
MPRA
Munich Personal RePEc Archive

A more general model of price
complexity

Ioana Chioveanu

Brunel University London

18 June 2018

Online at https://mpra.ub.uni-muenchen.de/87466/
MPRA Paper No. 87466, posted 10 July 2018 09:27 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/87466/


A More General Model of Price Complexity∗

Ioana Chioveanu†

June 18, 2018

Abstract

This paper considers a model of competition in prices and price complexity levels,

which accommodates concave and convex confusion technologies. In symmetric equilib-

rium, the probability of using high complexity increases in the number of firms. In the

limit, as the number of competitors goes to infinity, firms use high complexity almost

surely but the impact on consumer welfare depends on the characteristics of the confusion

technology. Specifically, industry profits converge to the highest level with concave con-

fusion technologies and to the lowest level when with convex confusion technologies. An

improvement in consumer sophistication increases consumer welfare but does not reduce

market complexity.
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1 Introduction

In many retail markets, firms commonly use technical or involved language in their price

disclosures, partitioned prices, or differentiated price formats, which make it harder for con-

sumers to identify the best offer. Price complexity is prevalent in markets for financial and

banking products and energy retail. Although, it may be regarded as a benign by-product

of intrinsic product complexity, recent research has raised concerns about its strategic use to

soften price competition. In nearly homogeneous product markets, price complexity has been

associated with consumer ignorance, inertia, lack of sophistication, dispersion in prices and

price formats, positive mark-ups, and unintended responses to increased competitive pressure,

such as lower transparency for consumers.

Discussing the challenges of consumer financial regulation, Campbell (2016) points out

that "financial ignorance is pervasive and unsurprising given the complexity of modern finan-

cial products". The 2015 UK Competition and Market Authority investigation of the retail

banking market found that price complexity may prevent consumers from receiving good

value and identifying the best deals. A 2007 EC study of EU mortgage credit markets and

the 2011 report by the UK Independent Commission on Banking echo these concerns.1 There

is mounting evidence that firms use price complexity to exploit consumer bounded rationality.

Strategic price complexity draws on consumers’behavioral biases and on differences in

their sophistication levels. To assess and compare complex prices, consumers need to spend

more time and/or effort, and some are more likely to make mistakes or suboptimal choices due

to confusion. Strategic firms may deliberately increase price complexity to create consumer

confusion and soften competition in nearly homogeneous product markets.2 Research in

psychology and economics has shown that consumers’decisions are sensitive to the way in

which different alternatives are presented and to the diffi culty of the choice environment.

A recent theoretical literature explores the role of price and choice complexity in homo-

geneous product markets, see Spiegler (2016) for a synthesis. These models send a consistent

message that complexity and equilibrium obfuscation increase in response to intensified com-

petition, weakening its positive effects, and identify the possibility that an increase in the

number of firms harms consumer welfare.
1For instance, Woodward and Hall (2012) show that, in US mortgage markets, deals with the arrangement

fee rolled into the interest rate are better than those that quote these fees separately. For a recent discussion
of related empirical work, see Campbell (2016).

2Both experimental economics and marketing research show that more fragmented multi-part tariffs can
limit price comparability, create confusion, and lead to suboptimal consumer choices. See Kalaycıand Potters
(2011), Kalaycı(2015), and the review by Greenleaf et al. (2015).
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This paper develops a richer modelling framework to accommodate more general con-

fusion technologies, and address some key questions. Is the degree of complexity a good

indicator of market performance? Does an increase in consumer sophistication increase mar-

ket transparency? Under what conditions does an increase in the number of competitors

harm consumer welfare? What type of tests can be used to assess the impact of competition

on welfare? Robust answers to these questions are crucial to the policy relevance of extant

findings.

This analysis focuses on homogeneous product oligopoly markets where firms compete

in price and price complexity. Like in Carlin (2009), complexity makes it more diffi cult to

assess prices and compare offers, and prevents some consumers from identifying the best deal.

Given firms’complexity choices, some consumers are ‘informed’or ‘experts’, while others are

‘confused’. The experts are able to assess all prices and purchase the lowest-price product. The

confused buy from a randomly selected firm (or make random errors). The shares of experts

and confused consumers depend on firms’price complexity choices. A unilateral incremental

increase in a firm’s price complexity increases the share of confused as it raises the diffi culty

of assessing price offers.

A distinctive feature of our extended model is that it allows a firm’s price complexity to

have a non-trivial impact on the diffi culty of assessing a competitor’s offer and can accommo-

date a wider gamut of consumer behaviors. The increase in the share of confused triggered by

an increase in a firm’s price complexity may be either reduced or magnified by the complexity

of rivals’ price offers. Specifically, this analysis considers confusion technologies which are

either convex or concave in firms’aggregate price complexity choice. One interpretation of

this model is that an increase in complexity raises the cost of gathering market-wide infor-

mation and dissuades more consumers from assessing offers.3 Then, convexity or concavity in

confusion can be related to convexity or concavity of the cost of gathering market-wide price

information.

As an illustration, consider a firm which increases the complexity of its price offer by

including more technical terms or using more sophisticated jargon. In a situation where there

is learning by doing, the effect of an incremental increase in complexity would be smaller if

rivals’aggregate complexity were higher. Consumers may get better at deciphering technical

language the more they are exposed to it, and so there would be some reciprocal cancellation

of firms’ complexity levels. On the other hand, in a situation where consumers are more

3Alternatively, it may cause more random consumer mistakes, or it may make more consumers uphold their
default-options.
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likely to be demoralized or make mistakes as the informational load increases, the effect of an

incremental increase in complexity may be larger when rivals’aggregate complexity is higher.

In this setting, price complexity underlies consumer heterogeneity and in symmetric equi-

librium firms choose prices randomly from a closed interval, according to a continuous dis-

tribution function.4 Moreover, there is a positive relationship between prices and complexity

levels: when a firm sets a relatively low price, it benefits from more transparency, while when

it sets a relatively high price, it benefits from more confusion. Despite product homogeneity,

prices are strictly above marginal cost and expected profits are strictly positive.

A duopoly analysis introduces some preliminary results, showing that an increase in the

convexity of the confusion technology (or a reduction in its concavity) leads to an increase in

transparency, a decrease in the lowest price associated with low complexity, a (weak) increase

in the lowest price associated with high complexity, a decrease in average prices and expected

industry profits, and an increase in expected consumer surplus. Intuitively, a deviation to low

complexity and a lower price is relatively more profitable when the confusion technology is

less concave or more convex, as a larger decrease in rivals’confusion effectiveness triggers a

larger increase in the share of experts.

An increase in consumer sophistication decreases average prices and expected profits at

both firm and industry level. However, it has no impact on the frequency of using low com-

plexity. From a consumer policy perspective, programmes that raise consumer awareness or

understanding of the market (e.g., financial literacy programmes) boost consumer surplus but

do not reduce the overall complexity of the market. This suggests that market transparency is

not a good indicator of the effectiveness of consumer awareness initiatives or, more generally,

of how well a market performs.

The analysis of oligopoly markets indicates that an increase in the number of firms leads

to an increase in each firm’s probability of using high complexity and so to lower market

transparency. In relatively concentrated markets, expected industry profit is not monotonic

in the number of firms. In highly fragmented markets, if the confusion technology is concave,

expected share of confused and industry profits are bounded away from zero and converge to

the highest possible level as the number of competitors goes to infinity. In contrast, if the

confusion technology is convex, expected number of confused consumers and industry profits

converge to zero. These findings suggest that standard competition policy may backfire in

relatively concentrated markets and be undesirable in fragmented markets where the confusion

4This framework is related to the broad literature on price dispersion; see Baye, Morgan, and Scholten
(2006) for a survey.
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technology is concave in the complexity level.

Drawing on the interpretation that concavity in confusion relates to the concavity of the

information gathering cost, our findings suggest that consumer learning by doing may not

improve market performance in highly competitive environments. Indeed it may coexist with

poor outcomes for consumers, as it is compatible with highly effective confusion technologies.

On the other hand, highly fragmented markets with convex confusion technologies may per-

form well. More generally, when competitive pressure is high, although firms use the high

complexity almost surely, the impact of complexity on market performance and an effective

policy approach depend crucially on the confusion technology characteristics.

This analysis is related to those in Piccione and Spiegler (2012) and Chioveanu and Zhou

(2013), when price complexity is the main source of confusion, and especially to Carlin (2009).5

The latter analyzes the impact of complexity on market transparency in a model where firms

choose complexity levels from a closed interval. Carlin assumes that the confusion technology

is linear in the aggregate price complexity. Our analysis complements his work by considering

second order effects in confusion and showing that these have policy implications.

Using the results in Dasgupta and Maskin (1986), Carlin (2009) proves the existence of a

symmetric mixed strategy equilibrium, where firms only use the highest and lowest complexity

levels. Drawing on this result, our analysis also revisits the setting with no second order effects

to characterize firms’pricing strategies and profits in the unique symmetric equilibrium. Our

findings indicate that the convergence properties of expected industry profits in a model with

no second order effects are a limiting case, qualitatively consistent with the concave confusion

technology case.

Piccione and Spiegler (2012) explore a general comparability structure in a duopoly model

where consumers enter the market with a default bias, and identify a necessary and suffi cient

condition for firms to earn max-min profits in equilibrium. In their setting, consumers are

initially attached to one firm and can only make price comparisons when formats are compat-

ible. The model presented here can also be interpreted as one where default-biased consumers

are randomly shared across firms and make market-wide price comparisons with a probability

which depends on the overall market complexity. Chioveanu and Zhou (2013) analyze an

oligopoly framework where firms can choose one of two price presentation formats. We show

that an increase in the number of firms induces firms to rely more on frame complexity and

5More broadly, this article contributes to the literature on behavioral industrial economics, in particular,
to work that explores the interaction between strategic firms and boundedly rational consumers. See Spiegler
(2011), Grubb (2015), and Heidhues and Koszegi (2018) for related discussions and surveys of recent work.
Armstrong (2008) provides a thorough discussion of policy issues.
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may harm consumer welfare. In these analyses, the emphasis is on the price comparability

structure and how it is affected by price presentation.6

A different branch of literature explores strategic obfuscation in sequential search models

with fully rational consumers. In Ellison and Wolitzky (2012), consumers’search costs are

strictly convex in shopping time. They argue that strict convexity of the disutility of time

is a realistic assumption because ‘disutility would be convex in a standard time allocation

model with decreasing returns to leisure’. But, they also note that the consideration of cost

concavity might be a more suitable if there is consumer learning by doing.7

Next section formulates the model, introduces a taxonomy of confusion technologies, and

discusses its microfoundations. Section 3 presents some preliminary results, while section

4 illustrates the equilibrium derivation and basic findings in a duopoly model. Section 5

characterizes the unique symmetric mixed-strategy equilibrium in the general oligopoly model.

Section 6 focuses on comparative statics and convergence results, and discusses consumer

protection and competition policy implications. All proofs missing from the text are relegated

to the appendices.

2 Model

Consider a market for a homogeneous product with n ≥ 2 identical firms. Marginal costs

of production are constant and normalized to zero. There is a unit mass of consumers, each

demanding at most one unit of the product and willing to pay at most v = 1.8 Firms simul-

taneously and noncooperatively choose prices, pi for i ∈ N = {1, 2, ...n}, and the complexity

of their prices. There are two possible complexity levels and each firm can choose just one

of them, ki ∈ {k, k̄}, where k̄ > k. The profile of firms’price complexity choices is k, an

n-vector whose i-th component is ki. Complexity is related to the way in which firms convey

price information and can be adjusted at the same time as prices, which is reflected by the

timing.9

A reduced-form model which may accommodate different interpretations is introduced

first where complexity increases the diffi culty of assessing firms’price offers and is a source of

6Closer to Carlin (2009), the current analysis considers a two stage process where complexity focuses con-
sumers’attention and may dissuade them completely from making price comparisons.

