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Abstract— The Internet has changed the world, regarding how 

we lead our daily lives and in recent years, new technologies, such 

as the internet of things (IoT) and wireless sensor networks are 

escalating this change. However, these technologies bring with 

them a rapid increase in traffic, thereby putting more load on 

networks. It is hard to extend the traditional fully distributed 

architecture and distributed aggregation mechanism to a large 

scale, because they suffer several drawbacks by using the data 

plane as a bus to transfer the control discovery messages, which 

increases the traffic on that plane. 

Consequently, to solve this issue, a general architecture and 

discovery mechanism are introduced in this paper with Open-

Level Control (OLC) plane architecture, thus providing better 

scalability in an SDN network. Regarding OLC, the backbone for 

different domains as well as the discovery process for providing a 

network general view are considered. OLC can scale up the 

network with high performance even during high traffic. In 

particular, it has high transparency with there being no need to 

change the hardware, software or protocols on the host side. 

Finally, the results from a 22 PC testbed verify that OLC offers a 

reduction in the number of discovery packets in the data plane of 

84.2%, 55.2% faster discovery time and scaling up the number of 

subnets in an SDN network 3.2 times more than with the 

traditional distributed architecture and mechanism. Moreover, it 

provides an approximately steady rediscovery time of 4.34 secs 

even with very high load. 

 

 

Index Terms— Distributed management, Distributed-

centralized management, Ethernet networks, Intra and inter 

domains, Scalability, Software-defined networking 

I. INTRODUCTION 

calability of networks is a real issue in current network 

architecture [1][2] owing to the rapid increase in the traffic 

of hosts [3], for such as video on demand as well as the 

growing number of end devices, in particular, in relation to 

development of the Internet of Things (IoT) technology [4]. 

Software defined networking (SDN) appears to overcome the 

traditional architecture issues by decoupling the control plane 

from the data plane to give more flexibility [5][6]. However, 

the standard SDN paradigm contains one controller in each 

network [1], which raises other issues, such as difficulties in 

the scalability of large networks and potential single point of 

failure [7]. Consequently, using multiple controllers and 

distributing them properly at locations in SDN architecture is 

an essential parameter for scaling the network [8].  

In order to design an architecture/mechanism that can scale 

the network into a large one, whilst concurrently enhancing 

network performance, the following requirements should be 

taken into account:  

 The new architecture/mechanism needs to support SDN’s 

powerful feature, i.e. proactivity, which leads to 

enhancement of the response time and load balance among 

the network resources. That is, the general view of network 

is the fundamental requirement to apply proactive 

behaviour in an SDN for traffic manipulation [9]. As the 

network general view relies on the discovery process, this 

leads to consideration of the process as an essential one 

that is sensitive to the time factor. Accordingly, the 

discovery packets should avoid the congestion plane (i.e. 

the data plane) as much as possible; 

 No new hardware (e.g. middleboxes) should be added to 

the network and no new software should be added to the 

host or switch sides as this could lead to downward 

compatibility problems; 

 Standard protocols should be used to support 

interoperability and openness [10], regarding which, [11] 

fails to support this point; 

 The number of protocols used for the discovery process 

should be as few as possible so as to avoid inconsistency, 

complexity and latency as a consequence of their 

concurrent operation; 

 There needs to be support for transparency, which means 

users can see the system as a single one [10];  

 The complexity between the intra and inter-domains 

should be decreased as much as possible by using the 

same/consistent discovery protocols. Some other designs 

fail to apply this, such as in [11]. 

 

No previous study has efficiently solved the scalability issue 

nor has completely taken into account the fundamental 

requirements set out above, which is the motivation behind 

our presenting this paper. We propose an Open-Levels Control 

plane architecture (OLC) to provide better scalability in an 

SDN network. OLC, firstly, analyses a well–known 

distributed mechanism, namely, the distributed aggregation 

mechanism, which is essential for performing the discovery 

process in traditional and SDN architectures. Then, novel 

architecture for the control plane is put forward, which defines 

open levels (i.e. multi-levels) of this plane with a distributed-

centralized concept as well as defining the SDN switches 

between the control levels. In addition, an innovative dynamic 

discovery mechanism is introduced, which can discover 

multiple subnets and networks. In sum, OLC introduces full 

architecture and mechanisms for discovering intra and inter-
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domains.  

The main contributions of this paper can be summarized as 

follows: 

 It provides practical solutions that have been ratified by 

extensive testbed results, which as consequence verify that 

OLC is better than the current distributed architecture and 

mechanism; 

 A large testbed with 22 computers has been built to test 

both the fully distributed and OLC architectures/ 

mechanisms; 

 It provides an innovative multi-subnets/networks dynamic 

discovery method by introducing the Dynamic Discovery 

Hierarchal Protocol (DHP), which provides dynamic fast 

discovery time in a distributed-centralized architecture; 

 OLC provides superior performance in Ethernet networks, 

even with high load traffic; 

 It demonstrates how to reduce the current network 

complexity by minimizing the number of discovery 

protocols to single one for performing the intra and inter-

domains discovery process; 

 It shows how to reduce significantly the resource 

consumption in the data plane. 

 It offers means of delivering stable rediscovery time; 

 The proposed model can scale the network significantly 

better than fully distributed architecture. 

 

II. RELATED WORK 

 

Various solutions have been proposed to overcome the 

scalability issue since the arrival of SDN which can be 

categorized according to the control plane architecture, as 

follows.  

 

A. Related work with fully distributed control plane 

architecture 

When designing a network that covers distributed areas, it 

has to be divided into multi-subnets/networks, with each 

having its own SDN controller. In addition, to scale a network 

with high performance, the proactive behaviour that is a 

powerful feature of SDN should be used, i.e. to install rules 

proactively along paths between sources and destinations, 

regardless of whether they are in the same subnet/network or 

belong to different ones. The proactive behavior of SDN relies 

on providing a general view of the network to each 

subnet/network in order to find and install routes in the routing 

tables between the edge devices (e.g. routers). This general 

view in the distributed architecture can be obtained by using a 

well-known discovery mechanism, i.e. a distributed discovery 

aggregation mechanism [11]. The Open Shortest Path First 

(OSPF) [12] traditional protocol is the most commonly used 

for this purpose for fully distributed architecture in intra-

domain among subnets/networks within the same Autonomous 

System (AS), such as in [11].   

However, there are several limitations as a consequence of 

using the aggregation discovery mechanism in distributed 

architecture, which are as follows. 

