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Abstract 

The research presented in this thesis covers two critical problems regarding lined 

pipes: dynamic impact and welding. A lined pipe consists of an inner layer (the liner) 

made of corrosion resistant alloy (CRA), e.g. AISI304 stainless steel, and an outer 

layer made of low carbon steel, e.g. carbon-manganese steel, C-Mn. To manufacture 

the lined pipe, a special heat treatment, known as tight fit pipe (TFP), based on 

cooling the liner to -200°C, heating the backing pipe to +500°C and inserting the 

liner inside the outer pipe, was used in this work. Both welding and impact with 

external objects are responsible for accumulating high levels of plastic strains and 

residual stresses which could lead to failure in the pipe sometime after the impact or 

the welding.     

The special welding process used in lined pipes typically consists of the overlay 

welding (inner welding) of the liner with the C-Mn steel pipe for each segment and 

the girth welding (outer welding) of the two segments. To simulate this welding 

process using the ABAQUS code, nonlinear heat-transfer and mechanical finite-

element (FE) analyses have been conducted. A distributed power density of the 

moving welding torch and a non-linear heat transfer coefficient accounting for both 

radiation and convection have been used in the analysis and implemented in 

ABAQUS user-subroutines.    

The modelling procedure has been validated first against previously published 

experimental results for stainless steel and carbon steel pipe welding separately. The 

model has been then used to determine the isotherms induced by the one-pass weld 

overlay and the one-pass girth welding and to clarify their influence on the transient 

temperature field and residual stress in the lined pipe. Furthermore, the influence of 

the cooling time between weld overlay and girth welding and of the welding speed 

have been examined thermally and mechanically as they are key factors that can 

affect the quality of lined pipe welding.  

The same FE numerical procedure to analyse line pipe welding is then applied to 

simulate six cases experimentally tested in the lab within this project. Furthermore, 
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two cases have been analysed first, namely a reference case, in which the effect of 

the TFP pre-heat treatment is neglected, and a second one where the pre-heat 

treatment has been taken into consideration. During welding, the FE thermal history 

and mechanical strain results for both cases correlate well with the experimental ones 

in the region with the highest residual stresses, because the effect of initial residual 

stresses is cancelled in the regions subject to very high temperatures. After welding, 

the numerical and experimental results have proved that the initial residual stresses 

due to the TFP pre-heat treatment are reasonably important in the liner whereas they 

are practically negligible in the C-Mn pipe.  

The same reference case is then compared numerically and experimentally with 

further five parametric cases to study the effect of welding properties (weld overlay 

and girth welding materials), geometric parameters (using weld overlay and liner) 

and welding process parameters (heat input). The numerical temperature fields and 

residual stresses are in good agreement with their experimental counterparts for all 

cases. 

The dynamic impact problem is a crucial one for lined pipes because of the reduction 

in the thickness of the outer pipe ensured by the internal protection from corrosion 

given by a thinner liner. In this case, the lined pipe is more affected by potential 

impact with external objects (so-called ‘third party interference’ in the Oil and Gas 

industry). In general, a dent produced by a freely dropped weight is responsible to a 

large extent of catastrophic failure in pipelines. Therefore, in this work, 3D FE 

models have been developed to simulate the mechanism of vertical free drop of a 

weight from different heights resulting in damage in the pipe.  Models have been 

executed using a three-dimensional non-linear explicit-dynamics FE code, 

ABAQUS/EXPLICIT. In order to precisely simulate the response of the pipe to 

subsequent impacts and spring back, an elastic-plastic constitutive law is adopted 

using the isotropic Hooke’s law and a Von Mises yield criterion, with work 

hardening based on an isotropic hardening rule associated with the equivalent plastic 

strain rate. Strain-rate dependent properties are specified for both materials, C-Mn 

and AISI304, to take into account the change in velocities during impact. The 

numerical strain results are reasonably consistent with the experimental ones 

recorded by four strain gauge rosettes positioned symmetrically around the dent 
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centre. Numerical and experimental results are comprehensively analysed and 

discussed also in terms of practical implications in the industry. 
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Chapter 1  

Introduction 

1-1. Background and Motivation 

The expected continuous growth of harsh operating conditions and corrosive 

production fluids, such as CO2 and H2S, make the use of C-Mn steel pipe for 

offshore and flow line impossible in Oil & Gas pipelines, and hence, the need for 

corrosion mitigation is required. One alternative is the use of a lined pipe, consisting 

of a thinner inner layer (the liner) and outer layer (backing steel) (Hilberink, 2011). 

The liner is made of corrosion resistant alloy (CRA) such as Alloy625, 304 and 316L 

stainless steel (SS) whilst the backing steel is made of low-cost carbon steel in which 

Magnesium Mn percentage is over 1%. A lined pipe particularly has a wide range of 

applications in onshore pipelines and offshore submarine-pipeline. Consequently, it 

is used in highly corrosive environments containing CO2, Cl and H2S associated with 

severe levels of temperature and pressure. The lined pipe can be installed in Oil & 

Gas industry to optimize the resistance to chloride and sulphide stress corrosion 

cracking (SCC) in aggressive environments. Furthermore, it is utilised to resist 

erosion corrosion and corrosion fatigue. In consequence, the lined pipe is sufficiently 

a good option for reasonable cost and high corrosion resistance for long time.   

Before installation, lined pipes require to be assembled together by welding. This is a 

complex process requiring two sequential types of welding. The liner is typically 

fixed using a weld overlay to seal its end with the outer pipe. A girth welding is then 

executed to join two adjacent specimens of the formed pipe. The sealing weld, that is 

the weld overlay, is necessary in welding lined pipes to prevent moisture and dirt to 

go through the gap according to Nederlandse Aardolie Maatschappij BV (NAM) 

recommendations. In 1981, NAM had experienced failures in a lined pipe because 

cracks induced by dirt and moisture propagated within the fusion zone (FZ) of girth 

welding (De Koning et al., 2004). After the liner ends were cut off and sealed by a 



Chapter 1 Introduction 

 

2 

 

weld overlay, no further failure had been experienced and the lined pipes were in 

service over a long lifetime. 

There is no work reported in the literature on the mechanical integrity assessment of 

lined pipes accounting for the effects of the welding process. Such types of 

assessment require consideration of thermal fields and residual stresses induced 

during welding. There are a lot of obstacles which make full-scale experiments and 

modelling of lined pipe welding difficult and expensive. Therefore, one aim of this 

project is to develop and experimentally validate a nonlinear finite element (FE) 

modelling procedure for welding of lined pipes, associated with a number of 

parametric studies. By achieving this aim, large-scale lined pipes can be sufficiently 

modelled following the procedure deployed in this work. 

In parallel to the lined pipe welding problem, the higher cost of the liner and of the 

manufacturing of lined pipes lead to reduce the thickness of C-Mn pipe. 

Consequently, the entire wall of a lined pipe may not be strong enough to resist the 

external interference during excavation or instalment in case of impacts with external 

objects, which may cause dents.  

According to CONCAWE report about pipelines failure, fatigue failure of an oil 

pipeline occurred because it had been dented during the construction in 1973 (Davis 

et al., 2011). Successive fatigue cycles had contributed to initiate and propagate 

cracks which eventually caused the failure with €810,000 for clean-up costs because 

the pipeline was laid under a rural road.  

In general, the damage occurring on the upper half of the pipe horizontally laid has 

historically led to the highest number of pipeline failures. Dents belonging to such 

type are significantly vulnerable to failure as they could contain cracks or gouges. In 

this case, immediate inspection and possible repair are required.  In addition, an 

unconstrained dent without restriction underneath the dent could be to re-round with 

changes in internal pressure which in turns delays failure. Nevertheless, it is also 

possible that theses defects could initiate and grow in service and the failure could be 

at some time after the first impact. Therefore, this issue is pivotal in terms of the 

complexity of maintenance when an inshore or offshore lined pipe is in service.  



Chapter 1 Introduction 

 

3 

 

There is also no investigation reported in the literature about the effect of dynamic 

collisions on lined pipes. Therefore, a second aim of this PhD work is to develop and 

experimentally validate a nonlinear FE model for simulating the dynamic impact of 

an external object on a lined pipe.  

It is against this background that the following main research questions have been 

formulated and addressed in the thesis: 

 What procedures should be applied to develop, execute and validate a FE 

model capable of simulating the welding process of a lined pipe with high 

accuracy? 

 Is it possible to develop an effective procedure to manufacture small-scale 

lined pipe specimens in a lab environment at a reasonable cost, maintaining 

the levels of initial residual stresses acceptable? 

 What are the main factors which can affect the quality and results of the 

welding process of a lined pipe? 

 What procedures should be applied to develop, execute and validate a FE 

model capable of simulating a lined pipe subject to a dynamic impact 

comparable with the ones which might occur during installation? 

 To what extent the response of a lined pipe subject to dynamic impact differs 

from the response of a similar pipe without liner in terms of the residual 

stresses and strains? 

 What is the effect of the energy and the velocity of the impact on the damage 

within a lined pipe? 

1-2. Aims and Objectives 

The aims of this work is to experimentally and numerically study both the welding of 

lined pipes and the impact of lined pipes with external objects resulting in dents, in 

both cases evaluating the resulting residual stresses. 

Specific objectives of the work are as follows: 

1. To manufacture lined pipe specimens using a special pre-heat treatment, 

called tight fit pipe (TFP) procedure, and evaluate the residual stresses 

induced by such method. 
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2. To experimentally measure the temperature field and residual stresses in lined 

pipes during and after welding, analysing the effect of factors including the 

welding material, the heat input and the omission of the weld overlay. 

3. To develop a numerical nonlinear FE model simulating the welding process 

of lined pipes, and validate the model against experimental measurements. 

4. To experimentally measure the deformation, strains and residual stresses 

induced in a lined pipe and in a normal (non-lined) pipe as a result of impacts 

with an indenter dropped from different heights. 

5. To develop a numerical nonlinear FE model simulating the impact of an 

indenter on lined pipes, and validate the model against experimental 

measurements. 

1-3. Summary of Research Approach 

In this work, experimental testing has been conducted for both the welding process 

and the dent inducing impact. Furthermore, two nonlinear FE procedures have been 

developed to simulate the two problems.  

1-3-1. Lined Pipe Welding 

To study lined pipe welding, in the experimental part of the project, the TFP 

procedure has been applied to insert the liner inside the outer pipe. Furthermore, 

special high temperature strain gauges were used to record the strains during lined 

pipe welding.     

Six cases have been studied in this research with different factors affecting the 

quality and results of the welding process. The first case is considered the reference 

case where the weld overlay and girth welding have been executed with different 

materials of their base metals, accordingly. For this case the TFP pre-heat treatment 

was also taken into consideration. In the second case, the material of girth welding is 

the same of the weld overlay material. In the third case, the effect of neglecting the 

weld overlay has been discussed. In this case, the two parts of the lined pipe have 

been solely joined using girth welding. The material of girth welding in this case is 

the same used in first case. In the fourth case, the heat input is lowered to 75% of the 
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heat input in first case for all welds. In a similar way, the heat input in the fifth case 

is dropped to 50% of that in first case. The liner with weld overlay is not considered 

in the last case. 

In the numerical part of the work, 3-D thermo-mechanical FE models have been 

developed and executed using ABAQUS. Only one-half of the lined pipe specimen, 

one joint, is modelled due to the symmetry around the weld centreline (WCL). The 

problems are described by uncoupled quasi-static thermo-mechanical equations. In 

other words, the deformation depends on the temperature in the welding model 

whereas temperatures are assumed to be independent of deformation. As a result, the 

thermal analysis is carried out first to get the thermal history as a function of time 

throughout the lined pipe joint. This analysis required developing subroutines by 

FORTRAN codes to simulate the heat source movement and the deposit of the 

welding beads sequentially. The element birth technique is adopted in the FE models 

to simulate depositing the filler materials in the weld overlay and girth welding with 

the moving heat source. This technique involves deactivating all beads first and then 

depositing the weld beads sequentially once the heat source reaches the targeted 

bead.  

This thermal history is then considered as an input for the mechanical analysis in 

which the mechanical properties are temperature dependant. The numerically 

predicted thermal history and residual stresses have been studied for particular 

locations on the inner and outer surfaces in comparison with their experimental 

counterparts.  

1-3-2. Lined Pipe Denting 

To study the denting of a lined pipe resulting from the impact with external objects, 

the experimental part involved freely dropping the indenter down from a specific 

height of 1, 1.5 and 2 m to punch the external surface of C-Mn pipe with a specified 

velocity. Fundamentally, the kinematic energy has been consumed completely to 

produce indentation in the lined pipe before the indenter and pipe retreat vertically as 

a reaction of collision. The hitting tool and pipe fall down after that because of their 

weights. The weight is a block of 200 kg, in addition to a spherical indenter. The 
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collision leaves permeant deformation in the lined pipe which in turn produces 

residual stress in the base materials, AISI304 and C-Mn. 

In the numerical part of the work, 3D FE models are developed to simulate the 

mechanism of vertical free drop of weight from different heights resulting in damage 

in the pipe.  Models are executed using a three-dimensional non-linear FE code, 

ABAQUS/EXPLICIT 6.13 (Dassault Systèmes, 2014). In order to precisely simulate 

the response of a collided pipe to subsequent impacts and spring back, an elastic-

plastic constitutive behaviour is adopted using the isotropic Hooke’s law whereas the 

plastic behaviour is based on the Von Mises criterion. Work hardening is considered 

in this work using the isotropic hardening rule associated with the equivalent plastic 

strain rate. The weights include those of a block, the spherical indenter, the liner and 

C-Mn pipe. Different plastic strain rates are specified for both materials of lined pipe, 

C-Mn and AISI304, in conjunction with the change in impact velocity. 

Impact is a dynamic test where the equivalent plastic strain rate plays a key role in 

determining the mechanical properties of punched material. Typically, the maximum 

velocity of impact is coincident with the initial contact between the indenter and 

external surface of pipe to gradually slow down later through indentation process. 

The pipes, liner and C-Mn, are idealized with solid continuum element, 8-node full 

integration, liner brick elements (C3D8). The mesh is refined more in the dented 

region in both cases to get more precise results. 

1-4. Thesis Outline 

The thesis is divided into nine chapters and the contributions in each chapter is 

summarised as follows. 

Chapter 1 presents an introduction to the two basic problems studied regarding lined 

pipes: welding and impact. It provides the background and motivation, the aims and 

objectives, a summary of the research approach applied in this work and finally the 

thesis outline. 

Chapter 2 covers the efforts of previous work to tackle the impact and welding 

process in pipes chronologically. A comprehensive literature review on 

circumferential welding and impact on pipes is discussed in detail. Lack of literature 
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reporting studies on lined pipes in regards to impact and welding led to address this 

gap as a significant contribution in this thesis. 

Chapter 3 provides details of the experimental setup to insert the CRA liner inside 

the outer pipe C-Mn using the TFP procedure. Moreover, the experimental strategy 

to obtain the thermal and mechanical results during and after welding, including the 

use of thermocouples, high temperatures strain gauges, residual strain gauges and X-

ray diffraction, is explained in detail.  

Chapter 4 describes the experimental setup and procedure applied in conducting 

impact tests. Furthermore, a detailed explanation for some basic dent types is given 

to facilitate understanding the impact process.   

In Chapter 5 the simulation of lined pipe welding is presented in detail. The 

numerical procedure is validated against previously published experimental results 

for stainless steel and carbon steel welding separately. The model is then used to 

predict the transient temperature field and residual stress distributions during the 

weld overlay (inner welding) and the girth welding (outer welding) of a lined pipe. 

Furthermore, a sensitivity analysis to determine the influence of the cooling time 

between weld overlay and girth welding and of the welding speed is conducted in 

terms of thermal and mechanical aspects.  

Chapter 6 investigates the effect of initial residual stresses obtained from the pre-heat 

treatment utilized to insert the liner inside the C-Mn pipe. At first, the numerical 

analysis of heat treatment is discussed. The thermal and structural numerical results 

are compared against the experimental results recorded by thermocouples, high 

temperature strain gauges, residual stress gauges and X-ray diffraction. 

In chapter 7 the six cases of lined pipe welding discussed in Section 1.3.1 have been 

studied experimentally and numerically. For all cases, the numerical thermal and 

residual stress results are compared against the experimental measurements and the 

effect of different factors to the quality of the welding process and residual stress 

results has been discussed. 

In Chapter 8 the results of the experimental testing and numerical simulation of lined 

pipe impact are presented, compared and discussed.  
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Finally, in Chapter 9 conclusions are drawn from the presented thesis and proposals 

for future work are made. 
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Chapter 2  

Literature Review 

2-1. Introduction 

Measurement of thermal fields and strain history during welding or impact can be 

very expensive and time consuming. It is often not feasible to obtain detailed 

measurements for all points located at critical positions. In this chapter, the efforts of 

previous contributions to evaluate experimental findings and to use them to develop 

and validate analytical and numerical work are presented.  

2-2. Previous Contributions to the Numerical and Experimental 

Work Pertaining to Pipe Welding Approach 

2-2-1. Analytical, 2-D and 3-D Approaches 

The first two-dimensional analytical models derived from experimental results for 

butt-welded pipes were proposed by Vaidyanathan et al. (1973) and Leggatt (1982). 

In (Vaidyanathan et al., 1973), the theory is applied at first on a butt-welded flat plate 

to get an approximate solution for the residual stress parallel to the welding. The 

plate is then ‘deformed’ into a pipe, so that this residual stress becomes as an initial 

hoop stress. After that, this new circular cylinder is allowed to deform.  The 

minimum elastic strain energy is used as a condition to determine the radial 

displacement and therefore compute the final residual stress. In (Leggatt, 1982), the 

residual stress is considered as a function of the ultimate temperature attained at any 

point. In turns, the hoop force is computed by integrating the resulting hoop stress.  

Jonsson and Josefson (1988) found a good agreement between experiments and the 

above mentioned analytical methods, although the analytical solutions did not 

consider the yield stress variations and the phase transformation effects. The single 
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pass butt-welded pipe tested by Jonsson and Josefson (1988) has an outer diameter of 

203 mm with 8.8 mm thickness, with a 5.5 mm deep V-groove. The pipe material 

was carbon-manganese C-Mn (Swedish standard steel SIS2172) and the welding 

method used was MIG (Metal Inert Gas) as shown in Figure ‎2-1. For both analytical 

methods, the net heat input used was 560 KJ/m, assuming 77% for arc efficiency. 

The yield stress of weld metal was about 380 MPa while it was 310 MPa for the base 

material at room temperature. 

 

Figure ‎2-1 Pipe and weld dimensions with welding directions towards positive ϕ-direction 
(Jonsson and Josefson, 1988), dimensions in mm 

Figure ‎2-2(a) and (b) compare the experimentally determined axial and hoop residual 

stresses on the outer surface with the two analytical solutions by Vaidyanathan et al. 

(1973) and  Leggatt (1982), respectively. From Figure ‎2-2(a), it is clear that the 

experimental axial residual stress distribution on the outer surface is in good 

agreement with both analytical solutions. Indicating by z the distance from the 

welding centre line (WCL), or just the ‘centre’, for Z<20 mm, the method by 

Vaidyanathan et al. (1973) seems to give a good prediction but the axial stresses 

beyond this range seem to be quite overestimated. Similarly, the analytical hoop 

residual stresses resulting from the method by Vaidyanathan et al. (1973) seem to be 

in good agreement with the experimental results on the outer surface, although the 
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analytical result in the welding centreline is somewhat lower as shown in 

Figure ‎2-2(b). 

  

(a) (b) 

Figure ‎2-2. Comparison between analytical and experimental results on the outer surface for 
residual (a) axial stresses and (b) hoop stresses (Jonsson and Josefson, 1988) 

 Despite the good agreement between analytical and the experimental results found 

by Jonsson and Josefson (1988), the analytical methods are still not capable to take 

non-linear effects into account. The non-linearity in welding process is a result of 

many aspects, such as temperature dependent material properties, temperature 

dependent heat coefficients (convection and radiation), plasticity, latent heat and the 

phase transformation. Because of that, it is essential to use numerical methods, such 

as the FEM, to obtain more realistic models. Therefore, Karlsson (1989) and 

Karlsson and Josefson (1990) developed an FE model using the code 

ADINAT/ADINA to simulate the thermal and mechanical analysis for a 

circumferential pipe with an outer diameter of 114.3 mm and a wall thickness of 8.8 

mm, 5.5 mm deep V-groove (Figure ‎2-3). They studied the case of a single-pass girth 

welding using metal inert gas type MIG deposited in the groove with filling material 

made of C-Mn (Swedish standard steel SIS2172). Due to the symmetry around the 

weld centreline, only one-half of the pipe was analysed, which is 200 mm long.  
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Figure ‎2-3. Experimental and FE models used in study (Karlsson, 1989; Josefson, et al., 
1989; Karlsson and Josefson, 1990), dimensions in mm 

Karlsson (1989) studied the influence of mesh density by developing two different 

FE meshes with two different diameters. The coarse mesh contains 13 elements 

associated with 3 elements in the thickness direction whereas the finer mesh has 127 

elements associated with 9 elements along the thickness direction. The two outer 

diameters were 114.3 mm and 203 mm as used in the experiment (Jonsson and 

Josefson, 1988) as shown in Figure ‎2-4. 

  

Figure ‎2-4. 2D FE model used in thermal and mechanical analysis, shaded elements are the 
filler material (Karlsson, 1989) 
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The findings demonstrate that the coarse mesh is sufficiently good for computing the 

hoop and axial residual stresses on the inner and outer surface with sufficient 

accuracy.  

Karlsson and Josefson (1990) presented a model which was the first fully 3-D 

thermal and mechanical study of a butt-welded pipe reported in the literature. The FE 

codes ADINAT and ADINA were used to develop thermal and mechanical analyses, 

respectively. The element birth technique is adopted in this model to simulate the 

deposition of welding material into the groove. Although a coarse mesh, namely 3 

elements in the thickness direction, is used in the 3D FE-model, the numerical axial 

and hoop residual stresses are again consistent with the experimental results from 

(Jonsson and Josefson, 1988) at central angle of 150° away from the start/stop 

position. Furthermore, the predicted residual stresses are in reasonable agreement 

with the analytical solution in (Vaidyanathan et al., 1973). 

Joseson et al. (1989) developed three different FE-models corresponding to the pipe 

geometries used in the experimental investigation by Karlsson (1989), Karlsson and 

Josefson (1990) and Jonsson and Josefson (1988). A fully 3-D model, a rotationally 

symmetric model and a shell type model have been numerically studied. The 

numerical results prove that the residual stress distributions of FE model 

corresponding to the experimental pipe geometries are in good agreement with the 

experimental results (Jonsson and Josefson, 1988) and the analytical method in 

(Vaidyanathan et al., 1973). 

2-2-2. Developed FE Approaches 

Brickstad and Josefson (1998) developed a FE non-linear analysis using ABAQUS 

code to examine the effect of some parameters (pipe thickness, heat input, inner 

diameter, weld metal yield stress, inter-pass time and number of weld passes) on the 

residual stresses in axisymmetric multi-pass girth-butt-welded stainless steel joints. 

In particular, they studied the sensitivity of the axial and hoop stresses to the 

variation of these parameters at the fusion zone (FZ) and heat affected zone (HAZ). 

Different pipe diameters in the range of 76.2 mm to 680 mm with thickness in the 

range of 7.1mm to 40 mm were simulated. The number of weld passes considered 
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varies according to the wall thickness from 4 to 36. The maximum allowed inter-pass 

temperature in the study was between 100°C-150°C.  

The element birth technique is associated with a high softening temperature (TSOFT) 

approach to deposit the un-deformed filler material to the deformed pipe geometry 

resulted from the previous pass. The TSOFT procedure keeps elements not yet 

activated at a high softening temperature (1200°C) with a low stiffness and a very 

low yield stress. In the thermal analysis, the heat input is modelled by applying a 

distributed heat flux on every element to keep the maximum temperature at 2 mm far 

away from the FZ boundaries within 800-900°C. Furthermore, a combined heat 

transfer coefficient is applied for all free boundaries of the pipe taking both 

convection and radiation loss into consideration. In the mechanical analysis, the Von-

Mises yield criterion associated with flow rule and bilinear kinematic hardening law 

are considered. The numerical residual stress results have a good agreement with 

ASME XI results under the influence of various heat input for the 7.1 mm thick pipe. 

In recent years, a significant improvement of FE codes gives a high flexibility in 

modelling 3-D and 2-D axi-symmetric models.  

Abid et al. (2005) presented a comparative study of 3-D and 2-D FE analyses for 

distortions and residual stress fields produced by MIG welding in a tacked pipe-

flange joint. The heat source movement is based on Goldak heat input distribution. 

Moreover, element birth technique is performed to deposit the filler material. Both 

types of FE models are validated against thermal and structural experimental results. 

The length of specimen is 200 mm whereas the outer diameter is 115 mm associated 

with a 6 mm deep V-groove and 1.2 mm root gap. Both the pipe and flange have the 

same material, carbon-manganese (C-Mn), and their thermo-mechanical properties 

taken from Karlsson and Josefson (1990) are subjected to Swidesh standard steel SIS 

2172. The same material properties are also used for the filler material, a ER70S-6 

carbon steel wire.  Although the 2-D FE models are much less computational time 

and data storage, around 5% of the 3-D FE models, residual stresses predicted by the 

2-D simulation are absolutely higher than their counterparts measured and predicted 

by the 3-D simulation. As a consequence, the 3-D FE model is recommended for 

girth welding of the pipe-flange specimen. 
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Deng and Murakawa (2006) developed a 3-D and a 2-D FE model to analyse 

temperature history and residual stresses in multi-pass girth weld. The pipe is made 

of stainless steel SUS304 with outer diameter of 114.3 mm, thickness of 6 mm and 

length of 800 mm, as shown in Figure ‎2-5. 

 

Figure ‎2-5. Pipe and groove dimensions in mm (Deng and Murakawa, 2006). 

The pipe is welded by two passes of gas tungsten arc (GTA). In the 3-D model, the 

heat source is applied as a volumetric heat source with a double ellipsoidal 

distribution developed by Goldak et al. (1984). The results of the thermal analysis 

confirm a steady-state of thermal distribution around the heat source, which in turn 

lead to homogenous distribution of residual stresses. The thermal and structural 

results of both 3-D FE model and 2-D model are reasonably in good agreement with 

the experimental results. Furthermore, the axial residual stresses on the outer and 

inner surfaces exhibit ‘contrary’ distributions, as shown in Figure ‎2-6. 

 

 

 



Chapter 2 Literature Review 

 

16 

 

 
 

(a) (b) 

Figure ‎2-6 The axial residual stress distributions on (a) the inner surface and (b) the outer 
surface (Deng and Murakawa, 2006) 

The distributions are said to be ‘contrary’ because tensile axial residual stresses are 

produced on the inner surface whereas compressive axial stresses are generated on 

the outer surface at the FZ and HAZ. Beyond these zones, both stress profiles change 

sign, so that compressive axial stresses and tensile axial stresses are produced on the 

inner and outer surfaces, respectively. Also, the shape of axial stress distributions is 

to a large extent similar to that of the hoop stress distribution on the inner surface.  

Another important and recent contribution regarding the analysis of the GTA 

welding of thin-walled cylinders of low carbon steel was presented by Malik et al. 

(2008)  to confirm the reliability of previous findings (Deng and Murakawa, 2006). 

Malik et al. (2008) presented a computational approach for thermal and mechanical 

analyses of circumferential welding. A full 3-D model developed using the code 

ANSYS was employed for two cylinders with a V-groove and two tack welds at start 

and middle welding section. The properties of low carbon steel AH36, which is 

basically C-Mn steel, are taken from (Michaleris and DeBiccari, 1997). Combined 

convection and radiation heat transfer coefficient are applied on all surfaces exposed 

to environment. Malik et al. (2008) reached the same findings of Deng and 

Murakawa (2006) that high tensile axial residual stresses occurred on the inner 

surface while compressive axial stresses are produced on the outer surface along and 
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near the weld centreline. Away from weld centreline, there is also a reversal in the 

axial residual stress distributions, which turn from tensile into compressive. There is 

a significant effect of two tacks at 0° central and 180° on the axial stresses on the 

inner surface, whereas no influence is found on the hoop stresses. Ignoring the weld 

start/stop effects keeps hoop stress distributions to a large extent uniform. 

The effect of initial stresses produced by post-heat treatment on residual stresses 

induced by laser welding has been numerically and experimentally investigated by 

Deng and Kiyoshima (2010). After the manufacturing process, the laser beam was 

utilized to join two cylinders made of SUS3016 stainless steel. The whole length of 

pipe is 800 mm. The inner diameter is 200 mm with wall thickness of 10 mm as 

shown in Figure ‎2-7. In the FE model, due to the symmetry, only half of the pipe is 

simulated to study the thermo-mechanical behaviour. Furthermore, two cases has 

been numerically discussed, where one is modelled with only laser beam welding 

process whilst the other one includes both the post heat treatment and welding. At the 

FZ and its vicinity, the residual stresses are not affected by the initial residual 

stresses and just subjected to stresses induced by welding. Beyond this region, the 

initial residual stresses induced by post special heat treatment have significant 

influence on the final residual stresses after welding.  
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Figure ‎2-7. Dissimilar pipe, sketched in mm (Deng and Kiyoshima ,2010). 

The numerical analysis of welding of dissimilar pipes is still a new field, with few 

articles in the literature addressing such problem. Akbari and Sattari (2009) 

developed a FE model of dissimilar cylinders to study the thermo-mechanical 

behaviour and the effect of heat input on the residual stress distribution. Both 

dissimilar joints have a nominal diameter of 200 mm with V-groove edges. One joint 

was made of A106-B carbon steel and the other one was A240-TP304 stainless steel, 

as shown in Figure ‎2-8.  
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Figure ‎2-8. Detailed dimensions of (a) pipe and (b) test points (Akbari and Sattari, 2009) 

Comparing the numerical with the experimental results, there is a reasonably good 

agreement between them, where the hole-drilling strain gauges were used to 

experimentally measure the residual stresses as shown in Figure ‎2-9. 

  

(a)   (b) 

Figure ‎2-9. (a) Hoop and (b) axial residual stresses on outer surface along axial direction (Akbari and 
Sattari, 2009) 
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Reducing the heat input leads to lower the compressive and tensile stress 

distributions on the stainless steel side more than their counterparts on the carbon 

steel joint. The reason is attributed to the decrease in the temperature fields in the 

stainless steel more than carbon steel because the heat coefficient of stainless steel is 

less than that of carbon steel. 

Woghiren and Brennan (2009) presented a parametric stress analysis for welded KK 

joint used in the leg structure of inshore Oil & Gas platform. Over 120 models have 

been developed to extract the stress concentration factor SCF values. The models 

using a combination of shell and solid elements have been developed using 

ABAQUS. The extracted SCF values were used to derive six equations using 

MINITAB to quickly identify the location of the maximum stress location and the 

possibility of fatigue cracks. Consequently, it is a key to also identify the location of 

applying non-destructive test NDT procedures and schedules. These equations also 

allow the rapid optimization of multi-planar joints.   