7See also Wilson (2010) and Taylor (2017) for related analyses of obfuscation.
8The normalizations of marginal costs and reservation values are made for expositional ease and without

loss of generality.
9Price complexity in this setting is a form of ‘price framing’. Alternatively, firms may engage in ‘product

framing’- a form of spurious product differentiation, e.g., involving decisions on product size or packaging -
which cannot be adjusted as frequently as prices and is better captured by a sequential move framework. See
the related discussion in Chioveanu and Zhou (2013).
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consumer confusion.10 Based on firms complexity choices, there are two types of consumers,

experts (or informed) and confused (or uninformed). The experts purchase the cheapest

product that provides positive surplus, while the confused buy at random, so that they choose

a particular firm with probability 1/n. The model is also consistent with a default-bias

interpretation, whereby each consumer is initially assigned to one firm and the firms have

equal bases of consumers ex-ante. In this case, confused consumers uphold their default

option, while the experts select the cheapest alternative.

The firms’price complexity levels determine the share of experts in the market, which is

assumed to be a symmetric function. Due to symmetry, for a given k, the fractions of experts

and confused are solely determined by n − m, the count of k̄ in k (or alternatively, by m,

the count of k in k) where m ∈ {0, 1, ...n}. Hence, the share of experts can be written as a

function,

µ : N→ [0, 1] .

This analysis considers markets, like those for financial or banking products, where there are

always some expert consumers, although it allows all consumers to be confused if all firms

use k̄. Specifically, the share of experts when n−m firms use k̄ is µ(n−m) ≥ 0, with strict

inequality for m ≥ 1. Denote µ(n) ≡ µmin and, for simplicity, let µ(0) = 1.11

By making it more diffi cult to assess firms’offers, an increase in one firm’s price complexity

increases the fraction of confused in the market, so

1− µ(n−m) < 1− µ(n−m+ 1) . (1)

To capture the impact of a rival’s price complexity on the diffi culty of evaluating a firm’s

offer, let

µ(n−m− 1)− µ(n−m) =
µ(n−m)− µ(n−m+ 1)

β − 1
, (2)

for all m and β > 1. This formulation parametrizes the rate of change of the incremental

share of experts, which is summarized by (β − 1), and provides a tractable way to explore

more general confusion technologies. If β > 2 (β < 2), a unilateral incremental increase in

complexity is more (less) effective when the rivals’complexity is higher (lower), i.e. firms’

complexity levels reinforce (offset) each other in creating confusion. Specifically, depending

on the value of β 6= 2, (2) provides a taxonomy of confusion technologies.

10The main analysis adopts a microfoundation of consumer confusion rooted in the cost of processing infor-
mation, which is presented at the end of this section.
11 In a market where µ(0) ∈ (0, 1), possibly due to the intrinsic characteristics of the product, firms cannot

completely eliminate price complexity. So, even when all firms use the simplest price structure available, some
consumers get confused. However, this does not change the results qualitatively.
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Case 1 Concavity. When 1 < β < 2, the confusion technology (1− µ) is concave in the
number of complex prices in the market. Formally, (1) and (2) imply that

(1− µ(n−m))− (1− µ(n−m− 1)) > (1− µ(n−m+ 1))− (1− µ(n−m)) .

so that a firm’s incremental increase in price complexity is more effective in creating confusion
when rivals’price complexity is lower (in the sense that fewer competitors employ k̄).

Case 2 Convexity. When β > 2, the confusion technology (1− µ) is convex in the number
of complex prices in the market. Formally, (1) and (2) imply that

(1− µ(n−m))− (1− µ(n−m− 1)) < (1− µ(n−m+ 1))− (1− µ(n−m)) .

so that a firm’s incremental increase in price complexity is more effective when rivals’price
complexity is higher.

The LHS differences in Cases 1 and 2 capture the increase in the share of confused triggered

by a unilateral increase in complexity when n−m− 1 other firms use k̄ (and m rivals use k),

while the RHS differences capture the corresponding increase when n −m other firms use k̄

(and m rivals use k).

Expression (2) implies that

1− µ(1) =
µ(n−m− 1)− µ(n−m)

(β − 1)n−1−m
=
µ(n− 1)− µmin

(β − 1)n−1
.

Then it follows that

1− µ(n−m) =
(1− µmin)[(β − 1)n−m − 1]

(β − 1)n − 1
for β 6= 2 . (3)

The share of confused for given n − m can be expressed in terms of the primitives of the

model: the market structure (n), the curvature (β), and the degree of consumer sophistication

as measured by the highest possible share of confused consumers (1− µmin).12

Case 3 No Second Order Effects. When β = 2, the price complexity of one firm does not
affect the effectiveness of an increase in a rival’s complexity. Formally, (1) and (2) imply that

(1− µ(n−m))− (1− µ(n−m− 1)) = (1− µ(n−m+ 1))− (1− µ(n−m)) .

This case is closely related to Carlin (2009) and (3) is replaced by

1− µ(n−m) =
(1− µmin)(n−m)

n
for β = 2 . (4)

The main analysis focuses on β 6= 2, but a characterization of the equilibrium for β = 2 is

included at the end of section 5 and the policy discussion in section 6 covers all cases.

12 It can shown that if µ(0) ∈ (0, 1), the share of confused when n −m firms exactly use k̄ is equal to the
expression in (3) plus a constant equal to (1− µ(0)).
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As the share of experts is assumed to be a symmetric function of firms’price complexity

levels, in the setting above it is expressed as a function of the count of k̄ in k. Alternatively,

the share of experts could be written as a function of the profile of firms’price complexity

choices, ϕ(k). Then, Case 1 corresponds to a situation where there is substitutability in

confusion, that is, the confusion technology (1 − ϕ) satisfies strictly decreasing differences,

while Case 2 corresponds to a situation where there is complementarity in confusion, that is,

the confusion technology (1 − ϕ) satisfies strictly increasing differences.13 A more detailed

description of this alternative formulation is relegated to the online appendix.

2.1 A Microfoundation of Consumer Confusion

The reduced form model can be related to an environment where consumers have limited time

availability and incur a time cost to assess firms’offers, so that they use a two-step approach.

Depending on their time availability and the overall market complexity, they first decide if to

collect information on prices or not. The consumers can directly observe the overall market

complexity: for instance, they may receive information amalgamated by the media or social

networks or transmitted via word-of-mouth. However, they do not observe individual firms’

complexity levels unless they decide to collect information. Complexity focuses consumers’

attention to this particular aspect and may dissuade them from gathering price information.

When a consumer decides to gather information, they buy the lowest-price product. When a

consumer decides not to collect price information, they select a product randomly or uphold

their default-option.

Consumers have time availability t, which is a random variable, and incur a time cost

to assess firms’offers and identify the best deal. Let t be distributed on an interval [tL, tH ]

according to a continuous probability distribution function G(t), with G′(t) > 0.14 Let γ(n−

m) be consumers’ cost of gathering information where n − m is the count of k̄ in k and

measures market-wide complexity. Suppose that it is more costly for consumers to assess

price information when more firms use k̄, that is, γ(n −m) < γ(n −m + 1).15 Then, if t >

γ(n − m), consumers gather information on all price offers and choose the best deal. This

happens with probability 1 − G(γ(n − m)). If t < γ(n − m), consumers choose a random

product or uphold their default option. This happens with probability G(γ(n−m)).

13Here substitutability and complementarity are not strategic (as they do not relate to firms’profits). See
Vives, 1999, Ch. 2 for general discussion.
14Alternatively, consumers may be heterogeneous and G(t) gives the distribution of time availability in the

population.
15Even if consumers restrict their consideration sets, in a more complex environment it would be harder to

decide which firms to include.
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The resulting share of confused is

1− µ(n−m) = G(γ(n−m)) .

As G′ > 0, G(τ(n−m)) < G(τ(n−m+ 1)) then 1− µ(n−m) < 1− µ(n−m+ 1), as in the

reduced-form model. Moreover, (2) requires that

(G ◦ γ) (n−m)− (G ◦ γ)(n−m− 1) =
(G ◦ γ)(n−m+ 1)− (G ◦ γ)(n−m)

β − 1
. (5)

In the examples below, consumers’time availability is a draw from a uniform distribution.

Example 1 Let G ∼ U [a, b] for b > a ≥ 0 so that G(t) = (t− a)/ (b− a), (1− µ(n−m)) =
(γ(n−m)− a) /(b− a), and γ(n−m) = {c [(β − 1)n−m − 1] / (β− 2)}+ a. It can be checked
that (5) holds. For β ∈ (1, 2) and β > 2, γ(n − m) identifies a concave and, respectively,
convex cost sequence.

Using (2) and (5), consistency requires that in this example

c =
(1− µmin)(b− a)(β − 2)

(β − 1)n − 1
.

Example 2 Let G ∼ U [a, b] for b > a ≥ 0 so that G(t) = (t − a)/ (b − a) and γ(n −m) =
c(n−m) + a. It can be checked that (5) implies that β = 2.

Like in the previous example, consistency with the reduced form model requires that

c =
(1− µmin)(b− a)

n
.

In Example 1, concavity of the confusion technology (Case 1) captures learning-by-doing

in the market. In contrast, convexity of the confusion technology (Case 2) captures an envi-

ronment where there is information processing overload: consumers are increasingly likely to

give up as aggregate complexity increases.

Our reduced form model is closely related to the frameworks in Piccione and Spiegler

(2012) and Chioveanu and Zhou (2013). However, these papers analyze the impact of price

complexity (and, more generally, price framing) on the comparability structure. In contrast,

the microfoundation presented above focuses on markets where consumers use a two-stage

decision making process and where strategic price complexity directs consumer attention on

this particular feature of the market. Here, complexity makes gains from comparisons or

switching less obvious and may discourage information gathering or reinforce inertia.

Below alternative conceptual foundations for Cases 1 and 2 are discussed.

Complexity as a Source of Errors. Suppose that the presence of complex prices increases

the probability that consumers make a random choice error. Consider a market where exactly
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n−m firms are using the highest complexity (k̄), withm ≤ n−1. Suppose that the probability

that consumers make a random error (which may be due to upholding a default-option)

because firm i uses k̄ is given by ρn−m ∈ (0, 1) and is identical but independent of the

probability that they get confused because firm j uses k̄.16 Then, the overall probability that

consumers get confused when facing n−m complex prices is 1−(1−ρn−m)n−m, which implies

that µ(n−m) = (1− ρn−m)n−m. Using (3), consistency requires

1− (1− ρn−m)n−m =
(1− µmin)[(β − 1)n−m − 1]

(β − 1)n − 1
. (6)

Example 3 Concavity of Confusion Technology. Suppose that ρn−m = ρ for all m.
Then µ(n−m) = (1− ρ)n−m satisfies (1) and the confusion technology is concave, i.e. Case
1 applies.

In this case, the effectiveness of confusion (as given by ρ) is constant, but the pool of

consumers that a firm can confuse by increasing its price complexity from k to k̄ is decreasing

in the number of competitors which use complex prices. For example, when only one rival

uses k̄, the ‘target’group of a firm is (1 − ρ), whereas when two rivals use k̄, the ‘target’

group shrinks to (1− ρ)2. Intuitively, the confusion technology is concave also when ρn−m is

decreasing in (n −m) as then, when more rivals use complex prices, a firm not only faces a

smaller target group but also is less effective.

The discussion above shows that a necessary condition for the confusion technology to be

convex is ρn−m > ρn−(m+1), i.e., the probability that consumers make a random error when

any firm i uses k̄ must increase in the number of complex prices. This may be the case, for

instance, if consumers are more likely to make an error when the choice environment is more

diffi cult. The following numerical example illustrates this case.

Example 4 Convexity of Confusion Technology. Let n = 4, β = 3, and (1 − µmin) =
0.5. Then, using (6), ρ1 = 0.0125 (µ(1) = 0.9875), ρ2 = 0.0250 (µ(2) = 0.95), ρ3 = 0.0573
(µ(3) = 0.8375), and ρ4 = 0.1591. It is then easy to check that Case 2 applies.

