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Abstract 

Buried pipelines are vulnerable to the threat of corrosion. Hence, they are normally 
coated with a protective coating to isolate the metal substrate from the surrounding 
environment with the addition of CP current being applied to the pipeline surface to 
halt any corrosion activity that might be taking place. With time, this barrier will 
deteriorate which could potentially lead to corrosion of the pipe.  

The External Corrosion Direct Assessment (ECDA) methodology was developed 
with the intention of upholding the structural integrity of pipelines.  Above ground 
indirect inspection techniques such as the DCVG which is an essential part of an 
ECDA, is commonly used to determine coating defect locations and measure the 
defect’s severity. This is followed by excavation of the identified location for further 
examination on the extent of pipeline damage. Any coating or corrosion defect 
found at this stage is repaired and remediated. The location of such excavations is 
determined by the measurements obtained from the DCVG examination in the form 
of %IR and subjective inputs from experts which bases their justification on the 
environment and the physical characteristics of the pipeline.  

Whilst this seems to be a straight forward process, the factors that comes into play 
which gave rise to the initial %IR is not fully understood. The lack of understanding 
with the additional subjective inputs from the assessors has led to unnecessary 
excavations being conducted which has put tremendous financial strain on pipeline 
operators. Additionally, the threat of undiscovered defects due to the erroneous 
nature of the current method has the potential to severely compromise the pipeline’s 
safe continual operation. 

Accurately predicting the coating defect size (TCDA) and interpretation of the 
indication signal (%IR) from an ECDA is important for pipeline operators to 
promote safety while keeping operating cost at a minimum. Furthermore, with better 
estimates, the uncertainty from the DCVG indication is reduced and the decisions 
made on the locations of excavation is better informed. However, ensuring the 
accuracy of these estimates does not come without challenges. These challenges 
include (1) the need of proper methods for large data analysis from indirect 
assessment and (2) uncertainty about the probability distribution of quantities. 
Standard mean regression models e.g. the OLS, were used but fail to take the 
skewness of the distributions involved into account.  

The aim of this thesis is thus, to come up with statistical models to better predict 
TCDA and to interpret the %IR from the indirect assessment of an ECDA more 
precisely. The pipeline data used for the analyses is based on a recent ECDA project 
conducted by TWI Ltd. for the Middle Eastern Oil Company (MEOC).   

To address the challenges highlighted above, Quantile Regression (QR) was used to 
comprehensively characterise the underlying distribution of the dependent variable. 
This can be effective for example, when determining the different effect of 
contributing variables towards different sizes of TCDA (different quantiles). 
Another useful advantage is that the technique is robust to outliers due to its reliance 
on absolute errors. With the traditional mean regression, the effect of contributing 
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variables towards other quantiles of the dependent variable is ignored. Furthermore, 
the OLS involves the squaring of errors which makes it less robust to outliers. Other 
forms of QR such as the Bayesian Quantile Regression (BQR) which has the 
advantage of supplementing future inspection projects with prior data and the 
Logistic Quantile Regression (LQR) which ensures the prediction of the dependent 
variable is within its specified bounds was applied to the MEOC dataset.  

The novelty of research lies in the approaches (methods) taken by the author in 
producing the models highlighted above. The summary of such novelty includes: 

• The use of non-linear Quantile Regression (QR) with interacting variables 
for TCDA prediction. 

• The application of a regularisation procedure (LASSO) for the generalisation 
of the TCDA prediction model. 

• The usage of the Bayesian Quantile Regression (BQR) technique to estimate 
the %IR and TCDA. 

• The use of Logistic Regression as a guideline towards the probability of 
excavation 

• And finally, the use of Logistic Quantile Regression (LQR) in ensuring the 
predicted values are within bounds for the prediction of the %IR and POPD. 

Novel findings from this thesis includes: 

• Some degree of relationship between the DCVG technique (%IR readings) 
and corrosion dimension. The results of the relationship between TCDA and 
POPD highlights a negative trend which further supports the idea that %IR 
has some relation to corrosion. 

• Based on the findings from Chapter 4, 5 and 6 suggests that corrosion 
activity rate is more prominent than the growth of TCDA at its median depth. 
It is therefore suggested that for this set of pipelines (those belonging to 
MEOC) repair of coating defects should be done before the coating defect 
has reached its median size.   

To the best of the Author’s knowledge, the process of employing such approaches 
has never been applied before towards any ECDA data. The findings from this thesis 
also shed some light into the stochastic nature of the evolution of corrosion pits. 
This was not known before and is only made possible by the usage of the 
approaches highlighted above. The resulting models are also of novelty since no 
previous model has ever been developed based on the said methods.  

The contribution to knowledge from this research is therefore the greater 
understanding of relationship between variables stated above (TCDA, %IR and 
POPD). With this new knowledge, one has the potential to better prioritise location 
of excavation and better interpret DCVG indications. With the availability of ECDA 
data, it is also possible to predict the magnitude of corrosion activity by using the 
models developed in this thesis. Furthermore, the knowledge gained here has the 
potential to translate into cost saving measures for pipeline operators while ensuring 
safety is properly addressed. 
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Chapter 1 

 

Introduction 

 

 

1.0 Motivation 

 

Pipelines are generally a safe and reliable medium for transporting 

hydrocarbon fluids [1]. In the context of oil and gas, the hydrocarbons are 

transported from the drilling rig (offshore or onshore) to the refining plant and 

on to oil depots. But, although the probability is low, as with other structures, 

pipelines have a tendency to fail [2] which can be detrimental with 

implications to the economy, society and the environment. Demonstrably 

good design, appropriate material selection and best practice are key to 

ensuring the continued safety of pipelines.  
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For buried pipelines, corrosion is a major concern [3]. The threat can be 

minimized by the application of coatings which range from spray applied 

coatings to polyolefin coatings [4]. By isolating the metal substrate from its 

environment, the process of corrosion is minimized.  The coating also serves 

as a layer which prevents any electrochemical processes from occurring [5] 

in microscopic corrosion cells present on the metal surface. Pipeline 

coatings however can themselves fail and in the case of organic coatings, 

deterioration will happen over time. The failure can be due to incorrect 

application of the coating, soil stresses experienced by the pipe or the 

coating’s loss of adhesion. Generally, the failure of a coating can be 

summarised as changes in any of its chemical, physical, or electrochemical 

properties [6] that will eventually result in coating discontinuities or defects. If 

this were to occur on pipelines, the exposed metal would be susceptible to 

corrosion, which in turn compromises the pipeline’s overall integrity. 

 

Pipelines which are buried are normally cathodically protected (cathodic 

protection – CP). This is when an external electrical source (in the case of an 

ICCP) is provided making the pipe cathodic in nature.  The system acts as a 

backup to the coating system and comes into play when coating defects are 

present [7]. The amount of current needed for protection depends on the 

extent of coating failure as larger coating defects will require larger amounts 

of current for protection.  

 

The monitoring of the CP system and the overall integrity of the pipeline is 

normally addressed by employing the guidelines given in the NACE ECDA 
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document particularly SP RP0502-2013 [8]. The performance of the CP 

system is checked using indirect measurements (measurements taken 

above ground) in the form of Pipe-to-Soil Potentials traversing along the 

pipeline using reference electrodes [9]. The assessment is sometimes called 

a Close Interval Potential Survey or CIPS. Any anomalies found are 

recorded for further investigation. 

 

Another indirect assessment commonly used is the Direct Current Voltage 

Gradient (DCVG) where potential drops are monitored (%IR). The technique 

is used to identify the location of coating defects and to classify their severity 

based on Total Coating Defect Area (TCDA). Based on the defect severity, a 

decision can be made whether to proceed with further direct assessment 

requiring excavation of the defect site. Research into aboveground 

techniques has shown that the technique is considerably accurate in locating 

defect locations but lacks the ability to predict precisely the size of coating 

defects [9].  

 

It is normal where excavation of defect sites proves to be fruitless that small 

defects are still perceived to be significant (in terms of %IR). Part of the 

inaccuracy in determining the location of excavation sites is due to the input 

of subjective judgments (on where to dig) made by experts. These 

misjudgements will incur higher inspection costs if unnecessary excavations 

are conducted. On top of this, the US federal regulation [10] has indicated 

that pipeline operators should produce criteria for the identification and 

documentation of indications from an indirect assessment technique which 
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will be considered for further assessment (direct assessment through 

excavation). The criteria also serve to define the urgency of the subsequent 

inspection based on the documented and identified indications. As 

mentioned, the current DCVG tool is, to a certain extent, inaccurate at 

classifying defect sizes (TCDA) and with the added subjective input of 

experts, misinterpretation only becomes worse. Prioritisation can only be 

done when the predicted size of defects (TCDA) is accurately represented 

and subjective input is limited.  

 

Hence it is imperative that an objective solution is established to prioritise 

coating defects and corrosion accurately and also to comply with the 

regulations, which will promote safety and financial prudence. In this thesis, 

a novel technique of modelling the factors that contribute to DCVG 

indications and a method to predict defect size (TCDA) are presented. The 

modelling technique used to predict the TCDA and %IR is Quantile 

Regression (QR), Bayesian Quantile Regression (BQR) and Logistic 

Quantile Regression (LQR). 

 

1.1 Aims and Objectives 

 

The aim of this thesis is to derive statistical models based on the quantile 

regression method (QR) to better predict coating defect sizes and to 

interpret the indication signal (%IR) from the indirect assessment more 

precisely. This will help to promote the continual safety of the operation of 

pipelines while minimising costs. The current method of selecting indications 



5 
 

for further examination through excavation, is done with subjective input 

from an expert, i.e. it can vary from one person to another. The work done in 

this thesis aims to minimise such input where some of the models developed 

only considers continuous (numerical) variables. The level of corrosion and 

how it affects the size of TCDA and vice versa will be investigated to see if 

there is a correlation. If they are correlated, then by accurately predicting the 

size of a coating defect, one can also predict the amount of corrosion within 

that region.  Additionally, the outcome of the model generated in this thesis 

will be considered for the use of future ECDA projects. The specific 

objectives for reaching these aims are denoted below. 

• To develop of regression models based on QR to predict the size of 

coating defects using all available data within the MEOC ECDA 

indirect and direct assessment phase. 

• To formulate a regularised version of the QR models that may be 

generalised for application to other pipelines beyond the scope of 

this thesis. 

• To generate models using the BQR method to predict the %IR and 

TCDA which can be incorporated into future ECDA projects in the 

form of a prior distributions. 

• To investigate %IR based on the constrained method of LQR in 

ensuring the %IR readings are within bounds. 

• To investigate of the corrosion variable POPD using the LQR 

method to see how other variables which give rise to corrosion 

behave.  
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• To examine the effects of the POPD variable in other models within 

this thesis to see how it reacts with TCDA and %IR. 

• To generate a probability of excavation model by using logistic 

regression applied to corrosion and coating defects. This will serve 

as additional information for pipeline operators in their decision-

making process for selecting excavation sites.  

 

1.2 Summary of Methodology 

 

The data used for the analysis of TCDA, %IR and corrosion in this thesis 

comes from the Middle Eastern Oil Company (MEOC) pipeline ECDA data 

provided by TWI Ltd. All the variables that will be investigated in this thesis 

are based on this dataset. All statistical analyses done in this research was 

performed using the R statistical software. The packages used for the 

regression analyses are summarised as follows: 

• Quantile Regression 

o Name of Package: Quantreg (QR)  

o Version - 5.34 

• Bayesian Quantile Regression  

o Name of Package: BayesQR (BQR) 

o Version – 2.3  

• Logistic Quantile Regression 

o Name of Package: Robust Logistic Linear Quantile Regression 

(LQR) 

o Version – 1.7 
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Linear correlation analysis was performed to see if the variables are 

connected and based on these results the linearity of the models is 

determined. The results found from here (linear correlation) are not applied 

to the BQR part of the analysis since the main objective of this section is to 

find an initial form of knowledge (prior distribution) to be carried over to 

subsequent ECDAs.  

 

This research uses regression techniques in the investigation of the 

relationships between variables within the MEOC ECDA indirect and direct 

assessment phases. A QR method was chosen to characterise the 

dependent variable, e.g. the TCDA or the %IR, to give a complete picture of 

its distribution without relying on assumptions of the response distribution, 

e.g. a normal distribution. As in the case of the MEOC data, most of the 

dependent variable’s distribution is skewed and long tailed. QR is most 

effective in representing these types of distribution. Different approaches to 

QR such as BQR and LQR were also applied to the MEOC data for separate 

objectives. The BQR method allows the usage of prior knowledge to be 

incorporated within the current assessment. This is an attractive proposition 

since an ECDA is iterative in nature and updating results is key in the 

maintenance of pipelines. The LQR method solves the issue of predicting 

outcomes outside of its predetermined range. The usage of LQR was 

applied to %IR and POPD since these two variables are both percentages.  

The thesis flow can be summarised by the flowchart below. 
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Figure 1-1: Flowchart of Statistical Techniques used for the Analyses 
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1.3 Thesis Outline 

 

This thesis is divided into seven chapters. The first three chapters presents a 

description of previous research conducted on the prioritisation of defects 

from an ECDA. These chapters also highlight the differences and the 

advantages of using the methodology presented in this thesis. Analyses 

using the said methodology are presented in the following three chapters 

ending with a conclusion and suggestion of future work in the final chapter. A 

brief description of each chapter is as follows. 

