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Abstract

Asset and Liability Management (ALM) models have become well established

decision tools for pension funds. ALMs are commonly modelled as multi-stage,

in which a large terminal wealth is required, while at intermediate time peri-

ods, constraints on the funding ratio, that is, the ratio of assets to liabilities,

are imposed. Underfunding occurs when the funding ratio is too low; a target

value for funding ratios is pre-specified by the decision maker. The risk of

underfunding has been usually modelled by employing established risk mea-

sures; this controls one single aspect of the funding ratio distributions. For

example, controlling the expected shortfall below the target has limited power

in controlling shortfall under worst-case scenarios.

We propose ALM models in which the risk of underfunding is modelled based

on the concept of Second Order Stochastic Dominance (SSD). This is a cri-

terion of ranking random variables - in our case funding ratios - that takes

the entire distributions of interest into account and works under the widely

accepted assumptions of decision makers being rational and risk averse. In the

proposed SSD models, investment decisions are taken such that the resulting

short-term distribution of the funding ratio is non-dominated with respect to

SSD, while a constraint is imposed on the expected terminal wealth. This is

done by considering progressively larger tails of the funding ratio distribution

and considering target levels for them; a target distribution is thus implied.

Different target distributions lead to different SSD efficient solutions. Im-

proved distributions of funding ratios may be thus achieved, compared to the

existing risk models for ALM. This is the first contribution of this thesis.

Interesting results are obtained in the special case when the target distribution

is deterministic, specified by one single outcome. In this case, we can obtain

equivalent risk minimisation models, with risk defined as expected shortfall or

as worst case loss. This represents the second contribution.

The third contribution is a framework for scenario generation based on the

”Birth, Immigration, Death, Emigration” (BIDE) population model and the

Empirical copula; the scenarios are used to evaluate the proposed models and

their special cases both in-sample and out-of-sample. As an application, we

consider the planning problem of a large DB pension fund in Saudi Arabia.
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Chapter 1

Introduction and Background

1.1 Decision Making Under Uncertainty

Operations research (OR) is a branch of knowledge that deals with the appli-

cation of advanced analytical methods to the study and analysis of complex

decision-making problems. It involves a wide range of problem-solving meth-

ods and techniques which have a computational and statistical nature, and

because of that OR has strong ties to mathematics and computer science [64].

The word Operations is derived from the successful applications of OR to mil-

itary operations in the late 1930s - early 1940s when the first formal activities

of OR were initiated in England [64]. After World War II, the ideas that

originated in the efforts of military planners were rapidly spread and applied

to other fields, such as industrial production, finance, business management,

engineering, medicine, and many other fields ([13], [64]).

Optimisation/Mathematical Programming (MP) is a sub-field of OR that

is concerned with determining the best decisions among alternatives offering

different outcomes. MP captures the essential aspects of a decision problem

and represents them mathematically in an algebraic form by a set of relations

(referred to as constraints) to be satisfied. An objective function is used to

quantify how good a decision is; the objective function may represent profit,

performance (to maximise), loss, or risk (to minimise). An optimal decision is
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one that leads to the maximum/minimum value of this objective function and

satisfies all the constraints.

In many situations, the outcomes or consequences of decisions depend on

parameters whose future value is not known with certainty at the decision

moment; an example may be a financial decision making situation where the

future outcome depends on the future prices of assets. This issue can be ad-

dressed in different ways. In this work, we will use the paradigm of Stochastic

Programming (SP). Here, these uncertain parameters are described by dis-

crete distributions with a limited number of outcomes. In most applications,

the underlying parameters do not come directly in this form; they may have

continuous or unknown distributions or be specified by a set of statistical prop-

erties.

Hence, to use SP, the model parameters have to be described by a finite dis-

crete set of possible outcomes, called scenarios ; each scenario occurs with an

associated probability of occurrence. SP is then used to find the optimal deci-

sions. Defining optimality is a non-trivial matter; usually an optimal solution

is defined as one that optimises a statistic of the distribution of the objective

function value and satisfies the imposed constraints under all (or a large pro-

portion of) the possible values of the uncertain parameters.

Applications of SP to decision making problems in finance have been dis-

cussed in various contexts; of particular interest are the asset allocation or

portfolio selection and asset and liability management problems.

1.2 The Asset Allocation Problem and Decision-

Making Models: Mean-Risk Theory, Util-

ity Theory and Stochastic Dominance

Formally, the problem of asset allocation can be stated as follows: how to di-

vide now an amount of money W amongst a set of n assets, such that, after a

2



specified period of time, to obtain a return on investment as high as possible?

[56]. If the return of each asset is known with certainty, it is easy to decide

on the best allocation: that would mean to invest only in the asset with the

highest return. However, since the prices of the assets at the end of the in-

vestment period are usually unknown at the moment we made the decision,

the consequence of choosing a specific allocation is uncertain; so that making

the best decision is not straightforward any more.

SP deals with this uncertainty by considering a set of S states of the world

or “scenarios” that could occur. If each scenario s (s = 1, .., S) has a prob-

ability of occurrence πs, we can define a discrete probability space {Ω,F , P}
with Ω = {1, ..., S}, F is σ-field, and P (s) = πs with

∑S
s=1 πs = 1. The return

of asset j (j = 1, ..., n), denoted here by Rj, is a random variable on this

probability space {Ω,F , P} with possible outcomes rj1, ..., rjS that occur with

probabilities π1, ..., πS respectively.

Let us denote by xj the fraction of capital W invested in asset j, j = 1, ..., n;

these are the required investment decisions, also called portfolio weights; the

vector x = (x1, ..., xn) represents the portfolio. The weights x1, ..., xn must sat-

isfy some constraints that define a feasible set of decision vectors X . Assuming

short selling is not allowed, the largest feasible set is:

X = { (x1, ..., xn) | x1 + ...+ xn = 1, xj ≥ 0, j = 1...n}

Consider a portfolio x with random return Rx; Rx is the weighted sum

(by the portfolio weights) of the random returns of the individual assets:

Rx = x1R1 + ... + xnRn. The realisation of Rx under scenario s, denoted

by rsx, depends on, individual asset returns under this specific scenario and on

the portfolio weights: rxs = x1r1s+ ...+xnrns. Hence, Rx is a random variable

with a distribution function that depends on the portfolio mix. Each decision

x may be identified with a random variable; the problem of choosing between

two different portfolios x and y becomes the problem of choosing between

random variables Rx and Ry. In order to find the required decision, a valu-

ation criterion (a preference relation) has to be defined on the set of random

3



variables representing portfolio returns and corresponding to decision vectors.

This treatment represents the theoretical basis of a model of choice. The

computational part refers to the procedure of identifying the non-dominated

random variables and their corresponding decisions to be implemented, by

solving an optimisation problem.

The main approaches for modelling choice between random variables are:

mean-risk models [40], Expected Utility Maximisation (EUM) [67] and Stochas-

tic Dominance (SD) [68] methodology [56]. The scope of such models is to:

(a) formally define a preference relation between random variables/alternative

decisions, (b) identify the decisions corresponding to random variables that

are non-dominated with respect to the specified preference relation. In the

rest of this section we present briefly each of these approaches.

In the mean-risk approach, two scalars are attached to each random vari-

able, in this case representing portfolio return. The first scalar is the expected

value (mean) and the second is the value of a risk measure. Largely speaking,

a risk measure is a function that associates to each random variable a number

which describes its “riskiness”. Examples of risk measures include variance,

quantiles and expected value of deviation below a target. Lets denote the risk

measure by ρ, ρ : V → R where V is the set of random variables represent-

ing returns of feasible portfolios. Portfolios with higher values of mean and

lower values of risk are desirable. Let x and y be two choices with correspond-

ing random returns Rx and Ry. x is preferred to y if E(Rx) ≥ E(Ry) and

ρ(Rx) ≤ ρ(Ry) with at least one strict inequality.

In this approach, we select from the universe of the possible decisions those

that are efficient or non-dominated : for a given value of mean, the risk is

minimised or, equivalently, for a given value of risk, the mean is maximised.

The aim of these models is to find an allocation of assets that achieves an

optimal trade-off between risk and return [14]. The exact trade-off chosen, in

other words the preferred decision, will depend on objectives and attitude of

4



the investor. In most cases, an optimisation model is solved:

min ρ(Rx)

s.t.

E(Rx) ≥ d

x ∈ X

where d is a parameter specified by the decision maker: a target mean return.

The first and most commonly used mean-risk model in asset allocation

problems is a methodology called ”mean-variance optimisation”, pioneered in

the 1950’s by Markowitz [40]. Here, the risk of a portfolio return is quantified

by its variance. A mean-variance efficient portfolio is found as the optimal

solution of the following quadratic program (QP):

min
n∑
j=1

n∑
k=1

xjxkσjk

s.t.
n∑
j=1

xjµj ≥ d

x ∈ X

where σjk denotes the covariance between Rj and Rk: σjk = E[(Rj −
E(Rj))(Rk − E(Rk))] and µj = E(Rj) is the expected return of asset j,

j = 1, . . . , n. The first constraint in the above QP imposes a minimum ex-

pected value d for the portfolio return.

Since 1950’s, many alternative risk measures have been proposed; more on this

is developed in Chapter 2.

A utility function is a real-valued function defined on real numbers rep-

resenting possible wealth values. It quantifies the relative value (utility) of

outcomes. In EUM [67], a single scalar value (the expected utility) is attached

to each random variable in terms of the utility value of its outcomes and the

5



probabilities associated with these outcomes. In this approach, a random vari-

able (or a portfolio) is non-dominated or efficient if and only if its expected

utility is maximal.

Definition 1.1. Given a utility function U , the expected utility function of a

discrete random variable R with outcomes r1, ..., rs and probabilities p1, ..., ps

is:

E[U(R)] = p1U(r1) + ...+ psU(rs)

A major difficulty in EUM is deciding on the relative value of outcomes;

the specification of the utility function is a subjective task. There are well

established assumptions about the behavior of investors or decision-makers

(DM); the use of utility functions in an economic context is based on an im-

plied assumption that they reflect this behavior. It is widely accepted that

financial DM are (i) rational and (ii) risk averse.

The first assumption means that investors prefer ”more to less” or higher

returns to lower ones (non-satiation attitude); this is expressed by a non-

decreasing utility function. Since all investors are assumed to be rational, this

is the only non-arguable condition for utility functions on wealth.

The second assumption is about investors’ attitudes towards risk. Suppose a

DM has to choose between two random variables representing wealth or re-

turn. One is a ”sure thing”: a deterministic random variable with one possible

(positive) outcome r > 0 occurring with probability 1. The other is a ”50/50

bet”; a random variable with two possible outcomes r1 and r2 each with 0.5

probability of occurrence. The two random variables have the same (positive)

expected value, thus r = r1+r2
2

. A risk averse DM is one who will prefer the

first choice (the sure thing) and in turn will often lose out on possible higher

rates of return.

Thus, the expected utility of the first choice is greater for a decision maker

who is risk averse: U( r1+r2
2

) > 1
2
[U(r1) +U(r2)]. Generalising, we can consider

any non-deterministic random variable with possible outcomes r1 and r2 oc-

curring with probabilities p and (1 − p) and the equivalent (sure thing) with

6



one possible outcome pr1 + (1− p)r2.

The utility function U in this case is strictly concave; the segment that

joint two points (r1, U(r1)) and (r2, U(r2)) on the graph of U always lies below

the graph as illustrated in Figure 1.1.

Figure 1.1: Concave utility function and risk-aversion

Thus, a risk averse DM has a non-decreasing and concave utility function:

as wealth increases, an additional increment in wealth is less valued than an

increment of the same magnitude but at lower levels of wealth, please see Fig-

ure 1.2.
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Figure 1.2: Increasing and concave utility function; a surplus of wealth is more

valued at low levels

Beside the difficulty in the specification of a utility function, different util-

ity functions of the same type (e.g. non-decreasing and concave) may lead

to different ranking of random variables. Stochastic dominance overcomes

these issues; here, random variables are compared under general assumptions

on classes of utility function which stem from observed economic behavior,

without the need to specify a utility function. From a computational point

of view, ranking of random variables is made via a point wise comparison of

some performance functions constructed from their distribution functions. For

a random variable R with a cumulative distribution function H, we define:

H(1)(r) = H(r) = P (R ≤ r) r ∈ R;

H(k)(r) =

∫ r

−∞
H(k−1)(t)dt, r ∈ R, k ≥ 2

Definition 1.2. Let H and H ′ be the cumulative distribution functions of R

and R′ respectively and k ∈ N , k ≥ 1. R is preferred to R′ with respect

to the k-th order stochastic dominance (denoted: R �k R′) if and only if:

H(k)(r) ≤ H ′(k)(r), ∀r ∈ R , with at least one strict inequality [68].

A random variable R in a set V is non-dominated with respect to the k-th

8



order stochastic dominance, if there is no random variable R′ ∈ V such that

R′ �k R.

Intuitively, the stochastically larger random variable has the smaller distri-

bution function; this corresponds to saying that a smaller distribution function

describes outcomes that are distributed farther to the right. SD is theoretically

attractive and recognised as a valid criterion of choice as it takes into account

all the distribution rather than tackling only two of its properties. However, in

practice it is computationally challenging, as it involves an infinite number of

comparisons. Finding portfolios whose return distribution is non-dominated

with respect to SD has been considered an intractable problem until recently.

However, SD relations can be much simplified if the random variables under

consideration are discrete and even further, if they have equally likely out-

comes. This will be developed in Section 3.2.

Of particular importance are First Order Stochastic Dominance (FSD) and

Second Order Stochastic Dominance (SSD). That is because there are progres-

sively stronger assumptions about investors’ behavior that are used in expected

utility theory, leading to first and second order stochastic dominance relations.

For example, a random variable is preferred to another with respect to SSD if

its expected utility is higher for any utility function U that is non-decreasing

and concave [68]. Thus, SSD expresses the preference of a rational and risk

averse DM; it is applied to random variables whose outcomes are desired to

be high and for whom an increase is more valued if it is at low levels, rather

than at high levels; typical such random variables represent return or wealth.

The asset allocation problem is also called ”pure investment” problem as

there are no obligations involved and the only aim is in maximising the return.

It is commonly modeled as a single period problem; decisions are taken ”now”

and evaluated at the end of the investment period.
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1.3 Asset and Liability Management

Many financial organisations such as banks, pension funds, insurance compa-

nies, and even some wealthy individuals are underpinned by the balancing of

cash flow to match and outperform some future obligations or ”liabilities”. In

such situations, the presence of liabilities gives rise to alternative paradigms

of asset allocation [14]. Asset management techniques which take into account

the stochastic nature of liabilities are given the generic label: Asset and Lia-

bility Management techniques (ALM) which have been recently renamed by

some authors as Liability Driven Investment (LDI) [59].

While pure asset allocation problems are usually modeled as single period,

in ALM, the presence of liabilities to be paid over a number of future time

periods raises the need to adopt a multi-period setting. In such a setting,

some decisions are taken ”now” while other decisions are taken once the un-

certainty around the assets returns and the liabilities is revealed progressively

in stages. Due to the long duration of these liabilities, a long-term planning

horizon is typically considered, in which, “long-term” wealth increase is sought.

Throughout the planning horizon, the trade-off between long term objectives

and short term risks should be made carefully during the decision process.

In a multi-period planning setting, since actual values of the problem pa-

rameters are gradually revealed in stages, these uncertain parameters are de-

scribed by stochastic processes rather than distributions. The set of possible

scenarios, considered in the static one-period models, is expanded to the so

called scenario tree. Each path through the tree represents one possible se-

quence of outcomes of the stochastic elements throughout the planning horizon

under consideration. The problem is then formulated as a scenario based op-

timisation problem which can find a strategy that is optimal in some sense.

A formal study of ALM problems usually starts by defining a planning

horizon which specifies the total number of years, or more generally periods,

which are considered in the decision making process. The planning horizon,

denoted by T , is then divided into a set of decision moments t ∈ {0, 1, ..., T}.
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Through this planning horizon, plausible sample paths for liabilities and re-

turns of instruments in the portfolio are to be modeled and form a scenario

tree. The initial time period t = 0 represents the present, when decisions

need to be determined “now” with respect to changing the composition of

an existing portfolio or investing an initial wealth. At each decision moment

t = 1, ..., T − 1, recourse investment decisions are made, after new information

of asset returns, funding levels if any, and liabilities at that time point, are

revealed. At the planning horizon, no more decisions will be made but the

financial position will be considered over all scenarios.

As with pure investment problems, the main issues faced in the decisions

making process are connected to: (a) modelling of the stochastic underly-

ing parameters; that is, the scenario generation process, and (b) modelling

paradigms and optimisation models. The multi-stage setting and the presence

of liabilities (and possibly additional funding) make the scenario generation

problem for ALM more complex and challenging than in the pure investment

problems; additional issues (such as inflation) arise. Thus, integrated ap-

proaches such as ALM that combine both liability models and asset allocation

decisions are needed; several domains of knowledge are involved in this. ALM

models have been successfully used for banks, pension funds, insurance com-

panies, and wealthy individuals (see for example [7], [12], [34], [30], [39]).

• The Pension Fund Problem

A pension fund’s primary goals are to design the plan and to manage the

assets and pension surplus so that the obligations to its contributors will be

met, the sponsor’s contribution over time is minimised and the growth in the

plan’s surplus is maximised [44]. The management of the investment portfo-

lio is an important aspect of the pension fund. According to [16], for asset

allocation, most firms use the well known and probably the most widely used

method to solve such problems: the mean-variance analysis. The standard

implementation of this model is static (one-period) and thus fails to capture

the multi-period nature of the ALM problem [16]. By contrast, the dynamic
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stochastic programming models hedge portfolio allocations against future un-

certainties in asset returns and liabilities over a longer horizon and preview

possible future problems [16]. Comparisons between stochastic programming

models and static models have been reported in the ALM literature by many

authors; see for example [38] in a study about a Dutch pension fund problem,

[7] and [25] in the context of ALM for insurance companies.

To solve a pension fund’s ALM problem means to determine decisions on one

or more among the following: allocation of the assets, contributions rate or

level of payments for the participants, which are optimal in some sense, subject

to a number of constraints. Some of the most important challenges in solving

the problem are caused by the uncertain evolution in both demographic and

economic factors which affect the future assets returns, the streams of contri-

butions and liabilities. In pension funds, future liabilities depend on factors

like longevity, possible earlier retirement of the members, salary growth rates

and inflation. Moreover, those factors are driven also by other factors; for

example, longevity is mainly due to the improvement in the living standards

and medication.

Taking the example of Saudi Arabia, the demographic predictions of the

United Nations shows that population aging in Saudi Arabia is entering a

new phase and approaching its highest ever rate. The population predicted

for Saudi Arabia is approximately 60 million in 2050, nearly 13% of whom will

be aged 60 or more. The percentage in the same age group (60 years and over)

was 5.6% in 1950 and 4.8% in 2000 [65]. The dependency ratio, that is, the

number of the elderly population per 100 members of working age population

(15-64 years old), is anticipated to rise to 12.8 percent in 2050 compared with

5.5 percent in 2000 [65]. Thus, the number of people claiming pension benefits

will rise and working members will be charged more to pay for the extra pen-

sion costs in that period [29]. Although these facts and predictions illustrate

the problem size, the exact amount of future contributions and liabilities are

still uncertain and needs to be modeled. Figure 1.3 shows the demographics

of Saudi Arabia in 1950, 2000 and the projected population of 2050.
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Figure 1.3: Saudi Arabia Demographics. Source: The United Nations [65]

Other uncertain parameters relate to future assets returns; since the prices

of the investment vehicles throughout the planning horizon are unknown. The

uncertainty around these returns is a source of risk, in the broadest sense, of

an unfavorable outcome. When the uncertainty is described by a set of possi-

ble outcomes/scenarios, risk can be measured in a variety of ways, depending

on which is considered to be the distribution of interest and what unfavorable

aspect of it needs to be penalised or controlled. One of the greatest concerns

of the board of a pension fund is the risk of underfunding. Roughly speaking,

this is the risk that the liability values will be higher than the total asset val-

ues. In order to address this, ALM for pension funds should involve making

decisions that guarantee, with high certainty, that the firm will be sufficiently

solvent during the planning horizon. The solvency at a certain time moment

is quantified using the funding ratio (the ratio of assets value over liabilities

value) [26]. As a result of the long term commitments to meet the liabilities

in pension funds, the planning horizon is typically long and the fund may aim

to increase the growth in the plan’s surplus while complying with solvency

requirements throughout the process.

In a fluctuating demographic and economic climate, mathematical pro-

gramming models that take into account uncertainty and risk have become

increasingly important tools for pension funds. The paradigm of stochastic
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programming [5] is well suited for these problems and has already been ap-

plied in this context as shown in ([43], [74] and references therein). Some of the

advantages of these models are that they could take into account complex real

world constraints, allow the use of long term scenarios, give the flexibility for

many decision variables and objectives which could tackle the consideration of

many parties’ interests [18].

In this research, we develop a family of stochastic programming ALM mod-

els that employ the SSD methodology in order to model the risk of underfund-

ing. More specifically, we model the distribution of the funding ratio to be

non-dominated with respect to SSD relations, while imposing a specific level

of growth on the plan’s wealth.

In what follows, we present general background information on pension funds

in general with some concentration on the system of the General Organisation

for Social Insurance (GOSI) which is a large pension fund in Saudi Arabia.

The main aspects that we consider and the assumptions that we made in order

to create datasets for the numerical experiments are summarised at the end of

the next section. In order to create the data sets for the optimisation models,

we use historical data on (1) rate of returns of assets available on Saudi Ara-

bian market (2) population inflow and outflow, salaries, contributions levels

and level of payments drawn from the GOSI database.

1.4 A Case Study: The General Organisation

for Social Insurance (GOSI)

There are two types of pension schemes: Defined Benefit (DB) and Defined

Contributions (DC). In both plans, the employers and/or employees pay a

percentage of the employee’s salary - a contribution - each month. In the DB

plan (also known as final salary scheme) the benefit formula is pre-specified by

contractual agreement, with benefits determined in terms of the final salary

at retirement (or average salary per all, or some of the years worked) and the
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length of service. In contrast, in the DC plane (also called money purchase)

the contributions to the fund are known (defined), while the benefits are un-

known until retirement. The contributions are invested by the pension plan

and the benefits are determined according to the accumulated contributions

during the years the pension has been built up and the return of the invest-

ments. The benefits are paid to contributors either in the form of a lump sum

at retirement or annuities [60].

The General Organisation for Social Insurance (GOSI) is a large DB pen-

sion fund in Saudi Arabia. There are two different DB pension funds in Saudi

Arabia. One of them is the public pension agency for civil sector employees

and the other is the GOSI which covers the workers in the private sector and

a group of workers in public sectors. In what follow, we summarise the main

features of the GOSI; for more informations please see [1].

The GOSI was established to implement the provisions of the Social Insur-

ance Law which was issued under the Royal Decree No. M/22 in 15/11/1969

and was amended later to follow-up the process of achieving the compulsory

insurance coverage, collecting contributions from employers, and paying ben-

efits for the eligible beneficiaries or their family members. It is a semi-state

body that enjoys administrative and financial independence and is supervised

by the minister of labour, as the chairman [1].

The Social Insurance Law is an aspect of social cooperation and solidarity

provided by the society for citizens. It provides the contributors and their fam-

ilies with a decent life after leaving work by the following insurance branches:

1. Occupational Hazards Branch, which provides benefits in cases of em-

ployment injuries. It is compulsorily applied to all workers without any

discrimination as to sex, nationality or age.

2. Annuities Branch, which provides benefits in cases of non-occupational

disability, old-age, and death. It is compulsorily applied to all Saudi
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workers.

The revenues of the organisation consist of the following:

1. The contributions of the employers and employees; each branch has a

different contribution rate:

(a) The contributions of the occupational hazards branch are fixed at

2% of the wage of each participant and are paid by the employer.

(b) The contributions of the annuities branch are fixed at 18% of the

basic monthly wage received by the contributor, of which 9% is paid

by the employer and 9% by the contributor.

2. The returns of investment.

3. The state annual subsidy allocated in the State general budget, as needed.

The liabilities that the GOSI needs to meet can be separated into two

main categories. Firstly, there are the liabilities under the occupational haz-

ards branch such as medical care and daily allowances for temporary work

disability if, by reason of the injury, the contributor becomes temporarily un-

able to work. Monthly benefit or lump sum permanent, for total or partial

disability, is to be paid for the injured participant or their family members.

A grant should be paid to the family of the injured person or recipient of the

benefit in the event of death.

Secondly, there are the liabilities under the annuities branch which involve

four different sub categories:

1. Pension payments; to be paid for the following categories:

(a) Retirees; contributors who attain retirement age and have com-

pleted a minimum period of contribution of 120 months, ceasing

to be engaged in any activity subject to this Law, or contributors

who have not attained retirement age but have completed a mini-

mum period of contribution of 300 months. The retirement age is

60 years for male, and 55 years for female.
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(b) Contributors who are afflicted with a non-occupational disability

shall be entitled to a pension computed in accordance with the

retirement pension. The disability pension may be increased by

50% as an allowance if the disabled is in need of the help of others

in the performance of their everyday life activities.

(c) In the event of the death of a recipient of a non-occupational disabil-

ity pension, or a recipient of a retirement pension, or a contributor

in an insurable employment who had a period of contribution of

not less than three consecutive months, each of the deceased family

members shall be entitled to a share of the pension. The benefit

shall be paid to the eligible family members on equal basis at a rate

of 100% for three members or more, 75% for two members, and

50% for one member. The term “eligible family members” means

the following members:

• The widow or widower of the deceased.

• The daughters until they marry.

• The sons who are under twenty-one years of age and this period

could be extended until they complete twenty six full years if

they are continuing their studies in educational or vocational

institution, and no age limit is set so long as they are unable

to engage in any occupation by reason of chronic disease or

disability.

• The grandsons and granddaughters whose father died during

the lifetime of the contributor and were supported by the con-

tributor, subject to the same conditions as prescribed in respect

of the sons and daughters.

• The parents of the deceased contributor who were supported by

the deceased at the time of his death, provided that the father

is unable to work, or is over sixty years of age and not working.

• The grandfather and grandmother, subject to the same condi-

tions required in respect of the parents.

• The brothers and sisters of the contributor provided they were
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supported by the deceased at the time of death, subject to the

same conditions referred to in respect of sons and daughters.

In case of cancellation of a share of a member of the family, his

share shall be repaid to the other eligible family members.

In all the above cases, pensions are computed in the same way. The

amount of monthly pension payment is obtained by multiplying one-

fortieth of the “average monthly wage” for the last two years by the

number of contribution years and months. “Average monthly wage”

means one twenty-fourth of the total wages received throughout the last

twenty four months of contribution period.

2. Lump sum payments; are to be paid in the following cases:

(a) A contributor who leaves the job and he was not eligible to receive

pension because of not satisfying either age or contribution’s period

requirements.

(b) The family members of a deceased contributor who is not entitled

to receive a pension.

(c) A contributor who transferred to another job and his own subscrip-

tion period will not be taken into account when determining his

rights in the new scheme s/he joins.

3. Marriage grant; a grant shall be paid to the widow, daughter, sister or

granddaughter who is eligible for monthly benefit when she gets married.

This grant equals eighteen times the monthly benefit she was receiving,

and accordingly, payment of such benefit shall be discontinued.

4. Death grant; a grant equivalent to the deceased contributor’s pension

or benefit for three months to be paid to the family members in case of

death of a contributor or a recipient of a pension.

Another source of revenues and liabilities is caused by the issuance of “The

Law for Portability of Benefit Rights between the Civil and Military Retire-

ment Schemes and the Social Insurance Scheme”. This law was issued pursuant
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to the Royal Decree No. 53/M dated 23/07/1424 H and allows citizens to take

advantage in as much as possible of their service periods in both schemes; they

receive a pension by aggregating their services rather than receiving a lump

sum compensation. However, period’s aggregation is important, as it allows

receiving a higher pension amount, if possible. According to this law, if a con-

tributor transfers between jobs governed by different schemes, the former fund

should transfer the aggregated contributions to the new scheme and accord-

ingly the service period to be considered by the new scheme when determining

the pension [1].