3 Preliminary Findings

Given competitors’price and price complexity choices (p−i,k−i), firm i’s ex post profit can

be written as

πi(pi, ki,p−i,k−i) = pi ·
[

(1− µ(n−m))

n
+ qi(pi,p−i)µ(n−m)

]
,

16This interpretation can be related to an irrational version of the quantal response equilibrium (QRE),
where players make random errors when choosing a strategy, even when they know which is the best deal, and
where each firm is equally likely to be selected.
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where firm i’s share of informed consumers, qi(pi,p−i), is given below.

qi(pi,p−i) =


1 if pi < min{pj , 1} for ∀ j ∈ N , j 6= i ;

1

|H| if pi = pj ≤ 1, ∀ j ∈ H ⊆ N , and pl > pi, ∀ l ∈ N \H, j, l 6= i ;

0 if pi > min{pj , 1} for j ∈ N , j 6= i .

The first term in square brackets in πi is firm i’s share of confused consumers, while the second

term is firm i’s share of experts. All experts buy from firm i if its price is strictly lower than

rivals’prices. If firm i and other firms tie at the lowest price, then they share equally the

experts. If at least one firm j 6= i offers a price pj lower than pi, then firm i does not sell to

experts.

Although confused consumers are unable to accurately compare prices, they do not pay

more than their valuation. If firms charge prices above v = 1, the consumers would realize

at checkout (or after purchase) and decline the purchase (or return the product free of cost).

Therefore, in this setting, firms have no incentives to charge prices in excess of consumers’will-

ingness to pay. Moreover, confused consumers do not infer prices from price complexity levels.

So, even if high complexity were consistently associated with higher prices, consumers would

not understand this relationship. If consumers participate infrequently in the market, they

may not have a chance to learn about this relationship. For instance, some consumers only

take few mortgages in their lifetime, or change their gas and electricity providers infrequently.

Lemma 1 There is no equilibrium where all firms use pure price complexity strategies.

Proof. (a) Suppose all firms choose k for sure (that is, there are µ(0) = 1 experts).

Then, firms would compete á la Bertrand and make zero profit. But, if a firm unilaterally

deviates to k̄ and a positive price (no greater than one), it makes strictly positive profit. A

contradiction.

(b) Suppose exactly n − m firms use k̄ (for m ≥ 1). (a) implies that m < n. Then

there are µ(n − m) < 1 experts and 1 − µ(n − m) confused consumers, and the results

in Varian (1980) apply. The unique candidate equilibrium dictates mixed strategy pric-

ing according to a c.d.f. on [p0, 1] and each firm’s expected profit is (1 − µ(n − m))/n =

p0 [1− (1− µ(n−m))(n− 1)/n]. But, if one of the n−m firms choosing k̄ deviates to (p0, k)

it makes profit p0 [1− (1− µ(n−m− 1))(n− 1)/n] > p0 [1− (1− µ(n−m))(n− 1)/n].

(c) Suppose all firms choose k̄ for sure (that is, there are µ(n) = µmin experts). If µmin > 0,

the argument in (b) applies unchanged. If µmin = 0, then in the unique candidate equilib-

rium pi = 1 and πi = 1/n for all i. But then if a firm unilaterally deviates to k and price

12



pi = 1 − ε, it obtains profit (1− ε) [(1− µ(n− 1))/n+ µ(n− 1)] > 1/n for ε < µ(n − 1)/

[1/(n− 1) + µ(n− 1)].

Lemma 1 implies that in any candidate equilibrium at least one firm randomizes its price

complexity. Therefore, with positive probability firms face both expert and confused con-

sumers. The conflict between the incentives to fully exploit confused consumers and to vigor-

ously compete for the experts rules out equilibria involving pure price strategies. The proof

of the following result is standard and therefore omitted.17

Lemma 2 There is no equilibrium where all firms use pure pricing strategies.

Lemmas 1 and 2 show that in any equilibrium there must be dispersion in both price

complexities and prices. A firm’s strategy space is [0, 1]×{k, k̄}. Denote by ξi ≡ ξi(pi, ki) firm

i’s mixed strategy over price and price complexity. This analysis focuses on symmetric mixed

strategies, where F (p) is the marginal c.d.f. of firms’random prices, defined on an interval S ⊆

[0, 1], and λ(p) and 1−λ(p) are the probabilities that price p ∈ S is associated with complexity

level k and k̄, respectively. Then, the overall probability of using k is
∫
p∈Sλ(p)dF (p) ∈ (0, 1).

The following result presents properties of firms’pricing strategies.

Lemma 3 In symmetric equilibrium, (i) the support of the pricing distribution (S) is a con-
nected interval; (ii) if µmin > 0 the pricing c.d.f. is continuous everywhere, while if µmin = 0,
it is continuous everywhere except possibly at the upper bound of S; and (iii) inf S = p0 > 0
and supS = 1.

Next section builds on these findings to characterize the symmetric Nash equilibrium. Sec-

tion 4 illustrates the approach in a simple duopoly framework and presents some preliminary

comparative statics results. Section 5 analyses a general oligopoly model, while section 6

discusses competition and consumer protection policy implications, by combining analytical

results and numerical simulations.

4 Duopoly Analysis

Consider a duopoly market and suppose firm j 6= i follows the mixed strategy ξj presented in

section 3. At a given price pj , firm j uses the lowest complexity k with probability λ(pj) and

the highest complexity with probability 1 − λ(pj). Firm j’s price is a random draw from its

price c.d.f. Then, firm i’s profit at price p ≥ p0 = minS > 0 and complexity k is given by

πi (p, k) = p

∫ 1

p
[λ(pj)µ(0) + (1− λ(pj))µ(1)] dF (pj) +

p

2

∫ 1

p0

[λ(pj)(1− µ(0)) + (1− λ(pj))(1− µ(1))] dF (pj) . (7)

17See, for instance, the analyses in Varian (1980) and Rosenthal (1980).
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For a given realization of rival’s price pj , the first square bracket gives the expected share of

experts. If firm j also uses k, which happens with probability λ(pj), the share of experts is

µ(0); if, instead, it uses k̄, which happens with probability 1 − λ(pj), the share of experts is

µ(1). Similarly, for a given pj , the second square bracket gives the expected share of confused

consumers. As firm j’s price pj is a random draw, these expected shares are integrated over

the relevant realizations of pj . Firm i serves experts whenever the rival’s price is higher

(pj > p), whereas it serves half of the confused consumers for all pj’s.

Firm i’s profit at price p and complexity k̄ is

πi
(
p, k̄
)

= p

∫ 1

p
[λ(pj)µ(1) + (1− λ(pj))µ(2)] dF (pj) +

p

2

∫ 1

p0

[λ(pj)(1− µ(1)) + (1− λ(pj))(1− µ(2))] dF (pj) . (8)

The terms in square brackets present the expected shares of experts and, respectively, confused

consumers for a given realization of rival’s price pj . However, in this case, if firm j chooses

the lowest complexity k - which happens with probability λ(pj) - there are µ(1) experts and

(1−µ(1)) confused. If firm j chooses the high complexity k̄ - which happens with probability

1−λ(pj) - then there are µ(2) = µmin experts and (1−µ(2)) = (1−µmin) confused. Firm j’s

price pj is a random draw from its pricing c.d.f. The share of experts is integrated over all

the price realizations where firm i serves these consumers (i.e., for all pj > p). Firm i serves

half of the confused consumers for all pj’s.

Substituting µ(0) = 1, and using (3), (7) and (8), the incremental profitability of an

increase in complexity is

πi
(
p, k̄
)
− πi (p, k) =

p(1− µ(1))

2

(
−
∫ 1

p
Λ(pj)dF (pj) +

∫ p

p0

Λ(pj)dF (pj)

)
, (9)

where Λ(pj) ≡ [1 + (1 − λ(pj))(β − 2))] > 0. Evaluating (9) at p = p0 and p = 1 gives,

respectively,

p0(1− µ(1))

2

(
−
∫ 1

p0

Λ(pj)dF (pj)

)
< 0 and

(1− µ(1))

2

(∫ 1

p0

Λ(pj)dF (pj)

)
> 0 .

(9) is strictly increasing in p. The first term in brackets (which is negative) decreases as p

increases (the integration range is smaller), whereas the second term in brackets (which is

positive) increases as p increases (the integration range is wider). To maximize its expected

profit, firm i chooses

k(p) =


k if p < p̂ ,

k̄ if p > p̂ ,

k, ∀k ∈ {k, k̄} if p = p̂ ,

(10)
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where the threshold price p̂ follows from equating (9) to zero. So, in symmetric equilibrium,

prices below a cut-off level p̂ > p0 are associated with complexity level k, while price above p̂,

are associated with k̄, and each firm assigns probability λ =
∫ 1
p0
λ(p)dF (p) = F (p̂) ∈ (0, 1) to

complexity level k and 1− λ to complexity level k̄. A formal proof of this result is presented

in the next section for the general oligopoly model.

Suppose now that firm j 6= i uses the price complexity strategy identified above and that

F (p) satisfies Lemma 3. Then, firm i’s expected profits at p = p0 and when p→ p̂ are

πi (p0, k) = p0

[
λ+

(1− λ)(1 + µ(1))

2

]
and lim

p→p̂
πi (p, k) =

p̂

2
(1− λ)(1 + µ(1)) ,

whereas firm i’s expected profits at p = p̂ and p = 1 are

πi
(
p̂, k̄
)

=
p̂

2
[1− λµ(1) + (1− λ)µmin] and πi

(
1, k̄
)

=
1

2
[1− λµ(1)− (1− λ)µmin] .

The expected profits for an arbitrary price p are presented in the appendix. Constant

profit conditions imply that in duopoly equilibrium the probability of using k̄ and expected

individual profit are given by

1− λ =
1

β
∈ (0, 1) and π =

(1− µmin) (2β − 1)

2β2
, (11)

while the boundary prices p0 and p̂ are

p0 =
(1− µmin)(2β − 1)

2β2 − (1− µmin)
∈ (0, 1) and p̂ =

(1− µmin)(2β − 1)

2β − (1− µmin)
∈ (0, 1] . (12)

Note that p̂ = 1 iff µmin = 0.

Finally, F (p) is implicitly determined by π(k, p) = π and π(k̄, p) = π, and presented in

the appendix. For µmin = 0, the price distribution has a mass point at the upper bound of its

support as (1− F (1)) = 1/β.

Proposition 1 In the unique symmetric duopoly equilibrium, firms choose prices randomly
according to the c.d.f. F (p) presented in (A1). Prices on [p0, p̂) are associated with the
low price complexity (k), while prices on [p̂, 1] are associated with the high price complexity(
k̄
)
, with p0 and p̂ defined in (12). Each firm chooses k with probability λ = F (p̂) and k̄

with probability 1 − λ. The probability λ is presented in (11), together with a firm’s expected
equilibrium profit, π.

For µmin > 0, symmetric equilibrium price c.d.f. is continuous everywhere. In contrast,

for µmin = 0, p̂ = 1 and the equilibrium price distribution is continuous for all p < 1, but has

an atom at the upper bound as limp↗1F (p) = (β − 1)/β < F (1) = 1. There is dispersion in

both prices and price complexity levels, a positive relationship between prices and complexity,

and firms’strategies and market outcomes depend on both β and µmin.
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β is related to the curvature of the confusion technology. When β ∈ (1, 2), an increase in

β translates into a reduction in the concavity of the confusion technology: a firm’s attempt to

confuse consumers is thwarted to a lesser extent by rival’s complexity choices. When β > 2, an

increase in β corresponds to an increase in the convexity of the confusion technology, and so

a firm’s attempt to confuse is magnified to a higher extent by competitor’s complexity choice.

µmin is the share of expert consumers when both firms use the high price complexity (k̄) and

measures consumer sophistication, with a higher value corresponding to higher rationality or

sophistication.

Figure 1 illustrates symmetric equilibrium price c.d.f.s for given µmin and two values of

β. Solid lines correspond to prices associated with the low complexity k, while dashed lines

correspond to k̄.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

p

F(p)

Figure 1: Symmetric Equilibrium Pricing Distributions when µmin = .6. In bue for β = 3/2,

where p0 = 0.195, p̂ = 0.307, and π = 0.178 . In red for β = 3, where p0 = 0.113, p̂ = 0.357

and π = 0.111.

Corollary 1 In the symmetric duopoly equilibrium, the probability of using the low price
complexity (λ) and expected share of confused increase in β, the lower bound of the pricing
c.d.f. (p0) decreases in β, the cut-off price (p̂) increases in β for µmin > 0 and is independent
of β for µmin = 0, expected individual profit (π), expected industry profit (2π), and the average
price decrease in β.