• The aggregation discovery mechanism by distributing the 

discovery information to all subnets leads to the use one or 

multiple protocols to implement this mechanism, such as 

in the Disco model [13], where Messenger-Link Layer 

Discovery Protocol (M-LLDP) and Advanced Message 

Queuing Protocol (AMQP) are deployed to discover the 

network. As a consequence, this leads to an increase in the 

complexity of the controllers and more latency when 

performing the discovery. In addition, as these protocols 

must work synchronously and they need manual 

configuration, this increases the probability that the whole 

system will fail due to human error. However, the 

proposed model only uses the dynamic discovery 

hierarchical protocol (DHP) which is introduced in this 

paper. 

• With such an aggregation discovery mechanism, the data 

plane is used to transfer the discovery packets through the 

network, which results in more load and the consumption 

of the resources of that plane, which consequently has an 

effect on the discovery and convergence time. However, 

in OLC model the most of discovery packets are 

transferred using the control plane. 

• During peak load, the probability of failing in the 

discovery process for a new event (e.g. add/delete subnets) 

increases, because both customer data and the control 

discovery signal use the same plane (i.e. data plane), which 

can lead to congestion in the network. Consequently, the 

fully distributed discovery mechanism could lead to 

reliability issues [14], so the best discovery time with the 

optimum discovery path should have little or even no 

congestion [15]. In our model by separating the control 

from the data messages the probability to fail in the 

discovery process decreases. 

• Aggregation of the distributed mechanism results in a 

number of phases (i.e. rounds) are needed to complete the 

whole discovery process, which in turn increases the 

latency of the discovery process. In contrast, OLC uses 

just two fixed rounds. 

• The size of discovery packets in the aggregation models 

has a direct relationship with the number of 

subnets/networks [10], whereby the former increase when 

the best path becomes longer between the furthest edges 

(i.e. subnets) of the networks. This will be conflict with the 

size of the Maximum Transmission Unit (MTU) of a link 

that passes the discovery messages. This, in turn, leads to 

performing message fragmentation that is used in cases 

when the MTU size in less than the protocol data unit [16]. 

Dividing the discovery message into pieces and send them 

individually on the data plane leads to an increase in the 

probability collisions and competition, which in turn 

lengthens the discovery time. In addition, the limited 

number of available fragmentations [e.g. Intermediate 

System to Intermediate System (IS-IS) routing protocol 

which is limited to 256 fragments] leads to the inability of 

up scaling for large networks [16]. However, OLC (by 

using centralize controller to collect discovery packets, 

process and separate appropriate information to each 

subnets) frees the size of discovery messages from the 

length of the best path. 

Relying on fully distributed control plane architecture, the 

Onix model [11] is proposed for enhancing the scalability of a 
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network. However, it is not efficient for one with rapid 

changes in its conditions and states, whilst it also has the 

above limitations. Moreover, it uses the OSPF protocol to 

make the discoveries in intra-domains with no information 

about how this could support proactive SDN behavior. In 

addition, it is not sufficient for discovering inter-domains and 

hence, it has to rely on other models [11]. 

 

B. Related work with distributed architecture with a logically 

centralized control plane 

With this architecture, the controllers are each allocated to a 

single subnet as with the fully distributed architecture; 

however, a new top layer is defined. Firstly, this layer in some 

proposals, such as in [17] and [18], is used as a data store in 

order to be the link among the subnets’ controllers and in [17] 

each controller can be used to control all of the network. 

Nevertheless, this architecture also has drawbacks, as each 

controller in each specified time will retrieve the full data 

from the data store, which will result in each having an 

increased cache size. In addition, each controller will increase 

its CPU usage and power consumption owing to it having to 

perform the best path calculation for the whole network. 

Secondly, in [17] the top layer is used also as a control 

channel to make connection to transfer commands between the 

controllers that return the architecture to the single point of 

failure, increase the complexity of the system and increase the 

response time. Thirdly, other studies, such as in [19] use the 

top layer as a root controller that connects directly to the local 

controllers, which are used as switches proxies for it. In this 

architecture, a specific protocol needs to be designed to 

connect the local controllers to the root controller, such as in 

[20] , which increase number of protocols that are used for 

discovery and hence, the synchronization among these 

protocols could affect the general view consistency. In 

addition, there is complexity in the root controller as its role is 

not just the discovery process, for it also has to answer the 

outgoing requests from that subnet/network. In more detail, 

the outgoing requests from the subnet pass from the local 

switch to the root controller, which installs rules in all local 

switches along the path to the edge device. This leads to 

increased response time as well as overhead for the root 

controller. As with [19], [21] and [1] use a coordinate 

controller in the top layer, with one controller for each 

domain, thereby limiting the scalability. In addition, [1] uses 

unified restful API between the local controllers and 

coordinating controller, which leads to a backwards 

compatibility problem as well as increased network 

complexity. However, there is no mechanism regarding how 

to discover domains and how the local controllers gather the 

information. Moreover, the calculation for the global path 

occurs in the top controller after it receives a request (i.e. not 

in proactive manner), which means that it neglects the most 

powerful feature of an SDN.  

The rest of this paper is organized as follows. Firstly, in 

section II we discuss the related work and limiations of 

existing work also III we describe the current distributed 

mechanism and formulate the analytical paradigm. OLC is 

designed and its concept is explained throughout Section IV. 

In section V, OLC’s implementation is described with 

algorithms, whilst in section VI, tested experiments and their 

results are presented. Finally, conclusions are drawn and 

future work building on the outcomes proposed in Section VII.  

III. DESCRIPTION OF THE DISTRIBUTED CONTROL 

PLANE ARCHITECTURE AND ANALYTICAL MODEL 

FORMULATION 

In this section, we describe the distributed aggregation 

mechanism by analysing discovery packets in fully distributed 

architecture under both the current and SDN architectures. In 

addition, the mathematical formulation for this mechanism is 

calculated at the end of this section. 

A. Distributed control plane architecture 

In an SDN network that covers a large area, distributed 

subnets interconnect each other, with each subnet having its 

own switches and controller. The internal switch forwards 

packets within the same subnet, while the edge switches work 

as middlebox devices (e.g. routers) to forward packets 

outside/inside their subnets.  The controller controls every 

packet in its subnet depending on its policy as well as 

exchanging its subnet’s information with other subnets in the 

same distributed-based network, which is why this is called a 

distributed control plane. This type of network normally uses 

the data plane bus to transfer discovery packets through the 

edge devices, such as in [11]. 