Residual stress distributions induced by dissimilar pipe welding have been 

numerically and experimentally investigated by Deng et al. (2011). One joint is made 

of low alloy steel (SFVQ1A) whilst the other one is made of austenitic stainless steel 

(SUSF316). Tungsten inert gas welding (TIG) was employed to deposit 36 passes 

with Alloy 82 as a filler material. During welding, the heat source was fixed whilst 

the two joints were rotated on roller.  The whole length of the dissimilar pipe is 800 

mm and the outer diameter is 184.5 mm. The low alloy joint was cladded with one 

layer on the inner surface and one battering layer on the right end as shown in 

Figure ‎2-10. Both layers were deposited by TIG process where Y308 electrode was 

used to deposit the cladding layer whilst Alloy 82 electrode was used to perform the 

buttering layer. To reduce residual stresses and improve the toughness in the HAZ, 

post weld heat treatment (PWHT) was achieved by keeping the dissimilar pipe for 10 

hours at 625°C. 3-D FE model has been developed to simulate the welding process 

based on the moving heat source. Comparing the predicted results with the 

experimental ones, there are large initial residual stresses in both joints due to the 

manufacturing process. Consequently, significant discrepancies are obtained between 

the final numerical and experimental residual stress at the regions away from the FZ 
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and HAZ. The initial stresses are cancelled in the FZ and HAZ because higher 

thermal cycles experienced in those regions.  

 

 

Figure ‎2-10. Dissimilar pipe, sketched in mm (Deng et al. ,2011). 

Lee et al. (2013) developed also a 3-D model of welding of dissimilar pipes with 

thermal and elastic-plastic stress analysis using a FE approach, validating the 

procedure through published experimental work. The parent materials of the pipe are 

SPPS42 and SUS304 for carbon steel and stainless steel, respectively. Furthermore, 

the residual stress distributions in the corresponding similar steel pipe welds are 

examined for a comparison. Two different heat transfer coefficients are also applied 

corresponding to their base materials, carbon steel (Abid and Siddique, 2005) and 

stainless steel (Brickstad and Josefson, 1998), where the radiation and convection 

losses are considered in each coefficient. From the thermal results, the findings 

illustrate that the temperature history is steady as the heat source moved around the 

pipe. Structurally, the stress distributions in the SUS304 side are similar to the 
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corresponding similar stainless steel joint whereas stress distributions in the SPPS42 

side are considerably different from those in similar carbon steel. 

2-3. Previous Contributions to the Numerical and Experimental 

Analysis of Pipes Subject to Denting 

One of the problems which undermine the mechanical integrity of pipes is 

indentation by external interference. Third party damage or external interference is 

historically considered the main cause of pipeline failures in service. Thus, pipes 

subjected to impact by external interference require examining the stress behaviour 

to determine the maintenance type. The following pages report relevant literature 

addressing the behaviour of dented pipes.   

Flower (1993) studied the effect of pipeline dents (without gouges) under cyclic 

internal pressure numerically and experimentally. The experiment was conducted on 

8 pipes with outer diameter of 323.85 mm and 6 m long, with different thicknesses 

and materials as shown in Table ‎2-1. 

Table ‎2-1 Mechanical properties of specimen (Flower, 1993) 

Specimen 

No. 
D/t 

Hoop 

ultimate 

strength 

ksi 

Hoop 

yield 

stress 

ksi 

% 

elongation 

Impact 

strength 

Ft.lb 

comment 
Max. 

grade 

A-1 18.6 72.4 55.1 39 23.3 Seamless X52 

A-2 19.0 88.9 65.8 32 15.3 Seamless X60 

B-1 40.9 82.0 53.1 32 20.5 Seamless X52 

C-2 51.0 74.4 57.3 33 27.0 ERW X52 

H 24.78 74.0 52.1 37 55.0 Seamless X52 

E 31.96 74.7 51.2 32 32.0 Seamless X46 

F 31.93 74.7 51.2 32 31.2 Seamless X46 

G 50.35 92.2 84.0 20 44.0 Seamless X80 

The test was composed of three stages starting with producing the dent, applying test 

pressure and then applying fatigue loading. The dent sizes, in terms of d/D dent 

depth-to-pipe outer diameter, were 5, 10, 20% where the maximum size of dent, 
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20%, was placed on the centre and the smaller dents on either end, as shown in 

Figure ‎2-11. 

 

Figure ‎2-11. Experiment set up (Flower, 1993) 

As a result, fatigue test was applied on 8 pipes with various outer diameter-to-

thickness ratios (D/t). 13 out of 24 dents with various depths produced on the 8 pipes 

got failure. The failed dents had visible deformation as D/t>30 and d/D>5%, whilst 

no visible deformations were on the thick wall samples. All cracks were longitudinal 

with an approximate length 2-3 inches. The samples without visible leakage 

sustained from 50,000 to 70,000 internal cycles with varied pressure from 0 to 82.7 

bar. On the other side, the fatigue life was infinite for most cases of smaller D/t and 

d/D. Moreover, ANSYS code was used to evaluate the elastic state of the dented 

pipes through 3-D models with elastic quadrilateral shell elements. The pipes were 

pressurized to two pressure loads, 38 bar and 82.7 bar. It was observed that the 

stresses produced in the pipes were beyond the yield stress for the majority of cases 

having d/D=20% and D/t=50. The numerical results show there is no variation in 

stresses according to change in dent length whilst the dent depth plays a vital role. 

ABAQUS code was also applied in the plastic state to determine more accurate 
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predictions of the maximum stress range for the corresponding cyclic pressure, 

 ∆𝜎/∆𝑝. An elastic-plastic model was used with a half symmetric 3-D shell element, 

whereas the indenter was considered a rigid body. There are two locations of 

maximum ∆𝜎/∆𝑝 ratio on the plastic model. The first one is close to the dent center 

whilst the second one is on the side of the model at an agle of 70° from the vertical 

with respect to the inner surface. Those two locations are the onset of cracks in the 

experiment. Also, pipe with longitudinal seam welds survived without failure.  

Further work conducted by Flower et al. (1995) studied the effect of dents, gouges 

welding seams subjected to internal cyclic pressure loading. The research included 

two groups corresponding to different D/t ratios. The experimental work considered 

a range of such ratio from 18 to 94 whilst the FEA was done for a range from 18 to 

100. According to the numerical and experimental results, plain smooth dents with 

d/D<5% should not be a problem if the internal pressure is less than 69 bar.  

The experimental results prove that the depth of gouge plays a key role in the fatigue 

life of a pipe and that grinding the gouges is considered a feasible solution to repair 

this defect. In fact, the fatigue life of ground gouges can be three times more than for 

the unground ones.  

The gouges are classified according to the d/t ratio, depth to wall thickness. An 

analytical approach was proposed to estimate the fatigue life of pipe and to be 

compared with the experimental results. The experimental results from Phase I 

(without gouges) and Phase II (with gouges and welds) indicate that neither the dent 

type nor dent length play a key role in the fatigue life whereas D/t ratio, dent depth 

and welding type have a significant influence on the pipe life. Also, gouge depth of 

5% (without grinding) can have its fatigue life three times and half more than the 

gouge depth of 15%. The cyclic pressure variations Δp play a crucial role in fatigue 

life where pipes with Δp=27.6 bar live ten folds greater than those with Δp=62 bar. 

The results prove also that the gouges without dent have the longest lives because no 

micro-cracks are produced at the gouge root. These micro-cracks have a big impact 

on the crack growth which in turn reduces the fatigue life. Gouges with 15% depth or 

more of the wall thickness could fail directly whilst gouges with 5-10% could fail 

after thousands of cycles which represent 1% of what the life of gouge without dent.  
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A series of tests were done to study girth and longitudinal welds. The findings point 

out that a dent with d/D=5% does not fail if these dents are located on the 

longitudinal weld or 71° off the seam weld. All the other tests failed but it was 

noticeable that the dent located directly on the seam weld did not have significant 

difference in fatigue life with those located 71° of this weld. Dents located on the 

girth welding have shorter fatigue life than those on the seam welding. The results 

emphasised that stress concentration factor (SCF) varies from 5 to 3 and it is 

associated with the dent depth, where the maximum SCF occurred in the deepest 

dents.  

Alexander and Kiefner (1997) examined the effect of smooth and rock dents caused 

by rock not removed under the pipelines during installation, also called ‘constrained 

dents’. The findings demonstrate that the constrained dents do not re-round whilst the 

unconstrained dents re-round elastically at first to 24-67% of the maximum 

indentation after pressurization to 65% of specified minimum yield strength (SMYS) 

which is 105.7 bar. After that, dents re-round inelastically due to increasing the 

internal pressure. As the pressure attains its burst pressure of the pipe (130-151% of 

SMYS), dents virtually disappear.  The threat of unconstrained dent is around 2% or 

less to fail within the useful service life of pipeline especially if there is no stress 

concentration. A constrained rock dent is a bigger threat for pipeline especially if 

sharp and hard enough because leak has been developed at 78% of SMYS.  

Rinehart (2004) presented a general study for pressurized cylindrical shells, focusing 

on the effect of localized geometric imperfections on the stress behaviour. He 

derived the analytical approach and a computational method by using 2-D and 3-D 

FEA for a dented cylindrical shell. The circumferential stress concentration has two 

peaks on the 2-D dent. One is located at the centre of dent whilst the other at dent 

periphery. Furthermore, stress concentration is in linear relationship with the ratio 

d/D and D/t. Furthermore, dent width has a big impact on the dent stress 

concentration whereby a wider dent has a lower stress concentration. The stress 

concentration on the periphery of dent is relatively not influenced by the dent width. 

Dent depth and dent length have a big effect on the SCF and this influence is based 

on their magnitudes relative to cylinder diameter. A simple elastic FE model was 
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developed to determine the peak stress at the dent centre and dent periphery by given 

depth and length. 

The Pipeline Defect Assessment Manual (PDMA) project was run by Cosham and 

Hopkins (2004) to specify the best methods to assess defects of a pipe. A variety of 

dent types such as plain dent, dents on welds and dents containing defects were 

studied. Also, theoretical analysis and assessment methods were conducted for small 

and full scale tests.  

Experimental results demonstrate that the plain dent has a fatigue life less than that 

of an equivalent circular section of pipe (Alexander and Kiefner, 1997; Eiber et al., 

1981). 45 of 99 full scale fatigue tests resulted in a failure in the dented region. Also, 

the larger dent depth, the larger the stress and strain concentration in the dent, as 

shown in Figure ‎2-12. The mean stress plays a crucial role in re-rounding the dent 

which in turn reduces the stress concentration. The higher the mean stress, the longer 

the fatigue life is. 

 

Figure ‎2-12. Fatigue life of unconstrained and constrained plain dents. open symbols (O) 
denote tests without failure and closed symbols ( ) denote tests with failure during the test 

(Cosham and Hopkins, 2004) 

The fatigue life of dented seam and girth weldings might be lower than those of an 

equivalent plain dent or undented welded pipe, as shown in Figure ‎2-13. 
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Figure ‎2-13. Failure (maximum) stress of smooth dents on welds and plain dents (Cosham 
and Hopkins, 2004) 

Pinheiro and Pasqualino (2009) developed an approach for fatigue analysis of 

damaged steel pipelines under cyclic pressure. Experiments were conducted on 

small-scale specimens to evaluate the strain behaviour of a dented pipe under cyclic 

internal pressure. The experimental findings illustrate that the first cycle of internal 

pressure forced the dented region to deform plastically while the subsequent cycles 

deformed elastically if the maximum pressure, 72% of the specified minimum yield 

strength, 264 MPa, is not increased, as shown in Figure ‎2-14. 

 

Figure ‎2-14. Experimental hoop strain of specimen 23H under internal pressure (Pinheiro and 
Pasqualino, 2009) 
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A non-linear 3-D shell type elastic-plastic models were developed in ABAQUS to 

produce stress concentration factors SCFs for different spherical dent dimensions. 

Higher SCFs are located at the dent periphery. There is a good agreement between 

the numerical and experimental results of d/D and residual strains. Small-scale tests 

had also been executed to estimate the life expectancy of a dented pipe under cyclic 

internal pressure. The experimental results are also in consistence with S-N curves 

proposed by Cunha et al. (2007). 

The effect of dent depth on the burst pressure of pipelines has been presented by 

Allouti et al. (2012). A series of tests, including denting tests first and then burst 

tests, were conducted. FE models have been developed to compare the experimental 

results against the numerical ones. The tests were achieved on five pressure vessels 

made of A37 steel. The outer diameter is 88.9 mm associated with wall thickness of 

3.2 mm. The whole length of all specimens are 600 mm as shown in Figure ‎2-15. 

Dents have been punched by a spherical indenter with diameter of 40 mm at low 

strain rate. The critical pressure for all samples is around 31 MPa. The findings 

points out that the pipe will not fail with dent depth up to 10% of the pipe outer 

diameter subjected to critical pressure. Above 10% of the dent depth-outer diameter 

ratio, all specimens got failure under the same critical pressure. For all tests, the 

numerical results of load versus displacement are in good agreement with the 

experimental results. The study found out that maximum Vickers microhardness 

values occur at dented region which in turn lead to increase the ultimate strength due 

to strain hardening to about 30%. As a result, the fracture occur far away from the 

dented region.   
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Figure ‎2-15. Pipe dimensions in mm (Allouti et al. ,2012). 

2-4. Lined pipe geometries and material specifications 

As already discussed in Chapter 1, lined pipes are composed of external Carbon 

Manganese steel (CMn) pipes, normally called baking steel, in contact internally 

with a thin liner made of corrosion resistant alloy (CRA), typically 1-3 mm thick. 

The CRA is used to protect the outer pipe from the transported corrosive products 

while the baking steel provides the structural capacity. 

Despite their significant use in the industry, only in the last decade lined pipes have 

the subject of research studies regarding their structural response. Hilberink (2011), 

in his PhD thesis identified the main factors which have influence on the mechanical 

behaviour of lined pipe during bending. He developed 3-D FE models to simulate the 

case of pure bending and validated it against experimental results for a four point 

bending test. . In this test, the outer pipe is made of X65 steel with a wall thickness of 

14.3 mm and an outer diameter of 324.7 mm. The liner is made of 316L stainless 

steel with 3 mm thickness and 293.1 mm outer diameter. The length of the lined pipe 

specimen is 6 m in total. The liner was inserted inside the outer pipe by the Tight Fit 

Pipe (TFP) where a thermo-hydraulic manufacturing process was used. As a result, 

contact stresses are produced between the liner and the outer pipe. These stresses 

were experimentally measured by mounting strain gauges on the inner surface. 

Hilberink observed that the tensile initial axial stress leads to increase the global 
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bending strain at which the liner starts wrinkling, whilst the compressive initial axial 

stress leads to decrease that. Furthermore, the hoop initial stress has larger influence 

on the bending strain than the initial axial stress when the liner starts wrinkling.     

Vedeld et al. (2012) investigated the surface interaction properties between the 

backing steel and liner in lined pipe. The interaction bond between the outer pipe and 

the liner includes residual compressive stresses in the liner and residual tensile 

stresses in the backing steel. The contact pressure between the backing steel and liner 

results from the compressive residual hoop stresses. In this study, several factors 

which involve the influence of hoop and axial stress interaction, boundary conditions 

and friction behaviour have been discussed in two different test regimes. The first 

test regime is called the saw test which is performed by mounting strain gauges on 

the inner surface of the liner surface. Then, a cut through the whole cross section of 

lined pipe is performed as shown in Figure ‎2-16(a). After that, changes in the axial 

and hoop stresses along the length of the pipe have been recorded by the strain 

gauges. In this test, the outer pipe is made of X65 steel with a wall thickness of 19.1 

mm and an outer diameter of 323.9 mm. The liner is made of 316L stainless steel 

with 3 mm thickness. The second test regime is called the ring-split test. A ring is cut 

through the whole cross section of uniform lined pipe segment. The strain gauges 

were mounted around the mid-section on the inner surface of liner. After that, the 

outer pipe is cut into two halves along the axial direction without cutting the liner as 

shown in Figure ‎2-16(b). In this test, the liner is free to expand axially and radially 

where the release of axial and radial strains is recorded by strain gauges. In this test, 

the outer pipe is made of X65 steel with a wall thickness of 8.9 mm and an outer 

diameter of 1 mm. The liner has the same material properties and wall thickness of 

the first test regime.  
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(a) (b) 

Figure ‎2-16 (a) Sketch of a saw test; (b) A lined pipe specimen subjected to a ring-split test 
(Vedeld et al., 2012) 

In industrial applications, the liner can detach from the backing steel because of 

severe plastic bending, which can result in large levels of buckling that obstructs the 

flow. Yuan and Kyriakides (2014) have developed a numerical modelling approach 

to determine to what extent the lined pipe can be bent before the failure of the liner. 

The 3-D FE model using ABAQUS code starts with the manufacturing simulation 

where the outer pipe and liner inflate together to develop interference contact 

pressure between them. In detail, the carrier pipe, outer pipe, is made of X65 steel 

whilst the liner is made of alloy825 stainless steel. The liner is cut to approximately 

12 m length and then placed inside the carrier pipe. For ease insertion, a small gap 

(go) is allowed between the outer pipe and liner. After that, both pipes are enclosed 

inside two semi-circular stiff dies. Then, hydraulic pressure is applied to expand the 

liner and come in contact with the outer pipe. The pressure keeps increasing until the 

outer pipe comes in contact with the stiff dies as sketched in Figure ‎2-17. The 

pressure is then released to allow two pipes to contract where the outer pipe tends to 

spring back more the liner because the X65 steel has higher yield strength, 448 MPa, 

than that of alloy 825 stainless steel, 276 MPa. Consequently, an interference contact 

pressure is produced between them. The finish outer diameter and wall thickness of 

the X65 steel pipe is 323.9 mm 17.9 mm, respectively. The finish outer diameter of 

the liner extends to 288 mm with a wall thickness of 3 mm. After simulating the 

manufacturing process, the lined pipe is bent under pure bending which leads to 

differential ovalization. Eventually, part of the liner may separate from the outer 
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pipe. It is observed that bending the pipe under adequate amounts of internal pressure 

can delay liner failure.  

 

Figure ‎2-17 Schematic representation of lined pipe manufacturing (Yuan and Kyriakides, 2014) 

2-5. Conclusions 

From the foregoing discussion, previous contributions have been made to study the 

circumferential welding of pipes and cases of pipe impact. It is evident that the 

translation from experimental to analytical, axisymmetric and full 3-D FE analyses 

can be mainly attributed to improved computational power available. Nevertheless, 

all these studies deserve credit because they are still being reference work for a lot of 

recent research. In this research, for example, a mesh convergence analysis in 

welding takes advantage of the findings of Karlsson (1989). Furthermore, the 

validation of the numerical lined pipe welding procedure applied in this study is first 

made against the thermal and mechanical results in (Karlsson and Josefson, 1990). 

The effects of some welding parameters, such as heat input and inter-pass 

temperature, on residual stresses are based on (Brickstad and Josefson, 1998).  

Welding and impact results, in this study, strongly depend on the results of recent 

contributions as well. In welding models, the validation of stainless steel pipe 

welding is based on the thermal and residual stresses in (Deng and Murakawa, 2006). 
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Moreover, much attention has been paid to the influence of heat coefficients on 

residual stresses, following Akbari and Sattari (2009). In pipe impact, the effect of 

dent size in this research goes along with the findings in (Flower, 1993) where the 

ratio of d/D>10% is also considered detrimental damage in lined pipe. The location 

of stress concentration in a dented lined pipe is also consistent with the finding in 

(Pinheiro and Pasqualino, 2009). 

Up to now, studies on lined pipe welding and impact are still lacking. In the welding 

case, the major drawback is to simulate two different welds associated with two 

different parent materials. In the impact case, most of the previous studies consider 

the dent formed in pipe as a static dent without taking the impact velocity into 

account. Furthermore, the effect of sequential strikes on the residual stresses in the 

dented pipe is ignored in the majority of previous contributions. Above all, 

manufacturing a lined pipe is a complicated process requiring special heat treatment 

to insert the liner inside the outer pipe.          

With the rapid development of FE techniques in dynamic impact and circumferential 

welding modelling, more realistic 3-D FE models become a recognised need in 

research and industry. This need requires further improvement in commercial FE 

codes to adopt special techniques which cope with complicated cases such as 

sequential thermal and mechanical analyses, adaptive mesh management and 

sequential dynamic and static analyses.      

ABAQUS code is considered a flexible FE code capable of creating complicated 

structure models. The flexibility arises from the capability to use subroutine files 

based on FORTRAN code. In this research, thermal and mechanical lined pipe 

welding analyses using ABAQUS code are developed using FORTRAN user-

subroutines to simulate the heat torch movement and heat coefficient factors. 

Dynamic explicit analysis is adopted in the impact model to simulate the indenter 

and lined pipe movements. 
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Chapter 3  

Experimental Setup for the Welding Process 

3-1. Introduction 

During the welding process, a large number of variables and interactions govern the 

high non-uniform and rapid change in temperature distributions underneath the 

welding torch (Hilberink, 2011). Moreover, the thermal fields produced in the lined 

pipe during welding are affected by various factors, such as the heat input, the filler 

material flow in the welding pool depending on the latent heat, thermo-mechanical 

material properties and the heat transfer to the environment and contacting materials 

(Spina et al., 2007). These numerous factors with governing equations based on 

assumptions and approximate mathematical formulations make lined pipe welding 

simulation a complex task. Therefore, the validation of numerical results obtained 

from FE models against the experimental results is an essential step to make such 

models acceptable in practice.  

Regardless of the credibility of our numerical models, concrete evidence is still 

required to support the reliability of numerical results and procedures because there 

is no reliable experimental data published in the literature about lined pipe welding 

yet.  The only way we have is to supplement the FE models with shop floor 

applications by executing full-scale experiments with the required machines and 

instruments to set up. At first, it is necessary to discuss the manufacturing process of 

lined pipe which is a big challenge in this research and it is more difficult than 

conducting welding process itself. One of the achievements of this research is that 

lined pipes have been manufactured in Brunel workshops without assistance from 

any third party, especially when 1 m of lined pipe could cost about £18,000. Because 

of that, this chapter discusses in detail the procedures of manufacturing and welding 

lined pipe associated with the required instruments to record the temperature and 

stress/strain during and after welding. 
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3-2. Manufacturing Procedure 

The procedure begins with two pipes, a C-Mn steel (AISI 10305) pipe and a stainless 

steel (AISI304) pipe. The chemical compositions of each material are shown in 

Table ‎3-1. 

Table ‎3-1 Chemical composition of AISI 10305 (C-Mn) and AISI304 

Steel grade C % Si % Mn % P % S % Al % Cr % Ni % 

AISI 10305 ≤ 0.17 ≤ 0.35 ≤ 1.2 ≤ 0.045 ≤ 0.045 ≥ 0.02 - - 

AISI304 ≤ 0.08 ≤ 1 ≤ 2 ≤ 0.045 ≤ 0.03 - 18-20 8-10.5 

The mechanical properties of both materials including the density (ρ), Young’s 

modulus E, yield stress (σstress), ultimate tensile strength (σUTS), Poisson’s ratio (υ) 

and Hardness are given for two pipes in Table ‎3-2. 

Table ‎3-2 Mechanical properties of materials used in collision experiments 

Steel grade ρ (kgm
-3

) E (GPa) σstress (MPa) σUTS (MPa) υ Hardness 

(Vickers) 

AISI 10305 7860 210 349 390 0.26 100 

AISI304 7900 198.5 265 505 0.294 129 

Each pipe is cut into 200 mm long pieces. The outer diameter of the C-Mn is 114.3 

mm with thickness of 6.35 mm. The stainless steel pipe has an outer diameter of 

101.6 mm with 1.5 mm thickness as shown in Figure ‎6-1. The tolerance of the pipe 

thickness is ±0.35 mm and ±0.15 mm for C-Mn and AISI304, respectively. It is clear 

that it might be difficult to insert the AISI304 stainless steel piece inside the C-Mn 

steel as the thickness clearance is positive for C-Mn and AISI304. In a matter of fact, 

this drawback has occurred in our experiments. 

Typically in industry, lined pipes are manufactured using a combination of thermal 

expansion and cold shrinking in order to guarantee a high and reliable fit-in stress 

between the liner and backing steel pipe (Focke, 2007; Focke et al., 2006; Focke et 

al., 2005). The first step in our manufacturing procedure is to heat up the outer pipe 

in a furnace to about 500°C where the metal microstructure keeps without phase 
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transformation. Thereafter, the pipe is moved away from the furnace to a portable 

ceramic knuckle heater, known as jacket heater. The purpose of putting the C-Mn 

pipe inside the jacket is to keep the pipe temperature 500°C as the liner inserts inside. 

In the same time, the AISI304 stainless steel pipe is immersed in liquid Nitrogen 

where the temperature is around -200°C (De Koning and Nakasugi, 2004). After that, 

the liner is moved away from the liquid Nitrogen with -200°C to be inserted 

vertically inside the C-Mn steel joint which is still heated inside the jacket. Then, the 

compound pipe (lined pipe) is taken away from the jacket to cool naturally down to 

room temperature; Figure ‎3-1illustrates the manufacturing process.  

  

(a) (b) 
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(c) (d) 

 

(e) 
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Figure ‎3-1 The steps of manufacturing set up (a) heating up the outer pipe to 500°C (b) 
cooling down the liner to -200°C (c) putting the outer pipe in Jacket with 500°C (d) topping 

the liner inside the C-Mn pipe (e) cooling down the lined pipe to room temperature 

Once the lined pipe reaches room temperature, the hardness is examined for both 

materials. Measuring the hardness is a simple way to check there is no change in the 

metal structure. In particular, martensitic structure (brittle structure with higher 

hardness) is not formed in the pipe structure which in turn means the mechanical 

properties have not changed. The hardness magnitudes under a normal diamond 

indenter load of 20 Kgf are 99.7 Hv and 127 Hv for C-Mn and AISI304 pipes, 

respectively.  

Finally, the lined pipe joint used in welding is ready to be machined using CNC 

milling machine, Bridgeport VMC 500, by cutting 3 mm of liner and chamfering the 

backing steel by 30° from one end, as shown in Figure ‎3-2. 

  

Figure ‎3-2 Cutting 3 mm from the liner and chamfering the edge of C-Mn by 30° 

3-3. Preparation for Welding Process 

Full-scale lined pipe welding experiments are carried out to record the transient 

thermal and strain fields. With this purpose, thermocouples and strain gauges were 
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mounted on the inner and outer surfaces according to the international standards 

ASTM E1237and ASTM E1561. The locations of thermocouples and strain gauges 

are specified numerically first to avoid any mistakes in recoding results.  

3-3-1. Thermal Fields Measurement 

Measurement of the thermal fields in the lined pipe is necessary in our project 

because there are no articles in the literature reporting similar work. Measuring the 

transient temperature history is obtained through thermocouples mounted directly on 

the liner and backing steel surfaces. Consequently, the measured thermal fields are 

taken from 6 specified points located at the HAZ on the inner and outer surfaces of 

the lined pipe. The first thermocouple on both the inner surface and outer surface is 

located 4 mm away from the edge of the weld overlay and girth welding, as shown in 

Figure  3-3. 

  

Figure ‎3-3 Thermocouples located on the inner and outer surfaces. 

Thermocouples type K, applicable within a range of temperatures from -200 to 

1250°C, are used. The thermocouples are directly mounted on the inner and outer 

surface of lined pipe by sparking welding. After that, high temperature adhesive is 

used over the thermocouples to protect them from the heat of the welding torch and 

also to keep them bonded to the lined pipe surfaces. The maximum continuous 

working temperature of the adhesive is ≤+1000°C which is quite enough to keep the 



Chapter 3 Experimental Setup for the Welding Process 

 

40 

 

tips of thermocouples fixed with the lined pipe surfaces and without significant effect 

of extra heat from the welding torch, as shown in Figure ‎3-4. 

 

Figure ‎3-4 Protecting the tips of thermocouples on the outer surface by adhesive 

The second end of the thermocouple is connected directly to 16-channel Module NI 

9213, as shown in Figure A-1 in Appendix A-1. 

The thermal history results are recorded every 0.001 second by LabVIEW software. 

In this way, the transient thermal history for all thermocouple locations at any 

particular time can be easily saved on an MS Excel file.  

The thermal history in the FZ is difficult to be measured precisely by thermocouples 

because of the difficulty in fixing them on specified points due to the excessive 

temperature in this area. Consequently, infrared optical camera, FLIR T, is used to 

validate the temperature in the welding pool of the weld overlay and the girth 

welding and also to add extra level of accuracy to thermocouple readings. The 

temperature range calibration is up to 2000°C, which is sufficient to measure the 

temperature on the FZ of weld overlay and girth welding. 

3-3-2. Strain Measurement 

High temperature strain gauges are used to record the transient strain history during 

the weld overlay and girth welding passes. This type of strain gauges is also suitable 

to measure the residual strain after cooling down of the lined pipe to room 

temperature. They are not used widely because of their relatively high cost.  
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Two types of high temperature strain gauges are used to record the strain history 

axially and circumferentially, taking into account the lined pipe surface materials, as 

shown in Figure ‎3-5. In particular, uniaxial strain gauges are mounted on the outer 

surface (C-Mn pipe), ZFLA-11. On the inner surface (AISI304 pipe), biaxial strain 

gauges, ZFCAL-17, are used because the material of liner is different, and therefore 

it has a different coefficient of thermal expansion. More precisely, the coefficients of 

thermal expansion of ZFLA-11 and ZFCAL-17 are 11.8×10
-6

 and 17×10
-6

 °C
-1

, 

respectively.  

 

Figure ‎3-5 Mounting the strain gauges, ZFCAL-17 and ZFLA-11 on the inner and outer surfaces 
accordingly 

The thermal and mechanical measured strain results are recorded every 0.001 second 

through 8-channel Module NI 9235 as shown in Figure A-2 in Appendix A-1. They 

are connected to LabVIEW software fitted with a data logger in a similar way as for 

the thermocouples. 

Figure ‎3-6 shows the data acquisition with connections where the thermocouples, 

strain gauges, NI 9213, NI 9235, chassis (NI CompactDAQ) and LabVIEW software 

are components integrated together to form the configuration of data acquisition 

system. 
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Figure ‎3-6 The electrical components required to get the results of temperature measurements. 

In our work, the procedure of installing bonded strain gauges is implemented 

according to ASTM E1237. Furthermore, special adhesive NP-50 is used to keep the 

high temperature strain gauges bonded with pipe surfaces in higher temperature. NP-

50 is a compound adhesive composed of two-component room-temperature-curing 

polyester adhesive for bonding QF, ZF and BF series strain gauges. Also, a high 

temperature adhesive is used over the high temperature strain gauges to protect them 

from the heat of welding torch (no extra heat) and also to keep them bonded to lined 

pipe surfaces. By mounting the strain gauges and thermocouples on the lined pipe, 

two joints of lined pipe are ready to be welded with weld overlay first and then with 

girth welding passes to join them together as shown in Figure ‎3-7. 
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Figure ‎3-7 Measuring the temperatures and strains during welding 

Basically, the analysis procedure which is used to determine the directions and 

magnitudes of the principal surface strains and then to determine stress 

transformations goes along with ASTM E1561. 

3-4. Welding Operation 

Arc welding is the most common type of welding process used widely in steel 

construction such as pipelines, ships and pressure vessels (Lindgren, 2014). Arc 

welding has countless advantages in terms of ability to provide high quality welds for 

various types of steels and thickness and also using suitable equipment to move 

easily on site. The main equipment is the power supply machine used to create an 

electric arc between an electrode and the base material which is protected by gas 

atmosphere. Based on the electrode type, arc welding is classified into three kinds as 

follows: 

 Shielded Metal Arc Welding (SMAW), known generally as stick or arc 

welding, uses a consumable stick electrode. Arc welding could be used for 

construction, manufacturing and repairs for thick metal (over 4 mm).  

 Gas Metal Arc Welding (GMAW) commonly so called Metal Inert Gas 

(MIG) depends on a continuous-fed consumable electrode. Therefore, it could 
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be an automated welding process by using robotic MIG welders. It has the 

ability to weld different types of metals with a wide variety of thickness. 

