
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— The Internet has changed the world, regarding how

we lead our daily lives and in recent years, new technologies, such

as the internet of things (IoT) and wireless sensor networks are

escalating this change. However, these technologies bring with

them a rapid increase in traffic, thereby putting more load on

networks. It is hard to extend the traditional fully distributed

architecture and distributed aggregation mechanism to a large

scale, because they suffer several drawbacks by using the data

plane as a bus to transfer the control discovery messages, which

increases the traffic on that plane.

Consequently, to solve this issue, a general architecture and

discovery mechanism are introduced in this paper with Open-

Level Control (OLC) plane architecture, thus providing better

scalability in an SDN network. Regarding OLC, the backbone for

different domains as well as the discovery process for providing a

network general view are considered. OLC can scale up the

network with high performance even during high traffic. In

particular, it has high transparency with there being no need to

change the hardware, software or protocols on the host side.

Finally, the results from a 22 PC testbed verify that OLC offers a

reduction in the number of discovery packets in the data plane of

84.2%, 55.2% faster discovery time and scaling up the number of

subnets in an SDN network 3.2 times more than with the

traditional distributed architecture and mechanism. Moreover, it

provides an approximately steady rediscovery time of 4.34 secs

even with very high load.

Index Terms— Distributed management, Distributed-

centralized management, Ethernet networks, Intra and inter

domains, Scalability, Software-defined networking

I. INTRODUCTION

calability of networks is a real issue in current network

architecture [1][2] owing to the rapid increase in the traffic

of hosts [3], for such as video on demand as well as the

growing number of end devices, in particular, in relation to

development of the Internet of Things (IoT) technology [4].

Software defined networking (SDN) appears to overcome the

traditional architecture issues by decoupling the control plane

from the data plane to give more flexibility [5][6]. However,

the standard SDN paradigm contains one controller in each

network [1], which raises other issues, such as difficulties in

the scalability of large networks and potential single point of

failure [7]. Consequently, using multiple controllers and

distributing them properly at locations in SDN architecture is

an essential parameter for scaling the network [8].

In order to design an architecture/mechanism that can scale

the network into a large one, whilst concurrently enhancing

network performance, the following requirements should be

taken into account:

 The new architecture/mechanism needs to support SDN’s

powerful feature, i.e. proactivity, which leads to

enhancement of the response time and load balance among

the network resources. That is, the general view of network

is the fundamental requirement to apply proactive

behaviour in an SDN for traffic manipulation [9]. As the

network general view relies on the discovery process, this

leads to consideration of the process as an essential one

that is sensitive to the time factor. Accordingly, the

discovery packets should avoid the congestion plane (i.e.

the data plane) as much as possible;

 No new hardware (e.g. middleboxes) should be added to

the network and no new software should be added to the

host or switch sides as this could lead to downward

compatibility problems;

 Standard protocols should be used to support

interoperability and openness [10], regarding which, [11]

fails to support this point;

 The number of protocols used for the discovery process

should be as few as possible so as to avoid inconsistency,

complexity and latency as a consequence of their

concurrent operation;

 There needs to be support for transparency, which means

users can see the system as a single one [10];

 The complexity between the intra and inter-domains

should be decreased as much as possible by using the

same/consistent discovery protocols. Some other designs

fail to apply this, such as in [11].

No previous study has efficiently solved the scalability issue

nor has completely taken into account the fundamental

requirements set out above, which is the motivation behind

our presenting this paper. We propose an Open-Levels Control

plane architecture (OLC) to provide better scalability in an

SDN network. OLC, firstly, analyses a well–known

distributed mechanism, namely, the distributed aggregation

mechanism, which is essential for performing the discovery

process in traditional and SDN architectures. Then, novel

architecture for the control plane is put forward, which defines

open levels (i.e. multi-levels) of this plane with a distributed-

centralized concept as well as defining the SDN switches

between the control levels. In addition, an innovative dynamic

discovery mechanism is introduced, which can discover

multiple subnets and networks. In sum, OLC introduces full

architecture and mechanisms for discovering intra and inter-

OLC: Open-Level Control plane architecture for providing

better scalability in an SDN network

Emad Alasadi, and Hamed Al-Raweshidy, Senior Member, IEEE

S

This work was supported by Brunel University London.

Emad Alasadi is with the Department of Electronic and Computer
Engineering, Brunel University London, U.K. (e-mails:

emad.Alasadi@brunel.ac.uk).

H. S. Al-Raweshidy is with the Department of Electronic and
Computer Engineering, College of Engineering, Design and Physical

Sciences, Brunel University London, UB8 3PH, U.K., (e-mail: hamed.al-

raweshidy@brunel.ac.uk).

mailto:hamed.al-raweshidy@brunel.ac.uk
mailto:hamed.al-raweshidy@brunel.ac.uk

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

domains.

The main contributions of this paper can be summarized as

follows:

 It provides practical solutions that have been ratified by

extensive testbed results, which as consequence verify that

OLC is better than the current distributed architecture and

mechanism;

 A large testbed with 22 computers has been built to test

both the fully distributed and OLC architectures/

mechanisms;

 It provides an innovative multi-subnets/networks dynamic

discovery method by introducing the Dynamic Discovery

Hierarchal Protocol (DHP), which provides dynamic fast

discovery time in a distributed-centralized architecture;

 OLC provides superior performance in Ethernet networks,

even with high load traffic;

 It demonstrates how to reduce the current network

complexity by minimizing the number of discovery

protocols to single one for performing the intra and inter-

domains discovery process;

 It shows how to reduce significantly the resource

consumption in the data plane.

 It offers means of delivering stable rediscovery time;

 The proposed model can scale the network significantly

better than fully distributed architecture.

II. RELATED WORK

Various solutions have been proposed to overcome the

scalability issue since the arrival of SDN which can be

categorized according to the control plane architecture, as

follows.

A. Related work with fully distributed control plane

architecture

When designing a network that covers distributed areas, it

has to be divided into multi-subnets/networks, with each

having its own SDN controller. In addition, to scale a network

with high performance, the proactive behaviour that is a

powerful feature of SDN should be used, i.e. to install rules

proactively along paths between sources and destinations,

regardless of whether they are in the same subnet/network or

belong to different ones. The proactive behavior of SDN relies

on providing a general view of the network to each

subnet/network in order to find and install routes in the routing

tables between the edge devices (e.g. routers). This general

view in the distributed architecture can be obtained by using a

well-known discovery mechanism, i.e. a distributed discovery

aggregation mechanism [11]. The Open Shortest Path First

(OSPF) [12] traditional protocol is the most commonly used

for this purpose for fully distributed architecture in intra-

domain among subnets/networks within the same Autonomous

System (AS), such as in [11].

However, there are several limitations as a consequence of

using the aggregation discovery mechanism in distributed

architecture, which are as follows.

• The aggregation discovery mechanism by distributing the

discovery information to all subnets leads to the use one or

multiple protocols to implement this mechanism, such as

in the Disco model [13], where Messenger-Link Layer

Discovery Protocol (M-LLDP) and Advanced Message

Queuing Protocol (AMQP) are deployed to discover the

network. As a consequence, this leads to an increase in the

complexity of the controllers and more latency when

performing the discovery. In addition, as these protocols

must work synchronously and they need manual

configuration, this increases the probability that the whole

system will fail due to human error. However, the

proposed model only uses the dynamic discovery

hierarchical protocol (DHP) which is introduced in this

paper.