 

B. Connectivity of distributed control plane 

In order to make connections among subnets in same SDN 

network, the edge devices, such as routers/Exit_switches must 

exchange their information with their neighbors. In this 

architecture, the controller has the main script and the routing 

table (in the case of using a router as an edge device, then it is 

called virtual router [22]). The rules inside each edge device 

can be installed in two ways. Firstly, manually by the 

administrator, where he/she has to know each neighbor’s 

information (IP address and subnet mask) in order to install a 

static route to it. Secondly, this can be done dynamically by 

using a routing protocol (e.g. OSPF and RIP), where each 

controller has the routing protocol’s script and exchanges 

advertisement packets at specified times with its neighbors. 

After the specified discovery time each controller has an 

understanding of the whole network topology and installs 

rules in the edge devices (e.g. virtual routers) to pass packets 

to outside the subnet. If the virtual router is used as an edge 

device then it needs to refresh its connection with its 

neighbors by exchanging ARP packets after the specified time 

in order to keep the ARP table in each router updated [23], 

because it depends on the default gateway mechanism. Whilst 

if the Exit_switch is used as an edge device then this omits the 

use of ARP packets and there is no need to for refreshment as 

the Exit_switch mechanism relies on the proactive behaviour 

of the SDN controller through the availability of the general 

view of the network. 

 

C. Aggregation discovery mechanism to exchange network 

discovery information 

The aggregation mechanism is used in fully distributed 

subnets to discover the whole network’s IPs and to gather 

statistics [11] in order for each subnet to have a consistent 
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general network view. As a consequence, this gives SDN the 

powerful ability to install rules proactively and reactively in 

SDN switches for better performance [24]. Regarding the 

aggregation mechanism, we theoretically evaluate the number 

of phases that are needed by the network in order to let each 

controller in each subnet have the general view of its entirety. 

As can be seen in the example topology in Fig.1 (a), each 

controller in each subnet starts the first round by sending 

multicast discovery protocol’s packets to all its neighbours, 

which is called phase1 of the discovery process. It should be 

noted the number in the pink shape reflects the subnet 

number with all its discovery information involving its 

routing and topology gathered from its neighbor subnets 

[25]. 

As consequence of the results from phase 1, each controller 

just has knowledge about its next neighbors and puts this 

information in the neighbors’ tables as well as putting the 

network topology in the topology table. The phase 1 results 

are thus: 

Subnet1 just has information about subnets 2 and 4; 

Subnet2 just has information about subnets 1, 4 and 5; 

Subnet3 just has information about subnet 6; 

Subnet4 just has information about subnets 1 and 2; 

Subnet5 just has information about subnets 2 and 6; 

Subnet6 just has information about subnets 3 and 5; 

In phase 2, the subnets will start the second round of 

multicasting, as can be seen in Fig.1 (b). In this round, each 

controller will be used as a bridge to exchange the information 

among its undirected connected neighbors. In this case, the 

information will go one subnet further than in phase 1. As a 

result of phase 2, the topology and neighbors’ tables will be 

updated, such that phase 2’s results are: 

 

Subnet1 has new information regarding subnet5; 

Subnet2 has new information regarding subnet6; 

Subnet3 has new information regarding subnet5; 

Subnet4 has new information regarding subnet5; 

Subnet5 has new information regarding subnets 1, 3 and 4  

(satisfied); 

Subnet6 has new information regarding subnet2; 

 

Continuing to phase 3, the tables will be updated and the 

discovery packets will continue multicasting to next 

neighbours, which leads to the discovery information going 

two subnets further than in phase 1 as can be seen in Fig. 1(c), 

and phase 3’s results are: 

Subnet1 has new information regarding subnet6; 

Subnet2 has new information regarding subnet3 (satisfied); 

Subnet3 has new information regarding subnet2; 

Subnet4 has new information regarding subnet6; 

Subnet5 gains nothing new as it is in the middle in example 

topology, so it is satisfied first (i.e. it is first to 

acquire the general network view); 

Subnet6 has new information regarding subnets1 and 4 

(satisfied). 

 

In phase 4, the discovery packets will continue 

multicasting to next neighbours, which leads to the 

discovery information going three subnets further than in 

phase 1 as can be seen in Fig. 1(d), and phase 4’s results 

are: 

Subnet1 has new inf. regarding subnet3 (satisfied); 

Subnet2 gains nothing new (satisfied); 

Subnet3 has new inf. regarding subnet1 and 4(satisfied); 

Subnet4 has new inf. regarding subnet3 (satisfied); 

Subnet5 gains nothing new (satisfied); 

Subnet6 gains nothing new (satisfied); 

As consequence, after finishing the fourth phase, all the 

controllers will have the appropriate information 

regarding all the subnets’ topology tables. 

As a result of using the distributed aggregation mechanism 

in traditional/SDN architectures the number of phases is equal 

to the best path between the furthest edges of network (i.e. 

furthest subnets), as in Equation 1.   

 

Nop = Bpfes                (1) 

 

Fig.1 Shows the discovery phases when applying the aggregation 

mechanism in fully distributed architecture (Note: in each phase the 

process on link happens before the result inside the subnets) (Note: 

for the figure to be not fully packed we eliminate repeated discovery 

messages, however in practice there is a message on each port from 

each subnet in each phase) 
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Where, Nop denotes the number of phases and Bpfes is the best 

path between the furthest subnets. 

 

Regarding the discovery process latency, the highest controller 

latency refers to the time needed by the controller to multicast 

discovery packets, receive discovery packets and to 

store/retrieve information to/from the discovery tables. As the 

subnets work concurrently, highest controller latency is equal 

approximately to the latency of the slowest controller. Whilst 

the latency in each phase is equal to the highest controller 

latency plus the highest link latency, as in Equation 2. 

 

Lp = Hcl + Hll           (2) 

Where, Lp denotes the latency in each phase, Hcl is the latency 

of the slowest controller and Hll is highest link latency, which 

represents the slowest link in the network between subnets 

 

Accordingly, the discovery time needed each specified time 

(T) is approximately equal to the number of phases multiplied 

by the latency of each phase, as in Equation 3. 

Dt = Nop * Lp            (3) Where Dt = discovery time 

 

The number of packets generated in the network to complete 

the discovery process for one phase is equal to the summation 

of the number of out links from each subnet, as in Equation 4. 

 

                NpDp1 = ∑ (
𝑁𝑠

𝑛=1
  Nol )n    (4)  

Where, NpDp1 is the number of packets generated in the 

network to complete the discovery process for one phase, Nol 

is the number of links from each subnet and Ns represents the 

number of subnets 

 

While the number of packets to complete the full discovery 

process is equal to the number of phases multiplied by the 

number of packets required to complete one phase, as in 

Equation 5. 