 Gas Tungsten Arc Welding (GTAW) widely known as Tungsten Inert Gas 

(TIG) uses a non-consumable tungsten electrode. In this type, an inert gas 

protection from atmosphere contamination is required. TIG welding is more 

able to produce robust, clean, neat and tidy welds. In this work, all welds 

have been executed by TIG welding. 

Two types of consumable rods are used in TIG welding. The first one is made of 

stainless steel ER308L which is suitable with 300 stainless steel series where 304 is 

the most common. Due to the higher weldability of ER308L, it could be also used in 

carbon steel pipe welding, MIG (GMAW) and Submerged Arc (SAW). ER308L 

conforms to AWS A5.9 ER308L. The second rod is made of mild steel alloy E70S-2 

which could also be used with cast steel welding. E70S-2 is a triple deoxidized wire 

(Aluminium, Titanium, Zirconium) which provides defect free weld deposits when 

properly used on most carbon steels. It is used especially for pipe welding. ER70S-2 

conforms to AWS A5.18 ER70S-2. The chemical compositions and the mechanical 

properties of ER308L and E70S-2 corresponding to AWS A5.9 and AWS A5.18 

ER70S-2 specifications, respectively, are reported in Table ‎3-3 and Table ‎3-4. 

Figure ‎3-8 shows the types of welding rods used in experiments. 

Table ‎3-3 Chemical compositions of ER308L and E70S-2 
Rod 

type 

C % Si 

% 

Mn

% 

P % S % Mo% Cr 

% 

Ni

% 

Cu % Zr% Al% Ti% 

ER308

L 
≤ 

0.03 

0.3-

0.6

5 

≤ 1-

2.5 

≤ 

0.03 

≤ 

0.03 

≤0.7

5 

19.5

-22 

9-

11 

≤0.7

5 
- - - 

ER70S

-2 
≤ 

0.07 

0.4-

0.7 

0.9-

1.4 

≤ 

0.02

5 

≤ 

0.03

5 

0.15 0.15 0.15 
≤0.5

0 

0.02

-

0.12 

0.05

-

0.15 

0.05

-

0.15 

Table ‎3-4 Mechanical properties of ER308L and E70S-2 

Material Yield Strength (MPa) 
Ultimate Tensile Strength 

(MPa) 
Elongation (%) 

ER308L 400 587 36 

ER70S-2 440 520 28 
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Figure ‎3-8 Rod types, E70S-2 (brass colour) and ER308L (grey colour) 

In the numerical simulation of FE models, the welding torch moves with constant 

speed, which in turn it is mandatory to be constant experimentally. The complexity 

of lined pipe welding in terms of the internal welding, i.e. weld overlay, drives us to 

weld the pipe manually. The pipe is rotated with a constant speed over two lubricated 

V-blocks where the friction is negligible as shown in Figure ‎3-9. 
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Figure ‎3-9 Lined pipe welding process using TIG welding 

In our work, the practical procedure of lined pipe welding is consistent with 

international standards such as the American Welding Society AWS D1.1 and 

American Petroleum Institute API 1104. The welding power source utilized is 

GENESIS 150 AC-DC to provide the required amperage and voltage to deposit the 

filler materials in the grooves with high quality as depicted in Error! Reference 

source not found. Appendix A-1. Also, GENESIS 150 has the flexibility to change 

the amperage to increase and reduce the magnitude of welding heat input. 

3-5. Post-Welding Requirement 

The welding process is responsible for generating residual stresses. The effects of 

residual stresses on the lined pipe could be either good or detrimental based on their 

sign, magnitude and distribution along the entire pipe (Measurements, 2007). In the 

majority of welding cases, the residual stresses are considered to be a potential cause 
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of nucleation of cracks which leads to detrimental damage to the pipe in service. In 

the lined pipe, the danger of initiation cracks is doubled because of the sealing weld, 

i.e. the weld overlay. Besides recording the stresses during welding, two techniques 

have been used to measure the residual stresses in the welded lined pipe, hole-

drilling and X-ray diffraction.  

3-5-1. Measurement of Residual Stresses by Hole-Drilling 

The hole-drilling method is often considered as semi-destructive because of the small 

localized damage that it causes by drilling through the pipe thickness. Nevertheless, 

this damage does not significantly affect the usefulness of the specimen (ASTM-

E837, 2008). The reference hole with diameter of 2 mm and depth of 2 mm is drilled 

vertically through the pipe thickness using a high speed milling machine. Due to the 

removal of the material, the diameter of the reference hole changes because of strain 

relaxation. The procedure applied in this method is based on ASTM-E837. The 

residual stress gauges with three elements, FRS-2, are mounted on the inner surface 

(liner) and outer surface (C-Mn pipe) as shown in Figure ‎3-10. 

 

Figure ‎3-10 Residual stress gauge rosette with three elements, FRS-2 
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3-5-2. Measurement of Residual Stresses by X-Ray Diffraction (XRD) 

To check the reliability of experimental results done by hole-drilling, X-Ray 

diffraction technique has been used to measure the axial and hoop residual stresses in 

the welded lined pipe. This method is based on the interaction of the incident rays 

(monochromatic X-ray) with the welded sample to produce constructive interference 

and a diffracted ray when Bragg’s Law is satisfied with conditions. This law (nλ=2d 

sin θ) expresses the relation between the wavelength of electromagnetic radiation 

(nλ), the diffraction angle (θ) and the lattice spacing in a sample (d). The X-rays are 

generated by a cathode ray tube (Cr-Ka1 tube), filtered to produce monochromatic 

radiation, collimated to concentrate (1mm), and directed toward the sample (2 

θ=156°). As a result, the residual stresses can be mapped across the FZ, HAZ and 

base materials on the outer surface (C-Mn pipe) and the inner surface (AISI304 

pipe). A Bruker D8 Advance X-ray diffractometer instrument has been used to do 

that as shown in Figure ‎3-11.     

 

Figure ‎3-11 X-ray diffractometer instrument, Bruker D8 Advance 

Moreover, a small sample of welding cross section is cut to reveal the FZ and HAZ 

boundaries under microscopic examination. To do that, rough and fine polishing are 

achieved using silicon carbide abrasive paper with different grit sizes mounted on a 

rotating disc with water coolant. Afterwards, final polishing is executed by 
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Aluminium oxide. Next step is to etch the sample with 10% natal (10ml Nitric Acid 

and 90ml Methanol) for 10 seconds. After that, the sample is ready for microscopic 

examination, as shown in Figure ‎3-12. 

 

Figure ‎3-12 Microscopic examination to measure the FZ and HAZ dimensions 

3-6. Conclusions 

Details about the applied procedure of special thermal manufacturing process known 

as tight fit pipe (TFP) to insert the CRA liner inside the C-Mn pipe have been 

provided in this chapter. The chapter also presents an overview of experimental 

methods used to validate the numerical results for the lined pipe welding models, 

which will be presented later in this research. To do that, strategies based on 

international standards, ASTM E1237, ASTM E1561, AWS D1.1 and API 1104, 

have effectively been used. To examine the reliability of experimental residual 

stresses results, two techniques have been executed for this purpose, hole-drilling and 

X-ray diffraction. 
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Chapter 4  

Experimental Setup for the Impact Process 

4-1. Introduction 

Mechanical damage resulting from an outside object hitting a pipe is a big threat for 

its integrity. Dents can be generated in an offshore or onshore pipe and commonly 

happen when excavation equipment or heavy objects being operated within the 

pipeline area come in contact with the pipe wall. This contact could produce dents 

with different types and geometries accumulating high levels of plastic strain and 

residual stresses.  

Lined pipelines are used to reduce the cost by decreasing the thickness of the carbon 

steel backing, up to a half. Unfortunately, Lined pipelines are more vulnerable to be 

dented by external interference or third part because of this minimization of the 

backing steel thickness. After hitting, the cylindrical pipe may rebound or re-round 

little bit but there may remain considerable amount of residual stresses in the dent, 

depending on the conditions of collision such as velocity, shape and density of the 

hitter body. Consequently, dents can be the main cause of crack initiation. 

The Marathon Pipelines had been damaged after three years of the in-line inspection 

causing in the loss of 489,000 gallons of crude oil and the cost of this damage was 

approximately $12.6M. According to pipe line accident report (Race, 2008), the main 

reason for this damage was fatigue cracking because of fluctuating internal pressure. 

Another report (Johnston, 2002) stated that the cracks were initiated in the dent 

because of increasing stress concentration at the site of damage.  

A lot of studies (Alexander and Kiefner, 1997; Fowler, 1993; Fowler et al., 1994) 

attributed the possibility of fatigue behaviour of dented steel pipelines to the stress 

concentration factors (SCFs). Consequently, it is important to have more 
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understanding of stress behaviour for the sake of predicting the fatigue life of dents 

found in the pipe. SCFs are mainly function of the dent and pipe dimensions.  

4-2. Dents 

It is fundamental to define the terminology used here and the types of dents in 

pipelines. In this work, the term “dent” is defined as a permanent plastic deformation 

of the cross section of the pipe caused by external forces (ASME B31.4, 2012). 

Smooth dent, plain dent, kinked dent, unconstrained dent and constrained dent are 

the major defect classifications that typically arise when the damage is estimated. A 

smooth dent is characterised as a dent which varies smoothly in the curvature of the 

pipe wall. A plain dent is a smooth dent without reduction in wall thickness because 

of gouges, cracks or other imperfections such as girth or seam welds. A kinked dent 

is a dent with a sudden change in curvature of pipe wall because of defects such as 

gouges or cracks. Furthermore, the dent could be classified into unconstrained or 

constrained dent, according to its ability to move under internal pressures. Thus, an 

unconstrained dent is able to re-round elastically (spring back) as the internal 

pressure is changed or the indenter is removed (Race, 2008). On contrary, a 

constrained dent is not free to move, as in the case of a rock dent caused by laying 

the pipe onto a rock in the trench during construction. 

A large number of studies have reported that unconstrained smooth plain dents do 

not significantly reduce the burst strength of pipelines. As a result, pipe repair is not 

required unless dents are very deep. Therefore, dent depth plays an important role in 

determining the dent severity. Recently, some authors have reported that the dent 

depth is not sufficient to determine the severity without considering the strain in the 

dent (pipe material), which is a stronger indicator for the dent severity. The dent 

depth is defined in standard ASME B31.4 (2012) and ASME B31.8 (2012) as “the 

gap between the lowest point in the dent and the trajectory of this point on the 

original contour of the pipe”. There is another definition of dent depth as “the 

maximum reduction in the diameter of the pipe compared to the original diameter” 

(Cosham and Hopkins, 2004). The definition of dent depth includes both the local 

indentation and the ovality (out-of-roundness) of the pipe diameter. Therefore, the 

criteria to specify the dent severity is expressed by the percentage dent depth-to-pipe 
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diameter, H/D, as shown in Figure ‎4-1. Increasing the percentage leads to increase 

the possibility of failure. 

 

Figure ‎4-1 The definition of dent depth (ASME B31.4, 2012) 

Another issue which is associated with dent depth measurement is spring back. The 

impact process produces both elastic and plastic strains in the material. The elastic 

strain is recovered when the indenter is removed, so that the dent moves outwards. If 

the dent is unconstrained, the dent is pushed out by the internal pressure changes. Re-

rounding is comprised of initial plastic recovery of the dent depth based on the 

internal pressure and the pipe properties.  

In the literature, most of dents which have been reported with full scale tests have 

been initially loaded with zero pressure. After that, the pipe is pressurised and 

therefore the dent is re-rounded by internal pressure. In such cases, the effect of 

spring back and re-rounding should be considered by using a spring back correction 

factor. However, the Pipeline Defect Assessment Manual (PDAM) has considered 

the spring back correction factor in conjunction with the revised European Pipeline 

Research Group (EPRG) factor, where the dent depth at zero is equal to 1.43 of the 

re-rounded dent depth (Corder and Chatain, 1995). The location of the point at which 

the stress concentration is the largest is based on the length of dent in the static 

impact. The location of the maximum stress and strain is at the rim of a short dent, 

which is defined as a dent whose axial length is less than twice the dent width. 
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Increasing the length of the dent with respect to the width makes the maximum stress 

concentration move to the root of dent (Rinehart and Keating, 2002).     

In our work, the types of dent in all tests are unconstrained dynamic short plain dent 

where the indenter drops freely from a specific height and hits the lined pipe 

sequentially until consuming the kinetic energy. Therefore, the pipe material and 

equivalent plastic strain rate play an important role in the shape of dent and 

stress/strain behaviour (Nicholas, 1980). 

4-3. Experimental Specimens and Materials 

Specimens of lined pipe used for impact testing were manufactured at Brunel 

University (BCAST lab) using exactly the same procedure used for the specimens 

used for welding tests. The backing pipes and the liner are also the same as for the 

welding test, so the reader is referred to Chapter 3 for the manufacturing procedure, 

dimensions of the line pipe and the composition of materials. 

Experiments were conducted for two groups of pipes. The first one, case A, consists 

of C-Mn pipes without liner (AISI304). The second group, case B, consists of lined 

pipes composed of C-Mn pipe cladding with AISI304 pipe internally as shown in 

Figure ‎8-2. Each specimen in both cases has a total length of 200 mm. The chemical 

compositions and the mechanical properties for each material are reported in 

Table ‎3-1and Table ‎3-2. 

4-4. Experimental Apparatus 

The apparatus which is customised to apply free drop test is depicted in Figure ‎4-2. 

The apparatus is composed of a steel square block with total net weight of 200 kg. 

The apparatus is equipped with a semi-spherical indenter (denting tool) with 

diameter of 51.75 mm at the bottom surface. At the top surface of the block, a metal 

chain connects the block with a mechanism of pulley to draw the blocks up and 

down. The block slides up and down freely inside a greasy square chamber. The 

external wall of chamber is scaled in the range of 0 to 3 m along the height of 

chamber which is 3 m. Furthermore, a laser distance measuring tool is used to 

specify the particular height of free drop precisely from the tip of indenter to the 
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outside surface of pipe (dent centre), as shown in Figure A-4 in Appendix A-2. After 

reaching a prescribed height, the chain is released from block. Consequently, the 

block freely slides down through the chamber because of the gravity of its weight to 

hit the pipe in the centre of the expected dent region located at the middle section of 

pipe. 

 

Figure ‎4-2 Apparatus of the collision experiments 

Also, Figure ‎4-2 clarifies that the specimen is laid down horizontally on a rigid 

bottom plate and also trapped between two thick rigid plates on its sides with 3 mm 

clearance on each side. The main goal of our experiments is to examine the high 

levels of strain in the dented region. With this aim, different types of strain gauges 

were used to record the strain history during impact process, including strain gauges 

FRA-5-11 and YEFCA-5-11 for short and large strain, respectively. Furthermore, bi-

axial and tri-axial strain gauges were used but just the results of normal strains (axial 



Chapter 4 Experimental Setup for the Impact Process 

 

55 

 

and hoop strain) are plotted in this study because of the small value of 45° strain 

(diagonal strain). The procedure applied to install the strain gauges on the pipe is 

corresponding to Standard ASTM E1237. The strain gauges is connected to a data 

acquisition system (LabVIEW) to record the strain history during the impact process 

as explained earlier in the previous chapter. Afterwards, the stresses are computed 

from the strain according to Standard ASTM E1561. 

The positions of the four strain gauges around the dent are determined first using the 

FE model to specify locations precisely without damaging the gauges and to acquire 

high levels of strain closer to dent centre. Strain gauges are firmly fixed on the 

outside surface using a special adhesive glue, polyurethane coating (lacquer), to 

avoid removing gauges during instant impact test because of successive collisions in 

the indentation process. Figure ‎4-3 shows the locations of four strain rosettes (GR1, 

GR2, GR3 and GR4) symmetrically surrounding the dent centre located at the pipe 

middle section. The strain histories are transferred from strain gauges to the data 

acquisition via LabVIEW. 

 

Figure ‎4-3 Positions of the strain gauges 
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4-4-1. Measuring the Impact Velocity 

Due to the friction between the weight and apparatus walls, it is necessary to measure 

the actual impact velocity. In our case, a digital high speed camera, MEMRECAM 

HX-7, is a good choice to measure the impact velocity and also to capture the 

sequential strikes after the first collision between the indenter and pipe. The 

MEMRECAM HX-7 offers full HD resolution at up to 2000 frames per second (fps). 

Error! Reference source not found. in Appendix A-2 depicts the MEMRECAM HX-

7 digital camera used in experiments. Figure ‎4-4 illustrates the sequential strikes with 

respect to impact time. 

 

  

(a) (b) 

Figure ‎4-4 The stages of collision after the first contact between the indenter and pipe at  (a) 7.5 ms 
(b) at 250 ms 

4-4-2. Measuring the Dented Pipe Geometries 

After completing the impact process, the deformed geometry of the pipe is measured 

with aid of a conventional callipers and a displacement transducer sliding on a 

greased flat plate perfectly, while the pipe is mounted on V-groove blocks as shown 
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in Figure ‎4-5. In this way, the deformation obtained from the FE model can be 

compared with the experimental measurements. 

 

Figure ‎4-5 Experimental set up for measuring pipe geometries 

4-5. NDT Tests 

Dye penetrant inspection (DPI), also called liquid penetrant inspection (LPI) or 

penetrant testing is considered a visual inspection in non-destructive testing NDT to 

detect flaws such as cracks on the pipe surface. DPI is used in this work to check the 

possibility to get surface cracks after impact and welding as shown in Figure ‎4-6. 
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Figure ‎4-6 Using DPI penetrants to detect the surface-breaking cracks 

The principle of DPI is that the liquid dye penetrant is sprayed on the pipe surface, 

red spray, and accesses the flaws by capillary action. The penetrant is then wiped by 

cleaner spray or alcohol liquid. A developer spray, white powder, is used afterwards 

to draw out the red penetrant from the surface-breaking cracks. Cracks with opening 

of 150 nanometres could be detected by DPI test. 

4-6. Conclusions 

This chapter has presented a description of the experimental setup and procedures 

used to validate the numerical results of FE impact models which will be presented 

later in this research. In particular, procedures based on international standards, 

ASTM E1237 and ASTM E1561, to effectively provide precise experimental results 

have been applied 
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Chapter 5  

FE Analysis of a Single-Pass Weld Overlay and 

Girth Welding 

5-1. Introduction 

In this chapter, using the ABAQUS software, a three-dimensional FE model is 

developed to simulate the evolution of the temperature field and residual stresses in a 

lined pipe made of a SUS304 stainless-steel liner and a C-Mn steel pipe. The 

proposed method uses non-linear modelling of the heat flux through exposed metal 

surfaces and accounts for the moving heat source during welding. These two features 

are implemented by coding two separate user subroutines in ABAQUS.  

The presented numerical procedure is validated against previously published 

experimental results for stainless steel and carbon steel welding separately. The 

model has been then used to predict the transient temperature field and residual stress 

distributions during the weld overlay (inner welding) and the girth welding (outer 

welding) of a lined pipe. Furthermore, a sensitivity analysis to determine the 

influence of the cooling time between weld overlay and girth welding and of the 

welding speed has been conducted thermally and mechanically, as these are key 

parameters that can be fine-tuned to improve the welding quality. 

5-2. Description of Welding Conditions 

As discussed in the previous chapters, an overlay welding between the pipes is 

normally used also as a way to seal the gap between them, and therefore avoid that 

moisture, grease and dirt penetrate the gap, as shown in Figure ‎5-1.  
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Figure ‎5-1 Weld preparation to seal the pipe at ends 

The weld overlay filler material is chosen to have corrosion resistance which 

preferably exceeds that of the liner material. The arrangement could be swapped 

between seal welding (weld overlay) and bevelling (chamfer) because the main 

purpose is to seal the pipe ends. After that, a girth welding is deployed to join two 

segments of the lined pipe together. The filler material of the girth welding could be 

either carbon steel the same as the material of backing pipe or stainless steel, 

discussed later in detail in Chapter 7. In this chapter, the materials of the weld 

overlay and girth welding have the same thermal and mechanical properties of the 

liner and backing pipe, except the yield stress, respectively. 

5-3. Thermal Analysis 

5-3-1. Modelling of the Heat Source 

The physical phenomena associated with the interaction between the welding torch 

and the weld pool are complex. The two-dimensional circular disc model proposed 

by Pavelic et al. (1969) assumes for the thermal flux the following Gaussian 

distribution in the plane. 

𝑞(𝑥, 𝑦) = 𝑞𝑚𝑎𝑥𝑒
−𝑤𝑟2 (5.1) 



Chapter 5 FE Analysis of a Single-Pass Weld Overlay and Girth Welding 

 

61 

 

where 𝑞(𝑥, 𝑦) is the surface flux at a distance 𝑟 = √𝑥2 + 𝑦2 from the centre of the 

heat source, qmax is the maximum flux at the centre and w is a distribution-width 

coefficient. 

Goldak et al. (1984) extended this approach to a three-dimensional model in which 

the heat source 𝑞 is represented with a Gaussian distribution of the power density in 

an ellipsoid with centre that, for simplicity, is first taken as (𝑥0, 𝑦0, 𝑧0) = (0,0,0): 

𝑞(𝑥, 𝑦, 𝑧) =  𝑞𝑚𝑎𝑥𝑒
−𝐴𝑥2𝑒−𝐵𝑦

2
𝑒−𝐶𝑧

2
 (5.2) 

The actual ellipsoid is defined as the volume within which the point-wise heat source 

is greater than 5% of the maximum one (Goldak et al., 1986), i.e. where 𝑞(𝑥, 𝑦, 𝑧) >

0.05𝑞𝑚𝑎𝑥. This allows one to define constants 𝐴, 𝐵 and 𝐶 as follows, with good 

approximation: 

𝐴 =
3

𝑎2
            𝐵 =

3

𝑏2
             𝐶 =

3

𝑐2
 (5.3) 

where 𝑎, 𝑏 and 𝑐 are the semi-axes of the ellipsoid in directions 𝑥, 𝑦 and 𝑧, 

respectively, as illustrated in Figure ‎5-2. 

 

Figure ‎5-2 Ellipsoidal weld bead with semi-axes 𝑎, 𝑏 and 𝑐 

For example, along the 𝑧 direction, it results: 

𝑞(0,0, 𝑐) = 𝑞𝑚𝑎𝑥𝑒
−𝐶𝑐2 = 0.05𝑞𝑚𝑎𝑥 (5.4) 

which leads to: 

𝐶 = −
𝑙𝑛(0.05)

𝑐2
=
2.996

𝑐2
 (5.5) 

The total heat input, 𝑄, is obtained as follows: 
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𝑄 =
1

2
∫ ∫ ∫ 𝑞𝑚𝑎𝑥𝑒

−𝐴𝑥2𝑒−𝐵𝑦
2
𝑒−𝐶𝑧

2
 𝑑𝑥𝑑𝑦𝑑𝑧 =

+∞

−∞

+∞

−∞

+∞

−∞

𝑞𝑚𝑎𝑥𝜋√𝜋

2√𝐴𝐵𝐶

=
𝑞𝑚𝑎𝑥𝑎𝑏𝑐𝜋√𝜋

6√3
 

(5.6) 

As a result, the power density as a function of position 𝑥, 𝑦, 𝑧 is given as: 

𝑞(𝑥, 𝑦, 𝑧) =  
6√3𝑄

𝑎𝑏𝑐𝜋√𝜋
𝑒−3𝑥

2/𝑎2𝑒−3𝑦/𝑏
2
𝑒−3𝑧

2/𝑐2 (5.7) 

If we now consider the general case where the centre coordinates 𝑥0, 𝑦0 and 𝑧0 of the 

welding pool are not zero, the general formula is obtained: 

𝑞(𝑥, 𝑦, 𝑧) =  
6√3𝑄

𝑎𝑏𝑐𝜋√𝜋
𝑒−3(𝑥−𝑥𝑜)

2/𝑎2𝑒−3(𝑦−𝑦𝑜)
2/𝑏2𝑒−3(𝑧−𝑧𝑜)

2/𝑐2 (5.8) 

Notice that total heat input can be related to the applied voltage 𝑉 and current 𝐼 in the 

heat torch as follows: 

𝑄 = 𝑉𝐼𝜇 (5.9) 

where 𝜇 is the welding efficiency. 

In some studies (Goldak et al., 1984), a modified double ellipsoidal heat source 

model is utilised with a slight readjustment of the heat distribution equation 

according to the circumferential moving whereby the fractions 𝑓𝑓 and 𝑓𝑟 of the heat 

deposited in the front and rear quadrants are needed, where 𝑓𝑓 + 𝑓𝑟 = 2. However, 

this modification is not used in this work because other authors (Fachinotti et al., 

2011; Goldak and Akhlaghi, 2006) found a good correlation with experiments taking 

𝑓𝑓 and 𝑓𝑟 equal to 1.  

To account for the rotational movement of the welding front along the 

circumference, the power density can be given as a function of position and time as 

follows:  

𝑞(𝑥, 𝑦, 𝑧, 𝑡) =
6𝑄√3 

𝑎𝑏𝑐𝜋√𝜋
𝑒−3(𝑥−(𝑅𝑠𝑖𝑛𝜃+𝑥0))

2/𝑎2𝑒−3(𝑦−(𝑅𝑐𝑜𝑠𝜃+𝑦0))
2/𝑏2𝑒−3(𝑧−𝑧0)

2/𝑐2 (5.10) 

where 𝑅 is the radial distance of the heat torch centre from the pipe axis, 𝜃 is the 

angle that the torch has travelled around the pipe, starting from a starting point where 
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𝜃 = 0. Denoting by 𝜔 the angular velocity used in welding, it results 𝜃 = 𝜔(𝑡 − 𝑡0), 

where 𝑡 is the current time and 𝑡0 is the initial time of the analysis.   

Equation (5.10) has been implemented in ABAQUS by coding the FORTRAN 

DFLUX user-subroutine (Dassault Systèmes, 2014). The position of the weld torch is 

calculated first in DFLUX according to the welding time 𝑡. The power density q is 

then computed at each integration point.  

5-3-2. Thermal Properties 

A transient heat-transfer analysis is conducted to evaluate the temperature field 

history during welding. In this case, the energy balance for each domain is governed 

by the classical energy balance equation given as (Goldak et al., 1984): 

𝜌
𝜕𝐻

𝜕𝑡
−  div(𝜅∇𝑇) = −𝑞(𝑥, 𝑦, 𝑧, 𝑡) (5.11) 

where 𝜌 denotes the density of the materials, 𝐻 is the enthalpy (per unit volume), 𝑡 is 

the time, 𝑇 is the temperature, 𝜅 = 𝜅(𝑇) is the material thermal conductivity, 

assumed to be isotropic, and 𝑞 = 𝑞(𝑥, 𝑦, 𝑧, 𝑡) is the welding volume heat input 

(defined earlier in Section 5.3.1). 

The specific enthalpy in Eq. (5.11) is defined as: 

𝐻(𝑇) =  ∫ 𝑐 𝑑𝑇
𝑇

𝑇𝑟𝑒𝑓

+ 𝑙 𝑓1(𝑇) (5.12) 

where 𝑙 and 𝑐 are the latent heat and heat capacity, respectively, 𝑇𝑟𝑒𝑓 is an arbitrary 

reference temperature, and  𝑓1(𝑇) is the volumetric liquid fraction known as a 

characteristic function of temperature, defined as: 

𝑓1(𝑇) =  

{
 

 
0 𝑇 < 𝑇𝑠𝑜𝑙𝑖𝑑

𝑇 − 𝑇𝑠𝑜𝑙𝑖𝑑
𝑇𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑇𝑠𝑜𝑙𝑖𝑑

𝑇𝑠𝑜𝑙𝑖𝑑 ≤ 𝑇 ≤ 𝑇𝑙𝑖𝑞𝑢𝑖𝑑

1 𝑇 > 𝑇𝑙𝑖𝑞𝑢𝑖𝑑

 (5.13) 

where 𝑇𝑠𝑜𝑙𝑖𝑑  and 𝑇𝑙𝑖𝑞𝑢𝑖𝑑  are the solidus and liquidus temperatures, respectively. 

The second term in Eq. (5.11) represents the flow of heat out of or into the 

neighbourhood of a particular point according to the isotropic Fourier heat flux 

constitutive equation: 
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𝑞⃗ = −𝜅∇𝑇 (5.14) 

where 𝑞⃗ is the heat flux vector. In components: 

𝑞𝑥 = −𝜅
𝜕𝑇

𝜕𝑥
 𝑞𝑦 = −𝜅

𝜕𝑇

𝜕𝑦
 𝑞𝑧 = −𝜅

𝜕𝑇

𝜕𝑧
 (5.15) 

where 𝑞𝑥, 𝑞𝑦, and 𝑞𝑧  are the heat fluxes in the 𝑥, 𝑦 and 𝑧 directions, respectively. The 

thermal material parameters, 𝜅, 𝜌 and 𝑐, are all temperatures dependant. The initial 

condition to Eq. (5.11) is in our case given by: 

𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑇0 (5.16) 

where 𝑇0 is the initial temperature of the pipe, that with a good approximation can be 

taken as constant in space and equal to the ambient temperature. 

The boundary conditions on the outer and inner surfaces are given by: 

𝑘
𝜕𝑇

𝜕𝑥
𝑛𝑥 + 𝑘

𝜕𝑇

𝜕𝑦
𝑛𝑦 + 𝑘

𝜕𝑇

𝜕𝑧
𝑛𝑧 + ℎ(𝑇)(𝑇 − 𝑇𝑎𝑚𝑏) = 0 (5.17) 

where 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are the direction cosines of the normal to the boundary, ℎ(𝑇) is 

the heat-transfer coefficient, that is defined as a function of temperature as discussed 

below, 𝑇 is the current temperature at the pipe surface, whereas 𝑇𝑎𝑚𝑏 is the ambient 

temperature.  

Since we exploit the symmetry of the problem, we need to enforce on the plane of 

symmetry that the heat flux is zero, which leads to this other boundary condition on 

this plane: 

𝑘
𝜕𝑇

𝜕𝑥
𝑛𝑥 + 𝑘

𝜕𝑇

𝜕𝑦
𝑛𝑦 + 𝑘

𝜕𝑇

𝜕𝑧
𝑛𝑧 = 0 (5.18) 

In this work, both radiation and convection are taken into account for the boundary 

conditions during the thermal analysis. During a thermal cycle, radiation and 

convection take place from all the surfaces exposed to the environment. In particular, 

radiation heat losses are dominant in and nearby the weld pool whereas convection 

heat losses are dominant at lower temperatures away from the weld pool (Akbari and 

Sattari-Far, 2009). As there are two different base materials, two heat transfer 

coefficients are considered. Each heat coefficient includes a combination of 
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convection and radiation effects. For the carbon steel surfaces, the total heat transfer 

coefficient can be written as (Lee et al., 2013): 

ℎ𝑐𝑎𝑟𝑏𝑜𝑛 = ℎ𝑐𝑜𝑛 + 𝜀𝑒𝑚𝜎𝑏𝑜𝑙(𝑇 + 𝑇𝑎𝑚𝑏)(𝑇
2 + 𝑇𝑎𝑚𝑏

2 ) (5.19) 

where ℎ𝑐𝑜𝑛 is the convective heat transfer coefficient, 𝜀𝑒𝑚 is the effective radiation 

emissivity,  𝑇 is the current temperature at the pipe whereas 𝑇𝑎𝑚𝑏 is the ambient 

temperature, and 𝜎𝑏𝑜𝑙 is the Boltzman constant. Following (Malik et al., 2008), in the 

present study, the convective heat transfer coefficient ℎ𝑐𝑜𝑛 is assumed to be 8 

W/m
2
°C whereas the emissivity 𝜀𝑒𝑚 is set to be 0.51. 