• With such an aggregation discovery mechanism, the data

plane is used to transfer the discovery packets through the

network, which results in more load and the consumption

of the resources of that plane, which consequently has an

effect on the discovery and convergence time. However,

in OLC model the most of discovery packets are

transferred using the control plane.

• During peak load, the probability of failing in the

discovery process for a new event (e.g. add/delete subnets)

increases, because both customer data and the control

discovery signal use the same plane (i.e. data plane), which

can lead to congestion in the network. Consequently, the

fully distributed discovery mechanism could lead to

reliability issues [14], so the best discovery time with the

optimum discovery path should have little or even no

congestion [15]. In our model by separating the control

from the data messages the probability to fail in the

discovery process decreases.

• Aggregation of the distributed mechanism results in a

number of phases (i.e. rounds) are needed to complete the

whole discovery process, which in turn increases the

latency of the discovery process. In contrast, OLC uses

just two fixed rounds.

• The size of discovery packets in the aggregation models

has a direct relationship with the number of

subnets/networks [10], whereby the former increase when

the best path becomes longer between the furthest edges

(i.e. subnets) of the networks. This will be conflict with the

size of the Maximum Transmission Unit (MTU) of a link

that passes the discovery messages. This, in turn, leads to

performing message fragmentation that is used in cases

when the MTU size in less than the protocol data unit [16].

Dividing the discovery message into pieces and send them

individually on the data plane leads to an increase in the

probability collisions and competition, which in turn

lengthens the discovery time. In addition, the limited

number of available fragmentations [e.g. Intermediate

System to Intermediate System (IS-IS) routing protocol

which is limited to 256 fragments] leads to the inability of

up scaling for large networks [16]. However, OLC (by

using centralize controller to collect discovery packets,

process and separate appropriate information to each

subnets) frees the size of discovery messages from the

length of the best path.

Relying on fully distributed control plane architecture, the

Onix model [11] is proposed for enhancing the scalability of a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

network. However, it is not efficient for one with rapid

changes in its conditions and states, whilst it also has the

above limitations. Moreover, it uses the OSPF protocol to

make the discoveries in intra-domains with no information

about how this could support proactive SDN behavior. In

addition, it is not sufficient for discovering inter-domains and

hence, it has to rely on other models [11].

B. Related work with distributed architecture with a logically

centralized control plane

With this architecture, the controllers are each allocated to a

single subnet as with the fully distributed architecture;

however, a new top layer is defined. Firstly, this layer in some

proposals, such as in [17] and [18], is used as a data store in

order to be the link among the subnets’ controllers and in [17]

each controller can be used to control all of the network.

Nevertheless, this architecture also has drawbacks, as each

controller in each specified time will retrieve the full data

from the data store, which will result in each having an

increased cache size. In addition, each controller will increase

its CPU usage and power consumption owing to it having to

perform the best path calculation for the whole network.

Secondly, in [17] the top layer is used also as a control

channel to make connection to transfer commands between the

controllers that return the architecture to the single point of

failure, increase the complexity of the system and increase the

response time. Thirdly, other studies, such as in [19] use the

top layer as a root controller that connects directly to the local

controllers, which are used as switches proxies for it. In this

architecture, a specific protocol needs to be designed to

connect the local controllers to the root controller, such as in

[20] , which increase number of protocols that are used for

discovery and hence, the synchronization among these

protocols could affect the general view consistency. In

addition, there is complexity in the root controller as its role is

not just the discovery process, for it also has to answer the

outgoing requests from that subnet/network. In more detail,

the outgoing requests from the subnet pass from the local

switch to the root controller, which installs rules in all local

switches along the path to the edge device. This leads to

increased response time as well as overhead for the root

controller. As with [19], [21] and [1] use a coordinate

controller in the top layer, with one controller for each

domain, thereby limiting the scalability. In addition, [1] uses

unified restful API between the local controllers and

coordinating controller, which leads to a backwards

compatibility problem as well as increased network

complexity. However, there is no mechanism regarding how

to discover domains and how the local controllers gather the

information. Moreover, the calculation for the global path

occurs in the top controller after it receives a request (i.e. not

in proactive manner), which means that it neglects the most

powerful feature of an SDN.

The rest of this paper is organized as follows. Firstly, in

section II we discuss the related work and limiations of

existing work also III we describe the current distributed

mechanism and formulate the analytical paradigm. OLC is

designed and its concept is explained throughout Section IV.

In section V, OLC’s implementation is described with

algorithms, whilst in section VI, tested experiments and their

results are presented. Finally, conclusions are drawn and

future work building on the outcomes proposed in Section VII.

III. DESCRIPTION OF THE DISTRIBUTED CONTROL

PLANE ARCHITECTURE AND ANALYTICAL MODEL

FORMULATION

In this section, we describe the distributed aggregation

mechanism by analysing discovery packets in fully distributed

architecture under both the current and SDN architectures. In

addition, the mathematical formulation for this mechanism is

calculated at the end of this section.

A. Distributed control plane architecture

In an SDN network that covers a large area, distributed

subnets interconnect each other, with each subnet having its

own switches and controller. The internal switch forwards

packets within the same subnet, while the edge switches work

as middlebox devices (e.g. routers) to forward packets

outside/inside their subnets. The controller controls every

packet in its subnet depending on its policy as well as

exchanging its subnet’s information with other subnets in the

same distributed-based network, which is why this is called a

distributed control plane. This type of network normally uses

the data plane bus to transfer discovery packets through the

edge devices, such as in [11].

B. Connectivity of distributed control plane

In order to make connections among subnets in same SDN

network, the edge devices, such as routers/Exit_switches must

exchange their information with their neighbors. In this

architecture, the controller has the main script and the routing

table (in the case of using a router as an edge device, then it is

called virtual router [22]). The rules inside each edge device

can be installed in two ways. Firstly, manually by the

administrator, where he/she has to know each neighbor’s

information (IP address and subnet mask) in order to install a

static route to it. Secondly, this can be done dynamically by

using a routing protocol (e.g. OSPF and RIP), where each

controller has the routing protocol’s script and exchanges

advertisement packets at specified times with its neighbors.

After the specified discovery time each controller has an

understanding of the whole network topology and installs

rules in the edge devices (e.g. virtual routers) to pass packets

to outside the subnet. If the virtual router is used as an edge

device then it needs to refresh its connection with its

neighbors by exchanging ARP packets after the specified time

in order to keep the ARP table in each router updated [23],

because it depends on the default gateway mechanism. Whilst

if the Exit_switch is used as an edge device then this omits the

use of ARP packets and there is no need to for refreshment as

the Exit_switch mechanism relies on the proactive behaviour

of the SDN controller through the availability of the general

view of the network.

C. Aggregation discovery mechanism to exchange network

discovery information

The aggregation mechanism is used in fully distributed

subnets to discover the whole network’s IPs and to gather

statistics [11] in order for each subnet to have a consistent

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

general network view. As a consequence, this gives SDN the

powerful ability to install rules proactively and reactively in

SDN switches for better performance [24]. Regarding the

aggregation mechanism, we theoretically evaluate the number

of phases that are needed by the network in order to let each

controller in each subnet have the general view of its entirety.

As can be seen in the example topology in Fig.1 (a), each

controller in each subnet starts the first round by sending

multicast discovery protocol’s packets to all its neighbours,

which is called phase1 of the discovery process. It should be

noted the number in the pink shape reflects the subnet

number with all its discovery information involving its

routing and topology gathered from its neighbor subnets

[25].