An increase in β increases market transparency as firms use k more frequently, and it

boosts expected consumer surplus, as it decreases the average price. However, it also leads

to more price dispersion (as it lowers p0). As total welfare is constant (and normalized to

one), a decrease in industry profit corresponds to an equal increase in consumer surplus. As β

increases, a firm’s incentive to use the high complexity is lower as it operates in an environment
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where strategic complexity is more effective (or, at least, less ineffective). Figure 2 illustrates

how the probability of using k and industry profit vary with β, for given µmin.

2 4 6 8 10
0.0

0.5

1.0

beta

Figure 2: Probability of using k (in red) and industry profit (in black) as functions of β for

n = 2 and µmin = .6.

While average prices decrease in β, it is less obvious how the average price conditional on

low complexity varies with β. For instance, in Figure 1, an increase in β from 3/2 to 3 triggers

an increase in the cumulative probability at each price p which was assigned positive density

for β = 3/2 and also a decrease in p0. These two effects indicate that the average price for

β = 3 is lower than that for β = 3/2. However, the change in the average price conditional

on low complexity is affected by an additional effect which partly offsets these two, as the

cut-off price p̂ increases in β. Using (A1), the price distribution conditional on the price being

below the cut-off value p̂ and the corresponding conditional expected price are presented in

the appendix. It can be checked that the expected price conditional on low complexity is not

generally monotonic in β. For instance, for µmin = 0.6, it increases for low values of β and

then decreases, while for µmin = 0, it monotonically decreases in β.18

Corollary 2 In symmetric duopoly equilibrium, the probability of using the low price com-
plexity (λ) is independent of µmin, while the lower bound of the pricing c.d.f. (p0), the cut-off
price (p̂), expected individual profit (π), expected industry profit (2π), expected share of con-
fused, the average price, and the average price conditional on low complexity, all decrease in
µmin.

Consumer policies which increase the degree of consumer sophistication, for instance,

financial literacy programmes, decrease average prices and expected share of confused con-

sumers, and increase expected consumer surplus. However, they increase price dispersion (by

18When µmin = 0.6, the expected price conditional on low complexity is 0.25115 for β = 1.05, 0.25149 for
β = 1.15, and 0.24292 for β = 1.5.
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decreasing the lower bound of the pricing support, p0) and do not affect market transparency

as reflected by firms’probability of choosing low complexity. These results suggest that mar-

ket transparency and price dispersion may not be good indicators of the success of consumer

education programmes or of market performance.

5 Oligopoly Equilibrium

This section characterizes the symmetric equilibrium in oligopoly markets. It mainly focuses

on a framework where the confusion technology is either concave or convex in firms’price

complexity levels (where either β < 2 or β > 2), but also includes a variant without second

order effects (β = 2).

Consider an arbitrary firm i ∈ N . Suppose that firm i’s competitors follow the mixed

strategy presented in section 2. So the competitors choose prices randomly from a distribution

function F (p), which satisfies Lemma 3, the probability that a (random) price p is associated

with the low complexity k is given by λ(p), and the probability that p is associated with high

complexity k̄ is 1 − λ(p). Although firm i’s competitors choose prices from the same c.d.f.,

their price draws may be different and so the probabilities of using k may also be different

across these firms.

Let ℘(N−i) be the power set of N−i = N \ {i} and Mm = {M ⊂ ℘(N−i) | |M | = m}.

℘(N−i) is the set of all subsets of N−i andMm is the set of all subsets of ℘(N−i) of cardinality

m. Consider competitors’ex post price profile p−i ∈ Sn−1 and let pj and pl (j, l 6= i) stand

for elements of p−i. Denote by

Pmn−1 =
∑

M⊂Mm

[ ∏
j∈M

λ(pj)
∏

k∈N−i�M
(1− λ(pl))

]
, (13)

the overall probability that out of n− 1 rivals exactly m ≥ 0 use k and n−m− 1 use k̄).

Example 5 Let n = 3, N−i = {j, l}, and p−i = (pj , pl). Using (13), P22 = λ(pj)λ(pl),
P12 = [λ(pj)(1− λ(pl)) + (1− λ(pj))λ(pl)] , and P02 = (1 − λ(pj))(1 − λ(pl)). In this case,
℘(N−i) = {∅, {j}, {l}, {j, l}}, M2 = {j, l}, M1 = {{j}, {l}}, and M0 = {∅}.

Using (13), firm i’s expected profit at price p ≥ p0 = minS > 0 and complexity k is given

by

πi (p, k) = p

∫ 1

p
...

∫ 1

p

[
n−1∑
m=0

Pmn−1µ(n−m− 1)

]
dF (pj)...dF (pl) +

p

n

∫ 1

p0

...

∫ 1

p0

[
n−1∑
m=0

Pmn−1(1− µ(n−m− 1))

]
dF (pj)...dF (pl) .
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The first term in πi (p, k) corresponds to firm i’s profit on the expert consumer segment.

When out of n − 1 rivals exactly m ≥ 0 use k and n −m − 1 use k̄, given that firm i also

employs k, there are µ(n −m − 1) experts. The first term in square brackets sums up over

all values of m. Firm i serves experts only if its price is lower than rivals’prices, which is

reflected when integrating over pj > p for all j 6= i. The second term is firm i’s profit on

the confused consumer segment. Firm i serves a share 1/n of these consumers. The second

term in square brackets sums the corresponding share of confused (1− µ(n−m− 1)) over all

values of m. Firm i serves its share of confused regardless of rivals’prices, which is reflected

by integrating over pj > p0 for all j 6= i.

Using (13), firm i’s expected profit at price p and complexity k̄ is

πi
(
p, k̄
)

= p

∫ 1

p
...

∫ 1

p

[
n−1∑
m=0

Pmn−1µ(n−m)

]
dF (pj)...dF (pl) +

p

n

∫ 1

p0

...

∫ 1

p0

[
n−1∑
m=0

Pmn−1(1− µ(n−m))

]
dF (pj)...dF (pl) .

The expression for πi
(
p, k̄
)
is analogous to the one for πi (p, k) , with the difference that, when

exactly m ≥ 0 out of n− 1 rivals use the lowest complexity k, as firm i employs k̄, there are

µ(n−m) experts and (1− µ(n−m)) confused.

The incremental profitability of an increase in complexity (πi
(
p, k̄
)
−πi (p, k)) is given by

−(n− 1) p

n

∫ 1

p
...

∫ 1

p

[
n−1∑
m=0

Pmn−1(µ(n−m− 1)− µ(n−m))

]
dF (pj)...dF (pk)

+
p

n

∫ p

p0

...

∫ p

p0

[
n−1∑
m=0

Pmn−1(µ(n−m− 1)− µ(n−m))

]
dF (pj)...dF (pk) .

This expression can be simplified using the following result which draws on (3).

Lemma 4 Suppose n ≥ 2 and m ≤ n − 1. Let p−i be the ex post price profile of firm i’s
competitors and Λ(pj) ≡ [1 + (1− λ(pj))(β − 2)], where pj is an element of p−i. Then,

n−1∑
m=0

Pmn−1(µ(n−m− 1)− µ(n−m)) = (1− µ(1))
∏
j 6=i

Λ(pj) .

By (4), the incremental profitability of an increase in complexity becomes

πi
(
p, k̄
)
− πi (p, k) = p(1− µ(1))

(
−n− 1

n

∏
j 6=i

∫ 1

p
Λ(pj)dF (pj) +

1

n

∏
j 6=i

∫ p

p0

Λ(pj)dF (pj)

)
.

(14)

This expression generalizes the incremental profitability of an increase in complexity presented

in section 4, and similar reasoning leads to the next result.

Proposition 2 In symmetric mixed-strategy oligopoly equilibrium, a firm’s complexity level
depends only on its price. The firms choose prices according to a c.d.f. F (p) with support
S = [p0, 1]. If p < p̂, firms choose complexity k, if p > p̂, firms choose complexity k̄, and if
p = p̂, firms are indifferent between the two complexity levels.
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When a firm chooses relatively low prices, it benefits from more market transparency, as

it is more likely to serve the experts. In contrast, when a firm chooses relatively high prices,

it relies more on confused consumers and benefits from higher complexity. As a result, in

equilibrium there is a positive relationship between prices and price complexity levels and

a firm’s complexity choice is determined by its price draw. Each firm assigns probability

λ = F (p̂) ∈ (0, 1) to complexity level k and 1− λ to complexity level k̄.

The proof of the next result uses the approach illustrated in section 4 and is relegated to

the appendix. Drawing on Proposition 2, a firm’s expected profit for a price p ∈ [p0, p̂) (which

is associated with low complexity, k) and for a price p ∈ [p̂, 1] (which is associated with high

complexity, k̄), and mixed strategy equilibrium constant profit conditions are also presented

there. Recall that µ(n) = µmin.

Proposition 3 For n ≥ 2 and β 6= 2, there is a unique symmetric equilibrium, where firms
choose prices randomly according to a c.d.f. F (p) defined on [p0, 1] where p0 > 0. Each firm
chooses complexity k̄ with probability 1− λ = 1− F (p̂), where

1− λ =
n−1/(n−1)

1 + (β − 2)(1− n−1/(n−1))
∈ (0, 1) , (15)

and complexity k with probability λ. Each firm’s expected profit is

π = (1− µmin)
[
n(1− λ)n−1(β − 1)n − 1

]
n[(β − 1)n − 1]

. (16)

If µmin > 0, then p̂ < 1 and F (p) is continuous everywhere. If µmin = 0, then p̂ = 1 and F (p)
is continuous for p ∈ [p0, p̂), but has an atom at p̂.

In homogeneous product markets, where firms compete by simultaneously choosing prices

and price complexity levels, there is dispersion in both dimensions in equilibrium. These

findings are consistent with observed patters in markets for financial and banking products,

or markets for gas and electricity. Firms make strictly positive profits and charge prices in

excess of marginal cost. The firms’equilibrium strategies and market outcomes depend on

market structure (as captured by n), the curvature of the confusion technology (β), and the

degree of consumer sophistication (µmin).

A Model without Second Order Effects

So far, the analysis has focused on β 6= 2. Below, a variant of the model where β = 2

(and so there are no second order effects) is discussed. The preliminary results in Lemmas

1-3 carry over unchanged. The β = 2 case is closely related to Carlin (2009), who analyses a

market where "an individual firm’s complexity choice may add diffi culty to the overall task of
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becoming informed, [but] does not magnify the effect of other firms’complexity choices on the

cost of becoming informed". In Carlin’s model the firms choose complexity levels from a closed

interval [k, k̄], but in symmetric mixed-strategy equilibrium they randomize only between the

extreme values of this interval. His analysis proves the existence of a cut-off mixed strategy

equilibrium. The next result fully characterizes the unique symmetric equilibrium of a variant

with only two price complexity levels (ki ∈ {k, k̄}). The proof is relegated to the online

appendix.

Proposition 4 For n ≥ 2 and β = 2, there is a unique symmetric equilibrium, where firms
choose prices randomly according to a c.d.f. F (p) defined on [p0, 1] where p0 > 0. Each firm
chooses complexity k̄ with probability 1− λ = 1− F (p̂), given by

1− λ = n−
1

n−1 ∈ (0, 1) , (17)

and complexity k with probability λ. Each firm’s equilibrium profit π is given by

π = (1− µmin)
1− n−

1
n−1 + n

n−2
n−1

n2
. (18)

If µmin > 0, then p̂ < 1 and F (p) is continuous everywhere. If µmin = 0, then p̂ = 1 and F (p)
is continuous for p ∈ [p0, p̂) but has an atom at p̂.

6 Discussion and Policy Implications

This section explores equilibrium comparative statics and convergence results, and discusses

their implications for competition and consumer protection policy. It builds on Propositions

3 and 4, and focuses on the impact of changes in (i) competitive pressure as measured by the

number of firms (n); (ii) degree of consumer sophistication as measured by the lowest share of

experts (µmin); and (iii) the concavity or convexity of the confusion technology as measured

by the value of β.