       NpDpF = Nop * NpDp1          (5) 

Where NpDpF represents the number of packets to complete the 

full discovery process 

 

As can be seen from the equations, for a large network this 

requires many phases in relation to Bpfes (Equation 1) and also 

an extensive number of packets in each phase, which leads to 

consumption of data plane bandwidth, an increase in the 

requirements of the control plane [11] and longer 

discovery/rediscovery time.  

 

IV. OLC DESIGN 

A. Design Goals 

The OLC model is designed in this section, where a general 

architecture in order to enhance the discovery 

subnets/networks mechanisms in large Ethernet SDN 

networks is proposed. In addition, the dynamic discovery 

hierarchal protocol (DHP) for a multi-layer control plane is 

proposed to provide a general view of whole network, which 

supports SDN performing proactive behaviour. 

 

B. OLC units 

OLC model contains several units for completing the 

purposes that it has been designed for, as can be seen in Fig.2. 

These units work with a multithread concept aimed at fast 

response and distributed loads on the cores of the CPUs. The 

Received Unit receives discovery packets from the same level, 

level minus 1 (level-1) and level plus 1 (level+1) controllers, 

subsequently sending the messages to the Analysis and 

Calculation Unit that has connections with all the discovery 

tables. This unit will obtain, analyze and perform calculations 

on the received information to fill the discovery tables, 

including the Neighbors_topology and All_topology. Then, it 

sends the information to the Send Unit, which has two 

subunits, DHP1 and DHP2, which were assigned their names 

from the dynamic discovery hierarchal protocol (DHP) 

proposed in this paper.  This unit takes its information from 

the discovery tables and sends discovery messages into the 

same/different level controllers, as is explained later in this 

section. 

 

C. General network architecture under OLC 

When a network is scaled up, important requirements are a 

fast discovery time during bootstrap time and a fast 

rediscovery time for any change in the network states, such as 

add/remove the link between two subnets/networks. That is, 

the latency of the discovery time is an important factor when 

scaling the network, whereby if this time is low, new 

subnets/networks can be added and hence, the network scaled 

up. In order to achieve the best performance with fast 

discovery/rediscovery times, we believe that the centralized 

architecture should be combined with the distributed one. 

Our proposed model involves dividing the scale concept for an 

SDN network into vertical and horizontal scales, where the 

former represents the scale of the control plane, whilst the 

latter pertains to that of the data plane. The ability to scale the 

control plane leads to scaling of the data plane, because it 

enhances the discovery time. As a consequence, we believe we 

have developed the best discovery architecture, for it 

combines both distributed and centralized architectures, which 

introduces an open-level distributed-centralized control plane 

architecture in an SDN network, as can be seen in Fig.3. 

The vertical process in the figure pertains to the scaling up 

of the control plane. Regarding which, level 1 is the first level 

 
Fig. 2. OLC units in a single controller 
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in the chain and contains distributed SDN controllers, each 

responsible for at least one subnet, whilst the second level 

contains the centralized SDN controllers. Our proposed model 

uses SDN switches between each vertical neighbor level to 

give more flexibility and for recovery purposes. In order to 

scale the network up to a large one, such as a Metropolitan 

Area Network (MAN)/ Wide Area Network (WAN), the 

controllers in the last level of each network (i.e. level M) will 

represent distributed controllers for the level 1 controllers of 

the core network. The controllers keep connecting in a 

hierarchical way until those in level n are reached, which 

represent the top of the pyramid for all zones. The core of a 

network’s control plane could start from level 3 or above 

depending on the size of network and the decision of the 

administrator.  

On other hand, horizontally, each zone could represent a 

campus/ enterprise/ small city that connects to its neighboring 

zones using the data plane. By using this architecture, we can 

continue to link zones until cover a very large area, such as a 

country/group of cities. From the global perspective, we can 

imagine dividing the world into areas, with each containing 

one/more zones have one/more head controller(s) at the edge 

that can be connected in a distributed manner to exchange 

information.  

 

D. OLC Discovery Mechanism  
 

As the OLC model can be scaled up to support a very large 

area, such as a country or even the world, there are two 

discovery views, with the first being with regards to the same 

network (intra-domains), while the other relates to a large 

network (inter- domains).  

 

1) Within the same network (intra-domain) 

 

The type of discovery we propose in this paper involves a 

hierarchal mechanism with M open level controllers in the 

intra-domains (Fig.4 shows two levels of controllers as an 

example). In order to perform it, the OLC model involves 

deploying a dynamic discovery hierarchical protocol, which is 

developed from the LLDP protocol. As aforementioned, this 

contains two elements, specifically, a distributed one (DHP1) 

in the controller’s DHP1 subunit and a centralized one (DHP2) 

in its DHP2 subunit. The hierarchical discovery mechanism 

starts from the controllers in the subnets. Firstly, each 

controller in each subnet in bootstrap time will create a 

Neighbors_topology table. which has the fields: 

Neighbors_ID, Timestamps_of_packets, which are use to 

calculate links’ latencies with neighbors and hence, identify 

the best paths, Edge_switch_ID, which is used to identify a 

subnet’s edge switch and the Edge_switch_port, identifying 

which port is going to which subnet. As can be seen in Fig.4 

(a), in each subnet the controller in level 1 during phase 1 

multicasts its ID and timestamp of packet to the neighbors 

using one DHP1 message, while there are no messages being 

sent to the level 2 controller. 

Each controller will receive DHP1 messages from its 

neighbors, which it adds to the Neighbors_topology table. The 

controller will perform multicasting after a specified time or if 

there is a change in network conditions. Secondly, the level 1 

controllers will send DHP2 messages from the DHP2 subunit, 

which has some of the information that is in the 

Neighbors_topology table (i.e. Neighbors ID, link latency and 

Internal_subnet latency) in dictionary style, to the centralized 

controller in level 2, as seen in Fig.4 (b). The centralized 

controller in bootstrap time creates an All_topology table, 

which has following fields: Source_ID, Destination_ID, 

Link_latency and Internal_latency. The centralized controller 

will combine all received DHP2 messages and using the 

Dijkstra algorithm will find the best paths between each pair 

of subnets and then, will fill the All_topology table. This 

controller will send back DHP2 messages which contain just 

the crucial information to each related subnet required to 

install rules for reaching the destination subnets. It should be 

 
Fig.3 Overall OLC architecture 
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noted the DHP2’s messages are different from each other, i.e. 

each is unique for each subnet in order to avoid sending 

information to unrelated one. The messages will be in 

dictionary format, i.e. net_X  {net_Y: net_Z}, which means if 

subnet/network X wants to connect to subnet/network Y, it 

should go through subnet/network Z. The controller in level 1 

will save this information in the All_view_discovery table that 

has been created in all controllers at all levels in bootstrap 

time. As a consequence, the controllers in level 1 will have a 

general view of the whole network. Then, the level 1 

controller installs rules proactively in its switches to each 

destination subnet in its network relying on Edge_switch_ID 

and Edge_switch_port fields in the Neighbors_topology table. 