As consequence of the results from phase 1, each controller

just has knowledge about its next neighbors and puts this

information in the neighbors’ tables as well as putting the

network topology in the topology table. The phase 1 results

are thus:

Subnet1 just has information about subnets 2 and 4;

Subnet2 just has information about subnets 1, 4 and 5;

Subnet3 just has information about subnet 6;

Subnet4 just has information about subnets 1 and 2;

Subnet5 just has information about subnets 2 and 6;

Subnet6 just has information about subnets 3 and 5;

In phase 2, the subnets will start the second round of

multicasting, as can be seen in Fig.1 (b). In this round, each

controller will be used as a bridge to exchange the information

among its undirected connected neighbors. In this case, the

information will go one subnet further than in phase 1. As a

result of phase 2, the topology and neighbors’ tables will be

updated, such that phase 2’s results are:

Subnet1 has new information regarding subnet5;

Subnet2 has new information regarding subnet6;

Subnet3 has new information regarding subnet5;

Subnet4 has new information regarding subnet5;

Subnet5 has new information regarding subnets 1, 3 and 4

(satisfied);

Subnet6 has new information regarding subnet2;

Continuing to phase 3, the tables will be updated and the

discovery packets will continue multicasting to next

neighbours, which leads to the discovery information going

two subnets further than in phase 1 as can be seen in Fig. 1(c),

and phase 3’s results are:

Subnet1 has new information regarding subnet6;

Subnet2 has new information regarding subnet3 (satisfied);

Subnet3 has new information regarding subnet2;

Subnet4 has new information regarding subnet6;

Subnet5 gains nothing new as it is in the middle in example

topology, so it is satisfied first (i.e. it is first to

acquire the general network view);

Subnet6 has new information regarding subnets1 and 4

(satisfied).

In phase 4, the discovery packets will continue

multicasting to next neighbours, which leads to the

discovery information going three subnets further than in

phase 1 as can be seen in Fig. 1(d), and phase 4’s results

are:

Subnet1 has new inf. regarding subnet3 (satisfied);

Subnet2 gains nothing new (satisfied);

Subnet3 has new inf. regarding subnet1 and 4(satisfied);

Subnet4 has new inf. regarding subnet3 (satisfied);

Subnet5 gains nothing new (satisfied);

Subnet6 gains nothing new (satisfied);

As consequence, after finishing the fourth phase, all the

controllers will have the appropriate information

regarding all the subnets’ topology tables.

As a result of using the distributed aggregation mechanism

in traditional/SDN architectures the number of phases is equal

to the best path between the furthest edges of network (i.e.

furthest subnets), as in Equation 1.

Nop = Bpfes (1)

Fig.1 Shows the discovery phases when applying the aggregation

mechanism in fully distributed architecture (Note: in each phase the

process on link happens before the result inside the subnets) (Note:

for the figure to be not fully packed we eliminate repeated discovery

messages, however in practice there is a message on each port from

each subnet in each phase)

(a) Phase1

2

5

6

6

5

2

4

1
3

(b) Phase2

(c) Phase3

(d) Phase4

Sub.1

1

2,4

Sub.2

1,4,5

Sub.3

6

Sub.6

5,3

Sub.5

2,6

Sub.4

1,2

4,5

6

3

5

2

1,4

2

4

Sub.1

2

2,4,5

Sub.2

1,4,5,6

Sub.3

6,5

Sub.6

5,3,2

Sub.5

2,6,1,4,3/

Sub.4

1,2,5

6

3
2

1,4
5

Sub.1

5

2,4,5,6

Sub.2

1,4,5,6,3/

Sub.3

6,5,2

Sub.6

5,3,2,1,4/

Sub.5

2,6,1,4,3/

Sub.4

1,2,5,6

3

1,4
6

Sub.1

6

2,4,5,6,3/

Sub.2

1,4,5,6,3/

Sub.3

6,5,2,1,4/

Sub.6

5,3,2,1,4/

Sub.5

2,6,1,4,3/

Sub.4

1,2,5,6,3/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Where, Nop denotes the number of phases and Bpfes is the best

path between the furthest subnets.

Regarding the discovery process latency, the highest controller

latency refers to the time needed by the controller to multicast

discovery packets, receive discovery packets and to

store/retrieve information to/from the discovery tables. As the

subnets work concurrently, highest controller latency is equal

approximately to the latency of the slowest controller. Whilst

the latency in each phase is equal to the highest controller

latency plus the highest link latency, as in Equation 2.

Lp = Hcl + Hll (2)

Where, Lp denotes the latency in each phase, Hcl is the latency

of the slowest controller and Hll is highest link latency, which

represents the slowest link in the network between subnets

Accordingly, the discovery time needed each specified time

(T) is approximately equal to the number of phases multiplied

by the latency of each phase, as in Equation 3.

Dt = Nop * Lp (3) Where Dt = discovery time

The number of packets generated in the network to complete

the discovery process for one phase is equal to the summation

of the number of out links from each subnet, as in Equation 4.

 NpDp1 = ∑ (
𝑁𝑠

𝑛=1
 Nol)n (4)

Where, NpDp1 is the number of packets generated in the

network to complete the discovery process for one phase, Nol

is the number of links from each subnet and Ns represents the

number of subnets

While the number of packets to complete the full discovery

process is equal to the number of phases multiplied by the

number of packets required to complete one phase, as in

Equation 5.

 NpDpF = Nop * NpDp1 (5)

Where NpDpF represents the number of packets to complete the

full discovery process

As can be seen from the equations, for a large network this

requires many phases in relation to Bpfes (Equation 1) and also

an extensive number of packets in each phase, which leads to

consumption of data plane bandwidth, an increase in the

requirements of the control plane [11] and longer

discovery/rediscovery time.

IV. OLC DESIGN

A. Design Goals

The OLC model is designed in this section, where a general

architecture in order to enhance the discovery

subnets/networks mechanisms in large Ethernet SDN

networks is proposed. In addition, the dynamic discovery

hierarchal protocol (DHP) for a multi-layer control plane is

proposed to provide a general view of whole network, which

supports SDN performing proactive behaviour.

B. OLC units

OLC model contains several units for completing the

purposes that it has been designed for, as can be seen in Fig.2.

These units work with a multithread concept aimed at fast

response and distributed loads on the cores of the CPUs. The

Received Unit receives discovery packets from the same level,

level minus 1 (level-1) and level plus 1 (level+1) controllers,

subsequently sending the messages to the Analysis and

Calculation Unit that has connections with all the discovery

tables. This unit will obtain, analyze and perform calculations

on the received information to fill the discovery tables,

including the Neighbors_topology and All_topology. Then, it

sends the information to the Send Unit, which has two

subunits, DHP1 and DHP2, which were assigned their names

from the dynamic discovery hierarchal protocol (DHP)

proposed in this paper. This unit takes its information from

the discovery tables and sends discovery messages into the

same/different level controllers, as is explained later in this

section.

C. General network architecture under OLC

When a network is scaled up, important requirements are a

fast discovery time during bootstrap time and a fast

rediscovery time for any change in the network states, such as

add/remove the link between two subnets/networks. That is,

the latency of the discovery time is an important factor when

scaling the network, whereby if this time is low, new

subnets/networks can be added and hence, the network scaled

up. In order to achieve the best performance with fast

discovery/rediscovery times, we believe that the centralized

architecture should be combined with the distributed one.

