiment</td>

 <td >

 <select id="experiment"

onchange="setSimulationValues()" style="width:

95%;float: right;" >

Appendix B

282

Adedeji Oyekanmi Fabiyi

 <option value="-1">Please select an experiment

...</option>

 <option value="0">Experiment 1</option>

 <option value="1">Experiment 2</option>

 <option value="2">Experiment 3</option>

 <option value="3">Experiment 4</option>

 <option value="4">Experiment 5</option>

 </select>

 </td>

 </tr>

 <tr>

 <td colspan="2"><hr/></td>

 <tr>

 <th colspan="2"><center>Simulation

Parameters</center></th>

 </tr>

 <tr>

 <td style="width: 40%">Simulation Period

(years)</td>

 <td id="simulationPeriodId" style="width: 60%">

 <input type="text" id="inputValueId"

name="inputValue" readonly="true" style="width:

95%;float: right;"/>

 </td>

 </tr>

 <tr>

 <td style="width: 40%">Recovered

Count</td>

 <td id="recoveredCountId" style="width: 60%">

 <input type="text" id="inputValueId2"

name="inputValue2" readonly="true" style="width:

95%;float: right;"/>

Appendix B

283

Adedeji Oyekanmi Fabiyi

 </td>

 </tr>

 <tr>

 <td style="width: 40%">Infected Count</td>

 <td id="infectedCountId" style="width: 60%">

 <input type="text" id="inputValueId3"

name="inputValue3" readonly="true" style="width:

95%;float: right;"/>

 </td>

 </tr>

 <tr>

 <td style="width: 40%">Susceptible

Count</td>

 <td id="susceptibleCountId" style="width: 60%">

 <input type="text" id="inputValueId4"

name="inputValue4" readonly="true" style="width:

95%;float: right;"/>

 </td>

 </tr>

 <tr>

 <td style="width: 40%">Simulation

identifier</td>

 <td><input type="text" id="jobIdentifierId"

name="JobIdentifier" placeholder="Repast simulation..."

style="width: 95%;float: right;" readonly="true"/></td>

 </tr>

 <tr>

 <td colspan="3"><hr/></td>

 </tr>

 <tr>

 <td style="width: 50%">

 <center>

Appendix B

284

Adedeji Oyekanmi Fabiyi

 <input type="button" value="SUBMIT"

onClick="preSubmit()" />

 </center>

 </td>

 <td colspan="2">

 <center>

 <input type="reset" value="RESET"/>

 </center>

 </td>

 </tr>

 </table>

 </form>

 </center>

 <script type="text/javascript">

 var experiments = [

 {"simulationPeriod": 20, "recoveredCount": 0,

"infectedCount": 20, "susceptibleCount": 1500},

 {"simulationPeriod": 20, "recoveredCount": 0,

"infectedCount": 20, "susceptibleCount": 2000},

 {"simulationPeriod": 20, "recoveredCount": 0,

"infectedCount": 10, "susceptibleCount": 1500},

 {"simulationPeriod": 20, "recoveredCount": 0,

"infectedCount": 10, "susceptibleCount": 2000},

 {"simulationPeriod": 20, "recoveredCount": 0,

"infectedCount": 10, "susceptibleCount": 3000}

];

 function preSubmit() {

 var jobIdentifier =

document.getElementById('jobIdentifierId');

 var state_jobIdentifier = false;

 var inputValue =

document.getElementById('inputValueId');

Appendix B

285

Adedeji Oyekanmi Fabiyi

 var inputValue2 =

document.getElementById('inputValueId2');

 var inputValue3 =

document.getElementById('inputValueId3');

 var inputValue4 =

document.getElementById('inputValueId4');

 var missingFields = "";

 if (inputValue.value === "")

 missingFields += "\nSimulation Period";

 if (inputValue2.value === "")

 missingFields += "\nRecovered Count";

 if (inputValue3.value === "")

 missingFields += "\nInfected Count";

 if (inputValue4.value === "")

 missingFields += "\nSusceptible Count";

 if (jobIdentifier.value === "")

 state_jobIdentifier = true;

 if (state_jobIdentifier)

 missingFields += "\nJob identifier";

 if (missingFields === "") {

 // alert("Ready to submit");

 document.forms[0].submit();

 } else {

 alert("You cannot send an inconsistent job

submission!\n\nPlease select an experiment.");