The Social Insurance Law of the Kingdom of Saudi Arabia has become

compulsorily applied to all Saudi workers in the private sector. Any other

Gulf Cooperation Council (GCC) Member State citizen enjoys all the benefits

provided by the annuities branch of the Social Insurance Scheme, in the same

way as a Saudi worker in the Kingdom of Saudi Arabia. Also, the benefits

of annuities branch could be voluntarily applied to the Saudi citizens who are

engaged in liberal professions. In this case, the contribution will be fixed at

18% of the assumed wage chosen by the contributor [1].

The organisation enjoys administrative and financial independence and is

guaranteed and controlled by the State. Each of the branches of insurance

has accounts of its own. The Board of Directors allocates to each branch its

share in the administrative expenses and lays down the rules governing the

distribution among the various branches of the revenues that do not belong to

any particular branch. The GOSI is exempted from all taxes and fees [1].

The annuity branch of the organisation acts as a pension fund to the par-

ticipants while the occupational hazards branch acts mainly as an insurance

against the occupational injuries. In this research, we will consider the annuity

branch (only) of the GOSI for creating a data set that is used in the numerical

experiments.
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Summary of the GOSI characteristics and the ALM framework

In what follows, we present a summary of the assumptions that we consider

in order to create datasets for the numerical experiment based on theGOSI’s

characteristics.

1. Funding is from three sources:

(a) Contributions from active participants which are fixed at 18% of

participants’ salaries.

(b) Money transferred into the fund’s account by new participants com-

ing into the GOSI from another pension fund’s scheme.

(c) Investment revenues.

2. The liabilities involve the following:

(a) Pension payments for retirees, non-occupational disabled, and to

next of kin if death occurs.

(b) Lump sum payments, for cases described earlier in this section.

(c) Money transferred out of the fund due to participants who join

another pension fund’s scheme.

(d) Death grants to next of kin upon death.

3. The GOSI invests locally only and in two types of assets: the money

market instruments and the Saudi Stocks market represented by 15 sec-

tors.

4. There is a restriction (upper bound) for investment in each of the sectors.

1.5 Historical Background

Different approaches for modelling risk in the context of ALM can be found

in the literature. They mainly stem from the single period asset allocation

modelling framework, where the most common approach is to find investment
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decisions which result in a return distribution with a high expected value and

low value of ”risk”. Expected value can be maximised with a constraint on

risk; alternatively, risk can be minimised with a constraint on expected value.

This modelling approach has been extended to the case of multi-period set-

ting, liability driven investment, usually by maximising the expected terminal

wealth while for intermediate time periods, the risk factor is incorporated into

constraints, or considered by additional terms in the objective function as-

signed for ”risk” penalties. We start by reviewing some of the well known

approaches for modelling risk related to the mean-risk paradigm, often em-

ployed in asset allocation, and their related modelling approaches in ALM.

In a single stage context, Markowitz [40] proposed variance as a risk mea-

sure. He measured the risk of a portfolio using the covariance matrix associated

with individual asset returns. Variance as a risk measure has been criticized,

mostly for its symmetric nature, since it penalises favorable (upside) devia-

tions in the same way it penalises unfavorable (downside) deviations. Since

then, alternative asymmetric, or downside, risk measures have been proposed.

Fishburn [24], and Bawa [4] introduced a family of risk measures called Lower

Partial Moments (LPMs): LPM with target τ and order n of a random vari-

able R (e.g. representing future return) is by definition E[max{τ −R, 0}n]. In

the particular case n→ 0, the LPM measures the probability of falling below

target τ , which had been used in asset allocation models by Roy [57].

An important step was the introduction of risk measures concerned only with

quantifying extremely unfavorable results, in other words, the left tail of a

return-type distributions (the right tail of a ”loss-type” distributions). Among

the most important risk measures of this type is Conditional Value-at-Risk

(CVaR) proposed by Rockafellar and Uryasev [53] in the context of single

stage asset allocation. Consider a random variable representing loss 1 and a

confidence level α ∈ (0, 1); for example, α = 0.95 or α = 0.99. In this case,

(1 − α) represents a percentage of worst case scenarios. CVaR at confidence

1Such a random variable could be defined for example as T −R , where R is the return

distribution and T is a fixed number. A common loss distribution is −R, where R is the

return.
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level α measures, largely speaking, the average of losses in the worst (1 − α)

of cases.

Arguably, describing and ranking distributions by just two parameters, for

example mean and risk, involves loss of information. As introduced in Section

1.2, Second Order Stochastic Dominance is another criterion for ranking ran-

dom variables and it takes into account the whole of the distributions involved.

SSD expresses the preference of risk averse decision makers, i.e. those whose

utility function is increasing and concave. SSD is treated extensively in Chap-

ter 3. The conceptual advantages of using SSD, together with the difficulty to

apply it in practice have been long recognised [68]. Recently, computationally

tractable portfolio models that employ the concept of SSD have been pro-

posed for single stage portfolio optimisation - for example, [21], [22], [52], [55].

In [55], the portfolio resulting in SSD efficient distributions are found via a

multi-objective model in which the objective functions are unscaled tails of the

return distributions; this approach has been further extended in [22], where

the scaled tails of return distributions are considered. Particular solutions are

found by setting aspiration (targets) for each of the objective functions and

optimising an overall achievement function, more details are in Section 3.4.

When modelling risk in ALM problems, the distribution of interest is not

necessarily that of wealth or asset return. As the relationship to liabilities is

crucial, the distribution of interest is the (or related to the) funding ratio, that

is, the ratio of assets to liabilities. Commonly, a target funding ratio is set: a

number λ ≥ 1 below which the value of the funding ratio is desired not to fall.

Risk constraints usually are employed in order to limit the probability and/or

the magnitude of the funding ratio distribution falling below λ.

The basic concepts of ALM models under uncertainty were developed by

Kallberg, White and Ziemba [30] and Kusy and Ziemba [39]; afterwards, large

scale applications were developed (please also see [43] and references within).

In [39], a multi-period stochastic linear programming model was developed for

the Vancouver City Savings Credit Union. The objective was to maximise the
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expected bank profits minus expected penalty costs for constraints violation.

One of the first commercial applications of an asset-liability model reported in

the literature is the Russel-Yasuda Kasai financial planning model, which has

been developed by Carino et al. [7] and Carino and Ziemba [8] for the second

largest Japanese insurance company. The modelling approach was a multi-

stage stochastic linear programming model tailored to Yasuda’s asset/liability

management problem. The objective function maximises the final time period

expected wealth minus penalty costs for underfunding. The result shows the

advantages of this model over the previous technology used by Yasuda Kasai:

static mean-variance analysis recomputed in each period with a rolling one-

period horizon.

Other successful commercial applications include the Towers Perrin Tilling-

hast ALM system of Mulvey et al. [44] and the InnoALM system which has

been developed at Innovest for the largest corporate DC pension plan in Aus-

tria by Geyer [27]. The latter model uses a multi-period stochastic linear

programming framework; the objective function is to maximise the expected

discounted value of terminal wealth minus the expected discounted penalty

costs of shortfalls from a wealth target.

A generic computer-aided asset/liability management model (CALM) was de-

veloped by Consigli and Dempster [12]. It is a stochastic programming model

that maximises terminal wealth at the end of a time horizon of 10 years.

In order to model risk constraints in ALM models, Dert [17] used chance

constrained programming (CCP): an SP paradigm first proposed by Charnes

and Cooper [9]. Omitting the time index, denote by A the distribution of asset

value and by L the distribution of liabilities. The constraint A ≥ λL under

all scenarios is relaxed by allowing a small percentage of scenarios B% under

which underfunding may happen. Formally, Prob(A/L < λ) ≤ (1 − β) or

equivalently Prob(A− λL < 0) ≤ (1− β), where β = 1−B% is the reliability

level.

Klein Haneveld [33] argued that chance constraints are based on a qualitative

risk concept; they control the probability of constraint violation but do not

account for the amount by which it is violated. In addition, they require bi-
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nary variables in the formulation of the optimisation model, that count the

number of times when the constraint is violated, thus increasing computa-

tional complexity. Klein Haneveld [33] and Klein Haneveld and Van der Vlerk

[35] proposed an alternative SP approach: the Integrated Chance Constrained

Programming (ICCP) which has been used in the context of ALM by Klein

Haneveld et al. [34] for a Dutch pension fund. With the above notations, an

ICCP constraint requires that E[max{λL − A, 0}] ≤ θ, where θ is the maxi-

mum amount of average underfunding that a decision maker accepts.

Lower partial moments of order two have been adopted by Kouwenberg [38]

to control risk in an ALM model for a defined benefit Dutch pension fund. The

LPM with target λ and order 2 of the random variable A/L (the funding ratio)

is constrained to not exceed a user specified value θ: E[max{λ−A/L, 0}2] ≤ θ.

In the context of multi-stage ALM, CVaR has been used by Bogentoft et al.

[6]; they considered the loss random variable λL − A and imposed an upper

limit on its CVaR, in order to control the risk in a DB pension funds ALM

problem in the Netherlands.

Schwaiger et al. [59] and Sheikh Hussin et al. [60] implemented decision

models using Linear Programming (LP), Two Stage Stochastic Programming,

Chance Constrained Programming and Integrated Chance Constrained Pro-

gramming for pension funds. Schwaiger et al. [59] consider a portfolio com-

prised of UK bonds that matches the liabilities while minimising the cost of

the portfolio, this model is applied to a DB pension fund. They consider a

model that has two objective functions to minimise: the initial cash which has

to be injected to achieve a (feasible) matching between assets and liabilities

and the total deviations of assets and liabilities. Sheikh Hussin et al. [60]

apply the models to the Employees Provident Fund (EPF) of Malaysia which

is a DC pension fund; the objective is to maximise terminal wealth.

Dupačová and Poĺıvka [18] proposed a multi-stage stochastic programming

model for a Czech DC pension fund. The objective is to maximise the present

value of the expected terminal wealth while penalising the discounted expected

shortfalls.
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De Oliveira et al. [15] developed a multistage stochastic programming ALM

model for a Brazilian pension fund. The model maximises the expected ter-

minal value of the fund. Using chance constraints, they enforce the funding

ratio not to fall below a specific threshold with high probability.

In the context of insurance companies, Flent et al. [25], compare two dif-

ferent approaches in asset liability management. The first approach is a multi-

stage stochastic programming, while the other is a static approach based on

the so-called constant rebalancing or fixed mix. This comparison and tests

were applied to a Norwegian mutual life insurance company. They found that

a dynamic stochastic approach dominates a fixed mix approach, but that the

degree of domination is much smaller when the models are compared out-of-

sample than when they are compared in-sample. The objective is to minimise

risk subject to a minimum target expected portfolio return. Risk is measured

by the expected accumulated shortfalls of different types relative to legal re-

quirements. The decision maker can weight the relative different importance

to each shortfall type in the objective function.

Using term-life insurance along with the traditional asset classes (stocks

and bonds) as a hedging tool against longevity risk, Kim and Mulvey [32]

proposed an ALM model for wealthy individuals with a focus on the optimum

investment strategy after retirement.

The approaches used in the models presented above are related to the mean-

risk paradigms; usually the expected value of terminal wealth is maximised

with constraints on risk (measured on random variables usually related to

funding ratio) at intermediate time periods. In imposing such risk constraints,

one single aspect of the funding ratio, or more generally of the distribution of

interest, is controlled. For example, a limit on the expected shortfall does not

guarantee manageable worst case realisations and hence does not exclude the

possibility of catastrophic losses or massive shortfall below target. Similarly,

a CVaR upper limit may guarantee manageable outcomes under worst case

scenarios, but it may leave open the possibility of under-achievement in the
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rest of the distribution.

Moreover, deciding on a meaningful right hand side on a risk constraint is

often a challenging task; a fine tuning is necessary in order to avoid infeasi-

bility or under-achievement, that is, solutions that could be improved upon.

Klein Haneveld [34] stressed that a prior selection of the model parameter is

difficult in practice and a reasonable parameter could be found by numerical

experiments. Fabian and Veszprémi [23] construct an approximation of the

efficient frontier to help the decision maker in calibrating the right hand side

parameter in CVaR constraints as a first step in formulating their model.

Previously, a stochastic dominance concept has been used in the ALM con-

text by Yang et al. [72]. They formulate an LP model in which the objective

is to maximise expected terminal wealth minus penalties for underfunding,

while controlling the market risk and the risk of underfunding via SSD and

interval second order stochastic dominance (ISSD) constraints. More specifi-

cally, they require that the distribution of asset value dominates a benchmark

distribution with respect to SSD, and they also impose an ISSD constraint on

the funding ratio limiting the probability that the asset value falls below the

liabilities.

More recently, Kopa et al. [37] apply first and second order stochastic dom-

inance constraints in a multistage SP model. In collaboration with a com-

mercial Italian bank, they propose a model for individual optimal pension

allocation. The objective is to minimise the Average Value at Risk Deviation

measure while satisfying a wealth target; the optimum portfolio is constrained

to dominate a benchmark with respect to FSD and SSD relations.

Another major research area in ALM concerns scenario generation for the

future values of assets returns, contributions and liabilities.

Scenario generation for asset prices has been extensively researched, mainly

in the context of pure investing/asset allocation. For an overview of scenario

generation methods applied in finance and economic decision making, see [66].

Commonly used methods include sampling or bootstrapping of historical data

[19] and Vector Autoregression model (VAR) introduced by Sims [61]. Sce-
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nario generation using VAR in the area of ALM has been used in [17], [38] and

[60].

Another established scenario generating method is the moment matching ap-

proach [28]; it has been used in financial applications, including ALM, see for

example [18], [25] and [38]. In this approach, the decision maker specifies a set

of statistical properties (e.g. moments of order up to four). The scenario set is

constructed in such a way that these statistical properties are matched. This

is done by using non-linear optimisation in which the objective is to minimise

the difference between the specified statistical properties and the statistical

properties of the generated data.

More recently, an alternative moment matching scenario generation method

was proposed by Ponomoreva et al. [51]. Their method produces scenarios

and corresponding probability weights that match exactly the given mean, the

covariance matrix, the average of the marginal skewness, and the average of

the marginal kurtosis of each individual component of a random vector with-

out employing optimisation in the scenario generation process.

With all the above scenario generation methods, a major difficulty is the multi-

variate nature of data. One way to overcome this is to separately model the

univariate marginal distributions and the dependencies between random vari-

ables via a ”copula” [62]. Different copulas are used in order to satisfy specific

assumptions on data dependency. Kaut and Wallace [31] propose an scenario

generation method in which an empirical copula is used.

Unlike in pure investment problems, the scenario generation process does

not stop with generating future possible values for asset returns; in ALM,

future vales for liabilities and contributions are also part of the model pa-

rameters. A main underlying source of uncertainty is the number of members

(paying contributions) and past members/ retirees to whom liabilities are to be

paid; population models are thus necessary in order to generate scenarios for

future liabilities and contributions. The plan’s demographic dynamics could be

analysed either in a closed system without staff turnover or in an open system,

which allows for joining new employees. Markov processes are broadly used to

describe the population dynamics as they allow for a flexible representation of
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life contingencies. In an ALM context, Mettler [42], described the population

dynamics in a closed and open systems for a DB pension plan using Markov

processes. In [60], the flow and the status of the members in a DC pension

fund system are simulated using an open system Markov population model too.

1.6 Thesis Outline and Contributions

This research is concerned with modelling the risk of underfunding in ALM

models. In our ALM model, one stochastic process of interest is the wealth

of the fund or asset value, for which we want high values in the long term.

Another one is the funding ratio, for which we want high values shorter term;

at each point in time, the funding ratio is a random variable. Target values,

below which the funding ratio should not fall, are commonly specified. Impos-

ing a hard constraint requiring that the target funding ratio is achieved under

all scenarios may be in most cases unfeasible or may limit the set of decisions

to some unfavorable ones, for the long-term fund wealth.

As presented in the previous section, a commonly used modelling approach has

been to maximise the expected value of the terminal fund wealth with penal-

ties for not achieving the target funding ratio at intermediate times. Since the

expected terminal wealth and the value of the shortfall are likely to be not in

the same scale, setting the weights for the penalties in the objective function

is not a straightforward task; this approach has limited power in modelling

the distributions of the funding ratios.

More recent approaches consider risk measures for the distribution of the fund-

ing ratio. As essentially the left part of this distribution is mostly of interest

(more precisely, outcomes below the target), asymmetric risk measures have

been employed, mainly lower partial moments or CVaR. Constraints on LPM

of order 0 and 1 have been used in ALM under the SP paradigm of chance

constrains (CCs) and integrated chance constraints (ICCs). In Chapter 2, we

present a review of these methods, within a general SP framework for ALM.

As pointed out in Section 1.5, risk constraints offer limited control on the shape

of the funding ratio distribution, leaving open the possibility of a distribution
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either with unacceptably low worst case outcomes or a distribution with too

many outcomes below the target.

In Chapter 3, we propose ALM models in which the risk of underfunding is

modelled using an SSD concept. We adapt SSD-based models for single period

asset allocation proposed by Roman et al. [55] and [22] to the multi-period

setting and we apply the SSD comparisons to distributions of funding ratio,

rather than return or wealth. The motivation is to improve on the modelling

framework in the sense of more control on the shape of the funding ratio dis-

tribution. This represents the first contribution of the thesis.

As exposed in Section 1.2, SSD is a framework for comparing random variables

where higher outcomes are preferred but where an increase in value is less and

less appreciated as the level gets higher. Distributions of funding ratio seem

ideally suited to this framework for ranking and comparing, as the left tail is

mostly of concern, while an increase in the right tail (more specifically, above

a target) has relatively little value.

The purpose of the models proposed in Chapter 3 is to find investment deci-

sions such that the distribution of funding ratio is non-dominated with respect

to SSD, while a constraint on the level of long-term expected growth in the

fund wealth is imposed.

The set of funding ratio distributions that are non-dominated with respect

to SSD is large; it is the set of optimal solutions of a multi-objective model,

in which the objective functions are tails of the funding ratio distributions

at various confidence levels. An additional criterion of selection is employed,

using reference (or aspiration or target) points, chosen by the decision maker,

for the tails of the distributions. These aspiration points for tails imply target

levels for the outcomes of the funding ratio distribution; thus, they define a

target distribution. A decision maker can modify the target levels depending

on what s/he wants to achieve or what part of the funding ratio distribution

is undesirable and can be improved.

The ”tails” can be unscaled, equivalent to the sum of progressively larger num-

ber of worst outcomes, or scaled, equivalent to the average of progressively

larger number of worst outcomes. The largest difference between a tail and
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its reference point is maximised; the solution obtained has thus a distribution

that, in addition to being SSD non-dominated, is close to a reference vector.

Depending on whether we consider scaled or unscaled tails, we obtain two

different models. Both models provide different SSD efficient distributions of

funding ratio, irrespective of the reference distribution chosen. The unscaled

model penalises more the accumulation of many outcomes below their desired

value, while the scaled model penalises more higher magnitudes of shortfalls

below the desired values.

The models are extended by introducing reservation levels, in addition to as-

piration levels, for even more modelling power.

The models proposed in Chapter 3 differ from other ALM models that ap-

ply SSD concepts not only because SSD relations are applied to funding ratio

distributions, taking thus into account the relationship between asset value

and liabilities. It is also the fact that the SSD criterion is employed in the

objective rather than a constraint. This overcomes some of the undesirable

situations that might occur, depending on the benchmark distribution chosen

by the decision maker. For example, if the outcomes of the benchmark dis-

tribution are too high and as a result this distribution cannot be dominated

or attained, a stochastic dominance constraint would result in infeasibility. In

the opposite situation when the benchmark distribution is SSD dominated,

the optimal solution is guaranteed to improve on the benchmark but not nec-

essarily to be SSD non-dominated.

With the models proposed in this thesis, there are three possible cases.

Firstly, if the benchmark represents a funding ratio distribution that is dom-

inated with respect to SSD, the optimal solution results in a funding ratio

distribution which is ”better than target”: it improves on the benchmark un-

til SSD efficiency is attained. Secondly, if the benchmark is SSD efficient, the

optimal solution of the model has a funding ratio distribution that exactly

matches the benchmark. Finally, if the target is not attainable (in the sense

that no feasible solution could match or improve on it), the optimal solution

has a funding ratio distribution which is SSD efficient and comes as close as
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possible, in a well defined sense, to the target.

A particular and important case is when the reference distribution is de-

terministic, represented by one single possible outcome λ ≥ 1; naturally, λ

can be set as the target funding ratio specified by the fund managers. In this

case, the SSD-based models present interesting connection with established

risk minimisation models.

The SSD scaled model is equivalent (in the sense of providing the same opti-

mal solutions) to a Maxmin model: maximisation of the worst outcome of the

funding ratio. The SSD unscaled model is equivalent, under mild conditions,

to a model in which the expected shortfall (lower partial moment of order 1)

with target λ is minimised. This in turn is equivalent to an ICCP model, in

which there is a constraint on the expected shortfall with respect to λ.

The relationships developed here between SSD based models and established

risk models or SP paradigms represent the second contribution of this thesis.

An important aspect in ALM models is the scenario generation part, both

with respect to future returns of financial assets and to values of liabilities and

contributions; Chapter 4 concerns this. In sample scenarios for asset returns

are created by bootstrapping. For liabilities and contributions, we employ

a population model based on the ”Birth, Immigration, Death, Emigration”

(BIDE) population model [45]; this is used for in and out-of-sample scenarios.

Out-of-sample scenarios for asset returns are created by employing a histori-

cal copula and sampling from the marginals. Historical samples are fitted to

univariate distributions; new samples are generated and then combined using

a historical copula. One can repeat the procedure and generate as many sce-

nario sets as desired.

To the best of our knowledge, the use of BIDE population models in ALM, as

well as the framework for out-of-sample testing based on univariate distribu-

tion fitting and the empirical copula have not been reported in the literature;

this represents the third contribution of the thesis.

Chapter 5 presents the numerical experiments. The SSD-based models,
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formulated in Chapter 3 as linear programming models of large size, are im-

plemented in AMPL and solved using CPLEX 12.5.1.0. They are compared,

using a data set drawn from the GOSI, the largest pension fund in Saudi Ara-

bia, against well established models such as Maxmin (maximisation of worst

outcome) and ICCP. Finally, Chapter 6 concludes the thesis and contains

prospective research directions.
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Chapter 2

Stochastic Programming

Models for ALM

In this chapter, we present a family of optimisation models that are applied

to the pension fund’s ALM problem. The first model is a scenario based

two-stage stochastic program where the uncertainty around the asset returns,

contributions and liabilities is modeled via a scenario tree in the form of a fan.

Extensions to this SP model, to take into account a pension funds prospective

underfunding situations, leads to Chance Constrained Programming (CCP)

and Integrated Chance Constrained Programming (ICCP) models presented

in Section 2.2. Section 2.3 contains a summary of the formulation of the two-

stage SP model, CCP and ICCP models. In Section 2.4, we introduce a review

on some of the well known risk measures used in the ALM context followed

by concluding remarks in the last section. In the next section, we set a basic

framework for an ALM decision problem within an SP model.

2.1 ALM Problem and SP Setting

Pension funds typically consider a long-term planning horizon due to the long

duration of their liabilities. We consider a pension fund problem in which the

planning horizon is split into T sub-periods. At the beginning of each of these
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periods (i.e. at each time point t ∈ {0, ..., T}), liabilities are to be paid out

and contributions are to be paid in. Decisions on investing the contributions

and rebalancing the portfolio are taken at times t ∈ {0, ..., T − 1}, with the

short-term objective that, at the next time period, the asset value (uncertain)

is in some desirable proportion to the liability value (also uncertain at decision

moment). The returns of the available assets, as well as value of liabilities and

contributions are uncertain and observed at times t ∈ {1, ..., T}.
Similarly to [6], we consider a two-stage SP and a scenario tree in the form of

a fan as illustrated in Figure 2.1; the root node represents the present (t = 0).

The uncertainty is represented by a number of S scenarios. Each path from

t = 0 to t = T represents one scenario, that is, one possible sequence of out-

comes of the stochastic elements throughout the time horizon T . Each scenario

has an associated probability of occurrence πs, s ∈ {1, ..., S}, where πs > 0

and
∑S

s=1πs = 1.

Figure 2.1: Scenario tree in the form of a fan

At time t = 0, first stage investment decisions need to be taken. The re-

turns of the assets between t = 0 and t = 1, as well as the value of liabilities

to be paid (and also contributions to be cashed in) at time t = 1 are unknown

when first stage decisions are taken, thus, the value of the funding ratio is un-

known. Recourse decisions about rebalancing the portfolio are taken at times

t = 1, . . . , T − 1; these are scenario dependent.

At any time t = 1, . . . , T , the liabilities value is a discrete random variable; so

is the contributions value, while the returns of the assets form a random vec-

tor. For any portfolio decisions taken at time t = 0, . . . T −1, the funding ratio
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at time (t + 1) is a random variable whose values depends on the decisions,

the returns of the component assets between t and (t + 1) and the liabilities

and contributions at time (t+ 1).

At the planning horizon, no more decisions will be determined but the

fund wealth is evaluated with respect to all scenarios. In executing a trading

strategy, we assume that each trade has an associated transaction cost, short

selling is not allowed, and there is an upper bound in investing in each asset

class.

In what follows, we present the basic modelling framework. We use the

following notations:

I = The number of financial assets available for investment

T = The number of time periods

S = The number of scenarios

The parameters of the model are denoted by:

OPi = The amount of money held in asset i at the initial time period t = 0;

i = 1 . . . I

L0 = Aggregated liability payments to be made ”now” (t = 0)

C0 = The funding contributions received ”now” (t = 0)

Lt,s = Liability value for time period t under scenario s; t = 1 . . . T , s =

1 . . . S

Ct,s = The contributions paid into the fund at time period t under scenario

s; t = 1 . . . T , s = 1 . . . S

Ri,t,s = The return of asset i at time period t under scenario s; i = 1 . . . I,

t = 1 . . . T , s = 1 . . . S
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ui = The upper bound imposed on the investment in asset i; i = 1 . . . I

ψ = The transaction cost expressed as a percentage of the value of each trade

πs = The probability of scenario s occurring; s = 1 . . . S.

Let us denote the first stage decision variables by:

Bi,0 = The monetary value of asset i to buy at the beginning of the planning

horizon (t = 0); i = 1 . . . I

Si,0 = The monetary value of asset i to sell at t = 0; i = 1 . . . I

Hi,0 = The monetary value of asset i to hold at t = 0; i = 1 . . . I.

with Hi,0 = OPi +Bi,0 − Si,0 , i = 1 . . . I.

Let us denote the recourse decision variables by:

Bi,t,s = The monetary value of asset i to buy at time t under scenario s;

i = 1 . . . I, t = 1 . . . T − 1, s = 1 . . . S

Si,t,s = The monetary value of asset i to sell at time t under scenario s; i =

1 . . . I, t = 1 . . . T − 1, s = 1 . . . S

Hi,t,s = The monetary value of asset i to hold at time t under scenario s;

i = 1 . . . I, t = 1 . . . T , s = 1 . . . S

At,s = The total asset value at time t under scenario s, before portfolio

rebalancing; t = 1, ..., T , s = 1, .., S.

A common approach encountered in the literature is to maximise the expected

value of the terminal asset value AT while imposing risk constraints on short

or medium term.
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The Objective Function

The objective is to maximise the expected terminal wealth:

max
S∑
s=1

πsAT,s (2.1)

• Asset Value Constraints

These express the relationship between asset value and holdings in assets.

A1,s =
I∑
i=1

Hi,0Ri,1,s , s = 1 . . . S (2.2)

At,s =
I∑
i=1

Hi,t−1,sRi,t,s , t = 2 . . . T, s = 1 . . . S (2.3)

• Asset Holding Constraints

The amount of each individual asset class held in the portfolio at each time

period is computed with respect to the amount held of that asset class during

the previous time period, the return over the corresponding time period and

any change in the composition. For the last time period there will be no buying

or selling variables.