Our proposed model involves dividing the scale concept for an

SDN network into vertical and horizontal scales, where the

former represents the scale of the control plane, whilst the

latter pertains to that of the data plane. The ability to scale the

control plane leads to scaling of the data plane, because it

enhances the discovery time. As a consequence, we believe we

have developed the best discovery architecture, for it

combines both distributed and centralized architectures, which

introduces an open-level distributed-centralized control plane

architecture in an SDN network, as can be seen in Fig.3.

The vertical process in the figure pertains to the scaling up

of the control plane. Regarding which, level 1 is the first level

Fig. 2. OLC units in a single controller

Receive unit

DHP2 subunit

DHP1 subunit

Send unit

Analysis and

calculation unit

Ports

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

in the chain and contains distributed SDN controllers, each

responsible for at least one subnet, whilst the second level

contains the centralized SDN controllers. Our proposed model

uses SDN switches between each vertical neighbor level to

give more flexibility and for recovery purposes. In order to

scale the network up to a large one, such as a Metropolitan

Area Network (MAN)/ Wide Area Network (WAN), the

controllers in the last level of each network (i.e. level M) will

represent distributed controllers for the level 1 controllers of

the core network. The controllers keep connecting in a

hierarchical way until those in level n are reached, which

represent the top of the pyramid for all zones. The core of a

network’s control plane could start from level 3 or above

depending on the size of network and the decision of the

administrator.

On other hand, horizontally, each zone could represent a

campus/ enterprise/ small city that connects to its neighboring

zones using the data plane. By using this architecture, we can

continue to link zones until cover a very large area, such as a

country/group of cities. From the global perspective, we can

imagine dividing the world into areas, with each containing

one/more zones have one/more head controller(s) at the edge

that can be connected in a distributed manner to exchange

information.

D. OLC Discovery Mechanism

As the OLC model can be scaled up to support a very large

area, such as a country or even the world, there are two

discovery views, with the first being with regards to the same

network (intra-domains), while the other relates to a large

network (inter- domains).

1) Within the same network (intra-domain)

The type of discovery we propose in this paper involves a

hierarchal mechanism with M open level controllers in the

intra-domains (Fig.4 shows two levels of controllers as an

example). In order to perform it, the OLC model involves

deploying a dynamic discovery hierarchical protocol, which is

developed from the LLDP protocol. As aforementioned, this

contains two elements, specifically, a distributed one (DHP1)

in the controller’s DHP1 subunit and a centralized one (DHP2)

in its DHP2 subunit. The hierarchical discovery mechanism

starts from the controllers in the subnets. Firstly, each

controller in each subnet in bootstrap time will create a

Neighbors_topology table. which has the fields:

Neighbors_ID, Timestamps_of_packets, which are use to

calculate links’ latencies with neighbors and hence, identify

the best paths, Edge_switch_ID, which is used to identify a

subnet’s edge switch and the Edge_switch_port, identifying

which port is going to which subnet. As can be seen in Fig.4

(a), in each subnet the controller in level 1 during phase 1

multicasts its ID and timestamp of packet to the neighbors

using one DHP1 message, while there are no messages being

sent to the level 2 controller.

Each controller will receive DHP1 messages from its

neighbors, which it adds to the Neighbors_topology table. The

controller will perform multicasting after a specified time or if

there is a change in network conditions. Secondly, the level 1

controllers will send DHP2 messages from the DHP2 subunit,

which has some of the information that is in the

Neighbors_topology table (i.e. Neighbors ID, link latency and

Internal_subnet latency) in dictionary style, to the centralized

controller in level 2, as seen in Fig.4 (b). The centralized

controller in bootstrap time creates an All_topology table,

which has following fields: Source_ID, Destination_ID,

Link_latency and Internal_latency. The centralized controller

will combine all received DHP2 messages and using the

Dijkstra algorithm will find the best paths between each pair

of subnets and then, will fill the All_topology table. This

controller will send back DHP2 messages which contain just

the crucial information to each related subnet required to

install rules for reaching the destination subnets. It should be

Fig.3 Overall OLC architecture

Subnet
1

Subnet
2

Level 1_distributed
control plane_intra-

domain

Level M control plane
centralized for the
intra-domain and
distributed for the

inter-domains

Level N control plane
_core network

Zone 1

Hierarchical core
network

Level 1_control
plane_core network

 Controller Z

Subnet
3

Subnet
4

Level 2 distributed
_centralized control

plane

 Controller 1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

noted the DHP2’s messages are different from each other, i.e.

each is unique for each subnet in order to avoid sending

information to unrelated one. The messages will be in

dictionary format, i.e. net_X {net_Y: net_Z}, which means if

subnet/network X wants to connect to subnet/network Y, it

should go through subnet/network Z. The controller in level 1

will save this information in the All_view_discovery table that

has been created in all controllers at all levels in bootstrap

time. As a consequence, the controllers in level 1 will have a

general view of the whole network. Then, the level 1

controller installs rules proactively in its switches to each

destination subnet in its network relying on Edge_switch_ID

and Edge_switch_port fields in the Neighbors_topology table.

Regarding the number of phases in the OLC discovery

mechanism, if we assume there are two levels of controllers in

the intra-domain architecture, in order to compare our

architecture with the aggregation distributed mechanism in

section II, each controller deals with one phase in the data

plane and one in the control plane. Accordingly, there are two

phases no matter how many subnets are in the network, as in

Equation 6.

 Nop = 2 (6) where Nop= number of phases

Regarding the discovery time, this is needed after each

specified time (T) and approximately equals the latency of the

one phase from Equation 2, plus the Highest level 1 controller

latency when sending/receiving DHP2 messages, plus the

maximum latency of the centralized Links, which connect

level 1 to level 2 controllers (there and back), plus the latency

of the centralize controller (Lcc), as in Equation 7.

Dt = Lp +2 LcL + Lcc + Hcl (7)

Where, Dt denotes the discovery time, Lp is the latency of one

phase, LcL is the latency of the centralised links, Lcc is the

latency of the centralised controller and Hcl is the highest level

1 controller latency

While the number of packets generated in the network to

complete the full discovery process is equal to the sum of the

number of links from each subnet and the number of links

from level 1 to level 2 (i.e. number of subnets, if each subnet

connects with one controller in level 2), as in Equation 8.

 NpDpF =∑ (
𝑁𝑠

𝑛=1
 Nol)n + Ns (8)

Where, NpDpF represents the number of packets generated in

the network to complete the full discovery process, Nol is the

number of links from each subnet and Ns is Number of subnets

2) In the multiple networks (inter-domain)

The OLC model provides the same mechanism as inside the

network (i.e. intra-domain) to connect multiple networks in

order to cover a large area, where each controller in the last

level of each network will represent its network by using

Network Address Translation (NAT) [26]. In addition, it will

be seen in a distributed manner in relation to other controllers

in the last level from other networks, as can be seen in Fig.5.