Corollary 3 In the symmetric mixed-strategy equilibrium, the probability that each firm as-
signs to the lowest complexity level k (λ) decreases in the number of firms (n), is independent of
the degree of consumer sophistication (µmin), and increases in the degree of concavity/convexity
β. Moreover, limn→∞ λ = 0.

In more fragmented markets, to offset the impact of increased competitive pressure, firms

rely more on consumer confusion and so choose high price complexity more frequently. In the

limit, as the number of competitors goes to infinity, firms use high price complexity almost

surely. Hence, in settings where firms compete by choosing both prices and price complexity,

an increase in the number of firms leads to an increase in the overall complexity of the

market. Like in the duopoly framework, the frequency with which firms use low complexity
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is independent of consumers’degree of sophistication. As a result, initiatives which improve

consumer awareness do not lead to reductions in the overall market complexity.

For a given market structure, a lower degree of concavity or higher degree of convexity

in confusion technology leads to a decrease in market complexity. When β ∈ (1, 2), higher

complexity of rivals’ offers partly offsets the increase in confusion resulting from a firm’s

incremental complexity. However, as β increases, this offsetting effect gets smaller and, as a

firm’s incentives to choose high complexity are reduced, λ increases. When β > 2, higher rival

complexity magnifies the increase in confusion resulting from the incremental complexity of

a firm’s offer. This creates a free-riding effect and an increase in β further weakens a firm’s

incentives to use high complexity. Figure 3 provides an illustration.

5 10 15
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n

Lambda

Figure 3: Equilibrium probability of using k (λ) as a function of n. From bottom to top for

β equal to 1.5, 1.7, 2, 3, and 3.5.

The equilibrium expected share of confused consumers is

E [1− µ] ≡
n∑

m=0

Cmn λ
m(1− λ)n−m(1− µ(n−m)) .

For a given number of firms, E[1 − µ] aggregates the shares of confused consumers in the

sequence (1 − µ(n − m))nm=0, weighting each share by the overall probability that m firms

choose low complexity and n−m firms choose high complexity. Using (3) for β 6= 2 and (4)

for β = 2, equilibrium expected share of confused becomes

E [1− µ] =


(1− µmin)

[1 + (1− λ)(β − 2)]n − 1

(β − 1)n − 1
for β 6= 2

(1− µmin)(1− λ) for β = 2

. (19)

This analysis focuses on the impact of convexity or concavity of the confusion technology on

market outcomes. For this reason, the comparative statics and convergence results discussed
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below assume that the lower bound of the share of experts in the market is independent of the

number of firms, i.e. µ(n) = µmin is a constant. This is equivalent to assuming that (1−µmin)

- the maximal share of confused consumers - is fixed regardless of the market structure. By

fixing the maximal share of confused, when the number of firms is increased, each of them

is made smaller with respect to the market, as each firm’s maximal base of confused is then

fixed at the level (1− µmin)/ n.19

The convergence properties of the expected share of confused consumers in fragmented

markets depend on whether the confusion technology is concave or convex in firms’complexity

choices.

Corollary 4 In the symmetric mixed-strategy equilibrium, the expected share of confused con-
sumers in (19) decreases in µmin and

lim
n→∞

E [1− µ] =

{
(1− µmin) for β ∈ (1, 2]

0 for β > 2
.

This corollary formalizes Carlin’s intuition that the convergence results for the expected

number of confused depend on the properties of the confusion technology. If the confusion

technology is convex in firms’complexity levels, the expected share of confused consumers

converges to zero. For expositional ease, this analysis assumes that µ(0) = 1, that is, when

all firms use low complexity, there are no confused consumers. If µ(0) < 1, so that there is

some confusion even when all firms use low complexity, then in highly fragmented markets

where β > 2, the expected share of confused consumers would converge to the minimal level

(1− µ(0)) instead; see footnote 2. In contrast, if the confusion technology is concave in firms’

complexity levels (β ∈ (1, 2)), the expected share of confused is bounded away from zero and

converges to (1− µmin).

The concavity or convexity of the confusion technology in this model is captured by the

sequence of shares (1− µ(n−m))nm=0. A simple illustration is provided below.

Example 6 Let µmin = 0 and consider (3). If β = 3, then, 1 − µ(n − m) = (2n−m − 1)/
(2n − 1) and limn→∞(1− µ(n−m)) = 2−m. If β = 3/2, then 1− µ(n−m) = (0.5n−m − 1)/
(0.5n − 1) and limn→∞(1− µ(n−m)) = 1.

Intuitively, in fragmented markets, convexity requires a relatively ineffective confusion

technology and so, although firms use almost surely high complexity (i.e., despite the lack of

market transparency), the expected share of confused converges to zero. In contrast, concavity

requires a relatively effective confusion technology. If the confusion technology is concave, in

highly fragmented markets, lack of transparency is aligned with a high expected share of

19For a discussion of comparative statics in large oligopoly markets, see Chapter 5.2.5. in Vives (2001).
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confused consumers. This is also the case when there are no second order effects in confusion,

so the results for β = 2 are qualitatively similar to those that obtain under concavity.

Beyond the convergence results presented in Corollary 4, numerical simulations indicate

that the expected number of confused consumers increases monotonically in n for β ∈ (1, 2].

For β = 2, this monotonicity result can be derived analytically using Corollary 3. For all

β > 2, E[1− µ] decreases in n at least when n is large enough. For β ≥ 3, its value at n = 2

is larger than the value at n = 3, and then E[1−µ] decreases monotonically in n for n ≥ 3.20

However, for β ∈ (2, 2.8) it peaks at some value n0(β) ≥ 3. Numerical examples also indicate

that the expected share of confused consumers strictly decreases in β for given n and µmin.

Example 7 Let µmin = 0. Consider β = 3/2, 2, or 3. The expected share of confused as a
function of the number of firms is illustrated in Figure 4 and presented in the appendix.

2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

n

Figure 4: Expected share of confused consumers in equilibrium for µ(n) = 0. In red for

β = 3, in green for β = 2, and in blue for β = 3/2.

As discussed, the analysis holds the minimal share of experts fixed, so market fragmen-

tation does not have a direct impact on consumer sophistication. Suppose instead that

µmin = µ(n) is a decreasing function of n. Then, the more fragmented the market, the

lower the minimal share of experts is. This could be the case in a market where there is

choice overload and consumers are more likely to make random choices when they face more

options. Using (19), it is easy to see that the qualitative results in Corollary 4 carry over

unchanged. For β > 2, (1 − µ(n)) is bounded above by 1, so that in the limit, the expected

share of confused still goes to zero. For β ∈ (1, 2], the expected share of confused converges

to limn→∞(1 − µ(n)) > (1 − µ(2)) > 0. Now, suppose that µ(n) is an increasing function

of n, that is, the more fragmented the market, the higher the minimal share of experts is.

20For β ∈ [3, 3.15), the expected number of confused is an inverted U function of n, but reaches a maximum
at some n0(β) ∈ (2, 3).
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Arguably, this is a less realistic case as it requires market structure to have a positive impact

on consumer sophistication. For β > 2, (1− µ(n)) is bounded below by zero, so the expected

share of confused still converges to zero. However, for β ∈ (1, 2], the expected share of con-

fused may converge to zero as almost all consumers are sophisticated in nearly competitive

markets.21

Corollary 5 In symmetric mixed-strategy equilibrium, expected industry profit (πn = nπ)
decreases in µmin, and is strictly larger than expected share of confused. Furthermore,

lim
n→∞

πn =

{
(1− µmin) for β ∈ (1, 2]

0 for β > 2
.

An increase in the level of consumer sophistication has a positive effect on consumer

surplus (as total welfare is normalized to one). Combined with the findings in Corollary 3,

this implies that an improvement in consumer awareness boosts consumer welfare, but does

not reduce overall market complexity. Hence, the insight from the duopoly model that market

transparency is not a good indicator of market performance carries over to more fragmented

environments.
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Figure 5: Equilibrium industry profit (πn) as a function of n for µmin = 0 and various values

of β.

In nearly perfectly competitive markets, when the confusion technology is concave, or

when it is linear (i.e., there are no second order effects), expected industry profit is bounded

away from zero. As total profit is larger than the expected share of confused, this result is

21See also the examples in Carlin, 2009 (section 4, p. 284). In the first one, like in this analysis, µ(n) is
independent of n, while in the second, µ(n) increases with n.
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closely related to Corollary 4. On the other hand, when the confusion technology is convex

in complexity levels, expected profit converges to zero as the number of firms goes to infinity.

In this case, although firms choose high complexity almost surely, confusion technology is

relatively ineffi cient and fragmented markets may be highly competitive.

In general, industry profit and implicitly consumer surplus are not monotonic in the num-

ber of firms. An increase in competitive pressure gives firms stronger incentives to undercut

and attract the experts, but also to use more frequently high complexity (k̄), which is asso-

ciated with relatively higher prices. Numerical simulations also suggest that industry profit

decreases in β for given µmin and n. Figure 4 provides an illustration for µmin = 0. Numerical

simulations provide further insights. Table 1 presents equilibrium outcomes for various values

of n and β, letting µmin = 0.6.

Table 1 (µmin = 0.6)

β n λ π πn p0 p̂ E[1− µ]

3/2 3 0.268 0.122 0.365 0.149 0.275 0.852

3/2 4 0.227 0.094 0.377 0.125 0.254 0.916

3/2 10 0.127 0.04 0.4 0.062 0.185 0.998

2 3 0.423 0.096 0.287 0.107 0.324 0.578

2 4 0.370 0.072 0.289 0.084 0.325 0.63

2 10 0.226 0.032 0.320 0.043 0.347 0.774

3 3 0.594 0.056 0.169 0.058 0.363 0.254

3 4 0.540 0.034 0.14 0.036 0.374 0.236

3 10 0.368 0.006 0.064 0.007 0.399 0.13

In these examples, p0 decreases in n for given β and in β for given n. p̂ decreases in n for

β = 3/2, it increases in n for β = 2 and β = 3, and it increases in β for given n. Expected

industry profit and expected share of confused increase in n for β = 3/2 and β = 2, decrease

in n for β = 3, and decreases in β for given n.

7 Conclusions

This paper develops a richer framework for the analysis of competition in homogeneous prod-

uct markets where sellers compete by choosing both prices and the complexity of their price

structures. Price complexity increases the cost of gathering information about prices and
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identifying the best deal, and is a source of consumer confusion. A distinctive feature of the

proposed model is that it accommodates more general confusion technologies, which may be

either concave or convex in firms’complexity levels. Our results suggest that the characteris-

tics of the confusion technology have an impact on market outcomes and implications for the

design and assessment of competition and consumer protection policy. Furthermore, the char-

acteristics of confusion technology can be related to consumers’cost of gathering market-wide

information and to a wider range of underlying consumer behavior.

Despite product homogeneity, in markets with strategic price complexity, there is equi-

librium dispersion in both prices and price complexity levels, there is a positive relationship

between prices and complexity, and firms make strictly positive profits. In relatively con-

centrated markets, an increase in the number of competitors triggers an increase in market

complexity but has ambiguous effects on consumer surplus. In nearly perfectly competitive

markets, although firms use almost surely high price complexity, if the confusion technology

is convex, expected industry profits converge to zero, whereas, if the technology is concave,

expected industry profits converge to the highest level. An improvement in consumer sophis-

tication boosts consumer welfare but does not reduce the overall complexity of the market.

Therefore, interventions which increase consumer awareness are beneficial, but their effective-

ness cannot be measured by the degree of market transparency they achieve.

8 Appendix

8.1 Preliminary Results

Proof of Lemma 3. (i) Let S̃ be the convex hull of S. Suppose there is a gap G ⊂ S̃. Let

A = {p ∈ S | p ≤ inf G}, pa = maxA and p′ = supG. Clearly, pa ∈ S and F (pa) = F (p′).

But then πi(p′, k, ξj) > πi(pa, k, ξj). A contradiction.