Hi,0 = OPi +Bi,0 − Si,0 , i = 1 . . . I (2.4)

Hi,1,s = Hi,0Ri,1,s +Bi,1,s − Si,1,s , i = 1 . . . I, s = 1 . . . S (2.5)

Hi,t,s = Hi,t−1,sRi,t,s+Bi,t,s−Si,t,s, i = 1 . . . I, t = 2 . . . T−1, s = 1 . . . S (2.6)

Hi,T,s = Hi,T−1,sRi,T,s , i = 1 . . . I, s = 1 . . . S (2.7)
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• Fund Balance Constraints

These are cash flow contributions, assuming that no other funding occurs

during the time horizon.

I∑
i=1

Bi,0(1 + ψ) + L0 =
I∑
i=1

Si,0(1− ψ) + C0 (2.8)

I∑
i=1

Bi,t,s(1+ψ)+Lt,s =
I∑
i=1

Si,t,s(1−ψ)+Ct,s , t = 1 . . . T−1, s = 1 . . . S (2.9)

• Short-Selling Constraints

To short sale, or shorting, means to sell an asset that is not owned. Under

no-short selling assumption we can add the following constraints:

Si,0 ≤ OPi , i = 1 . . . I (2.10)

Si,t,s ≤ Hi,t−1,s , i = 1 . . . I, t = 1 . . . T − 1, s = 1 . . . S (2.11)

• Bound Constraints

To insure that the portfolio held at each time period will be diversified, we

impose an upper bound on the proportions of each asset class by adding the

following constraints:

Hi,t,s ≤ ui

I∑
i=1

Hi,t,s , i = 1 . . . I, t = 1 . . . T, s = 1 . . . S (2.12)

2.2 Modelling Risk

Omitting the time index, let us denote the funding ratio by F ; it is defined

as the ratio of assets over liabilities A/L [26]. It is an important measure
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in determining the financial soundness of a fund at a certain time moment.

It is commonly used to model risk constraints in ALM, although there are

variations in the way these are modelled. Common practice is to use a target

funding ratio, a number λ ≥ 1 below which the value of the funding ratio

should not fall. Values of λ > 1 are often used to add some extra safety mar-

gin. Consider decisions taken ”now”; the future value of the funding ratio is

not known with certainty at decision time. It is modelled as a discrete random

variable, described by possible outcomes under the S scenarios.

One may require that the funding ratio (at a specific time t) is greater than

or equal to the target λ with probability 1; that is

Ft,s ≥ λ or At,s ≥ λLt,s ∀ s = 1 . . . S (2.13)

This however may be infeasible or very costly; such a conservative approach

may lead to a considerable decrease of performance, in the sense of not achiev-

ing high returns.

A common approach is to allow violation of these constraints and penalise

them in the objective function. This approach has benefits in the sense that it

does not result in infeasibility. It however offers limited scope for modelling.

Important classes of SP models can be employed to replace constraints (2.13)

by a ”risk constraint” on the funding ratio. Such a risk constraint is connected

to the probability of not achieving the target ratio or/and the magnitude of

shortfall below the target ratio.

2.2.1 Chance Constrained Programming (CCP)

An important class of stochastic programming models, introduced by Charens

and Cooper [9], is the Chance Constrained Programming (CCP). The concept

behind the probabilistic or chance constraints is that instead of satisfying a

constraint with probability equal to 1, the constraint is satisfied with given

(high) probability.
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In an ALM approach, chance constraints serve as tools to control the proba-

bility of underfunding; instead of (2.13) we impose At ≥ λLt with high prob-

ability; or equivalently, we allow this constraint to be violated only under a

small percentage of scenarios:

P (Ft < λ) ≤ (1− β) or P (At < λLt) ≤ (1− β)

Where β ∈ [0, 1] is a user pre-specified parameter indicating the ”reliability

level”, typically 0.95 ≤ β < 1. Thus, there is a small proportion (1 − β) of

scenarios under which we might have the funding ratio below λ.

The inclusion of chance constraints in multi-stage recourse model for pen-

sion funds was used by Dert [17]. The model formulation includes binary

variables that count the number of times when the constraint is violated. Fol-

lowing [17], for a specific time t = 1, . . . , T , we formulate the chance constraint

P (At < λLt) ≤ (1 − β) by introducing S additional binary decision variables

δt,s, s = 1..S that count the number of scenarios under which there is un-

derfunding; i.e. when λLt − At > 0. We add the following constraints to

(2.2)-(2.12) in order to restrict the probability of underfunding:

Mδt,s ≥ λLt,s − At,s , t = 1 . . . T, s = 1 . . . S (2.14)

M(1− δt,s)−
1

M
≥ (At,s − λLt,s) , t = 1 . . . T, s = 1 . . . S (2.15)

S∑
s=1

πsδt,s ≤ 1− β , t = 1 . . . T (2.16)

δt,s ∈ {0, 1} , t = 1 . . . T, s = 1 . . . S
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The additional parameters for the CCP models are:

λ = User pre-specified target funding ratio; a number ≥ 1;

β = Reliability level: a parameter that indicates the probability of satisfying

the constraint; β ∈ (0, 1) with values close to 1;

M = Sufficiently large number.

For each time t = 1 . . . T when a chance constrain is imposed, there are

S additional binary variables δt,s, s = 1 . . . S defined as follows. If there is

underfunding at time t under scenario s, that is, if λLt,s − At,s > 0, then

δt,s = 1 due to equation (2.14). Equation (2.15) becomes At,s − λLt,s ≤ − 1
M

,

which is satisfied for M large enough. If there is no underfunding at time t

under scenario s, that is, if λLt−At ≤ 0, then δt,s = 0 due to equation (2.15).

To summarise,

δt,s =

{
1 if underfunding at time t under scenario s occures

0 elsewhere
(2.17)

If we want a strict correspondence between the value of δt,s and the fund-

ing situation (i.e. δt,s=1 is equivalent to an underfunding situation at time t

under scenario s and δt,s=0 is equivalent to no underfunding) then (2.15) is

necessary.

Chance constraints control the likelihood of a shortfall, but have no control on

the amount of shortfall; there is the possibility of the amount of underfund-

ing (occurring under low probability) being unacceptably large. In addition,

including binary variables increases the computational complexity. These dis-

advantages are not shared by the closely related Integrated Chance Constrained

programming models which are introduced in the next section.

2.2.2 Integrated Chance Constrained Programming (ICCP)

Klein Haneveld ([33]; [35]) introduced an alternative to CCP called Integrated

Chance Constrained programming (ICCP) and applied it in [34] for modelling
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short term risk (t = 1) in an ALM model for Dutch pension funds.

With an ICC, the amount of expected shortfall is controlled, rather than the

probability of shortfall: E[max{λLt − At, 0}] ≤ θ, where θ is the maximum

amount of average underfunding that a decision maker accepts. This could be

equivalently formulated as E[max{λ − Ft, 0}] does not exceed a pre-specified

level.

Modelling such a constraint does not require additional binary variables but

only continuous ones, as formulated below:

At,s − λLt,s + Sht,s ≥ 0 , t = 1 . . . T, s = 1 . . . S (2.18)

S∑
s=1

πsSht,s ≤ θ , t = 1 . . . T (2.19)

Sht,s ≥ 0 , t = 1 . . . T, s = 1 . . . S

Where Sht = max{λLt − At, 0} is a random variable that measure the

shortage at time t, t = 1 . . . T ; its realisations Sht,s under each scenario s,

s = 1 . . . S take the value 0 if the asset value At,s is above λLt,s and otherwise

take a value equal to the shortfall λLt,s − At,s. Equation (2.19) ensures that

the expected value of shortage will not exceed the user’s defined maximum al-

lowed expected shortfall θ. θ is a parameter determined by the decision maker.

Choosing this parameter in a meaningful way is a non-trivial task, as pointed

out by Klein Haneveld et al. in [34].

2.3 Summary of the Formulations of Stochas-

tic Programming Models for ALM

The Objective Function

Max
S∑
s=1

πsAT,s
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Subject to:

• Asset Value Constraints

A1,s =
I∑
i=1

Hi,0Ri,1,s , s = 1 . . . S

At,s =
I∑
i=1

Hi,t−1,sRi,t,s , t = 2 . . . T, s = 1 . . . S

• Asset Holding Constraints

Hi,0 = OPi +Bi,0 − Si,0 , i = 1 . . . I

Hi,1,s = Hi,0Ri,1,s +Bi,1,s − Si,1,s , i = 1 . . . I, s = 1 . . . S

Hi,t,s = Hi,t−1,sRi,t,s+Bi,t,s−Si,t,s , i = 1 . . . I, t = 2 . . . T−1, s = 1 . . . S

Hi,T,s = Hi,T−1,sRi,T,s , i = 1 . . . I, s = 1 . . . S

• Fund Balance Constraints

I∑
i=1

Bi,0(1 + ψ) + L0 =
I∑
i=1

Si,0(1− ψ) + C0

I∑
i=1

Bi,t,s(1+ψ)+Lt,s =
I∑
i=1

Si,t,s(1−ψ)+Ct,s , t = 1 . . . T−1, s = 1 . . . S

• Short-Selling Constraints

Si,0 ≤ OPi , i = 1 . . . I

Si,t,s ≤ Hi,t−1,s , i = 1 . . . I, t = 1 . . . T − 1
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• Bound Constraints

Hi,t,s ≤ ui

I∑
i=1

Hi,t,s , i = 1 . . . I, t = 1 . . . T, S = 1 . . . S

• The Chance Constraint

Mδt,s ≥ λLt,s − At,s , t = 1 . . . T, S = 1 . . . S

M(1− δt,s)− 1/M ≥ (At,s − λLt,s) , t = 1 . . . T, S = 1 . . . S

S∑
s=1

πsδt,s ≤ 1− β , t = 1 . . . T

δt,s ∈ {0, 1} , t = 1 . . . T

• The Integrated Chance Constraint

At,s − λLt,s + Sht,s ≥ 0 , t = 1 . . . T, s = 1 . . . S

S∑
s=1

πsSht,s ≤ θ , t = 1 . . . T

Sht,s ≥ 0 , t = 1 . . . T, s = 1 . . . S

The corresponding AMPL code for SP and ICCP models can be found in

Appendix C.

2.4 Connection with Risk Measures

In general, risk measures used in a financial context could be classified into

two main groups.

Risk measures of the first kind consider the magnitude of the deviation from

a target [50]. The target could be fixed (e.g. a minimal acceptable return),
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distribution dependent (e.g. the expected value) or even stochastic (e.g. an in-

dex). The values of these risk measures can only be positive. Moreover, these

risk measures can be further divided into: symmetric (two-sided) and asym-

metric (one-sided, downside, shortfall) risk measures. Symmetric risk, such as

variance [40], penalise any deviation from the target either upside or downside.

Asymmetric risk measures penalise only deviations below a specified target;

any realisation above the target does not count in the risk quantification. This

makes asymmetric risk measures to be more in accordance with the intuitive

idea about risk, as an undesirable result. Among asymmetric risk measures,

Lower Partial Moments (LPM) introduced by Fishburn [24] and Bawa [4] in

the context of single stage asset allocation are of great importance.

Risk measures in the second category consider only a pre-specified per-

centage of the lower tail of a distribution. They take into account only a certain

number of worst outcomes of the distribution, depending on a confidence level

α. In a financial context, commonly used risk measures in this category are

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) [53]. The values

of these risk measures can be both positive and negative.

In this section, we review some of the well known risk measures used in ALM

and illustrate the connection between these risk measures and the use of chance

constraints and integrated chance constraints in an ALM context.

2.4.1 Lower Partial Moments (LPMs)

The LPM with target τ and order n of a random variable R (e.g. representing

future return) is by definition

E[max{τ −R, 0}n].

The most commonly used below- target risk measures could be formulated

as lower partial moment as follows:

• Safety First: In the particular case n→ 0,

SF (R) = LPMn→0(τ, R) = E[max{τ −R, 0}n→0] = P (R < τ)
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In this case, the LPM measures the probability of falling below target τ ; this

had been introduced in asset allocation models by Roy [57].

As per Section 2.2.1, a chance constraint in ALM models requires that, for a

specified time period t, P (Ft < λ) ≤ (1− β) or P (At < λLt) ≤ (1− β), where

β is the reliability level. This is the same as imposing an upper limit (1− β)

on the lower partial moment with target λ and order 0 of the random variable

Ft = At/Lt representing the funding ratio at time t.

• Target Shortfall: In the particular case n = 1,

LPM1(τ, R) = E[max{τ −R, 0}]

As per Section 2.2.2, an ICCP constraint require that E[max{λL−A, 0}] ≤ θ,

where θ is the maximum amount of average underfunding that a decision maker

accepts. This is the same with imposing an upper limit θ on the lower partial

moment with target 0 and order 1 of the random variable A− λL.

• Target Semi-Variance: In the particular case n = 2,

LPM2(τ, R) = E[max{τ −R, 0}2]

Risk control in ALM models via lower partial moments of order two of the

funding ratio has been adopted by Kouwenberg [38] to measure and control

both the probability and the level of deficits: E([max{λ− F, 0}]2) ≤ θ.

2.4.2 Conditional Value-at-Risk (CVaR)

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are widely used

risk measures that consider only a pre-specified percentage of worst case sce-

narios. They have been defined either in the context of a return distribution

R (where the left tail is of interest) or of a loss distribution L (where the right

tail is of interest).

For a generic loss distribution L, VaR at confidence level α (where α = A% ∈
(0, 1)) is an α-quantile, which is, loosely speaking, an outcome of L such that
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A% of the outcomes of L are better (i.e. lower) and (1 − A%) are worse.

Formally, for the loss distribution L (where L = −R) with a cumulative dis-

tribution function H, VaR at confidence level α (denoted by VaRα) is the

value

VaRα = min{t ∈ R | H(t) ≥ α}

where H(t) = P (L ≤ t) [53].

CVaR at the same confidence level α can be defined as, largely speaking,

the average of losses in the worst (1 − A%) of cases. Mathematically, in our

setting, CVaRα can be given as

CVaRα = (1− α)−1
∫
L≥VaRα

L dH

In this formula, if the P (L ≥ VaRα) = 1− α, then, CVaRα is the conditional

expectation of the losses exceeding or equal VaRα [53].

In the context of multi-stage ALM, CVaR was used by Bogentoft et al.

[6]; they considered a loss random variable defined by λL−A and imposed an

upper limit on its CVaR to model short term risk (that is, for time t = 1). If

CVaR is considered at confidence level A% = α ∈ (0, 1) (e.g. α = 0.95), such

a constraint can be expressed as follows: the average of the highest (1− A%)

of the losses is not higher than a level pre-specified by the decision maker.

Just as with ICC’s, a CVaR constraint is modeled by introducing additional

(continuous) variables and linear constraints; the reader is referred to [53] and

[6]. We can summarise the difference between an ICC constraint and a CVaR

constraint as follows. With ICCP, all the outcomes of the funding ratio are

considered, in which the target funding ratio is not met. CVaR constraints are

at the opposite spectrum of modelling the funding ratio distribution, as they

look only at a pre-specified percentage of worst case outcomes; these worst

case outcomes may or may not include all the cases in which the target fund-

ing ratio is not met and have no control on the rest of the distribution. It can

be argued that ICCP provides a better modelling approach since all scenarios
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when underfunding occurs are considered. But on the other hand, there is less

control in worst case scenarios; although the average underfunding may seem

acceptable, the possibility exists for a heavy left tailed loss distribution.

2.5 Concluding Remarks

In this chapter, we have formulated a two-stage SP model for ALM. The risk

of underfunding, that is, the risk of funding ratio being below a target λ,

can be modelled, for example via a chance constraint (CC) or an integrated

chance constraint (ICC). The former restricts the number of underfunding

events while the latter restricts the expected amount of underfunding. We

have formulated both the CC and ICC within the two-stage SP.

We have also reviewed some of the well known risk measures, traditionally

used in single stage asset allocation; we concentrated in particular on LPMs

and CVaR, because they have been also used in ALM models in connection

with the risk of underfunding. CVaR has been considered for loss distributions

related to the funding ratio failing to achieve target λ, more precisely λL−A.

CCs and ICCs can be formulated as constraints requiring that LPM of target

λ and order 0 and 1 respectively are not higher that a pre-specified amount.

The LPMs are considered for random variables representing the funding ratios.
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Chapter 3

Optimisation Models for ALM

Based on Stochastic Dominance

3.1 Introduction and Motivation

As pointed out throughout the previous chapters, the ALM problem for pen-

sion funds is inherently a dynamic decision problem under uncertainty; it

involves making decisions on changes in the composition of the asset portfolio

at each decision moment aiming to keep the firm solvent through the plan-

ning horizon. The risk of underfunding has been commonly modelled by using

the expected shortfall of the funding ratio below its target value, either in a

constraint or in the form of a penalty term in the objective function. This

approach does non exclude the possibility of a funding ratio distribution with

unacceptably low values under a very small percentage of worst case scenar-

ios. For example, a distribution might have a small percentage of very low

outcomes and considerably higher outcomes in the rest; in this case, an inte-

grated chance constraints may be satisfied but the worst case realisation could

be unacceptably low. Similarly, imposing an upper limit in a CVaR constraint

may guarantee manageable outcomes even under worst case scenarios, but ig-

nore the rest of the distribution. For instance, a distribution may be ”flat” in

that the worst case realisations are not very low, but with little improvement

in the rest of the distribution, including possibly too many scenarios in which
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the target funding ratio is not met. Indeed, in imposing risk constraints, only

one single aspect of the distribution of interest is controlled; on the other hand,

they are convenient from a computational point of view.

In this research, we propose an alternative risk modelling framework based

on the concept of Second Order Stochastic Dominance (SSD). This is a crite-

rion of ranking random variables that takes the entire distribution of outcomes

into account. It is applied to random variables whose outcomes are desired to

be high and for whom an increase is more valued if it is at low levels, rather

than at high levels; typical such random variables represent return or wealth.

By definition, a random variable is preferred to another with respect to SSD

if its expected utility is higher, for any non-decreasing and concave utility

function [68]. SSD eliminates the need to specify a utility function, which is

difficult to elicit, but works under the general and widely accepted assumptions

of decision makers being rational (utility function is non-decreasing) and risk

averse (utility function is concave). Hence, the conceptual advantages of using

SSD as a choice criterion can be clearly seen: it expresses the preference of

rational and risk-averse decision makers. It is obviously desirable to eliminate

the random variables that are dominated and make a choice among the SSD

non-dominated ones, possibly employing another criterion to help in the final

selection. However, stochastic dominance is demanding from a computational

point of view, we elaborate on this later in this chapter.

In the ALM optimisation models proposed in this chapter, SSD is used

as a choice criterion for random variables representing funding ratios. The

approaches developed in [55] and [22] are extended and adapted to the ALM

multi-period case, taking into account the relationship between asset value and

liabilities. An optimal solution has a corresponding funding ratio distribution

that is SSD non-dominated; in addition, it comes close, in well defined sense,

to a target distribution of funding ratio, whose outcomes are specified by the

decision maker. A constraint on the expected terminal wealth is imposed, by

considering a minimum acceptable compounded return. Different target dis-

tributions lead to different SSD efficient solutions, target distributions can be
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chosen by the decision maker in an interactive way, by analysing the fund-

ing ratio distribution obtained, modifying the target distribution accordingly

and re-running the optimisation model with the new target distribution. Im-

proved distributions of funding ratios may be thus achieved, compared to the

existing risk models for ALM, which is a contribution of this work. Another

contribution is of theoretical nature; interesting results, connecting the pro-

posed models to well established risk models and well established classes of

SP models are derived for the particular case when the target distribution is

deterministic, specified by one single outcome.

The advantage of using SSD models over previous approaches of imposing

a risk constraint lies not only in better modelling of the (entire) funding ratio

distribution. With a risk constraint on the funding ratio distribution, the de-

cision maker has to set a right hand side, which is not a straightforward task

in this context. Klein Haneveld et al. [34] stressed that a priori selection of

the model parameter is difficult in practice and a reasonable parameter could

be found by setting a numerical experiments. Fabian and Veszprémi [23] con-

struct an approximation of the efficient frontier to help the decision maker in

calibrating the right hand side parameter in CVaR constraints as a first step

in formulating their model.

The chosen maximum acceptable level of deficit can lead to infeasibility, or,

in the opposite case, it may be under-restrictive. These issues are not encoun-

tered in our approach.

Previous work in using SSD within ALM models employed the concept in

the constraints; this, may result in infeasibility or under-achievement depends

on the target chosen by the decision maker. In solving the models proposed

in this chapter, even if the target distribution has too high / unachievable val-

ues, the model is not infeasible; its optimal solution represents an investment

decision with an SSD efficient funding ratio distribution, that comes ”as close

as possible” to the target. In the opposite case, if the target distribution has

not ”high” enough outcomes, the resulting distribution of funding ratio will

be ”better than target”, that is, not just attain it, but improve on it until SSD
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efficiency is obtained. More precisely, there are three possible cases. Firstly,

if the reference distribution is dominated with respect to SSD, the model pro-

vides a solution which comes close to this reference distribution, but is SSD

efficient (non-dominated). In this case, the achieved funding ratio distribu-

tion is ”better than target”. In the second case, if the reference distribution

is non-dominated with respect to SSD, the model provides a portfolio, whose

resulting funding ratio distribution is exactly the reference distribution. Fi-

nally, the reference distribution may not be attainable (in the sense that some

of its outcomes are too high such that there are no feasible portfolio weights

that could produce such a funding ratio distribution). In this case, the model

provides a SSD efficient portfolio whose associated funding ratio distribution

comes close to the reference distribution.

In Section 3.2, we present basic definitions of stochastic dominance and

discuss the particular case in which the random variables under consideration

have equally likely, or equi-probable, outcomes. We show that the SSD non-

dominated solutions are Pareto optimal solutions of a multi-objective model,

in which the objective functions represent tails of the funding ratio, at dif-

ferent confidence levels. An introduction to multi-objective optimisation is

presented in Section 3.3. In Section 3.4, two versions of the SSD model are

formulated: (SSD-Scaled) and (SSD-Unscaled). With the former model, the

objective functions (to which we set targets) are scaled tails, or conditional

expectations of progressively higher percentages of worst case scenarios; with

the latter, the objective functions represent unscaled tails.

Interesting particular cases for these models are obtained when the target dis-

tribution is deterministic: having a single outcome that occurs with probability

one. The simpler equivalent formulation of these models and the connection

with risk minimisation is discussed in Section 3.5. To widen the range for

modelling and controlling the funding ratio distributions, the SSD models has

been extended to include “reservation” levels (that should ”pre-empt” aspira-

tion levels, that is, have priority in being achieved) in addition to aspiration

levels. This model is presented in Section 3.6. Finally, concluding remarks are

presented in Section 3.7.
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3.2 Second Order Stochastic Dominance (SSD)

and the Case of Equally Likely Scenarios

Stochastic dominance ranks random variables under assumptions about gen-

eral characteristics of utility functions, drawn from observed economic behav-

ior. In practice, two random variables - representing, for example, portfolio

returns, asset values, or funding ratios - are compared by point wise compar-

ison of some performance functions constructed from their distribution func-

tions. The usual definition of stochastic dominance uses cumulative distribu-

tion functions, please refer to Section 1.2. SSD is formally defined using the

second performance function:

H(2)(r) =

∫ r

−∞
H(t)dt, r ∈ R,

where H(r) = P (R ≤ r) ∀r ∈ R. For the random variables R and R′

with cumulative distribution functions H and H ′ respectively, we say that

R dominates R′ with respect to second order stochastic dominance (denoted:

R �2 R
′) if and only if: H(2)(r) ≤ H ′(2)(r), ∀r ∈ R , with at least one strict

inequality [68].

SSD is of particular importance in investments because of its connection

with non-decreasing and concave utility functions, which represent the prefer-

ence of risk averse investors (see Section 1.2). In what follows, we state four

equivalent definitions of SSD.

Proposition 3.1. For random variables R and R′, the following conditions

are equivalent:

(a) E(U(R)) ≥ E(U(R′)) holds for any utility function U that has the prop-

erties of non-satiation (it is non-decreasing, first derivative is positive)
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and risk aversion (it is concave, second derivative is negative) and for

which these expected values exist and are finite.

(b) E([τ −R]+) ≤ E([τ −R′]+) holds for each target τ ∈ R. In other words,

the expected shortfall with respect to any target is always lower for the

first random variable.

(c) Tailα(R) ≥ Tailα(R′) holds for each 0 < α ≤ 1, where Tailα(R) denotes

the unconditional expectation of the least α ∗ 100% of the outcomes of

R.

(d) ScaledTailα(R) ≥ ScaledTailα(R′) holds for each 0 < α ≤ 1, where

ScaledTailα(R) denotes the conditional expectation of the least α∗100%

of the outcomes of R; ScaledTailα(R) = 1
α

Tailα(R).

If any of the relations above hold, the random variable R is said to domi-

nate the random variable R′ with respect to SSD. The proof for the equivalence

of SSD to (a), (b) and (c) was proved in [68], [48] and [49] respectively.

For the rest of this work, we consider the special case where the random

variables to compare are discrete with equally probable outcomes. This is the

usual situation when scenarios are generated via sampling from historical data.

In this case, SD relations can be greatly simplified as illustrated in this section.

Definition 3.1. The random variables R and R′ defined on a discrete proba-

bility space {Ω,F ,P} are equal in distribution, written R =d R′, if the distri-

bution functions of R and R′ are identical [68].

Random variables equal in distribution need not be identical [68].

Now, suppose R̃ and R̃′ are defined on {Ω,F , P}, with Ω = {1, ..., S}, F
is a σ-field and P (s) = 1/S, s = 1, ..., S, and have outcomes α1,...,αS and

β1,...,βS respectively. Without loss of generality, we denote by R and R′ the

random variables equal in distribution to R̃ and R̃′ , respectively, whose out-

comes are in ascending order: α1 ≤ .... ≤ αS and β1 ≤ ... ≤ βS. In this

case, first order stochastic dominance and second order stochastic dominance
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relations may be written as follows:

Proposition 3.2. In the case of discrete random variables R and R′ having

equally likely outcomes α1 ≤ .... ≤ αS and β1 ≤ ... ≤ βS respectively, R �1

R′ if and only if αk ≥ βk , ∀k ∈ {1, ..., S} with at least one strict inequality [54].

Proposition 3.3. In the case of discrete random variables R and R′ having

equally likely outcomes α1 ≤ .... ≤ αS and β1 ≤ ... ≤ βS respectively, R �2

R′ if and only if
∑k

i=1αi ≥
∑k

i=1βi , ∀k ∈ {1, ..., S} with at least one strict

inequality [54].

Proofs of Propositions 3.2 and 3.3 could be found in [54].

Definition 3.2. For a set Q of random variables, a variable R ∈ Q is called

SSD-efficient (or FSD-efficient) in Q if there is no R′ ∈ Q such that R′ �2 R

(or R′ �1 R).

Obviously, dominance in the larger class necessarily implies dominance in

the smaller class (but not conversely). Thus, R �1 R
′ implies R �2 R

′ [68].

Remark 3.1. SSD is stronger than FSD in the sense that it is able to order

more pairs of random variables. We could have indifference between R and

R′ with respect to FSD but prefer R or R′ with respect to SSD. Consider the

following example, let R have outcomes 1, 1, 4, and 4 (all with probability

1/4) and R′ has outcomes 3, 4, 0, 2 (all with probability 1/4). By ordering

the outcomes of R and R′ we obtain two 4-dimensional vectors: (1, 1, 4, 4)

and (0, 2, 3, 4) respectively. Note that there is indifference between R and R′

with respect to FSD. However, if we cumulate the outcomes of these vectors,

we obtain the vectors: (1, 2, 6, 10) and (0, 2, 5, 9) respectively. Hence, R

dominates R′ with respect to SSD.

As a final comment, the set of SSD non-dominated random variables is a sub-

set of the larger set of FSD non-dominated random variables.
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Remark 3.2. Note that in the example in the previous Remark, we have in-

difference between R and R′ according to the generic comparison framework

of a mean-variance model, since, although R has a higher expected value, it

also has higher risk. If in addition the DM has a risk-aversion parameter ρ,

then there will be a clear preference between R and R′ depending on the value

of E(R)− ρ σ2(R) (higher values preferred).