For the stainless steel surfaces, we used the following widely used bilinear law [5]: 

ℎ𝑠𝑡𝑎𝑖𝑛𝑙𝑒𝑠𝑠 = {
0.0668𝑇                 (

𝑊

𝑚2
)        0 < 𝑇 < 500°𝐶                      

0.231𝑇 − 82.1        (
𝑊

𝑚2
)        𝑇 >  500°𝐶                            

 (5.20) 

because for this material it is a good approximation of the actual cubic expression 

that would be obtained using Equation (5.20) for typical values of the emissivity of 

stainless steel of 0.5-0.75 and a range of temperature between ambient and 2400°C. 

A FILM user subroutine (Dassault Systèmes, 2014) was used to implement the above 

expressions of the heat-transfer coefficient in ABAQUS. It is worth noting that 

ABAQUS allows one single user-subroutine to be written for both materials by 

simply specifying which surface each condition applies to. 

 

Figure ‎5-3 Effect of radiation and convection in Lined pipe 

As can be seen from Figure ‎5-3, the radiation and convection take place from all 

sides of the welded lined pipe exposed to the environment except the area at which 

the heat flux is applied (Akbari and Sattari-Far, 2009).  
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To account for material melting and for the heat transfer due to the fluid flow in the 

weld pool, two methodologies are used (Deng and Murakawa, 2006). A significant 

increase in the thermal conductivity is assumed above the melting point relatively to 

that at room temperature. The latent heat is taken into consideration in the thermal 

effects due to solidification of the weld pool. The latent heat is typically the heat 

energy that the system stores and releases during the phase transformation. 

5-4. Validation 

In order to validate the FE procedure for the girth welding, the approach outlined 

above is used to simulate the problem studied by Karlsson and Josefson (1990), and 

our numerical results are compared with the experimental ones reported in (Karlsson 

and Josefson, 1990). The pipe studied has an outer diameter of 114.3 mm and a wall 

thickness of 8.8 mm, with a 5.5mm-deep V-groove for welding, and the pipe material 

is C-Mn steel (Swedish standard steel SIS2172). The welding material is MIG (Metal 

Inert Gas) deposited from the outside into the groove in a single pass with a speed 

equal to 6 mm/s as shown in Figure ‎5-4. 

 

Figure ‎5-4 Karlsson and Josefson FE model, dimensions in mm (Karlsson and Josefson, 1990) 

Our numerical results of the thermal and mechanical analyses have been compared 

with the experimental measurements at various axial locations, where the 
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circumferential angle 𝜃 from the welding start/stop position is 150°. In the thermal 

analysis, those points are located on the outer and inner surfaces with respect to the 

weld centreline CL. It can be seen from the plot shown in Figure ‎5-5(a) that the 

thermal simulation results correlate well with the experimental red contour lines. In 

the mechanical analysis, the residual stress distributions at 150° from start/stop 

welding location on the inner surface along the axial direction correlate also well 

with those obtained by the validated experiment performed by Karlsson and Josefson 

(1990) as shown in Figure ‎5-5(b). 

 

 

 

(a) (b) 

Figure ‎5-5 Distributions of (a) temperatures (°C) (b) Inner hoop residual stress at 𝜃=150° 
numerically computed in this work and experimentally validated in (Karlsson and Josefson, 

1990) 

In a similar way, to validate the weld overlay FEA approach, the experiment 

conducted by Deng and Murakawa (2006) has been simulated. The material used in 

this work was stainless steel (SUS304) and the pipe model has a 114.3 mm outer 

diameter and 6 mm thickness. Gas Tungsten Arc (GTA) welding was used in the 

experiments to fill a U-groove by two welding passes with 80 mm/min as welding 

speed as shown in Figure ‎5-6. 
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Figure ‎5-6 Deng and Murakawa experiment, dimensions in mm (Deng and Murakawa, 2006) 

The thermal history findings have been numerically compared with their 

experimental counterparts at three axial locations, points 1, 2 and 3 as shown in 

Figure ‎5-6. These points are placed on the outer surface with respect to the axial 

distance from the weld centre line where the circumferential angle φ from the 

start/stop position is 180°. Figure ‎5-7(a) shows there is a good match between our 

thermal FEA results and the experimental ones obtained from (Deng and Murakawa, 

2006). Moreover, Figure ‎5-7(b) shows a good correlation between the results of the 

hoop residual stresses along the axial distance on the inner surface which are taken 

from our FE mechanical model and the experimental results in (Deng and Murakawa, 

2006) where the angular location 𝜃 from the welding start/stop point is 180°. 
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(a) (b) 

Figure ‎5-7 Comparison of (a) thermal histories (°C) and (b) Inner hoop residual stresses at 
𝜃=180° numerically computed in this work and experimentally validated in (Deng and 

Murakawa, 2006) 

5-5. Finite Element Modelling of the Lined Pipe 

5-5-1. Description of the Lined Pipe Joint and Welding Conditions 

Using ABAQUS (Dassault Systèmes, 2014), the FE computational procedure 

described in Section 5.3, and validated in Section 5.4 for the separate cases of a 

carbon-steel pipe and a stainless-steel pipe, has been implemented to calculate the 

transient temperature field and residual stresses during welding of two segments of a 

lined pipe, in which a one-pass weld overlay and a one-pass butt-welded joints are 

used. The configuration of the lined-pipe joint has an outer diameter of 114.3 mm 

and a wall thickness of 6 mm, of which 4.5 mm is the thickness of the C-Mn outer 

pipe and 1.5 mm is the liner thickness, as schematically shown in Figure ‎5-8. Only 

one-half of the pipe, which is 200 mm long, is analyzed due to symmetry around the 

weld line. 
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Figure ‎5-8 Dimensions of analysis model 

The outer pipe material is C-Mn steel with a composition of 0.18%C, 1.3%Mn, 0.3% 

Si, 0.3%Cr, 0.4%Cu (Swedish standard steel SIS2172) and the temperature-

dependent thermo-mechanical material properties, namely density, specific heat, 

latent temperature, thermal expansion, yield stress, Young’s modulus and 

conductivity used for the outer pipe are taken from the work of Karlsson and 

Josefson (1990) as reported in Table ‎5-1. The thermo-mechanical properties for the 

SUS304 SS liner are obtained from the study of Deng and Murakawa (2006) as 

shown in Table ‎5-2. Moreover, the MIG-welding is implemented for girth weld 

whilst the GTA-welding process is used in filling the weld overlay groove. In 

absence of specific data, we follow (Deng and Murakawa, 2006; Karlsson and 

Josefson, 1990) so that base metals and weld metals are defined as different materials 

in ABAQUS-code but having the same thermo-mechanical properties corrospending 

to thier base materials except the yield stress, as illustrated in Table ‎5-1and 

Table ‎5-2. This is an approximation of reality that in some cases may be inaccurate, 

but in this work we are using the cases studied in (Deng and Murakawa, 2006; 

Karlsson and Josefson, 1990) for the two different materials as a way of validating 

the separate models, and therefore we follow these articles in this simplified 

assumption and also when analysing the lined pipe.  
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Table ‎5-1 Thermo-mechanical properties of C-Mn (Karlsson and Josefson, 1990) 

Temperature 

(°C) 

Density 

(Kg/m
3
) 

Specific 

heat 

(J/Kg°C) 

Conductivity 

(W/m°C) 

Thermal 

expansion 

(x10
-5

°C
-1

)
 

Yield stress 

(MPa) 

Young’s 

modulus 

(GPa) 

Possion’s 

ratio 

Base Weld 

0 7860 444 50 1.28 349.45 445.42 210 0.26 

100  480 48.5 1.28 331.14 441.29 200 0.28 

200  503 47.5 1.30 308.00 416.49 200 0.29 

300  518 45 1.36 275.00 376.18 200 0.31 

400  555 40 1.40 233.00 325.54 170 0.32 

600  592 35 1.52 119.00 172.59 56 0.36 

800  695 27.5 1.56 60.00 43.41 30 0.41 

1000  700 27 1.56 13.00 14.47 10 0.42 

1200  700 27.5 1.56 8.00 9.30 10 0.42 

1400  700 35 1.56 8.00 9.30 10 0.42 

1600  700 122.5 1.56 8.00 9.30 10 0.42 

Table ‎5-2 Thermo-mechanical properties of SUS304 (Deng and Murakawa, 2006) 

Temperature 

(°C) 

Density 

(kg/m
3
) 

Specific 

heat 

(J/kg°C) 

Conductivity 

(W/m°C) 

Thermal 

expansion 

(x10
-5

°C
-1

)
 

Yield stress 

(MPa) 

Young’s 

modulus 

(GPa) 

Possion’s 

ratio 

Base Weld 

0 7900 462 14.6 1.70 265 438.37 198.50 0.294 

100 7880 496 15.1 1.74 218 401.96 193 0.295 

200 7830 512 16.1 1.80 186 381.5 185 0.301 

300 7790 525 17.9 1.86 170 361.25 176 0.310 

400 7750 540 18.0 1.91 155 345.94 167 0.318 

600 7660 577 20.8 1.96 149 255.71 159 0.326 

800 7560 604 23.9 2.02 91 97.41 151 0.333 

1200 7370 676 32.2 2.07 25 28.41 60 0.339 

1300 7320 692 33.7 2.11 21 16.23 20.00 0.342 

1500 7320 700 120 2.16 10 12.17 10 0.388 

The numerical values for the variables in the power density distribution Eqs. (5.9) 

and (5.10) are illustrated in Table ‎5-3for each welding materials. 
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Table ‎5-3 Heat source parameters and welding parameters. 

 SUS304 C-Mn (SIS2172) 

Half-length of arc 

(mm) 
𝑎 2.765  3.26  

Depth of arc (mm) 𝑏 2.575  3.2  

Half-width of arc (mm) 𝑐 1.5  3  

Welding current (A) 𝐼 120 170 

Voltage (V) 𝑉 8 20 

Welding speed (mm/s) 𝑣 1.33  6.25  

Welding efficiency 𝜇 70%; Gas Tungsten 

Arc (GTA)  

85%; MIG (Metal Inert 

Gas)  

Based on the heat torch parameters presented in Table ‎5-3, the power density 

distributions of Goldak double ellipsoidal heat source along the welding directions 

for SUS304 and C-Mn (SIS2172) are depicted in Figure ‎5-9. 

  

Figure ‎5-9 Power density distributions of Goldak ellipsoidal heat source models, liner and carbon steel 

The latent heat for C-Mn steel (SIS2172) is set to be 247kJ/kg between the solidus 

temperature 1440 °C and the liquidus temperature 1560 °C. For stainless steel 

(SUS304), the latent heat is assumed to be 260kJ/kg between 1340 °C and 1390 °C, 

solidus and liquidus temperature, respectively. Consequently, the melting point for 

carbon steel is 1500 °C while it is 1365 °C for SUS304. The initial temperature of 

the lined pipe and the weld bead is set at room temperature, namely 20 °C. 



Chapter 5 FE Analysis of a Single-Pass Weld Overlay and Girth Welding 

 

73 

 

5-5-2. Finite Element Mesh 

Only one half of the lined joint is modelled due to symmetry. The three-dimensional 

FE model contains a total of 51840 nodes associated with 10560 elements. Among 

these, 17400 nodes and 2400 elements represent the liner geometry whereas the 

remaining of 51840 nodes and 10560 elements represent the backing pipe geometry.  

 

Figure ‎5-10 Three-Dimensional FEM 

 

A fine mesh has been used in the fusion zone (FZ), the zone where the temperature 

reaches values beyond the melting point, and its vicinity, i.e. in the heat affected 

zone (HAZ), because of the higher temperature and flux gradients. The element size 

increases with the distance from the welding centreline (WCL) for both the C-Mn 

pipe and the liner. The number of divisions in the circumferential direction is 120. 

Furthermore, there are 4 layers of elements through the thickness direction, three of 

them for the C-Mn pipe and one for the liner as shown in Figure ‎5-10. 

Uncoupled thermo-mechanical analyses have been developed to simulate the 

welding. Therefore, the thermal analysis is simulated first to acquire the thermal 

history at each node through the lined pipe. This thermal history is then transferred to 

the mechanical analysis as an input to determine the temperature-dependent 

mechanical properties. In this case, the FE mesh of the mechanical analysis should 

have the same mesh associated with the same arrangement of nodes and elements 
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used in the thermal analysis. In the thermal analysis, 20-node quadratic hexahedral 

heat-transfer elements, named DC3D20 in ABAQUS, have been employed. In the 

mechanical analysis, 20-node reduced integration elements, named C3D20R in 

ABAQUS, are employed to minimise the simulation time. 

5-5-3. Thermal Analysis  

5-5-3-1. Moving of Filler Metal 

A moving heat source combined with the element-birth technique is used to simulate 

the deposition of the elements of weld bead incrementally. In other words, to 

represent the transient nature of weld metal deposition (Yaghi et al., 2011), a number 

of element sets is created, so that the elements forming each weld bead belong to a 

specific set. In this way each bead in a weld pass can be deposited independently 

during simulation. At the beginning of the thermal simulation, the element sets of 

both weld passes are made ‘inactive’ by assigning very low conductivity to them. 

The deposition of each bead is then modelled using a sequence of ‘steps’. In each 

step, the element set that is in the current position just reached by the weld torch is 

re-activated in the FE mesh. The sequential steps of the developed procedure to 

simulate the welding are described in Table ‎5-4. 

Table ‎5-4 Simulation procedure 

Step(s) 
Initial step 

time (s) 

Final step 

time (s) 
Description 

1 0 1×10
-10

 All of the weld passes’ elements, SUS304 and C-

Mn, are deactivated. 

2 1×10
-10

  2×10
-10

  The first section of the weld overly pass is added. 

3 2×10
-10

 2.067 The heat source begins to move, applying the heat 

flux corresponding to liner heat flux equation. 

4 2.067 2.067+10
-10

 The second bead of the liner weld pass is added. 

5 2.067 4.133 The heat source continues its motion. 
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6-241 4.133 248 Steps 4-5 are repeated adding new sections of the 

weld overlay pass and applying the liner heat flux. 

242 248 518 The torch is removed and the two pipes cool down 

until the maximum temperature is below 100°C. 

243 518 518+10
-10

 The first section of the girth welding pass is added. 

244 518 518.479 The heat source moves, applying heat flux 

corresponding to carbon-steel heat flux equation. 

245-

482 

518.479 575.5 Steps 243-244 are repeated adding new sections of 

the C-Mn welding pass and then applying girth 

welding heat flux. 

483 575.5 3575.5 The torch is removed and the two pipes cool down 

almost to room temperature  

5-5-3-2. Conditions of the Thermal Analysis 

For an optimally designed welding process, the results provided by the thermal FE 

analysis should satisfy the following three conditions: 

1- All integration points in target FZ should reach at least the melting 

temperature. This guarantees that the FZ melts entirely before cooling down. 

2- Because welding parameters such as current, voltage, speed and welding pool 

geometries have constant magnitudes during welding, the temperature history 

for every node located on the same circumferential line should be close to 

identical after a relatively short initial transient part of the analysis, except for 

a time shift. 

3- The boundary of the HAZ should remain about 2-3 mm from the FZ 

boundary whereby the net heat input plays a crucial role. The problem is that, 

even for the cases where weld specifications exist in codes of practices such 

as API 1104, EN ISO 15609, ASME IX, the data in terms of current, voltage 

and welding speed are generally given with such wide limits that the net heat 

input can easily vary by a factor of 4 and still be inside the allowed limits for 

welding process (Brickstad and Josefson, 1998). 
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Brickstad and Josefson (1998), who studied a case where the material is stainless 

steel, and Karlsson and Josefson (1990), who considered carbon steel, found out the 

typical boundary of the HAZ is located approximately 2-3 mm from the FZ boundary 

where the temperature is between 800-900°C. 

5-5-4. Mechanical Analysis 

In the mechanical analysis, body forces and surface tractions are assumed to be 

neglected according to the definition of residual stresses which are the self-

equilibrating internal stresses (Deus and Vilar, 1996; Noyan et al., 1995).   

The only load considered in the structural model is the load generated by the 

transient thermal field at each node during the thermal analysis. This induces non-

uniform thermal strain through the entire lined pipe because: a) two base materials 

with their welding materials have accordingly different coefficients of thermal 

expansion, b) the initial temperatures of welding and its base material are different 

and c) high temperature gradients. 

Furthermore, the symmetry plane is constrained, which has an effect on the 

mechanical strain. In general, the total strain is composed of three components given 

as: 

𝜀𝑘𝑙 = 𝜀𝑘𝑙
𝑒𝑙 + 𝜀𝑘𝑙

𝑝𝑙 + 𝜀𝑘𝑙
𝑡ℎ (5.21) 

where the three components on the right hand side of Eq. (21) refers to elastic, plastic 

and thermal strains, respectively. The mechanical strain is the sum of the elastic and 

plastic strains. 

Isotropic linear elasticity has been assumed with temperature-dependent Young’s 

modulus and Poisson’s ratio. To obtain the thermal strain field, isotropic thermal 

expansion is assumed with a temperature-dependent expansion coefficient. To get the 

plastic strain, the Von Mises yield criterion with an associate flow rule and linear 

kinematic hardening rule have been used. Kinematic hardening is assumed to 

consider the thermal loading and unloading during welding. Yield stress and 

Young’s modulus decrease exponentially with increasing temperature to be near zero 

as temperature approaches melting point. Therefore, the filler material flows through 

welding groove with almost free stress and strain. Figure ‎5-11 illustrates the 
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temperature-dependant yield stress as the plastic strain of C-Mn and SUS304 is equal 

to 1% (Deng et al., 2008; Malik et al., 2008). 

 

Figure ‎5-11 Yield strength of C-Mn steel and SUS304 corrosponding to 1% 
hardening (Deng et al., 2008; Malik et al., 2008) 

5-6. Results of the Thermal Analysis 

The thermal cycles due to welding induce metallurgical changes in the FZ and HAZ. 

These changes influence the final microstructure of the welded pipe and, therefore, 

the resistance of the pipe to creep and fracture during service (Yaghi et al., 2011). 

Furthermore, the HAZ is the most vulnerable part of the pipe because of the 

accumulation of creep damage at the inter-critical zone near the boundary of the 

HAZ where the peak temperature is 800-900°C, at which the austenitic 

transformation happens. As a rule, the HAZ extends up to approximately 2-3 mm 

from the FZ edge. Consequently, the peak temperatures on the integration points 

throughout the FE model can be related to the final mechanical and material features, 

such as residual stresses or phase transformations in the FZ or HAZ. For that reason, 

the peak temperatures predicted by the FE model are the key output of this analysis 

and are indicated in Figure ‎5-12 to show the transient temperature distributions 

during the welding process for the liner and the carbon steel backing. The maximum 

temperature, which definitely exceeds the melting point, is attained in the middle of 

the welding pool coloured in light grey in Figure ‎5-12. The region located in the 
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middle of welding pool is the last one eligible to cool down from the melting 

temperature because there is no direct contact with the air or other external surfaces. 

  

(a) (b) 

Figure ‎5-12 Maximum temperatures in (a) weld overlay and (b) girth welding (°C) 

5-6-1. Thermal History during the Weld Overlay  

The thermal history profiles were predicted at 6 locations along the axial direction. 

Points T1, T2 and T3 are located on the CRA liner and T4, T5 and T6 are located on 

backing steel, as sketched in Figure ‎5-13. For each of these locations, a number of 

points at different circumferential angles were considered. 
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Figure ‎5-13 Schematic illustration showing temperature measurement positions on axial direction 
(mm) 

Figure ‎5-14 shows the temperature history for points T1, T2 and T3, at three 

different circumferential angles 90°, 180° and 270° from the start/stop position. The 

plots represent the change in temperature as a function of time. As expected, the 

temperatures start out at the ambient temperature of 20°C. Once the heat source 

reaches the particular point, the temperature rises very rapidly, especially at point 1 

because it is located upon the WCL of weld overlay welding where the torch is 

moving. The temperature at point T1 reaches a maximum peak temperature of 

2084°C as a balance between the flux and the heat losses. It can be seen that the peak 

temperature stays on the point at a single time instant, due to the constant velocity of 

the heat source. Once the heat source has passed point T1, a rapid drop in the 

temperature occurs.  
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Figure ‎5-14 Temperature histories during weld overlay at (a) 90°, (b) 180° and (c) 270° 

The peak temperature at point 2, located on the FZ boundary of the SUS304 welding, 

reaches 1405°C which is higher than the melting point of SUS304, 1365°C. As 

pointed out earlier, Brickstad and Josefson (1998) proved that an optimal power 

should lead to an extension for the HAZ of up to approximately 2-3 mm from the FZ 

boundary, where the temperature reaches 800-900°C. In our work, point 3 is located 

after 2 mm from the FZ boundary where the maximum temperature at this point is 

around 910°C. In other words, the thermal history predicted by our FE model has 

met this optimal condition.  

The combination effect of incorporating radiation and convection into the heat 

transfer on the inner and outer surfaces justifies the rapid drop in the temperature in 

the FZ during cooling where the radiation is the dominant mechanism of heat loss. 

Away from the weld, heat transfer is dominated by convection into remote regions of 

the base pipe.  

The temperature history and peak temperature obtained at three different 

circumferential angles of 90°, 180° and 270° from the start/stop position during weld 

overlay for the previous axial points are practically identical. This shows that steady 

state, defined here as the condition of self-similar moving of the temperature field, is 

well established before a circumferential angle of 90° is reached. 
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5-6-2. Thermal History during Girth Welding 

Once the overlay weld is terminated, the whole lined pipe cools down for 270 

seconds to reduce the maximum pipe temperature to just below 100°C, which is 

called inter-pass temperature (Brickstad and Josefson, 1998). The thermal history of 

three different axial points located at the top surface of the C-Mn backing steel is 

illustrated in Figure ‎5-15. Point T4 is placed on the WCL of the girth welding where 

the heat source is applied. Consequently, the maximum temperature, 2430°C, on the 

outer pipe is attained at point T4. To check the fluidity is complete in the V-groove, 

all the integration points there should reach the melting point of SIS2172 which is 

1500°C. Point T5, on the FZ boundary is the outmost point from the WCL, 3.2 mm, 

where the maximum temperature is 1550°C. About 2.55 mm away from the FZ 

boundary, the temperature has reached 953°C at point T6. 

 

Figure ‎5-15 Temperature histories during girth welding at (a) 90°, (b) 180° and (c) 270° 

Again the curves in Figure ‎5-15 relative to points at the same axial distance and 

different circumferential angles are almost identical, showing that steady state is well 

established during moving the heat source around the pipe. The thermal results 

reported above for points T1-T6 belong to a typical case, which will be referred to as 

case A (basic case) in the next section.  
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5-7. Effect of Welding Factors 

In general, the welding parameters play a decisive role in the weld pass quality and 

affect the total shrinkage. In turn, this affects residual stresses and, ultimately, the 

probability of crack occurrence (Aloraier et al., 2012). Therefore, it is important to 

investigate the influence of two important different welding parameters, interval time 

and welding speed, thermally and mechanically. 

5-7-1. Effect of Welding Factors on Thermal History 

5-7-1-1. Effect of Interval Time on Thermal History 

As discussed in Section 5.6.2., an interval time is needed between the welding passes 

to reduce the maximum temperature to an appropriate value, which is called inter-

pass temperature. Depending on the type of steel, the weld specifications normally 

specify the allowable range for the inter-pass temperature between 100-180°C. A 

lower inter-pass than this range does not have a considerable effect on residual 

stresses (Brickstad and Josefson, 1998). An inter-pass temperature over 250-300°C 

can lead to excessive increase in residual stresses.  

In case A, the lined pipe was allowed to cool down to around 100°C after the weld 

overlay and before starting the girth weld as shown in Figure ‎5-16. As can be seen 

from Figure ‎5-16, the thermal history distributions for all points except point T4, 

because not deposited yet, drop down sharply from their peak temperatures 

accordingly because of cooling down to reach the final inter-pass temperature of 

100°C in before all curves rapidly rise up once the girth welding torch reaches the 

prescribed bead. For example, the temperature at point T5 drops from 1118°C to 

100°C before rising up very rapidly to 1550°C again. 
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Figure ‎5-16 Thermal history at 270° with 270 seconds interval time (248-518 s) in case A. 

The result of changing the interval time is that, the less interval time is applied, the 

higher temperature is obtained, as expected. In particular, reducing the interval time 

to 1 second (case B) increases the minimum interval temperature to 244°C. At point 

T1, the maximum temperature during the girth welding increases somewhat from 

1500°C in case A to 1545°C in case B as shown in Figure ‎5-17. In the same way, the 

thermal history at point T5 during interval cooling also drops to 244°C before rapidly 

heading up to 1615°C. 

 

Figure ‎5-17 Thermal history at 270° with 1 second interval time (248-249 s) in case B. 
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5-7-1-2. Effect of Welding Speed on Thermal History 

Welding speed plays a decisive role in determining the quality of weld but there is 

also a wide range of possible speeds that can be used (Brickstad and Josefson, 1998; 

Holloway et al., 2008). Hence, two extra cases have been discussed by doubling 

(case C) and halving (case D) the welding speed, whereas the other parameters are 

kept equal to those in Table ‎5-3 associated with the same interval time, 270 s, in both 

cases. 

In the first case, case C, the overlay and girth welding speeds are doubled to 2.66 and 

12.5 mm/s, respectively. At point T2 at 270° from start/stop position, the maximum 

temperature during overlay welding drops to a value lower than the melting point of 

C-Mn to reach 1046°C before heading down to 77°C during interval cooling. 

Likewise, the peak temperature reaches 902°C at point T5 during girth welding 

which is lower than the melting point for C-Mn as shown in Figure ‎5-18. 

 

Figure ‎5-18 Thermal history for a doubled welding speed, case C 

In the second case, case D, the welding speeds are halved to 0.665 and 3.125 mm/s 

during overlay and girth welding, respectively. As expected, the temperature is 

beyond the melting point of SUS304 and C-Mn in point T2 and T5 to be 1540°C and 

1961°C as shown in Figure ‎5-19, respectively. 
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Figure ‎5-19 Thermal history with respect to reduce the speed to half , case D 

5-7-2. Effect of Welding Factors on Residual Stresses 

5-7-2-1. Effect of Interval Time on Residua Stresses 

The influence of reducing the interval time to 1 second on the residual stresses has 

been discussed herein. Figure ‎5-20(a)-(d) compares the simulated axial and hoop 

residual stress results on the inner and outer surface at 270° central angle in case A 

(basic case) and case B (1 second interval time). 

On the inner surface, Figure ‎5-20(a) shows the axial residual stresses along the 

longitudinal distance starting from the WCL. It is observed that case B is 

characterised by a larger value of the axial stress on the WCL than its counterpart in 

case A, namely 624 and 517 MPa, respectively. Furthermore, the extent of the 

tensile-stress zone in case A is narrower than that in case B, namely 34.6 and 43.5 

mm, respectively. Likewise, the maximum hoop residual stress is located at the 

centreline of the weld overlay, Z=1.89 mm, whereas case B is characterised by a 

somewhat larger tensile stress relatively to case A, namely 277 and 275 MPa, 

respectively. Starting from the WCL, the extent of the tensile-stress in case B is 

larger than in case A, namely 49.16 and 39 mm, respectively, as shown in 

Figure ‎5-20(b).          

0

500

1000

1500

2000

2500

3000

250 350 450 550 650 750 850 950

Te
m

p
e

ra
tu

re
 (

°C
) 

Time (s) 

T1

T2

T3

T4

T5

T6



Chapter 5 FE Analysis of a Single-Pass Weld Overlay and Girth Welding 

 

86 

 

On the outer surface, the axial residual stresses are compressive in the FZ and HAZ, 

whereas the maximum magnitude of compressive stress is located at the WCL for 

both cases as depicted in Figure ‎5-20(c). The maximum compressive stress in case B 

is larger than its counterpart in case A, namely -511 and -464 MPa, respectively. 

Moreover, case B is characterised by a slightly larger extent of the compressive-

stress zone than case A, namely 26.9 and 20.75 mm, respectively. Returning to the 

hoop stress on the outer surface, in both cases the stress distributions have a waved 

shape, whereas case A is characterised to some extent by larger absolute residual 

stress values than in case B along the longitudinal distance, as portrayed in 

Figure ‎5-20(d). 
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(b) (d) 

Figure ‎5-20 Comparison of residual stresses at 270° central angle in case A and case B: (a) 
axial stress distributions on the inner surface, (b) hoop stress distributions on the inner 

surface, (c) axial stress distributions on the outer surface and (d) hoop stress distributions on 
the outer surface 

5-7-2-2. Effect of Welding Speed on Residual Stresses 

The effects on residual stresses of the doubled and halved welding speed with respect 

to the typical welding speed in case A have been investigated in this section. 

Figure ‎5-21(a)-(d) portrays the comparison between the numerically computed axial 

and hoop residual stresses on the inner and outer surface at 270° central angle in case 

A (basic case), case C (doubled welding speed) and case D (halved welding speed). 

On the inner surface, the axial residual stress distributions for the three cases along 

the longitudinal direction starting from the WCL are plotted in Figure ‎5-21(a). It 

could be seen that reducing the welding speed to half (case D) of a typical one (case 

A) leads to significantly increase in the axial residual stress in the WCL, 832 MPa. 

The axial residual stress magnitudes in the FZ and its vicinity, Z ≤ 20.7 mm, in cases 

A and C are close to some extent. The extent of the tensile-stress zone in case D is 

the longest one comparing to other cases whereas case C has the narrowest extent of 

the tensile-stress zone. Similarly, as for the hoop residual stresses, Figure ‎5-21(b) 

shows that case D has the largest magnitude of hoop stress at the WCL, 400 MPa. Up 

to a distance of about 18mm from the WCL, a good correlation between the results 
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of cases A and C is found. Also, the extent of the tensile-stress zone of case A is 

between the longest one (case D) and the narrowest one (case C). 

On the outer surface, the axial residual stresses are compressive in the FZ and HAZ 

as shown in Figure ‎5-21(c). However, the largest compressive stress at the WCL, 

equal to 578 MPa, is found in case D. Up to a distance of 13.75 mm from the WCL, 

the compressive stresses of case A are slightly lower than their counterparts in case 

C. Furthermore, the compressive-stress zone in case C is slightly longer than in cases 

A and D. Returning to the hoop stress on the outer surface, in all cases the stress 

distributions have a waved shape, whereas case D has the largest absolute residual 

hoop stress value at the WCL in comparison with its counterparts in cases A and C, 

as clarified in Figure ‎5-21(d). 

  

(a) (c) 

-200

200

400

600

800

1000

0 50 100 150 200

A
xi

al
 S

tr
e

ss
 (

M
P

a)
 

Distance from WCL (mm) 

Axial-Case A

Axial-Case C

Axial-Case D

-700

-600

-500

-400

-300

-200

-100

100

200

0 50 100 150 200

A
xi

al
 S

tr
e

ss
 (

M
P

a)
 

Distance from WCL (mm) 

Axial-Case A
Axial-Case C
Axial-Case D



Chapter 5 FE Analysis of a Single-Pass Weld Overlay and Girth Welding 

 

89 

 

  

(b) (d) 

Figure ‎5-21 Comparison of residual stresses at 270° central angle in case A, C and D: (a) 
axial stress distributions on the inner surface, (b) hoop stress distributions on the inner 

surface, (c) axial stress distributions on the outer surface and (d) hoop stress distributions on 
the outer surface 

5-8. Conclusions 

In this chapter, a 3-D FE model has been developed to predict temperature fields and 

residual stress distributions induced by two circumferential welds for a lined-pipe, 

namely the overlay welding of the stainless steel liner with the C-Mn steel pipe and 

the girth welding of two segments of pipe. Two user-subroutines have been coded to 

model a distributed power density of the moving welding torch and to use a non-

linear heat transfer coefficient accounting for both radiation and convection.  The 

temperature and stress variations in space and time have been reported in both the 

axial and the circumferential directions. The model procedure has been validated 

against experimental results in the literature related to two different cases involving 

the welding of a C-Mn pipe and a stainless steel pipe. Furthermore, a sensitivity 

analysis to determine the influence of the cooling time between weld overlay and 

girth welding and of the welding speed has been conducted thermally and 

mechanically. 