(ii) (a) Suppose there is a mass point at some p′ ∈ S with 0 < p′ < maxS. Then, there is a

positive probability of a tie at this price. (a1) If λ(p′) > 0, the expected share of experts at

this price is strictly positive when all firms tie. Then, firm i is better off deviating to p′ − ε

as there is a discrete increase in market share and only a marginal decrease in price. This

deviation applies also at p′ = maxS, so that firms cannot have a mass point at the upper

bound of S. (a2) If λ(p′) = 0, the share of experts at this price is µmin. If µmin > 0, the

argument in (a1) applies unchanged. If µmin = 0, in the event of a tie at p′, all consumers

are confused and firm i is better off moving mass from price p′ to price p = maxS. Note that

this argument does not rule out a mass point at the upper bound of S when µmin = 0. (c)
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Suppose there is a mass point at p′ = 0. In this case, all firms make zero profits. If λ(p′) < 1,

then there are some confused consumers when firms tie at this price and firm i is better off

deviating to p = 1 and making positive profits on its share of confused. If λ(p′) = 0, all

consumers are experts when firms tie, but then firm i is better off deviating to p = 1 and

ki = k̄, where it makes positive profit.

(iii) It follows from (i) that in symmetric equilibrium S is a bounded interval. Suppose

ph = supS < 1. If µmin > 0, by (ii) firms pricing c.d.f.s are continuous everywhere, so a

firm charging p→ ph sells only to its share of confused consumers and it is clearly better off

deviating to a higher price p = 1. If µmin = 0, there may be a positive probability of a tie

at ph but, as all consumers are confused when all firms tie, deviating to p = 1 is profitable.

A contradiction. As ph = 1, firms’expected profit in the mixed strategy equilibrium will be

strictly positive, so it must be that p0 = minS > 0.

8.2 Duopoly Analysis

Expected Profits

Using (10), we re-write a firm’s expected profits. If firm i chooses complexity k and charges

a price p ∈ [p0, p̂), as µ(0) = 1, (7) becomes

πi (p, k) = p

[
(λ− F (p)) + (1− λ)µ(1) +

(1− λ)(1− µ(1))

2

]
.

If instead firm i chooses k̄ and charges p ∈ [p̂, 1], expression (8) becomes

πi
(
p, k̄
)

= p

[
(1− F (p))µ(2) +

λ(1− µ(1))

2
+

(1− λ)(1− µ(2))

2

]
.

Cumulative Price Distributions

The cumulative price distribution is presented below.

1− F (p) =


(1− µmin)

2β2

(
2β − 1

p
+ 1

)
for p ∈ [p0, p̂) ,

(1− µmin) (2β − 1)

2β2µmin

(
1

p
− 1

)
for p ∈ [p̂, 1], if µmin > 0 .

(A1)

Proof of Proposition 1. It is easy to see that λ, p0, p̂, and F (p) as presented in (11),

(12), and (A1) are all well defined.

Consider a unilateral deviation to (p < p0, k). The deviator’s market share is equal to that

corresponding to p = p0 but, as the price is lower, this deviation is not profitable.

Consider a unilateral deviation to (p > p̂, k). This results in deviation profit
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πd (p, k) = p

[
(1− F (p))µ(1) +

λ(1− µ(0))

2
+

(1− λ)(1− µ(1))

2

]
<

π
(
p, k̄
)

= p

[
(1− F (p))µ(2) +

λ(1− µ(1))

2
+

(1− λ)(1− µ(2))

2

]
.

The inequality follows as, for p > p̂,

(
πd (p, k)− π

(
p, k̄
))

p
=[

(1− F (p))(µ(1)− µ(2))− λ(µ(0)− µ(1))

2
− (1− λ)(µ(1)− µ(2))

2

]
=

(µ(1)− µ(2))

[
(1− F (p))− λ

2(β − 1)
− (1− λ)

2

]
<

(µ(1)− µ(2))

[
(1− F (p̂))− λ

2(β − 1)
− (1− λ)

2

]
= 0.

Consider a unilateral deviation to
(
p < p̂, k̄

)
. This results in deviation profit

πd
(
p, k̄
)

= p

[
(1− λ)µ(2) + (λ− F (p))µ(1) +

(1− λ)(1− µ(2))

2
+
λ(1− µ(1))

2

]
<

π (p, k) = p

[
(1− λ)µ(1) + (λ− F (p)) +

(1− λ)(1− µ(1))

2

]
.

The inequality follows as, for p < p̂,

(
πd
(
p, k̄
)
− π (p, k)

)
p

=

− (1− λ)(µ(1)− µ(2))− (λ− F (p)) (1− µ(1)) +
(1− λ)(µ(1)− µ(2))

2
+
λ(1− µ(1))

2
=

(µ(1)− µ(2))
−2(λ− F (p))− (β − 1)(1− λ) + λ

2(β − 1)
<

(µ(1)− µ(2))
−(β − 1)(1− λ) + λ

2(β − 1)
= 0.

Equilibrium Expected Share of Confused Consumers.

2∑
m=0

Cm2 λ
m(1− λ)2−m(1− µ(2−m)) =

(1− µmin)(3β − 2)

β3
. (A2)

For µmin < 1 is strictly lower than expected industry profits.

Proof of Corollary 1. Using (11), dλ/dβ = 1/β2 > 0.

Differentiating (A2) w.r.t. β gives −2(1− µmin)(β − 1)/β4 < 0.

Using (12), dp0/dβ = −2(1− µmin)[1− µmin+ 2β(β − 1)]/ [2β2 − (1− µmin)]2 < 0.

Using (12), dp̂/dβ = 2(1 − µmin)µmin/ [2β − (1 − µmin)]2. So, for µmin > 0, dp̂/dβ > 0 and

µmin = 0, dp̂/dβ = 0.

Using (11), dπ/dβ = (1/2)(dπ2/dβ) = −(1− µmin)(β − 1)/ β3 < 0.

Using (A1), E(p) =
∫ p̂
p0

(1− F (p)) dp+
∫ 1
p̂ (1− F (p)) dp+ p0. By Leibniz’s rule,

dE(p)/dβ = (1− F (p̂)) (dp̂/dβ)− (1− F (p0)) dp0/dβ +∫ p̂
p0

(−dF (p)/dβ) dp− (1− F (p̂)) (dp̂/dβ)+
∫ 1
p̂ (−dF (p)/dβ) dp+ dp0/dβ =
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∫ p̂
p0

(−dF (p)/dβ) dp+
∫ 1
p̂ (−dF (p)/dβ) dp.

But, for p ∈ [p0, p̂), using (A1), dF (p)/dβ = (1 − µmin)(β − 1 + p)/ β3p > 0. For p ∈ [p̂, 1]

and µmin > 0, dF (p)/dβ = (1 − µmin)(β − 1)(1 − p)/ β3µminp > 0. Then it follows that

dE(p)/dβ < 0. For µmin = 0, p̂ = 1 and the second integral in E(p) is a constant, so

dE(p)/dβ =
∫ p̂
p0

(−dF (p)/dβ) dp < 0.

Conditional Price Distribution. The price distribution conditional on the price being

below the cut-off value p̂ and the corresponding conditional expected price are given by

F (p | p < p̂) = F (p)/F (p̂) =
2β2 − (1− µmin)

2β(β − 1)
− (1− µmin) (2β − 1)

2β(β − 1)p
;

E(p | p < p̂) =
(1− µmin) (2β − 1)

2β(β − 1)
ln

2β2 − (1− µmin)
2β − (1− µmin)

. (A3)

Proof of Corollary 2. Using (11), dλ/dµmin = 0.

Using (12), dp0/dµmin = −2(2β − 1)β2/ [2β2 − (1− µmin)]2 < 0.

Using (12), dp̂/dµmin = −2(2β − 1)β/ [2β − (1− µmin)]2 < 0.

Using (11), dπ/dµmin = −(2β − 1)/ 2β2 < 0.

Differentiating (A2) w.r.t. µmin gives −(3β − 2)/β3 < 0.

Using (A1), E(p) =
∫ p̂
p0

(1− F (p)) dp+
∫ 1
p̂ (1− F (p)) dp+ p0. Then, by Leibniz’s rule,∫ p̂

p0
(−dF (p)/dµmin) dp+

∫ 1
p̂ (−dF (p)/dµmin) dp.

But, for p ∈ [p0, p̂), using (A1), dF (p)/dµmin = [(2β − 1)/p+ 1]/ 2β2 > 0. For p ∈ [p̂, 1] and

µmin > 0, dF (p)/dµmin = (2β − 1)(1 − p)/ 2β2µminp > 0. It follows that dE(p)/dµmin < 0.

For µmin = 0, p̂ = 1 and the second integral in E(p) is a constant, so dE(p)/dµmin =∫ p̂
p0

(−dF (p)/dµmin) dp < 0.

Using (A3), it follows that

dE(p | p < p̂)/ dµmin =

−
{

(1− µmin) (2β − 1)

[2β − (1− µmin)]
[
2β2 − (1− µmin)

] +
2β − 1

2β(β − 1)
ln

2β2 − (1− µmin)
2β − (1− µmin)

}
< 0.

8.3 Oligopoly Analysis

Proof of Lemma 4. By (3) and (13),

Φ =
∑n−1
m=0 P

m
n−1(µ(n−m− 1)− µ(n−m)) = (1− µ(1))

∑n−1
m=0 P

m
n−1(β − 1)n−m−1 =

(1− µ(1))
∑n−1
m=0

{∑
M⊂Mm

[ ∏
j∈M

λ(pj)
∏

k∈N−i�M
(1− λ(pk))

]
(β − 1)n−m−1

}
.

For a given m, |N−i�M | = n−m− 1, so we can re-write Φ as
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(1− µ(1))
∑n−1
m=0

{∑
M⊂Mm

∏
j∈M

λ(pj)
∏

k∈N−i�M
[(1− λ(pk))(β − 1)]

}
.

As we first sum over all values of m (for 0 ≤ m ≤ n − 1), and then over all subsets of

cardinality m in ℘(N−i), we are effectively summing up over all the subsets M in ℘(N−i).

Then, Φ becomes

(1− µ(1))
∑
M⊂℘(N−i)

∏
j∈M

λ(pj)
∏

k∈N−i�M
[(1− λ(pk))(β − 1)] .

Consider rival l’s price pl. Each term in the sum above contains either λ(pl) or (1− λ(pl)).

In fact, for each term in the summation which includes λ(pl), there is a ‘pair’which includes

(1− λ(pl)) and all other multipliers are the same. Formally, take some set M l ⊂ ℘(N−i) such

that l ∈M l. Then, ∃M−l such thatM l = M−l∪{l}. Pairing all such subsets, we can re-write

the sum above by factoring out the term [λ(pl) + (1− λ(pl))(β − 1)]. So,

Φ = (1−µ(1)) [λ(pl) + (1− λ(pl))(β − 1)]
∑

M⊂℘(N−i,−l)

∏
j∈M

λ(pj)
∏

k∈N−i�M
[(1− λ(pk))(β − 1)] ,

where ℘(N−i,−l) is the power set of N \ {i, l} ≡ N−i,−l.

By iteration,

Φ = (1− µ(1))
∏
j 6=i

[λ(pj) + (1− λ(pj))(β − 1)] = (1− µ(1))
∏
j 6=i

[1 + (1− λ(pj))(β − 2)] .

Proof of Proposition 2. Using (14), let

∆(p) ≡ −n− 1

n

∏
j 6=i

∫ 1

p
Λ(pj)dF (pj) +

1

n

∏
j 6=i

∫ p

p0

Λ(pj)dF (pj) =
πi(p, k)− πi(p, k)

p(1− µ(1))
.

As Λ(pj) > 0 (see Lemma 4), it is easy to check that ∆(p0) < 0 and ∆(1) > 0. Furthermore,

∆(p) is strictly increasing in p. As changes in p only affect the integration ranges in ∆(p),

d∆(p)

dp
= [1 + (1− λ(p))(β − 2))]

(
n− 1

n
Ω1 +

1

n
Ω2

)
where

Ω1 =
∑
j 6=i

{ ∏
k 6=i,k 6=j

∫ 1
p [1 + (1− λ(pjk))(β − 2))]dF (pjk)

}
> 0 and

Ω2 =
∑
j 6=i

{ ∏
k 6=i,k 6=j

∫ p
p0

[1 + (1− λ(pjk))(β − 2))]dF (pjk)

}
> 0.