Note also that any rational and risk averse DM will prefer R irrespective to

the utility values that s/he will attach to each of the outcomes (as long as

these values are drawn from a non-decreasing and concave function; the values

will increase as the outcomes increase and will assign a value that shows less

appreciation for each additional increment as the outcomes increase).

Remark 3.3. If R is a discrete random variable with equally likely outcomes

α1 ≤ .... ≤ αS, we have:

Tailk/S(R) = (
k∑
i=1

αi)/S

and

ScaledTailk/S(R) = (
k∑
i=1

αi)/k

In the case of random variables with equally likely outcomes, the com-

parisons in Proposition 3.1 dramatically reduce to a finite number (S com-

parisons). As in [36], [55] also used in [21], [22], it is enough in this case to

compare tails of random variables R and R′ only for confidence levels k/S with

k = 1...S.

In this situation, R dominates R′ with respect to SSD if and only if

Tailk/S(R) ≥ Tailk/S(R′) , k = 1 . . . S

or equivalently,

ScaledTailk/S(R) ≥ ScaledTailk/S(R′) , k = 1 . . . S

with at least one strict inequality.
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Thus, finding the SSD efficient solutions could be seen as finding the opti-

mal solutions of a problem with S objectives to consider: the tails (or scaled

tails) of the random variable of interest, for different confidence levels. In

the next section, we go through a few useful definitions and results on Multi-

Objective Optimisation (MOO).

3.3 Multi-Objective Optimisation and the Ref-

erence Point Method

Let us consider a generic form of a multi-objective optimisation problem with

S objective functions to maximise:

Max{Obj(x) = (Obj1(x), ..., ObjS(x)) : x ∈ X} (3.1)

Where Objk(x) is the k-th objective function or the criteria, k ∈ {1, .., S},
x ∈ Rn is a decision vector, and X is the feasible decision space or the con-

straints set.

y ∈ RS is called an achievement vector if there exists a feasible solution

x ∈ X such that y = Obj(x) and the set Y = {y = Obj(x)|x ∈ X} is called

the feasible criterion space or the attainable set [41].

Usually, in MOO two achievement vectors are compared using the Pareto

preference relation, defined as follows:

Definition 3.3. A feasible solution x1 ∈ X Pareto dominates another feasi-

ble solution x2 ∈ X if: Objk(x1) ≥ Objk(x2),∀k ∈ {1, ..., S} with at least one

strict inequality [56].

A Pareto optimal, or non-dominated, or efficient solution is one such that

no other feasible solution Pareto dominates it. Thus, a Pareto efficient solu-

tion is a feasible solution such that, in order to improve upon one objective

57



function, at least one other objective function must assume a worse value.

Pareto-optimality does not tell which decisions to choose; it only tells which

decisions to avoid. Clearly, it is reasonable to restrict attention on the Pareto

optimal solutions, but the problem remains how to select one of them. There

are various methods of obtaining a Pareto optimal solution of a multi-objective

optimisation problem (see for example [11] , [20], and [41]). A good control on

obtaining a specific solution is given by the Reference Point Method (RPM)

[71].

In the RPM, reference points (or aspiration points) are set by the DM for

the values of the objective functions: they are desired values for the objective

functions. Then, the multi-objective optimisation is transformed into a single

objective optimisation by maximising an achievement function: a scalar func-

tion constructed depending on the reference points, such that, when optimised,

generates a Pareto optimal solution of the original multi-objective problem;

the reader is referred to [71] and [70] for a detailed treatment of the subject.

Consider the general case of S real-valued objective functions Obj1, . . . ObjS

defined on a set X ∈ Rn representing a feasible set of decision vectors and con-

sider the multi-objective model: Max{(Obj1(x), . . . ObjS(x)) s.t. x ∈ X}. For

each of the functions Objk, a target point aspk is set by the decision maker;

let asp = (asp1, ..., aspS) be the vector of targets/aspiration levels. We can

measure the actual achievement of the k-th objective function with respect

to its corresponding aspiration level aspk by the so called partial achievement

functions, defined for any feasible point. Various functions provide a wide

modelling environment for measuring individual achievements. The simplest

form of partial achievement functions is the one that measures the difference

between the values of the objective functions and their targets: Objk(x)−aspk.
This could be replaced with more complicated functions depending on Objk(x)

and aspk, which must satisfy certain properties: being monotonically increas-

ing functions with respect to Objk(x) and taking value 0 if Objk(x) = aspk

(see for example [71] and [55]).
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A commonly used type of scalarising achievement function (to be opti-

mised), that we also use in our approach, is one that considers the worst

deviation of an objective function from its reference point:

δ(x) = min
k=1...S

{Objk(x)− aspk}

It was shown in [69] that maximisation of such an achievement function leads to

a Pareto optimal solution of the multi-objective model. In the case of multi op-

timal solutions, at least one of them will be Pareto optimal, but not necessary

all of them. To guarantee Pareto efficiency in the general case, a regularisa-

tion term is added to the worst partial achievement: ε
∑S

k=1(Objk(x)− aspk),
where ε > 0 is an arbitrary small parameter.

Remark 3.4. Different values of ε can lead to different Pareto optimal so-

lutions. It was shown in [69] that for all ε > 0, the maximisation of δ(x) +

ε
∑S

k=1(Objk(x)−aspk) results in a Pareto optimal solution for Max{(Obj1(x),

. . . , ObjS(x)) s.t. x ∈ X}. However, a small enough value of ε should be cho-

sen (possibly on a trial and error basis) to ensure that optimisation of the

worst partial achievement is achieved.

The Reference Point Method has been considered as a generalisation of

Goal Programming approach as the objective function values do not necessary

attain their reference points [71]. In RPM, the main advantage of goal pro-

gramming is preserved: the appealing idea that we set a goal in the objective

space and try to come close to it, without the danger of infeasibility. How-

ever, it does more than this, because the meaning of “coming close” is not the

traditional one (a distance minimisation), but “coming close or better” [70].

This sense of coming close is deeply related to how in reality people make deci-

sions. The Pareto efficiency of the solution is guaranteed in this method: when

the reference point is not a Pareto efficient achievement vector, the method

improves on it (i.e. find a decision and thus attainable achievement vector

that improves at least one of its outcomes without deteriorating another one),

resulting still in a Pareto optimal solution. As opposed to goal programming,

optimisation continues even after the goal has been reached [71].
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In this method, the obtained Pareto efficient solution results in an achievement

vector that is:

• Better than the reference point, in the case if the chosen reference point is

not a Pareto efficient achievement vector of the multi-objective problem

under consideration.

• Exactly the reference point, if the reference point is a Pareto efficient

achievement vector of the multi-objective problem.

• Close to the reference point, in the sense of maximising the worst differ-

ence between the cumulative outcomes of the obtained solution and of

the reference point, if the reference is not attainable [71]. An alternative

formulation, that works both for scaled and unscaled cases, is the worst

difference between the (scaled) tails of the obtained solution and those

of the reference point.

3.4 Models for ALM Based on SSD

We propose ALM models in which the first-stage investment decisions are such

that the resulting funding ratio distribution is non-dominated with respect to

SSD, or in other words, SSD efficient. Similarly to [34], we consider the fund-

ing ratio at time t = 1, thus modelling short-term risk; the approach can be

extended for more time periods.

Following [55], we assume that the probabilities of scenarios are equal and

thus the short term funding ratio is a discrete random variable with equally

likely outcomes. As explained in Section 3.2, the comparison between two

random variables with respect to SSD can be greatly simplified in this case; it

is enough to compare tails only for confidence levels k
S

with k = 1 . . . S.

With the ALM setting described in Section 2.1, let us consider the feasible

set of solutions {Bi,0, Si,0, Hi,0, Bi,t,s, Si,t,s, Hi,t,s, Hi,T,s , i = 1 . . . I, t =

1 . . . T − 1, s = 1 . . . S} satisfying equations (2.2) to (2.12), that define the
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feasibility conditions for our generic ALM model, and in addition a constraint

on the expected terminal wealth requirement:

S∑
s=1

πsAT,s ≥
I∑
i=1

OPi(1 + d) (3.2)

where AT,s =
∑I

i=1Hi,T−1,sRi,T,s; Ri,T,s is the rate of return of asset i at

the final time period T under scenario s.

Let us consider two sets of feasible first stage decisions (Hi,0, Bi,0, Si,0, i =

1 . . . I) and (H ′i,0, B
′
i,0, S

′
i,0, i = 1 . . . I) with corresponding funding ratios at

time (t = 1) F and F ′ respectively, described by their possible outcomes:

Fs =
I∑
i=1

Hi,0Ri,1,s/L1,s , s = 1 . . . S

and

F ′s =
I∑
i=1

H ′i,0Ri,1,s/L1,s , s = 1 . . . S

respectively; each of these outcomes occurs with probability 1/S.

Let us order F1, . . . FS and F ′1, . . . F
′
S and lets us denote by α1 ≤ . . . ≤ αS

to the outcomes of F in ascending order and β1 ≤ . . . ≤ βS to the outcomes

of F ′ in ascending order too.

With these notations here, the relationships developed in [55] can be writ-

ten as:

F dominates F ′ with respect to SSD if and only if

Tailk/S(F ) ≥ Tailk/S(F ′) , k = 1 . . . S

or equivalently,

ScaledTailk/S(F ) ≥ ScaledTailk/S(F ′) , k = 1 . . . S

with at least one strict inequality; please also see [36].

In other words, in the case of equally likely scenarios, the vector of tails
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[Tail1/S(F ), . . . ,TailS/S(F )] Pareto dominates [Tail1/S(F ′), . . . ,TailS/S(F ′)].

Thus, the solutions that would result in a funding ratio distribution that

is non-dominated with respect to SSD (we refer to them as the SSD efficient

solutions) can be obtained as the Pareto non-dominated solutions of multi-

objective problems in which the objective functions are tails (or scaled tails)

at confidence levels k
S

, with k = 1 . . . S. We consider progressively larger left

tails of the funding ratio distribution as multiple objective functions, either

scaled (equivalent to averages of a progressively higher number of worst case

values), or unscaled (equivalent to sums of a progressively higher number of

worst case values). Thus, the problem can be written as:

Max (ScaledTail1/S(F ), ScaledTail2/S(F ), . . . , ScaledTailS/S(F )) (3.3)

or we can use the ”unscaled” version:

Max (Tail1/S(F ), Tail2/S(F ), . . . , TailS/S(F )) (3.4)

subject to equations (2.2) to (2.12) and (3.2).

Problems (3.3) and (3.4) have an infinite number of efficient solutions; thus,

in order to select a specific solution, an additional criterion is needed.

In order to obtain Pareto optimal solutions of (3.3) and (3.4), we use the

Reference Point Method, similarly to [55]. In our case, the objective functions

represent tails or scaled tails, at different confidence levels, of the funding ratio

distribution. By specifying a target of the funding ratio under each scenario,

we obtain a target ”distribution ” of the funding ratio, which result in target

points for the tails/scaled tails at different confidence levels k
S

(k = 1 . . . S),

and hence an aspiration levels for each objective function.

Let us consider a target distribution of funding ratio, with (equally prob-

able) outcomes λk, k = 1 . . . S; without loss of generality, let us consider
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λ1 ≤ . . . ≤ λS. Let aspk denote the scaled k-th cumulative outcome,

aspk =
1

k

k∑
i=1

λi , k = 1 . . . S

and asp′k denote the unscaled k-th cumulative outcome,

asp′k =
1

S

k∑
i=1

λi , k = 1 . . . S

The target point for the k-th objective function in (3.3) is aspk, while asp′k
represents the target point for the k-th objective function in (3.4). Following

[69], the multi-objective model (3.3) is transformed into a single objective

model by maximising the following achievement function :

min
k=1...S

(ScaledTailk/S(F )− aspk) + ε
S∑
k=1

(ScaledTailk/S(F )− aspk) (3.5)

If the unscaled model is used, the objective function to maximise is:

min
k=1...S

(Tailk/S(F )− asp′k) + ε
S∑
k=1

(Tailk/S(F )− asp′k) (3.6)

In order to express the tails and scaled tails of the funding ratio distribu-

tion as functions of the decision variables, we use the following proposition. It

expresses a cumulative outcome or a tail, at a specified confidence level, of a

random variable as the optimal value of an LP model:

Proposition 3.4. For every k ∈ {1, . . . , S}, the mean of the worst k outcomes

of a random variable y with equally likely finite outcomes y1, . . . , yS is the

optimal value of the objective function in the following LP problem:

Max (Tk −
1

k

S∑
i=1

dk,i)

Subject to:

Tk − ys ≤ dk,s , s = 1 . . . S
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dk,s ≥ 0 , s = 1 . . . S

Tk is a free variable representing the k − th worst outcome of the random

variable y. For each s ∈ {1, . . . , S}, dk,s = [Tk − ys]+ that is

dk,s =

{
0, if ys ≥ Tk

Tk − ys, otherwise
(3.7)

For the proof of this proposition, the reader is referred to [47].

Thus, for any feasible decision {Bi,0, Si,0, Hi,0, Bi,t,s, Si,t,s, Hi,t,s, Hi,T,s , i =

1 . . . I, t = 1 . . . T − 1, s = 1 . . . S}, the scaled tail at confidence level k
S

(k =

1 . . . S) of the first stage funding ratio F , with outcomes Fs =
∑I

i=1Hi,0Ri,1,s/L1,s,

s = 1 . . . S, is:

ScaledTailk/S(F ) = Max (Tk −
1

k

S∑
i=1

dk,i)

Subject to:

Tk − Fs ≤ dk,s , s = 1 . . . S

dk,s ≥ 0 , s = 1 . . . S

Fs =
I∑
i=1

Hi,0Ri,1,s/L1,s , s = 1 . . . S

and also subject to equations (2.2) to (2.12) and (3.2).

Hence, we can express the SSD efficient solution of (3.3) as the Pareto

efficient solutions of the following multi-objective optimisation problem:

Max (T1 −
S∑
i=1

d1,i, T2 −
1

2

S∑
i=1

d2,i, ..., TS −
1

S

S∑
i=1

dS,i) (3.8)

Subject to:

Tk − Fs ≤ dk,s , k, s = 1 . . . S

dk,s ≥ 0 , k, s = 1 . . . S
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and subject to equations (2.2) to (2.12) and (3.2).

Similarly, (3.4) becomes:

Max (T1 −
S∑
i=1

d1,i, 2T2 −
S∑
i=1

d2,i, ..., STS −
S∑
i=1

dS,i) (3.9)

Subject to:

Tk − Fs ≤ dk,s , k, s = 1 . . . S

dk,s ≥ 0 , k, s = 1 . . . S

and subject to equations (2.2) to (2.12) and (3.2).

The objective functions in (3.8) and (3.9) do represent tails and scaled

tails of the funding ratio distribution at different confidence levels, k
S

, k =

1 . . . S. To prove this, consider a Pareto optimal solution of (3.8) (T ∗k )k=1..S,

(d∗ks)k,s=1..S, and (H∗i0)i=1..I with the corresponding first-stage funding ratio

distribution F ∗ with possible outcomes F ∗s =
∑I

i=1H
∗
i,0Ri,1,s/L1,s, s = 1 . . . S.

Suppose that there exists k ∈ {1, ..., S} such that (T ∗k − 1
k

∑S
s=1 d

∗
ks) - that is,

the k-th objective function in (3.8)- is not the mean of the worst k outcomes

of F ∗. We solve the optimisation problem:

Max [Tk −
1

k

S∑
s=1

dk,s]

Subject to:

Tk − F ∗s ≤ dk,s , s = 1 . . . S

dk,s ≥ 0 , s = 1 . . . S

and denote by (T ′k)k=1..S and (d′ks)k,s=1..S the optimal solution. As per

Proposition 3.4, T ′k represents the k-th worst outcome of F ∗, while the opti-

mal value of the objective function T ′k− 1
k

∑S
s=1 d

′
ks is the mean of the worst k

outcomes (the k-th scaled tail of F ∗).

T ′k −
1

k

S∑
s=1

d′ks ≥ T ∗k −
1

k

S∑
s=1

d∗ks
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Thus, we have obtained another feasible solution of (3.8) (T ∗1 , . . . T
∗
k−1, T

′
k, T

∗
k+1

. . . T ∗S , d∗11, . . . d
∗
1S, . . . , d

′
k1 . . . , d

′
kS, . . . d

∗
S1, . . . d

∗
SS, H

∗
i0) that has the same ob-

jective function values, apart from the k-th one, where it strictly improves.

This is a contradiction with (T ∗k )k=1..S, (d∗ks)k,s=1..S, and (H∗i0)i=1..I being Pareto

optimal. Hence, for a Pareto efficient solution of (3.8), the objective function

values represent scaled tails. �

In this section, we formulate two SSD models that result in an SSD efficient

solution, a scaled model and an unscaled model. In addition to the decision

variables for the ALM model presented in Section 2.1, both problem (3.8) and

(3.9) have S free variables T1, ..., TS with Tk being the k-th worst outcome of

the funding ratio distribution (F1, ..., FS). Besides these variables, the prob-

lem has also S2 non-negative variables (dk,s)k, s=1,...,S with the interpretations

given in Proposition 3.4; dk,s = [Tk − Fs]+, s = 1 . . . S. In the next sections,

we reformulate these MOO as single objective problems using the Reference

Point Method.

3.4.1 The SSD Scaled Model Formulation

By considering scaled tails in the multi-objective optimisation problem as per

(3.8) we obtain the SSD scaled model. The MOO problem (3.8) is transformed

into a single objective optimisation problem by maximising the objective func-

tion (3.5), representing the worst difference between a scaled tail and its ref-

erence, with the addition of a regularisation term. We refer to this model as

(SSD-Scaled) optimisation model:

Max δ + ε(
S∑
k=1

Zk −
S∑
k=1

aspk)

Subject to:

Zk = Tk −
1

k

S∑
s=1

dk,s , k = 1 . . . S (3.10)
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Zk − aspk ≥ δ , k = 1 . . . S (3.11)

Tk − Fs ≤ dk,s , k, s = 1 . . . S (3.12)

Fs =
I∑
i=1

Hi,0Ri,1,s/L1,s , s = 1 . . . S (3.13)

dk,s ≥ 0 , k, s = 1 . . . S (3.14)

1

S

S∑
s=1

AT,s ≥
I∑
i=1

OPi(1 + d) (3.15)

and also subject to equations (2.2) to (2.12), representing asset holding

constraints, fund balance constraints, bound constraints, and short sales con-

straint. OPi is the monetary value of asset i (i = 1 . . . I) in the original

portfolio and d is a minimum accepted rate of return over T years, specified

by the decision maker.

In addition to the decision variables Hi,0, Bi,0, Si,0, Hi,t,s, Bi,t,s, Si,t,s rep-

resenting investment decisions, we have additional decision variables whose

nature is discussed below:

Fs = The funding ratio under scenario s at time t=1; (Fs=A1,s/L1,s), s =

1 . . . S;

Tk= The k-th worst outcome of the funding ratio at time 1, k = 1 . . . S (free

variable); thus, T1, . . . , TS are the outcomes of a random variable equal

in distribution to the funding ratio;

Zk= The mean of the worst k outcomes of the funding ratio, or other said,

ScaledTailk/S(F ); Zk = (T1 + . . .+ Tk)/k, k = 1 . . . S (free variable);

δ = mink=1...S(Zk − aspk)= the worst partial achievement (free variable);
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dk,s= Non-negative variables, dk,s = [Tk − Fs]+ that is

dk,s =

{
0, if Fs ≥ Tk

Tk − Fs, otherwise
(3.16)

In addition to the parameters discussed in Section 2.1 representing returns

of the assets, liabilities, contributions and initial portfolio, there are parameters

which are chosen by the decision maker:

aspk = The target or aspiration level for ScaledTailk/S(F ) = Zk, k = 1 . . . S;

d > 0 = Desired rate of return over the investment horizon;

ε > 0 = The weighting coefficient of the regularisation term in the objective

function.

Proposition 3.5. For any choice of aspiration levels and of ε > 0, the optimal

solution of the above model represents a first stage decision allocation Hi,0,

i = 1 . . . I such that the corresponding funding ratio F , represented by equally

likely outcomes Fs, s = 1 . . . S, is non-dominated with respect to SSD.

Proof. Consider an optimal solution of (SSD-Scaled) with first stage decision

H∗i,0, i = 1 . . . I and the corresponding funding ratio distribution F ∗, with out-

comes F ∗s =
∑I

i=1H
∗
i,0Ri,1,s/L1,s, s = 1 . . . S. It is clear that the corresponding

(T ∗k )k=1..S and (Z∗k)k=1..S represent the k-th worst outcomes and the mean of

the k worst outcomes of F ∗, respectively. Otherwise by solving

Max [Zk = Tk −
1

k

S∑
i=1

dk,i]

Subject to:

Tk − F ∗s ≤ dk,s , s = 1 . . . S

dk,s ≥ 0 , k, s = 1 . . . S

and using the optimums, we obtain a solution that strictly improves on the

objective function in (SSD-Scaled), which is a contradiction.
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Now, suppose that this optimal solution of (SSD-Scaled) is not SSD efficient;

hence, there exists another feasible first stage decisions H ′i,0, i = 1 . . . I with

funding ratio F ′ having outcomes F ′s =
∑I

i=1H
′
i,0Ri,1,s/L1,s, s = 1 . . . S, such

that F ′ �2 F
∗.

For each k ∈ {1, .., S} we solve:

Max [Tk −
1

k

S∑
s=1

dk,s]

Subject to:

Tk − F ′s ≤ dk,s , s = 1 . . . S

dk,s ≥ 0 , s = 1 . . . S

and denote by T ′k and d′k,s, s = 1 . . . S the optimal solution and by Z ′k =

T ′k − 1
k

∑S
s=1d

′
k,s.

F ′ �2 F
∗ ⇔ Z ′ ≥ Z∗, ∀k = {1..S} with al least one inequality strict.

⇔ Z ′ − aspk ≥ Z∗ − aspk, ∀k = {1..S} with al least one inequality strict.

⇒ min
k=1...S

(Z ′ − aspk) ≥ min
k=1...S

(Z∗ − aspk)

⇒ min
k=1...S

(Z ′ − aspk) +
S∑
s=1

(Z ′ − aspk) > min
k=1...S

(Z∗ − aspk) +
S∑
s=1

(Z∗ − aspk)

Hence, we have obtained a feasible solution of (SSD-Scaled) that results in a

strictly better value of the objective function, which is a contradiction.

Furthermore, if the aspiration levels are not attainable, this model does

not result in infeasibility; it produces a solution that comes close to these

levels. In other words, it does as well as it can. This is due to the generalised

goal programming approach used in this model: the constraint (3.11) does not

require that all cumulated outcomes be greater than or equal to their aspiration

levels but just expresses the worst partial achievement (i.e. δ can be negative,

and it is, if the aspiration level is not attainable). That is, ScaledTailk/S(F ∗) ≥
ScaledTailk/S(F ) , k = 1 . . . S with at least one inequality strict.

Remark 3.5. The sign of the optimal value of δ or of the optimal value of the

objective function in (SSD-Scaled) is an indication of whether the aspiration
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levels have been achieved. A strictly positive δ indicates that the aspira-

tion levels have been strictly improved upon. If the aspiration distribution

is exactly matched, that is, if the optimal solution results in a funding ratio

distribution whose scaled tails are exactly the reference points, the optimum

value of the objective function is 0. Finally, a strictly negative optimal value

of δ indicates that there is at least one scaled tail that did not achieve its target.

A regularisation term is added to the objective to deal with the case that

optimisation of the worst partial achievement has multiple optimal solutions;

in this case, the overall better solution should be chosen, that is, the solution

for which the sum of the objective function values is higher. The complete

algebraic formulation of the (SSD-Scaled) model could be found in Appendix

A and the AMPL code used to solve it is in Appendix B.

3.4.2 The SSD Unscaled Model Formulation

By considering unscaled tails in the multi-objective optimisation problem (3.9),

with a similar treatment as for the SSD scaled model, we obtain the (SSD-

Unscaled) model:

Max δ′ + ε(
S∑
k=1

Z ′k −
S∑
k=1

asp′k)

Subject to:

Z ′k = kTk −
S∑
s=1

dk,s , k = 1 . . . S

Z ′k − asp′k ≥ δ′ , k = 1 . . . S

also subject to (2.2) to (2.12) and (3.12) to (3.15).

Here, Z ′k is the sum of the worst k outcomes of the funding ratio, or in

other words, S × Tailk/S(F ); Z ′k = T1 + . . .+ Tk, k = 1 . . . S.
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Remark 3.6. Both (SSD-Scaled) and (SSD-Unscaled) models have (possibly

different) optimal solutions such that their distribution of funding ratio is SSD

efficient. The modelling difference resides in how the ”closeness” to the target

distribution is measured, more precisely, how the shortfalls below target points

are penalised. With the unscaled model, the accumulation of outcomes below

their targets is penalised, rather than the magnitude of the shortfalls, which is

more severely penalised in the scaled model. This becomes more obvious when

the target distribution is deterministic, having one single possible outcome. It

is shown in the next section that, in this case, the scaled model maximises the

worst outcome of the funding ratio, i.e the largest deviation from the (single)

target point, while the unscaled model minimises the expected shortfall be-

low the target, taking thus into account all situations when the target is not

achieved.

Remark 3.7. Both (SSD-Scaled) and (SSD-Unscaled) models provide an SSD

efficient solution, irrespective of the aspiration levels chosen by the decision

maker; this choice cannot lead to infeasibility either. This follows from the

”better than target” property of the Reference Point Method in multi-objective

optimisation. It was shown in [69] that the maximisation of the achievement

function results in a Pareto optimal solution of the multi-objective model irre-

spective of the reference points chosen by the decision maker. If the reference

points do not form a Pareto optimal vector for the multi-objective model, the

maximisation of the achievement function improves on the reference points un-

til Pareto optimality is attained. If the reference points form a Pareto optimal

vector, the optimal solution in the maximisation of the achievement function

results in objective function values equal to the reference points. Finally, if at

least one of the reference points is unattainable / too high, we obtain a Pareto

optimal solution in which the worst difference between objective function val-

ues and reference points is optimised.

In the current setting, the multiple objective functions represent tails (or scaled

tails) of the funding ratio distribution and Pareto optimal solutions represent

SSD efficient distributions. The three cases above relate to whether the tar-

get distribution of funding ratio is (1) SSD dominated; (2) SSD efficient or
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(3) unattainable, in the sense that there is no feasible solution that could at-

tain or improve on all of its tails. In all three cases, the optimal solutions

of both scaled and unscaled models are SSD efficient, corresponding to cases

(1) better than target; (2) matching the target; (3) coming close to the target

distribution.

3.5 Connection with Risk Minimisation

Consider the particular case in which the target level for every outcome of the

funding ratio distribution is equal to a target funding ratio λ; λ1 = λ2 = . . . =

λS = λ. This makes the target distribution a deterministic distribution.

3.5.1 The SSD Scaled Model with Deterministic Target

In this case, the aspiration levels for the scaled tails of the funding ratio are

also all equal to λ: aspk = λ, ∀k ∈ {1, . . . , S}.
It is clear that the worst partial achievement δ = mink=1...S(Zk − aspk) corre-

sponds to the worst outcome of the funding ratio distribution, irrespective to

the value of λ. Thus, maximising the worst partial achievement is equivalent

to maximising the worst outcome. A minimax mean-risk model, in which risk

is defined as the maximum possible loss, was proposed by Young [73], who also

showed that such a model can be formulated as an LP. The minimax model

maximises the minimum return, subject to the restriction that the average

return of the portfolio exceeds some pre-specified minimum level. That is, the

minimax portfolio minimises the maximum loss, where loss is defined as the

negative of return.

In our case, if we exclude the regularisation term, maximising the worst

partial achievement can be formulated as a (Maximin) model, which op-

timises the worst outcome of funding ratio, subject to a constraint on the

expected terminal wealth.
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Max δ

Subject to:

Fs ≥ δ , s = 1 . . . S

subject to (2.2) to (2.12), (3.13) and (3.15).