Regarding the number of phases in the OLC discovery 

mechanism, if we assume there are two levels of controllers in 

the intra-domain architecture, in order to compare our 

architecture with the aggregation distributed mechanism in 

section II, each controller deals with one phase in the data 

plane and one in the control plane. Accordingly, there are two 

phases no matter how many subnets are in the network, as in 

Equation 6.  

                       Nop = 2       (6) where Nop= number of phases 

Regarding the discovery time, this is needed after each 

specified time (T) and approximately equals the latency of the 

one phase from Equation 2, plus the Highest level 1 controller 

latency when sending/receiving DHP2 messages, plus the 

maximum latency of the centralized Links, which connect 

level 1 to level 2 controllers (there and back),  plus the latency 

of the centralize controller (Lcc), as in Equation 7.  

 

Dt = Lp +2 LcL + Lcc + Hcl       (7) 

Where, Dt denotes the discovery time, Lp is the latency of one 

phase, LcL is the latency of the centralised links, Lcc is the 

latency of the centralised controller and Hcl is the highest level 

1 controller latency 

While the number of packets generated in the network to 

complete the full discovery process is equal to the sum of the 

number of links from each subnet and the number of links 

from level 1 to level 2 (i.e. number of subnets, if each subnet 

connects with one controller in level 2), as in Equation 8. 

                         NpDpF =∑ (
𝑁𝑠

𝑛=1
 Nol)n + Ns        (8) 

 

Where, NpDpF represents the number of packets generated in 

the network to complete the full discovery process, Nol is the 

number of links from each subnet and Ns is Number of subnets 

 

2) In the multiple networks (inter-domain) 

 

The OLC model provides the same mechanism as inside the 

network (i.e. intra-domain) to connect multiple networks in 

order to cover a large area, where each controller in the last 

level of each network will represent its network by using 

Network Address Translation (NAT) [26]. In addition, it will 

be seen in a distributed manner in relation to other controllers 

in the last level from other networks, as can be seen in Fig.5. 

Each intra-domain network will have an SDN-switch(es), 

which connect(s) directly to the controller in the last level of 

that network. That switch belongs to the data plane and is used 

to send information using DHP1 messages to the neighbor 

networks that are in different domains after applying the NAT 

mechanism.  Whereas the DHP1 discovery messages will 

contain the Public_network_ID field, which represent the 

public IPs for that domain and Timestamp field to evaluate the 

link latency between two neighbor inter-domains. After 

receiving DHP1 messages the relevant controller will send 

DHP2 messages to a one level up controller (e.g. level 3) that 

will perform path calculation among the inter-domain 

networks and send back this information to the related 

network in a dictionary style. For example, 

Network_X{Network_Y: Network_Z}, which means that if 

network X wants to connect to network Y, it should connect 

first to Network Z. That information will be saved in the 

All_view_discovery table. The same OLC mechanism is 

applied when there are (n) levels of controllers covering a very 

large area. 

 

E. Location of the controllers 

The OLC offers a flexible architecture for fulfilling 

different purposes. For example, if it is used on a campus/in an 

 
Fig. 4. Example of the OLC discovery mechanism inside one network 

(i.e. intra-domain) containing six subnets with two levels of 

controllers (P = discovery message containing route information 

calculated by a centralized controller for all subnets in dictionary 
format, i.e. Sub.x can go to Sub.y through Sub.z) 
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enterprise with long distances between departments then the 

level 1 controllers will be located near to the subnets, 

especially if there are many users, in order to reduce 

discovery/rediscovery time. While if it is used in a data center 

network, the level 1 controller can be located in the 

controllers’ pool near to the last level of controllers in that 

network (e.g. level 2’s controllers). In addition, the other 

controllers that represent the core network could belong to the 

same or different providers and could be located near to its 

serving zones.  

 

F. Reacting when the network fails  

There are different types of failure can happen in any 

network that could lead to the whole network grinding to a 

halt. OLC take different actions to overcome these failures and 

their consequences as follows.   

 

1) Handling level 1 controller failure 

OLC uses the standard master-slave mechanism offered by 

the Openflow protocol [27]. With this mechanism, the level 

x+1 controller works as a slave controller for the level x 

controllers (i.e. masters), where if any master controller 

related to a subnet fails, then the slave controller will take the 

responsibility of controlling that subnet.  

2) Handling levels 2 to n controller failure  

If a centralized controller in levels 2 to n fails, OLC 

provides a recovery feature by using the SDN switches in the 

control plane such that two or more controllers in the same 

level are connected to the same switch, so if the master fails 

the slave can serve the network. In addition, by using the same 

mechanism the load balance can be achieved among different 

controllers in same level, if they are serving the same 

zone/area. 

 

3) Handling failed links  

In the OLC architecture, more than one SDN switch could 

be used in the same level of the control plane to provide 

dependent links for recovery purposes. In addition, these links 

can also be used for load balancing purposes during peak 

control signals load. 

 

F. Handling subnet/network discovery (join, leave) 

Since SDN has to complete its function as a proactive 

installer of rules in devices along the path between the sources 

and destinations, it needs a dynamic fast subnet discovery 

mechanism to give it a general view of all subnet information. 

In addition, it should have a fast rediscovery time for covering 

any changes in the network, such as a new subnet joining or 

one leaving.  

If a new subnet joins the network, the level 1 controllers in 

that subnet will start multicasting to all linked neighbor 

subnets, whilst simultaneously receiving DHP1s from them 

and then sending a DHP2 to the centralized controller in 

level+1 in order to get back the related general view. If a 

subnet leaves the network, the centralized controller will 

detect this through periodically monitoring the Still_alive field 

in the neighbors_discovery table. As a consequence of no 

activity from a subnet being for a specified time, a 0 will put 

in the Still_alive field. The centralized controller will check 

that field before send back the DHP2 to the relevant level 1’s 

controller. If the Boolean value in that field is equal to 1, the 

DHP2 will contain the related subnet information, whilst if it 

is 0 the centralized controller will delete that subnet from the 

evaluation. Through the same mechanism, the controllers in 

the core network can detect the join and leave network in 

inter-domain networks by monitoring the activity of the edge 

controllers in them. 