• Chapter 2 describes an overview of the ECDA process and the tools 

used to conduct such assessments. It also highlights current and 

previous research on defect prioritisation from an ECDA which gives 

context and identifies the gaps and advantages in the current 

research presented here. Chapter 2 also touches on corrosion of 

pipelines which is the subject of interest in the current investigation. 

Additionally, the MEOC project and its dataset are described in this 

chapter. 

• Chapter 3 gives the present research methodology. The tools used to 

achieve the aims are predominantly regression techniques. The QR, 

BQR and LQR techniques are elaborated and justified for each 

separate objective.  

• Chapter 4 highlights the initial application of the QR technique to the 

MEOC ECDA data. The chapter starts from the correlation of the 

variables of interest followed by the construction of 2 models 

predicting TCDA. These two models are distinguished by the 
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inclusion of interaction variables. A following regularisation technique, 

particularly the LASSO technique, was conducted to further 

generalise these models. 

• Chapter 5 presents the models constructed from the BQR technique. 

BQR was used to take advantage of the iterative nature of an ECDA. 

By formulating models which result in posterior distributions, one can 

incorporate this with the subsequent ECDA process. The BQR 

technique is also compared to the regular QR method which results 

in similar predictions. 

• Chapter 6 provides an estimation of %IR based on the LQR method. 

The building of the model considers only continuous variables. This 

was done to limit the amount of subjectivity (such as one would get 

from using categorical variables such as soil properties). This chapter 

also takes lessons from chapter 5 where certain relevant variables 

are only needed for good interpretation of the dependent variable. 

Also, the dependent variable is bounded ensuring interpretation 

within a specified range (as opposed to the result obtained in Chapter 

5). A further analysis using the same LQR technique was used to 

formulate models for corrosion represented by the POPD variable. 

The effects of contributing factors to corrosion are investigated.  

• Chapter 7 summarises the results obtained from the previous three 

chapters and also suggests useful future research. 
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1.4 Contributions to Knowledge 

 

There are a few findings conducted in this research which can be of use in 

the form of additional knowledge for researches, pipeline operators and 

regulators alike. The novelty of this research lies in the approach taken by 

the Author in analysing the MEOC data set in achieving its objectives. These 

are listed below. 

• The relationship of TCDA and its contributing variables based on the 

MEOC data was modelled using QR and considering the non-linear 

relationship between the independent variables towards the 

dependent variable. Polynomial regression models were chosen to 

describe these relationships.  

• The effects of having Interaction and Non-Interaction variables within 

the QR model were compared and analysed. 

• A regularisation procedure in the form of the Least Absolute 

Shrinkage Selection Operator (LASSO) technique was conducted 

based on the Interaction and the Non-Interaction QR models. The 

resulting LASSO models showed that the Non-Interaction Model is 

more general than the Interaction model which follows closely the 

MEOC data structure between the %IR and TCDA. 

• Modelling was done with the Bayesian approach to QR highlighting 

the relationship between variables to %IR. The modelling used two 

datasets. One dataset is the original dataset while the other has 4 

points in the model removed by the author. This bases on the general 
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understanding of the DCVG system and the expected results one 

would obtain from a similar inspection assessment (higher %IR values 

are expected to have larger TCDA measurements and vice versa). 

Four models were generated from this procedure resulting in posterior 

densities that can be used for subsequent ECDA on buried pipelines.  

• Two more models were developed based on the BQR with different 

sets of variables and with the two datasets mentioned previously. 

Unlike the previous four models, these estimated the TCDA. Results 

from these models are useful in the form of a priori distributions to be 

used in the subsequent integrity assessment. 

• The formulation of the 𝑇𝑇𝑇𝑇𝑇𝑇 and the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 variables to show the 

justification for excavation for the MEOC ECDA project. These 

variables are later used in the logistic regression of the MEOC data to 

produce a probability of excavation. The model could be of use as a 

guideline in the selection of excavation sites for future ECDA 

endeavours.  

• The construction of a model to predict %IR with respect to its 

contributing factors was done using the LQR method. This overcomes 

the transgression of boundaries observed in Chapter 4 and 5. The 

resulting model is in parallel to that in Chapter 5 which indirectly 

supports the model’s validity. 

• Another model based on the LQR was also formulated but as 

opposed to the previous model, the intending outcome is the variable 

POPD.  
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Novel findings from this thesis includes: 

• Some degree of relationship between the DCVG technique (%IR 

readings) and corrosion dimension exists. The results of the 

relationship between TCDA and POPD highlights a negative trend 

which further supports the idea that %IR has some relation to 

corrosion. 

• Based on the findings from Chapter 4, 5 and 6 suggests that 

corrosion activity rate is more prominent than the growth of TCDA at 

its median depth. It is therefore suggested that for this set of pipelines 

(those belonging to MEOC) repair of coating defects should be done 

before the coating defect has reached its median size.   

To the best of the Author’s knowledge, the process of applying the 

approaches highlighted above has never been applied before towards any 

ECDA data. The novel findings from this thesis also shed some light into the 

stochastic nature of the evolution of corrosion pits. This was not known 

before and is only made possible by the usage of the approaches 

highlighted above. The resulting models are also of novelty since no 

previous model has ever been developed based on the said methods. 

 

1.5 List of Publication 

 

1. Making Use of External Corrosion Direct Assessment (ECDA) Data to 

Predict DCVG %IR Drop and Coating Defect Area – Paper accepted 
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for publication in the Materials and Corrosion Journal. This paper 

highlights the results obtained from the ECDA process which was 

conducted on 250km of buried pipelines. The results from the indirect 

and direct assessment part of the ECDA were modelled using the 

classical Quantile Regression (QR) and the Bayesian Quantile 

Regression (BQR) method to investigate the effect of factors towards 

the IR drop (%IR) and the coating defect size (TCDA). 

 

1.6 Hosts for Research (Industrial): TWI Ltd. 

 

The entirety of this research was done at TWI ltd. It is the industrial host for 

this Doctorate where it partners with Brunel University London through its 

subsidiary, The National Structural Integrity Research Centre (NSIRC). TWI 

Ltd. is a non-profit organisation which is membership based, championing 

training, research, technology and consultancy in the field of joining 

technology, integrity management and materials engineering. The Author 

was based in the Asset Fracture Integrity Management (AFM) section which 

is part of the larger Integrity Management Group (IMG). AFM conduct 

projects relating to Risk Based Inspection (RBI), Fitness for Service (FFS), 

Fracture Mechanics and software development.   

 

NSIRC is a first for the UK. The centre brings together industry and 

academia to promote research in structural integrity and engineering. More 

than 20 universities and two founding sponsors (BP and Lloyd’s Register 

Foundation) have collaborated with NSIRC since its inception in 2013. 
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Research conducted at NSIRC is industrially driven (working with real life 

projects) and is determined by the current needs of the industry. On top of 

this, academic supervision is provided by affiliating universities such as 

Brunel University London (which is the case for the Author) to ensure the 

research meets its intended purpose. 
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Chapter 2 

 

Literature Review on Integrity 

Management Techniques for Buried 

Pipelines 

 

2.0 Introduction  

 

Corrosion can be defined as a naturally occurring phenomenon that involves 

the deterioration of metal as a result of interaction with its environment [11]. 

Metals that are not in their natural state corrode. Metals which are do not. 

Gold and silver are examples where metals are in their natural state. The 

process of corrosion occurs when metals revert to their natural state [12], 

[13]. Energy is added to metal oxides to produce industry-usable metals 
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such as carbon steel. Corrosion is a process where energy is “leaking out” 

from the metal, reverting it to its natural state. Trace elements, for example 

chromium, may be added in metals such as stainless steel to slow this 

process by forming an oxide layer [14]. Although the rate is slowed, 

corrosion does still happen. Records have shown that the ancient Romans 

have applied tar to their steel as a form of protection against its environment 

which stops or slows down the process of corrosion [15].  

 

The issue of corrosion has become an increasingly important topic in recent 

years due to the escalating costs associated with the problem. Baker [16], 

has shown that there have been 1074 significant incidents since 1988 

occurring in both onshore and offshore pipelines in the USA associated with 

corrosion. Here, significant means the occurrence of fatalities or 

hospitalization and property damage. These incidents equate to a total cost 

of 0.5 billion dollars in damages. Another study in the United States by CC 

Technologies Laboratories, Inc., entitled “Corrosion Costs and Preventive 

Strategies in the United States [17]”, conducted from 1999 to 2001 with the 

support of NACE, found that the direct cost of corrosion in the U.S totals 

$276 billion which is approximately 3.1% of the country’s gross domestic 

product (GDP). A recent study by NACE within its IMPACT (International 

Measures of Prevention, Applications, and Economics of Corrosion 

Technologies Study) [18] group informs that in 2013, the estimated global 

cost of corrosion was 2.5 trillion dollars,  equating to 3.4% of the global 

Gross Domestic Product (GDP). If current corrosion mitigation measures are 

taken, there is potentially 15% to 35% (equivalent to 375 to 875 billion 
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dollars) of savings that could be realised. The study goes on to say that the 

high cost of corrosion has been known for years. One such study was 

conducted by Uhlig in 1949 [19] which showed that the cost of corrosion in 

the United States in 1949 was 2.5% of total GDP.    

 

Knowledge of the mechanisms of corrosion is imperative for the successful 

implementation of a corrosion management strategy. For corrosion to 

happen, four elements must be present, namely an anode, a cathode, a 

metallic path and the electrolyte [20]. If any one of these elements is not 

present within the electrochemical cell, then there will be no corrosion. 

Chemical reactions occur between the metal and the electrolyte at the 

anodic and the cathodic areas of the metal. At the anode area, metals tend 

to give up electrons (oxidation). The electron travels through the metallic 

path and is then picked up by the cathode (reduction). Essentially, what 

happens at the anode is the dissolution of metal into metal ions which reacts 

with elements in the electrolyte, in the case of iron producing rust.  

 

Different metals have different tendencies to give up electrons. For example, 

zinc has a higher tendency to give up electrons compared to copper. We call 

zinc more reactive than copper. This tendency is largely due to the amount 

of energy needed to extract the metal from its natural oxides. The force that 

drives metallic corrosion is called the Gibbs energy change. In corrosion 

terms, volts (V) are used to denote the driving force. Corrosion is favourable 

and can be exacerbated in some conditions. Examples include the exposure 

of carbon steel to hydrogen sulphide, H2S, which may or may not be 
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detrimental based on the H2S partial pressure [21]. Another example is 

where higher temperatures increase the rate of chemical reaction and the 

rate of the corrosion process. The effect of temperature on the corrosion rate 

of (e.g.) iron depends on its influence on the oxygen solubility, the solution 

viscosity, diffusion rates, oxidation rates and biological activity [22]. The 

aggressiveness of the corrosion process in saline solutions were looked at in 

[23] where structural steel specimens were exposed for two months to 

different samples of sea water with differing salinity. The study arrived at the 

conclusion that the aggressiveness of sea water in terms of corrosion is not 

only a function salinity but also of temperature, its pH, oxygenation, water 

flow and dissolved gases.   

 

Consequences to corrosion can be very substantial. The book by [11] 

categorises some of the consequences of corrosion into the following 

situations: 

• The shutdown of plants 

o In the event of a processing or power plant and refinery 

shutdown, the downstream effect will snowball to industry and 

the consumer.  

• Loss of containment (LOC) 

o The leakage of products can be detrimental to the environment 

and cause hazards in the surrounding area. In any water 

distribution network system, 25% of the water may be lost due 

to corrosion. 

 



20 
 

 

 

• Loss of efficiency 

o The corrosion product from the heat exchanger tubes tends to 

reduce the effectiveness of heat transfer and piping capacity 

due to build up in the surrounding metal. 

• Contamination 

o Corrosion products may contaminate products consumed by 

consumers and pose a health threat to society. 

 

As stated earlier, the consequences of corrosion can have severe 

implications for cost as well as damage to the environment. 

 

In modern times, corrosion is fought with a range of techniques which may 

be either simple and complex in nature. Simple but effective techniques 

such as applying coal tar, organic coatings and concrete on pipelines have 

been applied. Of all the approaches to preserving a pipeline from corrosion, 

the most important is Cathodic Protection (CP) [24]. This technique will be 

discussed in greater detail in the next section. Corrosion inhibitors are also 

used where their application is mainly for the prevention of internal 

corrosion. These work by forming a protective layer inside the pipe where 

corrosion is minimized (a form of internal coating) due to the inhibition of 

corrosion reaction. Apart from external techniques, the use of high resistant 

steel or corrosion resistance alloy (CRA) is also an option but this will likely 

result in higher manufacturing and construction costs (higher capital 
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expenditure) compared to carbon steel which will increase expenditure in 

term of operational cost [25].   