We have developed in Section 3.3, that maximisation of worst partial

achievement is not guaranteed to be Pareto optimal; the addition of the reg-

ularisation term ensures Pareto optimality. Hence, in case the model above

has a unique optimal solution, SSD efficiency is guaranteed. However, just

as with the general SSD model, in case of non-unique optimal solutions, the

SSD efficiency is not guaranteed; a regularisation term should be added in the

objective function. The regularisation term in the SSD scaled model is the

sum of tails/ cumulated outcomes; in order to formulate it, we need additional

S2 variables dki which adds substantially to the computational complexity. In

order to avoid this, we can add in the objective function above a term such

as ε
∑S

s=1Fs which brings no extra computational complexity; we obtain the

model (Maximin 2):

Max (δ + ε
S∑
s=1

Fs)

Subject to:

Fs ≥ δ , s = 1 . . . S

also subject to (2.2) to (2.12), (3.13) and (3.15).

Just as before, ε has to be chosen as a small enough number such that

the optimisation is basically that of the worst outcome. The optimal solu-

tion of this model will result in a funding ratio that has the highest ”worst”

outcome and also the highest expected value amongst all optimal solutions

of (Maximin). Notice that, although the chance of getting an SSD inefficient

solution is substantially decreased at no extra computational complexity, SSD

efficiency is still not guaranteed as there is theoretically the possibility that

(Maximin 2) has multiple optimal solutions.
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Thus, an SSD scaled model in which the reference distribution is deter-

ministic could be in most cases written as a maximin model of maximising

the worst case value of the funding ratio. The single outcome of the reference

distribution is irrelevant.

3.5.2 The SSD Unscaled Model with Deterministic Tar-

get

The aspiration levels for the cumulated outcomes of the funding ratio are:

asp′k = 1
S
kλ, k = 1 . . . S. As in Section 4.1, denote by T1 ≤ . . . ≤ TS the

ordered outcomes of the funding ratio. The worst partial achievement is:

1

S
min
k=1...S

(T1 + . . .+ Tk − kλ)

As each outcome below λ is penalised, the minimum is achieved for an index

j in {1, . . . , S} such that Tj ≤ λ ≤ Tj+1.

The worst partial achievement is thus

1

S
[(T1 − λ) + . . .+ (Tj − λ)] =

1

S

∑
Tk<λ

(Tk − λ)

Thus, maximising the worst partial achievement is equivalent to minimising

1

S

∑
Tk<λ

(λ− Tk)

which is the Lower Partial Moment of order 1 and target λ of the funding

ratio, also called the expected shortfall below target λ.

The model that minimises the expected shortfall below target λ can be

formulated as an LP by introducing S additional variables representing the

shortage of the funding ratio with respect to target λ under each scenario:

Min
1

S

S∑
s=1

Shs

Subject to:

Fs − λ+ Shs ≥ 0 , s = 1 . . . S
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Sht,s ≥ 0 , s = 1 . . . S

subject to (2.2) to (2.12), (3.13) and (3.15).

We notice several things here.

First, without the addition of a regularisation term, minimisation of the ex-

pected shortfall is not guaranteed to result in an SSD efficient solution. One

case in which SSD efficiency might not occur is the situation when there are

multiple optimal solutions; at least one of them is SSD efficient but not nec-

essarily all of them. The other case in which SSD efficiency might not occur

is when the optimum in the minimisation of expected shortfall is zero, that

is, T1 ≥ λ. In this case the optimal solution may be ANY solution such that

the corresponding funding ratio has all outcomes above the target λ. Adding

a regularisation term ensures that the optimal solution is improved until SSD

efficiency is achieved - an example of ”better than target” situation. However,

a regularisation term as in the (SSD-Unscaled) model involves the introduction

of additional S2 variables. Similarly to the previous subsection, we may add a

term in the objective function such that, out of all solutions that minimise the

expected shortfall below λ, the one with the highest expected value is chosen:

Min
1

S

S∑
s=1

Shs − ε
S∑
s=1

Fs

with ε a small enough number.

Secondly, the model that minimises expected shortfall below λ is closely

connected to an ICCP model [34], in which the integrated chance constraint

penalises shortfalls of the funding ratio distribution with respect to target λ.

The connection is in the following sense. With the former, the expected short-

fall is in the objective and a constraint on the terminal expected asset value

is imposed. With the latter, the expected shortfall is the left hand side of

a constraint, while maximising terminal expected asset value may be part of

the objective. With appropriate choices of the right hand sides involved, the

two models have the same optimal solution. We give an example of such a

situation in the numerical experiment conducted in Chapter 5.
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Remark 3.8. In the general case of the SSD models presented in this chap-

ter, the reference distribution could be constructed in many different ways.

A possible strategy is to start by implementing either an ICCP or Maximin

model and analyse the resulting distribution of funding ratio. Should this be

not acceptable, one can implement a generic SSD model, by setting a (non-

deterministic) target distribution based on the outcomes of the funding ratio

already obtained. For example, the targets for the worst case scenario and

the left tails can be increased, should these values be too low in the ICCP

solutions. Similarly, the targets for the tails at higher confidence levels (e.g.

the expected value) may be increased, should the Maximin model provide a

solution with poor performance apart from worst case scenarios. The fact that

there is not one single way to choose the aspiration levels should be regarded

as an advantage of this method. Different target distributions lead to different

SSD efficient solutions. We can analyse the distribution of the portfolio that

we obtain, and, if not satisfactory, we can modify the aspiration levels and ob-

tain a further candidate solution portfolio. Improved distributions of funding

ratios may be thus achieved, compared to the existing risk models for ALM.

Numerical experiments in Chapter 5 support this claim.

3.6 Introducing Reservation Levels

The SSD models presented in Section 3.4 can be extended to include reserva-

tion levels in addition to aspiration levels. As the name implies, the difference

between aspiration and reservation levels is that reservation levels are ”min-

imum requirements” and should be achieved if at all possible, whilst it is

desirable to achieve aspiration levels.

In this section, we extend the (SSD-Scaled) model by including both aspira-

tion aspk and reservation resk levels for each objective function Zk, k = 1, ..., S

representing the cumulative outcomes of the funding ratio distribution. Fol-

lowing [55], we denote the partial achievement functions by ϑaspk,resk(Zk); Zk
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depends on the first stage decision variables {Hi,0, Bi,0, Si,0, i = 1 . . . I},
while aspk and resk are chosen by the decision maker. Such partial achieve-

ment functions must satisfy certain requirements: being increasing functions

with respect to Zk, taking value 0 if Zk = resk and value 1 if Zk = aspk [71].

In this model, we use partial achievement functions defined as piecewise linear

functions as follows:

ϑaspk,resk(Zk) =


α[Zk−resk]
aspk−resk

for Zk ≤ resk
Zk−resk
aspk−resk

for resk < Zk < aspk
β[Zk−aspk]
aspk−resk

+ 1 for Zk(x) ≥ aspk

(3.17)

where α, β are positive parameters and should be chosen in such a way

that partial achievement functions are not only monotone, but also concave.

As can be seen in Figure 3.1, under the condition 0 < β < 1 < α, the partial

achievement function (3.17) is strictly increasing and concave. Thus, (3.17) is

a typical utility function for a rational and risk-averse DM.

Figure 3.1: Example of a partial achievement function as in (3.17)
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The parameter α > 1 represents the decision maker’s dissatisfaction for

outcomes worse than their corresponding reservation level, while the param-

eter β < 1 represents satisfaction for outcomes better than their aspiration

level. Thus, they map outcome values onto a normalized scale of the decision

maker’s satisfaction:

• If the outcome is below its reservation level (Zk ≤ resk), the partial

achievement function takes negative values;

• If (Zk = resk), the partial achievement function takes value 0;

• For outcomes between the reservation and the aspiration level resk ≤
Zk ≤ aspk, it takes a value between 0 and 1;

• For (Zk = aspk), it takes value 1;

• For outcomes better than the aspiration level (Zk ≥ aspk), the partial

achievement function takes a value greater than 1.

The largest possible values of ϑaspk,resk(Zk) are required for every Zk, k =

1 . . . S. Thus, we can express the partial achievement functions using a set of

linear constraints and formulate the following (SSD-res) model as follows:

Max δ + ε
S∑
k=1

δk

Subject to:

δk ≥ δ , k = 1 . . . S (3.18)

δk ≤
α[Zk − resk]
aspk − resk

, k = 1 . . . S (3.19)

δk ≤
Zk − resk
aspk − resk

, k = 1 . . . S (3.20)

δk ≤
β[Zk − aspk]
aspk − resk

+ 1 , k = 1 . . . S (3.21)
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Zk = Tk −
1

k

S∑
s=1

dk,s , k = 1 . . . S (3.22)

Tk − Fs ≤ dk,s , k, s = 1 . . . S (3.23)

Fs =
I∑
i=1

Hi,0Ri,1,s/L1,s , s = 1 . . . S (3.24)

dk,s ≥ 0 , k, s = 1 . . . S (3.25)

1

S

S∑
s=1

AT,s ≥
I∑
i=1

OPi(1 + d) (3.26)

and also subject to equations (2.2) to (2.12).

In addition to the variables used in (SSD-Scaled) model, there are an-

other S free variables: δk, for k = 1...S, representing the values of the partial

achievement functions:

δk = min{α[Zk − resk]
aspk − resk

,
Zk − resk
aspk − resk

,
β[Zk − aspk]
aspk − resk

+ 1}, k = 1...S

The free variable δ represent mink=1...S δk, the worst partial achievement func-

tions.

With the same treatment,the SSD unscaled model can be extended to in-

clude reservation levels in addition to aspiration levels.

Remark 3.9. The advantage of adding reservation levels is explored through

numerical experiments presented in Chapter 5. In the cases where the dis-

tribution obtained by (SSD-Scaled) or (SSD-Unscaled) models are considered

unsatisfactory, we show that we can improve on the resulting distribution by

appropriately selecting reservation levels.

Hence, the models could be used interactively by specifying, whenever needed,
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new aspiration and/or reservation levels in order to obtain portfolios with pro-

gressively better funding ratio distributions. These reservation levels should

be achieved - if possible - first, before attempting to come close to the aspira-

tion levels.

3.7 Concluding Remarks

In this chapter, we have formulated ALM models in which the risk of under-

funding is controlled using Second Order Stochastic Dominance (SSD). We

obtain short-term funding ratio distributions that are SSD efficient, while a

constraint is imposed on the expected terminal wealth. In addition to being

SSD efficient, the funding ratio distribution comes close, in a well defined sense,

to a benchmark distribution of funding ratio, whose outcomes are specified by

the decision maker. The formulated models provide a meaningful solution,

corresponding to the risk-averse attitude observed in investment.

The closeness is measured as follows, progressively larger left tails of the

funding ratio distribution are considered, either scaled (equivalent to averages

of a progressively higher number of worst case values), or unscaled (equivalent

to sums of a progressively higher number of worst case values); these are com-

pared with the tails of the benchmark distribution and the worst difference is

optimised. Thus, the funding ratio distribution could be shaped and ”crafted”

to a desirable form, to the extent that is achievable. A regularisation term is

added to ensure SSD efficiency in case of multiple optimal solutions.

Both the scaled and unscaled models result in (possibly different) SSD ef-

ficient distributions of funding ratio. The SSD scaled model gives however a

greater importance to the magnitude of a shortfall below the target. A good

way to grasp the difference between the models is by considering a particu-

lar case with interesting connections to risk minimisation. Special cases are

obtained when the target distribution is deterministic, specified by a single

outcome such as a required target funding ratio λ.
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In most situations, the SSD scaled model is equivalent to a risk minimisation

model, where risk is measured by the maximum loss. More precisely, the SSD

scaled model can be reformulated as a (computationally much simpler) Max-

imin model which maximises the worst case value of the funding ratio.

The SSD unscaled model is equivalent in most cases to a risk minimisation

model, where risk is measured by the lower partial moment of order 1 of the

funding ratio around target λ, also called the expected shortfall below target

λ. The well established ICCP model has the expected shortfall below target as

a constraint, not in the objective function. By setting appropriate right hand

side values , the SSD unscaled formulation and the ICCP formulation lead to

the same optimal solutions.

There are situations in which the SSD models and risk minimisation mod-

els above may not be equivalent, most notably, when risk minimisation has

multiple optimal solutions. A regularisation term should be added in this case

to the objective function in the risk minimisation models in order to guarantee

SSD efficiency. However, this increases the computational complexity to the

level of the SSD formulations.

Thus, two established and computationally less expensive models, namely

Maximin and ICCP, are under mild conditions, particular cases of the SSD

models developed in this thesis. A natural question that arises is: can we ob-

tain improved distributions of funding ratio by considering non-deterministic

target distributions? The computational study in Chapter 5 offers insight into

this problem.

We extend the SSD models by adding reservation levels, in addition to as-

piration/target levels. This offers greater modelling power, as not achieving a

reservation level is penalised more than non-achievement of an aspiration level.

Reservation distributions could be set as minimal requirements for outcomes

of the funding ratio distribution.
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Chapter 4

Scenario Generation Models for

Cash Inflows and Outflows

4.1 Introduction

An important issue in ALM problems is the representation of the underlying

key stochastic parameters. In an ideal situation, we can represent the whole

universe of possible outcomes in a set of scenarios with associated probabil-

ities of occurrence. However, in most cases the underlying random variables

(representing, for example, the asset returns at a specific time point) are con-

tinuous, or discrete with many possible realisations. In order to use an SP

approach, one has to represent the distributions of interest (in a single-period

case) via a limited number of possible outcomes ”scenarios”, or to represent

the stochastic processes (in a multi-period case) via a scenario tree; a process

known as scenario generation (SG). A formal study of ALM problems usually

involves modelling plausible scenarios for liabilities and returns of instruments

in the portfolio to be used as an input to the optimisation model.

The scenarios needed for a two-stage stochastic program can be represented

by a scenario tree in the form of a fan, as in Figure 4.1. The root node in this

tree represents the information known today or the deterministic data of the

present states of the world and the other nodes represent the uncertainties at

later stages. Each path through the tree is a scenario which represents one
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possible sequence of outcomes of the stochastic elements throughout the time

horizon under consideration.

Figure 4.1: Two-stage scenario tree

The scenario tree captures the dynamics of the decision making process,

since decisions are adjusted to the realisations of the uncertainties [25]. In this

context, the root node in the scenario tree can be looked at as the decisions

that need to be determined today (first-stage decision) and the other nodes

represent recourse decisions at later stages. In two-stage SP, the stages are

fixed to two; however, the number of time periods for recourse actions depends

on the planning horizon to be considered. It is important to realise that the

stages do not necessarily refer to time periods; they correspond to steps in the

decision process.

Scenario generation for stochastic programming has been the subject of

extensive research. There is a vast literature on different methods of scenario

generation techniques, each with its strengths and weaknesses. For an overview

of scenario tree generation methods applied in finance and economic decision

making, see [66].

Different scenario generation techniques could be used for different pur-

poses. A scenario tree could describe certain time-varying processes in nature

or economics. For instance, it could be used to represent the evolution of a

financial time series or a population dynamics. In an ALM research we need

to generate scenarios for the returns of the instruments in the portfolio, the
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contributions as well as future obligatory payments.

Our derivation of the plan’s future cash flow profile requires the specifica-

tion of both demographic and economic variables as a first step. We model

the uncertainty in both the pension fund’s cash inflows and outflows. The

fund’s cash inflow is from the investment revenues and the funding, which

in turns consists of contributions and money received from another pension

funds when new participants join the GOSI’s scheme from previous jobs. On

the other hand, the cash outflow (liabilities) is modelled considering four differ-

ent types of obligations. We consider: pension payments, lump sum payments,

money transferred out of the fund due to the transferring of some participants

who will join another pension fund’s scheme and death grants to next of kin

upon death.

For investment returns, we used bootstrapping to generate in-sample scenarios

to be used as input to the SP models presented in Chapters 2 and 3. Using a

copula method, we generate sets of larger number of scenarios by considering

a larger number of historical observations; we use these sets for out of sample

testing.

The scenarios for the funding and liabilities have the same underlying source

of uncertainty; they are generated based on population models and a salary

model, assuming that a fixed percentages of salaries are to be paid in, as con-

tributions, or out, as liabilities. The dynamics of the pension fund’s population

is modeled by a ”Birth, Immigration, Death, Emigration” (BIDE) population

model (see for example, [45] and [58]).

To summarise, in order to generate scenarios for contributions and liabili-

ties, we:

1. Construct population models to quantify the future population of the

GOSI’s active and retired participants.

2. Construct a salary model to define the future salary of the active work-

force and the wage of the pensioners; this is simply done by considering

a steady annual growth.
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By combining the salary model of active participants together with the

contributors population model, we compute funding. In the same way, by

considering pensioners population and wage, we compute the liabilities.

The rest of the chapter is organised as follows. In Section 4.2, we describe

the assets returns scenario generation methods. In Section 4.3, the population

model is presented. Section 4.4 covers the salaries model. In Section 4.5, we

explore how we assemble the funding scenario tree. Section 4.6 treats the lia-

bilities scenarios. Concluding remarks are provided in Section 4.7.

4.2 Assets Returns Model

4.2.1 In-Sample Scenarios Using Bootstrapping

The simplest approach for generating scenarios is to use only the available

observed data without any mathematical modelling. It bootstraps, that is,

samples with replacement, a set of historical records. It is common method of

obtaining parameters necessary as an input in optimisation models

4.2.2 Out-of-Sample Scenarios Using the Empirical Cop-

ula

For out-of-sample analysis we generate a larger set of scenarios for the rate of

returns of the instruments in the portfolio using the copula. The name copula

was first used by Sklar [62] to define a tool that describes the multi-variate

structure of a distribution (i.e. dependence structure between the variables)

irrespective of the marginal distributions [31]. Using copulas allow to separate

the multivariate structure (the “shape” of the distribution) from the marginal

distributions, thus allowing the marginals to be independently modelled.

Using copulas to control the dependence structure of a multi variate ran-
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dom variables overcome some limitations of other methods, such as using a

correlation matrix [31]. For example, Pearson’s correlation coefficient describes

only the degree of linear dependence between each pair of random variables

by one number and does not capture any non-linear dependencies [31].

An d-dimensional copula is the joint cumulative distribution function (cdf)

of any d-dimensional random vector with standard uniform marginal distri-

butions, i.e. a function C : [0, 1]d → [0, 1] [31]. Sklar’s theorem states that

“any multivariate distribution can be written in terms of univariate marginal

distribution functions and a copula”.

Sklar’s theorem

Let F be an d-dimensional joint cumulative distribution function of a ran-

dom vector (X1, X2, . . . , Xd) with margins F1, ..., Fd, F (x1, ..., xd) = P (X1 ≤
x1, ..., Xd ≤ xd). Then, there exist an d-dimensional copula C such that for all

x in Rd

F (x1, ..., xd) = C(F1(x1), ..., Fn(xd))

.

Moreover, if all the marginal cdfs Fi are continuous, then C is unique [46].

An immediate consequence is that, for every (u1, ..., ud) ∈ [0, 1]d,

C(u1, ..., ud) = F (F−11 (u1), ..., F
−1
d (ud)),

where F−1i is the generalised inverse of Fi:

F−1i (u) = inf{t : Fi(t) ≥ u}, u ∈ [0, 1] [10] (4.1)

In this research, we use a special kind of copula, the so-called empirical

copula, see for example [46]. We adapt a similar method to [31]; we create

the empirical copula and generate samples for each univariate margin. Using

the copula, the univariate samples are combined to form a sample from the

multivariate distribution.
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The basic motivation of using this method is to generate, starting from

a large (historical) sample of multivariate data, other samples of the same

size. Generating samples of a specified size from univariate data is a standard

problem. One way of doing this is to find the distribution that best fit the

univariate data using statistical software packages, then, sample from the fit-

ted distribution.

The challenge is to assemble the samples from univariate distributions and

preserve the dependence structure of the multi-variate data. To this end, we

use the historical copula, created based on the historical sample.

Suppose we have available N samples (observations) from an d-variate

distribution of a random vector (X1, X2, ..., Xd); denote these samples by

S = {(xi1, xi2, ..., xid)}Ni=1; then, our goal is to generate a matrix X of the size

N × d of other possible outcomes using the empirical copula.

The main idea is to create a matrix N × d of ”ranks”; element cij in this ma-

trix is k
N

, where k is the ”rank” of observation xij among the observed values

of variable Xj ; that is element cij corresponds to the k-th worst value out

of the values of the observations xij, i = 1 . . . N of the random variable Xj,

j = 1 . . . d. Thus, we can interpret a row of this matrix as a ”scenario” of

dependence between the d random variables, for example, one scenario may

be “the maximum of margin 1 occurs at the same time with the second worst

value of margin 2 together with the minimum of margin 3, etc.”.

In this approach, where the true marginal distribution functions Fj, j =

1...d are usually unknown, we use instead the empirical distribution with

marginal cdfs given by:

F e
j (xij) =

rank(xij, xj)

N
, j = 1..d (4.2)

where rank(xi, x) is the rank (order) of value xi in a vector x, with values

between 1 and N .

Once we have the copula (dependence structure) on one hand and the

samples of the margins on the other, the samples from the margins are then
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combined according to the copula matrix. Denote by uij (i = 1 . . . N and

j = 1 . . . d) the elements of this matrix; they are all numbers of the form
k
N

, k = 1 . . . N . Denote by rij (i = 1 . . . N and j = 1 . . . d) the samples

generated from margin j and suppose we have ordered them in ascending

order r1j < r2j < · · · < rNj .

The element r′ij of the matrix of new samples from the multivariate distribution

is obtained according to the generalised inverse of the cumulative distribution

function Fj of the distribution with outcomes {r1j, . . . , rNj}. More precisely,

r′ij = inf
k=1...N

{rkj;F−1j (uij) ≥ rkj)}

In this way, we obtain a new sample from the multi-variate distribution rij

(i = 1 . . . N and j = 1 . . . d).

By repeating the process in generating other samples from the univariate distri-

butions and combining them in the same manner, we obtain as many samples

from the multi-variate distribution as desired.

4.3 Population Model

The inflow and outflow of the fund members are simulated using the BIDE

population model [58]. Population models are used in population ecology to

model the dynamics of wildlife or human populations. All populations can be

modeled by one simple equation:

Nt+1 = Nt +Bt −Dt + It − Et

where:

• Nt represents the population size at time t;

• Bt is the number of births within the population between Nt and Nt+1;

• Dt is the number of deaths within the population between Nt and Nt+1;

• It is the number of individuals immigrating into the population between

Nt and Nt+1;
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• Et is the number of individuals emigrating from the population between

Nt and Nt+1.

This equation is called a BIDE model (Birth, Immigration, Death, Emi-

gration model).

In closed population models, we focus on estimating the population size,

N , but in open population models we are interested in the dynamics that

arise between years or seasons and thus we focus not only on Nt but on the

processes that drive population changes (i.e. the parameters governing these

processes) [45].

In this research, we consider open population models for both the contributors’

and retirees’ populations. In the next sections, we explain how we construct

the scenario trees for these populations and how to generate scenarios for the

funding levels and liability payments accordingly.

4.3.1 The Contributors’ Population Scenario Tree

The BIDE equation is adopted as follows:

Nt+1,s = Nt,s+Newt,s−Rt,s+TIt,s−TOt,s−Dt,s, t = 0, 1 . . . T−1, s = 1 . . . S

(4.3)

Where:

• Nt,s the total number of contributors in employment by the end of time

period t under scenario s;

• Newt,s the numbers of new employees at time t (i.e. the total number of

new employees who have been hired between the states Nt,s and Nt+1,s)

under scenario s;

• Rt,s the total number of contributors who leave the scheme (due to re-

tirement or death) between the states Nt,s and Nt+1,s under scenario

s;
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• TIt,s the total number of employees who enter the system from another

pension fund (i.e. transferred) between the states Nt,s and Nt+1,s under

scenario s;

• TOt,s the total number of employees who leave the system and trans-

ferred to another pension fund between the states Nt,s and Nt+1,s under

scenario s;

• Dt,s the total number of cases received lump sum payments and leave

the scheme between the states Nt,s and Nt+1,s under scenario s.

Using the historical data, we computed the ratios of employment, retire-

ment, transfers in, transfers out and lump sum payment cases in the last ten

years. Let γt denote the employment ratio at time t, defined as:

γt = Newt/Nt

Similarly, µt is the ratio of the retirement (including deaths) at time t, defined

as:

µt = Rt/Nt

Similarly, let us denote by ηt the ratio of the transfers out of the fund at time

t , we have:

ηt = TIt/Nt

φt is the ratio of the transfers out of the fund at time t:

φt = TOt/Nt

Finally, ∆t represent the ratio of leaving the scheme at time t, defined as:

∆t = Dt/Nt

Each of these ratios is a random variable that affects the total number of

contributors in each year. By sampling from these observed (historical) ratios

we obtain a vector (γ, µ, η, φ, ∆) that represents a possible scenario for these

ratios for the next year (time period). By using this sample of ratios and the

number of contributors in the last year, we simulate the total number of new
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employees, retires, the number of contributors who will transfer to the fund,

the number of contributors who will transfer out, and the number of lump sum

payment payable cases for the next year as follows:

Newt = γt Nt t = 0, ..., T − 1

Rt = µt Nt t = 0, ..., T − 1

TIt = ηt Nt t = 0, ..., T − 1 (4.4)

TOt = φt Nt t = 0, ..., T − 1

Dt = ∆t Nt t = 0, ..., T − 1

In order to simulate a sample path (i.e. a scenario or one sequence of pos-

sible values) for the number of contributors at times t = 1 . . . T , we use the

following procedure.

By considering N0, the number of contributes at t = 0 (observed), in equations

(4.4), then substituting the set of resulting values together with N0 in equation

(4.3), we compute the total number of contributors at t = 1. By re-sampling

for (γ, µ, η, φ, ∆) and using the simulated value for the number of contributors

at time t = 1, we can obtain a simulation for the number of contributors at

t = 2 under the same scenario. Repeating the process, we obtain one scenario

for the number of contributors at times t = 1 . . . T .

By generating S scenarios, we construct a scenario tree for the contributors

population in the form of a fan.

4.3.2 The Retirees’ Population Scenario Tree

We adopt the BIDE model to represent the dynamics of the retirees population:

NRt+1,s = NRt,s +Rt,s −Gt,s t = 0, 1, ..T − 1, s = 1 . . . S (4.5)

Where :

• NRt,s the total number of retirees who receive pension at time t under

scenario s (i.e. retires’ population size at time t under scenario s);
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• Gt,s the number of cases that stop receiving pension (leaving the retirees

population) between the states NRt,s and NRt+1,s under scenario s;

• Rt,s the total number of contributors who leave the scheme = enter the

pensioner’s population (due to retirement or death) between the states

NRt,s and NRt+1,s under scenario s;

A similar approach, based on observed ”rates”, that is, percentages of cases

leaving/entering the population out of the initial population, is employed in

order to construct sample paths for the retirees population numbers. .

4.4 Salary Model

Salary is an important factor for determining future contributions and pension

payments. Based on the historical data, we compute the average annual salary

of a plan member at t=0 and estimate an annual growth of 1.008% each year

(1.008% is the average of the growth in the Saudi workers salaries in the last

ten years in Saudi Arabia). Hence, the annual salary of a plan member at time

t, denoted by S(t), can be simply derived as:

St = St−1 ∗ 1.008 , t = 1 . . . T (4.6)

4.5 Funding Scenario Tree

The funding scenario tree is constructed by combing two benefit types. Firstly,

the future realisations of the contributions, which is computed by combining

the salary model of active participants together with the contributors’ popu-

lation model and the contribution rate using the formula:

CNt,s = 0.18 ∗ St ∗Nt,s, t = 1 . . . T, s = 1 . . . S (4.7)

Where:

• CNt,s is the total amount of contributions (in Saudi Riyals) at time t

under scenario s;
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• 18% is the fixed contribution percentage;

• St the average annual salary for each member in the plan at time t (from

(4.6));

• Nt,s the total number of contributors at time t under scenario s (from

the population model, equation (4.3)).