 

 

Fig.5. Open-levels OLC intra and inter domains 
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V. IMPLEMENTATION OF OLC 

In this section, we explain our OLC implementation for an 

open-level control plane in SDN networks in detail in relation 

to dynamic discovery in order to provide general view for 

single and multiple SDN networks covering a large area, as an 

addition to Ryu’s [28] controller using an OpenVswitch 

(OVS) [29]. All the requirements set out in section I are met 

by OLC, which implements the DHP, thereby providing the 

controllers with a general view of all destination 

subnets/networks. It has been developed from the LLDP 

protocol, with DHP being the new feature. While the LLDP 

standard protocol just discovers the SDN switches inside one 

subnet, our proposal has the ability to discover all the subnets 

in the same network (i.e. intra-domain network), whilst also 

discovering other networks in different areas (i.e. inter-domain 

networks). To do so, the DHP has two parts as follows.  

 

A. Implementation of the DHP distributed part in the DHP1 

subunit 

This part of the protocol is located in any level of 

controllers in the OLC architecture that are connected to their 

same level neighbor controllers using SDN switches, being 

called the distributed part of the DHP protocol (DHP1). For 

example, during the bootstrap time the level 1 controllers will 

use this part of the DHP protocol in order to carry its own 

information to all neighbor controllers in different subnets in a 

distributed manner. Concurrently, so as to know which SDN 

switch connects the subnet to the other subnets, the controller 

monitors all the local switches using Packet_in messages. If 

the Packet_in message is a DHP1 message and has an ID 

different to the local subnet’s controller ID, then OLC will 

register the SDN switch which enters that DHP1 as an edge 

switch and put Switch_ID, Switch_port, Source_subnet_ID 

and the Timestamp of the message in the 

Neighbors_Discovery table. In order to implement the DHP1 

piece, we define in the DHP protocol a new type-length-value 

(TLV) with number 124 class and two subclasses named 

Type_of_DHP and Subnet_ID. Whilst The Type_of_DHP is 

equal to 0 for discovery messages sent at the same level, the 

value of the Subnet_ID subclass can be calculated by 

performing an AND operation between the subnet IP and 

subnet Mask. Subsequently, the OLC model will create DHP1 

messages and multicast them to all neighbors. As a 

consequence, the DHP helps the destination controller to 

know to which source controller it is connected with. Each 

controller that connects to its same level neighbor controller 

using an SDN switch has to use the DHP1 piece (e.g. level 1 

controller). It will repeat this listening and sending after the 

specified time or reverts to reactive mode when there are 

changes in subnet states, such as adding a new edge switch. 

We implement algorithm 1 to show how these steps are 

carried out in the OLC model. 

 

B. Implementation of the DHP centralized part in the DHP2 

subunit 

The centralized part (DHP2) located in the controllers in level 

2 and core controllers (levels 3 to n). There are two roles that 

can be performed using this piece of the protocol depending 

on the sent packet direction. The DHP2 subunit sends 

discovery packets to the controller one level up in order to 

calculate the best routes and then sends back the calculated 

information to the level -1 controllers so as to get a full view 

of other subnets/networks for proactive SDN behavior. The 

Type_of_DHP in DHP2 packets has the value 1, if the packet 

is sent up to level+1 and -1, if sent down to level-1. A new 

subclass (net_inf.) adds to the DHP protocol in part 2. which 

has subnet/network information in a dictionary style 

(net_X:{net_Y:delay_Z}). Another subclass (Internal_latency) 

is added, which stores the internal latency for the 

subnets/networks that help in evaluating the best paths. Then, 

the controller in level+1 will collect all DHP2 packets from all 

level-1 controllers and waits for a specified time to let all join 

and send their information to it. After this, the controller in 

level+1 uses the Dijkstra algorithm to evaluate the best paths 

from each subnet/network to others depending on the 

Internal_latency field and delay between the subnets/networks. 

Then, it will save this information in dictionary format and 

send it with two types of DHP2 packets, the first of which 

having Type_of_DHP equal +1 for a one level up controller in 

order to inform the core network about the network 

information. While the second type, with value -1, are sent to 

all controllers in level-1, which will save them in the 

Algorithm 1. Distributed discovery for neighbors’ subnets/networks   

in the same level 

Input: Local_IP , Local_Mask, level_of_contoller, Network_public 

_IP, Public Mask 

Output: DHP1 packets with Local_Subnet_ID/Public_network_ID, 

Timestamp, 

               Updating Neighbors_Discovery table      

1: START 

2: Declare General_ID Timestamp, Type_of_DHP 

3: Get controller IP , Mask and Level_of_contoller from the system 

configuration 

4: IF controller IP = Network_public_IP then  # use NAT 

5:           General_ID  Calculate (Network_public_IPs AND Public 

Mask) 

6: ELSE 

7:            General_ID  Calculate (Subnet_IP AND subnet_Mask) 

8: END IF 

9: Type_of_DHP 0        #To send DHP1s to the same level 

controllers 

10: REPEAT  

11:     Generate DHP1 packets with General_ID and Type_of_DHP 

12:   Multicast/unicast the packets from each output port in each 

switch 

13:     Listening to Packet_in to catch DHP1 packets 

14:     Decapsulating each DHP1 packet  

15: Read Message_General_ID, Type_of_DHP from each 

decapsulated packet 

16:     IF Message_General_ID ≠ General_ID AND Type_of_DHP = 

0 then 

                 # Means the message came from a neighbor in the same 

level 

17:        Update Neighbors_Discovery table   

18:      END IF   

19:   Wait the specified time or wait for any change in subnet 

conditions in reactive manner 

20: UNTIL terminated by the administrator  
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All_view_discovery table. The centralized controllers will 

repeat this procedure individually according to changes in 

network/subnet states. The full details for the centralized part 

can be seen in algorithm 2. 