-200

-100

100

200

300

400

500

0 50 100 150 200

H
o

o
p

 S
tr

e
ss

 (
M

P
a)

 

Distance from WCL (mm) 

Hoop-CaseA

Hoop-Case C

Hoop-Case D

-300

-200

-100

100

200

300

400

0 50 100 150 200

H
o

o
p

 S
tr

e
ss

 (
M

P
a)

 

Distance from WCL (mm) 

Hoop-Case A

Hoop-Case C

Hoop-Case D



Chapter 5 FE Analysis of a Single-Pass Weld Overlay and Girth Welding 

 

90 

 

This chapter has shown that the welding parameters, namely interval time and 

welding speed, play a vital role in the weld pass quality. According to the results in 

this work, we can draw the following specific conclusions. 

(1) Based on the thermal results, it is clear that the temperature distribution 

around the heat source reaches steady state when the welding torch moves to 

fill the weld overlay and girth welding. From the outcome of our 

investigation it is possible to conclude that the temperature history is not 

sensitive to the variations of the circumferential angles, except for a small 

angle close to the starting point, associated with a short initial transient. 

(2) Increasing the inter-pass temperature leads to a significant increase in the 

temperature at the boundary of FZ. As expected, the less interval time is 

applied, the higher temperature is obtained during the girth welding. 

(3) Doubling or halving the weld overlay and girth welding speeds leads to 

significantly decrease or increase the width of the FZ, respectively. 

(4) The largest tensile and compressive axial residual stresses occur at the FZ and 

its vicinity on the inner and outer surfaces, respectively. Beyond the FZ and 

its vicinity, compressive and tensile residual stresses are produced on the 

inner and outer surfaces of lined pipe, respectively. The hoop residual stress 

results are affected to some extent by the axial residual stress results. 

(5) Minimizing the inter-pass time to 1 second leads to a reasonable increase in 

the absolute magnitudes of axial residual stresses at the WCL about 21% on 

the inner surface and 10% on the outer surface.  

(6) Halving the weld overlay and girth welding speeds has more influence in 

increasing the absolute values of hoop and axial residual stresses at the WCL 

whereas doubling speed does not have that effect on the results at the FZ 

according to the basic case, case A. 
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Chapter 6  

Results of Experimental Testing and of FEA of 

Lined Pipe Welding 

6-1. Introduction 

The thermal and mechanical response of a lined pipe during welding depends on 

several main factors such as material properties, heat input, welding pool geometry, 

boundary conditions and welding sequence. There is a limited number of articles in 

the literature which have reported lined pipe welding simulation due to the complex 

sequence of weld overlay and girth welding, as already discussed in Chapter 2. 

However, the effect of pre-heat treatment to insert the liner inside the C-Mn pipe, 

known as tight fit pipe (TFP), on the residual stresses during and after lined pipe 

welding has not been investigated yet. Furthermore, it is worth noting the modelling 

technique used to move the heat source around the weld overlay to fix and seal the 

liner at the pipe ends and then around the girth welding to join two specimens of 

lined pipe has also not been reported.  

In this chapter, a three-dimensional FE model is developed using ABAQUS to study 

the thermal and mechanical behaviour induced by the weld overlay and two passes of 

girth welding process, described here as case A, reference case. Also, another case, 

case AH, has been modelled to examine the influence of pre-heat treatment on the 

stress/strain during and after lined pipe welding. The presented 3-D model is 

validated thermally and mechanically by comparing the numerical results with the 

temperature values measured by thermocouples, and with the strains and stresses 

measured by using high temperature strain gauges, residual stress gauges and X-ray 

diffraction. 
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6-2. Manufacturing Process 

6-2-1. Description of the Lined Pipe and Welding Parameters 

In the present work, the specimen of lined pipe shown in Figure ‎6-1 is manufactured 

from two adjacent pipes. The geometry and materials used are described in Chapter 3 

and are briefly summarised here for convenience of the reader. The outer pipe is 

seamless and made of carbon-manganese C-Mn steel equivalent to E235 AISI 

10305-1. The inner pipe is made of austenitic stainless steel Cr-Ni, AISI 304, which 

is well suited to be used in cryogenic service without affecting the ductility 

(International Nickel Limited, 1974). The nominal chemical compositions of both 

materials are clarified in Table ‎3-1 in Chapter 3. The configuration of line pipe 

specimen has an outer diameter of 114.3 mm and a wall thickness of 7.85 mm, of 

which 6.35 mm is the outer pipe thickness and 1.5 mm is the thickness of inner pipe. 

The welded lined pipe is composed of two joints where the length of one specimen is 

200 mm. Wet cutting has been used to get the required length of each specimen. 

 

Figure ‎6-1 Schematic semi-sketch of welded lined pipe, dimensions in mm 
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The TFP thermal manufacturing process was executed to insert the CRA liner inside 

the C-Mn pipe (Focke, 2007; Focke et al., 2005). The process is explained earlier in 

detail in Chapter 3. After heat treatment, each lined pipe specimen is left to reach the 

ambient temperature naturally. The inner pipe (CRA liner) is cut to 3 mm from one 

end. Then, the outer pipe is chamfered with 30° from the same end using CNC 

machine. Afterward, two pieces of lined pipe are faced to be joined together. To 

perform that, the one-pass weld overlay is deposited at the cut end of the liner with 

ER308L stainless steel rod by Tungsten Inert Gas (TIG) welding. After that, two 

joints of lined pipe are assembled and fixed together by filling a two-pass girth 

welding in the V-groove formed outwardly between them. The girth welding is 

deposited with E70S2 mild steel rod using TIG welding. The inter-pass temperature 

between weld overlay and girth welding is normally around 100 °C.  

During welding, the heat source is fixed and the two joints of lined pipe are rotated 

with a uniform speed for each pass (one-pass weld overlay and two-pass girth 

welding). The weld overlay pass took 240 seconds to complete one revolution and 

then 270 seconds were used as inter-pass time between weld overlay and girth 

welding to cool down naturally to room temperature. The first and second pass of 

girth welding requires 270 seconds each. Also, there is an inter-pass time, again 270 

seconds, between them. The entire lined pipe took 3000 seconds to cool down 

naturally to ambient temperature after completing the welding operation. The 

welding begins at the central angle 𝜃 = 0° and then progresses through the anti-

clockwise circumferential direction of 𝜃 to complete one rotation and stop at the 

same starting point 𝜃 = 360°. 

In this work, the same thermal-mechanical material properties are used for both base 

and weld metals except the yield stress, because the weld material has higher yield 

stress in both C-Mn and AISI304 as shown in Table ‎6-1 and Table ‎6-2, respectively. 
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Table ‎6-1 Thermo-mechanical properties of C-Mn (Karlsson and Josefson, 1990) 

Temperature 

(°C) 

Density 

(Kg/m
3
) 

Specific 

heat 

(J/Kg°C) 

Conductivity 

(W/m°C) 

Thermal 

expansion 

(x10-5°C-1)
 

Yield stress 

(MPa) 

Young’s 

modulus 

(GPa) 

Possion’s 

ratio 

Base Weld 

0 7860 444 50 1.28 349.45 445.42 210 0.26 

100  480 48.5 1.28 331.14 441.29 200 0.28 

200  503 47.5 1.30 308.00 416.49 200 0.29 

300  518 45 1.36 275.00 376.18 200 0.31 

400  555 40 1.40 233.00 325.54 170 0.32 

600  592 35 1.52 119.00 172.59 56 0.36 

800  695 27.5 1.56 60.00 43.41 30 0.41 

1000  700 27 1.56 13.00 14.47 10 0.42 

1200  700 27.5 1.56 8.00 9.30 10 0.42 

1400  700 35 1.56 8.00 9.30 10 0.42 

1600  700 122.5 1.56 8.00 9.30 10 0.42 

Table ‎6-2 Thermo-mechanical properties of AISI304 (Deng and Murakawa, 2006; 
International Nickel Limited, 1974) 

Temperature 

(°C) 

Density 

(kg/m
3
) 

Specific 

heat 

(J/kg°C) 

Conductivity 

(W/m°C) 

Thermal 

expansion 

(x10-5°C-1)
 

Yield stress 

(MPa) 

Young’s 

modulus 

(GPa) 

Possion’s 

ratio 

Base Weld 

-200 7900 157 8.4 1.22 412 - 181.3 0.294 

-100 7900 380 12.6 1.43 319.2 - 181.3 0.294 

0 7900 462 14.6 1.70 265 438.37 198.50 0.294 

100 7880 496 15.1 1.74 218 401.96 193 0.295 

200 7830 512 16.1 1.80 186 381.5 185 0.301 

300 7790 525 17.9 1.86 170 361.25 176 0.310 

400 7750 540 18.0 1.91 155 345.94 167 0.318 

600 7660 577 20.8 1.96 149 255.71 159 0.326 

800 7560 604 23.9 2.02 91 97.41 151 0.333 

1200 7370 676 32.2 2.07 25 28.41 60 0.339 

1300 7320 692 33.7 2.11 21 16.23 20.00 0.342 

1500 7320 700 120 2.16 10 12.17 10 0.388 

The latent heat for C-Mn steel is set to be 247kJ/kg between the solidus temperature 

of 1440 °C and the liquidus temperature of 1560 °C. For stainless steel (AISI304), 

the latent heat is assumed to be 260kJ/kg between 1340 °C and 1390 °C, solidus and 

liquidus temperatures respectively. Consequently, the melting point for C-Mn is 
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1500 °C while it is 1365 °C for AISI304. The initial temperature of the lined pipe 

and the weld bead is set at room temperature. 

To record the thermal history, type K thermocouples were placed at 6 axial locations 

with 180° central angle. Three thermocouples were mounted on the outer surface (C-

Mn pipe) and the others on the inner surface (AISI304) to record the thermal history 

upon those locations during welding and cooling as shown in Figure ‎6-2. 

 

Figure ‎6-2 Locations of thermocouples and the welding direction for three passes, 
dimensions in mm 

To record the strain history during welding, the lined pipe was also equipped with 12 

high temperature strain gauges to measure the axial and hoop strain upon the outer 

and inner surfaces through welding process and cooling naturally to ambient 

temperature. In particular, 6 uniaxial ZFLA-11 strain gauges were mounted on the 

outer surface (C-Mn pipe). Three of them were mounted axially and the others were 

placed circumferentially. On the inner surface (liner), three biaxial strain gauge 

rosettes, ZFCAL-17, were also fixed to record the strain history axially and 

circumferentially. The precise locations of the inner and outer strain gauges are 

identified in Table ‎6-3. 
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Table ‎6-3 locations of strain gauges on the inner and outer surfaces at the axial and hoop 
directions 

Gauge (outer surface) A B C D E F 

Location (ϴ°, Z(mm)) (45°, 14) (36°, 14) (270°, 14) (261°, 14) (135°, 18) (126°, 18) 

Measured strain Axial Hoop Axial Hoop Axial Hoop 

Gauge (inner surface) G H I J K L 

Location (ϴ°, Z(mm)) (45°, 14) (45°, 14) (270°, 14) (270°, 14) (135°, 18) (135°, 18) 

Measured strain Axial Hoop Axial Hoop Axial Hoop 

The thermal and mechanical experimental results were recorded every 0.001 second 

through LabVIEW software fitted with the data logger. 

To record the residual stresses after welding and cooling down to ambient 

temperature, residual stress gauges with three elements, FRS-2, were mounted on the 

inner surface (liner) and outer surface (C-Mn pipe). A reference hole with diameter 

and depth of 2 mm each was drilled vertically through the pipe thickness using a high 

speed milling machine. Also, the X-Ray diffraction technique has been used to 

double check the reliability of residual stress measurement.   

6-3.  Finite Element Modelling 

In this section, the 3-D FE analysis of the welding process, executed using 

ABAQUS, is described. Only one-half of the lined pipe specimen, one joint, was 

modelled due to the symmetry around the weld centreline WCL. The problem is 

modelled by uncoupled quasi-static thermo-elasticity equations. In other words, the 

deformations depend on the temperature in welding model whereas temperatures are 

independent of deformation. As a result, the thermal analysis is carried out first to get 

the thermal history as a function of time throughout the lined pipe joint. This thermal 

history is then considered as an input for the mechanical analysis in which the 

mechanical properties are temperature dependant.  The element type in the thermal 

analysis is DC3D20 (continuum, three-dimensional 20-node quadratic brick diffusive 

heat transfer elements with one degree of freedom, which is temperature, at each 

node). The element type in the mechanical analysis is C3D20 (continuum three-
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dimensional 20-noded element, with three translation degrees of freedom at each 

node). Figure ‎6-13 shows the mesh of 3-D FE model where the thermal and 

mechanical analyses employ the same mesh in which the nodes and elements have 

the same numbers and arrangements. The model is composed of 35220 nodes 

associated with 7380 elements. It could be seen there is a finer mesh at the FZ and 

HAZ of weld overlay, inner pipe, and of the two-pass girth welding, outer pipe, due 

to the high temperatures and their rapid changes in these regions. The weld overlay, 

liner, girth welding and C-Mn pipe are coloured with red, light blue, yellow and 

green, respectively, as depicted in Figure ‎6-3. 

The element birth technique is adopted in the FE models to simulate depositing the 

filler materials in the weld overlay and girth welding during moving the heat source, 

which was already described in Chapter 5. 

 

Figure ‎6-3 3-D FE model 

6-3-1. Thermal Analysis 

6-3-1-1. Pre-Heat Treatment 

The TFP heat treatment described in Chapter 3 has been simulated in the FE model 

by giving the initial state of temperature for the liner and C-Mn pipe as -200 °C and 

500 °C, respectively.  
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After inserting the liner inside the C-Mn pipe, the lined pipe is naturally exposed to 

ambient air temperature for 7200 seconds after which the temperature of the whole 

lined pipe reached room temperature. Through this time, the external surfaces of C-

Mn pipe, outer pipe in Lined pipe configuration, are subjected to natural convective 

exchange with atmosphere corresponding to Newton’s law given as: 

𝑞𝑐 = − ℎ𝑐(𝑇𝑐 − 𝑇𝑎) (6.1) 

where 𝑞𝑐 is the heat loss upon C-Mn surface, 𝑇𝑐 is the surface temperature of C-Mn 

pipe, 𝑇𝑎 is the ambient temperature and ℎ𝑐 is the heat transfer coefficient between the 

surface of C-Mn pipe and the atmosphere of room which is assumed to be constant 

and equal to 8 W/m
2
°K. 

In a similar way, the AISI304 pipe is forcedly cooled down in liquid nitrogen (-200 

°C). After being slid inside the C-Mn pipe, it has been heated up naturally to room 

temperature. During that, the convective heat exchange between external surfaces of 

AISI304, inner pipe, and room atmosphere are subjected also to the Newton’s law as 

below: 

𝑞𝑠 = ℎ𝑠(𝑇𝑠 − 𝑇𝑎) (6.2) 

where 𝑞𝑠 is the heat gain upon AISI304 surface, 𝑇𝑠 is the surface temperature of 

AISI304 pipe, 𝑇𝑎 is the ambient temperature and ℎ𝑠 is the heat transfer coefficient 

between the surface of AISI304 pipe and the atmosphere of room which is assumed 

to be constant, 5.7 W/m
2
°K. 

6-3-1-2. During Lined Pipe Welding 

Basically, the welding process starts after TFP treatment and machining the lined 

pipe where the whole pipe is at room temperature. During welding, the heat transfer 

is a combination of heat loss due to radiation and convection. Radiation loss is 

dominated in the weld zone and its vicinity whereby the temperature magnitudes are 

near the melting temperature. Convection loss is dominating away from the weld 

zone. The Stefan-Boltzman law and Newton’s law are applied to model the radiation 

and convection heat loss, respectively. In this work, the thermal boundary conditions 

are applied on all external exposed surfaces of lined pipe to the environment 
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including convection and radiation. The total heat loss, 𝑞𝑡𝑜𝑡𝑎𝑙, is a combination of 

radiation, 𝑞𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛, and convection, 𝑞𝑐𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛, losses given as follows: 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑞𝑐𝑜𝑛𝑣𝑖𝑐𝑡𝑖𝑜𝑛 (6.3) 

𝑞𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = −ℎ𝑐𝑜𝑛𝑒𝑣𝑐𝑡𝑖𝑜𝑛𝐴(𝑇𝑝𝑖𝑝𝑒 − 𝑇𝑎) (6.4) 

𝑞𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 = −𝜎𝑒𝑚ɛ𝑏𝑜𝑙𝐴(𝑇𝑝𝑖𝑝𝑒
4 − 𝑇𝑎

4) (6.5) 

where ℎ𝑐𝑜𝑛𝑒𝑣𝑐𝑡𝑖𝑜𝑛 is the convective heat transfer coefficient, 𝐴 is the pipe surface 

area, 𝑇𝑝𝑖𝑝𝑒 is the current temperature at the pipe surface, 𝑇𝑎 is the ambient 

temperature, 𝜀𝑒𝑚 is the effective radiation emissivity and 𝜎𝑏𝑜𝑙 is the Stefan-

Boltzmann constant.   

As the lined pipe is composed of two different materials, each material is 

characterised by different coefficients governing heat transfer with the room 

atmosphere, as shown in Table ‎6-4.  

Table ‎6-4 Heat transfer parameters    

Parameters C-Mn AISI304 

ℎ𝑐𝑜𝑛𝑒𝑣𝑐𝑡𝑖𝑜𝑛 (W/m
2 
K) 8 5.7 

𝜎𝑒𝑚 0.51 0.75 

ɛ𝑏𝑜𝑙 (W/m
2
 K

4
) 5.67×10

-8 
5.67×10

-8
 

A FILM user subroutine (Dassault Systèmes, 2014) has been coded in FORTRAN to 

implement in ABAQUS the above expressions of the heat-transfer coefficients. It is 

worth noting that ABAQUS allows one single user-subroutine to be written for both 

materials by simply specifying which surface each condition applies to. 

The heat input transmitted from the heat torch to the lined pipe and weld regions is 

given by a Gaussian distribution as a function of position and time in the following 

equation: 

𝑞(𝑥, 𝑦, 𝑧, 𝑡) =
6𝑄√3 

𝑎𝑏𝑐𝜋√𝜋
𝑒−3(𝑥−(𝑅𝑠𝑖𝑛𝜃+𝑥0))

2/𝑎2𝑒−3(𝑦−(𝑅𝑐𝑜𝑠𝜃+𝑦0))
2/𝑏2𝑒−3(𝑧−𝑧0)

2/𝑐2 (6.6) 

where 𝑄 = 𝐼𝑉𝜇 is the energy input rate which is given by the product of the current 

𝐼, voltage 𝑉 and the weld efficiency 𝜇, 𝑅 is the radial distance of the heat torch 
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centre from the pipe axis, 𝜃 is the angle from the start/stop point (where 𝜃 = 0°) at 

which the torch has travelled around the pipe. Parameters 𝑎, 𝑏 and 𝑐 are the semi-

axes of the ellipsoidal welding pool in directions, 𝑥, 𝑦 and 𝑧, respectively. Equation 

(6.6) has been implemented in ABAQUS by coding the DFLUX user-subroutine. 

The position of the weld torch is calculated first in DFLUX according to the welding 

time 𝑡. Thereafter, the power density q is computed at each integration point.  

The numerical values for the variables used in the power density distribution in Eq. 

(6.6) are illustrated in Table ‎6-5 for each welding material. 

Table ‎6-5 Heat source and welding parameters 

Parameter Symbol Weld overlay 
1

st
 pass  

girth welding 

2
nd

 pass 

 girth welding 

Half-length of arc (mm) 𝑎 4.9  6.2 6.2 

Depth of arc (mm) 𝑏 4.9  5.57 5.66 

Half-width of arc (mm) 𝑐 1.5 mm 2.62 2.85 

Welding current (A) 𝐼 110 220 234 

Voltage (V) 𝑉 22 22 22 

Welding speed (mm/s) 𝑣 1.3 1.26  1.33 

Welding efficiency 𝜇 70% 70% 70% 

To take into consideration the effect of moving heat source with element birth, the 

one-pass weld overlay and two-pass girth welding are meshed circumferentially into 

60 identical elements each. The length of each bead is assumed to be equal to one 

element block in the circumferential direction. Consequently, the appropriate time 

step for each pass in the FE model is recognised as given in Eq. (6.7): 

𝑆𝑡𝑒𝑝 𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑠𝑠 𝑡𝑖𝑚𝑒 (𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑊𝐶𝐿
 (6.7) 

where the total time of weld overlay pass, firs girth welding pass and the second 

welding pass are 240, 270 and 270 seconds associated with 60 elements around 

WCL, respectively. 

6-3-2. Structural Analysis 

The same FE mesh used in the thermal analysis is employed in the mechanical 

analysis apart from the boundary conditions and element type. Herein, the nodal 



Chapter 6 Results of Experimental Testing and of FEA of Lined Pipe Welding 

 

101 

 

temperature histories read from the thermal output file are considered thermal loads 

for each increment in the mechanical simulation. At each structural step, an 

automatic time increment is executed and geometrical nonlinear effects (large 

deformation) have been incorporated in the FE model.  

During the lined pipe welding process, the effects of volumetric change and the 

change in the yield stress because of metallurgical martensitic transformation (phase 

transformation) have been neglected in this work. Therefore, the increment of the 

total strain, 𝑑𝜀𝑖𝑗, has been broken down into three components as follows: 

𝑑𝜀𝑖𝑗 = 𝑑𝜀𝑖𝑗
𝑒 + 𝑑𝜀𝑖𝑗

𝑝 + 𝑑𝜀𝑖𝑗
𝑡ℎ (6.8) 

where 𝑑𝜀𝑖𝑗
𝑒 , 𝑑𝜀𝑖𝑗

𝑝
 and 𝑑𝜀𝑖𝑗

𝑡ℎ are the elastic, plastic and thermal strain increment, 

respectively. The elastic behaviour relies on the isotropic Hook’s law associated with 

Young’s modulus and Poisson’s ratio depending on temperature. For the plastic 

strain, the Von Mises yield criterion has been used. All material nodes are under the 

influence of multiple thermal loading and unloading, so that the Bauschinger effect 

should be considered. As a result, a linear kinematic hardening rule has been 

assumed for both materials C-Mn and AISI304. The expansion and contraction of the 

line pipe materials rely on the temperature-dependant thermal expansion coefficient 

to obtain the thermal strain. Figure ‎6-4 illustrates the temperature-dependant yield 

stress as the plastic strain of C-Mn and AISI304 is equal to 1% (Deng and 

Murakawa, 2008; Malik et al., 2008). 

The boundary conditions are applied to restrict the axial movement on the 

circumferential symmetry-plane. Lateral and transversal restrictions are employed at 

the line pipe end to prevent rigid body motion while allowing the free expansion and 

contraction upon the whole lined pipe. 
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Figure ‎6-4 Yield strength of C-Mn steel and AISI304 corrosponding to 1% 
hardening (Deng and Murakawa, 2008; Malik et al., 2008) 

6-4. Results and Discussions 

6-4-1. Temperature Fields 

Both cases, A and AH, have the same thermal history results during welding 

because, after the heat treatment, the temperature reaches room temperature before 

heading up throughout welding process. It is noted that temperatures in the fusion 

zones of weld overlay and two-pass girth welding are higher than melting points, 

1500 and 1365 °C for C-Mn and AISI304, respectively, as it should be.  

Figure ‎6-5 shows the numerically computed temperature distributions at 90°, 180° 

and 270° central angle during weld overlay where the girth welding has not been 

deposited yet. As anticipated, the maximum temperature is achieved at the welding 

pool centre of weld overlay, 1634°C. From this figure, it can be seen that thermal 

history of weld overlay pool centres at three circumferential locations, 90°, 180° and 

270, reasonably has the same shape and magnitudes of the transient thermal cycle. 
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Figure ‎6-5 The thermal history of weld overlay centre at 90°, 180° and 270° central angle 

Likewise, the numerically computed temperature history at the second pass of girth 

welding has also identical distributions circumferentially around the mid-plane 

(symmetric line) at three locations, 90°, 180° and 270°. The three curves reach the 

same peak temperature, 2076°C, and it could be seen that weld overlay and first-pass 

girth welding and three quarter of the second-pass girth welding has been laid down 

in their grooves as shown in Figure ‎6-6. 

  

Figure ‎6-6 The thermal history of second pass centre of girth welding  at 90°, 180° and 270° 
central angle 
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Figure ‎6-7 shows the thermal history of two points at 180° circumferential angle on 

the inner and outer surfaces, including the pre-heat treatment. The inner point is 

located at the border between the weld overlay FZ and the HAZ of base material, 

AISI304. The outer point is located between the FZ of the second pass girth welding 

and the HAZ of backing steel. 

 

(a) 

 

(b) 

Figure ‎6-7 Temperature distributions for two points located at 180° central angle on the inner 
and outer surfaces (a) through the whole pre-heat treatment and welding (b) through the first 

seconds of pre-heat treatment 

It is observed that the temperature of inner point, N-inner, goes up from -200 °C to 
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of inserting the liner inside the outer pipe where the initial temperature of outer point 

is 500 °C. It is remarkable that the temperature returns back to room temperature in 

7200 seconds, after which the thermal effect of pre-heat treatment has been 

completely elapsed. 

It is clear the cooling/heating rate is different between the backing steel and liner 

materials which in turn results in different heat treatment residual stresses on the 

outer and inner pipe. In other words, there is a large rise in liner temperature in 

comparison with a small drop in outer pipe temperature through the same time. 

Consequently, initial residual stresses generated in the liner are higher than that in C-

Mn pipe.      

The temperatures computed by the FE model during lined pipe welding and cooling 

at six points, TC1-TC6, located at the inner and outer surfaces are compared with the 

measured ones by thermocouples at 180° central angle along the axial direction as 

depicted in Figure ‎6-8(a)-(f). 

In general, the experimental thermal results are lower than those predicted by FE 

model for many reasons. The most important reasons are related to the extrapolated 

materials properties at high temperatures. Also, the measured results are affected by 

some specific factors, often called 5M1E (Man, Machines, Materials, Methods, 

Measurements and Environment), which have a significant influence on the quality 

of welding measures (Hui, 2011). Overall, the maximum variation between the 

predicted and measured temperature results is less than 6% which is reasonably 

acceptable. 

It is noticeable that the temperature magnitude is heading up rapidly as the welding 

torch passes through the bead where the point is located. The cooling phase starts 

when the specified point reaches its peak temperature and the heat source moves 

beyond the point. The cooling rate is relatively higher for higher peak temperatures. 

It is also observed that the point located closer to the welding centreline WCL 

experiences temperature higher than that located far away from the WCL.  

It can be concluded the thermal quantitative comparisons have proved that the 

numerical results are in good agreement with the experimental ones. Consequently, 
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the thermal analysis of the developed FE model can be considered validated 

experimentally.  

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure ‎6-8 Thermal field distributions for thermocouples (a) TC1 (b) TC2 (c) TC3 (d) TC4 (e) TC5 and (f) TC6 
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6-4-2. Structural Response 

6-4-2-1. Strain during Welding 

To record the strain history during welding, 12 strain gauges were mounted on the 

inner (liner) and outer (C-Mn) surfaces. On the outer surface, 6 strain gauges were 

placed in two different axial locations, Z = 14 mm and Z = 18 mm far away from the 

WLC.  At the axial location, Z = 14 mm, two strain gauges measured the axial strain 

(gauges A and C) and two strain gauges recorded the hoop strain (gauges B and D) 

with respect to circumferential angels of 45°, 270°, 36° and 261°, respectively . The 

last two gauges, E and F, measured the axial and hoop strains during welding at the 

axial location Z = 18 mm and circumferential angle of 135° and 126°, respectively. 

On the inner surface, two rosette of strain gauges were placed in the axial location, Z 

= 14 mm where two gauges (G and I) measured the axial strain and also two gauges 

(H and J) measured the hoop strain at circumferential angels of 45° and 270°, 

respectively. At Z = 18 mm with respect to 135° central angle, one biaxial rosette 

was placed on the inner surface to record the axial and hoop strains at gauges K and 

L, respectively. The moving heat source produces large temperature gradients which 

in turns lead to a large thermal expansion in the HAZ of both base materials, C-Mn 

and AISI304. Table ‎6-3 clarifies the precise axial and circumferential locations of all 

strain gauges mounted on the inner and outer surfaces. 

During welding, the lined pipe is affected by the thermal and mechanical strains. In 

order to obtain the mechanical strains from the entire measured strain, the apparent 

thermal strain is subtracted from the total measured strain results recorded by data 

acquisition. The apparent thermal strain could be calculated according to the 

instructions in data sheet of strain gauges. As a matter of fact, the thermal strain has 

not been subtracted from the total measured strain as the pipe temperature is close to 

room temperature. 

The pure transient experimental and numerical mechanical strain distributions 

without thermal strain effect during welding process on the outer and inner surfaces 

are depicted in Figure ‎6-9 and Figure ‎6-10, respectively. In the FE models, two 

models have been developed. The first one, case A, simulates the lined pipe welding 

process without considering the pre-heat treatment whilst the second one, case AH, 
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takes into account the effect of pre-heat treatment. It is observed from Figure ‎6-9 and 

Figure ‎6-10, that strain distributions start from zero at beginning of the weld overlay 

(welding process) in experiment and case A whereas there are somewhat residual 

strains in case AH. 

During the weld overlay pass, strain gauges record a sudden drop in strains to be 

compression just before the welding torch is being close enough to the location of the 

particular gauge. The drop happens in both directions axially and circumferentially 

on the inner and outer surface with different severity (see for example, Figure ‎6-9(a), 

gauge A, at 16-35 seconds and Figure ‎6-10(c), gauge I, at 155-184 seconds). The 

strains sharply drop down more significantly at the axial direction on the inner 

surface in gauges G, I and K than their counterparts on the outer surface in gauges A, 

C and E, respectively. The gauges at the circumferential direction on the outer 

surface, gauges B, D and F also record a drop in strains lower than those on the inner 

surface, gauges H, J and L. The reason can be attributed to the increase in pipe radius 

because of heating nearby the welding torch.  

Once the heat source passes the particular gauge, there is a remarkable large drop 

again in strain in the axial gauges, A, C and E after a short increase in strain whilst 

significant tensile strains are recorded on the inner surface in gauges G, I and L. 

Consequently, bending is produced in the pipe because of the shrinkage in the FZ 

and HAZ due to cooling. Furthermore, strains located at the hoop direction on the 

inner surface go gradually up before starting the first girth welding pass, gauges H, J 

and L. 

On the outer surface, a remarkable kink is observed in gauges A and B attributed to 

the heat coming from the welding area close to start/stop point. Thus, a small drop in 

strain happens before the inter-pass time starting at 240 sec (cooling after weld 

overlay). 

During the first girth welding pass, there is, in a similar way, a sudden drop recorded 

in all gauges on the inner and outer surfaces because of approaching heat source. In 

this process, a small drop in strains have been recorded at the axial locations on the 

outer surface, gauges A, C and E, compared to their counterparts drop on the inner 

gauges, G, I and K. At the circumferential direction, likewise, a larger strain drop is 

observed on the inner surface comparing to that on the outer surface accordingly. 
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Also, the bending effect is apparent after heat source passes the particular gauge 

where the strain goes further down in the axial direction on the outer surface, e.g. 

gauge C, and goes sharply up on the inner surface, e.g. gauge I, during the inter-pass 

cooling. At the hoop direction, strains recorded in the gauges on the inner and outer 

surface go along with the foregoing discussion of the weld overlay welding.    