So, to maximize its expected profit a firm i chooses according to (10), where the threshold

price p̂ ∈ (p0, 1] satisfies ∆(p̂) = 0.

Proof of Proposition 3.

Step 1: Expected Profits. At price p ∈ [p0, p̂), which is associated with k, firm i’s expected
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profit is

π (p, k) =

p

{
n−1∑
m=0

Cmn−1(1− λ)n−1−m
[
(λ− F (p))mµ(n−m− 1) +

1

n
λm(1− µ(n−m− 1))

]}
.

When n−1−m competitors choose k̄ (and so price above p̂ ≥ p) and m competitors choose k

(which happens with probability λm(1−λ)n−1−m) firm i serves 1/n of the (1−µ(n−m− 1))

confused. It also serves µ(n − m − 1) experts whenever all m firms choosing k offer prices

higher than p (which happens with probability (λ − F (p))m(1 − λ)n−1−m). This gives the

term in square brackets. The term in curly brackets considers all possible combinations of

n− 1 taken m and gives firm i’s market share at price p.

Then, firm i’s expected profits at p = p0 and when p→ p̂ are,

π (p0, k) = p0

{
n−1∑
m=0

Cmn−1λ
m(1− λ)n−1−m[µ(n−m− 1) +

1

n
(1− µ(n−m− 1))]

}
, (A4)

lim
p→p̂

π (p̂, k) = p̂

[
(1− λ)n−1ϕ(1) +

1

n

n−1∑
m=0

Cmn−1λ
m(1− λ)n−1−m(1− µ(n−m− 1))

]
. (A5)

At price p ∈ [p̂, 1], which is associated with k̄, firm i’s expected profit is

π
(
p, k̄
)

= p

[
(1− F (p))n−1µ(n) +

n−1∑
m=0

Cmn−1λ
m(1− λ)n−1−m

(1− µ(n−m))

n

]
.

When m competitors choose k (and so offer prices below p̂ < p) and n − 1 −m competitors

choose k̄, firm i serves a share 1/n of the (1 − µ(n −m)) confused consumers. The second

term in square brackets considers all possible combinations of n − 1 taken m. Firm i serves

expert consumers only if all rivals choose high complexity (that is, if n − m = n) and if it

offers the lowest price, as reflected by the first term in square brackets.

Then, firm i’s expected profit at p = p̂ is

π
(
p̂, k̄
)

= p̂

[
(1− λ)n−1µ(n) +

n−1∑
m=0

Cmn−1λ
m(1− λ)n−1−m

(1− µ(n−m))

n

]
.

Step 2: Lambda. The equilibrium probability of choosing k̄ presented in (15) follows from,

limp→p̂ π (p̂, k) = π
(
p̂, k̄
)
⇔

(1− λ)n−1(µ(n− 1)− µ(n)) =
1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(µ(n−m− 1)− µ(n−m))⇔

(µ(n− 1)− µ(n))(1− λ)n−1 =
1− µ(1)

n

(∑n−1
m=0C

m
n−1λ

m [(1− λ)(β − 1)]n−1−m
)
⇔
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(1− µ(1)) [(1− λ)(β − 1)]n−1 =
1− µ(1)

n
[1 + (1− λ)(β − 2)]n−1.

Step 3: Equilibrium Profit. (16) obtains by evaluating the expected profit at p = 1 and

using (3).

π
(
1, k̄
)

=
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m))

n
=

(1− µ(n))

n[(β − 1)n − 1]

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m[(β − 1)n−m − 1] =

(1− µ(n))

n[(β − 1)n − 1]

[
(β − 1)

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m (β − 1)n−1−m − 1
]

=

(1− µ(n))

n[(β − 1)n − 1]

{
(β − 1)

∑n−1
m=0C

m
n−1λ

m [(1− λ) (β − 1)]n−1−m − 1
}

=

(1− µ(n))

n[(β − 1)n − 1]

{
(β − 1)[1 + (1− λ)(β − 2)]n−1 − 1

}
.

Then Step 2 implies that [1 + (1− λ)(β − 2)]n−1 = n [(1− λ)(β − 1)]n−1 and (16) follows.

Step 4: Equilibrium Boundary Prices and Pricing Distribution Functions.

I p0 and p̂ are defined by π(p0, k) = π and limp→p̂ π (p̂, k) = π , where the LHS terms are

presented in (A4) and (A5), respectively, the RHS term is given by (16), and λ follows from

(15).

Firm i’s market share at p0 - the term in curly brackets in (A4) - is larger than its market

share when p → p̂ - the term in square brackets in (A5) because (1 − λ)n−1µ(n − 1) <∑n−1
m=0C

m
n−1λ

m(1−λ)n−1−mµ(n−m−1). This implies that p0 < p̂ as the equilibrium constant

profit condition requires π (p0, k) = limp→p̂ π (p̂, k).

Moreover, p̂ ≤ 1, with equality iff µ(n) = 0. Using (A5) and (16), p̂ ≤ 1 requires that

1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(1− µ(n−m)) ≤

(1− λ)n−1µ(n− 1) + 1
n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(1− µ(n−m− 1))⇔
1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(µ(n−m− 1)− µ(n−m)) ≤ (1− λ)n−1µ(n− 1)⇔

1

n
[λ+ (1− λ)(β − 1)]n−1 − [(1− λ)(β − 1)]n−1 ≤ (1− λ)n−1

µ(n)

1− µ(1)
.

(15) implies that the LHS is equal to zero. The RHS is nonnegative and may be equal to zero

only if µ(n) = 0. So p̂ < 1 if µ(n) > 0 and p̂ = 1 if µ(n) = 0.

Below, we focus on the pricing c.d.f.s. Note that π is defined in (16) and independent of p.

I For p ∈ [p0, p̂), F (p) is implicitly determined by π(k, p) = π.

Differentiating w.r.t. p both sides gives

− F ′ (p)
∑n−1
m=1C

m
n−1

[
m(λ− F (p))m−1(1− λ)n−1−mµ(n−m− 1)

]
= − π

p2
.

In this interval, F (p) < F (p̂) = λ and the summation is strictly positive. Then, F (p) is
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strictly increasing in p.

For p ∈ [p̂, 1], F (p) is implicitly determined by π(k̄, p) = π ⇔

(1− F (p))n−1µ(n) +
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m))

n
=
π

p
.

It is easy to see that F (p) is strictly increasing on this interval.

Furthermore, F (p) is continuous at p̂, and satisfies F (p0) = 0 and F (1) = 1.

Step 5: No Profitable Unilateral Deviations.

Consider a unilateral deviation to (p < p0, k). The deviator’s market share is equal to that

corresponding to p = p0 but, as the price is lower, this deviation is not profitable.

Consider a unilateral deviation to (p > p̂, k). This results in deviation profit

πd (p, k) = p

[
(1− F (p))n−1µ(n− 1) +

1

n

∑n−1
m=0C

m
n−1(1− λ)n−1−mλm(1− µ(n−m− 1))

]
.

But πd (p, k) < π
(
p, k̄
)
⇔

(1− F (p))n−1µ(n− 1) +
1

n

∑n−1
m=0C

m
n−1(1− λ)n−1−mλm(1− µ(n−m− 1)) <

(1− F (p))n−1µ(n)) +
1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(1− µ(n−m))⇔

(1−F (p))n−1(µ(n− 1)−µ(n)) <
1

n

∑n−1
m=0C

m
n−1λ

m(1−λ)n−1−m(µ(n−m− 1)−µ(n−m))⇔

(1− F (p))n−1(β − 1)n−1 <
1

n

∑n−1
m=0C

m
n−1λ

m [(1− λ)(β − 1)]n−1−m ⇔

(1− F (p))n−1(β − 1)n−1 <
1

n
[λ+ (1− λ)(β − 1)]n−1.

The last inequality follows from the fact that, as p > p̂,

(1− F (p))n−1(β − 1)n−1 < (1− F (p̂))n−1(β − 1)n−1 = (1− λ)n−1(β − 1)n−1.

It is then easy to check using (15) that (1− λ)n−1(β − 1)n−1 =
[λ+ (1− λ)(β − 1)]n−1

n
.

Consider a unilateral deviation to
(
p < p̂, k̄

)
. This results in deviation profit.

πd
(
p, k̄
)

= p

{∑n−1
m=0C

m
n−1(1− λ)n−1−m[(λ− F (p))mµ(n−m) + λm

(1− µ(n−m))

n
]

}
.

But, πd
(
p, k̄
)
< π (p, k) as∑n−1

m=0C
m
n−1(1− λ)n−1−m[(λ− F (p))mµ(n−m) + λm

(1− µ(n−m))

n
] <

∑n−1
m=0C

m
n−1(1− λ)n−1−m

[
(λ− F (p))mµ(n−m− 1) + λm

(1− µ(n−m− 1))

n

]
⇔

∑n−1
m=0C

m
n−1(1− λ)n−1−m(µ(n−m− 1)− µ(n−m))[−(λ− F (p))m +

λm

n
] < 0⇔

∑n−1
m=0C

m
n−1 [(1− λ)(β − 1)]n−1−m [−(λ− F (p))m +

λm

n
] < 0⇔

−
∑n−1
m=0C

m
n−1 [(1− λ)(β − 1)]n−1−m (λ− F (p))m +
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1

n

∑n−1
m=0C

m
n−1 [(1− λ)(β − 1)]n−1−m λm < 0⇔

− [(1− λ)(β − 1) + λ− F (p)]n−1 +
1

n
[(1− λ)(β − 1) + λ]n−1 < 0.

The last inequality follows as for p < p̂,

− [(1− λ)(β − 1) + λ− F (p)]n−1 < − [(1− λ)(β − 1)]n−1.

But, using (15), − [(1− λ)(β − 1)]n−1 +
1

n
[(1− λ)(β − 1) + λ]n−1 = 0.

8.4 Discussion and Policy Implications

Proof of Corollary 3.

For β 6= 2, λ is defined in (15) and for β = 2 it is defined in (17). It is easy to see that when

evaluated at β = 2, expression (15) reduces to (17). Therefore, this proof uses (15) to cover

both cases.

Re-write (15) as λ(ñ) = 1− ñ

β − 1− (β − 2)ñ
where ñ = n−1/(n−1) ∈ (0, 1),

with
dñ

dn
=
n−n/(n−1)(1− n+ n log n)

(n− 1)2
> 0.

Using the chain rule,
dλ

dn
=
dλ

dñ

dñ

dn
< 0 as

dλ

dñ
= − β − 1

[β − 1− (β − 2)ñ]2
< 0.

limn→∞ ñ = exp
[
limn→∞ ln

(
n−1/(n−1)

)]
=

exp

[
limn→∞

(
− lnn

n− 1

)]
=

exp

[
− limn→∞

(
lnn

n− 1

)]
. By L’Hôpital’s rule, limn→∞

(
lnn

n− 1

)
= limn→∞

1

n
= 0. So,

limn→∞ ñ = 1 and limn→∞ λ = 0 .

Moreover,
dλ

dµ(n)
= 0 and

dλ

dβ
=

ñ(1− ñ)

[β − 1− (β − 2)ñ]2
> 0.

Proof of Corollary 4.

I Suppose β ∈ (1, 2). limn→∞E[1− µ] = limn→∞
(1− µmin) {1− [1 + (1− λ)(β − 2)]n}

1− (β − 1)n
.

In this case, (β − 1) < 1 and 1 + (1− λ)(β − 2) < 1.

As limn→∞[1− (β − 1)n] = 0 and limn→∞ {1− [1 + (1− λ)(β − 2)]n} = 1, it follows that

limn→∞E[1− µ] = (1− µmin).

I Suppose β > 2. It is convenient to write

limn→∞E[1− µ] = limn→∞
(1− µmin) {[(β − 1)− λ(β − 2)]n − 1}

(β − 1)n − 1
=

(1− µmin)
limn→∞ {[(β − 1)− λ(β − 2)]n − 1}

limn→∞ [(β − 1)n − 1]
.
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limn→∞ {[(β − 1)− λ(β − 2)]n − 1} = limn→∞ [(β − 1)n − 1] =∞,

as (β − 1) > (β − 1)− λ(β − 2) = 1 + (1− λ)(β − 2) > 1.