Each intra-domain network will have an SDN-switch(es),

which connect(s) directly to the controller in the last level of

that network. That switch belongs to the data plane and is used

to send information using DHP1 messages to the neighbor

networks that are in different domains after applying the NAT

mechanism. Whereas the DHP1 discovery messages will

contain the Public_network_ID field, which represent the

public IPs for that domain and Timestamp field to evaluate the

link latency between two neighbor inter-domains. After

receiving DHP1 messages the relevant controller will send

DHP2 messages to a one level up controller (e.g. level 3) that

will perform path calculation among the inter-domain

networks and send back this information to the related

network in a dictionary style. For example,

Network_X{Network_Y: Network_Z}, which means that if

network X wants to connect to network Y, it should connect

first to Network Z. That information will be saved in the

All_view_discovery table. The same OLC mechanism is

applied when there are (n) levels of controllers covering a very

large area.

E. Location of the controllers

The OLC offers a flexible architecture for fulfilling

different purposes. For example, if it is used on a campus/in an

Fig. 4. Example of the OLC discovery mechanism inside one network

(i.e. intra-domain) containing six subnets with two levels of

controllers (P = discovery message containing route information

calculated by a centralized controller for all subnets in dictionary
format, i.e. Sub.x can go to Sub.y through Sub.z)

Subnet

1

Subnet

2

Subnet

3

Subnet

4

Subnet

5

Subnet

6

1

1

2

(a) Phase1

Level2

controller

Level1

controllers
2

4 5

5

6

63

Sub. 1 Sub. 3

Sub. 4 Sub. 5 Sub. 6

(b) Phase2

Level2 controller

Level1

controllers

P=1,2,3

,4,5,6

5
,6

,2

Sub. 2

P

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

enterprise with long distances between departments then the

level 1 controllers will be located near to the subnets,

especially if there are many users, in order to reduce

discovery/rediscovery time. While if it is used in a data center

network, the level 1 controller can be located in the

controllers’ pool near to the last level of controllers in that

network (e.g. level 2’s controllers). In addition, the other

controllers that represent the core network could belong to the

same or different providers and could be located near to its

serving zones.

F. Reacting when the network fails

There are different types of failure can happen in any

network that could lead to the whole network grinding to a

halt. OLC take different actions to overcome these failures and

their consequences as follows.

1) Handling level 1 controller failure

OLC uses the standard master-slave mechanism offered by

the Openflow protocol [27]. With this mechanism, the level

x+1 controller works as a slave controller for the level x

controllers (i.e. masters), where if any master controller

related to a subnet fails, then the slave controller will take the

responsibility of controlling that subnet.

2) Handling levels 2 to n controller failure

If a centralized controller in levels 2 to n fails, OLC

provides a recovery feature by using the SDN switches in the

control plane such that two or more controllers in the same

level are connected to the same switch, so if the master fails

the slave can serve the network. In addition, by using the same

mechanism the load balance can be achieved among different

controllers in same level, if they are serving the same

zone/area.

3) Handling failed links

In the OLC architecture, more than one SDN switch could

be used in the same level of the control plane to provide

dependent links for recovery purposes. In addition, these links

can also be used for load balancing purposes during peak

control signals load.

F. Handling subnet/network discovery (join, leave)

Since SDN has to complete its function as a proactive

installer of rules in devices along the path between the sources

and destinations, it needs a dynamic fast subnet discovery

mechanism to give it a general view of all subnet information.

In addition, it should have a fast rediscovery time for covering

any changes in the network, such as a new subnet joining or

one leaving.

If a new subnet joins the network, the level 1 controllers in

that subnet will start multicasting to all linked neighbor

subnets, whilst simultaneously receiving DHP1s from them

and then sending a DHP2 to the centralized controller in

level+1 in order to get back the related general view. If a

subnet leaves the network, the centralized controller will

detect this through periodically monitoring the Still_alive field

in the neighbors_discovery table. As a consequence of no

activity from a subnet being for a specified time, a 0 will put

in the Still_alive field. The centralized controller will check

that field before send back the DHP2 to the relevant level 1’s

controller. If the Boolean value in that field is equal to 1, the

DHP2 will contain the related subnet information, whilst if it

is 0 the centralized controller will delete that subnet from the

evaluation. Through the same mechanism, the controllers in

the core network can detect the join and leave network in

inter-domain networks by monitoring the activity of the edge

controllers in them.

Fig.5. Open-levels OLC intra and inter domains

Subnet
1

Subnet
2

Subnet
3

Subnet
4

Subnet
5

Subnet
6

Level 1_distributed
control plane_intra-

domain

Level M control plane
centralized for the
intra-domain and
distributed for the

inter-domains

Level N control plane
_core network

Subnet
2

Subnet
3

Subnet
1

Zone 1 Zone 2 Zone W

Hierarchical core
network

Level 1_control
plane_core network

 Controller Z

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

V. IMPLEMENTATION OF OLC

In this section, we explain our OLC implementation for an

open-level control plane in SDN networks in detail in relation

to dynamic discovery in order to provide general view for

single and multiple SDN networks covering a large area, as an

addition to Ryu’s [28] controller using an OpenVswitch

(OVS) [29]. All the requirements set out in section I are met

by OLC, which implements the DHP, thereby providing the

controllers with a general view of all destination

subnets/networks. It has been developed from the LLDP

protocol, with DHP being the new feature. While the LLDP

standard protocol just discovers the SDN switches inside one

subnet, our proposal has the ability to discover all the subnets

in the same network (i.e. intra-domain network), whilst also

discovering other networks in different areas (i.e. inter-domain

networks). To do so, the DHP has two parts as follows.

A. Implementation of the DHP distributed part in the DHP1

subunit

This part of the protocol is located in any level of

controllers in the OLC architecture that are connected to their

same level neighbor controllers using SDN switches, being

called the distributed part of the DHP protocol (DHP1). For

example, during the bootstrap time the level 1 controllers will

use this part of the DHP protocol in order to carry its own

information to all neighbor controllers in different subnets in a

distributed manner. Concurrently, so as to know which SDN

switch connects the subnet to the other subnets, the controller

monitors all the local switches using Packet_in messages. If

the Packet_in message is a DHP1 message and has an ID

different to the local subnet’s controller ID, then OLC will

register the SDN switch which enters that DHP1 as an edge

switch and put Switch_ID, Switch_port, Source_subnet_ID

and the Timestamp of the message in the

Neighbors_Discovery table. In order to implement the DHP1

piece, we define in the DHP protocol a new type-length-value

(TLV) with number 124 class and two subclasses named

Type_of_DHP and Subnet_ID. Whilst The Type_of_DHP is

equal to 0 for discovery messages sent at the same level, the

value of the Subnet_ID subclass can be calculated by

performing an AND operation between the subnet IP and

subnet Mask. Subsequently, the OLC model will create DHP1

messages and multicast them to all neighbors. As a

consequence, the DHP helps the destination controller to

know to which source controller it is connected with. Each

controller that connects to its same level neighbor controller

using an SDN switch has to use the DHP1 piece (e.g. level 1

controller). It will repeat this listening and sending after the

specified time or reverts to reactive mode when there are

changes in subnet states, such as adding a new edge switch.

We implement algorithm 1 to show how these steps are

carried out in the OLC model.