2.1 Cathodic Protection (CP) 

2.1.1 Background 

 

The use of zinc coatings for the protection of steel started in France as early 

as 1742 [26]. Steel was protected by dipping into molten zinc, a method 

called galvanizing. Cathodic protection was also introduced by Sir Humphry 

Davy in 1824 when he successfully demonstrated the protection of copper 

sheathing by iron rods (anodes) [27]. In his experiment, Davy showed that 

by electrically connecting two pieces of metals and submerging them in an 

electrolyte, one of the metals deteriorated (iron or zinc) at a faster rate while 

the other metal (copper) would remain in good condition. Based on this 

knowledge, Davy proposed to the British Navy to protect copper sheathed 

ships by attaching blocks of iron to the ship’s hull. As suspected by Davy, 

the result of this trial showed that copper was protected against corrosion by 

allowing the iron blocks to corrode. However, the cathodically protected 

copper is susceptible to marine fouling compared to the non-protected 

copper. Non-protected copper generates concentrations of copper ions 

(during degradation) which poisons marine life and prevents marine growth. 

Due to this, the British Navy rejected the proposal by Davy on the basis that 

fouling on the ship’s hull causes a ship’s speed to decrease. Davy’s work 

was later picked up by Robert Mallet in 1840 where he produced sacrificial 

anodes from zinc alloys. The zinc alloys worked well locally especially when 

preventing the galvanic effects coming from the ship’s bronze propeller. 
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When wood was replaced by steel hulls, all the British Navy’s vessels were 

fitted with this anode. In the 1950s, the Canadian Navy applied cathodic 

protection to their vessels in a combination of an anti-corrosion and anti-

fouling paint. The result from this combination showed that the usage of 

cathodic protection on sea vessels is possible and lowers the maintenance 

cost. The fuel costs for operation of these vessels was also shown to 

decrease due to the smoothness of the hull (without any fouling) which 

decreases the amount of drag exerted by the water.  

 

In the early 20th century, CP made its way into the pipeline industry. The 

very first such application started in England and the United States in 1910 – 

1912 [28]. The reason for this introduction was that pipelines are buried in 

corrosive environments. In addition, pipelines span hundreds of miles which 

makes protecting the entire length a challenge. To put this in perspective, in 

the US today, 2.4 million miles of pipeline are used to carry oil, gas and 

other petroleum products (the largest network of pipelines in the world) [29]. 

Due to these concerns, pipeline operators in the 1930’s introduced pipeline 

coatings and CP as means of preventing corrosion. Along the length of the 

pipeline, the soil’s characteristics were measured and the most likely 

locations for corrosion were identified. These hot spots received the most 

attention for coating and CP protection. In 1933, Kuhn proposed the first 

criterion for CP which states that pipelines should be polarised to -0.85V to 

ensure that corrosion does not occur [30]. This criterion has been accepted 

worldwide and is known as the protection potential criterion. 
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In buried pipelines, coatings are applied during construction or pre-coated 

before the laying of the pipe into its intended place. Coatings combat 

corrosion through several ways but mainly by isolating the metal of the pipe 

from the surrounding environment (good barrier properties which prevents 

the ingress of corroding species such as water and oxygen), restricting the 

flow of corrosion currents within a corrosion circuit and by allowing the CP 

current to counteract the corrosion process by supressing them (making 

them cathodic). [31] gives a guideline for the properties of an effective 

coating system for pipelines such as: possession of strong adhesion 

characteristics; tolerance of high operating temperatures; ability to withstand 

soil stresses and cathodic disbonding. A regulation in the United States, 49 

CFR 192.461 – External Corrosion Control: Protective Coating [32], 

exemplifies this further by stating that a protective coating should be applied 

on a prepared surface, have sufficient adhesion to the pipe (which resists 

the migration of under film moisture), have ductile properties to resist 

cracking, having sufficient strength to withstand the stresses of the soil and 

have properties compatible with the supplemental CP.  

 

Some of the best coatings are made from organic materials. The application 

of these coatings is not limited to pipelines but is applied to storage tanks, 

bridges, ships and marine structures. Organic coatings have been the choice 

for pipeline operators due to performance, corrosion resistance properties, 

strong adhesion to the structure, fast application and high abrasion 

resistance [33]. Types of coatings currently in use include coal tar enamel, 

polymeric tapes, fusion-bonded epoxy (FBE), spray-applied liquid coatings, 
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and two and three-layer polyolefin coatings, e.g. a three-layer polyethylene 

coating. Thompson and J. Saithala [34] have divided these coatings based 

on the time period it was developed. The first generation (since the 1920’s) 

of coatings includes coal tar enamel, asphalt, single layer polyethylene, two-

layer polyethylene, tapes and heat shrink sleeves (HSS). The second 

generation of coatings which began in the 1970’s are the single layer FBEs 

while the third generation of coatings which started in 1985 includes three-

layer polyolefin and dual layer FBEs. By having a CP system working with a 

coating system, a pipeline’s continual safe operation is ensured. The 

protection current needed for corrosion prevention is also reduced due to the 

coating’s ability to distribute the CP current along the pipe more evenly [35]. 

Additionally, some coatings allow CP currents to pass through them after the 

coatings have absorbed some water [36–38]. Due to this, protection current 

is able to reach and suppress corrosion even when the pipe is not fully 

exposed to the environment. 

 

During the installation of the pipelines, there is the possibility of coating 

damage as a result of improper handling. Excavator arms which are usually 

used to position the pipes in place have the potential to scrape some of the 

coating off. Unintentional scraping of pipe coatings can also happen during 

excavation of a buried pipe [39]. This breakdown in the continuity of the 

coating is often referred as coating defect or coating holiday. Besides the 

damage acquired during the installation and the excavation process, due to 

their organic nature, these coatings will eventually fail with time. Coating 

defects lead to the loss of adhesion between the coating and the pipe. 
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Electrochemical mechanisms such as coating disbondment and oxide lifting 

can be considered as one of the reasons for coating degradation [40]. At the 

location of coating defects, the CP current flows underneath the coating thus 

generating alkaline hydroxyl groups through the reduction of the cathode. If 

the coating is not suitable or is unstable for the CP system, these hydroxyls 

along with the pipe’s negative potential cause the coating to disbond (loses 

adhesion) from the pipe. The alkalinity generated from the cathodic reaction 

reacts with the organic polymer to disbond the coating at the metal coating 

interface [40].  The process will be amplified if the original coating defect is 

large. More current is drawn to the defect which exacerbates the problem. 

The oxide lifting phenomenon occurs due to the anodic corrosion product 

which accumulates underneath a coating defect. The corrosion product 

combined with the compacted oxides contribute to more of the coating being 

disbonded.    

 

Work was done by [41] where it was showed that a CP system is required as 

backup for a coating system due to the accelerated corrosion found at 

certain areas of the coated pipe. Another study by Riemer and Orazem 

found that corrosion at coating defects is much more severe compared to 

pipes with no coating at all. [42]. At coating defects, the exposed bare metal 

tends to be anodic while the adjacent metal underneath the coating 

becomes cathodic. A corrosion cell is then developed where the cathodic 

part of the metal is protected but the exposed section undergoes accelerated 

corrosion. Due to the potential difference created, corrosion is more 
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pronounced at locations where coating is missing whereas the cathodic part 

of the metal is protected even more. 

 

2.1.2 The Inner Workings of CP 

 

As was stated in the previous section on corrosion, metals have a tendency 

to give up electrons. It is a process by which the metal is inclined to return to 

its natural state as metal oxides. This reaction is called corrosion.  The 

generation of cathodic and anodic sites of a corrosion cell can be either from 

two different metals touching each other (metallic path) or from the same 

piece of metal where micro corrosion cells are created due to the variations 

in metallurgical properties across the surface. The availability of oxygen is 

also a factor. Oxygen rich areas of the surface of steel will tend to become a 

cathode and thus protect it from corrosion, and an anode is formed where 

the oxygen supply is depleted [43]. Corrosion only occurs at the anodic site 

of the corrosion cell. A common example of the reaction at the anodic side of 

iron: 

 

 𝑭𝑭𝑭𝑭 →  𝑭𝑭𝑭𝑭𝟐𝟐+  +  𝟐𝟐𝑭𝑭− 2.1 
 

Iron giving up electrons is called oxidation. The free electrons are then 

channelled through a metallic path to the cathode area where a cathodic 

reaction takes place. There are two cathodic reactions based on the pH of 

the electrolyte. In neutral solutions or seawater, the reaction is: 
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 𝑶𝑶𝟐𝟐  +  𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 +  𝟒𝟒𝑭𝑭−  →  𝟒𝟒𝑶𝑶𝑯𝑯− 2.2 
 

Hydroxyl ions are produced while in acidic conditions the reaction is: 

 

 𝟐𝟐𝑯𝑯+  +  𝟐𝟐𝑭𝑭−  →  𝑯𝑯𝟐𝟐 2.3 
 

Hydrogen gas is produced.  

 

If there is a change to a structure, either by supplying or withdrawing the 

number of electrons in equation 2.1 and 2.2, the reaction will also change. It 

is a well-known principle, that whenever there is a change in an equilibrium 

system, the system will try to adjust itself back to its original equilibrium state 

[44], [45]. For example, if electrons are withdrawn in a structure, the reaction 

rate in equation 2.1 will increase due to the system trying to compensate for 

the loss of electrons. Similarly, if electrons are added to a structure, equation 

2.1 will decrease and equation 2.2 and 2.3 will increase based on the pH of 

the electrolyte [44], [45].  

 

An electrode is said to be not in its equilibrium state when there are currents 

(electrons) flowing to or from its surface. In a galvanic cell, the flow of these 

currents alters the potential between the electrodes where the anode tends 

to be more cathodic and the cathode becomes more anodic. As the flow of 

currents increases, the potential difference between the electrodes 

decreases. This change of potential either for the anode or the cathode is 

called polarization.  
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Cathodic protection builds on these 2 aforementioned concepts. The 

cathode is polarized by supplying current (electrons) from an external source 

so that the potential equals the thermodynamic potential of the anode. At this 

stage, the anode and the cathode are said to be equipotentials. Since the 

anode is at its thermodynamic potential, corrosion will not occur. A cathodic 

protection system works by bombarding the corroding metal (whose 

protection is intended) with current using an external power source. An 

auxiliary anode is connected to the pipe through a metallic path which is 

normally of low resistance. Auxiliary anodes can be in the form of a galvanic 

anode or an impressed current anode. The current in a galvanic anode 

stems from the potential difference between the two metals (the pipe and the 

auxiliary anode) and the current from the impressed system comes from an 

external DC power normally through a transformer rectifier unit [43]. Current 

then leaves the auxiliary anode, passes through the soil (electrolyte), 

polarises the metal (that needs protection) and returns to the current source 

(external). If conditions are favourable, the system can be 100% effective in 

combating corrosion since the anode has returned to its original 

thermodynamic potential. Metal ions are prohibited from entering the 

electrolyte because of the current supplied by the external source which 

supresses the ions to remain at the anode. As long as the metal (anode) is 

kept at this potential, then corrosion is impossible [24].  

 

2.1.2.1 Sacrificial Anode System (SAS) 

 



29 
 

SAS, also known as galvanic systems, uses sacrificial anodes (SA) for the 

generation of protective currents. When the SA goes through an anodic 

reaction, electrons are released (oxidation) producing current which flows in 

the electrolyte to the cathode (reduction reaction). As the SA undergoes this 

reaction it is essentially sacrificing itself to protect the structure. The rate of 

degradation of the anode depends on the potential difference between the 

anode and the cathode. Figure 2-1 below shows a schematic of a typical 

layout of a SAS system.  

 

Figure 2-1: Typical SAS layout (image taken from corrosion-in-rod-
pumped-wells.wikispaces.com) 

 

The size and physical characteristics of the SA are based on the amount of 

surface area of the structure that needs protection. The types of SA in 

common use to protect carbon steel are magnesium, zinc and aluminium. All 

of these have different current densities and potential. Selection of a certain 

type depends on a number of factors such as the electrolyte’s resistivity, 

required current density and the length of protection. Advantages of SAS is 

that it is normally cheap to install with little maintenance thereafter. 
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Moreover, it is portable since it does not require an external source of power. 

The main disadvantage of a SAS system is that the driving force is low 

compared to an impressed system. Additionally, with higher soil resistivity 

the lack of output becomes even more of a problem. However, in certain 

situations, the low voltage output can be an advantage compared to an 

impressed system in that the threat of overprotection is reduced. Also, due 

to its low output value, the possibility of interfering with adjacent pipelines 

through stray currents is also reduced. 

 

2.1.2.2 Impressed Current Cathodic Protection (ICCP) 

 

In an ICCP system, an external current is supplied to the cathode through 

the auxiliary anode. This external current is supplied through a 

transformer/rectifier which lowers the voltage and converts alternating 

current (AC) power to direct current (DC).  The current produced by the 

transformer rectifier creates a potential difference and current is passed from 

the anode (oxidation) through the electrolyte to the cathode (pipe to be 

protected). Currents from the cathode then travel through the low resistant 

wire back to the transformer/rectifier which completes the circuit. The 

accumulation of current from the external source at the pipe surface makes it 

negatively charged (polarized), up to the point where only cathodic reaction 

(reduction) takes place. If too much current is supplied to the structure, the 

pH of the catholyte changes and will eventually lead to hydrogen evolution. 

Normally, a limit of -1200mV polarization is applied to pipelines to prevent 

this phenomenon. The evolution of hydrogen has the potential to initiate 
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cracks and also cause the coating to disbond (at coated pipes). In water with 

high dissolved chlorides (high salinity), chlorine can be evolved at the anode. 