During the second girth welding, the same scenes, which have been experienced in 

weld overlay and the first girth welding process, happen. It is observed that the range 

of drop because of approaching the heat source is somewhat larger (absolute value) 

than the previous drops excluding the gauges which record the axial strains on the 

outer surface, gauges A, C and E. 

During cooling, strain transient distributions go gradually down on the outer surface 

(compressive strains), whilst gradually going up on the inner surface (tensile strains) 

especially at the axial strains. As a result, bending occurs in the lined pipe due to the 

shrinkage of weld zones. 

 In general, the numerically computed transient strain curves accounting for pre-heat 

treatment, case AH, correlate well with those of case A during welding at all axial 

and circumferential gauges on the inner and outer surfaces. Consequently, the 

deviations in strain between case A and AH are very small and can be ignored during 

welding in all gauges because of high temperatures which lead to remove the effect 

of pre-heat treatment residual stresses at the FZ and its vicinity. Furthermore, it is 

observed that there is a very good agreement between numerical results in case A 

and case AH and the experimental results. 



Chapter 6 Results of Experimental Testing and of FEA of Lined Pipe Welding 

 

110 

 

 

(a) 

 

(b) 

0

100

200

300

400

500

600

700

-2.E-03

-2.E-03

-1.E-03

-5.E-04

0.E+00

5.E-04

1.E-03

0 500 1000 1500 2000

Te
m

p
e

ra
tu

re
 (

°C
) 

  

A
xi

al
 s

tr
ai

n
 (

m
/m

) Time (s) 

Gauge A-case A
Gauge A-case AH
Gauge A-Exp
Temperature

0

100

200

300

400

500

600

700

-1.E-03

-1.E-03

-8.E-04

-6.E-04

-4.E-04

-2.E-04

0.E+00

2.E-04

4.E-04

6.E-04

0 500 1000 1500 2000

Te
m

p
e

ra
tu

re
 (

°C
) 

H
o

o
p

 s
tr

ai
n

 (
m

/m
) 

Time (s) 

Gauge B-case A
Gauge B-case AH
Gauge B-Exp
Temperature



Chapter 6 Results of Experimental Testing and of FEA of Lined Pipe Welding 

 

111 

 

 

(c) 

 

(d) 

0

100

200

300

400

500

600

700

-2.E-03

-2.E-03

-1.E-03

-5.E-04

0.E+00

5.E-04

1.E-03

2.E-03

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Te
m

p
e

ra
tu

re
 (

°C
) 

A
xi

al
 s

tr
ai

n
 (

m
/m

) 

Time (s) 

Gauge C-case A
Gauge C-case AH
Gauge C-Exp
Temperature

0

100

200

300

400

500

600

700

-2.E-03

-2.E-03

-1.E-03

-5.E-04

0.E+00

5.E-04

1.E-03

2.E-03

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Te
m

p
e

ra
tu

re
 (

°C
) 

H
o

o
p

 s
tr

ai
n

 (
m

/m
) 

Time (s) 

Gauge D-case A
Gauge D-case AH
Gauge D-Exp
Temperature



Chapter 6 Results of Experimental Testing and of FEA of Lined Pipe Welding 

 

112 

 

 

(e) 

 

(f) 

Figure ‎6-9 Mechanical strain history during welding associated with thermal history on the 
outer surface for (a)guage A (b)guage B(c)guage C(d)guage D(e)guage E(f)guage F 
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(e) 

 

(f) 

Figure ‎6-10 Mechanical strain history during welding associated with thermal history on the 
inner surface for (a)guage G (b)guage H(c)guage I(d)guage J(e)guage K(f)guage L 
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respectively, as shown in Figure ‎6-11. Both curves almost have the same distribution 

along the axial direction. On the hoop direction, the residual plastic strain 

distributions in case A and AH have a bifurcation at 24 mm and then case A reaches 

the value of 0 strain at 37 mm axially away from WLC. The magnitudes of residual 

plastic strain in case AH are uniform and slightly less than zero beyond 37 mm 

because of the influence of pre-heat treatment as depicted in Figure ‎6-12. 

Approximately, it is clear that the axial extent of the influence of the welding process 

stretches to 24 mm and 37 mm in the axial and hoop direction on the inner surface, 

respectively. 

  

Figure ‎6-11 Axial residual strain at 180° 
central angle on the inner surface along the 

axial direction 

Figure ‎6-12 Hoop residual strain at 180° 
central angle on the inner surface along the 

axial direction 

On the outer surface (C-Mn), the axial and hoop residual plastic strain distributions 

are portrayed in Figure ‎6-13 and Figure ‎6-14 for both cases A and AH at 180° 

circumferential angle, respectively. On the axial direction, it could be observed that, 

when the distance from the WLC is over 24 mm, the plastic strain goes to zero for 

both cases in the outer surface as clarified in Figure ‎6-13. Returning to the hoop 

direction on the outer surface, the hoop plastic strain curves for case A and AH have 

somewhat identical shape at circumferential location with 180°. It is clear from 

Figure ‎6-14 that case AH slightly has larger magnitudes of plastic strain than those in 
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case A especially at the FZ. Both cases go down steadily to reach magnitude of zero 

strain at 37 mm far away from WCL. 

 
 

Figure ‎6-13 Axial residual strain at 180° 
central angle on the outer surface along the 

axial direction 

Figure ‎6-14 Hoop residual strain at 180° 
central angle on the outer surface along the 

axial direction 

As for the plastic strain on the outer surface, the critical axial and hoop plastic strain 

limit is also located at axial position with 24 and 37 mm starting from the WLC, 

respectively.  

According to the proceeding comparison, it is noticeable that the absolute 

magnitudes of the residual axial plastic strain are much greater than those of the 

residual hoop plastic strain at the FZ and HAZ on the inner and outer surfaces. The 

intensity of constraint and the peak temperature characterize the effect of residual 

plastic strain on the material during welding process (Luo, 1997). As a result, the 

hoop plastic strain extent is larger than the axial plastic strain along the axial 

direction because of the influence of weld overlay and girth welding temperatures 

and the intensity of constraint in the circumferential direction (symmetric plane and 

lateral constraints at pipe ends). In other words, the intensity of constraints on the 

hoop direction is relatively larger compared to those on the axial direction. On the 

other hand, the axial plastic strain extent on the inner and outer surface is lower due 

to less restraints and temperature magnitudes with respect to that of the hoop plastic 

strain.  
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6-5. Residual Stress and Plastic Deformation   

6-5-1. Residual Stresses on the Inner Surface 

The axial residual stress distributions on the inner surface, which is made of AISI304 

stainless steel for two cases, are compared against the experimental results obtained 

from residual strain gauges at 180° central angle from start/stop welding as shown in 

Figure ‎6-15. The numerical results for case A are only affected by the welding 

process, whereas for case AH they take into account the pre-heat treatment to insert 

the liner inside the backing pipe. Both cases are plotted in the same graph along the 

axial direction starting from the WCL in order to facilitate the comparison. From the 

figure, it is observed that the peak residual axial stress at the weld zone of C-Mn, 606 

MPa, is higher than the value of yield strength for welding and base materials of C-

Mn and AISI304 at room temperature. The values of residual axial stress at the HAZ 

of weld overlay are lower than the yield stress of the liner base material at room 

temperature, 265 MPa. From Figure ‎6-15, we can also find out that the bifurcation 

between case A and case AH starts at 24 mm far from the WCL. The distributions of 

two cases diverge away smoothly to reach Z=77 mm at which the divergence limit is 

being the widest and then remains constant. Beyond Z=77 mm, the maximum 

variation between the axial residual stress distributions on the inner surface in case A 

and case AH is about 164 MPa (absolute value) where case AH reaches 122 MPa. 

It is clear that the distributions of two cases are significantly close within the FZ and 

HAZ, for Z ≤ 24 mm. Furthermore, the experimental results are consistence with the 

numerical results of both cases. Within the range 24<Z<77 mm, the axial residual 

stresses are subjected to the effect of the welding process and the pre-heat treatment, 

and the experimental results are located between the distributions of two cases.  

To shed light on these ranges more, the FZ and HAZ are heated up higher than other 

areas which make the base material AISI304 soft enough. Consequently, the inherent 

residual stresses, which existed in the base material because of the heat treatment, are 

removed completely. Thus, the axial residual stress distribution in case AH goes 

along with that in case A at the inner surface. Beyond Z ≥ 24 mm, temperatures 

during welding are drastically lower and their effect disappears completely at Z > 77 



Chapter 6 Results of Experimental Testing and of FEA of Lined Pipe Welding 

 

119 

 

mm. In other words, the closer the distance from the WCL, the bigger the 

convergence between case A and case AH is. Therefore, beyond Z ≥ 77 mm, the 

initial axial residual stress on the inner surface is not affected by welding process.  

 

Figure ‎6-15 Axial residual stress at 180° central angle on the inner surface along the axial 
direction 

 

Figure ‎6-16 shows the hoop residual stress distributions on the inner surface for case 

A and case AH with the experimental points at 180° (central angle). It could be seen 

that the peak hoop tensile stresses is located at the FZ of the weld overlay, equal to 

578 MPa, which is larger than the yield stress of AISI304 welding material. In 

similar way, two limits characterise the hoop residual stress distribution in case A 

and AH. Again, it can be observed that, up to a distance of 37 mm away from the 

WCL, there are no remarkable discrepancies between case A and case AH. Beyond 

this limit, the divergence between two cases expands to be stable at point (Z = 91 

mm) where the divergence amplitude reaches 161.7 MPa (absolute value), at which 

case AH attains 113 MPa. Beyond Z = 91 mm, for both cases the residual stress 

remains constant along the axial direction. It is obvious that within the range 37 mm 

≤ Z ≤ 91 mm the final hoop stresses are affected by both the welding process and the 

inherent residual stress resulted from the pre-heat treatment. The more influence the 

welding process has, the closer the distance from the WCL. Therefore, the 
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experimental points are also located above the distribution of case A and below the 

distribution of case AH. 

 

Figure ‎6-16 Hoop residual stress at 180° central angle on the inner surface along the axial 
direction 

6-5-2. Residual Stresses on the Outer Surface 

Figure ‎6-17 shows the axial residual stress distributions on the outer surface, which 

is made of C-Mn, along the axial direction of the lined pipe at 180° (central angle) 

for cases A, AH and the experimental results. Two cases are plotted in the same 

graph to compare case A with case AH in which the pre-heat treatment is considered. 

Similarly to what already discussed for the residual stresses on the inner surface, 

there is a good correlation between the results of case A and case AH at the FZ and 

HAZ within the range Z ≤ 24 mm. Beyond this limit, a slight bifurcation occurs 
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value. At the zone Z ≥ 77 mm, the distance between the axial residual stress 

distributions keeps to a large extent constant for case A and case AH. The 

experimental results are in good agreement with two cases.  
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Figure ‎6-17 Axial residual stress at 180° central angle on the outer surface along the axial direction 

In a similar way, the same discussion is applied for the hoop residual stress 

distributions in case A and AH on the outer surface at 180° from start/stop welding 

location as depicted in Figure ‎6-18. The two distributions slightly branch at Z = 37 

mm. Beyond Z = 91 mm, case A distribution is being stable to some extent with zero 

stress and case AH distribution is stable with slightly positive stress. Within the 

range Z < 37 mm, there is only a slight difference between the distributions of case A 

and case AH at the FZ. The experimental results are again in good agreement with 

both distributions.  

 

Figure ‎6-18 Hoop residual stress at 180° central angle on the outer surface along the axial 
direction 
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It can be observed that the residual axial stress distributions on the inner surface and 

outer surface have opposite shape for both cases because of the shrinkage of the lined 

pipe radius during cooling after completing the welding process. As a result, a 

bending deformation is produced in the lined pipe resulting in compressive residual 

stresses on the outer surface and tensile residual stresses on the inner surface. For 

example, Figure ‎6-19 shows the magnitude of reduction in the pipe radius on the 

inner surface along the axial direction at location of 180° from start/stop point for 

case A and case B. It could be seen from this figure that the maximum shrinkage in 

case A and AH is located at Z = 2.1 mm far away from the WCL with 0.44 mm and 

0.53 mm reduction in pipe radius, respectively. 

 

Figure ‎6-19 Radial shrinkage at 180° central angle on the inner surface along the axial 
direction 

6-6. Verification of the Experimental Results 

To check the accuracy of experimental thermal and mechanical results, the welding 
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Figure ‎6-20 compares the thermal history recorded from TC1 and TC4 for two tests 

at 180° central angle. It can be noticed that the peak temperatures and cooling rate 

are extremely close. 

  

(a) (b) 

Figure ‎6-20 Temperature results of repeated tests for case A at (a) TC1 and (b) TC4 at 180° 
central angle 

Figure ‎6-21 shows the axial residual stresses on the inner and outer surfaces obtained 

by the hole-drilling technique using residual stress gauges, FRS-2, for two tests. 

Also, the residual stress results of XRD for the first test are plotted in the same 

figure. It could be observed that all results in the first test are consistent with their 

counterparts in the second one and the results of XRD prove the relability of the 

experimental residual stress results. 
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(a) (b) 

Figure ‎6-21 Axial residual stress results of repeated tests for case A on (a) the inner surface 
and (b) the outer surface at 180° central angle 

6-7. Conclusions 

This chapter has presented the results of 3-D FE thermomechanical simulations of 

the welding process of a lined pipe, executed using ABAQUS 6.13-1, compared with 

the experimental results. The study included an investigation of the effect of the pre-

heat treatment on the thermal fields and residual stresses. To produce the lined pipe, 

the TFP is an essential process to insert the liner (AISI304 pipe) inside the backing 

pipe (C-Mn pipe). Unfortunately, this process could generate initial residual stresses 

in the lined pipe which in turn may initiate cracks growing during service and cause 

detrimental damage in case of critical operating conditions. The initial residual stress 

levels generated by the TFP are based on the temperature levels and the mechanical 

properties of both base materials. In this chapter, the numerical and experimental 

results have proven that the initial residual stresses due of TFP are important in 

AISI304 pipe whereas hardly existed in C-Mn pipe. According to the numerical and 

experimental results in this work, the following conclusions can be drawn: 

(1) Based on the thermal results, it is clear that the temperatures of all points 

located on the same circumferential line are quite constant when the welding 

torch moves to fill the weld overlay and the girth welding. From the 

outcomes of our investigation, it is possible to conclude that the temperature 
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fields are not sensitive to the variations of the circumferential angles. 

Furthermore, the thermal history during welding is not completely affected by 

the TFP process because that the temperature returns back to room 

temperature during naturally cooling for 7200 seconds. During TFP, the liner 

temperature sharply ramp up in 4.30 seconds from -200°C to meet the 

temperature of C-Mn pipe at 419°C.  

(2) The high temperature strain gauges on the inner surface record a larger drop 

in the axial and hoop strains just before the welding torch is close enough to 

the location of the particular gauge than their counterparts on the outer 

surface during both the weld overlay, and the first and second girth welding. 

This can be attributed to the increase in pipe radius because of heating nearby 

the welding torch.   

(3) The lengths of the zones with significant axial and hoop plastic strains along 

the axial direction are based on the intensity of constraint and the peak 

temperature. Consequently, the hoop plastic strain zone is wider than that of 

the axial plastic strain along the axial direction. Furthermore, these are also 

the lengths of the zones with significant residual stresses induced by the 

welding process. 

(4) The residual stress distributions are divided into three sections. In the first one 

closer to the WCL, the residual stresses are solely affected by the welding 

process. The length of this zone depends on the extent of the axial and hoop 

plastic strains. The second one stretches from the previous limit to the limit 

where the residual stress distributions become constant along the length. This 

section is under the influence of both the welding process and the TFP pre-

heat treatment. The last section starts when the residual stress distribution has 

become quite constant, in which the pipe is just under the influence of the 

initial residual stresses resulted from the TFP process. The initial residual 

stresses are relatively small in the AISI304 pipe whilst they are negligible in 

the C-Mn pipe for case AH. 

(5) Welding tests have been repeated two times thermally and mechanically. Due 

to importance of residual stresses, X-ray diffraction has been used to double 

check the residual results obtained by residual strain gauges. All thermal and 
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mechanical results in the first test are consistent with their counterparts in the 

second test.  
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Chapter 7  

Parametric Study of Lined Pipe Welding 

7-1. Introduction 

Welding is a reliable process widely used in industry to join two specimens together 

with high strength bond. In particular, Oil and Gas applications significantly depend 

on welding. Although it is a necessary process, the main problems of using welding 

arise from high temperatures to pour filler materials in welding grooves, which in 

turn lead to residual stresses concentrated in the FZ and HAZ. Therefore, predicting 

the locations and magnitudes of residual stresses after completing the welding 

operation is important to determine the reliability and integrity of welded structures. 

Welded cylindrical structures such as boilers, pressure vessels and transportation 

pipes are widely used in Oil and Gas units. Therefore, the precise prediction of the 

thermal and strain fields due to the circumferential welding is a major concern for 

estimating the maintenance works and working life of cylinders which contribute to 

avoid sudden failure during service. The FEM is an effective tool to predict the 

temperature and residual stress behaviours induced by welding. Validation of the 

FEM results against small-scale experimental results steers to guarantee the FEM 

results on large-scale models where there is no need to do more experiments 

consuming time and money.  

A lot of research work has been conducted to study the isothermal and residual stress 

fields induced by circumferential welding, and the reader is referred to the literature 

review in Chapter 2 for a detailed review. However, there are no detailed 

experimental or numerical studies conducted for lined pipes. In particular, no study 

has investigated the influence of different factors on the quality of welding.  

Therefore, further to the experimental and numerical results presented in Chapter 6, 

in this chapter, six cases have been conducted by changing different factors affecting 
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the quality and results of welding process. Case A is considered the reference case, 

where the weld overlay and girth welding have been modelled with different 

materials of their base metals, accordingly, and is the same case studied in the 

previous chapter (Chapter 6). In case B, the material of girth welding is the same 

material used in the weld overlay, which is austenitic stainless steel. Case C 

considers the effect of neglecting the weld overlay where the two joints of lined pipe 

have been solely adjoined using girth welding. In this case, the material of girth 

welding is the same used in case A. The heat input plays a key role in the quality of 

welding and consuming the rod materials used in TIG welding (Gery et al., 2005). 

Therefore, in case D, the heat input is lowered to 75% of the heat input in case A for 

all welds. In a similar way, the heat input in case E is dropped to 50% of that in case 

A. The last case is case F where the liner with weld overlay is not considered. 

To study the effect of each specific parameter, the other parameters are kept constant 

and equal to the values of the reference case (case A). Furthermore, the mesh 

topology for all FE models remains the same as in case A. The thermo-mechanical 

properties used for case A in the previous chapter are the same properties applied in 

case A herein. In this work, the numerical thermal fields and residual stress 

distributions are compared against the experimental ones in all cases by means of 

thermocouples and hole-drilling strain gauges.  

7-2. Results and Discussion 

7-2-1. Thermal Results  

Incorporating the heat source movement within the heat transfer analysis during 

welding is complicated by mathematical and physical issues, because of the need of 

considering two different types of welding (weld overlay and girth welding) 

associated with two different parent materials at the same time. It is important to 

validate the FE model experimentally to verify the accuracy of the moving heat 

source and heat transfer equations. The macrograph of cross section at 270° in case A 

has been taken by means of microscope where the FZ and HAZ boundaries are 

clearly distinct as shown in Figure ‎7-1. From this figure, it could also be seen that the 

predicted FZ and HAZ isotherms correlate well with the numerical one. The 
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minimum temperature value at the FZ is 1365 °C and 1500 °C for weld overlay and 

girth welding, respectively. The HAZ extends in the FZ vicinity to attain minimum 

800 °C.  

  

Figure ‎7-1 Experimental and numerical macrograph at 270° central angle 

Consequently, the measured and numerical results of FZ and HAZ isotherms prove 

that the accuracy is not only in the thermal equations used in this work but also in the 

parameters applied on these equations such as welding pool geometries and heat 

input values. 

As discussed in Chapters 5 and 6, the movement of the heat source during the one-

pass weld overlay and the two-pass girth welding has been simulated by coding the 

DFLUX subroutine according to Eq. 6.6 using the same variable values given in 

Table ‎6-5. Moreover, the heat transfer subroutine FILM utilizes the same equations 

(6.3-6.5) associated with same variables in Table ‎6-4.   

To record the thermal history, thermocouples, type K, were placed at 6 axial 

locations with 270° central angle for all cases. Three thermocouples were mounted 

on the outer surface (C-Mn pipe) and the others on the inner surface (AISI304) to 

record the thermal history upon these locations during welding and cooling as shown 

in Figure ‎7-2. 
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Figure ‎7-2 Locations of thermocouples and the welding direction for three passes, 
dimensions in mm 

Table ‎7-1 shows the peak temperatures at the six thermocouples during the weld 

overlay, the first and second pass of girth welding. The numerical temperature 

gradients are also compared with the results recorded experimentally. 

Table ‎7-1 Comparison between numerical and experimental results at six location 
during welding 

Case Pass  Inner surface  °C  Outer surface  °C 

   TC1 TC2 TC3  TC4 TC5 TC6 

A Overlay Num. 540 350 271  446 342 271 

Exp. 525 343 265 432 333 263 

 1-Girth Num. 798 565 450  709 554 448 

Exp. 775 550 441 695 540 435 

 2-Girth Num. 929 703 573  918 690 570 

Exp. 913 685 562 910 681 558 

B Overlay Num. 538 

525 

348 

331 

271 

260 

 446 

430 

341 

332 

271 

264 Exp. 

 1-Girth Num. 790 

775 

564 

552 

450 

443 

 708 

690 

554 

539 

448 

441 Exp. 

 2-Girth Num. 928 

911 

704 

685 

574 

561 

 911 

895 

692 

680 

570 

561 Exp. 

C Overlay Num. - 

- 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

- Exp. 
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 1-Girth Num. 689 

670 

482 

471 

374 

362 

 614 

605 

472 

460 

374 

361 Exp. 

 2-Girth Num. 894 

882 

669 

650 

539 

525 

 878 

865 

658 

645 

537 

525 Exp. 

D Overlay Num. 408 

401 

271 

265 

212 

208 

 345 

337 

268 

262 

212 

208 Exp. 

 1-Girth Num. 610 

600 

440 

431 

352 

340 

 552 

540 

432 

422 

353 

339 Exp. 

 2-Girth Num. 716 

701 

553 

542 

453 

438 

 701 

688 

548 

535 

453 

451 Exp. 

E Overlay Num. 276 

270 

191 

185 

151 

145 

 240 

232 

188 

179 

151 

142 Exp. 

 1-Girth Num. 412 

405 

306 

301 

248 

245 

 388 

375 

302 

295 

248 

235 Exp. 

 2-Girth Num. 496 

485 

387 

375 

320 

315 

 492 

485 

386 

378 

320 

315 Exp. 

F Overlay Num. - 

- 

- 

- 

- 

- 

 - 

- 

- 

- 

- 

- Exp. 

 1-Girth Num. 730 

721 

531 

520 

417 

412 

 610 

600 

475 

461 

374 

362 Exp. 

 2-Girth Num. 1010 

992 

744 

732 

599 

585 

 875 

861 

655 

645 

535 

526 Exp. 

Comparing thermal results of case A against case B, it could be observed that the 

peak temperatures of all points are close enough to each other where the difference is 

less than 10 °C in all points. Consequently, changing the girth welding material to 

austenitic stainless steel does not have influence on the thermal results during 

welding. This can be attributed to the thermal properties, namely the specific heat 

and conductivity, which are close to each other especially at high temperatures.  

In case C, the differences in temperatures measured by thermocouples drop 

drastically down compared with case A during the first pass of girth welding because 

the inter-pass temperature is neglected in case C. In the second pass of girth welding, 

the variations in temperatures between two cases are significantly narrower.  
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Decreasing the heat input which comes from the heat source leads to a strongly 

decrease in temperatures during all welding passes. In more detail, the maximum 

temperatures predicted and recorded by thermocouples in cases D and E are 

significantly lower than their counterparts in case A. Furthermore, temperatures in 

case D are larger than those in case E because case D has 75% of the heat input of 

case A, whilst case E just has 50%.  

Removing the liner and weld overlay in case F keeps the whole thickness minimized 

to that of the C-Mn pipe, equal to t = 6.35 mm. In this case, it can be seen that the 

peak temperatures recorded and predicted at each thermocouple during the first girth 

welding pass are lower than their counterparts in case A because the inter-pass 

temperature is not there anymore. During the second pass of girth welding, the 

temperatures in case F are higher than those in case A on the inner surface where the 

thickness of pipe is 6.35 mm. On the outer surfaces, the temperatures are much closer 

to their counterparts in case C. 

It could be observed that there is a good agreement between the numerical and 

experimental temperatures which are within the maximum variation of less than 6%. 

Thus, the developed thermal FE models for all cases can be considered further 

validated experimentally. Also, the disparity between the results of case A and other 

cases becomes larger as the distance from the WCL decreases. It is also observed 

from Table 6.1 that the thermocouple upon either the outer or inner surface located 

nearer to the WCL experiences a peak temperature higher than that located farther to 

the WCL (Yaghi et al., 2011). 

7-2-2. Structural Response 

In this section, case A is considered the reference case to be compared with other 

cases. Only half of the lined pipe is examined due to symmetry. In case A, the axial 

residual stress distributions at 270° central angle are depicted in Figure ‎7-3(a) The 

bottom row of elements is the liner, AISI304 pipe, with the weld overlay, whereas 

the rest of pipe is the backing steel pipe, C-Mn pipe, with the girth welding. It could 

be seen that maximum axial residual tensile stresses are located at the toes of the 

girth welding, weld overlay and HAZ on the inner surface. On outer surface, the 

tensile stresses on the inner surface are balanced by the compressive stresses on the 
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FZ and HAZ of girth welding (Sattari and Farahani, 2009). Therefore, axial bending 

deformation is produced through the pipe cross section. As a result, the diameter of 

lined pipe becomes smaller in the FZ and HAZ regions after cooling down to room 

temperature because of the radial shrinkage (Dar et al., 2009). Also, it could be seen 

the length needed to reverse the tensile stresses to compressive on the inner surface is 

narrower than that to reverse the compressive stresses to tensile on the outer surface.  

Turning to the hoop residual stress distributions shown in Figure ‎7-3(b), the absolute 

values of tensile stresses in the FZ and HAZ on the inner surface are significantly 

larger than those of the compressive stresses in the girth welding region and its 

vicinity on the outer surface. The magnitudes of residual axial stresses have a 

significant influence on the value of residual hoop stresses (Lee and Chang, 2008). 

The lengths of reversal stresses on the inner and outer surface are somewhat close to 

each other. 

It is evident that the area of C-Mn steel at which the weld overlay is fixed with the C-

Mn pipe has axial and hoop tensile residual stresses higher than the yield stress of the 

C-Mn base material. This region is affected more than others by the thermal cycles of 

weld overlay, first pass and second pass of girt welding. Consequently, it is more 

likely that a crack initiates at this point as shown in Figure ‎7-4. In particular, the 

crack has not been modelled in lined pipe. Consequently, the welded lined pipe 

model would not capture cracking initiation and propagation as a cutting trajectory, 

but used to simulate the regions which could likely contain crack formation and 

propagation. Furthermore, choose other metals with different properties could lead to 

completely change the path of crack propagation based on the residual stress levels in 

the model. As a result, the material properties should be taken into account with 

other metals.   
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(a) 

 

 

(b) 

Figure ‎7-3 (a) Axial and (b) hoop residual stress distributions of case A at 270° central angle 

 

Figure ‎7-4 Initiation and growth of crack at the area of C-Mn pipe above weld overlay 
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7-2-2-1. Effect of Welding Materials on Residual Stresses 

To avoid cracking and corrosion in the FZ, stainless steel is a proper material to join 

two specimens together. Stainless steel is more capable to expand and contract 

naturally during welding because of its larger coefficient of thermal expansion 

(British Stainless Steel Association, 2016). Conversely, carbon steel is a good 

conductor of heat which in turns will cool more rapidly and shrink faster as the joint 

cools (Benson, 2014). Moreover, stainless steel has a better corrosion resistance than 

carbon steel because of its chemical compositions. As a result, stainless steel welding 

is preferred more in oil and gas industry.          

Figure ‎7-5(a)-(d) shows a comparison between the numerical results for case A and 

B at 270° central angle from the start/stop welding point along the axial direction 

starting from the WCL, Z=0. The experimental results are also plotted for both cases 

accordingly using residual stress gauges. The numerical axial and hoop residual 

stress distributions on the inner surface (liner) for both cases are in a good correlation 

except at the toes of weld overlay and girth welding (Z ≤ 3.6 mm). Within this zone, 

the maximum axial residual stress is 593 MPa at Z = 0.3 mm in case A whilst the 

maximum one in case B is 529 MPa located at Z = 0.6 mm as shown in 

Figure ‎7-5(a). Similarly on the circumferential direction, the maximum hoop residual 

stress is 573 MPa at Z = 2.1 mm in case A whereas the maximum one in case B is 

481 MPa on the WCL. On the outer surface, it can be seen that significant 

discrepancies exist between the numerical results of case A and B in the FZ and its 

vicinity, for Z ≤ 45 mm, as shown in Figure ‎7-5(c) and (d).  Beyond this zone, the 

results in both cases are almost identical in the axial and hoop residual stress 

distributions.  

The experimental results recorded on the inner and outer surface with 270° central 

angle are consistent well with the numerical results in the FZ and HAZ because the 

initial residual stresses produced by heat treatment are removed by the high 

temperatures of welding. Beyond this range, temperature magnitudes are 

significantly lower. As a result, the initial stresses still remain in the pipe and the 

experimental results are somewhat larger. 
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(c) 

 

(d) 

Figure ‎7-5 Comparison of residual stresses at 270° central angle between case A and case B: 
(a) axial stress distributions on the inner surface, (b) hoop stress distributions on the inner 

surface, (c) axial stress distributions on the outer surface, and (d) hoop stress distributions on 
the outer surface 

7-2-2-2. Effect of Welding Overlay 

Omitting the weld overlay results in allowing dust and grease to go inside the gap 

between the liner and backing steel pipe. Consequently, these go inside girth welding 

and deteriorate the quality of girth welding by forming voids and inclusions. 
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Therefore, in case C welding is conducted without weld overlay to study the 

influence of this factor on the stress behaviour.  

Figure ‎7-6(a)-(d) shows the hoop and axial residual stress distributions at 270° 

central angle on the inner and outer surfaces for cases A and C. In this figure, the 

experimental results are also plotted along the axial distance. It could be observed 

that there is a significant discrepancy in the axial residual stress at the WCL where it 

is 540 MPa and 252 MPa in case A and C, respectively. Beyond these weld zones, 

the axial residual stress distributions in both cases A and C are much closer to each 

other as shown in Figure ‎7-6(a). Similarly on the hoop direction, there is a difference 

in the hoop residual stress at the weld zones. Beyond that, the results are closer to 

each other in both cases as depicted in Figure ‎7-6(b).  