B. Implementation of the DHP centralized part in the DHP2

subunit

The centralized part (DHP2) located in the controllers in level

2 and core controllers (levels 3 to n). There are two roles that

can be performed using this piece of the protocol depending

on the sent packet direction. The DHP2 subunit sends

discovery packets to the controller one level up in order to

calculate the best routes and then sends back the calculated

information to the level -1 controllers so as to get a full view

of other subnets/networks for proactive SDN behavior. The

Type_of_DHP in DHP2 packets has the value 1, if the packet

is sent up to level+1 and -1, if sent down to level-1. A new

subclass (net_inf.) adds to the DHP protocol in part 2. which

has subnet/network information in a dictionary style

(net_X:{net_Y:delay_Z}). Another subclass (Internal_latency)

is added, which stores the internal latency for the

subnets/networks that help in evaluating the best paths. Then,

the controller in level+1 will collect all DHP2 packets from all

level-1 controllers and waits for a specified time to let all join

and send their information to it. After this, the controller in

level+1 uses the Dijkstra algorithm to evaluate the best paths

from each subnet/network to others depending on the

Internal_latency field and delay between the subnets/networks.

Then, it will save this information in dictionary format and

send it with two types of DHP2 packets, the first of which

having Type_of_DHP equal +1 for a one level up controller in

order to inform the core network about the network

information. While the second type, with value -1, are sent to

all controllers in level-1, which will save them in the

Algorithm 1. Distributed discovery for neighbors’ subnets/networks

in the same level

Input: Local_IP , Local_Mask, level_of_contoller, Network_public

_IP, Public Mask

Output: DHP1 packets with Local_Subnet_ID/Public_network_ID,

Timestamp,

 Updating Neighbors_Discovery table

1: START

2: Declare General_ID Timestamp, Type_of_DHP

3: Get controller IP , Mask and Level_of_contoller from the system

configuration

4: IF controller IP = Network_public_IP then # use NAT

5: General_ID  Calculate (Network_public_IPs AND Public

Mask)

6: ELSE

7: General_ID  Calculate (Subnet_IP AND subnet_Mask)

8: END IF

9: Type_of_DHP 0 #To send DHP1s to the same level

controllers

10: REPEAT

11: Generate DHP1 packets with General_ID and Type_of_DHP

12: Multicast/unicast the packets from each output port in each

switch

13: Listening to Packet_in to catch DHP1 packets

14: Decapsulating each DHP1 packet

15: Read Message_General_ID, Type_of_DHP from each

decapsulated packet

16: IF Message_General_ID ≠ General_ID AND Type_of_DHP =

0 then

 # Means the message came from a neighbor in the same

level

17: Update Neighbors_Discovery table

18: END IF

19: Wait the specified time or wait for any change in subnet

conditions in reactive manner

20: UNTIL terminated by the administrator

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

All_view_discovery table. The centralized controllers will

repeat this procedure individually according to changes in

network/subnet states. The full details for the centralized part

can be seen in algorithm 2.

Algorithm 2. Centralized discovery for the whole subnets/networks

(level-1 and level+1)

Input: Local_IP, Local Mask, Level_of_contoller, Neighbors_

Discovery table, DHP2 messages from level-1,

Network_public_IPs, Public Mask

Output: DHP2 packets to level+1 and level-1

 Updating All_topology and All_view_discovery tables

1: START

2: Declare General_ID, Type_of_DHP

3: Get Controller IP, Mask and Level_of_contoller from the system

configuration

4: IF Controller IP = Network_public_IP then # use NAT

5: General_ID  Calculate (Network_public_IPs AND Public

Mask)

6: ELSE

7: General_ID  Calculate (Subnet_IP AND subnet_Mask)

8: END IF

9: Type_of_DHP  +1 or -1

10: REPEAT

#//////////////////////////////////start send DHP2 one level up

11: IF Level_of_controller = 1 then

12: Generate DHP2 packet with (General_ID, Type_of_DHP,

Inf. from Neighbors_discovery table

13: ELSE #means all other levels

14: Generate DHP2 packet with (General_ID, Type_of_DHP,

Inf. from All_topology table

15: END IF

16: Unicast the packet to the level+1 centralized controller.

#//End of send one level up

#///////////////////////////////Start listening to catch DHP2 from up and

down levels

17: Listening to a specified port to catch DHP2 packet from

level+1(back), -1

18: Decapsulating each DHP2 packet

19: Update All_view_discovery table

20: Apply Dijkstra algorithm to find best paths

21: Generate DHP2 packet with (General_ID/ Local_Subnet_ID,

Type_of_DHP, Inf. from All_topology table

to level+1 and All_view_discovery to level-

1)

22: Unicast generated packet to the level (+1 and -1) controllers

23: Wait the specified time or wait for any change in any

subnet/network’s status in a reactive manner

24: UNTIL terminated by the administrator

VI. EXPERIMENTAL RESULTS

In this section, an extensive number of testbed experiments

are performed in four scenarios, with the results being

presented to show the effectiveness of our proposed model. In

the experiments, open source SDN Ryu is used as an

Openflow controller and OVS as an OpenFlow switch. Both

software are installed under Ubuntu 14.04 on 22 computers,

with two of these PCs having the specifications of core i7, 3.4

GHz and 3.8 GiB memory, whilst the other 20 have

specifications of Core 2 Quad, 2.66 GHz and 2.0 GiB

memory. The connections between computers are made using

Ethernet cables of different lengths of 1, 2 and 3 meters, with

LAN cards of 1,000 Megabits per second being used in each

computer; the testbed environment can be seen in Fig. 6.

Fig. 6. Built testbed with 22 computers

The OLC components are implemented on Ryu. In order to

approve our proposed model’s performance and its suitability

for large Ethernet networks four different scenarios are

performed, all of them using linear topology because they rely

on the number of hops. In the OLC experiments, two levels of

controllers are used while in the fully distributed architectures

one level is deployed. [Each sub-experiment (i.e. result) is

repeated five times and the average is taken, with the total

number of runs of the testbed being 200 (i.e. 4 experiments*10

sub-experiments (i.e. results)*5 times).

The four experimental scenarios are designed as follows:

 The first scenario is performed to measure the initial

system discovery time for verifying the scalability and

performance of OLC compared with fully distributed

control plane architectures;

 The second scenario is run to measure the rediscovery time

during no load on the network under both OLC and fully

distributed control plane architectures;

 The third scenario is designed to evaluate the rediscovery

time under load for both OLC and fully distributed control

plane architectures;

 The fourth scenario is performed by increasing the number

of subnets with the aim of evaluating the number of

packets that are generated as a consequence in the data

plane.

A. Initial system discovery time: comparison between OLC

and fully distributed control plane architectures

Each system, when run from the shutdown state, takes time

to reach steady state, called the boot time or bootstrap time.

When connecting multiple subnets/networks it is important to

measure this time for configuring the devices of the network

and knowing when a steady state has been reached, such that

services can be offered to the customers. A linear topology is

used with an increasing number of subnets from 2 to 10, each

having one SDN controller and one SDN switch. This

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

experiment is deployed to evaluate the bootstrap discovery

time under fully distributed control plane SDN architecture

and our open-level control plane SDN architecture. All the

controllers and the switches are timed to work concurrently

and we record the discovery time needed by each subnet to

have a general view of the whole network. The worst (i.e.

highest) time taken is usually by the edge subnet in the linear

topology.

The fully distributed model discovery time statistics

provided in Fig. 7, show that when increasing the number of

subnets from 2 to 10, the discovery time increases from 6.13

secs to 14.55 secs, which means it increases by 8.42 secs and

the average is 10.27 secs. These experimental results are

almost identical to the theoretical findings in Equation 3

(e.g. when the traditional architecture deals with 8 subnets,

the bootstrap discovery time is 10.01 secs theoretically and

it is 10.52 secs experimentally). This trend occurs because

each controller in each subnet needs to send multiple

discovery packets during multiple phases through the network

data plane which consumes time, as explained in detail in

section II. In addition, the phases are also overlapping with

each other, which leads to the generation of more packets in

the same link from both sides. As a result, there is congestion

and an accompanying increase the time that needed to pass the

information of each subnet to the neighbor subnets.