 }

 }

 function setSimulationValues() {

 var x = document.getElementById("experiment").value;

 var experimentDropDown =

document.getElementById("experiment");

 //

Appendix B

286

Adedeji Oyekanmi Fabiyi

document.getElementById("simulationPeriodId").innerHT

ML = experiments[x].simulationPeriod;

 if (x !== "-1") {

 document.getElementById("inputValueId").value =

experiments[x].simulationPeriod;

 document.getElementById("inputValueId2").value =

experiments[x].recoveredCount;

 document.getElementById("inputValueId3").value =

experiments[x].infectedCount;

 document.getElementById("inputValueId4").value =

experiments[x].susceptibleCount;

 var currentTime = new Date();

 var jobIdentifier =

document.getElementById('jobIdentifierId');

 jobIdentifier.value =

experimentDropDown.options[experimentDropDown.sel

ectedIndex].innerHTML;

 jobIdentifier.value += " " + currentTime.getDate() + "/"

+ (currentTime.getMonth() + 1) + "/" +

currentTime.getFullYear() + " - " +

currentTime.getHours() + ":" + currentTime.getMinutes()

+ ":" + currentTime.getSeconds();

 } else {

 alert("Please select a valid experiment.");

 }

 }

 function setSimulationPeriod() {

 var x =

document.getElementById("simulationPeriod").value;

 document.getElementById("inputValueId").value = x;

 }

 function setRecoveredCount() {

Appendix B

287

Adedeji Oyekanmi Fabiyi

 var x =

document.getElementById("recoveredCount").value;

 document.getElementById("inputValueId2").value = x;

 }

 function setInfectedCount() {

 var x =

document.getElementById("infectedCount").value;

 document.getElementById("inputValueId3").value = x;

 }

 function setSusceptibleCount() {

 var x =

document.getElementById("susceptibleCount").value;

 document.getElementById("inputValueId4").value = x;

 }

 </script>

<%@ taglib

uri="http://java.sun.com/

portlet_2_0"

prefix="portlet" %>

 <portlet:defineObjects />

 <%//

 // Application Submission page

 //

 //

 // The portlet code assigns the jobIdentifier as

input parameter for this jsp file

 //

 %>

 <jsp:useBean id="jobIdentifier"

class="java.lang.String" scope="request"/>

 <%

Appendix B

288

Adedeji Oyekanmi Fabiyi

 // Below the submission web form

 //

 // It only have a button that will show the input

form again for a new job submission

 %>

 <table>

 <tr>

 <td valign="top"><img align="left"

style="padding:10px 10px;"

src="<%=renderRequest.getContextPath()%>/ima

ges/Repast_logo_100h.png" /></td>

 <td>

 Your job has been successfully

submitted; you may get reference to it with

identifier:

 <%= jobIdentifier %>

 Have a look on MyJobs

area to get more information about all your

submitted jobs.

 </td>

 </tr>

 <tr>

 <td align="center"><form

action="<portlet:actionURL

portletMode="view"><portlet:param

name="PortletStatus"

value="ACTION_INPUT"/></portlet:actionURL>"

method="post">

 <input type="submit" value="Run a new

application"></form></td>

 <td>Press the Run a new application

button to start another job submission</td>

Appendix B

289

Adedeji Oyekanmi Fabiyi

 </tr>

 </table>

Appendix C

290

Adedeji Oyekanmi Fabiyi

Appendix C

Code Fragments of the Main Java Classes

C1. Applogger Class

private static final int TRACE_LEVEL=6;

private static final int DEBUG_LEVEL=5;

private static final int INFO_LEVEL=4;

private static final int WARN_LEVEL=3;

private static final int ERROR_LEVEL=2;

private static final int FATAL_LEVEL=1;

private static final int UNKNOWN_LEVEL=0;

C2.Initialisation of the Application Preferences

init()

throws PortletException

 {

appInitPreferences.setGridOperationDesc(""+getInitParameter(

"gridOperationDesc"));

appInitPreferences.setPortletVersion(""+getInitParameter("portletVers

ion"));

appInitPreferences.setLogLevel(""+getInitParameter("logLevel"));

appInitPreferences.setNumInfrastructures(""+getInitParameter("numInfr

astructures");

appInitPreferences.setGridOperationId(""+getInitParameter("gridOperat

ionId"));

C3. Java code of the Agent-Based Simulation application
Class myRepast-infection-portlet extends GenericPortlets {