On the outer surface, there are significant discrepancies between the results of axial 

and hoop residual stress in case A with their counterparts in case C at the weld zone 

of girth welding and its HAZ as shown in Figure ‎7-6(c)-(d). The experimental results 

are in good agreement with the numerical results for both cases at the FZ and HAZ 

but they are larger beyond that especially at the inner surface due to the effect of 

initial residual stresses of pre-heat treatment.    
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(d) 

Figure ‎7-6 Comparison of residual stresses at 270° central angle between case A and case C: 
(a) axial stress distributions on the inner surface, (b) hoop stress distributions on the inner 

surface, (c) axial stress distributions on the outer surface, and (d) hoop stress distributions on 
the outer surface 

7-2-2-3. Effect of Heat Input on Welding Residual Stress 

The heat input plays a key role in affecting the temperature distributions, which in 

turns leads to significant changes in residual stresses. In this section, all welding 

parameters are kept constant, such as the welding speed and welding pool 

geometries. The total heat input, 𝑄, is identified as 𝑄 = 𝐼𝑉𝜇 (watt) where 𝐼 is current 

(amperes), 𝑉 is voltage (volts) and 𝜇 is the weld efficiency. In case A, the total heat 

inputs are 850, 1700 and 1800 watt for weld overlay, first-pass of girth welding and 

second-pass of girth welding, respectively. These parameters go along with the 

American Welding Standard AWS D1 (2010) and API 1104 (2005) to get the 

required quality for all welding passes. Reducing the heat input has some benefits in 

reducing consumption of the rod in TIG welding provided the quality of welding is 

achieved without porosity (bubbles) in the weld because of lack of fusion. In this 

section, the influence of heat input on residual stresses has been investigated through 

cases D and E. The total heat input is lowered to 0.75 and 0.5 of the heat input of 

case A for case D and E, respectively. In more detail, the total heat inputs become 

638, 1275 and 1350 watt for weld overlay, first-pass of girth welding and second-

pass of girth welding in case D, respectively. In case E, the portions of heat input 

which have been provided to the weld overlay, first-pass of girth welding and 

second-pass of girth welding are 425, 850 and 900 watt, respectively. 

 Figure ‎7-7(a)-(d) portrays the axial and hoop residual stresses along the longitudinal 

distance starting from the WCL at 270° from the start/stop welding location in case 

A, D and E with measured results. On the inner surface (AISI304 pipe), the 

maximum axial residual stresses in three cases are located at Z = 0.3 mm at the toe of 

girth welding with 590, 577 and 352 MPa in case A, D and E, respectively, as shown 

in Figure ‎7-7(a). Turning to the hoop direction,  it could be seen that the maximum 

tensile hoop residual stresses in cases A, D and E take place at the centre of the weld 

overlay region, Z = 2.1 mm, with 573, 371 and 502 MPa as given in Figure ‎7-7(b), 
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respectively. From Figure ‎7-7(a) and (b), it is observed that the length of the zone 

with tensile residual stress becomes narrower by reducing the heat input magnitude. 

Figure ‎7-7(c) and (d) depicts the axial and hoop residual stress distributions on the 

outer surface (C-Mn pipe) for cases A, D and E at 270° central angle with respect to 

the axial distance. The maximum axial compressive stresses on the outer surface are 

located at the WCL with -595, -561 and -508 MPa for three cases A, D and E, 

respectively. The lengths of the zones with compressive residual stress are slightly 

close to each other where the zone for case E is still narrower than others as clarified 

in Figure ‎7-7(c). It is observed that the magnitude of hoop residual stress on the outer 

surface is affected by its axial residual stresses. The larger the compressive axial 

residual stress is, the larger the compressive hoop residual stress is. In similar way, 

case E has the narrowest compressive range of other cases, as clarified in 

Figure ‎7-7(d). Likewise, experimental results are in a good correlation with their 

counterparts in the FZ and HAZ for all cases.  
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(d) 

Figure ‎7-7 Comparison of residual stresses at 270° central angle among case A, case D and 
case E: (a) axial stress distributions on the inner surface, (b) hoop stress distributions on the 

inner surface, (c) axial stress distributions on the outer surface, and (d) hoop stress 
distributions on the outer surface 

7-2-2-4. Effect of the Liner on the Welding Residual Stresses 

The function of the liner is to protect the inner surface of the carbon steel pipe from 

corrosion. With this function, it is made of corrosion resistant alloy CRA, austenitic 

stainless steel. Consequently, removing the liner will not only lead to corrosion of the 

pipe in oil and gas applications but it will also affect the residual stress behaviour 

especially at welding regions.  

Figure ‎7-8(a)-(d) compares the axial and hoop residual stress distributions on the 

inner and outer surface numerically and experimentally for case A and case F in 

which the liner with weld overlay is removed. On the inner surface, the axial residual 

stress at the WCL in case F, 333 MPa, is lower than that in case A, 540 MPa, as 

depicted in Figure ‎7-8(a). On the hoop direction, the magnitude of hoop residual 

stress at the WCL in case F, 364 MPa, is larger than its counterpart in case A, 203 

MPa. Afterwards, the hoop residual stress distribution drops rapidly down in case F 

whereas the distribution in case A goes sharply up within the weld overlay region as 

shown in Figure ‎7-8(b). Furthermore, the extent of the axial tensile stress in case F is 
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relatively narrower, Z = 18.9 mm, than that of case A, Z = 65.5 mm, on the inner 

surface as clarified in Figure ‎7-8 (b). This can be attributed to the absence of the liner 

and of the weld overlay at the inner surface which in turn slows down the heat 

transfer of the exposed surface to environment.  

On the outer surface, the maximum compressive axial stress in case F, -562 MPa, is 

located within the FZ, at Z = 2.1 mm, whilst the maximum compressive axial stress 

in case A is located at the WCL, -595 MPa, as clarified in Figure ‎7-8(c). In both 

cases, the hoop residual stress distributions have a wave shape as shown in 

Figure ‎7-8(d). In a similar way, the compressive extent in case F is relatively 

narrower than that of case A. the numerical residual stress results agree reasonably 

well with the experimental results obtained by using the hole-drilling strain gauge 

method. 
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(d) 

Figure ‎7-8 Comparison of residual stresses at 270° central angle between case A and case F: 
(a) axial stress distributions on the inner surface, (b) hoop stress distributions on the inner 

surface, (c) axial stress distributions on the outer surface, and (d) hoop stress distributions on 
the outer surface 

7-3. Mesh Convergence Analysis 

The FE mesh density plays a key role in determining the accuracy of thermal and 

mechanical numerical results. To assess such accuracy, a coarse mesh analysis has 

been used for both the thermal and the mechanical analyses for case A. The coarse 

mesh model consists of 14000 nodes associated with 2880 elements. The element 

type is DC3D20 and C3D20 in the thermal and mechanical analyses, respectively. 

Also, the element birth technique is adopted in the FEM coarse model to simulate 

depositing the filler materials in the weld overlay and girth welding during moving 

the heat source. The coarse mesh size is equal or larger than 1.5 times of the normal 

mesh size utilized in this study for case A (see Figure ‎6-3 in the previous chapter) 

where the coarse mesh model is composed of 40 circumferential elements instead of 

60 elements as shown in Figure ‎7-9. 
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Figure ‎7-9 Coarse 3-D FE model 

In the thermal analysis, Figure ‎7-10 compares the temperature distributions during 

weld overlay for the coarse mesh model, denoted as 1.5h, against the normal mesh 

model, denoted as 1h, at 90°, 180° and 270° central angle. The maximum 

temperature is achieved at the welding pool centre of weld overlay which is 1650°C 

in the coarse mesh model and 1634°C in the normal mesh model of case A. 

 

Figure ‎7-10 The thermal history of weld overlay centre at 90°, 180° and 270° central angle for 
coarse and normal mesh 

Likewise, the temperature fields of the second pass of girth welding have also 

extremely close distributions around symmetric line at three locations, 90°, 180° and 
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270° central angle for the coarse and the normal mesh model. The peak temperature 

of the coarse mesh is 2085°C whereas the peak one of the normal mesh is 2076°C, as 

shown in Figure ‎7-11. 

 

Figure ‎7-11 The thermal history of second pass centre of girth welding  at 90°, 180° and 270° 
central angle for coarse and normal mesh 

One may note that there is a very good correlation in the thermal fields between the 

coarse mesh and the normal mesh models. As a result, the residual stress 

distributions on the inner and outer surfaces for the coarse mesh model should also 

be consistent with the results of the normal mesh model of case A. Figure ‎7-12(a)-(d) 

plots the residual stress comparisons between the coarse mesh model and the normal 

mesh model at 270° central angle.  
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Figure ‎7-12 Residual stress distributions for coarse and normal mesh models at 270° central 
angle: (a) axial stress distributions on the inner surface, (b) hoop stress distributions on the 

inner surface, (c) axial stress distributions on the outer surface, and (d) hoop stress 
distributions on the outer surface 

Consequently, the normal mesh used in cases A, B, C, D, E and F can be considered 

appropriate to obtain accurate numerical results thermally and mechanically.   
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7-4. Radial Shrinkage 

Moving the heat source circumferentially to deposit the filler materials is mainly 

responsible for the radial shrinkage during lined pipe welding. In fact, the 

magnitudes of heat input provided during three welding passes are quite enough for 

the filler materials to flow through welding regions. Thus, a series of radial 

expansions is produced due to uniform high temperatures through the pipe thickness. 

After completing the welding process, subsequent radial contractions take place 

during solidification and cooling down to room temperature. As a result, a local 

inward deformation in the weld zones results in a simple linear bending in 

conjunction with compressive stresses over the outer surface balanced by tensile 

stresses on the inner surface. Moreover, the magnitude of radial shrinkage is 

significantly affected by the magnitude of axial stresses. Radial deformations on the 

inner surface of the lined pipe for six cases at 270° central angle with respect to the 

longitudinal direction starting from the WCL are plotted in Figure ‎7-13. It is 

noticeable that the case with larger axial tensile at the WCL has larger radial 

shrinkage. In other words, larger axial tensile residual stress on the inner surface 

leads to larger bending moment at the WCL which is in conjunction with radial 

shrinkage. 

 

Figure ‎7-13 Radial shrinkage for six cases on the inner surface at 270° from the WCL 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 20 40 60 80 100 120 140 160 180 200

D
is

p
la

ce
m

en
t 

(m
m

) 

Axial distance (mm)  

Case A
Case B
Case C
Case D
Case E
Case F



Chapter 7 Parametric Study of Lined Pipe Welding 

 

151 

 

7-5. Conclusions 

In this chapter, 3-D FE models have been developed and experimental tests have 

been conducted to study the influence of a number of factors on the thermal and 

structural response in lined pipe welding. These factors include welding properties 

(weld overlay and girth welding materials), geometric parameters (using weld 

overlay and liner) and welding process parameters (heat input). In detail, the thermal 

history and residual stress distributions have been studied for particular locations on 

the inner and outer surfaces in comparison with their experimental counterparts, 

measured using thermocouples and residual stress gauges. Based on the results, the 

following main conclusions can be drawn: 

(1) The numerical thermal results are consistent with the experimental results 

with variation less than 6%. Furthermore, the discrepancies between the 

thermal results of reference case A and other parametric cases decrease by 

heading far away from the WCL along the axial direction. 

(2) The tensile stresses on the inner surface are balanced by the compressive 

stresses on the outer surface at the FZ and HAZ to produce local inward 

deformation through the pipe cross section. The area of C-Mn pipe at which 

the weld overlay is fixed with the C-Mn pipe is affected by high thermal 

cycles, which in turn lead to higher hoop and axial tensile residual stresses 

and possible cracks forming. 

(3) Changing steel type of girth welding material from carbon steel to stainless 

steel leads to enhanced corrosion resistance and reduction in the axial and 

hoop residual stresses on the inner and outer surfaces at the FZ. 

(4) Omitting the weld overlay leads to a significant reduction in the axial and 

hoop residual stresses at the FZ on the inner and outer surface but the 

detrimental effect of leaving a gap between liner and C-Mn pipe should be 

taken into account. 

(5) Reducing heat input produces lower residual stresses at the FZ and its vicinity 

on the inner and outer surface. 

(6) The extents of tensile and compressive stresses on the inner and outer 

surfaces become significantly narrower by removing the liner. 
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(7) Increasing the residual axial tensile stress leads to an increase in the radial 

shrinkage at the WCL. 

(8) Increasing the element size to 1.5 times of the normal one used in this work 

does not result in a significant change on the thermal and residual stresses 

results. 
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Chapter 8  

Experimental and FE Models of Lined Pipe 

Impact 

8-1. Introduction 

Oil & Gas pipelines face indeed cyclic loading generated by fluid pressure changes, 

especially in the case of offshore pipelines which have high internal pressure, or as a 

result of waves and currents, the latter possibly leading to vortex-induced vibrations 

(Hilberink, 2011). Furthermore, corrosive production fluids make the use of C-Mn 

steel pipe for flow line impossible, whereby lined pipes are used as an alternative, as 

widely discussed in the previous chapters. Due to the high cost of lined pipe 

manufacturing, the thickness of C-Mn pipe is reduced, likely up to a half. In this 

case, the lined pipe is more affected by either the construction damage or the external 

interference (third party). In general, a dent can form as a result of construction 

damage or as a result of third party, but both of them can be responsible of 

catastrophic failure in pipelines.  

Pipeline and Hazard Materials Safety Administration PHMSA (2007) reported that 

the external interference was responsible for 27% of failures in liquid transmission 

pipelines and for 31% of failures on natural gas pipelines in the USA. Furthermore, 

the failure resulted from third party damage could be either immediate or not 

immediate. In the latter case, generated cracks can grow and cause pipe failure in 

service after short time of the first impact. Thus, dented pipes require more 

monitoring and the high localized stresses in the dented zone need to be evaluated. 

In Chapter 2, analytical and numerical methods proposed in the literature to conduct 

a stress analysis in dented pipes have been reviewed. However, one of the most 

critical problems in lined pipes is the stress/strain behaviour under dynamic impact 
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and it was observed that, to the best of the author’s knowledge, very few articles in 

the literature have addressed the effect of dynamic impact on the lined pipes 

(compound pipes) using a non-liner numerical approach. 

Therefore, main objective of this chapter is to study the stress and strain behaviour of 

small-scale lined pipe specimens, with and without liner, subjected to a radial 

collision from different heights, numerically and experimentally. To achieve this 

objective, a weight of 200 kg equipped with a semi-spherical indenter with diameter 

of 51.75 mm is dropped freely from 1, 1.5 and 2 m on specimens of C-Mn pipe 

without liner (case A) and with liner (case B). Additionally, some tests are repeated 

to assess the reliability and validity of the experimental results.  Strain results are 

obtained by mounting different type of strain gauges to record the strain history 

during the whole impact process. In more detail, four strain rosettes (GR1, GR2, 

GR3 and GR4) are placed symmetrically around the expected dent centre which is 

located at the pipe middle section. The strain history is transferred from strain gauges 

to a data logger via LabVIEW code. 

8-2. Numerical Model 

3D FE models have been developed to simulate the vertical free drop of a weight 

from different altitudes resulting in damage of the pipe. Models were executed using 

a three-dimensional dynamic explicit non-linear finite element code, 

ABAQUS/EXPLICIT 6.13. In order to precisely simulate the response of the 

collided pipe to subsequent impacts and spring back, an elastic-plastic constitutive 

behaviour is adopted using the isotropic Hooke’s law whereas the plastic behaviour 

is accounted for by means of the Von Mises yield criterion. The work hardening is 

based on isotropic hardening rule associated with the equivalent plastic strain rate. 

Strain-rate dependent properties are specified for both materials, C-Mn and AISI304. 

Impact is a dynamic test where the equivalent plastic strain rate plays a key role in 

determining the mechanical properties of punched material (Nicholas, 1980). 

Typically, the maximum velocity during impact occurs with the initial contact 

between the indenter and external surface of the pipe, and becomes gradually lower 

afterwards during the indentation process.  As a result, the pipe material undergoes 
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different strain rates during indentation. Increasing strain rates result in higher 

stress/strain curves. Furthermore, increasing strain rates lead to higher ultimate 

strength and lower ductility whereby AISI304 material tends to be more sensitive to 

change in strain rates than C-Mn material. Figure ‎8-1 shows the dynamic stress-strain 

curves for C-Mn and AISI304 steels (Handbook, 1973; Wiesner, 1999). 

 

(a) 

 

(b) 

Figure ‎8-1 Plastic strain rate for (a) C-Mn pipe (Wiesner, 1999) and (b) AISI304 pipe (Handbook, 1973) 
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8-2-1. FE Mesh of Impact Components 

The FE model is composed of the outer pipe (C-Mn pipe), the inner pipe (AISI304 

pipe), indenter (denting tool), rigid bottom plate and rigid side plate. A lined pipe 

with 200 mm length lies down on a bottom plate and trapped between two plates on 

sides with 3 mm gap on each side. The outer pipe, C-Mn, has an outer diameter 

(Dcarbon) of 114.3 mm with a variance of ±1.45 mm whereas the wall thickness 

(tcarbon) is 6.35 mm with a variance of ±0.35 mm. The AISI304 pipe, the liner, has an 

external diameter (Dstainless) and thickness (tstainless) of 101.6 mm and 1.5 mm with 

variance of ±1.1 and ±0.15 mm, respectively as shown in Figure ‎8-2. The tip of 

indenter is numerically in direct contact with the centre of dent located at the pipe 

middle section having the velocity and mass of dropping weight accordingly. 

 

Figure ‎8-2 Schematic of dented lined pipe dimensions in mm. 

The pipes in both cases A and B are idealized with solid 8-node continuum brick 

elements, with full integration (C3D8). Three translation degrees of freedom are 

active at each node. The mesh is refined more in the dented region in both cases to 

get more precise results. The indenter is modelled using C3D4, 4-node linear 

tetrahedron elements, with a density of 7860 kg/m
3
. The bottom and two side plates 
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are modelled using element type of C3D8, 8-node linear brick elements, with density 

of 7860 kg/m
3
. 

8-2-2. Contact Regions, Velocity and Loads 

Since the impact process includes hitting bodies with each other, surfaces in the lined 

pipe are exposed to be in contact internally and externally. In more detail, four 

contact regions are defined in the model. First contact is modelled between the 

surface of the semi-sphere (denting tool) and the whole surfaces of the C-M pipe and 

the AISI304 pipe located in the expected dented region. A second region of contact is 

located between the inner surface of the C-Mn pipe and the outer surface of AISI304. 

A third contact region is specified between the external surface of C-Mn pipe and the 

side plate because of the increasing width of pipe cross section during impact. The 

last contact occurs between the external surface of the C-Mn pipe and the bottom 

plate, where striking makes lined pipe bounce up and down as a reaction of every 

collision. In case A, the second contact area is neglected because AISI304 pipe is not 

considered. 

The weight drops down freely vertically on the pipe from different heights of 1, 1.5 

and 2 m. Consequently, the velocity of free drop increases linearly with time to reach 

its ultimate value as the tip of indenter touches the external surface of the C-Mn pipe. 

In this moment, neglecting friction and air resistance, the velocity of free drop (𝑣) 

would be given according to the conservation of energy law as  𝑣 = √2𝑔ℎ , where 𝑔 

and ℎ are the acceleration of gravity and height, respectively. However, the 

resistance of air and friction between square block (weight) and internal walls of 

impact apparatus chamber are taken into account. The loss in speed value is 

calculated using video frames recorded for the whole impact operation by a high 

speed camera. It was found out that the ultimate speed loses 9.7% of its value as the 

tip of indenter touches the pipe. The corrected values of maximum drop speed are 4, 

4.9 and 5.657 m/s when the weight drops vertically from different height (ℎ) 1, 1.5 

and 2 m, respectively. 

In the explicit impact analysis, self-weights of C-Mn pipe, AISI pipe, indenter and 

block mass, 200 kg, are considered in the FE model to return the bodies back after 

every jump because of collision. It is clear that FE model consumes much time 
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because of contact regions and subsequent collisions. Thus, an appropriate mesh 

refinement is implemented in the numerical analysis, where the size of elements 

increases outwards the dented region. Furthermore, a quarter model is simulated, 

because of symmetry with respect to the axial and transverse planes, planes X-Y and 

Y-Z, respectively. In case A model (without liner), the AISI304 pipe is not 

considered in the FE model. Thus, contact between the C-Mn pipe and AISI304 pipe 

and also self-weight of liner are not needed. Figure ‎8-3 shows the FE mesh for the 

main parts of lined pipe impact process, for case B. 

 

Figure ‎8-3 FE mesh of the quarter lined pipe model, case B 

8-3. Parametric Study 

8-3-1. Finite Element Analysis 

The steps of the FE analysis reflect the procedure employed in the experimental tests. 

Initially, the indenter freely drops down from a specific height to punch the external 

surface of C-Mn pipe with a specified velocity. The kinematic energy has been 

consumed completely to produce indentation in the lined pipe before the indenter and 
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pipe retreat vertically as a reaction of collision. The hitting tool and pipe fall down 

afterward because of their self-weight. The weights include those of block, spherical 

indenter, liner and C-Mn pipe. The indenter hits the lined pipe frequently, reducing 

the maximum distance of collision every time because of the kinetic energy being 

consumed. Consequently, the collision leaves permeant deformation in the lined 

pipe, which in turn produces residual stresses in the base materials, AISI304 and C-

Mn. Figure ‎8-4 shows the position of the indenter with respect to the lined pipe, for 

case B, at different stages of the analysis. When the indenter (with the mass and 

weight of the block added to it) is pushed up, elastic stresses in the pipe wall are 

released, which in turn results in rebound the dent depth slightly. Nevertheless, the 

residual stresses remain in the base materials with different levels of plasticity, where 

the highest level is located in the dented region. 

  

(a) (b) 

 
 

(c) (d) 
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Figure ‎8-4 The stages of collision at (a) original position of indenter and lined pipe (un-
deformed mesh), (b) deformed shape at 7.5 ms, (c) deformed shape at 75 ms and (d) 

deformed shape at 250 ms 

8-3-2. Dented Pipe Geometries 

The deformed geometries of the pipe were experimentally obtained with the aid of 

conventional callipers and a displacement transducer just after completing the strikes 

and removing the indenter equipped with mass of 200 kg. The deformed geometries 

resulting from the FE simulations, including the dent depth, are then compared with 

their counterparts taken experimentally for case A (without liner) and case B (with 

liner) as reported in Table ‎8-1, where Figure ‎8-5 clarifies the tabulated deformed 

geometries of dented pipe. 

Table ‎8-1 Numerical and experimental results of pipe geometries including dent depth. 
Specimen Pipe 

case 

Height 

(m) 

 I (mm) W 

(mm) 

Hcarbon 

(mm) 

Hstainless 

(mm) 

H/D % 

C-Mn 

Hcarbon/Dcarbon 

AISI304 

Hstainless/Dstainless 

H1A A 1 
Exp. 109.0 118.2 13.4 - 11.7 - 

Num. 109.1 118.8 14.21 - 12.43 - 

H2A A 1.5 
Exp. 109.0 118.5 20.20  17.67 - 

Num. 109.0 118.84 20.25 - 17.71 - 

H3A A 2 
Exp. 108.9 119 24.5 - 21.43 - 

Num. 108.84 118.88 24.67 - 21.58 - 

H1B B 1 Exp. 109.5 117.74 13.1 13.1 11.46 12.89 

 

 

Figure ‎8-5 Deformed geomtries of dented pipe 
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Num. 109.92 118.26 13.35 13.4 11.67 13.18 

H2B B 1.5 
Exp. 109.2 118.44 18.65 18.65 16.31 18.36 

Num. 109.6 118.54 18.97 18.7 16.6 18.41 

H3B B 2 
Exp. 109.1 119 22.3 22.3 19.51 21.95 

Num. 109.5 118.5 23.47 23.33 20.53 22.96 

The European Pipeline Research Group (EPRG) (Roovers et al., 2000) has found out 

that the pipe with a smooth dent (plain dent) in the non-pressurized condition does 

not fail in two cases. The first condition is that the internal pressure is less than the 

maximum operating pressure (MOP) which is calculated as that corresponding to the 

stress given by 72% of the specified minimum yield stress (SMYS). The second one 

is that the dent depth is equal or less than 10% of the pipe outside diameter. In our 

study, in all cases, pipes are dented under non-pressurized condition. 

 In case that the pipe is dented in the pressurised condition, the dent is pushed 

outwards by the internal pressure. As a result, the dent depth in a pressurised pipe is 

less than that in a non-pressurised pipe. According to EPRG, the correlated ratio 

between dent depth in non-pressurised pipe to that in pressurised pipe is 1.43. 

Therefore, the minimum ratio of dent depth-to-pipe outer diameter to get failure in 

pressurised pipe is 7% (Roovers et al., 2000; Keith Escoe, 2006). 

8-3-3. Strain Behaviour in the Dented Region 

In this chapter, the main aim is to study the strain and stress behaviour in the dented 

region by comparing the numerical predictions with the experimental strain results 

recorded during the impact test. With this aim, four groups of strain gauges were 

mounted on the external surface of C-Mn. First and second group, GR1 and GR2, 

were located on the longitudinal plane with positions given by ϕ = 0° and Z = ±23 

mm. The last two groups of strain gauges, GR3 and GR4, were placed on the 

transverse plane with locations of ϕ = ±23.7° and Z = 0 mm as shown in Figure ‎8-6.  
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Figure ‎8-6 positions of the strain gauges, dimensions in mm 

Those locations kept the strain gauges safe from damage by punching from indenter. 

Moreover, the levels of strain in these positions are suitable to the maximum limit of 

strain in the gauges. The closer the distance from the dent centre is, the larger the 

strain level of the gauge records and the choice of a proper position was based on 

numerical models for all cases. During the impact test, the signals from the strain 

gauges were recorded by a computer based data acquisition system run via 

LabVIEW code. Each group contained at least two strain gauges (biaxial strain 

gauges) where one gauge (element) measured the axial strain and the other one 

measured the hoop strain. Some gauges were tri-axial, known as 3-axis rosette gauge, 

but the diagonal strain with 45° in XY-plane was found to record significantly lower 

strain values compared to the axial and hoop strain values. However, the 

experimental results of longitudinal strain gauge groups, GR1 and GR2, were almost 

identical and also the transversal strain gauge groups had very close results. The 

symmetric-plane strain groups were used to double check the reliability of 

experimental results and also to record strains from at least one gauge in case one of 

the gauges had been lost by damage or detachment by dropping the weight from high 

altitudes. To sum up, the experimental results recorded from GR1, located on the 

longitudinal plane, and from GR4 have been compared with the numerical results 

located at the same positions on the quarter pipe FE model. Figure ‎8-7(a)-(k) shows 

these comparisons in case A and case B. As mentioned earlier, the indenter and the 

pipe collided many times during one impact process before the indenter settled over 

the pipe in all cases (with and without liner). The most severe collision was the first 



Chapter 8 Experimental and FE Models of Lined pipe Impact 

 

163 

 

one in the impact process, when significant plastic deformation occurred in the 

dented region. 

Figure ‎8-7(a) shows the axial and hoop strains generated by GR1 rosette on the C-

Mn pipe without liner (H1A specimen), where the free drop height is 1 m. The FEA 

results in the same location of GR1are also plotted in the same figure. GR1 rosette is 

positioned on the longitudinal plane at Z = 23 mm far from the dent centre. GR1 

rosette is a biaxial strain gauge recording the strain history in the axial and hoop 

(circumferential) direction. The numerical time is synchronised with the 

experimental time, assuming time to be zero when the tip of indenter touches the 

external surface of pipe. The hoop strain gauge records compressive mechanical 

strains reaching a maximum of -8.12% after 7.5 ms of striking. After that, the strains 

reduce in the pipe due to the so-called ‘spring back’, because the indenter with 

weight block rebounds vertically away from the pipe. After that, the strain reaches a 

steady-state with -7.4% as residual plastic strain. Consequently, 0.72% of the initially 

compressive strain was elastic strain. On the axial direction, the gauge records a 

tensile strain history in which the peak tensile strain reaches a steady-state value of 

5% after 7.5 ms. 

Upon free drop of the weight from 1 m over H1A specimen, GR4 rosette records 

strain history on the transverse plane. It is positioned with clockwise circumferential 

angle ϕ = 23.7° far from the dent centre. Like the GR1 rosette, GR4 rosette measures 

the strain history at axial and hoop direction. In contrast to GR1, axial strain gauge 

records compressive strain whereas hoop one records tensile strain. It is clear from 

Figure ‎8-7(b), there is also a convex kink in the compressive strain curve at 7.5 ms 

from the onset of strike where the dent reaches its maximum depth. After that, the 

spring back phenomenon is dominated in the dent region when the hitting tool 

rebounds away from the C-Mn pipe to keep the compressive strain steady-state 

curve. It is also observed that there is no protruding kink in the positive hoop strain 

curve. One may note from Figure ‎8-7(a) and (b) that the absolute values of 

compressive strains are larger than those of tensile strains. Furthermore, the absolute 

values of compressive and tensile strains on the longitudinal plane, Fig. 8.6(a), are 

larger than their counterparts on the transverse plane, Figure ‎8-7(b). It is also 

noticeable in specimen H1A that the tangent strains to the periphery of the dent are 
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compressive whereas their perpendicular counterparts are always positive (Cunha et 

al., 2009). In more detail, the gauge on the longitudinal plane, GR1 records a tensile 

strain in the axial direction whilst the gauge on the transverse plane, GR4, records a 

compressive strain in the axial direction. 

In case of dropping 200 kg freely from 1.5 m over H2A specimen, the absolute 

values of strains in GR1 and GR4 rosettes are larger than their counterparts in the 

H1A specimen. Figure ‎8-7(c) shows that the steady state of axial strain in GR1 after 

the first strike is 7.4% whereas its counterpart in H1A specimen is 5%. Moreover, 

Figure ‎8-7(d) clarifies that the maximum tensile hoop strain reaches 3% strain while 

its counterpart in H1A specimen reaches just 2.45% strain. 

The same foregoing discussion applies to the other figures with respect to the pipe of 

cases A and B. It is also observed that the absolute values of the strains in case A are 

larger than their counterparts in case B. It can be observed that strains which are 

tangent to the dent periphery (hoop and axial strains in GR1 and GR4, respectively) 

are always compressive whereas their orthogonal counterparts (axial and hoop strains 

in GR1 and GR4, respectively) are always tensile. 
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(l) 

Figure ‎8-7 Strain histories in Rosette (a) GR1 (H1A), (b) GR4 (H1A), (c) GR1 (H2A), (d) GR4 (H2A), 
(e) GR1 (H3A), (f) GR4 (H3A), (g) GR1 (H1B), (h) GR4 (H1B), (i) GR1 (H2B), (j) GR4 (H2B), (k) GR1 

(H3B) and (l) GR4 (H3B) 

8-3-4. Residual Stresses 

Good correlation between experimental results and numerical results in terms of 

deformed geometries and strains led us to study the residual stresses numerically 

with sufficient confidence. In general, all cases consumed 2 seconds to implement a 

series of explicit sequential strikes for each case and 1 second to static spring back 

step where the dent takes the last shape with permanent deformation.  

According to ASME B31.4 (2012), a smooth dent in liquid pipelines with a dent 

depth-to-pipe diameter ratio (H/D) exceeding 6% should be repaired when the hoop 

stress levels are over 20% of the SMYS. In a similar way, for gas pipelines, ASME 

B31.8 (2010) states that repair is required when the ratio (H/D) exceeds 2% and hoop 

stress levels exceed 40% of the SMYS. In this work, all cases with liner or without 

liner have a ratio of H/D over 10% as reported in Table ‎8-1. As a result, hoop stress 

levels in the dented pipe play a significant role in making a decision regarding 

maintenance work (Rinehart, 2004). To shed light more on the stress behaviour, 

specimen H1B is chosen to analyse the Von Mises stress distributions in the dented 

region on different surfaces after the impact process (spring back) as depicted in 

Figure ‎8-8. It is observed that the maximum stress concentration is located at the dent 
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periphery on the outer surface, not in the dent centre (Keating and Hoffmann, 1997). 