However, under the OLC model the discovery time only

increases from 3.70 secs to 6.40 secs when the number of

subnets is increase from 2 to 10 subnets. Moreover, the

average bootstrap discovery time using OLC is 4.6 secs,

which is nearly the same as the theoretical findings in

Equation 7 (i.e. 4.8 secs). This, in turn, means the OLC

discovery mechanism can discover a network that contains 2

to 10 subnets approximately 55.2% faster than the fully

distributed aggregation mechanism.

The OLC model has the ability to discover at this speed,

because it has multi-level control plane architecture, which

leads to the allocation of a different control plane for different

discovery phases. Specifically, the next neighbors are

discovered within the first phase, which in this experiment

have been allocated to the level1 controllers, while the other

phase is allocated to the level2 controllers, which have

centralized architecture. As a consequence, the network under

the OLC model can scale to 32 subnets within the same

discovery time (14.55 secs) that is needed by fully distributed

discovery architecture for discovering 10 subnets. This means

that OLC scales the network 3.2 times more than the fully

distributed discovery architecture.

B. Rediscovery time without load: comparison between OLC

and fully distributed control plane architectures

In this experiment, linear topology is used and the time

needed for rediscovery is calculated, firstly, to detect a new

event (e.g. add a new subnet to the edge of the network) and

secondly, to distribute that new information to the whole

network’s subnets in order to update their switching tables.

This experiment is deployed under fully distributed control

plane SDN architecture and OLC architecture, as can be seen

in Fig. 8.

Regarding the statistics of the fully distributed architecture,

it can be seen that when increasing the number of subnets

from 2 to 10, the rediscovery time will increase by 9.23 secs

with two different leaps (leap to 6.26 secs from 4.12 secs and

to 11.11 secs from 7.3 secs). The rediscovery time in the fully

distributed architecture has this trend because when adding a

new subnet to the edge of the linear topology, the rediscovery

time that is needed by furthest subnets will be impacted by the

number of phases (Nop) to get the new added subnet’s

information multiple by the Latency of each phase (LP), as

described in Equation 3 in section II. As a consequence, we

can expect more delay when we scale the network.

Regarding the statistics of the network under OLC, the

rediscovery time is slightly increased from 3.7 secs to 5.34

secs, i.e. by 1.64 secs and with one small leap from 2.1 secs to

3.7 secs. This is because the level1 controllers just perform

one distributed phase with their neighbor subnets, which has

the most impact on the rediscovery time, then the remaining

time is consumed by level2’s controllers to multicast/unicast

the switching tables to all the subnets. In addition, because

OLC uses separated open-level control planes there will be no

congestion on data plane links, which enhances the

Fig. 7. Bootstrap discovery time under the OLC and fully distributed

aggregation mechanisms

Fig. 8. Rediscovery time for network events during no load on the

network under the OLC and fully distributed aggregation mechanisms

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

rediscovery time and this is opposite to the behavior of the

fully distributed architecture.

C. The efficiency during load: comparison between OLC and

fully distributed control plane architectures

The efficiency and effectiveness of the OLC model during

different load rates are presented in this experiment, where the

rediscovery time has been evaluated during a range of (200-

33,333,333) requests per seconds (RPS). Three fix subnets are

connected together using a linear topology and then we

generate loads from 20 virtual hosts on the link between

subnets 2 and 3 in order to make congestion on that link.

Subsequently, a new subnet is added to the third subnet and

the time needed by all the other subnets to discover that event

is recorded.

Regarding the fully distributed architecture evaluation, Fig.

9 shows that with an increase in the load from 200 to 222,222

RPS the rediscovery time is increased significantly from 20.78

secs to 80.07 secs. After that, it fluctuates with an average of

70.5 secs for loads between 333,333-13,333,333 RPS and then

rises notably to reach 101 secs for 33,333,333 RPS. This trend

occurs because the increase in the number of requests per

second on the link between the second and third switch leads

to more collisions and competition to use that link, which

results in more congestion that impedes the discovery packets

passing link and hence, causes a delay in rediscovery time.

In contrast, under the same circumstances, the OLC

provides efficiency during different load rates, offering

approximately a steady rediscovery time with an average of

4.34 secs. The reason behind this is that just one phase needs

to be performed on the congested link in the data plane, which

means that only one packet from each connected subnet

passing that link is enough to let all the other subnets know

about any new events. In addition, the centralized controller

plays a big role in terms of multicasting/unicasting any

changes so as to update the whole network. As a consequence,

when comparing the averages of both models the proposed

model has 93.5% efficiency enhancement than the full

distributed architecture by reducing the response time.

D. Data plane bandwidth consumption: comparison between

the OLC and fully distributed control plane architectures

The bandwidth consumption from the discovery process is

evaluated using the number of discovery phases and number

of discovery packets, which are generated on the data plane to

provide all the subnets a general view of the whole network. A

linear topology is used whilst increasing the number of

subnets from 2 to 10 and the Wireshark tool is used to

evaluate the number of discovery packets and how many

phases are needed to complete one discovery process.

Regarding the discovery process statistics under distributed

architecture, as can be seen in Fig.10, when increasing in the

number of subnets from two to 10 the number of phases is

increased linearly from one to nine phases, which is identical

with our theoretical finding in section II, where this is equal to

the best path between the furthest apart subnets. As a

consequence of using the linear topology, the number of

phases is equal to the number of subnets minus 1. In addition,

the number of discovery packets in the distributed architecture

generated in the data plane increases exponentially from two

to 162 packets. This is because approximately the same

number of packets are generated per each phase in the network

in order to complete the whole discovery process. This, in

turn, leads to more congestion on the links, which increases

when the network is scaled up.

On other hand, the OLC model generates just one fix phase

in the data plane without any effect due an increase in the

number of subnets. This is because it relies on a separated

open-level control plane architecture, where the centralized

controller performs the second phase discovery of the

network. Regarding the number of discovery packets in the

data plane, this increases by a rate of two for every new subnet

added to the network. This is because every new subnet sends

and receives one discovery packet with its neighbor in linear

topology, if it is at the edge of the network. As a consequence

of all of the above, in this experiment, the OLC model, on

average, reduces bandwidth consumption by about 84.2%

more than the fully distributed discovery architecture. As the

Fig. 9 Models’ efficiency during load

Fig. 10. Number of discovery packets and phases generated under the

OLC and fully distributed aggregation mechanisms

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

data plane is an important part of the network for transferring

these data among the subnets, it is essential to decrease the

load on that plane [15], which can be achieved by using our

proposed model.

VII. CONCLUSION AND FUTURE WORK

In this paper, the limitations of current and recently proposed

architectures and discovery mechanisms have been studied in

order to provide a network general view, which in turn,

supports proactive behaviour of SDN. Subsequently, the SDN

based OLC architecture and implementation have been

introduced to perform a general view discovery process taking

into account all the fundamental requirements. By

implementing an actual testbed and after an extensive set of

experiments, the results have demonstrated that our proposed

architecture has 93.5% better performance with 55.2% faster

discovery time and can scale up the SDN network 3.2 times

more than the current fully distributed mechanism. In our

future work, we plan to connect OLC to the Internet to check

its validity for dealing with real daily traffic. In addition, our

aim is to implement a core network prototype using the OLC

architecture and to test it by applying it across several virtual

campus networks.