Init (PortletConfig);

processAction (ActionRequest, ActionResponse);

Render (RenderRequest, RenderResponse);

Destroy ();

Do View (Request, Response);

Do Edit (Request, Response);

Do Help (Request, Response);

}

C4. The GridEngine Method
submitJob(AppInput appInput){

 MultiInfrastructureJobSubmission miJobSubmission=null;

 }

where the appInput is the AppInput instance that stores the jobSubmission data

and the miJobSubmission is the GridEngine Multi Infrastructure Job

Submission object

Appendix C

291

Adedeji Oyekanmi Fabiyi

C5. Portlet Parameters in Production Stage

sciGwyUserTrackingDB_Hostname

sciGwyUserTrackingDB_Username

sciGwyUserTrackingDB_Password

sciGwyUserTrackingDB_Database

C6. Portlet Parameters in Development Stage

String arg1="jdbc:mysql://"

appPreferences.getSciGwyUserTrackingDB_Hostnsame() +

appPreferences.getSciGwyUserTrackingDB_Database();

String arg2=appPreferences.getSciGwyUserTrackingDB_Username();

String arg3=appPreferences.getSciGwyUserTrackingDB_Password();

C7. GridEngine Job Description

GEJobDescription jobDesc = new GEJobDescription();

 jobDesc.setExecutable (executable);

 jobDesc.setArguments (arguments);

 jobDesc.setOutputPath(outputPath);

 jobDesc.setOutput(outputFile);

 jobDesc.setError(errorFile);

 jobDesc.setOutputFiles(outputSandbox);

 jobDesc.setInputFiles(inputSandbox);

C8. GridEngine Multi-infrastructure job Submission

miJobSubmission.submitJobAsync

(miJobSubmission.getInfrastructure(),

appInput.username, portalIPAddress, applicationId,

appInput.jobIdentifier);

C9. Comand to send job to futureGatewayAPI

curl -X POST -H "Content-Type: application/json" -H "Cache-Control: no-

cache" -H "Postman-Token: db918854-b421-ed25-04ac-1de48ede6d10" -d '{

 "application":"8",

 "description":"WEKA Application",

 "input_files": [{

 "name":"weather.data"

 }],

 "arguments": [

 "-f weka.filters.unsupervised.attribute.ReplaceMissingValues",

 "weather.data",

Appendix C

292

Adedeji Oyekanmi Fabiyi

 "weka.classifiers.decisiontree.J48"

],

 "output_files": [{

 "name":"weka-output.tar.gz"

 }]

C10. FutureGateway Output

{

 "status": "WAITING",

 "application": "8",

 "date": "2016-11-03T18:40:59Z",

 "description": "WEKA Application",

 "output_files": [

 {

 "url": "file?path=&name=weka-output.tar.gz",

 "name": "weka-output.tar.gz"

 },

 {

 "url": "file?path=&name=weka-output.tar.gz",

 "name": "weka-output.tar.gz"

 },

 {

 "url": "file?path=&name=stdout",

 "name": "stdout"

 },

 {

 "url": "file?path=&name=stderr",

 "name": "stderr"

 }

],

Appendix C

293

Adedeji Oyekanmi Fabiyi

 "_links": [

 {

 "href": "/v1.0/tasks/129",

 "rel": "self"

 },

 {

 "href": "/v1.0/tasks/129/input",

 "rel": "input"

 }

],

 "user": "adedeji.fabiyi@brunel.ac.uk",

 "input_files": [

 {

 "status": "READY",

 "name": "pilot_script.sh"

 },

 {

 "status": "NEEDED",

 "name": "weather.arff"

 }

],

 "id": "129",

 "arguments": [

 "-f weka.filters.unsupervised.attribute.ReplaceMissingValues",

 "weather.arff",

 "weka.classifiers.decisiontree.J48"

]

}

C11. Submit job collection Object

submitJobCollection(AppPreferences preferences, AppInput appInput,

Appendix C

294

Adedeji Oyekanmi Fabiyi

InfrastructureInfo[] enabledInfrastructures){

ArrayList<GEJobDescription> descriptions = new

ArrayList<GEJobDescription>();

for (int i = 0; i < appInput.getTaskNumber(); i++) {

GEJobDescription description = new GEJobDescription();

description.setExecutable("/bin/sh");

description.setInputFiles(pilotScript);

description.setArguments(args);

description.setOutputPath("/tmp");

description.setOutput("output-" + i + ".txt");

description.setError("error-" + i + ".txt");

description.setOutputFiles("repast-infection-Files.tar.gz");

descriptions.add(description);