However, the first inequality implies that the denominator converges faster. It follows that

limn→∞E[1− µ] = 0.

I Suppose β = 2. By Corollary 3, limn→∞(1− λ) = 1.

Then, limn→∞(1− µ(n))(1− λ) = (1− µmin).

In all cases, the impact of µmin is straightforward.

Example 7: Expected share of confused as a function of n.

E [1− µ] =



[
1− n−1/(n−1)/(1 + n−1/(n−1))

]n − 1

(1/2)n − 1
for β = 3/2

n−1/(n−1) for β = 2[
2/(2− n−1/(n−1))

]n − 1

2n − 1
for β = 3

.

Proof of Corollary 5.

Expected industry profit in equilibrium is

πn =


(1− µmin)

n(1− λ)n−1(β − 1)n − 1

(β − 1)n − 1
for β 6= 2

(1− µmin)
λ+ n(1− λ)

n
for β = 2

.

I Consider β 6= 2. Using (16), industry profit can be written as

πn =

(1− µmin)
{

(β − 1)n[
1 + (β − 2)(1− n−1/(n−1))

]n−1 − 1

}
(β − 1)n − 1

=

(1− µmin)
[
β − 1− (β − 2)n−1/(n−1)

] [ β − 1

β − 1− (β − 2)n−1/(n−1)

]n
− 1

(β − 1)n − 1
=

(1− µmin)
[
β − 1− (β − 2)n−1/(n−1)

]
[λ+ (1− λ)(β − 1)]n − 1

(β − 1)n − 1
.

As limn→∞
[
β − 1− (β − 2)n−1/(n−1)

]
= 1, it follows that

limn→∞ πn = limn→∞
(1− µmin) [λ+ (1− λ)(β − 1)]n − 1

(β − 1)n − 1
.

But, the RHS is limn→∞E[1− µ]. Using Corollary 4, the results follow.

I Consider β = 2, using (17), limn→∞ πn = limn→∞(1− µmin)[
λ

n
+ (1− λ)]. Using Corollary

3, the result follows.
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Proof of Corollary 5.

I Consider β 6= 2.

Using the expressions in Corollaries 4 and 5,

πn − E[1− µ] = (1− µmin)
{
n(1− λ)n−1(β − 1)n − 1

(β − 1)n − 1
− [1 + (1− λ)(β − 2)]n − 1

(β − 1)n − 1

}
=

(1− µmin)
n(1− λ)n−1(β − 1)n − [1 + (1− λ)(β − 2)]n

(β − 1)n − 1
=

(1− µmin)
(β − 1)[1 + (1− λ)(β − 2)]n−1 − [1 + (1− λ)(β − 2)]n

(β − 1)n − 1
,

where the last equality uses step 3 in the proof of Proposition 3.

Then, πn − E[1− µ] = (1− µmin)
[1 + (1− λ)(β − 2)]n−1(β − 2)(2− λ)

(β − 1)n − 1
> 0.

I Consider β = 2.

πn − E[1− µ] = (1− µmin)
[
λ+ n(1− λ)

n
− (1− λ)

]
=

(1− µmin)λ
n

> 0.

Online Appendix

Substitutability vs. Complementarity in Confusion

Recall that the profile of firms’price complexity choices is k, an n vector whose i-th component

is ki. The vector k−i is obtained from k by omitting the i-th component, so (ki,k−i) = k.

Denote by km an n − 1 vector with m components equal to k and the remaining n − 1 −m

components equal to k̄, for 0 ≤ m ≤ n− 1.

The firms’price complexity levels determine the fraction of experts in the market, which

is given by the following function

ϕ : {k, k̄}n → [0, 1] .

An increase in one firm’s price complexity level lowers the comparability of competing offers

and therefore the fraction of experts in the market, so ϕ(k,k−i) > ϕ(k̄,k−i) for all i ∈ N .

For expositional simplicity and without loss of generality, let ϕ(k,kn−1) = 1. To capture the

impact of a rival’s price complexity on the diffi culty of evaluating a firm’s offer let

ϕ(k,km)− ϕ(k̄,km) =
(ϕ(k,km−1)− ϕ(k̄,km−1))

β − 1
,

for β > 1. Using ϕ(k,kn−1) = 1, (2) implies that

1− ϕ(k̄,kn−1) =
(ϕ(k,km)− ϕ(k̄,km))

(β − 1)n−1−m
=

(ϕ(k,k0)− ϕ(k̄,k0))

(β − 1)n−1
.
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As ϕ(k̄,km) = ϕ(k,km−1), using (3),

ϕ(k̄,km) =
ϕ(k̄,k0)

∑n−1−m
k=0 (β − 1)k +

∑n−1
k=n−m(β − 1)k∑n−1

k=0(β − 1)k

= 1− (1− ϕ(k̄,k0))[(β − 1)n−m − 1]

(β − 1)n − 1
.

Case 1. Substitutability in Confusion. When 1 < β < 2, the confusion technology,

(1− ϕ), satisfies strictly decreasing differences.

Formally, for β ∈ (1, 2),

(
1− ϕ(k̄, km)

)
− (1− ϕ(k,km)) >

(
1− ϕ(k̄, km−1)

)
− (1− ϕ(k,km−1)) .

so that a firm’s incremental increase in price complexity is more effective in creating confusion

when rivals’price complexity is lower (in the sense that fewer competitors employ k̄).

Case 2. Complementarity in Confusion. When β > 2, the confusion technology,

(1− ϕ), satisfies strictly increasing differences.

For β > 2,

(
1− ϕ(k̄, km)

)
− (1− ϕ(k,km)) <

(
1− ϕ(k̄, km−1)

)
− (1− ϕ(k,km−1)) .

so that a firm’s incremental increase in price complexity is more effective when rivals’price

complexity is higher.

Case 3. No Second Order Effects in Confusion. When β = 2, the price complexity

of one firm does not affect the effectiveness of an increase in a rival’s complexity.

(
1− ϕ(k̄, km)

)
− (1− ϕ(k,km)) =

(
1− ϕ(k̄, km−1)

)
− (1− ϕ(k,km−1)) .

so that a firm’s incremental increase in price complexity is independent of rivals’price com-

plexity levels.

Proof of Proposition 4. First note that the incremental profitability of an increase in

complexity in this case is given by πi
(
p, k̄
)
− πi (p, k) =

p
∫ 1
p ...

∫ 1
p

[∑n−1
m=0 P

m
n−1 (µ(n−m)− µ(n−m− 1))

]
dF (pj)...dF (pk) +

p

n

∫ 1
p0
...
∫ 1
p0

[∑n−1
m=0 P

m
n−1(µ(n−m− 1)− µ(n−m))

]
dF (pj)...dF (pk) =

p (1− µ(1))

[
−(1− F (p))n−1 +

1

n

]
.

But, at p = p0, the term above is negative, while at p = 1, it is positive. As F (p) is strictly

increasing in p, π
(
p, k̄
)
−πi (p, k) < 0 for p < p̂ and firms choose k, while π

(
p, k̄
)
−πi (p, k) > 0
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for p > p̂ and firms choose k̄. The cut-off price p̂ solves (1− F (p̂))n−1 = 1/n.

Step 1 in the proof of Proposition 3 carries over unchanged. Then, the constant profit condi-

tion requires that

π (p̂, k) = limp→p̂ π
(
p̂, k̄
)
⇔

(1− λ)n−1(µ(n− 1)− µ(n)) =
1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(µ(n−m− 1)− µ(n−m))⇔

(1− λ)n−1 =
1

n

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m ⇔

(1− λ)n−1 =
1

n
and (17) follows.

Equilibrium profit (as a function of λ) obtains by evaluating the expected profit at p = 1 and

using (4).

π
(
1, k̄
)

=
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m))

n
=

(1− µ(n))
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(n−m)

n2
=

(1− µ(n))
λ+ n(1− λ)

n2
and (18) follows.

Below, we identify the equilibrium boundary prices and pricing c.d.f.s.

π (p0, k) = p0

{∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
[
µ(n−m− 1) +

1

n
(1− µ(n−m− 1))

]}
=

p0

{∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
[
1− n− 1

n
(1− µ(n−m− 1))

]}
=

p0

{
1− (1− µ(n))

(n− 1)2(1− λ)

n2

}
.

Then, using π (p0, k) = π, where the RHS is defined in (18), it follows that

p0 =
(1− µ(n))[λ+ n(1− λ)]

n2 − (1− µ(n))(n− 1)2(1− λ)
.

π
(
p̂, k̄
)

= p̂

[
(1− λ)n−1µ(n) +

∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m))

n

]
=

p̂

[
(1− λ)n−1µ(n) + (1− µ(n))

λ+ n(1− λ)

n2

]
.

Then, using π
(
p̂, k̄
)

= π, where the RHS is defined in (18), it follows that

p̂ =
(1− µ(n))[λ+ n(1− λ)]

n− (1− µ(n))(n− 1)λ
.

It is easy to check that p̂ ≤ 1, with equality if and only if µ(n) = 0, and that p0 < p̂.

F (p) is implicitly determined by π(k, p) = π and π(k̄, p) = π.

For p ∈ [p0, p̂), F (p) solves∑n−1
m=0C

m
n−1

[
(λ− F (p))m(1− λ)n−1−mµ(n−m− 1) + λm(1− λ)n−1−m

(1− µ(n−m− 1))

n

]
=

π

p
⇔
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∑n−1
m=0C

m
n−1(λ− F (p))m(1− λ)n−1−mµ(n−m− 1) +∑n−1

m=0C
m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m− 1))

n
=
π

p
⇔

1

n
(1− F (p))n−2 {(1− λ)[1 + µ(n)(n− 1)] + (λ− F (p))n}+∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m− 1))

n
=
π

p
.

It is straightforward to see that both the LHS and the RHS above are decreasing in F (p). So

F (p) is strictly increasing in p in this interval.

For p ∈ [p̂, 1], if µ(n) > 0, F (p) solves

(1− F (p))n−1µ(n) +
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m
(1− µ(n−m))

n
=
π

p
⇔

(1− F (p))n−1µ(n) +
(1− µ(n))

n2
∑n−1
m=0C

m
n−1λ

m(1− λ)n−1−m(n−m) =
π

p

(1− F (p))n−1µ(n) + (1− µ(n))
λ+ n(1− λ)

n2
=
π

p

(1− F (p))n−1µ(n) = π

(
1

p
− 1

)
.

It is easy to see that F (p) is strictly increasing in this interval.

No Profitable Unilateral Deviations.

Consider a unilateral deviation to (p < p0, k). The deviator’s market share is equal to that

corresponding to p = p0 but, as the price is lower, this deviation is not profitable.

Consider a unilateral deviation to (p > p̂, k). This results in deviation profit

πd (p, k) = p

[
(1− F (p))n−1µ(n− 1) +

1

n

∑n−1
m=0C

m
n−1(1− λ)n−1−mλm(1− µ(n−m− 1))

]
.

But πd (p, k) < π
(
p, k̄
)
⇔

(1−F (p))n−1(µ(n− 1)−µ(n)) <
1

n

∑n−1
m=0C

m
n−1λ

m(1−λ)n−1−m(µ(n−m− 1)−µ(n−m))⇔

(1 − F (p))n−1 <
1

n

∑n−1
m=0C

m
n−1λ

m(1 − λ)n−1−m ⇔ (1 − F (p))n−1 <
1

n
as (1 − F (p))n−1 <

(1− λ)n−1.

Consider a unilateral deviation to
(
p < p̂, k̄

)
. This results in deviation profit.

πd
(
p, k̄
)

= p

{∑n−1
m=0C

m
n−1(1− λ)n−1−m[(λ− F (p))mµ(n−m) +

λm(1− µ(n−m))

n
]

}
.

But, πd
(
p, k̄
)
< π (p, k) as∑n−1

m=0C
m
n−1(1− λ)n−1−m(µ(n−m− 1)− µ(n−m))[−(λ− F (p))m +

λm

n
] < 0⇔

∑n−1
m=0C

m
n−1(1−λ)n−1−m[−(λ−F (p))m+

λm

n
] < 0⇔ −(1−F (p)n−1+

1

n
< 0 as (1−F (p)n−1 >

(1− λ)n−1.
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