Chlorine gas poses a serious health threat to humans (if inhaled) and  

working in such an environment should be performed with care [45]. Figure 

2-2 shows the arrangement for a typical ICCP setup for buried pipes.  

 

 

Figure 2-2: ICCP System for a pipeline (image taken from 
http://encyclopedia.com.my/category/technology/) 

 

In a typical buried pipeline arrangement, the anode is made from materials 

such as graphite, lead alloys, high silicon iron, mixed metal oxides (MMO) 

and scrap iron [45]. If scrap iron is used as the anode, then the anode 

follows equation 2.1. The anode is then categorised as a consumable 

anode. But if the anode is electrochemically inert the electrolyte will be 

oxidised (lose electrons) and follow the following equation: 
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 𝟐𝟐𝑯𝑯𝟐𝟐𝑶𝑶 →  𝑶𝑶𝟐𝟐  +  𝟒𝟒𝑯𝑯+    +  𝟒𝟒𝑭𝑭− 2.4 
 

The biggest advantage of having an ICCP system installed is that it can last 

a long time (for electrochemically inert anodes) and provide greater driving 

force in terms of providing protection current to the structure. The application 

is most suited where high soil resistivity is encountered. An ICCP system 

can also cover great lengths of pipe having one system every few 

kilometres. One ICCP system can also cover several pipes from one 

location. Moreover, the user can control the amount of current being applied 

to the pipeline therefore regulating the amount of protection needed based 

on the characteristics of the environment. As opposed to SAS, once the 

system is installed, there is no way of modulating the amount of current it 

produces other than the initial current that the operator has previously 

determined. There are downsides to the usage of an ICCP system which 

were highlighted earlier. Examples such as hydrogen evolution, chlorine 

evolution and coating disbondment are the result of incorrectly applying too 

much protection (over protection). This however can be avoided by following 

international standards for proper usage and understanding the mechanisms 

of corrosion in a given environment. 

 

2.1.3 Coatings as Means of CP Current Distribution 

 

Pipelines with no coating receiving cathodic protection will be protected from 

corrosion but the location of such protection is not distributed evenly. The 

improvement of the distribution of protective currents along the length of the 
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pipeline can be achieved by coating the pipeline. Coatings can range from 

organic coatings (for normal temperatures) or glass coatings (at elevated 

temperatures). Protective currents are drawn to coating defects which 

ensures protection of the pipeline where the metal substrate has been 

exposed to the corroding environment. Additional benefits of protecting 

coated pipes are that the current requirement for complete protection is less 

and thus more coverage of protection is possible. Moreover, the lower 

required protection current leads to fewer auxiliary anodes being used, 

which translates into reduction of cost. Soil is regarded as an electrolyte with 

good electrical conductivity. Because of this, one magnesium anode is able 

to protect 8km of coated pipeline compared to only 30m of protection for 

uncoated pipeline. With the addition of an impressed current system, one 

magnesium anode can cover 80km of pipeline, 10 times more than SAS. 

The governing limit to the coverage of one anode is based on the metallic 

resistance of the pipe and not on the soil resistivity.     

 

2.2 External Corrosion Direct Assessment (ECDA) 

 

The safe continual operation of a pipeline depends on its structural integrity. 

External Corrosion Direct Assessment (ECDA) is intended to maintain this 

(mandated) level of safety by having a structured process which assesses 

and reduces the threat of external corrosion. ECDA seeks to identify and 

rectify corrosion activity proactively by repairing corrosion defects and 

eradicating its causes. By doing so, the ECDA process limits the growth of 

defects so that they do not affect the overall pipeline integrity. The 
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application of ECDA must be continuous. Iterative assessments are done 

periodically to ensure continual improvements to pipeline integrity. From the 

continuous process of ECDA an assessor is able to locate corrosion which 

has happened, is currently happening and the locations of possible future 

corrosion. 

 

Initially, ECDA was introduced as an alternative method for assessment of 

the integrity of pipelines. It was intended to be used on pipelines that were 

not piggable and were not subjected to pressure testing. Nowadays, the 

method is becoming ever more popular and most pipeline operators use the 

method to assess the integrity of buried pipes. Traditionally, pipeline 

operators relied on inspection techniques such as Closed Interval Potential 

Survey (CIPS), Direct Current Voltage Gradient (DCVG), Pipeline Current 

Mapper (PCM) and Alternating Current Voltage Gradient (ACVG) to identify 

locations of possible corrosion activity. ECDA takes these methods and 

organizes them in a more systematic way. Characteristics and operating 

history of the pipeline (pre-assessment) are integrated with the field 

investigation (indirect assessment – the aforementioned techniques) and 

inspection of the pipeline’s surface (direct assessment). After this is done, an 

evaluation (post assessment) on the condition of the pipeline is conducted 

based on all the findings from the previous steps. Thereby, a more 

comprehensive outlook on the “health” of the pipeline is achieved [8]. The 

following is the detailed description of the steps of an ECDA. 
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2.2.1 Pre- Assessment 

 

In this stage of the assessment, a thorough study on the pipeline’s 

characteristics such as the physical dimensions of the pipe, its operating 

pressures, temperature, the material of the pipe, etc. is carried out. The 

environment of the pipeline is also looked at and parameters such as soil 

resistivity, terrain features and other nearby structures are analysed and 

annotated. Other factors to consider are the pipeline’s operating history and 

previous ECDA results (if available). This information helps the assessor to 

determine if an ECDA is suitable for the assessment of a particular pipeline. 

The selection of indirect techniques to be used is also determined at this 

stage. If the assessment shows that the pipeline is buried underneath a river 

or is situated on private property, for example, techniques such as ACVG, 

and access permission from landlords are required.  

 

2.2.2 Indirect Assessment  

 

This stage of the assessment uses the indirect techniques previously 

mentioned. Locations of where to conduct such an assessment are 

determined from the pre-assessment stage. The purpose of inspection at 

this stage of the ECDA is to identify if there are any coating defects (through 

DCVG or ACVG) where corrosion is likely to occur. Also, the level of 

protection that the pipeline is currently receiving is determined (by 

conducting a CIPS assessment). By combining these two streams of 

information, an assessor is able to determine the most probable locations of 
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corrosion activity. Locations which show inadequate cathodic protection 

coupled with the absence of coating lead to a high possibility of corrosion. 

The ECDA requires both of these inspection techniques to be done one after 

the other with little time in between. Some specifications advise on using 

three assessment techniques rather than two. The advantage of using three 

methods is that the prioritisation of locations which needs the most attention 

can be determined. The determined locations are normally reserved for the 

slowest technique which is normally the DCVG.  

 

2.2.3 Direct Assessment 

 

Findings from the Indirect Assessment step is considered for this step of the 

ECDA. Locations of where corrosion is suspected to be worst are 

determined (from the indirect assessment step) and excavations of these 

sites is conducted to investigate the severity of defects. The excavation sites 

are termed bell hole sites since the excavation is shaped like a bell. At these 

excavation sites, a direct inspection of the pipe surface is possible and the 

accuracy of the results from the indirect techniques is determined. To see 

whether the results obtained from the indirect methods completely 

correspond to the actual physical findings, random excavations are 

conducted at locations where there were no indications indicated from the 

indirect assessment. Direct examination within these bell holes includes 

measurements of the soil resistivity, corrosion dimensions, coating defect 

dimensions, deposits accumulated underneath coatings, the type of soil 

within the pipe’s environment, the pH of water (if present) in the bell hole and 
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the pH of water underneath a defected coating. Also at this step, corrosion 

and coating defects are repaired before moving on to the next step.  

 

2.2.4 Post Assessment 

 

This step of the assessment determines the effectiveness of the previous 

three steps. Consequent iteration of the inspection process is also 

determined to ensure that defects found would not reach such a critical size 

as to jeopardize the pipe’s integrity. Also, an estimate of the remaining life of 

the inspected pipeline is determined and recommendations for pipeline 

integrity management are made.  

 

2.3 Indirect Assessment Techniques 

 

The above ground indirect assessment is used for the 2nd step of the ECDA 

process. Assessments are done above ground where no physical contact 

(except for CIPS – contact to the pipe is achieved through a trailing copper 

wire) exist between the inspection instrument and the pipeline. The 

inspection is based on the CP system giving off currents to the pipeline thus 

producing voltage drops (%IR – coating defects) and the pipe-to-soil 

potential which is distributed along the length of the pipe. The following are 

the most popular indirect techniques that are practised in industry today.  

      

2.3.1 Current Mapper (Attenuation) 
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The method is sometimes referred to as the Pipeline Current Mapper (PCM). 

This indirect technique is aimed at determining the condition of the pipeline’s 

coating. The technique works by transmitting current from one end of the 

pipe and receiving it at distances further down the length of the pipe. In a 

way, it tries to replicate the current received by the pipeline in the CP 

system. The receiver takes measurement at incremental steps away from 

the transmitter. These measurements are then plotted on a graph to see the 

behaviour of the current attenuation with respect to distance. As the current 

travels along the pipeline, a steady rate of attenuation is observed indicating 

a pipe which has good coating conditions. At locations of coating defects, 

the drop in current attenuation is sudden due to the large amounts of current 

being consumed to protect the exposed metal substrate – much like a CP 

system where currents are drawn to the location of coating defects. The rate 

of this drop can be used as an indicator to the severity of the coating defect. 

Patterns and trends from the plotted graph also show the distribution of 

current for the entire length of the pipe under inspection. This can be 

advantageous since the trend is similar to that one would expect when the 

pipe is under the protection of cathodic current. Therefore, locations of 

underprotection can be determined and rectification is possible. The CIPS 

procedure also has this ability. This will be discussed in detail in the next 

paragraph. 

 

2.3.2 Close Interval Potential Survey (CIPS) 
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The main aim of a Close Interval Potential Survey is to assess the working 

capacity of the CP system. Traditionally, measurements of the pipe-to-soil 

potential are taken at test posts where an electrical cable (providing 

electrical contact) is attached to the pipe. The measurements taken at a test 

post is a measure of the CP performance only at that location and do not 

include potential readings in between the test posts. For this reason, CIPS 

was developed to assess CP performance in-between test posts so a 

potential profile can be developed to identify faults of under protection of the 

system and possibly locate coating defects.  

 

The survey is referred as close interval due to the closeness of each interval 

when making potential measurements. These measurements are taken 

using reference electrodes which themselves have their own potential value. 

For the purpose of standardising the measurements, electrodes are 

calibrated based on the reference electrode potential at the start of each 

survey. The selection of the type of electrode to be used depends largely on 

the type of electrolyte in which the pipe is residing in. Normally-used 

electrodes range from copper – copper sulphate (Cu/CuSO4) to silver – 

silver chloride (Ag/AGCl).  

 

CIPS is conducted by a surveyor who uses reference electrodes attached to 

the bottom of a walking cane to take potential measurements by stabbing it 

to the ground along the traverse of the pipeline route. For the completion of 

the electrical circuit, the surveyor carries a trailing copper wire attached to a 

test post at one end and attached to the electrodes at the other. Current 
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supplied by the ICCP system is interrupted for the surveyor to take two 

measurements – the ON potential and the OFF potential.  The reason why 

two measurements are taken is due to IR error caused by the indirect 

technique itself. Soil in-between the reference electrode and the pipeline will 

contain the generated voltage gradient due to the current being supplied by 

the CP system. Because of this voltage gradient (error) accurate readings 

are not obtained during the ON potential. Therefore, an OFF potential 

reading which eliminates the voltage gradient is preferred as it is a truer 

representation of the pipe-to-soil potential. Well-developed criteria specify 

that a cathodically protected pipeline should have a potential of -850mV and 

a maximum of -1200mV OFF potential for sufficient protection [9] [46]. 

During CIPS, an interrupter is used to interrupt the current supplied to the 

pipe. However, if the CP system is left in the OFF mode too long, there is 

concern about depolarising the pipe where corrosion might initiate. To 

prevent this from happening, a 4 second cycle is introduced, 3 seconds of 

which will be in the ON mode and 1 second in the OFF mode. This has 

shown to be a very efficient way to collect measurements of the OFF 

potential without significantly depolarizing the pipe. After taking close interval 

measurements of pipe-to-soil potential, the data are plotted to produce a 

potential profile along the length of the pipe. An example of the potential 

profile can be seen in Figure 2-3. The plot can be categorised as three 

different types namely Type 1, Type 2 and Type 3 [47], [48].  
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Figure 2-3: CIPS Data from the Field Showing Different Types of Defect 
A type 1 defect can be considered a minor defect where the ON and OFF 

potential is still below (more negative) than the -850mV criterion (NACE 

SP0169-2007). CP protection here is unsatisfactory and a further drop in 

potential (more positive) relates to an unprotected segment of the pipe. This 

area is susceptible to corrosion if the pipe coating is also unsatisfactory. 

Type 2 describes the OFF potential to more positive beyond the set criterion 

while the ON potential is still within limits. It represents an unprotected area 

and could be detrimental to the pipeline integrity. A drop in potential (more 

positive) in type 2 areas can also mean the pipe coating or the soil has a 

high electrical resistance at this location. The drop in potential can be 

rectified by increasing the amount of current supplied to the pipe at the 

nearest test station. Type 3 relates to locations where both the ON and OFF 

potential has gone beyond the -850mV criterion. The protection here is 

inadequate and more current is needed to overcome this drop. The 

indication can also be used to infer a coating or pipeline defect [48]. The 

CIPS primary purpose is to assess the performance of the CP. While it can 

Type 1 Type 2 

Type 3 
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give indications of coating defects and possibly corrosion, it needs additional 

techniques for validation.       