 
 

Algorithm 2. Centralized discovery for the whole subnets/networks 

(level-1 and level+1) 

Input: Local_IP, Local Mask, Level_of_contoller, Neighbors_ 

Discovery table, DHP2 messages from level-1, 

Network_public_IPs, Public Mask 

Output: DHP2 packets to level+1 and level-1 

              Updating All_topology and All_view_discovery tables      

1: START 

2: Declare General_ID, Type_of_DHP 

3: Get Controller IP, Mask and Level_of_contoller from the system    

configuration 

4: IF Controller IP = Network_public_IP then  # use NAT 

5:         General_ID  Calculate (Network_public_IPs AND Public 

Mask) 

6: ELSE 

7:         General_ID  Calculate (Subnet_IP AND subnet_Mask) 

8: END IF 

9: Type_of_DHP  +1 or -1  

10: REPEAT  

#//////////////////////////////////start send DHP2 one level up 

11:     IF    Level_of_controller = 1 then 

12:             Generate DHP2 packet with (General_ID, Type_of_DHP, 

Inf. from Neighbors_discovery table 

13:     ELSE    #means all other levels 

14:             Generate DHP2 packet with (General_ID, Type_of_DHP, 

Inf. from All_topology table 

15:     END IF 

16:     Unicast the packet to the level+1 centralized controller. 

#////////////////////////////////////////////////////End of send one level up 

#///////////////////////////////Start listening to catch DHP2 from up and 

down levels 

17:  Listening to a specified port to catch DHP2 packet from 

level+1(back), -1 

18:    Decapsulating each DHP2 packet  

19:    Update All_view_discovery table 

20:    Apply Dijkstra algorithm to find best paths 

21:    Generate DHP2 packet with (General_ID/ Local_Subnet_ID, 

Type_of_DHP, Inf. from All_topology table 

to level+1 and All_view_discovery to level-

1) 

22:     Unicast generated packet to the level (+1 and -1) controllers                   

23:     Wait the specified time or wait for any change in any 

subnet/network’s status in a reactive manner  

 

24: UNTIL terminated by the administrator  

 

 

VI. EXPERIMENTAL RESULTS 

 

In this section, an extensive number of testbed experiments 

are performed in four scenarios, with the results being 

presented to show the effectiveness of our proposed model. In 

the experiments, open source SDN Ryu is used as an 

Openflow controller and OVS as an OpenFlow switch. Both 

software are installed under Ubuntu 14.04 on 22 computers, 

with two of these PCs having the specifications of core i7, 3.4 

GHz and 3.8 GiB memory, whilst the other 20 have 

specifications of Core 2 Quad, 2.66 GHz and 2.0 GiB 

memory. The connections between computers are made using 

Ethernet cables of different lengths of 1, 2 and 3 meters, with 

LAN cards of 1,000 Megabits per second being used in each 

computer; the testbed environment can be seen in Fig. 6. 

Fig. 6. Built testbed with 22 computers 

 

The OLC components are implemented on Ryu. In order to 

approve our proposed model’s performance and its suitability 

for large Ethernet networks four different scenarios are 

performed, all of them using linear topology because they rely 

on the number of hops. In the OLC experiments, two levels of 

controllers are used while in the fully distributed architectures 

one level is deployed. [Each sub-experiment (i.e. result) is 

repeated five times and the average is taken, with the total 

number of runs of the testbed being 200 (i.e. 4 experiments*10 

sub-experiments (i.e. results)*5 times). 

The four experimental scenarios are designed as follows: 

 The first scenario is performed to measure the initial 

system discovery time for verifying the scalability and 

performance of OLC compared with fully distributed 

control plane architectures; 

 The second scenario is run to measure the rediscovery time 

during no load on the network under both OLC and fully 

distributed control plane architectures; 

 The third scenario is designed to evaluate the rediscovery 

time under load for both OLC and fully distributed control 

plane architectures; 

 The fourth scenario is performed by increasing the number 

of subnets with the aim of evaluating the number of 

packets that are generated as a consequence in the data 

plane. 

A. Initial system discovery time: comparison between OLC 

and fully distributed control plane architectures 

Each system, when run from the shutdown state, takes time 

to reach steady state, called the boot time or bootstrap time. 

When connecting multiple subnets/networks it is important to 

measure this time for configuring the devices of the network 

and knowing when a steady state has been reached, such that 

services can be offered to the customers. A linear topology is 

used with an increasing number of subnets from 2 to 10, each 

having one SDN controller and one SDN switch. This 
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experiment is deployed to evaluate the bootstrap discovery 

time under fully distributed control plane SDN architecture 

and our open-level control plane SDN architecture. All the 

controllers and the switches are timed to work concurrently 

and we record the discovery time needed by each subnet to 

have a general view of the whole network. The worst (i.e. 

highest) time taken is usually by the edge subnet in the linear 

topology.  

The fully distributed model discovery time statistics 

provided in Fig. 7, show that when increasing the number of 

subnets from 2 to 10, the discovery time increases from 6.13 

secs to 14.55 secs, which means it increases by 8.42 secs and 

the average is 10.27 secs. These experimental results are 

almost identical to the theoretical findings in Equation 3 

(e.g. when the traditional architecture deals with 8 subnets, 

the bootstrap discovery time is 10.01 secs theoretically and 

it is 10.52 secs experimentally). This trend occurs because 

each controller in each subnet needs to send multiple 

discovery packets during multiple phases through the network 

data plane which consumes time, as explained in detail in 

section II. In addition, the phases are also overlapping with 

each other, which leads to the generation of more packets in 

the same link from both sides. As a result, there is congestion 

and an accompanying increase the time that needed to pass the 

information of each subnet to the neighbor subnets.  

However, under the OLC model the discovery time only 

increases from 3.70 secs to 6.40 secs when the number of 

subnets is increase from 2 to 10 subnets. Moreover, the 

average bootstrap discovery time using OLC is 4.6 secs, 

which is nearly the same as the theoretical findings in 

Equation 7 (i.e. 4.8 secs). This, in turn, means the OLC 

discovery mechanism can discover a network that contains 2 

to 10 subnets approximately 55.2% faster than the fully 

distributed aggregation mechanism. 

The OLC model has the ability to discover at this speed, 

because it has multi-level control plane architecture, which 

leads to the allocation of a different control plane for different 

discovery phases. Specifically, the next neighbors are 

discovered within the first phase, which in this experiment 

have been allocated to the level1 controllers, while the other 

phase is allocated to the level2 controllers, which have 

centralized architecture. As a consequence, the network under 

the OLC model can scale to 32 subnets within the same 

discovery time (14.55 secs) that is needed by fully distributed 

discovery architecture for discovering 10 subnets. This means 

that OLC scales the network 3.2 times more than the fully 

distributed discovery architecture. 