}}

C12. GridEngine JobCollectionSubmission job submission object

JobCollectionSubmission tmpJobCollectionSubmission = null;

if (!preferences.isProductionEnviroment()) {

String DBNM = "jdbc:mysql://"

+ preferences.getSciGwyUserTrackingDB_Hostname() + "/"

+ preferences.getSciGwyUserTrackingDB_Database();

String DBUS = preferences.getSciGwyUserTrackingDB_Username();

String DBPW = preferences.getSciGwyUserTrackingDB_Password();

tmpJobCollectionSubmission = new JobCollectionSubmission(DBNM,

DBUS, DBPW, collection);

} else {

tmpJobCollectionSubmission = new JobCollectionSubmission(collection);

}

Appendix D

295

Adedeji Oyekanmi Fabiyi

Appendix D

Agent State Diagram

D1 Chain of Transmission

Figure D-1 Infection Model Chain of Transmission

Appendix D

296

Adedeji Oyekanmi Fabiyi

D2 Chain of Infection

Figure D-2 Infection Model Chain of Infection 1

Figure D-3 Infection Model Chain of Infection 2

Appendix D

297

Adedeji Oyekanmi Fabiyi

D3. Chain of Disease Transmission

Figure D-4 Infection Model Chain of Disease Transmission

D4. Modes of Transmission

Figure D-5 Infection Model Modes of Transmission

Appendix E

298

Adedeji Oyekanmi Fabiyi

Appendix E

Diagrams to show interaction between classes and methods

E1 Process Action, Render and Destroy methods

Figure E-1 Interaction between classes and Methods

Appendix E

299

Adedeji Oyekanmi Fabiyi

E2.Phases: Load a Page

Figure E-2 Load a Portlet Page

E3 Submit a form

Figure E-3 Form Submission Action

Appendix E

300

Adedeji Oyekanmi Fabiyi

E4 Generic Portlet Class

Figure E-4 Infection Model Generic Portlet Class

E5 Liferay MVC

Figure E-5 Liferay MVC

Appendix F

301

Adedeji Oyekanmi Fabiyi

Appendix F

CSGF and Future Gateway API Implementation Layers

F1 The FutureGateway API Server

Figure F-1 The FutureGateway API Server

Appendix F

302

Adedeji Oyekanmi Fabiyi

F2. Future Gateway API Architecture

Figure F-2 The FutureGateway API Architecture

F3. Typical Portal Usage

Figure F-3 Portal Usage Scenario

Appendix G

303

Adedeji Oyekanmi Fabiyi

Appendix G

Analysis of the Simulation Output Result Using WEKA – J48 Portlet

G1 Classifier Output

Figure G-1 Classifier Output

Appendix G

304

Adedeji Oyekanmi Fabiyi

G2 Weka – J48 Decision Tree

Figure G-2 WEKA - J48 Decision Tree

The Infection Model is slightly modified in order to perform analysis on the

simulation output result using the WEKA – J48 portlet on the Science Gateway. The model is

used to determine whether or not a person should go to work in the event of an infection

outbreak. This event is carried out to obtain information from a set of instances in order to

predict future occurences. In this experiment, there are 445360 instances and 5 attributes in

total. The different attributes of the model include: Population type, Immunity, Symptoms

and GotoWork. From the above Figure G-1, the classifier output shows the result of the

classifier model on the full training set. The first split is on the Symptom attribute, the second

split is on the Immunity attribute while the third split is on the PopulationType. The number

of leaves in the tree structure is five while the number of nodes in the tree is eight. The

number in front of each attribute represents the total number of instances that reach a leaf.

According to the percentage split, 445360 instances were used for evaluation and all of them

were correctly classified. Also, there were no incorrectly classified instances. This indicates

the results obtained from the training set are optimistic. Subsequently, the J48 pruned tree (in

Figure G-2) shows that; if the symptom level is more than 0, then a person should not go to

work. However, if the symptom level is less than or equal to 0 and the level of immunity is

Appendix G

305

Adedeji Oyekanmi Fabiyi

high, then the individual can go to work. Also, if the level of immunity is low and the

PopulationType is either Infected or Recovered, then an individual may choose to go to work.

Finally, a PopulationType that is Susceptible shows that an individual may not go to work.