 

2.3.3 Direct Current Voltage Gradient (DCVG) 

 

In the previous section, it was highlighted that CIPS uses pipe-to-soil 

potential as the variable for measurement. In a DCVG survey, the main 

focus is on the soil-to-soil potential survey. The technique is also conducted 

above ground along the pipeline but in contrast to CIPS, no electrical 

connection is needed to the pipeline. The main purpose of a DCVG survey is 

to locate coating faults or defects. A DCVG survey is not only used to find 

locations of defects but to also measure their severity in terms of their size. 

The survey is conducted in close intervals much like the CIPS. Due to this, it 

is ideal to conduct both techniques on the same pipeline as part of the 

fulfilment of an ECDA phase 2. The requirement is that for an ECDA, at least 

two aboveground inspection techniques are to be applied for indirect 

measurements [8].   

 

Consider a scenario where a pipeline (bear with no protective coating) is 

cathodically protected by an ICCP system. Currents are flowing from the 

anode to the cathode through the soil and onto the pipe. The movement of 

currents in the pipeline (cathode) produces voltage gradients in the pipe 

itself and the surrounding soil. The voltage is at its peak at the pipe and 

gradually reduces as one moves away from the pipe (into the soil).  The 

gradual reduction in voltage is called the voltage gradient. This voltage 
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gradient is regarded as the difference between the pipe-to-soil potential 

relative to remote earth. Voltage gradients are only seen at coating defects 

(resembling the bare pipe mentioned above) along the pipeline. This is 

because the current from the anode flows to these imperfections thus 

increasing the local potential. In a perfectly coated pipe, currents still flow to 

the pipe through the coating (all coatings are organic hence not 100% 

insulating) in small quantities but these potentials are negligible. The DCVG 

reading of voltage gradients on top of a perfectly coated pipe will indicate 

zero (very close to the remote earth potential).  The DCVG equipment 

consists of a voltmeter and normally two walking canes (similar to CIPS). 

Attached at the bottom of these walking canes are two copper – copper 

sulphate, Cu/Cu SO4, reference electrodes, one on each side.  

 

At defect locations the pipe to soil potential will be high because of the 

current flowing to it. The DCVG surveyor will pick this up with his voltmeter 

due to the fact that there are potential differences between the soil potential 

and the remote earth potential. This is what is meant by soil-to-soil potential. 

The defect will produce a spherical voltage gradient which radiates away 

from that defect. The surface of these voltage gradient spheres (also called 

equipotential lines) represents a constant potential. Voltage gradient which 

are close to the defect are closely packed together but as the distance 

increases away from the defect the voltage gradient tends to be spaced 

much further apart. This indicates the rate of voltage drop is abrupt near a 

defect but slowly levels off further away from the centre. See Figure 2-4.  
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Due to the voltage gradient produced by the defect, a DCVG surveyor is 

able to read the voltage drop and pinpoint the location of defects. The above 

ground surface is considered to be the in-plane voltage gradient as it cuts 

through the spherical equipotential lines. Figure 2-4 shows an illustrative 

example of these equipotential lines. 

 

 

Figure 2-4: Plan View of The In-plane Voltage Gradient Spheres 
(equipotential lines) Generated at the Ground Surface (image taken 
from DC-Voltage Gradient (DCVG) Surveys Using MCM’s Integrated 

Pipeline Survey Test Equipment and Database Management Package) 
 

The percentages in Figure 2-4 represent the potential as a percentage of the 

maximum potential directly above the pipe. As one moves away from the 

centre, the potential percentage drops quite quickly near the centre then 

drops more slowly.  
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A DCVG survey is conducted by first interrupting the current flow with an 

interrupter. The interruption should have an asymmetric cycle which normally 

consists of a longer ON potential and shorter OFF potential. The ON 

potential during the interruption ranges from 4000mV to 6000mV. The high 

potential is used to aid the DCVG surveyor in detecting defect equipotential 

lines and to have ample time to read the movement of the pointer on his 

voltmeter. Also, the interrupter is used to capture the DCVG voltage which is 

the true voltage generated by the CP current flowing to a defect. DCVG 

voltages are useful in assisting the surveyor to interpret the severity of 

defects. More on this will be discussed in the following. The survey is done 

along the pipeline route by initially setting the voltmeter to zero. The 

surveyor walks the pipe route with the two walking canes and their reference 

electrodes touching the ground surface one after the other. The left-hand 

probe will be placed directly on top of the pipe while the right-hand probe will 

be placed 5 feet away. As the surveyor approaches a defect, the needle on 

the voltmeter will start to swing either in the positive or negative direction 

based on the direction of the flow of current. This swinging effect is due to 

the ON and OFF cycle applied by the interrupter with the OFF potential 

showing a zero reading and the ON potential illustrating the soil-to-soil 

potential for that location. The closer the surveyor is to the defect the higher 

the voltage reading will be. When the defect is located directly underneath 

the surveyor, the needle movement will stop swinging and will indicate the 

maximum potential reading. As he walks on, the needle will start swinging 

again but with different polarity. This is also due to the direction of current 

flow which flows in a different direction from before the defect.  If the 
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surveyor walks away from the defect, the reading will go back to zero.  The 

swinging action and change in polarization allow the surveyor to determine 

the exact location of the coating defect. It has a precision of up to 6 inches 

from the epicentre.  

 

After the defect is located, it is essential to determine its severity. The first 

step is to quantify the total millivolt (total mV) across the equipotential lines. 

This is done by initially recording the maximum millivolt (max mV) which is 

the potential directly above the defect where the left-hand cane is directly 

(ideally) above the defect and the right-hand cane is 5ft away (laterally). 

After the max mV has been recorded, the left-hand cane is then positioned 

at the previously positioned right hand cane while the right-hand cane is 

again spaced 5ft away from the left cane. This is repeated several times until 

the potential reaches zero. All the different potential readings from the 

different positions are then summed (Total mV) and divided by the average 

potential reading at the defect location between the test posts (if the defect is 

midway between test posts). If the defect location is not midway, linear 

interpolation is used as an approximate for the defect’s IR drop. The 

calculated %IR value is given in the following equation. 

 

 
%𝑰𝑰𝑰𝑰 =

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 𝒎𝒎𝒎𝒎 (𝑺𝑺𝑻𝑻𝑺𝑺𝑻𝑻 − 𝑻𝑻𝑻𝑻 − 𝑺𝑺𝑻𝑻𝑺𝑺𝑻𝑻)
𝑰𝑰𝑰𝑰 𝑫𝑫𝑫𝑫𝑻𝑻𝑫𝑫 𝑻𝑻𝑻𝑻 𝑻𝑻𝑻𝑻𝒍𝒍𝑻𝑻𝑻𝑻𝑺𝑺𝑻𝑻𝒍𝒍 (𝑷𝑷𝑺𝑺𝑫𝑫𝑭𝑭 − 𝑻𝑻𝑻𝑻 − 𝑺𝑺𝑻𝑻𝑺𝑺𝑻𝑻)

⦁ 𝟏𝟏𝟏𝟏𝟏𝟏 2.5 
 

 

Depending on the percentage IR obtained, the surveyor may classify the 

percentages into categories. The categories serve as basis whether further 
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examination is required which may include excavating the site where the 

defect was discovered. Category 1 is considered a small defect. The 

percentage range runs from 0 to 15%. Category 2 then follows classifying 

the defect as medium. The percentage range is from 16% to 35%. Lastly the 

medium-large category is category 3 with range from 36% to 60%. For 

defects found greater than 61%, immediate action is to be taken involving 

excavating the site and conducting a thorough inspection of the defect. It 

must be kept in mind during a DCVG survey that the technique is only an 

indicative method. The calculated percentage IR is only an indication to the 

surveyor and should not be taken as absolute. The categories mentioned 

earlier are further explained in the following: 

 

• Category 1: 1 to 15%IR – The criticality of coating defects in this 

category is low which suggests repair is not needed. The CP 

protection current should be sufficient to protect the affected areas. 

• Category 2: 16 to 35%IR –  Coating defects in this category are 

similar to the previous category which considers it as low threat. 

Repair of defects within this category is recommended but not 

necessary. Due to the fluctuations of the output current coming from 

the CP system, defects are monitored for its growth as it might end up 

in a situation where the amount of protective current supplied from the 

CP are insufficient.  

• Category 3: 36 to 60%IR – Unlike the previous two categories, 

defects in this category are considered serious and repair is 

recommended. Monitoring of these defects is highly recommended as 



48 
 

they are large consumers of CP current. Additionally, the fluctuation of 

the supplied CP current has the potential to undermine the structural 

integrity of the pipe.  

• Category 4: 61 to 100%IR – This category of defects requires 

immediate attention for repair. It is a very high consumer of CP 

current and coupled with the possibility of its supply being low, 

corrosion will develop, and which will jeopardise the safe operation of 

the pipeline.  

2.3.4 Alternate Current Voltage Gradient (ACVG) 

 

The ACVG technique borrows the same principle from the DCVG 

assessment. Its objective, similar to the DCVG inspection, is to detect 

coating defects. The main difference is that alternating current is used in 

place of direct current. Alternating currents are generated by a transmitter of 

high or low frequencies. Other differences are that instead of having 

electrodes handled by the inspector, the electrodes of an ACVG inspection 

are mounted on an A-Frame. The width of the A-Frame is approximately half 

the distance of the manually handled electrodes. The DCVG and ACVG 

techniques are the most accurate methods for locating coating defects 

compared to other indirect techniques such as PCM. For the sizing of 

defects, DCVG is the only method which can reliably indicate a defect’s 

severity. 
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2.4 Research on External Corrosion of Buried Pipelines under 

Cathodic Protection 

 

Soil has the ability to affect the integrity of underground structures such as 

pipelines, foundation pilings and water mains. The primary cause of 

deterioration of integrity for these structures is soil corrosion. According to 

Yahaya et.al [49] soil corrosion is the deterioration of metal due to the 

chemical, mechanical and biological action of the soil’s environment. 

Research has been conducted [50–53] which investigated and identified the 

factors that contributes to the external corrosion of buried pipelines. Factors 

such as the soil texture, moisture content, the soil’s pH, the degree of 

aeration, temperature and the resistivity were all found to be a contributing 

corrosion factor.  

 

An investigation by A.I.M. Ismail [54] showed that corrosion occurs in buried 

structures due to the unfavourable interaction between soil and water. The 

paper also highlights that the particle size of the soil, swelling, shrinkage and 

clay mineral content all having contributions towards corrosion. Also on the 

theme of soil characteristics, Benmoussa 2006, [55] found that corrosion in 

buried pipelines is influenced by the soil resistivity, pH value, moisture 

content, the temperature of the surrounding environment and the chemical 

composition of the soil itself. The experiments showed that steel corrodes 

more readily in acidic environments and at higher temperatures. Although 

pipelines are inhibited against corrosion by cathodic protection with a -0.850 

mV potential, corrosion still occur.  
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The variable soil resistivity has become an important factor in determining 

the corrosion rate of a buried pipeline. Investigative work has been done by 

[56] which shows that corrosion reaches its maximum at 65% of the moisture 

content of the soil. This can be termed the critical soil moisture content (with 

respect to corrosion). Further work by [57], [58] has classified soil corrosivity 

by the values of the respective soil resistivity. However, in the work reported 

by [59] it is highlighted that the soil resistivity factor is not the only factor in 

determining corrosion. Pipeline corrosion is a random phenomenon and 

could be governed by more than this parameter. Apart from soil resistivity, 

corrosion can also be due to microbes such as sulphate reducing bacteria 

(SRB). This phenomenon was first observed by [60]. After this discovery, the 

pipeline industry started to recognise that microorganisms have an effect on 

corrosion. The corrosion term is sometimes referred to microbial induced 

corrosion or MIC for short. 

 

Various research has also investigated the corrosion underneath coatings at 

locations of coating defects and disbondment. The phenomenon is termed 

as crevice corrosion and can also lead to stress corrosion cracking of the 

pipeline. Crevice corrosion is a localised corrosion defect where water or 

other solution is stagnant within the crevice gap. Within these gaps, a 

restricted oxygen reduction (cathodic) reaction thus produces an anodic 

environment instead. This creates a highly corrosive microenvironment 

which is conducive for further metal degradation  [61]. At coating defects, the 

edges of the defect tend to peel away causing the detachment of the coating 
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from the pipeline. If excessive protection current is applied to the pipeline, 

the disbondment will grow as the alkaline state of the area interacts with the 

adhesive resulting in its ineffectiveness. Disbondment around a coating 

defect seems to be of little concern since the coating is still present. 

However, sometimes the CP current is unable to reach these crevices due to 

the shielding effect of the coating. The size of disbondment is also said to be 

dependent on the level of cathodic protection current, the type of coating and 

the species present within the affected area [62]. Additionally, when there is 

no coating defect but disbondment of the coating is present, the shielding 

effect of the coating reduces the effectiveness of the CP protection current 

but no corrosion is observed due to the coating resistance isolating the metal 

substrate from the surrounding environment [5].  