Consequently, the outer surface of C-Mn pipe in all cases is more vulnerable to the 

nucleation of crack propagation. 

  

(a) (c) 

  

(b) (d) 

Figure ‎8-8 Residual Von Mises stresses in the dented region of H1B specimen on the (a) top 
surface of C-Mn pipe (b) bottom surface of C-Mn pipe (c) top surface of AISI304 pipe (d) 

bottom surface of AISI304 pipe 

As for the residual stress distributions on the outer surface, the hoop stresses have 

larger magnitudes of tensile stresses than axial stresses. As a matter of fact, the hoop 

stress is twice the axial stress in the pressurized pipe in service. Therefore, the hoop 

residual stresses should be considered more important when studying the stress 

behaviour in the dented region as per ASME B31.4 (2012) and ASME B31.8 (2010). 
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In this section, the hoop residual stress distributions in the longitudinal and 

transverse planes starting from the dent centre have been investigated. Figure ‎8-9 

shows the hoop residual stresses at the longitudinal and transverse planes on the 

outer surface for case A (without liner) and case B (with liner).  

It is observed from Figure ‎8-9(a)-(d) that increasing the drop height leads to reduce 

the maximum tensile residual stresses, probably because the equivalent plastic strain 

rate plays a vital role. Increasing the equivalent plastic strain rate pushes highly the 

yield stress of material (Lee and Liu, 2006). Furthermore, the maximum tensile 

residual stresses are located on the periphery of the dent. Increasing the drop height 

leads also to expand the dent diameter which in turns pushes the maximum tensile 

stresses farther away from the dent centre. 

On the longitudinal direction, it could be seen from the comparison between 

Figure ‎8-9(a) and (b) that the maximum tensile stresses in case A (without liner) are 

lower than their counterparts in case B (with liner). In more detail, the maximum 

tensile stresses in cases H1A and H1B associated with the free dropping weight from 

1 m are 380 and 496 MPa, respectively. This can be attributed to the accumulation of 

residual stresses because of the sequential strikes in each impact process where the 

indenter hits the pipe with different velocity in each strike. For example, the velocity 

in the second sequential strike in case H1B is lower than its counterpart in case H1A 

because of the dissipation of internal energy which is, for example, increased by 3% 

in case H1B compared to its counterpart in case H1A when forming the maximum 

dent depth in the first strike. Dissipation of energy and impact velocity are discussed 

later in next sections. 

On the transverse direction, it is noticeable from Figure ‎8-9(c) and (d) that the 

maximum tensile stresses in cases A and B are lower than their counterparts on the 

longitudinal direction. In detail, the maximum tensile residual stress along the 

longitudinal direction of case H1B is 496 MPa whereas the maximum one around the 

transverse direction of case H1B is 352 MPa. In a similar way, the maximum tensile 

stresses in case A are somewhat lower than their counterparts in case B. 
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(c) 

 

(d) 

Figure ‎8-9 Hoop residual stress distribution starting from the dent centre on the outer surface 
(C-Mn pipe) at (a) the longitudinal planes in case A (b) the longitudinal planes in case B (c) 

the transverse planes in case A (d) the transverse planes in case B 

A concise summary of the forgoing discussion is that the onset of the cracks is most 

likely to be at the dent periphery and to propagate predominantly along the 

longitudinal direction on the outer surface, where the tensile residual hoop stresses 

are higher than their counterparts around the transverse direction. 

-300

-200

-100

100

200

300

400

0 15 30 45 60 75 90

H
o

o
p

 r
es

id
u

al
 s

tr
es

s 
(M

P
a)

 

Transverse angle (°) 

Transverse-Hoop-outer-H1A
Transverse-Hoop-outer-H2A
Transverse-Hoop-outer-H3A

-400

-300

-200

-100

100

200

300

400

0 15 30 45 60 75 90

H
o

o
p

 r
es

id
u

al
 s

tr
es

s 
(M

P
a)

 

Transverse angle (°) 

Transverse-Hoop-outer-H1B

Transverse-Hoop-outer-H2B

Transverse-Hoop-outer-H3B



Chapter 8 Experimental and FE Models of Lined pipe Impact 

 

174 

 

In this study, crack initiation and propagation have not been modelled. In particular, 

the impact model is executed to specify the regions which could probably contain 

crack formation and propagation. 

8-3-5. Energy Consumed in the Whole Model 

The principle of conservation of energy states that energy cannot be eliminated or 

generated from nothing but transmitted from one type to another one. In our work, 

the total energy, 𝐸𝑇𝑂𝑇, for the whole model during the impact is composed of 

different types given as follows: 

𝐸𝑇𝑂𝑇 = 𝐸𝐼 + 𝐸𝑉𝐷 + 𝐸𝐾𝐸 + 𝐸𝐹𝐷 − 𝐸𝑊 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8.1) 

𝐸𝐼 = 𝐸𝑆𝐸 + 𝐸𝑃𝐷 (8.2) 

where 𝐸𝐼, 𝐸𝑉𝐷, 𝐸𝐾𝐸, 𝐸𝐹𝐷, 𝐸𝑊, 𝐸𝑆𝐸  and 𝐸𝑃𝐷 are the internal energy, viscous 

dissipation energy, kinetic energy, frictional dissipation energy, work energy, 

recoverable (elastic) strain energy and plastic dissipation energy, respectively. Other 

types of energy have not been discussed in this section or considered in the FE model 

because their changes are either zero or close to zero. 

Figure ‎8-10(a)-(d) represents the evolution of all the energy terms during the first 

strike in the impact test. It is clear that the kinetic energy is equal to the total energy 

at the beginning of contact between the indenter and pipe. Moreover, the kinetic 

energy after 7.5 ms, time required to form the dent at the end of the first strike, is 

completely consumed and changed into other types. 

Figure ‎8-10(a) may help to shed light on the types of energy during the first strike in 

case H1A. As discussed, the kinetic energy starts with 1600 J to drop rapidly to zero 

after 7.5 ms. Meanwhile, the energy internally stored or dissipated rises rapidly up 

from zero to reach the maximum value, 1650 J, at 7.5 ms. The majority of this 

internal energy is consumed as plastic dissipation energy, around 86% at 7.5 ms. 

This energy is used to form the dent and other permanent deformations in the pipe, 

such as expanding the width of the pipe. The elastic strain energy is responsible for 

the rebound the dent depth after the strike. The work energy is composed of the work 
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of the penalty contact forces and the external work done by the indenter, whose 

maximum is attained at 9 ms. 

In order to examine the effect of using the liner, it could be seen that the internal 

energy is increased by 3% in case H1B corresponding to its counterpart in case H1A, 

when forming the maximum dent depth, after 7.5 ms, as shown in Figure ‎8-10(d). 

This increase is attributed to the increase in plastic energy which is applied to deform 

two pipes. Furthermore, the penalty contact between the AISI304 pipe and C-Mn 

pipe on the entire length has a significant effect on the work energy and the viscous 

dissipation energy in case H1B. The frictional energy increases slightly with 

increasing friction between the C-Mn pipe and the indenter. It could be seen that the 

frictional energy is doubled in case H1A with respect to that of H1B where the dent 

depth is larger. 

In all tests, increasing the height of the free load drop leads to an increase in the 

kinetic energy, which in turns raises the value of the plastic dissipation energy. The 

other types of energy have almost the same values in all cases. On other side, the 

properties of material should be taken into account in modelling the dynamic impact 

especially with spherical projectiles associated with higher kinetic energy and 

smaller geometry such as bullets. Consequently, the spherical projectiles in this case 

could most likely penetrate the pipe where elements located in this punched region 

should be deleted from the model. In our model, there is no penetration for the pipe 

and the deletion of elements is not modelled. 
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(c) (f) 

Figure ‎8-10 Consuming energy in the whole model in test (a) H1A, (b) H2A, (c) H3A, (d) H1B, 
(e) H2B, (f) H3B 

8-3-6. Collison Velocity 

The dynamic impact test is characterized by a series of sequential strikes between the 

pipe and indenter. As a result of successive strikes in one impact test, the indenter 

hits the pipe with different velocity at every strike. Also, the pipe possesses a 

velocity after the strike because of bouncing over the bottom plate. Changes in 

velocity of the indenter and pipe during impact play a key role on consuming the 

energy and changing it to other types. Figure ‎8-11(a)-(f) shows the changes in the 

indenter velocity during the first minute of impact test starting from the moment 

when the indenter hits the pipe. It is clear from Figure ‎8-11(a)-(f) that the dent centre 

in the pipe without liner (case A) has more intensive oscillations in velocity than that 

in the lined pipe (case B). This can be attributed to the absence of the self-weight of 

the liner, AISI304 pipe, in case A which in turns enables the C-Mn pipe to bounce 

after the first strike with larger velocities comparing to their counterparts in case B. 

Moreover, the strikes in case A cause a deeper depth of dent, which in turns increases 

the width of pipe and urge the pipe to hit and contact the side plates through the 

entire impact process.  
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It can be seen from Figure ‎8-11(a) that the indenter hits the pipe with velocity of -4 

m/s (negative because downward) and forces the dent centre to deform downwards 

with the same velocity of the indenter for 7.5 ms from the beginning of first strike. 

After that, both pipe and indenter go gradually up, with the velocity of pipe relatively 

lower because of the effect of collision between the pipe and side plate. After 133 

ms, the indenter starts drop freely down (negative velocity) whilst the pipe in this 

moment bounces up, then down at 185 ms and then again up at 236 ms to meet the 

indenter at 252 ms over the ground.  Collision over the ground results in dropping the 

pipe rapidly down to the ground with the same speed of indenter, -2.7 m/s. The 

actual second strike occurs on the ground at 258 ms. Ratcheting of the velocity of 

indenter tip slightly up and down is attributed to the resistance of the pipe to follow 

the direction of indenter especially when both the pipe and the indenter are in contact 

over the ground. The same observations can be repeated for the successive collisions 

with decreasing velocity of the indenter every time. 

The preceding discussion applies to other pipes in cases A and B. It can be observed 

in all cases that increasing the height of free drop leads to an increase in the number 

of successive collisions. The times between the successive strikes in case B are 

longer than their counterparts in case A. It can also be seen that the velocity of the 

indenter does not oscillate in case B because there is no significant resistance to 

change its direction by the lined pipe.  
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 (f) 

Figure ‎8-11 Velocity of dent centre and indenter-tip during the first minute of impact in test 
(a) H1A, (b) H2A, (c) H3A, (d) H1B, (e) H2B, (f) H3B 

8-4. Mesh Convergence Analysis 

The mesh density plays a decisive role in determining the accuracy of the FE results. 

As long as a proper mesh is used to simulate the dynamic impact, the element size 

should not affect the results of interest. To verify this is the case, two coarse mesh 

analyses have been conducted for case H1A to examine the stability of impact 

results. The C-Mn pipe in the normal mesh, first coarse mesh, and second coarse 

mesh is discretised with 7488, 2700 and 1064 nodes associated with 5355, 1680 and 

486 elements, respectively, as shown in Figure ‎8-12. The first coarse mesh size, 1.5h, 

is equal or larger than 1.5 times of the normal mesh size, 1h, utilized in this study for 

case H1A whereas the second one is equal or larger than 2 times, 2h, of the normal 

one. However, the material properties and the element type, C3D8, in all meshes are 

kept the same. 
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(a) (b) 

Figure ‎8-12 Coarse mesh of the quarter lined pipe model of case H1A with (a) 1.5h size and (b) 2h 
size 

Comparing the strain results among the three mesh sizes at the GR1 location, it could 

be observed that the axial and hoop strain results of the 1.5h mesh model is firmly 

consistent with the results of the normal one, 1h mesh. It could also be seen there is a 

remarkable variation in the results between the 2h mesh model and the normal mesh 

model, with an absolute increase of 43% and 11% in the axial and hoop strain results, 

respectively, as shown in Figure ‎8-13. 
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Figure ‎8-13 Axial and hoop strain histories of case H1A at Rosette GR1 location for three 
mesh sizes 

Consequently, the normal mesh used in all cases in impact models can be considered 

appropriate to obtain sufficiently accurate numerical results, which present very little 

variation by increasing the mesh size to 1.5 times of the normal one.   

8-5. Verification of the Experimental Results 

In order to validate the accuracy of experimental results obtained in this study, the 

impact tests were repeated three times for cases H1A and H1B under the same 

conditions every time. Figure ‎8-14 and Figure ‎8-15 depict the axial and hoop strain 

distributions at rosette GR1 in cases H1A and H1B for three tests, respectively. 
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Figure ‎8-14 Strain results of repeated test for case H1A at rosette GR1 

 

Figure ‎8-15 Strain results of repeated test for case H1B at rosette GR1 

From Figure ‎8-14 and 8-15, it could be seen that there is a very good correlation 

among all repeated tests, which in turn confirm the reliability of the experimental 

procedure used and, therefore, of the other experimental results.  
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8-6. Conclusions 

In this chapter, the results of an experimental and numerical study of the impact of a 

200 kg weight freely dropped from different heights over lined pipe specimens has 

been reported, including in particular the evaluation of the stress/strain behaviour in 

the dented region. The effect of the liner on the dynamic impact process has also 

been investigated. The numerical strain results have been compared with the 

experimental ones recorded by four strain gauge rosettes positioned symmetrically 

around the dent centre. The various types of energy dissipation and the velocity of 

impact process have been also evaluated and discussed. In general, the reliability of 

our numerical and experimental findings in this work is confirmed by the mesh 

convergence analysis and by the repeated dynamic impact tests respectively.  

The following main conclusions can be drawn: 

(1) There is a very good correlation between the numerically predicted deformed 

geometries and the experimental ones in all cases. Increasing the dropping 

altitude leads to an increase in the ratio of dent depth-to-pipe outside diameter 

which is over 10% in all case. With this ratio, all cases have a high 

susceptibility to burst in service according to EPRG (Roovers et al., 2000). 

(2) During the first strike of the impact process, it is evident that the pipe 

detrimentally deforms from the first collision to form a dent characterized by 

tangential compressive strains to the dent periphery and perpendicular tensile 

strains to it. Also, increasing the dropping height leads to increase in the 

strain value. Due to the effect of the liner, the absolute values of strain in case 

A are larger than their counterparts in case B associated with the same 

altitude.  

(3) Removing the indenter leads to a higher concentration of residual stresses at 

the dent perimeter on the top surface of pipe. At the dent periphery, the 

longitudinal plane has significant higher tensile hoop residual stresses than 

the transverse plane which in turn contribute to initiate and grow crack along 

this direction. 

(4) Due to deformation of the two pipes together, the plastic energy consumed in 

case B (with liner) is higher by 3% than that in case A whilst the elastic strain 
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energy to a large extent remains the same in all cases. Furthermore, penalty 

contact between the liner and C-Mn pipe plays an important role in increasing 

the work energy during impact.  

(5) Removing the liner enables the C-Mn pipe to bounce higher and hits the 

indenter again over the ground. Furthermore, the time elapsed between the 

actual successive strikes is significantly shorter in case A than that in case B 

(with liner). 

(6) The credibility of predicted and measured strain results have been examined 

numerically and experimentally through three mesh convergence analyses 

and three repeated tests, respectively. Consequently, results in this study have 

a high reliability numerically and experimentally.  

 

 

 

 



Chapter 9 Summary, Conclusions and Future Work Recommendations 

 

186 

 

Chapter 9  

Summary, Conclusions and Future Work 

Recommendations 

Based on the major and minor research questions stated in Chapter 1, it is possible to 

confirm that this research work answered these questions successfully.   

9-1. Major conclusions 

By referring specifically to the main questions, the following major conclusions can 

be broken down as follows:  

 What procedures should be applied to develop, execute and validate a FE 

model capable of simulating the welding process of lined pipe with high 

accuracy? 

Uncoupled FE thermo-mechanical analyses have been conducted to simulate the 

weld overlay and girth welding using ABAQUS (Dassault Systèmes, 2014). 

Therefore, the thermal analysis is simulated first to acquire the thermal history at 

each node through the lined pipe. This thermal history is then transferred as thermal 

load for the mechanical analysis, which is conducted the same mesh associated with 

the same arrangement of nodes and elements used in the thermal analysis. 

A moving heat source combined with the element-birth technique is used to simulate 

the deposition of the elements of weld bead incrementally. This technique involves 

deactivating all beads first and then depositing the weld beads sequentially, once the 

heat source reaches the targeted bead. Moreover, two user-subroutines have been 

coded using FORTRAN codes to model a distributed power density of the moving 

welding torch and to use a non-linear heat transfer coefficient accounting for both 

radiation and convection. 
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In Chapter 5, the welding procedure has been validated first against experimental 

results in the literature related to two separated cases involving the welding of a C-

Mn pipe (Karlsson and Josefson, 1990) and a stainless steel pipe (Deng and 

Murakawa, 2006). A good correlation between the numerical thermal and 

mechanical results and their counterparts obtained from (Karlsson and Josefson, 

1990) and (Deng and Murakawa, 2006) was the motivation to develop a 3-D model 

of the welded lined-pipe joints, in which two segments of lined pipe are joined 

toghther with a one-pass weld overlay and a one-pass girth welding. Only one-half of 

the lined pipe specimen, one segment, was modelled due to the symmetry around the 

weld centreline (WCL). Furthermore, a sensitivity analysis to determine the 

influence of the cooling time between weld overlay and girth welding, i.e. the inter-

pass time, and of the welding speed has been conducted thermally and mechanically. 

From the outcome of our investigation it is possible to conclude that the temperature 

history is not sensitive to the variations of the circumferential angles. As expected, 

the less interval time is applied, the higher temperature is obtained during the girth 

welding. Doubling or halving the weld overlay and girth welding speeds leads to 

significantly decrease or increase the width of the FZ, respectively. Furthermore, the 

largest tensile and compressive axial residual stresses occur at the FZ and its vicinity 

on the inner and outer surfaces, respectively. Minimizing the inter-pass time to 1 

second leads to a reasonable increase in the absolute magnitudes of axial residual 

stresses at the WCL about 21% on the inner surface and 10% on the outer surface. 

Halving the weld overlay and girth welding speeds has more influence in increasing 

the absolute values of hoop and axial residual stresses at the WCL whereas doubling 

speed does not have that effect on the results at the FZ according to the basic case, 

case A. 

 Is it possible to develop an effective procedure to manufacture small-scale 

lined pipe specimens in a lab environment at a reasonable cost, maintaining 

the levels of initial residual stresses acceptable? 

The TFP procedure has been successfully implemented, as reported in detail in 

Chapter 3, by heating up the outer pipe in a furnace to about 500°C, moving it away 

from the furnace into a portable jacket heater, inserting the liner into liquid Nitrogen 

until it cools down at -200°C, inserting the liner vertically inside the C-Mn pipe, 
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while the latter is still hot inside the jacket, and finally letting the lined pipe cool 

naturally, exposed to ambient air temperature.  

The TFP method is responsible to generate initial residual stresses in the lined pipe 

although required conditions have been taken into account to reduce these initial 

residual stresses, such as the temperatures of contraction, expansion and cooling the 

produced lined pipe naturally. Two techniques have been used to measure the initial 

residual stresses induced by TFP, namely hole-drilling and X-ray diffraction. 

In Chapter 6, a 3-D model has been executed in ABAQUS 6.13 (Dassault Systèmes, 

2014) corresponding to the configuration of the welded line pipe experimentally 

tested. The aim in this chapter was to study the effect of the TFP pre-heat treatment 

on the thermal fields and residual stresses in the welded lined pipe. The findings 

point out that the thermal history during welding is not completely affected by the 

TFP process. In particular, the residual stress distributions are divided into three 

sections. In the first one closer to the WCL, the residual stresses are solely affected 

by the welding process. The length of this zone relies on the extent of the axial and 

hoop plastic strains. The second one stretches from the previous limit to the limit 

where the residual stress distributions become constant along the length. This section 

is under the influence of both the welding process and the TFP pre-heat treatment. In 

the last section, which starts when the residual stress distribution is practically 

constant, the pipe is just under the influence of initial residual stresses caused by the 

TFP process. The initial residual stresses occur with small levels in the AISI304 pipe 

whilst it is practically negligible in the C-Mn pipe. 

A small level of initial residual stresses in the AISI304 pipe was found whilst 

residual stresses in the C-Mn pipe were found to be negligible. The maximum 

numerically computed axial and hoop initial residual stresses on the inner surface, 

AISI304 pipe, are 122 and 113 MPa whilst their experimental counterparts are 

lowered by 50%, respectively. The initial residual stress on the inner surface is 

attributed to TFP process where the liner temperature jump higher in 4.3 seconds 

from -200°C to +419°C to be in balance with outer pipe temperature.  

 What are the main factors which can affect the quality and results of the 

welding process of a lined pipe? 
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Six cases were experimentally and numerically studied in Chapter 7, by considering 

different factors affecting the quality and results of the welding process. The first 

case was considered the reference case where the weld overlay and girth welding 

have been executed with different materials of their base metals, accordingly. In the 

second case, the material of girth welding was the same as the weld overlay material. 

In the third case, the effect of neglecting the weld overlay has been discussed. In this 

case, the two parts of the lined pipe have been solely joined using girth welding. The 

material of girth welding in this case is the same used in first case. In the fourth case, 

the heat input was lowered to 75% of the heat input in first case for all welds. In a 

similar way, the heat input in the fifth case was dropped to 50% of that in first case. 

The liner with weld overlay is not considered in the last case. 

The thermal history and residual stress distributions have been investigated for 

particular locations on the inner and outer surfaces in comparison with their 

experimental counterparts using thermocouples and residual stress gauges. The main 

findings point out that the numerical thermal results are consistent with the 

experimental results with variation less than 6% for all cases. Furthermore, the 

discrepancies between the thermal results of the reference case and other parametric 

cases decrease by heading far away from the WCL along the axial direction. From 

the outcome of mechanical investigation it is possible to conclude that change in 

steel type of girth welding material from carbon steel to stainless steel leads to a 

reduction in the axial and hoop residual stresses on the inner and outer surfaces at the 

FZ. Moreover, removing the weld overlay leads to a significantly reduction in the 

axial and hoop residual stresses at the FZ on the inner and outer surface. Also, 

reducing the heat input produces lower residual stresses at the FZ and its vicinity on 

the inner and outer surface. Finally, the extents of tensile and compressive stresses on 

the inner and outer surfaces become significantly narrower by omitting the liner. 

 What procedures should be applied to develop, execute and validate a FE 

model capable of simulating a lined pipe subject to a dynamic impact 

comparable with the ones which might occur during installation? 

3D FE models were developed to simulate the mechanism of vertical free drop of a 

weight from different heights resulting in damage in the pipe.  Simulations were 

executed using the non-linear explicit dynamics FE code, ABAQUS/EXPLICIT 6.13 
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(Dassault Systèmes, 2014), and the FE results were compared with the experimental 

results. The steps of the analysis reflect typically the procedure employed in 

experimental tests. Initially, the indenter freely drops down from a specific height to 

punch the external surface of C-Mn pipe with a specified actual velocity. The 

kinematic energy is dissipated completely to produce indentation in the lined pipe 

before the indenter and pipe retreat vertically as a reaction of collision. The hitting 

tool and the pipe fall down afterward because of their self-weight. The weights 

include those of block, spherical indenter, liner and C-Mn pipe. The indenter hits the 

lined pipe frequently, the maximum distance of collision reducing every time 

because of the dissipation of the kinetic energy. Consequently, the collision leaves 

permeant deformation in the lined pipe which in turn produces residual stresses in the 

base materials, AISI304 and C-Mn. Removing the indenter and the block releases 

somewhat elastic stresses in the pipe wall, which in turn result in a slight rebound of 

the dent depth. Nevertheless, the residual stresses remain in the base materials with 

different levels of plasticity, the highest level being located in the dented region. 

The experiments include two groups of pipes. The first one, case A, is implemented 

just on a C-Mn pipe without liner. The second group, case B, is conducted on a lined 

pipe composed of a C-Mn pipe cladded with AISI304 pipe internally. To conduct the 

impact test, a weight of 200 kg equipped with a semi-spherical indenter with 

diameter of 51.75 mm was dropped freely from 1, 1.5 and 2 m on the specimens. 

During the impact process, a digital high speed camera was utilized to measure the 

actual impact velocity and also to capture the sequential strikes after the first 

collision between the indenter and pipe. After the impact process, the geometries of 

pipe were measured with the aid of conventional callipers and a displacement 

transducer sliding on a greased flat plate, while the pipe was mounted on V-groove 

blocks. It is possible to conclude that there is a very good correlation between the 

numerically computed deformed geometries and the experimental ones in all cases of 

dynamic impact. Furthermore, increasing the dropping height leads to an increase in 

the ratio of dent depth-to-pipe outside diameter which is over 10% in all cases. With 

this ratio, all cases have a high susceptibility to burst in service according to EPRG 

(Roovers et al., 2000). The strain results obtained during impact show that the pipe 

detrimentally deforms from the first collision to form the dent, which is characterized 

by tangential compressive strains at the dent periphery and tensile strains 



Chapter 9 Summary, Conclusions and Future Work Recommendations 

 

191 

 

perpendicular to it. Also, increasing the dropping height leads to an increase in the 

strain value. 

 To what extent the response of a lined pipe subject to dynamic impact differs 

from the response of a similar pipe without liner in terms of the residual 

stresses and strains? 

The maximum tensile hoop stresses on the longitudinal direction in cases with liner 

are larger than their counterparts without liner about 30%. Due to the effect of the 

liner, the absolute values of strain in cases without liner are larger than their 

counterparts in cases with the liner corresponding to the same drop height. 

 What is the effect of the energy and the velocity of the impact on the damage 

within a lined pipe? 

In all tests, increasing the height of the free drop contributes to an increase in the 

kinetic energy which in turn raises the value of the plastic dissipation energy. The 

maximum plastic energy consumed in cases with liner is higher by 3% than that in 

cases without liner. On the other side, the elastic strain energy and other types of 

energy have almost the same values in all cases.  

Increasing the height of free drop leads also to increase the collision velocity and the 

number of successive collisions. The cases with liner have longer times between the 

successive strikes than their counterparts without liner. There is no oscillation in the 

velocity of indenter in cases with liner because there is no significant resistance to 

change its direction by the lined pipe.   

On the other hand, strain rate plays a key role in determining the residual stresses, 

where increasing the strain rate leads to push highly the yield stress of material. As a 

result, increasing the drop height contributes to reduce the residual stresses on the 

dented regions where the maximum ones are located at the dent periphery. At this 

region, the longitudinal plane has significant higher tensile hoop residual stresses by 

40% than that on the transverse plane, which in turn contribute to initiate and grow 

crack along this direction. 
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9-2. Limitations 

Our work still has some limitations which require further discussion outside the 

scope of this work and to be taken up in a separate work. The main caveats can be 

listed as follows: 

1. The thermal isotherms are not measured perfectly at the centre of FZ with 

temperatures are over 2000°C where the maximum temperature range 

calibration for the infrared camera used, FLIR T, is up to 2000°C. 

2. During welding, the strain history at the FZ is not measured due to the high 

temperature. 

3. The strain history during dynamic impact is not recorded on the inner surface 

at the dented region where it is difficult to mount strain gauges on the liner. 

4. The strain history is also not measured at the centre of the dented region on 

the outer surface where the indenter hits the outer pipe.  

In FE model, the crack initiation and propagation have not been modelled for both 

cases in lined pipe, impact and welding. Consequently, the welded and dented lined 

pipe models are used to simulate the regions which could likely contain crack 

formation and propagation but not used to simulate a cutting trajectory through 

elements. Moreover, other metals could contribute to change the mechanical 

behaviour of lined pipe under impact and welding including the residual stress levels 

in impact and welding models. In the impact models, the deletion of elements 

because of the pipe penetration by spherical projectiles, bullets, associated with 

higher kinetic energy and smaller geometry are not simulated. 

9-3. Recommendations for Future Work 

In the previous comprehensive conclusions were drawn on the work conducted in 

this PhD project, which can be considered the first phase in evaluating the welding 

and dynamic impact in lined pipe numerically and experimentally. The major area of 

concern in lined pipe welding domain is simulating two different welding materials 

associated with two different base materials. Also, modelling the dynamic impact 

with respect to moving bodies and the subsequent strikes is a considerable 

achievement. Furthermore, finding a proper procedure to insert the liner inside the C-
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Mn pipe according to the materials and resources available in a University lab is an 

important achievement in this study. Therefore, this thesis has provided significant 

contribution in addressing the above critical issues successfully. 

It is recommended that the following points are addressed in future work. 

 (1) The computational methodology and techniques used to develop 3-D FEA to 

simulate the lined pipe welding can also be utilized with different materials 

other than carbon steel and stainless. Also, the materials used in the impact 

FE analysis can easily be changed to different ones. 

(2) The welding FE model has been applied in this work for TIG welding. Other 

types of welding such as MIG and laser can also be modelled according to the 

welding technique applied in this work but the nature and requirement of this 

process, especially the welding efficiency, should be adjusted and considered. 

(3) The developed welding FE model can be applied to a compound pipe with 

more than two layers with different welding locations, in conjunction with 

different base and welding materials. Furthermore, the FE welding model is 

suited to a pipe fitted with various buttering and cladding layers. Also, the FE 

impact model can be easily applied on a compound pipe.     

(4) The movement of the heat source in the FE welding model can easily change 

its direction and path sequence to different ones either in the same pass or in 

other passes. For example, instead of a continuous 360-degree revolution, 

regular angles can be skipped in order to complete the entire circular welding 

pass but not in one continuous revolution, in order to reduce the residual 

stresses. The developed FE models can easily be used to investigate these 

techniques and optimise the welding process without the need of expensive 

experimental testing. 

(5) Fatigue tests can be conducted with the application of cyclic internal pressure 

in welded and dented lined pipe specimens. The stress concentrations 

localised in the dented and welded regions should be considered as the 

initiation of cracks and leaking.  

(6) The most complicated case in FE modelling includes simulating the 

circumferential welding process first, then applying the impact process and 

finally studying the fatigue loading. This case can be done using the impact 
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and welding FE modelling procedures presented in this work, by a proper 

sequence of thermal, structural, dynamic and static analyses. 
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Appendix A 

In this appendix, a number of tools used in welding and impact tests are presented 

corresponding to their arrangement in Chapter 3 and Chapter 4. 

A-1. Tools utilized in Welding tests 

To record the thermal history during welding, 16-Channel thermocouple module, NI-

9213, was used as shown in Figure A-1. The NI 9213 is a high-density thermocouple 

module for NI series where thermocouples can be added to mixed-signal test systems 

without taking up too many slots. 

 

Figure A-1 Thermal module used to covert analogue signal to digital signal (ADC) 

To record the strain history during welding, 8-Channel strain input module, NI-9235, 

was utilized as depicted in Figure A-2. The NI-9235 measures dynamic strain on all 

channels simultaneously, allowing for synchronized, high-speed measurements. This 

capability is important for applications, such as impact tests, that require comparison 

across many channels at a particular instant in time. 
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Figure A-2 Strain module used to covert analogue signal to digital signal (ADC) 

To execute the TIG welding, a welding power source, GENSIS 150 AC-DC, was 

used to deposit the filler materials in their corresponding grooves as shown in Figure 

A-3 in Appendix A-1. 

 

Figure A-3 Welding power source, GENESIS 150 

A-2. Tools utilized in impact tests 

To specify the precise height of free drop from the tip of indenter to the middle 

section of lined pipe, a laser distance measuring tool is used as shown in Figure A-4. 
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Figure A-4 Laser distance measuring tool to specify the 
heights. 

To measure the actual impact velocity, a digital high speed camera, MEMRECAM 

HX-7, is used as shown in Figure A-5. 

 

Figure A-5 High digital speed camera 



 

 

 