Secondly, due to the transferring of some members from one pension fund

to the pension fund that we consider, some money will be transferred into the

fund’s account too. To model the amount of money transferred into the fund

from another pension fund at time t; we multiply the simulated number of

contributors who transferred to the fund during year t (from the population

model) by the expected amount of money to be transferred to the fund ”per

each member joining the GOSI’s from previous job”. We calculate the average

amount of money to be transfered using historical data and assume a growth on

this average through the planning horizon. These calculations are illustrated

by the following formula:

It,s = TIt,s ∗MIt , t = 1 . . . T, s = 1 . . . S (4.8)

Where:

• It,s is the total amount of money transferred to the fund’s account from

another pension fund at time t under scenario s;

• TIt,s is the total number of individuals that transfer to the fund from

another pension fund at time t under scenario s (simulated as in the

population model (4.3));

• MIt the average amount of money transferred to the fund per member

at time t (computed from historical data).

Finally, we calculate the funding at each time point t and under each

scenario s by considering the values of equations (4.7) and (4.8) for every t

and s. Denote the funding at time t and scenario s by Ct,s we have:

Ct,s = CNt,s + It,s , t = 1 . . . T, s = 1 . . . S (4.9)
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4.6 Liabilities Scenario Tree

The scenario generation model for the future liabilities takes into account that

there are four types of payments to be made: (a) pension payments, (b) money

to be transferred out of the fund’s account due to participants transferring,

(c) lump sum payments for active participants who leave the scheme before

being eligible to receive pension, (d) death grants to next of kin upon death.

This follows the structure of payments in the GOSI, described in Section 1.4

and used in our numerical experiments.

We model pension payments by combining the pensioners’ population model

with a salary model, with which we deduce an average annual wage per each

member for each year t in the planning horizon. According to the GOSI’s

regulations, the retirement pension is obtained by multiplying one-fortieth of

the average monthly wage for the last two years by the number of contribution

years and months. According to the GOSI’s system, the average monthly wage

is defined as ”an average of the total contributory wages received throughout

the last two years of contribution period” [1].

Using the salary model, we compute the average annual salary of each two

successive years, denoted here by Avt, as follows:

Avt =
St−1 + St−2

2
We compute the average number of years of contribution (historically); for the

GOSI’s data, this is 35.2 years. Thus, we work out the average annual pension

using the formula:

PNt = Avt
35.2

40
, t = 1 . . . T

where:

• PNt the annual pension average during year t;

• Avt the average annual salary during year t.

The total annual pension payments for all pensioners for each realisation

of the retirement population will then equal:

Pt,s = PNt ∗NRt,s , t = 1 . . . T, s = 1 . . . S (4.10)
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here Pt,s denote the total annual pension payments at time t under scenario s

and NRt,s is the total number of retirees at time t under scenario s simulated

as in (4.5).

The second type of payments occurs in the case when an active member

transfers to another job which is covered by another insurance scheme. In this

case, the fund has to transfer the accumulated contributions of that member

to the new pension fund.

We employ the population model described in Section 4.3.1 in order to generate

scenarios for the number of individuals who move to another fund. We also

compute, based on historical data, the average amount of money transfered to

another fund per individual and assume a growth by a fixed inflation rate:

Ot,s = TOt,s ∗MOt , t = 1 . . . T, s = 1 . . . S (4.11)

Where:

• Ot,s is the total amount of money transferred out of the fund to another

pension fund at time t under scenario s;

• TOt,s is the total number of individuals who transfer out of the fund to

another pension fund at time t under scenario s;

• MOt the average amount of money transferred out of the fund per mem-

ber at time t.

In a similar fashion, i.e. (a) using population models and generating sce-

narios for the number of individuals and (b) using observed average lump sum

payments per individual and assuming a growth rate imposed by inflation, we

generate scenarios for the third and fourth categories: lump sum payments

(LSt,s) and death grants (DGt,s) respectively for every t and s.

The scenario tree for liabilities is then obtained by adding all of these

payment types together:

Lt,s = Pt,s +Ot,s + LSt,s +DGt,s, t = 1 . . . T, s = 1 . . . S (4.12)
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4.7 Concluding Remarks

This chapter gives an insight into how do we generate scenarios for the pension

fund cash inflow and outflow. Equations (4.9) and (4.12) represent respectively

the generated scenarios for the amount of money received from, and paid to,

the fund participants.

For investment returns, we used bootstrapping and a copula method. We use

the generated scenarios to evaluate the models proposed in Chapter 3 both

in-sample and out-of-sample.
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Chapter 5

Numerical Experiments

5.1 Introduction and Motivation

In this chapter, we implement the SSD based models proposed in Sections 3.4

and 3.5 using data sets drawn from the GOSI. Precisely, we implement an

ICCP type of model (equivalent to an SSD unscaled model with deterministic

target distribution), a Maximin type of model (equivalent to an SSD scaled

model with deterministic target distribution) and SSD models, both scaled

and unscaled, in which the target distribution is non-deterministic.

Our main question is whether by using different appropriate target distri-

butions one can obtain better solutions, in the sense of more desirable distri-

butions of funding ratio and asset value (wealth)?

To this end, we compare statistics from these distributions, as obtained from

the four different models; we are particularly concerned with statistics de-

scribing the left tail for funding ratios. We perform both in-sample and out-

of-sample analysis.

We also investigate the effect of introducing reservation levels, in addition

to aspiration levels. To this end, we implement the SSD based model intro-

duced in Section 3.6 by starting from a model with aspiration levels only and

introducing reservation levels for the tails.
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In the next section, we describe the data set we have used as input in

our optimisation models. In Section 5.3, we discuss the computational set up

and the results of Experiment 1, in which we compare the four models (SSD-

Scaled), (SSD-Unscaled), (Maximin) and (ICCP). We illustrate the benefit

of using generic SSD models over the special cases (ICCP) and (Maximin)

models. In Section 5.4, we examine by Experiment 2 whether the funding

ratio distribution can be further improved by including reservation levels in

addition to aspiration levels. We discussed how do we evaluate the models

out-of-sample in Section 5.5. Finally, conclusions are given in Section 5.6.

5.2 Dataset

We consider a large defined benefit pension fund in Saudi Arabia, the Gen-

eral Organisation for Social Insurance GOSI [1]. As in [12] and [44], in this

research, we consider a planning horizon of 10 years; t = 0 refers to year 2016.

The GOSI can typically invest in four major investment fields; shares, bonds,

loans, and real estate investments and it is keen to focus on domestic invest-

ments. Because of lack of data in the Saudi bonds’ and real estate’s indices

they will not be included among the considered investment instruments in this

research.

We consider 16 asset classes: the Saudi equities represented by 15 sectors

indices beside cash. Investment decisions have to be taken ”now” (t = 0)

and then rebalanced every year, t = 1 . . . 9. We generate a set of S = 300

sample paths for the asset returns, contributions and liability values at times

t = 1 . . . 10. These scenarios results from combining 30 scenarios of the asset

returns and 10 scenarios correspond to contributions and liabilities based on

the population model.

The scenarios for the asset returns are obtained by bootstrapping from histor-

ical data drawn from the Saudi Arabian stock market index (TASI) [2] for the

period from Jun 2007 to Nov 2015. For the risk-free rate of return (interest

rate) we consider the current Saudi Arabian interest rate of 2% following [3],
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and assumed that it will stay at this level for the remaining time of the invest-

ment period.

The scenarios for the liability and contribution values have the same underly-

ing source of uncertainty; they are generated based on populations and salary

models. We followed the GOSI regulations in setting the percentage of salary

to be paid in, as contributions, or out, as liabilities. The dynamics of the

pension’s fund population is modeled by a BIDE (Birth, Immigration, Death,

Emigration) model [58], as described in Chapter 4. We use historical data from

the GOSI’s population as an input to this model [1]; that includes for example

the number of participants, number of retirees, employment and retirement

rates for the last 10 years, salary average and average salary growth.

5.3 Experiment 1

5.3.1 Computational Set Up

We implement the models (SSD-Scaled) and (SSD-Unscaled) developed in

Chapter 3 with deterministic and non-deterministic target distributions of

funding ratio. As a non-deterministic target distribution, we use a synthetic

one with 300 equally likely scenarios, the lowest outcome is 0.9 and there is an

increase by 0.0016 under each scenario. As a deterministic target distribution,

we use one defined by the single outcome λ = 1.1.

We refer to the SSD scaled model with deterministic target distribution as

(Maximin); as exposed in Section 3.5.1, it is equivalent to a maximisation of

the worst outcome of the funding ratio.

We refer to the SSD unscaled model with deterministic target distribution as

(ICCP), the reason for this is as follows. We have shown in Section 3.5.2 that

the SSD unscaled model is equivalent, under mild conditions, to a model in

which the expected shortfall (below the single target) is minimised. Further

on, if the expected shortfall is used in a constraint rather than the objective

(an ICCP type of model) and optimise the asset value, we obtain the same

optimal solution, provided that the right hand side in these models are chosen
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appropriately.

In our numerical experiments, we implement an ICCP model in which we

maximise the expected terminal asset value and we impose a constraint on the

expected shortfall of the funding ratio below the target 1.1 for the first time

period. In order to decide on the right hand side for the integrated chance

constraint, we ran an optimisation model that minimises the expected short-

fall of the funding ratio distribution with respect to the target 1.1; this is in

order to obtain the lowest right hand side for which the model is feasible. We

found that the minimum expected shortfall is 0.042254. We implemented an

ICCP model in which we maximise the expected terminal asset value and we

constrain the expected shortfall of the funding ratio below 1.1 to be no more

than 0.043. We obtained the portfolio displayed in Figure 5.1, the third pie

chart. The integrated chance constraint is active, as the expected shortfall of

the returns is exactly 0.043. We recorded the optimal value of the objective

function of the ICCP model; let us denote it by AT . We implemented the

SSD unscaled model with a deterministic target of 1.1 with a constraint on

the expected terminal asset value: to be no less than AT . This is the reason

why we refer to the SSD unscaled model with deterministic target distribution

as ”the ICCP model”, they result in the same optimal solution. For all the

models, we set AT as the right hand side of the constraint on terminal asset

value.

We have thus four SSD based models that we refer to as (SSD-Scaled),

(SSD-Unscaled), (Maximin) and (ICCP). In all models , the right hand side

of the constraint on the expected terminal asset value is the same (equal to

AT which corresponds to a cumulated terminal wealth of 581.5548 billions of

Saudi Riyals (SAR)). The value of ε is fixed to 0.0001. We implement the

models in AMPL and solve them using CPLEX 12.5.1.0.

The models (SSD-Scaled) and (SSD-Unscaled) have (s2 + 3(nt+ t+ 1)s+

3n+ 3) decision variables and constraints, where n is the number of the avail-

able assets, t is the number of time periods and s is the number of scenarios.

The solving time for these models, with the datasets described in Chapter 4

100



(S=300, n=15, t=10) are 4 minutes and 16 minutes respectively (this is the

” total solve elapsed time” reported by AMPL). The algebraic formulation of

the SSD Scaled model is in Appendix A and AMPL code is in Appendix B.

5.3.2 Computational Results

Figure 5.1 shows the optimum first stage decisions / portfolio allocations ob-

tained by the four models within each sector. The (SSD-Scaled) and (Max-

imin) model are the most similar to each other; they mostly invest in cash

investments, while the (SSD-Unscaled) and (ICCP) model mostly invests in

the Retail sector. In view of the discussion in Sections 3.5.1 and 3.5.2 about

the special case of the SSD models with deterministic target, it does not come

as a surprise that the portfolio’s compositions, and the performance, of (SSD-

Scaled) and (Maximin) model on one hand and (SSD-Unscaled) and (ICCP)

model on the other are somewhat comparable.

Figure 5.1: The optimum first stage investment decisions for (SSD-

Unscaled), (SSD-Scaled), (ICCP), and (Maximin) models: the pro-

portion of wealth devoted to each asset class

Tables 5.1 and 5.2 present performance measures for the first stage deci-

sions of each of the four considered models by considering both the resulting

return and funding ratio distributions. Table 5.1 lists statistics and risk -

adjusted performance measures of the rate of return of the portfolio such as:
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1. The Sharpe ratio: it measures the excess return per unit of risk in

the investment; thus, the higher the Sharpe ratio value, the better the

risk adjusted performance. For a random return R, the Sharpe ratio is

defined as :

Sharpe ratio =
E[R]− τ
σ(R)

where τ is a target return.

The numerator represents the expected value of the return in excess of

the target τ and σ is the standard deviation of the random return R.

All models have the same target rate of return of τ = 2% for the first

time period.

2. Sortino ratio: Unlike the Sharpe ratio that penalises both upside as

well as downside return deviations, the Sortino ratio penalises only those

returns falling below a user-specified target rate of return τ ; we fix it for

all models at 2%.

The Sortino ratio of a portfolio return R is defined as follows [63]:

Sortino ratio =
E[R]− τ

2
√
LPM2(τ, R)

where

LPM2(τ, R) = E[max{τ −R, 0}2]

3. Value at Risk (VaR) and Conditional Value at Risk (CVaR): For

the formal definitions of VaRα and CVaRα please refer to Section 2.4.2.

We compute VaR and CVaR at confidence level α=95%. We consider as

loss distribution the negative of the rate of return.

Table 5.2 lists statistics of the funding ratio. The α%-Scaled tail is the

average of the worst α% outcomes of the funding ratio. All measures in these

tables are calculated for the first time period.
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Table 5.1: The performance measures related to the rate of return:

(SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) models.

Comparison criteria
SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate of re-

turn
16.33 % 15.72 % 14.41 % 13.89 %

Sharpe ratio 0.7757 0.7158 0.7656 0.7108

Sortino ratio 2.9161 3.8335 2.3188 3.8356

VaR0.95 0.103 0.085 0.1273 0.07

CVaR0.95 0.139 0.0922 0.1637 0.0754

Table 5.2: The performance measures related to the funding ratio:

(SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) models.

Comparison criteria
SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected funding

ratio
1.160 1.154 1.141 1.135

Minimum funding

ratio
0.8168 0.876 0.7926 0.8932

Expected shortfall

of FR with respect

to 1.1

0.0455 0.0526 0.0430 0.0517

1%-Scaled tail 0.8200 0.8794 0.7957 0.8967

5%-Scaled tail 0.8526 0.8969 0.8283 0.9124

10%-Scaled tail 0.8725 0.9165 0.8556 0.9290

15%-Scaled tail 0.8946 0.9284 0.8915 0.9392

20%-Scaled tail 0.9207 0.9383 0.9227 0.9471

25%-Scaled tail 0.9420 0.9477 0.9464 0.9551

The values in Tables 5.1 and 5.2 illustrate well the main differences be-

tween the models - and also supports the motivation of this work.

The results in Table 5.1 reinforce the similarity between (SSD-Unscaled) and
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(ICCP), as well as between (SSD-Scaled) and (Maximin). The rate of returns

of the (SSD-Unscaled) and (ICCP) solutions have higher expected values and

Sharpe ratios but have poorer statistics regarding left tails / unfavorable out-

comes: VaR0.95 and CVaR0.95 are (much) higher, indicating larger losses under

unfavorable scenarios; also the Sortino ratio is considerably lower, indicating

poorer downside risk return adjusted performance. We notice that the (SSD-

Unscaled) solution performs better than the (ICCP) solution in all reported

measures: expected value, risk-adjusted performance measures, left tail statis-

tics.

The (SSD-Scaled) and (Maximin) solutions are similar in that the statis-

tics on left tails and downside risk (as measured by VaR0.95and CVaR0.95) are

considerably better at the expense of average performance. The (Maximin)

solution has clearly the return distribution with the best left tail, but also with

the lowest expected value. The (SSD-Scaled) solution provides a compromise

between acceptable left tails and higher expected value.

From Table 5.2, as before, the similarity between (SSD-Unscaled) and

(ICCP) models resides in a better overall performance at the expense of left

tails / worst case scenarios. In contrast, (SSD-Scaled) and (Maximin) solu-

tions result in funding ratios with the best statistics for left tails (measured

up to 25% of left tails). Particularly in the worst case scenarios, these models

perform much better - the differences start to decrease as we move along the

left tails and consider more outcomes of the distributions. As before, the so-

lution of the (SSD-Scaled) model provides a compromise between reasonable

left tail statistics and better overall / average performance. While the (SSD-

Unscaled) and (ICCP) solutions have rather similar characteristics, we note

that the (SSD-Unscaled) solution results in better left tails up to 15%, includ-

ing higher minimum and even better average performance, at the expense of

a marginal increase in expected shortfall below the target.

Figure 5.2 plots, for each of the four models, the left tails of the funding

ratio distributions; more precisely, the outcomes of the funding ratio distri-
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butions that are below the target 1.1. The main differences and similarities

between the models are well illustrated in this figure.

Figure 5.2: Left tails of the funding ratio distributions resulting by

(SSD-Unscaled), (SSD-Scaled), (ICCP), and (Maximin) models first

stage decisions compared with the target 1.1

From this figure, it can be easily seen that (ICCP) funding ratio ”starts

low” and it has the lowest outcomes up to 15% of the distribution. After this,

it has the highest outcomes; hence overall it results in the lowest average short-

fall below the target. The (SSD-Unscaled) distribution is closer in shape to the

(ICCP) one; it has however higher outcomes under the worst 15% of scenarios.

In contrast, the (Maximin) model has the ”best” worst outcome of the

funding ratio. However, the performance in the rest of the distribution, al-

though not a bad one, does not keep the best attributes; the model results in

the lowest average funding ratio. From Figure 5.2, we can see that the lower

part of the funding ratio distribution obtained by the (SSD-Scaled) model is

very similar to the one obtained by the (Maximin) model; however, given that

the (SSD-Scaled) had a higher average funding ratio, we can conclude that the

gap between the curves correspond to the (Maximin) and the (SSD-Scaled)
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model increase after exceeding the target 1.1.

Different funding ratio distributions could be obtained by setting different

aspiration levels. The fact that there is not a unique way of choosing the aspi-

ration levels should be regarded as an advantage of this method. The process

is interactive; we can analyse the obtained distribution of interest, and, if not

satisfactory, we can modify the aspiration levels and obtain a further candi-

date solution. Thus, this funding ratio distribution can be further shaped, if

necessary.

In the next section, we present another experiment in which we investigate

whether we can further improve on the resulting funding ratio distribution by

considering reservation levels, in addition to aspiration levels.

5.4 Experiment 2

5.4.1 Computational Set Up and Motivation

The SSD models were extended, as explained in Chapter 3, in order to gain

greater modelling power. In this experiment, we provide a numerical example

to illustrate the benefit of including the reservation levels to (SSD-Unscaled)

model. A main objective of this experiment is to clarify that the models could

be used interactively by specifying, whenever needed, new aspiration and/or

reservation levels in order to obtain portfolios with progressively better fund-

ing ratio distributions.

We run the (SSD-Unscaled) model, first with aspiration levels only. These

aspiration levels are set to be the optimums of each tail, forming thus an

”unattainable” distribution. More precisely, for every k = 1...S, the new

aspiration level aspk is the optimum value that the tail of the funding ra-

tio distribution can attain at confidence level k
S

, k = 1...S. The vector

asp = (asp1 . . . aspS) results from solving the following optimisation model
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for every k = 1..S:

Max [kTk −
S∑
i=1

dk,i]

Subject to:

Tk − Fs ≤ dk,s , s = 1 . . . S

dk,s ≥ 0 , s = 1 . . . S

also subject to (2.2) to (2.12).

We solved (SSD-Unscaled) and (SSD-Scaled) models using the new aspi-

ration levels and examine the resulting funding ratio distributions to identify

any undesirable aspects, the performance measures of the obtained solutions

are presented in Table 5.3 and Table 5.4. We refer to these models by (SSD-

Unscaled2) and (SSD-Scaled2) respectively.

Firstly, we found that (SSD-Unscaled2) provides the highest average rate

of returns and the highest average funding ratio among all the models that we

presented so far but at the expense of worsening the left tails. We set reser-

vation levels for the 1% and 5% scaled tails of the funding ratio distribution

to be 0.85 and 0.9 respectively, for the rest of the tails we use the solution

without any modifications; we refer to this models as (SSD-res1).

Secondly, we consider the optimum solution of the (SSD-Scaled2). We use

the reservation levels in order to increase the resulting average funding ratio;

thus, we include a reservation level for 100% scaled tail of the funding ratio

distribution, equivalent to the average, to be 1.21. We refer to the SSD model

with a reservation level for the mean as (SSD-res2). The numerical results

of this experiment are included in the next section.
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5.4.2 Computational Results

Table 5.3 illustrates some performance measures of the return and the fund-

ing ratio distributions obtained by (SSD-Unscaled2) and (SSD-res1). All the

measures are calculated for the first time period.

The values in Table 5.3 support the motivation of this experiment and support

the claim that including reservation levels increase the modelling power of our

SSD based optimisation models; we reshaped the left tail of the funding ratio

distribution obtained by (SSD-Unscaled2) model. It could be seen from this

table that by including reservation levels for 1% and 5% scaled tails we obtain

a better 25% lower part of the funding ratio distribution, with a decrease of

0.023 in the average funding ratio. Moreover, although the solution obtained

by (SSD-res1) model provides a lower expected rate of return; it results in a

better/higher Sortino ratio and a better/lower VaR0.95 and CVaR0.95.

Table 5.3: The performance measures related to the funding ratio

distribution obtained by (SSD-Unscaled2) and (SSD-res1).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

Expected rate

of return
23.42% 21.17%

Sortino ratio 3.7584 3.8354

VaR0.95 0.1465 0.12457

CVaR0.95 0.1643 0.1332

Expected fund-

ing ratio
1.230 1.207

1%-Scaled tail 0.8043 0.8390

5%-Scaled tail 0.8276 0.8567

10%-Scaled tail 0.8573 0.8822

15%-Scaled tail 0.8800 0.8980

20%-Scaled tail 0.8972 0.9109

25%-Scaled tail 0.9139 0.9221

108



Table 5.4 illustrates some performance measures of the return and the

funding ratio distributions obtained by the models (SSD-Scaled2) and (SSD-

res2). All the measures are calculated for the first time period.

Table 5.4: The performance measures related to the funding ratio

distribution obtained by (SSD-Scaled2) and (SSD-res2).

Comparison

criteria

SSD-

Scaled2
SSD-res2

Expected rate

of return
20.02% 20.90%

Sortino ratio 3.8352 3.8355

VaR0.95 0.1159 0.1225

CVaR0.95 0.1240 0.1310

Expected fund-

ing ratio
1.196 1.205

1%-Scaled tail 0.8481 0.8411

5%-Scaled tail 0.8657 0.8588

10%-Scaled tail 0.8899 0.8840

15%-Scaled tail 0.9046 0.8996

20%-Scaled tail 0.9167 0.9123

25%-Scaled tail 0.9274 0.9234

The values in Table 5.4 illustrate that in this example we slightly improved

on the funding ratio distribution on average at the expense of a slight reduction

in the lower tails. Interestingly, we can notice that the slight increase in the

expected returns is associated with an increase in the VaR and CVaR values,

as expected, but the Sortino ratio was not affected in a negative manner.

Remark 5.1. The reservation levels in these examples are not attainable, as

some represent the tails of an SSD efficient solution and for some confidence

levels we increase these numbers. The difference lyes in the fact that the new

distribution will try to come close to these reservation levels before attempting

to come close to the aspiration levels, hence it improved on tails.
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5.5 Out-of-Sample Testing: Decision Evalua-

tion

In this section, the first-stage decisions obtained by the different models anal-

ysed in the previous sections are evaluated out-of-sample. We follow the same

order as in the in-sample analysis. Firstly, we compare the SSD based models

with deterministic and non-deterministic targets: we analyse the first stage in-

vestment decisions of (SSD-Unscaled), (SSD-Scaled), (ICCP), and (Maximin)

models out-of-sample. A similar out-of-sample analysis is done for (SSD-

Unscaled2) versus (SSD-res1) on one hand and (SSD-Scaled2) versus (SSD-

res2) on the other.

5.5.1 Datasets

Out-of-sample analysis is conducted over 11 different data sets. One of them

is obtained by considering all observed historical returns of the component as-

sets; these are, annual returns observed on a daily basis from the Saudi stock

market between Jun 2007 and Nov 2015. We have computed 1937 scenarios

for the annual rates of returns of the assets (fifteen stock indices); e.g. one

scenario is the rate of return between first of January 2010 and first of January

2011.

Using the BIDE population model, in the same manner as explained in Chap-

ter 4, we generate a larger number of 500 scenarios for the liabilities, to be

used for out-of-sample tests. Hence, the set of out-of-sample scenarios has a

large cardinality (968500 scenarios).

The remaining 10 data sets for asset returns are obtained using the Empiri-

cal copula and sampling from the margins, as explained in Chapter 4. For each

marginal, we use the historical samples and fit into a univariate distribution,

using the R package gamlss ; Appendix D includes plots showing the histogram

of the historical data of each stock index and overlaying the fitted distribution

chosen for that variable. We also generate other 1937 samples from the fit-
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ted distribution for each margin, then combine them via the empirical copula.

Each of these sets is then combined with 500 scenarios for liabilities; hence,

we end up with 10 data sets each of them containing 968500 scenario.

To summaries, the out-of-sample analysis is conducted over 11 sets of sce-

narios each of size 968500.

5.5.2 Design of Computational Experiment

Our approach to out-of-sample analysis is described below:

1. Generate the in-sample scenarios for the optimisation problems.

2. Solve the models (SSD-Unscaled), (SSD-Scaled), (ICCP), (Maximin),

(SSD-Unscaled2), (SSD-Scaled2), (SSD-res1) and (SSD-res2) using the

in-sample scenarios.

3. Generate 11 larger sets of out-of-sample scenarios.

4. Use the first stage investment decisions obtained at 2 and compute the

realisations of the rate of returns distribution and the funding ratio dis-

tribution, considering an out-of-sample scenario set generated in 3.

5. Compute performance and risk-adjusted performance measures.

6. Repeat the last two steps for each of the 11 out-of-sample scenario sets.

5.5.3 Computational Results

We evaluate the first-stage investment decisions obtained by the models (SSD-

Unscaled), (SSD-Scaled), (ICCP) and (Maximin) out-of-sample using 11 dif-

ferent data sets. Table 5.5 illustrates the results obtained considering the first

out-of-sample data set; it is obtained using all available ”historical” data, we

refer to this data set by (Data set 1).
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Table 5.5: Out-of-sample analysis for the first-stage decisions of

the models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin)

using (Data set 1).

Comparison criteria
SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate of re-

turn
14.02% 13.74% 12.34% 12.21%

Sortino ratio 1.5947 2.1166 1.3460 2.1986

Expected FR 1.1198 1.1169 1.1036 1.1020

Minimum Funding ra-

tio
0.5803 0.6516 0.5813 0.6903

Expected shortfall of

FR with respect to 1.1
0.0718 0.0720 0.0708 0.0699

1%-Scaled tail 0.6527 0.7256 0.6450 0.7601

5%-Scaled tail 0.7089 0.7810 0.6964 0.8103

10%-Scaled tail 0.7534 0.8180 0.7396 0.8424

15%-Scaled tail 0.7901 0.8448 0.7801 0.8650

20%-Scaled tail 0.8243 0.8663 0.8211 0.8834

25%-Scaled tail 0.8545 0.8847 0.8557 0.8991

From Table 5.5, it can be seen that the out-of-sample results are mostly

in line with the in-sample results, although (as expected) the worst case re-

alisations are considerably lower, for all models considered. The solution of

(Maximin) model has the (out-of-sample) funding ratio distribution with the

highest/best worst case values and the highest left tails up to 25% of the dis-

tribution; on the other hand, the expected rate of return of the corresponding

portfolio is the lowest, compared with the rest of the models. Interestingly, the

solution of (ICCP) model does not result in the distribution with the lowest ex-

pected shortfall - it is the (Maximin) model that does, although the difference

is marginal. Similarly to the in-sample results, the (SSD-Unscaled) and (SSD-

Scaled) with non-deterministic target distributions have similar performances

to (ICCP) and (Maximin) models, respectively, but do bring something new
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to the table. The solution of the (SSD-Unscaled) model improves on the very

left tails of the funding ratio distribution, as compared to the (ICCP) model,

while the solution of the (SSD-Scaled) model improves on the right tail / over-

all performance, compared to (Maximin) model.