 

2.5 Previous Research on Prediction of Coating Defect Area 

 

US federal regulations [10] have stipulated that pipeline operators should 

produce criteria for the identification and documentation of indications from 

an indirect assessment technique which will be considered for further 

assessment (direct assessment through excavation). The criteria also serve 

to define the urgency of the subsequent inspection based on the 

documented and identified indications. One of these criteria could be based 

on the defect’s severity. As mentioned before, to a certain extent the current 

DCVG tool is inaccurate in classifying defect sizes. Prioritisation can only be 

done when the predicted size of defects is accurately represented. Hence it 
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is imperative that a working method is established to comply with the 

regulations and to promote safety and financial prudence.  

 

The determination of coating defect areas on pipelines has not yet been a 

popular research theme in the pipeline industry. Although this is crucial, the 

industry tends to rely on expert judgement on where to excavate based on 

DCVG indications, a risk-based profile of the likelihood of corrosion activity 

and on pre-assessment data. Efforts were made in correlating indirect 

assessment and the direct assessment data in the form of a statistical 

model. The most notable of this is [63]. In this paper, a linear quantile 

regression was used to model the relationship between the coating defect 

area and its possible contributors. The paper also sheds light on the 

challenges faced by pipeline operators when interpreting DCVG indications. 

The contributing factors are also influenced by other uncontrollable variables 

such as stray currents and interference from overhead AC lines.  

 

J.P,Mckinney [64] has produced a model which estimates the coating defect 

area based on simulated data. The approach taken is deterministic in nature 

using the Finite Element Method (FEA). The model was constructed with the 

help of in house software developed by the University of Florida, called 

CP3D. The software modelled pipelines under cathodic protection 

environment along with the surrounding electrolyte. Most notable findings 

include DCVG indications increasing as soil resistivity and defect size 

increase. This shows that in theory, %IR depends on the nature of soil 
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resistivity where higher soil resistivity values correspond to higher %IR 

readings.  

 

Moghissi, [65] has identified that there is no simple solution to prioritizing 

coating defects for further assessment. Based on the indirect assessment of 

the ECDA process, Moghissi, [65] has collected data from the CIPS, DCVG 

and current attenuation assessments. These data were used to derive basic 

formulations to model the relationship between coating defect area and its 

possible contributing factors. The approach taken here uses similar methods 

(FEA) as of those found in an earlier work by McKinney [64]. 

 

On the other hand, as was pointed out by [9], indirect assessment 

indications, particularly the DCVG, are a result of unknown factors besides 

coating defect area. These factors play an important role in interpreting 

DCVG indications. Hence, the interpretation of DCVG signals can be 

erroneous if the factors are not determined accurately. 

 

A report produced by CC Technologies [66] Inc for the PHMSA - US 

Department of Transportation Pipeline and Hazardous Materials Safety 

Administration reports on an investigation into the accuracy, resolution and 

the limitations of techniques being used in the pipeline industry for their 

indirect inspection. Coating defects and disbondments on typical pipeline 

coatings were looked at and were analysed based on the differing 

techniques. The different aboveground indirect techniques were the DCVG, 

ACVG, PCM, C-Scan and the Pearson survey. Inspections were done over 3 
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sites with pipe size ranging from 22 to 32 inches. Results from these 

techniques were analysed and compared. It was determined that the DCVG 

technique is the most accurate amongst all other methods. It was said that 

the technique is accurate in locating defects, but considerable effort was 

made in sizing these flaws. Another interesting finding with regards to DCVG 

is that the %IR reading did not show any proportional relationship with the 

area of coating (metal substrate exposed to the environment). The 

researchers thought that this may be due to the linear assumption of the 

attenuation of the signal between test posts – when the distance between 

test posts is wide and the coating condition is generally poor, the linear 

assumption does not hold as well.  

 

An article by Marcel Roche et.al [67] describes the author’s and the author’s 

company (Total) experiences in coating failures. Based on these case 

studies, the article proposes an explanation why these failures occur, and it 

investigates the parameters that may give rise to coating failures such as the 

temperature, coating type and the application procedure of the coating 

(surface preparation). It also highlights the comparison of a DCVG technique 

compared to an In-Line Inspection (ILI) for the detection of corrosion of 

pipelines. The results showed that DCVG indications correspond to 59% of 

the total corroded areas found by the ILI technique suggesting that some of 

these areas received some form of effective cathodic protection. It concludes 

by saying DCVG is able to locate dangerous situations resulting from coating 

disbonding. However, the technique needs further evaluation to verify its 

effectiveness. 
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CorrPro inc. [68] has submitted a white paper to the PHMSA highlighting 

possible improvements to the ECDA process. The document is produced in 

three parts namely the improvement of an ECDA for cased pipes, severity 

ranking of ECDA’s aboveground indirect inspection techniques and the 

voltage drops for paved areas. The one that is of particular interest here is 

the second part which relates to the accuracy in classifying and prioritising 

indirect inspection techniques. This report bases its argument on the NACE 

standard [8] and says that the classification and prioritisation for indirect 

inspection i.e. DCVG, ACVG, CIPS etc. indications are intentionally made 

general for initial guidance. The reason for this is to get pipeline operators to 

further refine the criteria based on the ongoing ECDA process (which is 

iterative in nature). However, when no refinement is done, this will lead to 

incorrectly identifying and prioritising indirect inspection indications under a 

wide variety of conditions. The report continues by saying that the 

classification and the prioritisation criteria set out in the current NACE 

SP0502-2008 “are imprecise and ambiguous”. They are subject to different 

interpretations and the resulting classification and prioritisation are different 

from “operator to operator, pipeline to pipeline and sometimes location to 

location”. Due to this, it is also quite normal to see inconsistencies between 

the indirect inspection’s indication and the result found during direct 

assessment. For example, higher %IR readings are paired with low or zero 

coating defect area and vice versa. In numerous cases, necessary 

excavations were not done due to the lack of accuracy of the classification 

and prioritisation scheme. This will only get noticed when failure occurs or 
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when for some reason (alternative ways) it is found out that excavation 

should have been performed. There are some pipeline operators who do 

follow the route of refinement. However, the methods employed by these 

operators are not well understood, documented and consistently applied.  

The following illustrates the daunting task of classifying and prioritising 

indirect inspection’s indications which was summarised in the report. 

• The determination of the accuracy of the aboveground indirect 

inspection techniques requires excavation to be done at every defect 

found (from the indirect inspection) to see whether the indication 

proves to be true (based on defect location and size).  

• The actual defect found during direct examination (excavation) tends 

to be smaller than initially thought based on the classification 

procedure. This leads to the classification scheme to be conservative 

in terms of predicting the size of defects. 

• The inevitable effects of stray currents will cause uncertainty in 

prediction of size of defects. An indication showing minor DCVG 

indications with added interference from stray currents is far more 

problematic than a severe DCVG indication having the same kind of 

interference from stray currents. This is due to the smaller defect 

being treated as minor priority and will go “unnoticed” whereas the 

effect of stray currents can be catastrophic. 

• Corrosion rate is not a function of coating defect size (not always). 

• Technology is needed for the interpretation of the indirect inspection 

indications which must lead to tools which are state of the art in terms 

of technology. 
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•  The need of mathematical tools to consistently classify and prioritize 

indications from indirect inspection techniques.    

 

In 2012, [69] researched on the aboveground indirect inspection techniques 

and how it correlates with ILI data and direct assessment data. All the data 

available were juxtaposed to see how corrosion relates to coating defects. 

By doing so, making an assessment on the overall condition of the pipe’s 

integrity is possible. The indirect inspection techniques considered were 

DCVG, ACVG and CIPS and were set against the results of the ILI. 

Alignments made here were later compared with results of the direct 

assessment. The result of the alignment of data found that ACVG performed 

better than DCVG for coating defect detection. This is due to ACVG having 

higher detection sensitivity which makes detection of smaller defects 

possible. Enhanced sensitivity of locating defects is also due to the unique 

signal (Alternating Current) used by ACVG which is easily discernible from 

other types of signal. The DCVG technique on the other hand relies on the 

CP current for its signal. Based on the paper’s finding, these signals do not 

generate large enough potentials for the technique to detect. The locations 

of coating defects found by the ACVG and the DCVG techniques and the 

metal loss identified during direct examination points to low correlation. This 

shows that the CP protective current is effective in preventing corrosion. 

However, the findings also highlight that detecting coating anomalies alone 

is insufficient in proving a pipe’s integrity, and that a corrosion study is 

needed to assure complete protection.  It was also found that future 

prioritisation of excavation sites is highly questionable since the criteria for 
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excavation of the anomalies found by the ACVG technique (severe category) 

did not align with the results found by the ILI. Observations from the direct 

examination also did not align with the results from the ACVG. Therefore, 

future excavation of those sites found by ACVG is not warranted. Further 

findings suggest that DCVG is better suited than ACVG for classifying 

severe coating defects since the signal it uses is directly generated from the 

CP current. The report concludes that combining all the available above 

ground inspection techniques (namely the DCVG, ACVG and CIPS) is 

crucial in providing a comprehensive picture in determining the condition of a 

particular pipeline.       

 

Work was done by [70] which illustrates the usage of DCVG as a quality 

control tool during the construction of new pipelines. Coatings are 

susceptible to damage as the result of improper handling and the effect of 

excavators scraping some of the coatings off during installation. The 

investigation of coating defects was done on 2 newly constructed gas 

pipelines in South Africa. Different criteria for excavation were set due to the 

likelihood of small coating defects appearing (as opposed to larger defects 

occurring throughout the service lifetime of the pipe). The investigation 

concluded that the DCVG technique determines the locations of coating 

defects quite accurately and should be used as a control quality tool for 

newly constructed pipes. However, the paper does not explicitly mention the 

accuracy of defect sizing. 
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2.6 Gap in Literature 

 

Most of the work done in the context of coatings under cathodic protection 

revolves around the study of the coating itself and the corrosion mechanism. 

Research effort has been poured into the phenomenon of corrosion 

underneath disbonded coating both experimental and theoretical (through 

modelling). The scope of these studies does not take into account real life 

datasets and the method of arriving at a conclusion is deterministic (not 

probabilistic). Moreover, no quantification of pit depths at a coating defect 

(not underneath) and how it relates to contributing factors was ever 

modelled. Additionally, these studies are very “localised” in the sense that 

they cannot be readily applied in the field, e.g. where to excavate based on 

the results obtained. Investigations were confined to the lab or to producing 

theoretical simulated data. 

 

As one can observe, literature on predicting the size of coating defects is 

sparse. Considerable work has been done by the team at the University of 

Florida (UoF) under the guidance of Professor Orazem on modelling of the 

cathodic protection system and the prediction of the size of these defects. 

The approach taken is highly theoretical where analysis was done using in-

house finite element software. The data for analysis was also simulated 

(computationally) and the approach taken for modelling is deterministic 

(through FEA). Other such efforts were made by [65] which used the same 

modelling technique as the UoF approach. The simulated method lacks the 

ability to accurately mimic real-life phenomenon. This and the deterministic 
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approach gives highly constrained results which lead to conclusions that 

allow for only small margins of error.  

 

To counter the deterministic method highlighted above, a statistical 

approach was used for coating size prediction in [63] which employed the 

quantile regression method to characterise the distribution of the coating 

defect more comprehensively. In this work, the relationship between 

variables was assumed to be linear. However, based on most of the findings 

above and after screening the data used for this thesis, it is suggested that 

the relationship of coating defect area and the corresponding IR drop is not 

linear. This is further corroborated by the findings from investigative work by 

CC technologies [66]. The research also did not investigate the contributing 

factors to the generation of the IR drop. Additionally, with a linear approach, 

the predictions can sometimes land in areas which are outside the bounds of 

the predicted dependent variable, e.g. %IR values of more than 100%. Other 

gaps include inconsideration of interaction between the variables of an 

ECDA indirect and direct assessment procedure, a simplified approach that 

can be readily used for inspectors in the field and finally the incorporation of 

current results for the subsequent ECDA inspection.  

 

This thesis intends to address these gaps and issues by developing models 

which: 

• use data from real life ECDA projects;  

• establish a method in estimating pit depths based on contributing 

factors by using a statistical approach – the study of corrosion pits 
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seems to suggest the evolution of its growth are stochastic. Statistical 

methods allow for the introduction of uncertainties which will better 

explain the uncertain nature of pitting;  

• explain the relationship between coating defect size and its 

contributing factors through a non-linear approach; 

• include variables which has interactions between them and see how 

they affect the final predicted value; 

• treat the current finding as prior knowledge to be included in 

subsequent ECDA projects on the same pipeline; 

• predict the dependent variable within a specified range (outcome); 

• can be used as guidelines for pipeline operators in the decision-

making process of selecting the location of excavation for further 

direct assessment. 