B. Rediscovery time without load: comparison between OLC 

and fully distributed control plane architectures  

In this experiment, linear topology is used and the time 

needed for rediscovery is calculated, firstly, to detect a new 

event (e.g. add a new subnet to the edge of the network) and 

secondly, to distribute that new information to the whole 

network’s subnets in order to update their switching tables. 

This experiment is deployed under fully distributed control 

plane SDN architecture and OLC architecture, as can be seen 

in Fig. 8.  

Regarding the statistics of the fully distributed architecture, 

it can be seen that when increasing the number of subnets 

from 2 to 10, the rediscovery time will increase by 9.23 secs 

with two different leaps (leap to 6.26 secs from 4.12 secs and 

to 11.11 secs from 7.3 secs). The rediscovery time in the fully 

distributed architecture has this trend because when adding a 

new subnet to the edge of the linear topology, the rediscovery 

time that is needed by furthest subnets will be impacted by the 

number of phases (Nop) to get the new added subnet’s 

information multiple by the Latency of each phase (LP), as 

described in Equation 3 in section II. As a consequence, we 

can expect more delay when we scale the network.  

Regarding the statistics of the network under OLC, the 

rediscovery time is slightly increased from 3.7 secs to 5.34 

secs, i.e. by 1.64 secs and with one small leap from 2.1 secs to 

3.7 secs.   This is because the level1 controllers just perform 

one distributed phase with their neighbor subnets, which has 

the most impact on the rediscovery time, then the remaining 

time is consumed by level2’s controllers to multicast/unicast 

the switching tables to all the subnets. In addition, because 

OLC uses separated open-level control planes there will be no 

congestion on data plane links, which enhances the 

 
Fig. 7.  Bootstrap discovery time under the OLC and fully distributed 

aggregation mechanisms 
 

Fig. 8. Rediscovery time for network events during no load on the 

network under the OLC and fully distributed aggregation mechanisms 
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rediscovery time and this is opposite to the behavior of the 

fully distributed architecture.  

 

C. The efficiency during load: comparison between OLC and 

fully distributed control plane architectures 

The efficiency and effectiveness of the OLC model during 

different load rates are presented in this experiment, where the 

rediscovery time has been evaluated during a range of (200-

33,333,333) requests per seconds (RPS). Three fix subnets are 

connected together using a linear topology and then we 

generate loads from 20 virtual hosts on the link between 

subnets 2 and 3 in order to make congestion on that link. 

Subsequently, a new subnet is added to the third subnet and 

the time needed by all the other subnets to discover that event 

is recorded.  

Regarding the fully distributed architecture evaluation, Fig. 

9 shows that with an increase in the load from 200 to 222,222 

RPS the rediscovery time is increased significantly from 20.78 

secs to 80.07 secs. After that, it fluctuates with an average of 

70.5 secs for loads between 333,333-13,333,333 RPS and then 

rises notably to reach 101 secs for 33,333,333 RPS. This trend 

occurs because the increase in the number of requests per 

second on the link between the second and third switch leads 

to more collisions and competition to use that link, which 

results in more congestion that impedes the discovery packets 

passing link and hence, causes a delay in rediscovery time.  

In contrast, under the same circumstances, the OLC 

provides efficiency during different load rates, offering 

approximately a steady rediscovery time with an average of 

4.34 secs. The reason behind this is that just one phase needs 

to be performed on the congested link in the data plane, which 

means that only one packet from each connected subnet 

passing that link is enough to let all the other subnets know 

about any new events. In addition, the centralized controller 

plays a big role in terms of multicasting/unicasting any 

changes so as to update the whole network. As a consequence, 

when comparing the averages of both models the proposed 

model has 93.5% efficiency enhancement than the full 

distributed architecture by reducing the response time.  

D. Data plane bandwidth consumption: comparison between 

the OLC and fully distributed control plane architectures 

The bandwidth consumption from the discovery process is 

evaluated using the number of discovery phases and number 

of discovery packets, which are generated on the data plane to 

provide all the subnets a general view of the whole network. A 

linear topology is used whilst increasing the number of 

subnets from 2 to 10 and the Wireshark tool is used to 

evaluate the number of discovery packets and how many 

phases are needed to complete one discovery process. 

Regarding the discovery process statistics under distributed 

architecture, as can be seen in Fig.10, when increasing in the 

number of subnets from two to 10 the number of phases is 

increased linearly from one to nine phases, which is identical 

with our theoretical finding in section II, where this is equal to 

the best path between the furthest apart subnets. As a 

consequence of using the linear topology, the number of 

phases is equal to the number of subnets minus 1. In addition, 

the number of discovery packets in the distributed architecture 

generated in the data plane increases exponentially from two 

to 162 packets. This is because approximately the same 

number of packets are generated per each phase in the network 

in order to complete the whole discovery process. This, in 

turn, leads to more congestion on the links, which increases 

when the network is scaled up.  

On other hand, the OLC model generates just one fix phase 

in the data plane without any effect due an increase in the 

number of subnets. This is because it relies on a separated 

open-level control plane architecture, where the centralized 

controller performs the second phase discovery of the 

network. Regarding the number of discovery packets in the 

data plane, this increases by a rate of two for every new subnet 

added to the network. This is because every new subnet sends 

and receives one discovery packet with its neighbor in linear 

topology, if it is at the edge of the network. As a consequence 

of all of the above, in this experiment, the OLC model, on 

average, reduces bandwidth consumption by about 84.2% 

more than the fully distributed discovery architecture. As the 

 
Fig. 9 Models’ efficiency during load 

 
Fig. 10. Number of discovery packets and phases generated under the 

OLC and fully distributed aggregation mechanisms 
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data plane is an important part of the network for transferring 

these data among the subnets, it is essential to decrease the 

load on that plane [15], which can be achieved by using our 

proposed model.  

VII. CONCLUSION AND FUTURE WORK 

In this paper, the limitations of current and recently proposed 

architectures and discovery mechanisms have been studied in 

order to provide a network general view, which in turn, 

supports proactive behaviour of SDN. Subsequently, the SDN 

based OLC architecture and implementation have been 

introduced to perform a general view discovery process taking 

into account all the fundamental requirements. By 

implementing an actual testbed and after an extensive set of 

experiments, the results have demonstrated that our proposed 

architecture has 93.5% better performance with 55.2% faster 

discovery time and can scale up the SDN network 3.2 times 

more than the current fully distributed mechanism. In our 

future work, we plan to connect OLC to the Internet to check 

its validity for dealing with real daily traffic. In addition, our 

aim is to implement a core network prototype using the OLC 

architecture and to test it by applying it across several virtual 

campus networks. 
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