We analyse the model’s first-stage decisions out-of-sample over another ten

different data sets in which the asset returns are generated using the empirical

copula and univariate sampling described in Section 4.2.2. Over these data

sets, we observe a similar pattern as in Table 5.5. The differences in the per-

formance of each model’s first-stage investment decisions are small; thus, the

main features of the results in Table 5.5 are preserved. Table 5.6 illustrate the

results obtained using one of these sets, we refer to this data set by (Data set 2).

Table 5.6: Out-of-sample analysis for the first-stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 2).

Comparison criteria
SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate of return 14.02% 13.53% 12.50% 12.02%

Sortino ratio 1.7341 2.2270 1.5323 2.3081

Expected FR 1.1198 1.1149 1.1052 1.1001

Minimum FR 0.5928 0.6703 0.5934 0.7063

Expected shortfall of

FR with respect to 1.1
0.0704 0.0700 0.0679 0.0681

1%-Scaled tail 0.6639 0.7348 0.6621 0.7675

5%-Scaled tail 0.7273 0.7904 0.7221 0.8182

10%-Scaled tail 0.7738 0.8280 0.7680 0.8502

15%-Scaled tail 0.8083 0.8546 0.8057 0.8727

20%-Scaled tail 0.8382 0.8751 0.8406 0.8903

25%-Scaled tail 0.8644 0.8921 0.8702 0.9052
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The rest of the results, corresponding to the other 9 data sets, can be found

in Tables E.1 to E.9 in Appendix E, we denote these data sets by (Data set

3) up to (Data set 11).

To give a general idea about the results of the out-of-sample analysis over

the other data sets, we provide in Tables 5.7 and 5.8 a summary for some

of the evaluated performance measures: average rate of returns and the 5%

scaled tail of the funding ratio distribution computed based on the first stage

decisions obtained by each model over all the data sets.

Table 5.7: The average rate of return of the models (SSD-Unscaled),

(SSD-Scaled), (ICCP) and (Maximin) computed out-of-sample us-

ing 11 different out-of-sample data sets.

Sample

number

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Data set 1 14.02% 13.74% 12.34% 12.21%

Data set 2 14.02% 13.53% 12.50% 12.02%

Data set 3 14.32% 13.82% 12.86% 12.27%

Data set 4 14.30% 13.11% 12.82% 11.63%

Data set 5 13.75% 13.37% 12.24% 11.89%

Data set 6 13.97% 13.61% 12.52% 12.10%

Data set 7 13.97% 13.34% 12.55% 11.86%

Data set 8 13.39% 13.41% 12.01% 11.93%

Data set 9 13.76% 13.21% 12.24% 11.74%

Data set 10 13.53% 12.73% 12.20% 11.31%

Data set 11 13.79% 12.97% 12.29% 11.53%

Average 13.89% 13.35% 12.42% 11.86%

SD 0.0029 0.0033 0.0026 0.0029
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Table 5.8: The 5% scaled tail of the funding ratio distribution of

the models: (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin)

computed out-of-sample using 11 different out-of-sample data sets.

Sample

number

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Data set 1 0.7089 0.7810 0.6964 0.8103

Data set 2 0.7273 0.7904 0.7221 0.8182

Data set 3 0.735 0.7927 0.7298 0.82

Data set 4 0.7344 0.7914 0.7288 0.8186

Data set 5 0.7217 0.7865 0.7193 0.815

Data set 6 0.7253 0.7872 0.721 0.8156

Data set 7 0.7263 0.7879 0.7202 0.8159

Data set 8 0.7251 0.7889 0.7205 0.8169

Data set 9 0.7273 0.7893 0.7226 0.8171

Data set 10 0.7215 0.7834 0.7153 0.8121

Data set 11 0.7301 0.7905 0.725 0.8179

Average 0.7257 0.7881 0.7201 0.8161

SD 0.0071 0.0035 0.0089 0.0029

From Table 5.7 and Table 5.8, it could be seen that the first stage decisions

provided by the SSD based model with non-deterministic targets have consis-

tently higher average rates of returns, and therefor higher average funding

ratio, evaluated over all data sets used for out-of-sample analyses. The anal-

ysis shows that the first stage decisions obtained by (Maximin) model always

results in the best/higher minimum funding ratio but lowest average rate of

return.

In the second part of the experiment, we evaluate the first-stage decisions

of the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2) and (SSD-res2)

out-of-sample using the same data sets. The results illustrated in Table 5.9

corresponds to analysis made by using (Data set 1), corresponding to all his-

torical observations.
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Table 5.9: Out-of-sample analysis of the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2) and (SSD-

res2) using (Data set 1).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
20.18% 18.45% 17.45% 18.21%

Sortino ratio 1.9154 2.0621 2.0763 2.0652

Expected FR 1.1798 1.1628 1.1531 1.1605

Minimum

Funding ratio
0.4867 0.5512 0.5732 0.5564

Expected

shortfall of FR

with respect to

1.1

0.0837 0.0809 0.0789 0.0805

1%-Scaled tail 0.5715 0.6336 0.6542 0.6384

5%-Scaled tail 0.6511 0.7053 0.7223 0.7094

10%-Scaled tail 0.7083 0.7543 0.7685 0.7576

15%-Scaled tail 0.7529 0.7909 0.8029 0.7937

20%-Scaled tail 0.79 0.8198 0.8301 0.8223

25%-Scaled tail 0.8212 0.8440 0.8529 0.8461

From Table 5.9, we can see that the out-of sample results for these models

are in line with the in-sample results. The advantage of adding reservation

levels for 1% and 5% of the scaled tails of the funding ratio distribution in the

model (SSD-res1) is preserved; it improves on the left tails at the expense of a

decrease on the average funding ratio as compared with the optimum solution

of (SSD-Unscaled2). On the other hand, with respect to (SSD-Scaled2) and

(SSD-res2), the expected rate of return increased, and therefore the average

funding ratio, with a decrease in the left tails.

We analyse the model’s first stage decisions out-of-sample over the rest of
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data sets in which the asset returns are generated using the empirical copula

and univariate sampling. The analysis using (Data set 2) is summarised in

Table 5.10. The out-of-sample analysis using the rest of data sets could be

found in Tables E.10 to E.18 in Appendix E.

Table 5.10: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2) and (SSD-

res2) using (Data set 2).

.
Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.87% 18.15% 17.18% 17.92%

Sortino ratio 2.029 2.1626 2.1777 2.1659

Expected FR 1.1768 1.1599 1.1504 1.1576

Minimum

Funding ratio
0.5165 0.5770 0.5975 0.5819

Expected

shortfall of FR

with respect to

1.1

0.0809 0.0783 0.0765 0.0779

1%-Scaled tail 0.5878 0.6465 0.6663 0.6512

5%-Scaled tail 0.6677 0.7170 0.7333 0.7208

10%-Scaled tail 0.7283 0.7682 0.7815 0.7714

15%-Scaled tail 0.7727 0.8048 0.8158 0.8074

20%-Scaled tail 0.8066 0.8320 0.8414 0.8342

25%-Scaled tail 0.8342 0.8542 0.8625 0.8562

In Tables 5.11 and 5.12, we summarise the out -of-sample results regarding

the average rate of return and the 5% scaled tail of the funding ratio distri-

bution computed based on the first-stage investment decisions of the models

(SSD-Unscaled2), (SSD-res1), (SSD-Scaled2) and (SSD-res2); we consider the
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values obtained over all out-of-sample data sets.

Table 5.11: The average rate of return in (SSD-Unscaled2), (SSD-

res1), (SSD-Scaled2) and (SSD-res2); out-of-sample evaluation using

11 different out-of-sample data sets.

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Data set 1 20.18% 18.45% 17.45% 18.21%

Data set 2 19.87% 18.15% 17.18% 17.92%

Data set 3 20.34% 18.55% 17.55% 18.31%

Data set 4 19.37% 17.52% 16.59% 17.30%

Data set 5 19.59% 17.94% 16.98% 17.71%

Data set 6 19.97% 18.27% 17.29% 18.04%

Data set 7 19.62% 17.88% 16.92% 17.65%

Data set 8 19.67% 17.99% 17.03% 17.76%

Data set 9 19.42% 17.69% 16.75% 17.47%

Data set 10 18.70% 17.00% 16.10% 16.79%

Data set 11 19.08% 17.35% 16.42% 17.13%

Average 19.62% 17.89% 16.93% 17.66%

SD 0.0047 0.0047 0.0044 0.0047
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Table 5.12: The 5% scaled tail of the funding ratio distribution re-

sulting by the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2)

and (SSD-res2); out-of-sample evaluation using 11 different out-of-

sample data sets.

Sample

number

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Data set 1 0.6511 0.7053 0.7223 0.7094

Data set 2 0.6677 0.7170 0.7333 0.7208

Data set 3 0.6722 0.7197 0.7358 0.7235

Data set 4 0.6709 0.7183 0.7345 0.7221

Data set 5 0.6610 0.7117 0.7284 0.7157

Data set 6 0.6621 0.7123 0.7289 0.7162

Data set 7 0.6641 0.7138 0.7303 0.7177

Data set 8 0.6654 0.7151 0.7315 0.7189

Data set 9 0.6666 0.7153 0.7317 0.7192

Data set 10 0.6568 0.7071 0.7240 0.7111

Data set 11 0.6688 0.7172 0.7335 0.7211

Average 0.6642 0.7139 0.7304 0.7178

SD 0.0062 0.0045 0.0042 0.0044

The out-of-sample results are in line with the in-sample ones. Although

the spread of the distributions involved is larger when evaluated out-of-sample,

including considerably lower worst case scenario than as suggested in-sample,

the differences between shape of distributions obtained via different models

remain the same.

5.6 Conclusions

In this chapter, we present computational experiments that illustrate how the

proposed SSD models make a choice, as compared to some established ap-

proaches of imposing risk constraints in ALM models.

119



In Chapter 3, we showed that two established and computationally less expen-

sive models, namely (Maximin) and (ICCP), are particular cases of the SSD

models developed in this thesis; they are equivalent, under mild conditions,

to SSD based models in which the target distribution is deterministic with

one possible outcome. The numerical experiments presented in this chapter

are mainly conducted to answer a natural question: can we obtain improved

distributions of funding ratio by considering non-deterministic target distribu-

tions - and having thus the considerable extra computational difficulty of the

generic SSD models? The computational study offers insight into this problem,

by analysing solutions obtained from the (Maximin), the (ICCP) and the two

SSD models (scaled and unscaled) with non-deterministic target distributions.

The (ICCP) solution, although with lowest expected shortfall below target,

has the lowest left tails, that is; lowest outcomes under worst case scenario,

out of all solutions considered. The (Maximin) solution provides indeed the

best outcome under the worst case scenario, however this advantage is not

kept in the rest of the distribution. By using generic SSD formulations, we

may obtain different solutions, in which the resulting distributions represent

compromises between these two cases; that is, distributions with acceptable

left tail and acceptable average, thus possibly more appealing to a range of

decision makers.

Setting different aspiration levels offers a wide range of obtaining differ-

ent/desirable funding ratio distributions. The fact that there is not a unique

way of choosing the aspiration levels should be regarded as an advantage of

this method. The process is interactive; we can analyse the obtained distri-

bution of interest, and, if not satisfactory, we can modify the aspiration levels

and obtain a further candidate solution.

A possible strategy is to start by implementing either an (ICCP) or (Max-

imin) model and analyse the resulting distribution of funding ratio. Should

this be not acceptable, one can implement a generic SSD model, by setting a

(non-deterministic) target distribution based on the outcomes of the funding

ratio already obtained. For example, the targets for the worst case scenario

and the left tails can be increased, should these values be too low in the ICCP
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solutions. Similarly, the targets for the tails in the upper part of the distribu-

tion may be increased, should the (Maximin) model provide a solution with

poor performance apart from worst case scenarios.

The numerical results of Experiment 2 illustrates that including reserva-

tion levels into the SSD model, beside aspiration levels, increase the modelling

power of our SSD based optimisation models. By adding reservation levels,

we improved in the left tails of the funding ratio distribution in one example

and increase the average funding ratio in another. Thus, the funding ratio

distribution can be shaped and ”crafted” to a desirable form, to the extent

that is achievable.

We analyse the model’s first stage decisions out-of-sample over different

and larger data sets, each containing 968500 scenarios. The asset returns are

generated using the empirical copula and liabilities are generated by combin-

ing BIDE population model together with a salary model. The out-of-sample

results are in line with the in-sample results, although, as expected, the worst

case realisations are considerably lower, as there is a larger spread of the out-

of-sample distributions. The shape of these distributions and the differences

between them preserves the same pattern as indicated in-sample.
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Chapter 6

Conclusions and Further

Directions

6.1 Summary and Conclusions

In this research, we have formulated ALM models in which the risk of un-

derfunding is controlled using Second Order Stochastic Dominance. This is

a criterion of ranking random variables that takes the entire distribution of

outcomes into account; in this case, the random variables of interest are fund-

ing ratios, that is, the ratio of asset value to liabilities. Random variables are

compared with respect to SSD by point-wise comparisions of ”α-tails” (uncon-

ditional expectation of A% worst case outcomes) where α=A% or ”α-scaled

tails” (conditional expectation of A% worst case outcomes) at different values

of α ∈ (0, 1). A random variable is non-dominated with respect to SSD if

there is no other random variable that results in better tails for all α. SSD

eliminates the need to elect a utility function but works under the general and

widely accepted assumptions of decision makers being rational (utility func-

tion is non-decreasing) and risk averse (utility function is concave).

Different approaches for modelling risk in the context of ALM can be found

in the literature. They mainly stem from the single period asset allocation

modelling framework and are related to the mean-risk paradigm, where the

most common approach is to find investment decisions which result in a return
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distribution with a high expected value and low value of risk. This modelling

approach has been extended to the case of multi-period setting, liability driven

investment by maximising the expected terminal fund wealth while imposing

risk constraints on the funding ratio in the intermediate time periods. A risk

constraint models one single aspect of the distribution. For example, one may

impose an upper limit on the expected shortfall below a target; this does not

guarantee a good enough left tail, corresponds to worst case scenarios, or an

acceptable average performance.

The models proposed in this thesis find investment decisions such that the

corresponding short-term funding ratio distribution is non-dominated with re-

spect to SSD, while a constraint is imposed on the expected terminal wealth.

In addition to being SSD efficient, the funding ratio distribution comes close,

in a well defined sense, to a benchmark (target) distribution of funding ratio,

whose outcomes are specified by the decision maker. Different target distri-

butions lead to different SSD efficient solutions; the outcomes of the target

distribution can be modified to satisfy specific requirements. Improved distri-

butions of funding ratios may be thus achieved, compared to the existing risk

models for ALM. As an application, we consider the planning problem of the

General Organisation for Social Insurance (GOSI), which is a large defined

benefit pension fund in Saudi Arabia.

There are two main SSD models presented in this thesis, a ”scaled” model

and an ”unscaled” model. In these models, progressively larger left tails of the

funding ratio distribution are considered, either scaled (equivalent to averages

of a progressively higher number of worst case values), or unscaled (equivalent

to sums of a progressively higher number of worst case values). Target values

are considered for scaled and unscaled tails; the worst difference between a

tail and its corresponding target value is optimised. A regularisation term is

added to ensure SSD efficiency in case of multiple optimal solutions.

Target values for the tails correspond to target values for outcomes of the

distributions, they thus determine a ”target” or benchmark distribution. This
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benchmark distribution is not required to be itself SSD efficient (or even the

distribution corresponding to a feasible solution); the SSD efficiency of the

resulting funding ratio distribution is guaranteed, irrespective of this choice.

Firstly, if the benchmark distribution is dominated with respect to SSD, the

optimal solution results in a funding ratio distribution which is ”better than

target”: it improves on the benchmark until SSD efficiency is attained. Sec-

ondly, if the benchmark is SSD efficient, the optimal solution of the model has

a funding ratio distribution that exactly matches the benchmark. Finally, if

the target is not attainable (in the sense that no feasible solution could match

or improve on it), the optimal solution has a funding ratio distribution which

is SSD efficient and comes as close as possible, in a well defined sense, to the

target.

Both models result in (possibly different) SSD efficient distributions of

funding ratio. With the SSD scaled model, the magnitude of deviations of

outcomes below their corresponding targets weighs more. A good way to

grasp the difference between the models is by considering that in the special

case, the SSD scaled model is equivalent to maximising the lowest funding

ratio, while the SSD unscaled model is equivalent to minimising the average

of shortfalls below the target. Both models are formulated as LPs of large size

(more than S2 variables and constraints, where S is the number of scenarios).

The second contribution is of a theoretical nature; interesting results, con-

necting the proposed models to well established risk models and well estab-

lished classes of SP models are derived for the particular case when the target

distribution is deterministic, specified by one single outcome λ.

In most situations, the SSD scaled model is equivalent to a risk minimisation

model, where risk is measured by the maximum loss. More precisely, the SSD

scaled model can be reformulated as a (computationally much simpler) Max-

imin model which maximises the worst case value of the funding ratio.

The SSD unscaled model is equivalent, under mild conditions, to a risk min-

imisation model, where risk is measured by the lower partial moment of the

funding ratio with order 1 and target λ, also called the expected shortfall below
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target λ. The well established ICCP model has the expected shortfall below

target as a constraint. By setting appropriate right hand side values, the SSD

unscaled formulation and the ICCP formulation lead to the same optimal so-

lutions.

There are situations in which the SSD models and risk minimisation models

above may not be equivalent. This may happen when (a) the risk minimisa-

tion model has multiple optimal solutions; (b) in the case of minimisation of

expected shortfall, the minimum is zero. In these cases, the optimal solution of

the risk minimisation model is not guaranteed to be SSD efficient - unlike with

the SSD formulations. A regularisation term should be added to the objective

function in the risk minimisation models in order to guarantee SSD efficiency.

However, this means increasing computational complexity to the level of the

SSD formulations.

Thus, two established and computationally less expensive models, namely

Maximin and ICCP, are particular cases of the SSD models developed in this

thesis. Numerical experiments are conducted in order to answer a natural

question that arises: can we obtain improved distributions of funding ratio by

considering non-deterministic target distributions? The computational study

offers insight into this problem, by analysing solutions obtained from Maximin,

ICCP and the two SSD models (scaled and unscaled) with non-deterministic

target distributions.

The ICCP solution, although with lowest expected shortfall below target, has

the lowest left tails out of all solutions considered. The Maximin solution

provides indeed the best outcome under the worst case scenario, however this

advantage is not kept in the rest of the distribution. These can be regarded

as extreme cases. By using generic SSD formulations, we may obtain better

left tails, compared with the ICCP solution, and better overall performance,

compared with Maximin solution. The resulting distributions of funding ratio

may appeal to a large class of decision makers.

Setting different aspiration levels offers a wide range of obtaining differ-

ent/desirable funding ratio distributions. Actually, the fact that there is not a
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unique way of choosing the aspiration levels should be regarded as an advan-

tage of this method. The process is interactive; we can analyse the obtained

distribution of interest, and, if not satisfactory, we can modify the aspiration

levels and obtain a further candidate solution. Thus, the funding ratio distri-

bution can be shaped and ”crafted” to a desirable form, to the extent that is

achievable.

A possible strategy is to start by implementing either an ICCP or Max-

imin model and analyse the resulting distribution of funding ratio. Should

this be not acceptable, one can implement a generic SSD model, by setting a

(non-deterministic) target distribution based on the outcomes of the funding

ratio already obtained. For example, the targets for the worst case scenario

and the left tails can be increased, should these values be too low in the ICCP

solutions. Similarly, the aspiration levels for the tails including the upper part

of the distribution may be increased, should the Maximin model provide a

solution with poor performance apart from worst case scenarios.

The modelling power of SSD based models can be further increased by

introducing reservation levels for the tails, in addition to the aspiration levels.

The difference between reservations and aspirations is that reservation levels

should ”pre-empt” aspiration levels and thus should be achieved if at all possi-

ble. That is, optimisation should ensure that all reservation levels are achieved

before attempting to come close to aspiration levels.

Modelling the uncertain parameters in ALM is much more challenging than

in pure investment problems, due to the presence of liabilities and contributions

(which require population models and salary models) and to the multi-stage

nature of the model. The last contribution of this thesis is a framework for

scenario generation based on the ”Birth, Immigration, Death, Emigration”

(BIDE) population model and the empirical copula. The empirical copula is

used to generate new sets of scenarios that preserve the dependence structure

among the asset classes under consideration. The scenarios for the liability

and contribution values have the same underlying source of uncertainty; they
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are generated based on a BIDE population model, adapted to our ALM set-

ting, and a salary model (assuming that a fixed percentage of salaries are to

be paid in, as contributions, or out, as liabilities). The generated scenarios are

then combined and used to evaluate all the proposed models and their special

cases both in-sample and out-of-sample.

6.2 Further Directions

The SSD models proposed here are LPs of large size. This is due to the for-

mulation of tails/scaled-tails; for each of the tails, a number of additional S

variables and constraints are required. Since we consider tails at parameters k
S

,

k = 1 . . . S, we formulate an LP with S2 additional variables and constraints,

due to the tail representations. In real-life applications, when the number of

scenarios is very large, such a model may not be tractable. Thus, it would be

valuable to look into other representations for the tails, such as the cutting-

plane representation [21].

In our approach, we have used the reference point method in order to

find a Pareto optimal solution of a multi-objective optimisation problem (in

which the objective functions represent tails of the funding ratio distribution).

Another way is to optimise a weighted sum of the objective functions. This

approach does not need the input of values for reference points but does need

the input of weighting coefficients, which is also subjective. It would be inter-

esting to investigate the connection between assigning specific reference points

and assigning specific weighting coefficients.
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Appendix A

Algebraic Formulation of SSD

Model

In what follows, we present the formulation of the Second order Stochastic

Dominance (SSD-Scaled) model. We use the following notations:

I = The number of financial assets available for investment

T = The number of time periods

S = The number of scenarios

The parameters of the model are defined as:

OPi = The amount of money held in asset i at the initial time period t = 0;

i = 1 . . . I

L0 = Aggregated liability payments to be made ”now” (t = 0)

C0 = The funding contributions received ”now” (t = 0)

Lt,s = Liability value for time period t under scenario s; t = 1 . . . T , s =

1 . . . S

Ct,s = The contributions paid into the fund at time period t under scenario

s; t = 1 . . . T , s = 1 . . . S
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Ri,t,s = The rate of return of asset i at time period t under scenario s; i =

1 . . . I, t = 1 . . . T , s = 1 . . . S

ui = The upper bound imposed on the investment in asset i; i = 1 . . . I

ψ = The transaction cost expressed as a percentage of the value of each trade

πs = The probability of scenario s occurring; s = 1 . . . S

aspk = The target or aspiration level for ScaledTailk/S(F ) = Zk, k = 1 . . . S

(i.e. the aspiration levels for the mean of the worst k values of the

funding ratio)

d > 0 = Desired rate of return over the investment horizon

ε > 0 = The weighting coefficient of the regularisation term in the objective

function.

Now, we define the decision variables.

Let us denote the first stage decision variables by:

Bi,0 = The monetary value of asset i to buy at the beginning of the planning

horizon (t = 0); i = 1 . . . I

Si,0 = The monetary value of asset i to sell at t = 0; i = 1 . . . I

Hi,0 = The monetary value of asset i to hold at t = 0; i = 1 . . . I

with Hi,0 = OPi +Bi,0 − Si,0 , i = 1 . . . I.

The additional variables for the SSD models are:

Fs = The funding ratio under scenario s at time t=1; (Fs=A1,s/L1,s); s =

1 . . . S

Tk= The k-th worst outcome of the funding ratio at time 1, k = 1 . . . S (free

variable); thus, T1, . . . , TS are the outcomes of a random variable equal

in distribution to the funding ratio
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Zk= The mean of the worst k outcomes of the funding ratio, or other said,

ScaledTailk/S(F ); Zk = (T1 + . . .+ Tk)/k, k = 1 . . . S (free variable)

δ = mink=1...S(Zk − aspk)= the worst partial achievement (free variable);

dk,s= Non-negative variables, dk,s = [Tk − Fs]+ that is

dk,s =

{
0, if Fs ≥ Tk

Tk − Fs, otherwise
(A.1)

Recourse decision variables:

Bi,t,s = The monetary value of asset i to buy at time t under scenario s;

i = 1 . . . I, t = 1 . . . T − 1, s = 1 . . . S

Si,t,s = The monetary value of asset i to sell at time t under scenario s; i =

1 . . . I, t = 1 . . . T − 1, s = 1 . . . S

Hi,t,s = The monetary value of asset i to hold at time t under scenario s;

i = 1 . . . I, t = 1 . . . T , s = 1 . . . S

At,s = The assets value at time t under scenario s, before portfolio rebal-

ancing.

THE Objective Function

The objective is to maximise the minimum deviation between the

mean of the worst k funding ratios at time t=1 and the k-th as-

piration level, a regularisation term is added to tackle the case of multiple

optimal solutions:

Max δ + ε(
S∑
k=1

Zk −
S∑
k=1

aspk)

Subject to
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• Asset Value Constraints

A1,s =
I∑
i=1

Hi,0Ri,1,s , s = 1 . . . S

At,s =
I∑
i=1

Hi,t−1,sRi,t,s , t = 2 . . . T, s = 1 . . . S

• Asset Holding Constraints

Hi,0 = OPi +Bi,0 − Si,0 , i = 1 . . . I

Hi,1,s = Hi,0Ri,1,s +Bi,1,s − Si,1,s , i = 1 . . . I, s = 1 . . . S

Hi,t,s = Hi,t−1,sRi,t,s+Bi,t,s−Si,t,s , i = 1 . . . I, t = 2 . . . T−1, s = 1 . . . S

Hi,T,s = Hi,T−1,sRi,T,s , i = 1 . . . I, s = 1 . . . S

• Fund Balance Constraints

I∑
i=1

Bi,0(1 + ψ) + L0 =
I∑
i=1

Si,0(1− ψ) + C0

I∑
i=1

Bi,t,s(1+ψ)+Lt,s =
I∑
i=1

Si,t,s(1−ψ)+Ct,s , t = 1 . . . T−1, s = 1 . . . S

• Short-Selling Constraints

Si,0 ≤ OPi , i = 1 . . . I

Si,t,s ≤ Hi,t−1,s , i = 1 . . . I, t = 1 . . . T − 1, s = 1 . . . S

• Bound Constraints

Hi,t,s ≤ ui

I∑
i=1

Hi,t,s , i = 1 . . . I, t = 1 . . . T, S = 1 . . . S

• Funding Ratio Definition

Fs =
I∑
i=1

Hi,0Ri,1,s/L1,s (Fs = A1,s/L1,s) , s = 1 . . . S
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• Additional Constraints to Formulate the SSD Model

Zk = Tk −
1

k

S∑
s=1

dk,s , k = 1 . . . S

Zk − aspk ≥ δ , k = 1 . . . S

Tk − Fs ≤ dk,s , k, s = 1 . . . S

dk,s ≥ 0 , k, s = 1 . . . S

• Terminal Wealth Constraint

1

S

S∑
s=1

AT,s ≥
I∑
i=1

OPi(1 + d)
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Appendix B

AMPL Code for (SSD-Scaled)

Model

This Appendix includes the AMPL code for the (SSD-Scaled) model.