 

2.7 Middle Eastern Pipelines Data 

 

A Middle Eastern Oil Company (MEOC) has awarded a contract to TWI Ltd. 

to conduct an External Corrosion Direct Assessment work on its network of 

pipelines. There is a total of nine (9) pipelines to be looked at, all of which 

are non-piggable, hence the ECDA approach. The ECDA work shall comply 

with the ANSI/NACE SP0502-2010: Standard Practice Pipeline External 

Corrosion Direct Assessment Methodology. Based on this standard, the 

ECDA was carried out according to the sections and data were extracted for 

the purpose of this research: 
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2.7.1 Pre-Assessment 

 

The data in this section includes the design data of the pipe which include its 

philosophy, material selection, pipe characteristics etc. Historical operations 

activity is also included in this section. It was found that the total length of 

the nine pipelines covers over 300 km. The pipe sizes are from 26 to 42 

inches. Operating pressure is from 8 to 17 Bar. The grades of these pipes 

are as accordance with the American Petroleum Institute (API) which is 

API5L-X52 and X60. Working pressure of the pipes ranges from 40 to 60 

degrees Celsius with a 400 m3h-1 to 1520 m3h-1 fluid flow rate. Coatings were 

applied on all the nine pipes which is cold wrap, coal tar or polyethylene. 

These coatings are organic in nature. 

 

2.7.2 Indirect Assessment 

 

This section of the ECDA process specifies the indirect tests that should be 

performed on any given pipeline. Techniques such as the CIPS, DCVG, 

ACVG and Pipe Current Mapper (PCM) were conducted in a series of tests 

on the MEOC pipelines to gain information on the condition of the pipeline 

and to identify locations of coating defects. The DCVG technique was 

identified as the most potent and reliable source of information and was 

used for the work presented in this thesis. The values of the %IR based on 

the DCVG indications found for the MEOC pipelines was annotated and later 

paired with its associated excavation site (direct assessment).  
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2.7.3 Direct Assessment 

 

Direct assessment of defects provided a lot of useful data. After the 

identification of coating defects and calculation of their severity (based on 

%IR), decisions were made on where to excavate to further analyse the 

defects. The decisions were based on the magnitude of the %IR and the 

pre-assessment data. As can be seen here, the decision relies on expert 

judgment of the engineers (subjective) which can be erroneous if not all the 

contributing factors are considered. At excavation sites of the MEOC 

pipelines, data collected are the soil resistivity (based on the NACE 4 pin 

method), the depth of buried pipe, the material of cover, the pH of the soil 

and the pH of water underneath the coatings. For locations where corrosion 

activity is observed, the depth of the corrosion pits was measured using 

ultrasonic thickness measurements and pit gauges. The size of the coating 

defects was also measured and summed (at 1 excavation site) to become 

the Total Coating Defect Area (TCDA). Photographs were taken of the 

coating defects as backup for later verification. Deposits underneath 

coatings were also annotated where present. The amount of deposit 

underneath the coating in terms of area is divided with the TCDA to obtain a 

percentage value. All of the highlighted data collected at this phase was 

used as potential variables for the model. 
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Figure 2-5: Examples of Direct Assessment. Picture on the top showed 
a coating defect detected at PR10. Picture on the bottom illustrates an 

example of an excavated site  
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Chapter 3 

 

Statistical Methods Used for 

Analyses of the MEOC ECDA Data 

 

3.0 Introduction 

 

Diagnostics and prognostics algorithms are used to determine the 

maintenance schedules for a condition-based maintenance (CBM) strategy. 

CBM can be considered an efficient and cost effective way of maintaining 

structures [71]. The development of the prognostic algorithms is largely due 

to the outcome from the diagnostic assessment. The diagnostics informs the 

user on the current state of the structure, whether a defect is found and if so, 

characterises it. Prognostics are simply a projection on the future good or 
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bad behaviour of a structure which gives a value based on the future 

anticipated damage and its remaining useful life (RUL).  

 

Prognostics modelling can be divided into three categories. The first 

approach is the data driven approach. For this approach to be successful 

data on the current state of structure, i.e. condition monitoring data (CM 

data) and event data, i.e. run to failure data, are used. These data are 

normally termed the training data. The approach consists of characterising 

the damage based on the CM data and predicting future trends, e.g. future 

behaviour of damage based on the training data. The physics-based 

approach relies on the availability of a physical model and using measured 

damage data (CM data) in combination with the physical model to predict 

future trends and behaviour. The third approach involves a hybrid combining 

the previous 2 approaches [72].  

 

The observation of data in a data driven approach is for defect 

characterisation in terms of its evolution. Once a trend is established, future 

extrapolation predicts future defect growth. No physical model is used for the 

prediction. The prognosis is essentially following what the data is saying. 

Data driven approaches are divided into two main categories, an artificial 

intelligence (AI) approach and a statistical approach. AI employs techniques 

from machine learning algorithms such as neural networks (NN) or fuzzy 

logic. In a statistical approach, mathematical models such as multiple 

regression, quantile regression, Bayesian Quantile Regression, etc. use the 

weighting of coefficients to extrapolate the trend for future predictions. 
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Many mathematical models have been developed in recent years in an 

attempt to describe and predict failures of pipelines. Engineers tend to look 

at most of these models with scepticism because of the inconsistencies 

found between predicted results and the actual field data [73]. Possible 

reasons for them to be inconsistent are: 

• no mathematical model is accurate in mimicking the true mechanisms 

of pipeline failure.  

o These models were developed based on conditions that they 

were developed for, i.e. they do not account for other unknown 

factors which might contribute to failures. This in turn will limit 

each model to a particular scenario (overfitting). With the 

addition of more data, this problem will be minimized. However, 

the engineer should have sound knowledge to these limitations 

and where to apply it; 

• the data obtained from the field are never exact. 

o Data from the field are never exact. This might be due to 

operator error and factors unknown to the operator conducting 

the test. Sometimes, these data are incomplete which makes 

using the model impossible. Similar to the above, with more 

data collected this issue will taper off as more and more data 

will concentrate on the true parameter value. 

o Uncertainties that come with the collected data should be well 

understood by the engineer. These uncertainties on occasion 

will have an effect on the final outcome of the model’s result;  
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• operator knowledge of the system is often lacking. 

o The researchers developing the models often do not possess 

the same (or required) knowledge as the field engineer. This 

will limit the model’s scope.  

 

In this research, the data collected is from an ECDA procedure in the form of 

indirect and direct assessment measurements. Due to the lack of a physical 

model for the prediction of coating defect size, a statistical regression 

approach is taken for the analyses of trends and prediction of defect growth 

for the MEOC data.  

 

The MEOC dataset consists of only 200 plus data points (excavation sites) 

with the number of variables being large (after the introduction of polynomial 

and interaction terms) which makes dividing the data into a training and test 

set for validation purposes seems impractical. Additionally, the %IR reading 

is inconsistent (more on the inconsistencies is discussed in the following) 

with the TCDA measurements, which has the potential to contribute to errors 

if the dataset is divided. To counter this inadequacy, more data is needed 

(from future inspections or other similar ECDA projects) to increase the 

number of data points which can outweigh the number of variables and also 

to “drown out” the lack of trend observed in the MEOC dataset. Therefore, a 

method of incorporating new data for future inspection results was modelled 

through the Bayesian technique so that possibly, better prediction of the 

variable of interest will be achieved when new data comes in.     
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As was discussed in chapter 2, the determination of the severity of the 

defect found with a DCVG survey is relative. The excavation that follows 

does not necessarily produce positive results, as sometimes the defect is 

found to be the opposite of what was predicted by the aboveground indirect 

inspection technique. This is what was observed in the MEOC dataset. The 

inconsistency is perhaps due to its (DCVG) reliance on voltage gradient 

equipotential lines which in turns rely on the current flowing to coating 

defects. The current flow is thought to be based on a number of factors such 

as the level of CP current supplied to the pipeline, soil resistivity, soil 

compactness, the depth of the pipe buried, type of soil, type of coating, pH of 

soil, etc. To model this phenomenon, ideally all the values for these factors 

are made available to the modeller. With the MEOC dataset however, factors 

such as the CP current level and the soil compactness were not available 

(not taken during inspection). This is normal for an ECDA project such as 

this where some measurements were not taken due to cost or time. 

Modelling had to make do only with the available data in the project’s report.  

 

Interaction effects between these variables could also contribute significantly 

to the prediction of the variable of interest. Due to this, the interaction effects 

were considered to see if there are any valuable findings which could be of 

significance. Another factor to consider is the introduction of subjective 

interpretations from the inspectors inspecting the pipelines. Subjectivity was 

used particularly to describe categorical variables such as the characteristics 

of soil, water content or the amount of deposits found underneath a 

disbonded coating. With wrongly attributed characteristics of these variables 
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to properties, there is the possibility of incorrect conclusions. The research 

begins with the introduction of all the variables made available to the author 

and gradually reduces the amount of subjectivity within these variables by 

not including them in the later models (BQR and LQR).  

 

Uncertain data is also included in the models constructed within this thesis. 

Variables such as TCDA which has a set of readings with a value of %IR 

gives an idea of the apparent uncertainty within the data set. Taking the 

mean of such variables is inaccurate and the variation in these values will 

produce different outcomes. Quantile Regression (QR) solves this issue by 

capturing the whole of the TCDA’s distribution and characterising the 

distribution more comprehensively. A Bayesian approach to QR (BQR) is 

also included due to the iterative process of the ECDA and the possibility of 

incorporating future inspection results into the current findings. Lastly the 

Logistic Quantile Regression (LQR) is applied to make sure the predicted 

outcome is within its intended bounds. The following sections highlight all of 

the statistical techniques used for the analyses of the MEOC data. 

 

3.1 Statistical Methods used in This Research 

3.1.1 Correlation 

 

The Pearson’s correlation measures the linear relationship’s strength 

between two variables. It also measures the trend of the variable in terms of 

direction. The correlation coefficient value ranges from -1 to 1. As this value 

approaches -1 or 1, the degree of relationship is said to be strongly 
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correlated. Otherwise, if the correlation value approaches 0, then the 

relationship is regarded as weaker. The negative and positive signs of the 

correlation value illustrate the direction of the relationship with negative 

values sloping downwards and positive values climbing upwards. The 

formula for the Pearson’s correlation coefficient is 

 

 
𝑫𝑫 =

𝑵𝑵∑𝑿𝑿𝑿𝑿 − ∑(𝑿𝑿)(𝑿𝑿))
�[𝑵𝑵∑𝑿𝑿𝟐𝟐 − ∑(𝑿𝑿𝟐𝟐)][𝑵𝑵∑𝑿𝑿𝟐𝟐 − ∑(𝑿𝑿𝟐𝟐)]

 
3.1 

 

 

where 𝑟𝑟 is the Pearson’s correlation coefficient, 𝑁𝑁 is the sample size and 𝑋𝑋 

and 𝑌𝑌 are the variables of interest. The coefficient of determination (CoD) is 

similar to the Pearson correlation. All one needs to do is to square the 

correlation coefficient value to obtain the coefficient of determination. The 

squared value can be thought of as a percentage illustrating the portion of 

the data points which the regression line is able to explain. If for example, 

the CoD value is calculated to be 50%, the interpretation would be that the 

regression line would be able to explain only half of the data points while the 

other half is attributed to error. CoD values also represent the goodness of fit 

of the model. The higher the coefficient value, the better the fit (explains 

more of the data points).  
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3.1.2 Quantile Regression (QR) 

 

Regression is a statistical technique to examine the existence and extent 

of   relationship    between a dependent variable and other independent 

variables [74]. In its simplest (bivariate) form, regression shows the 

relationship between one independent variable (𝑋𝑋) and a dependent 

variable (𝑌𝑌):    

 

 𝑿𝑿 =  𝜷𝜷𝟏𝟏 +  𝜷𝜷𝟏𝟏𝑿𝑿 +  𝜺𝜺       3.2 
 

The regression parameter 𝛽𝛽1 shows the magnitude and direction of that 

relation, and an intercept term 𝛽𝛽0 captures the status of the dependent 

variable 𝑌𝑌 when the independent variable 𝑋𝑋 is absent. A final error term 𝜀𝜀 

captures the amount of variation that is not predicted by the slope and 

intercept terms.  More sophisticated forms of regression allow for more 

independent variables 𝑋𝑋𝑋𝑋, interactions between the independent variables 

and other complexities in the way that one variable affects another.  

  

 𝑿𝑿 =  𝜷𝜷𝟏𝟏 +  𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏  + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐  +  𝜷𝜷𝟑𝟑𝑿𝑿 + … … … …𝜷𝜷𝑫𝑫𝑿𝑿𝑫𝑫  +  𝜺𝜺 3.3 
 

One usually assumes that the error term 𝜀𝜀 has zero mean and uses models 

(3.2) or (3.3) to model or predict the conditional mean of 𝑌𝑌 given 𝑋𝑋𝑋𝑋, and 

then uses the ordinary least squares (OLS) to estimate regression 

parameter  �̂�𝛽,  
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 𝜷𝜷�  = 𝑻𝑻𝑫𝑫𝒂𝒂𝒎𝒎𝑺𝑺𝒍𝒍𝜷𝜷 𝜮𝜮𝑺𝑺=𝟏𝟏 
𝒍𝒍 �𝑿𝑿𝑺𝑺 − 𝜷𝜷𝟏𝟏 − −… … … …𝜷𝜷𝑫𝑫𝑿𝑿𝑫𝑫�

𝟐𝟐
    3.4 

 

However, if the distribution of 𝑌𝑌 is asymmetric or skewed as in the case of 

our data set (see Figure 3-1) or even heavy tailed, QR is better than OLS-

based mean regression for the relationship measurement and model-based 

prediction [75].  As in this case, the mean is no longer the best 

representative of the underlying distribution. Instead, quantiles such as 

median are of interest. In particular, extreme quantiles, which measure the 

tails, are often used to assess risk or remaining life. 