References

[1] J. Wang, G. Shou, Y. Hu, and Z. Guo, “A Multi-Domain SDN

Scalability Architecture Implementation Based on the Coordinate

Controller,” in 2016 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), 2016,

pp. 494–499.

[2] T. Mizrahi, E. Saat, and Y. Moses, “Timed Consistent Network

Updates in Software-Defined Networks,” IEEE/ACM Trans. Netw.,

vol. 24, no. 6, pp. 3412–3425, 2016.

[3] D. Cotroneo, R. Natella, and S. Rosiello, “NFV-Throttle: An

Overload Control Framework for Network Function Virtualization,”

IEEE Trans. Netw. Serv. Manag., vol. 14, no. 4, pp. 949–963, Dec.

2017.

[4] S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing

Paradigm With Internet of Things: A Tutorial Introduction,” IEEE

Des. Test, vol. 33, no. 2, pp. 76–96, Apr. 2016.

[5] M. Corici, B. Reichel, B. Bochow, and T. Magedanz, “An SDN-

based solution for increasing flexibility and reliability of dedicated

network environments,” in 2016 IEEE 21st International

Conference on Emerging Technologies and Factory Automation

(ETFA), 2016, pp. 1–6.

[6] M. Karakus and A. Durresi, “A survey: Control plane scalability

issues and approaches in Software-Defined Networking (SDN),”

Comput. Networks, vol. 112, pp. 279–293, 2017.

[7] M. Azab and J. A. B. Fortes, “Towards proactive SDN-controller

attack and failure resilience,” in 2017 International Conference on

Computing, Networking and Communications (ICNC), 2017, pp.

442–448.

[8] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-Scale

Dynamic Controller Placement,” IEEE Trans. Netw. Serv. Manag.,

vol. 14, no. 1, pp. 63–76, Mar. 2017.

[9] B. Kar, E. H. K. Wu, and Y. D. Lin, “The Budgeted Maximum

Coverage Problem in Partially Deployed Software Defined

Networks,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 3, pp.

394–406, Sep. 2016.

[10] K. S. Mishra and A. K. Tripathi, “Some Issues, Challenges and

Problems of Distributed Software System,” Int. J. Comput. Sci. Inf.

Technol. Varanasi, India, vol. 7, p. 3, 2014.

[11] T. Koponen et al., “Onix: A distributed control platform for large-

scale production networks.,” in OSDI, 2010, vol. 10, pp. 1–6.

[12] F. J. Rodríguez, S. Fernandez, I. Sanz, M. Moranchel, and E. J.

Bueno, “Distributed Approach for SmartGrids Reconfiguration

Based on the OSPF Routing Protocol,” IEEE Trans. Ind.

Informatics, vol. 12, no. 2, pp. 864–871, 2016.

[13] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-

domain SDN controllers,” in 2014 IEEE Network Operations and

Management Symposium (NOMS), 2014, pp. 1–4.

[14] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable

and secure distributed programming, 2nd ed. Berlin, Heidelberg:

Springer-Verlag Berlin Heidelberg, 2011.

[15] J. Aspnes et al., “Eight Open Problems in Distributed Computing.,”

Bull. EATCS, vol. 90, pp. 109–126, 2006.

[16] J. Doyle, “scaling,” in OSPF and IS-IS: Choosing an IGP for Large-

Scale Networks: Choosing an IGP for Large-Scale Networks,

Addison-Wesley Professional, 2005.

[17] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control

plane for openflow,” in Proceedings of the 2010 internet network

management conference on Research on enterprise networking,

2010, p. 3.

[18] F. Botelho, T. A. Ribeiro, P. Ferreira, F. M. V Ramos, and A.

Bessani, “Design and Implementation of a Consistent Data Store for

a Distributed SDN Control Plane,” in Dependable Computing

Conference (EDCC), 2016 12th European, 2016, pp. 169–180.

[19] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for

efficient and scalable offloading of control applications,” in

Proceedings of the first workshop on Hot topics in software defined

networks, 2012, pp. 19–24.

[20] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck,

“SoftBox: A Customizable, Low-Latency, and Scalable 5G Core

Network Architecture,” IEEE J. Sel. Areas Commun., vol. PP, no.

99, p. 1, 2018.

[21] H. Tahaei, R. B. Salleh, M. F. A. Razak, K. Ko, and N. B. Anuar,

“Cost Effective Network Flow Measurement for Software Defined

Networks: A Distributed Controller Scenario,” IEEE Access, vol. 6,

pp. 5182–5198, 2018.

[22] M. A. Harrabi, M. Jeridi, N. Amri, M. R. Jerbi, A. Jhine, and H.

Khamassi, “Implementing NFV routers and SDN controllers in

MPLS architecture,” in Information Technology and Computer

Applications Congress (WCITCA), 2015 World Congress on, 2015,

pp. 1–6.

[23] M. Arregoces and M. Portolani, “Data center fundamentals,” in

understand data center network design and infrastructure

architecture, including load balancing, SSL, and security,

Indianapolis: Cisco Press, 2003, p. 526.

[24] E. Alasadi and H. S. Al-Raweshidy, “SSED: Servers Under

Software-Defined Network Architectures to Eliminate Discovery

Messages,” IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 104–117,

Feb. 2018.

[25] J. Moy, “RFC 2328: OSPF Version 2,” 1998.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[26] P. S. (Lucent Technologies) and M. H. (Lucent Technologies),

“RFC2663:IP Network Address Translator (NAT) Terminology and

Considerations,” 1999.

[27] Open network foundation, “Openflow switch specification, version

1.5.0,” 2014.

[28] R. Kubo, T. Fujita, Y. Agawa, and H. Suzuki, “Ryu SDN

framework-open-source SDN platform software,” NTT Tech. Rev.,

vol. 12, no. 8, 2014.

[29] O. V. Switch, “Open vSwitch,” 2014.

Emad Alasadi received the B.Sc. degree

in computer and software engineering

from Al-Mustansiriyah University,

Baghdad, Iraq, in 2003 and the M.Sc.

degree in computer engineering and

information technology from University

of Technology, Baghdad, Iraq, in 2006.

He is currently pursuing the Ph.D. degree in Electronic and

Computer Engineering at Brunel University, London.

 From 2007 to 2013, he was a lecturer with the university of

Al-Qadisiyah, Qadisiyah Province, Iraq. His research interests

include software-defined networking, network architecture,

network functions virtualization, distributed system and

language programming.

Hamed Al-Raweshidy (SM’03) is

Professor of Communications Engineering

and received his BEng and MSc from

University of Technology, Baghdad in

1977 and 1980 respectively. He completed

his Post Graduate Diploma from Glasgow

University, Glasgow, UK in 1987. He

received his PhD in 1991 from Strathclyde

University in Glasgow, UK.

He currently is the Director of The Wireless Networks and

Communications Centre (WNCC) at Brunel University

London, UK. He has worked with The Space and Astronomy

Research Centre (Iraq), PerkinElmer (USA), Carl Zeiss

(Germany), British Telecom (UK), Oxford University,

Manchester Met. University and Kent University. He has

published over 380 papers in International Journals and

referred conferences.