#Sets

set assets:=1..15 ;

set time;

set scenarios;

#Params

param Contributions {scenarios , time};
param Liabilities {scenarios , time};
param Original Portfolio {assets} ;

param Return Assets {assets , scenarios , time};
param Return Banks {scenarios , time};
param Return Petrochemecals {scenarios , time};
param Return Cement {scenarios , time};
param Return Retail {scenarios , time};
param Return Energy {scenarios , time};
param Return Agriculture {scenarios , time};
param Return Telecom {scenarios , time};
param Return Insurance {scenarios , time};
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param Return MultiInvestment {scenarios , time};
param Return Industry {scenarios , time};
param Return Building {scenarios , time};
param Return RealEstate {scenarios , time};
param Return Transportation {scenarios , time};
param Return Media {scenarios , time};
param Return Hotels {scenarios , time};
param upperbound {assets};
param transaction;

param lendprft;

param probability:=1/300;

# SSD parameters

param asp {scenarios};
param epsilon:= 0.0001;

#Variables

var Market Value now >= 0;

var Assets Value {time , scenarios} >=0;

var buy now {assets} >=0;

var sell now {assets} >=0;

var hold now {assets} >=0;

var allamountHold now >=0;

var lend now >= 0;

var amounthold {a in assets, t in time , s in scenarios} >= 0;

var amountbuy {a in assets, t in 1..9 , s in scenarios} >= 0;

var amountsell {a in assets, t in 1..9 , s in scenarios} >= 0;

var allamountHold {t in time , scenarios} >= 0;

var lend {t in 1..9 , s in scenarios} >= 0;

# SSD variables

var fund ratio {s in scenarios};
var ord fund ratio {s in scenarios};
var cumul fund ratio { s in scenarios};
var dev { k in scenarios , s in scenarios} >= 0;
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var delta;

# The objective function

maximize

minimum deviation: delta + epsilon*sum{s in scenarios}(cumul fund ratio[s]/s-

asp[s,1]/s);

#Constraints

subject to

#Market Value

Market Valuedeff0: Market Value now = allamountHold now+lend now;

#Assets Value

Assets Valuedeff1{s in scenarios}: Assets Value[1,s] = sum{a in assets} (hold now[a]*

ReturnAssets[a,s,1])+lendprft*lend now;

Assets Valuedeffs{t in 2..10 , s in scenarios}: Assets Value[t,s] = sum{a in

assets} (amounthold[a,t-1,s]*ReturnAssets[a,s,t]) + lendprft*lend[t-1,s];

#Asset Holding Constraints:

assetholdingconstraints0{a in assets}: hold now[a] = Original Portfolio[a]+buy now[a]-

sell now[a];

initialtotalHolding: allamountHold now = sum{ a in assets }hold now[a];

assetholdingconstraintassets1{a in assets , s in scenarios}: amounthold[a,1,s]=

hold now[a]*ReturnAssets[a,s,1]+ amountbuy[a,1,s]-amountsell[a,1,s];

assetholdingconstraintassets{a in assets, t in 2..9 , s in scenarios}: amoun-

thold[a,t,s] = amounthold[a,t-1,s]*ReturnAssets[a,s,t]+ amountbuy[a,t,s]-amountsell[a,t,s];

assetholdingconstraintassets10{a in assets ,s in scenarios }: amounthold[a,10,s]=

amounthold[a,9,s]*ReturnAssets[a,s,10];

amountHoldd{t in time , s in scenarios}: allamountHold[t,s] = sum{ a in as-

sets }amounthold[a,t,s];
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#Fund Balance Constraints:

fundbalanceconstraint0: sum{a in assets}(1+transaction)* buy now [a]+ lend now=

sum {a in assets}(1-transaction)* sell now[a];

fundbalanceconstraint1{s in scenarios}: sum{a in assets}(1+transaction)* amount-

buy [a,1,s]+ Liabilities[s,1]+lend[1,s] = sum {a in assets}(1-transaction)*

amountsell[a,1,s]+Contributions[s,1]+lendprft*lend now;

fundbalanceconstraints{t in 2..9 , s in scenarios }: sum{a in assets} (1+trans-

action)* amountbuy [a,t,s]+ Liabilities[s,t]+lend[t,s] = sum {a in assets}(1-

transaction)* amountsell[a,t,s]+Contributions[s,t]+lendprft*lend[t-1,s];

#Short Sale Constraint:

shortsaleconstraint0{a in assets}: sell now[a] <= Original Portfolio[a];

shortsaleconstraint1{a in assets , s in scenarios}: amountsell[a,1,s]<= hold now[a];

shortsaleconstraints{a in assets, t in 2..9 , s in scenarios}: amountsell[a,t,s] <=

amounthold[a,t-1,s];

#Bound Constraints:

boundsconstraintup1{a in assets }: hold now[a]<= upperbound[a]*allamountHold now;

boundsconstraintup{a in assets , t in time , s in scenarios}: amounthold[a,t,s]<=

upperbound[a]*allamountHold[t,s];

#Funding Ratio Definition

fundingratiodeff1{s in scenarios}: fund ratio[s] = Assets Value[1,s]/Liabilities[s,1];

#SSD Constraints:

minimumdeviation1{k in scenarios}: (cumul fund ratio[k]/k)-asp[k]/k>= delta;

cumulativeassetvaluedeff1{k in scenarios}: cumul fund ratio[k] = k*ord fund ratio[k]-

sum{s in scenarios}dev[k,s];

deviationdeff1{k in scenarios, s in scenarios}: ord fund ratio[k]-fund ratio[s]

<= dev[k,s];
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Appendix C

AMPL Code for Two-Stage SP

and ICCP Models

This Appendix includes the complete AMPL code for the generic SP model

and the additional integrated chance constraints.

#Sets

set assets:=1..15 ;

set time;

set scenarios;

#Params

param Contributions {scenarios , time};
param Liabilities {scenarios , time};
param Original Portfolio {assets} ;

param Return Assets {assets , scenarios , time};
param Return Banks {scenarios , time};
param Return Petrochemecals {scenarios , time};
param Return Cement {scenarios , time};
param Return Retail {scenarios , time};
param Return Energy {scenarios , time};
param Return Agriculture {scenarios , time};
param Return Telecom {scenarios , time};
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param Return Insurance {scenarios , time};
param Return MultiInvestment {scenarios , time};
param Return Industry {scenarios , time};
param Return Building {scenarios , time};
param Return RealEstate {scenarios , time};
param Return Transportation {scenarios , time};
param Return Media {scenarios , time};
param Return Hotels {scenarios , time};
param upperbound {assets};
param transaction;

param lendprft;

param probability:=1/300;

#Variables

var Market Value now >= 0;

var Assets Value {time , scenarios} >=0;

var buy now {assets} >=0;

var sell now {assets} >=0;

var hold now {assets} >=0;

var allamountHold now >=0;

var lend now >= 0;

var amounthold {a in assets, t in time , s in scenarios} >= 0;

var amountbuy {a in assets, t in 1..9 , s in scenarios} >= 0;

var amountsell {a in assets, t in 1..9 , s in scenarios} >= 0;

var allamountHold {t in time , scenarios} >= 0;

var lend {t in 1..9 , s in scenarios} >= 0;

#Objective Function

maximize

Terminal wealth: sum {s in scenarios} (probability*Assets Value[10,s]);

147



#Constraints

subject to

#Market Value

Market Valuedeff0:Market Value now=allamountHold now+lend now;

#Assets Value

Assets Valuedeff1{s in scenarios}:Assets Value[1,s]=sum{a in assets} (hold now[a]*

ReturnAssets[a,s,1])+lendprft*lend now;

Assets Valuedeffs{t in 2..10 , s in scenarios}:Assets Value[t,s]=sum{a in as-

sets} (amounthold[a,t-1,s]*ReturnAssets[a,s,t]) + lendprft*lend[t-1,s];

#Asset Holding Constraints:

assetholdingconstraints0{a in assets}:hold now[a]=Original Portfolio[a]+buy now[a]-

sell now[a];

initial total Holding: allamountHold now=sum{ a in assets }hold now[a];

assetholdingconstraintassets1{a in assets , s in scenarios}: amounthold[a,1,s]=

hold now[a]*ReturnAssets[a,s,1]+ amountbuy[a,1,s]-amountsell[a,1,s];

assetholdingconstraintassets{a in assets, t in 2..9 , s in scenarios}: amoun-

thold[a,t,s]= amounthold[a,t-1,s]*ReturnAssets[a,s,t]+ amountbuy[a,t,s]- amountsell[a,t,s];

assetholdingconstraintassets10{a in assets ,s in scenarios }: amounthold[a,10,s]=

amounthold[a,9,s]*ReturnAssets[a,s,10];

amountHoldd{t in time , s in scenarios}: allamountHold[t,s]=sum{ a in as-

sets}amounthold[a,t,s];

#Fund Balance Constraints:

fundbalanceconstraint0:sum{a in assets}(1+transaction)* buy now [a]+ lend now=

sum {a in assets}(1-transaction)* sell now[a];

fundbalanceconstraint1{s in scenarios}:sum{a in assets}(1+transaction)* amount-

buy [a,1,s]+ Liabilities[s,1]+lend[1,s]=sum {a in assets}(1-transaction)*

amountsell[a,1,s]+Contributions[s,1]+lendprft*lend now;

fundbalanceconstraints{t in 2..9 , s in scenarios }:sum{a in assets} (1+transac-

tion)* amountbuy [a,t,s]+ Liabilities[s,t]+lend[t,s]=sum {a in assets}(1-transaction)*
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amountsell[a,t,s]+Contributions[s,t]+lendprft*lend[t-1,s];

#Short Sale Constraint:

shortsaleconstraint0{a in assets}:sell now[a]<=Original Portfolio[a];

shortsaleconstraint1{a in assets , s in scenarios}:amountsell[a,1,s]<=hold now[a];

shortsaleconstraints{a in assets, t in 2..9 , s in scenarios}:amountsell[a,t,s]<=

amounthold[a,t-1,s];

#Bound Constraints:

boundsconstraintup1{a in assets}:hold now[a]<=upperbound[a]*allamountHold now;

boundsconstraintup{a in assets , t in time , s in scenarios}:amounthold[a,t,s]<=

upperbound[a]*allamountHold[t,s];

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

To formulate ICCP we can add the following integrated chance constraints

to the SP model above:

we need the additional parameters

param targetFR:=1.1;

param RHS:=0.043;

and the additional variables

var fund ratio{s in scenarios};
var shortage{s in scenarios }>=0;

Hence, the following integrated chance constraint could be formulated

integratedchanceconstraints1{s in scenarios}: fund ratio[s]-targetFR+shortage[s]>=0;

integratedchanceconstraints2: probability *sum {s in scenarios} shortage[s]<=

RHS;

where the funding ratio is defined as follows:

fundingratiodeff1{t in time , s in scenarios}: fund ratio[s]=Assets Value[1,s]/Liabilities[s,1];
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Appendix D

Histograms of the Historical

Data of the Stocks Indices

The following plots show the histograms of the historical data of 15 Saudi stock

sector indices and the fitted distribution chosen for each of them. The distri-

butions that best fit the historical data are determined using a function in the

R package gamlss that is designed to fit all available (from a list) gamlss.family

distributions and select the one with the smallest Akaike Information Crite-

rion (AIC): a measure of the relative quality of statistical model for a given

set of data. These fitted distributions are then used to generate samples for

the univariate random variables representing each stock index when we use

the copula as explained in Chapter 4.

These samples were kindly provided via a cooperation with my colleague Alina

Peluso.
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Figure D.1: The histogram of Banks sector and the fitted Box-Cox power

exponential (BCPE) distribution

Figure D.2: The histogram of Petrochemical Industries sector and the fitted

Box-Cox power exponential (BCPE) distribution

151



Figure D.3: The histogram of Cement sector and the fitted Skew Exponential

Power type 2 (SEP2) distribution

Figure D.4: The histogram of Retail sector and the fitted Generalised gamma

(GG) distribution
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Figure D.5: The histogram of Energy and Utility sector and the fitted Skew

Exponential Power type 2 (SEP2) distribution

Figure D.6: The histogram of Agriculture and Food industries sector and the

fitted Skew Exponential Power type 2 (SEP2) distribution
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Figure D.7: The histogram of Telecommunication services sector and the fitted

Box-Cox power exponential (BCPE) distribution

Figure D.8: The histogram of Insurance sector and the fitted Box-Cox t (BCT)

distribution
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Figure D.9: The histogram of Multi-Investment sector and the fitted Skew

Exponential Power type 1 (SEP1) distribution

Figure D.10: The histogram of Industrial Investments sector and the fitted

Box-Cox power exponential (BCPE) distribution
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Figure D.11: The histogram of Building and Constructions sector and the

fitted Generalised gamma (GG) distribution

Figure D.12: The histogram of Real Estate Development sector and the fitted

Skew Exponential Power type 2 (SEP2) distribution

156



Figure D.13: The histogram of Transportation sector and the fitted Skew

Exponential Power type 2 (SEP2) distribution

Figure D.14: The histogram of Media sector and the fitted Sinh-Arcsinh

(SHASH) distribution
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Figure D.15: The histogram of Hotels and Tourism sector and the fitted Sinh-

Arcsinh (SHASH) distribution
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Appendix E

Out-of-Sample Analysis

The following tables show the out-of-sample analysis for the first stage deci-

sions of the models: SD-unscaled, SSD-Scaled, ICCP, Maximin, SD-unscaled2,

SSD-Scaled2 and SSD with reservation levels (SSD-res1 and SSD-res2). The

data sets for the asset returns are generated using copula.
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Table E.1: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 3).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
14.32% 13.82% 12.86% 12.27%

Sortino ratio 1.836 2.3309 1.6284 2.4107

Expected FR 1.1227 1.1177 1.1087 1.1026

Minimum

Funding ratio
0.5913 0.6564 0.5993 0.6939

Expected

shortfall of FR

with respect to

1.1

0.0682 0.0678 0.0656 0.0661

1%-Scaled tail 0.6702 0.7353 0.6692 0.7679

5%-Scaled tail 0.735 0.7927 0.7298 0.82

10%-Scaled tail 0.7806 0.8309 0.7746 0.8525

15%-Scaled tail 0.815 0.8579 0.812 0.8753

20%-Scaled tail 0.8445 0.8787 0.8465 0.8932

25%-Scaled tail 0.8701 0.8959 0.8758 0.9083
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Table E.2: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 4).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
14.3% 13.11% 12.82% 11.63%

Sortino ratio 1.8068 2.1228 1.6063 2.1883

Expected FR 1.1225 1.1108 1.1083 1.0963

Minimum

Funding ratio
0.5959 0.6606 0.6003 0.6975

Expected

shortfall of FR

with respect to

1.1

0.0695 0.0719 0.0667 0.0699

1%-Scaled tail 0.6742 0.7385 0.6714 0.77

5%-Scaled tail 0.7344 0.7914 0.7288 0.8186

10%-Scaled tail 0.7784 0.8266 0.7728 0.8486

15%-Scaled tail 0.8119 0.8521 0.8096 0.8703

20%-Scaled tail 0.841 0.872 0.8438 0.8874

25%-Scaled tail 0.8665 0.8888 0.873 0.902
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Table E.3: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 5).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.75% 13.37% 12.24% 11.89%

Sortino ratio 1.6588 2.1289 1.4814 2.2076

Expected FR 1.1171 1.1133 1.1026 1.0989

Minimum

Funding ratio
0.5859 0.6545 0.5926 0.6925

Expected

shortfall of FR

with respect to

1.1

0.0718 0.0719 0.0689 0.0697

1%-Scaled tail 0.659 0.7316 0.6595 0.7646

5%-Scaled tail 0.7217 0.7865 0.7193 0.815

10%-Scaled tail 0.7686 0.8238 0.7656 0.8466

15%-Scaled tail 0.8036 0.8502 0.8034 0.8689

20%-Scaled tail 0.8339 0.8706 0.8381 0.8865

25%-Scaled tail 0.8603 0.8876 0.8676 0.9013
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Table E.4: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 6).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.97% 13.61% 12.52% 12.10%

Sortino ratio 1.7188 2.2084 1.5358 2.2885

Expected FR 1.1193 1.1156 1.1054 1.1009

Minimum

Funding ratio
0.5852 0.6565 0.5908 0.6943

Expected

shortfall of FR

with respect to

1.1

0.0714 0.07 0.0684 0.068

1%-Scaled tail 0.6631 0.7332 0.6616 0.7657

5%-Scaled tail 0.7253 0.7872 0.721 0.8156

10%-Scaled tail 0.7724 0.8252 0.7679 0.8479

15%-Scaled tail 0.8076 0.8526 0.8063 0.8709

20%-Scaled tail 0.8374 0.8736 0.8409 0.889

25%-Scaled tail 0.8631 0.891 0.8701 0.9042
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Table E.5: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 7).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.97% 13.34% 12.55% 11.86%

Sortino ratio 1.6957 2.121 1.5128 2.1944

Expected FR 1.1195 1.1133 1.106 1.0988

Minimum

Funding ratio
0.5843 0.6559 0.5882 0.6938

Expected

shortfall of FR

with respect to

1.1

0.0719 0.0714 0.0689 0.0693

1%-Scaled tail 0.6647 0.7349 0.6614 0.7671

5%-Scaled tail 0.7263 0.7879 0.7202 0.8159

10%-Scaled tail 0.7706 0.8235 0.7646 0.8463

15%-Scaled tail 0.8045 0.8496 0.8021 0.8684

20%-Scaled tail 0.8341 0.87 0.8371 0.886

25%-Scaled tail 0.8601 0.8872 0.8667 0.9009
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Table E.6: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 8).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.39% 13.41% 12.01% 11.93%

Sortino ratio 1.6151 2.1771 1.4442 2.2579

Expected FR 1.1139 1.114 1.1006 1.0995

Minimum

Funding ratio
0.5913 0.6646 0.5931 0.7012

Expected

shortfall of FR

with respect to

1.1

0.0727 0.0696 0.0698 0.0677

1%-Scaled tail 0.6627 0.735 0.6615 0.7673

5%-Scaled tail 0.7251 0.7889 0.7205 0.8169

10%-Scaled tail 0.7695 0.8256 0.7646 0.8483

15%-Scaled tail 0.8034 0.8524 0.8016 0.8709

20%-Scaled tail 0.8328 0.8733 0.8361 0.8889

25%-Scaled tail 0.8587 0.8907 0.8657 0.9041
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Table E.7: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 9).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.76% 13.21% 12.24% 11.74%

Sortino ratio 1.6857 2.1398 1.493 2.2122

Expected FR 1.1175 1.1121 1.1029 1.0977

Minimum

Funding ratio
0.5848 0.6531 0.5913 0.6911

Expected

shortfall of FR

with respect to

1.1

0.072 0.0715 0.0693 0.0695

1%-Scaled tail 0.6643 0.734 0.6632 0.7665

5%-Scaled tail 0.7273 0.7893 0.7226 0.8171

10%-Scaled tail 0.7727 0.8262 0.7675 0.8484

15%-Scaled tail 0.8066 0.8524 0.8046 0.8705

20%-Scaled tail 0.8359 0.8726 0.8388 0.888

25%-Scaled tail 0.8614 0.8895 0.8679 0.9027
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Table E.8: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 10).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.53% 12.73% 12.20% 11.31%

Sortino ratio 1.6189 1.9846 1.4461 2.0529

Expected FR 1.1153 1.1073 1.1025 1.0934

Minimum

Funding ratio
0.5885 0.6625 0.5914 0.6994

Expected

shortfall of FR

with respect to

1.1

0.0729 0.0738 0.0698 0.0717

1%-Scaled tail 0.6607 0.7304 0.6573 0.7632

5%-Scaled tail 0.7215 0.7834 0.7153 0.8121

10%-Scaled tail 0.7667 0.8204 0.7605 0.8436

15%-Scaled tail 0.8018 0.8471 0.7989 0.8662

20%-Scaled tail 0.8321 0.8678 0.8346 0.8839

25%-Scaled tail 0.8584 0.885 0.8648 0.8989
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Table E.9: Out-of-sample analysis for the first stage decisions of the

models (SSD-Unscaled), (SSD-Scaled), (ICCP) and (Maximin) us-

ing (Data set 11).

Comparison

criteria

SSD-

Unscaled

SSD-

Scaled
ICCP Maximin

Expected rate

of return
13.79% 12.97% 12.29% 11.53%

Sortino ratio 1.7059 2.0833 1.5071 2.1534

Expected FR 1.1178 1.1097 1.1034 1.0956

Minimum

Funding ratio
0.589 0.6621 0.5945 0.6991

Expected

shortfall of FR

with respect to

1.1

0.0717 0.0726 0.0692 0.0705

1%-Scaled tail 0.6689 0.7376 0.6671 0.7693

5%-Scaled tail 0.7301 0.7905 0.725 0.8179

10%-Scaled tail 0.7748 0.8258 0.7688 0.848

15%-Scaled tail 0.8083 0.8512 0.8055 0.8695

20%-Scaled tail 0.8373 0.8709 0.8394 0.8866

25%-Scaled tail 0.8627 0.8875 0.8684 0.901
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Table E.10: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 3).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
20.34% 18.55% 17.55% 18.31%

Sortino ratio 2.1346 2.2619 2.2773 2.2652

Expected FR 1.1814 1.1639 1.1541 1.1615

Minimum

Funding ratio
0.4963 0.5571 0.5788 0.5622

Expected

shortfall of FR

with respect to

1.1

0.0778 0.0756 0.0738 0.0752

1%-Scaled tail 0.5888 0.6461 0.666 0.6508

5%-Scaled tail 0.6722 0.7197 0.7358 0.7235

10%-Scaled tail 0.7338 0.7717 0.7848 0.7748

15%-Scaled tail 0.7793 0.8091 0.8198 0.8116

20%-Scaled tail 0.8134 0.8367 0.8458 0.8388

25%-Scaled tail 0.8409 0.8591 0.8671 0.861
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Table E.11: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 4).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.37% 17.52% 16.59% 17.3%

Sortino ratio 1.9599 2.0457 2.0605 2.049

Expected FR 1.1719 1.1537 1.1446 1.1517

Minimum

Funding ratio
0.503 0.5629 0.5842 0.5679

Expected

shortfall of FR

with respect to

1.1

0.0828 0.0808 0.0789 0.0804

1%-Scaled tail 0.5965 0.6526 0.6718 0.6572

5%-Scaled tail 0.6709 0.7183 0.7345 0.7221

10%-Scaled tail 0.7275 0.7658 0.7792 0.769

15%-Scaled tail 0.7703 0.8008 0.8120 0.8035

20%-Scaled tail 0.8031 0.8272 0.8369 0.8295

25%-Scaled tail 0.83 0.8489 0.8575 0.8509
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Table E.12: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 5).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.59% 17.94% 16.98% 17.72%

Sortino ratio 1.9374 2.0669 2.0815 2.0701

Expected FR 1.1741 1.1579 1.1485 1.1557

Minimum

Funding ratio
0.4930 0.5547 0.5766 0.5599

Expected

shortfall of FR

with respect to

1.1

0.0838 0.0809 0.0789 0.0804

1%-Scaled tail 0.5835 0.6427 0.6626 0.6474

5%-Scaled tail 0.6610 0.7117 0.7284 0.7157

10%-Scaled tail 0.7213 0.7624 0.776 0.7656

15%-Scaled tail 0.7656 0.7986 0.81 0.8013

20%-Scaled tail 0.7993 0.8256 0.8355 0.828

25%-Scaled tail 0.8268 0.8478 0.8564 0.8499
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Table E.13: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 6).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.97% 18.27% 17.29% 18.04%

Sortino ratio 2.013 2.1451 2.16 2.1484

Expected FR 1.1778 1.1611 1.1515 1.1588

Minimum

Funding ratio
0.4955 0.5576 0.5793 0.5628

Expected

shortfall of FR

with respect to

1.1

0.081 0.0783 0.0764 0.0778

1%-Scaled tail 0.5872 0.6457 0.6653 0.6503

5%-Scaled tail 0.6621 0.7123 0.7289 0.7162

10%-Scaled tail 0.7237 0.7640 0.7775 0.7672

15%-Scaled tail 0.7699 0.8018 0.813 0.8044

20%-Scaled tail 0.8046 0.8297 0.8393 0.832

25%-Scaled tail 0.8326 0.8525 0.8609 0.8545
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Table E.14: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 7).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.62% 17.88% 16.92% 17.65%

Sortino ratio 1.9409 2.0541 2.0687 2.0573

Expected FR 1.1746 1.1575 1.1482 1.1553

Minimum

Funding ratio
0.4944 0.5569 0.5786 0.5621

Expected

shortfall of FR

with respect to

1.1

0.0833 0.0805 0.0785 0.08

1%-Scaled tail 0.5892 0.6478 0.6673 0.6524

5%-Scaled tail 0.6641 0.7138 0.7303 0.7177

10%-Scaled tail 0.7211 0.7616 0.7753 0.7649

15%-Scaled tail 0.7652 0.8246 0.809 0.8002

20%-Scaled tail 0.7989 0.8246 0.8345 0.827

25%-Scaled tail 0.8265 0.8469 0.8557 0.849
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Table E.15: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 8).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.67% 17.99% 17.03% 17.76%

Sortino ratio 1.9803 2.1145 2.1294 2.1177

Expected FR 1.1751 1.1587 1.1493 1.1564

Minimum

Funding ratio
0.5084 0.5688 0.5898 0.5738

Expected

shortfall of FR

with respect to

1.1

0.0809 0.0781 0.0762 0.0776

1%-Scaled tail 0.589 0.6474 0.6671 0.6521

5%-Scaled tail 0.6654 0.7151 0.7315 0.7189

10%-Scaled tail 0.7239 0.7645 0.778 0.7677

15%-Scaled tail 0.7690 0.8016 0.8128 0.8042

20%-Scaled tail 0.8035 0.8294 0.839 0.8316

25%-Scaled tail 0.8316 0.8522 0.8606 0.8542
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Table E.16: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 9).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.42% 17.69% 16.75% 17.47%

Sortino ratio 1.9604 2.0694 2.0843 2.0727

Expected FR 1.1727 1.1557 1.1465 1.1535

Minimum

Funding ratio
0.4911 0.5526 0.5746 0.5578

Expected

shortfall of FR

with respect to

1.1

0.0827 0.0803 0.0784 0.0799

1%-Scaled tail 0.5879 0.6458 0.6655 0.6505

5%-Scaled tail 0.6666 0.7153 0.7317 0.7192

10%-Scaled tail 0.7264 0.7654 0.7789 0.7686

15%-Scaled tail 0.7704 0.8015 0.8126 0.8041

20%-Scaled tail 0.8037 0.8283 0.8379 0.8306

25%-Scaled tail 0.8308 0.8503 0.8588 0.8523
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Table E.17: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 10).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
18.70% 17.00% 16.10% 16.79%

Sortino ratio 1.8171 1.9153 1.9296 1.9184

Expected FR 1.1656 1.1489 1.1401 1.1468

Minimum

Funding ratio
0.5051 0.5659 0.5871 0.5710

Expected

shortfall of FR

with respect to

1.1

0.0855 0.0830 0.0810 0.0826

1%-Scaled tail 0.5830 0.6416 0.6615 0.6463

5%-Scaled tail 0.6568 0.7071 0.7240 0.7111

10%-Scaled tail 0.7160 0.7571 0.7711 0.7605

15%-Scaled tail 0.7612 0.7941 0.8057 0.7968

20%-Scaled tail 0.7957 0.8217 0.8317 0.8241

25%-Scaled tail 0.8236 0.8442 0.8530 0.8462
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Table E.18: Out-of-sample analysis for the first stage decisions of

the models (SSD-Unscaled2), (SSD-res1), (SSD-Scaled2), and (SSD-

res2) using (Data set 11).

Comparison

criteria

SSD-

Unscaled2
SSD-res1

SSD-

Scaled2
SSD-res2

Expected rate

of return
19.08% 17.35% 16.42% 17.13%

Sortino ratio 1.9103 2.0118 2.0265 2.0150

Expected FR 1.1694 1.1523 1.1433 1.1502

Minimum

Funding ratio
0.5043 0.5654 0.5867 0.5705

Expected

shortfall of FR

with respect to

1.1

0.0843 0.0818 0.0798 0.0814

1%-Scaled tail 0.5951 0.6517 0.6710 0.6563

5%-Scaled tail 0.6688 0.7172 0.7335 0.7211

10%-Scaled tail 0.7257 0.7650 0.7785 0.7682

15%-Scaled tail 0.7681 0.7998 0.8111 0.8025

20%-Scaled tail 0.8008 0.8260 0.8358 0.8283

25%-Scaled tail 0.8275 0.8476 0.8562 0.8496
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