 

 

Figure 3-1: Probability Density Plot for TCDA 
 

Figure 3-1 visualizes the TCDA in its probability density function (PDF) form. 

Most of the readings are skewed to the right side indicating the bulk of the 

density is at zero. The right-hand side of the PDF is where the QR is 

 Area of Interest 
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effective as it can model certain high quantiles of interest (as opposed to the 

OLS-based mean regression) which can be used to investigate and predict 

the effect of some factors on large/high TCDA. 

The definition and estimation of QR are given below. Let the functions 𝑄𝑄𝑌𝑌, 

 

 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � = 𝜷𝜷𝟏𝟏(𝝉𝝉) + 𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏 + 𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+. … …𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫 3.5 
 

be the 𝜏𝜏𝑡𝑡ℎ (0 < 𝜏𝜏 < 1) quantile of 𝑌𝑌 given 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝, then 

𝑄𝑄𝑌𝑌� 𝜏𝜏 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � is equivalent to, 

 

 𝑭𝑭𝑿𝑿(𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 �) = 𝝉𝝉 3.6 
 

Where 𝐹𝐹𝑌𝑌(𝑦𝑦 ∣ ⦁) is the conditional distribution of 𝑌𝑌. The regression variables 

𝛽𝛽0(𝜏𝜏),𝛽𝛽1(𝜏𝜏),𝛽𝛽2(𝜏𝜏). … …𝛽𝛽𝑝𝑝(𝜏𝜏) may depend on 𝜏𝜏 and can be estimated by, 

 

 𝜷𝜷�(𝝉𝝉) = 𝑻𝑻𝑫𝑫𝒂𝒂𝒎𝒎𝑺𝑺𝒍𝒍𝜷𝜷 𝜮𝜮𝑺𝑺=𝟏𝟏 
𝒍𝒍 �𝝉𝝉 ⋅ 𝑰𝑰 �𝑿𝑿𝑺𝑺 > 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 �� + (𝟏𝟏 − 𝝉𝝉)

⋅ 𝑰𝑰 �𝑿𝑿𝑺𝑺 < 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 ��� ⋅

∣ 𝑿𝑿𝑺𝑺 − 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � ∣    

3.7 
 

 

where 𝐼𝐼 is termed as the indicator function. Examples of quantiles are, 

𝜏𝜏 = 0.5,   𝑄𝑄𝑦𝑦� 0.5 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � which is the median, 

𝜏𝜏 = 0.25,   𝑄𝑄𝑦𝑦� 0.25 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � which is the 1st quartile and 𝜏𝜏 =

0.75,   𝑄𝑄𝑦𝑦� 0.75 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � which represents the 3rd quartile.  
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3.1.3 Least Absolute Shrinkage Selection Operator (LASSO) 

 

The selection of independent variables remains a crucial problem in the case 

of building a QR model [76]. To have better prediction from the constructed 

model and hence better prediction accuracy, one has to select the most 

appropriate set of variables. This can be done through selection of 

independent variables which have the greatest meaning to the predictive 

dependent variable selected. This is highly subjective and may also leave 

out vital information as some of the lesser known meaningful variables are 

discarded leaving the model potentially less precise. One way to solve this 

issue is to use a penalized parameter (imposing constraints) which shrinks 

the less important variables to zero (or close to zero). The constraints are 

there to limit the model’s flexibility in having multiple solutions in a given 

dataset as can be observed in our MEOC data, thereby reducing the model’s 

ability to overfit. Although this idea was thought to be counterproductive in 

the sense that it sacrifices the model’s unbiasedness (as in the case with the 

OLS) and reduces the model’s variance, the overall model predictive 

capabilities is improved. The interpretation of the model is also improved by 

having fewer variables and a much more concise model to deal with.   

 

In the case of the constructed models in Chapter 4, the Least Absolute 

Shrinkage Selection Operator (LASSO) proposed by Tibshirani [77] was 

used as the selection operator. The LASSO can simultaneously estimate the 

parameter value and perform variable selection. The LASSO estimate is the 

solution to minimize: 
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 𝐦𝐦𝐦𝐦𝐦𝐦
𝜷𝜷
�𝒚𝒚��⃗ − 𝑨𝑨𝜷𝜷��⃗ �

𝟏𝟏
+ 𝝀𝝀�𝜷𝜷��⃗ �

𝟏𝟏
 3.8 

 

where 𝜆𝜆 is the regularization/penalized parameter of the minimized function. 

Major advantages of the LASSO include eliminating (variable selection) or 

downsizing the value of coefficients which makes the model more 

interpretable and accurate. In the case of the MEOC data, coefficients with 

values less than 1 down to zero after they have gone through the LASSO 

process are discarded for further generalization. The main goal of this 

endeavour is to obtain a general rule (simpler but still accurate) for 

prioritisation of coating defects. The rule or guideline is hoped to be 

supplementary in assisting pipeline operators to make decisions on where to 

excavate for further direct assessment of the condition of the pipe.  

 

3.1.4 Bayesian Quantile Regression (BQR) 

 

In classical statistics, assumptions are made on the estimated variables 

where the value is considered fixed, but the quantity is unknown. We can 

estimate a parameter using samples from a population and calculate the 

parameter of interest based on that sample. However, different samples will 

give different estimates. The distribution of the different estimates is referred 

to as the sampling distribution. Uncertainty is represented by the confidence 

interval associated with the estimate. Before the collection of data, the 

parameter will be within the (1-r) level confidence interval (which is random) 

with the probability of 1-r. When data is collected, and a new calculation of 
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the confidence interval is made, whether the parameter is within this new 

interval or not is unknown and there is no possible way of knowing [78].  

 

Unlike the classical approach, Bayesian inference is a new way of thinking 

about statistics. The parameter of interest is not fixed but a random variable 

and we are sure that this parameter will fall within the computed credible 

interval.  

 

Based on the paper by Yu and Moyeed [79], the 𝜏𝜏𝜏𝜏ℎ regression quantile 

(0 < 𝜏𝜏 < 1) can take on any solution, �̂�𝛽(𝜏𝜏), and is associated to the 

aforementioned quantile regression minimization problem (minimization 𝛽𝛽) 

 

 𝒎𝒎𝑺𝑺𝒍𝒍� 𝝆𝝆𝝉𝝉(𝒚𝒚𝑻𝑻 − 𝒙𝒙𝑻𝑻′𝜷𝜷),
𝑻𝑻

 3.9 
 

the loss function being 

 

 𝝆𝝆𝝉𝝉(𝒖𝒖) = 𝒖𝒖(𝝉𝝉 − 𝑰𝑰(𝒖𝒖 < 𝟏𝟏)) 3.10 
 

Yu and Moyeed [79] also show that the minimization of the loss function 

above is exactly the same as maximizing the likelihood function which is 

formed by joining two asymmetric Laplace densities (ALD).  

 

The probability density function of the asymmetric Laplace distribution is 

given as follows,  
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𝒇𝒇(𝒚𝒚;  𝝁𝝁,𝝈𝝈, 𝝉𝝉) =

𝝉𝝉(𝟏𝟏 − 𝝉𝝉)
𝝈𝝈

 𝑭𝑭𝒙𝒙𝑫𝑫 �−𝝆𝝆 �
𝒚𝒚 − 𝝁𝝁
𝝈𝝈

�� 3.11 
 

and based on the 𝑦𝑦 observations 𝑦𝑦 = (𝑦𝑦1, … . , 𝑦𝑦𝑛𝑛), the distribution of the 

posterior of 𝛽𝛽, 𝜋𝜋(𝛽𝛽 ∣∣ 𝑦𝑦 ) is in the form of the Bayes theorem 

 

 𝝅𝝅(𝜷𝜷 ∣∣ 𝒚𝒚 ) = 𝑳𝑳𝑺𝑺𝑳𝑳𝑭𝑭𝑻𝑻𝑺𝑺𝑳𝑳𝑻𝑻𝑻𝑻𝑳𝑳(𝒚𝒚 ∣∣ 𝜷𝜷 ) × 𝒂𝒂(𝜷𝜷) 3.12 
 

The 𝒂𝒂(𝜷𝜷) is considered as the prior distribution of 𝛽𝛽 and 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝑦𝑦 ∣∣ 𝛽𝛽 ) is 

the likelihood function. Since minimizing the loss function highlighted above 

is exactly the same as maximizing the ALD, the likelihood can be written like 

this 

 

 
𝑳𝑳𝑺𝑺𝑳𝑳𝑭𝑭𝑻𝑻𝑺𝑺𝑳𝑳𝑻𝑻𝑻𝑻𝑳𝑳(𝒚𝒚 ∣∣ 𝜷𝜷 ) = 𝝉𝝉𝒍𝒍(𝟏𝟏 − 𝝉𝝉)𝒍𝒍𝑭𝑭𝒙𝒙𝑫𝑫 �−�𝝆𝝆𝝉𝝉(𝒚𝒚𝑺𝑺 − 𝒙𝒙𝑺𝑺′𝜷𝜷

𝑺𝑺

)� 
3.13 

 

 

As for the priors, one can use any prior. But in the absence of a prior (as in 

the case of this thesis due to the lack of expert opinion and the limited 

amount of data) Yu and Moyeed [79] proved that a non-informative improper 

prior yields a proper posterior distribution. In this method, there are no 

known conjugate priors but with the relative ease in using MCMC with the 

Metropolis Hastings algorithm, one is easily able to produce the posterior 

distribution of the parameter(s). 
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3.1.5 Markov Chain Monte Carlo with Metropolis-Hastings Algorithm 

(MCMC) 

 

MCMC is used to calculate the posterior distribution from the joint distribution 

of the likelihood and the prior. The joint posterior from the Bayesian process 

𝝅𝝅(𝜷𝜷 ∣∣ 𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻 ), is equivalent to the equilibrium distribution of a Markov Chain 

which is generated by the MCMC scheme. The validity of this distribution is 

based on the convergence of the MCMC after the burn in period is 

surpassed.   

 

An algorithm such as Metropolis-Hastings has become popular as a method 

in the construction of Markov chains. The underlying technique of this 

algorithm is based on the simulation technique of rejection sampling. A new 

sample is generated based on the proposal distribution, 𝜏𝜏(𝛽𝛽,𝛽𝛽𝑐𝑐), and is 

accepted or rejected based on some probability.  

 

The proposal distribution used is a normal distribution which is the default 

setting within the BQR package of the R software. A new sample, 𝛽𝛽′, is 

generated (via the proposal distribution which is based on the current state, 

𝛽𝛽𝑐𝑐) and is accepted or rejected based the acceptance probability, 𝛼𝛼(𝛽𝛽′,𝛽𝛽𝑐𝑐). 

This is given by, 

 

 
𝜶𝜶(𝜷𝜷′,𝜷𝜷𝒍𝒍) = 𝒎𝒎𝑺𝑺𝒍𝒍 �

𝝅𝝅(𝜷𝜷′)𝝅𝝅(𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻 ∣ 𝜷𝜷′)𝑻𝑻(𝜷𝜷𝒍𝒍,𝜷𝜷′),
𝝅𝝅(𝜷𝜷𝒍𝒍)𝝅𝝅(𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻 ∣ 𝜷𝜷𝒍𝒍)𝑻𝑻(𝜷𝜷′,𝜷𝜷𝒍𝒍),

,𝟏𝟏� 
3.14 
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The random process of the random walk is used for the generation of 𝛽𝛽′ 

from  𝛽𝛽𝑐𝑐 and for the assessment in this thesis, the proposal distribution is 

symmetric. This will in turn make the ratio of 𝑻𝑻�𝜷𝜷
𝒍𝒍,𝜷𝜷′�

𝑻𝑻(𝜷𝜷′,𝜷𝜷𝒍𝒍) = 𝟏𝟏. The resulting 

acceptance probability is thus,   

 

 
𝜶𝜶(𝜷𝜷′,𝜷𝜷𝒍𝒍) = 𝒎𝒎𝑺𝑺𝒍𝒍 �

𝝅𝝅(𝜷𝜷′)𝝅𝝅(𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻 ∣ 𝜷𝜷′)
𝝅𝝅(𝜷𝜷𝒍𝒍)𝝅𝝅(𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻 ∣ 𝜷𝜷𝒍𝒍)

,𝟏𝟏� 
3.15 

 

 

𝜋𝜋(𝑜𝑜𝑑𝑑𝜏𝜏𝑑𝑑 ∣ 𝛽𝛽′) is the likelihood function while the 𝜋𝜋(𝛽𝛽′) is the prior distribution. 

If the new value 𝛽𝛽′, has a higher probability (in terms of 𝜋𝜋(𝛽𝛽′)𝜋𝜋(𝑜𝑜𝑑𝑑𝜏𝜏𝑑𝑑 ∣ 𝛽𝛽′)) 

than the current value 𝛽𝛽𝑐𝑐, then we will always accept the new value. If this is 

not the case, a value, 𝑢𝑢, has to be generated from a uniform distribution 

𝑈𝑈(0,1), and will be compared to the acceptance probability 𝛼𝛼(𝛽𝛽′,𝛽𝛽𝑐𝑐). If 

𝑢𝑢 < 𝛼𝛼(𝛽𝛽′,𝛽𝛽𝑐𝑐) then we accept the new value. Otherwise we reject it and keep 

the old (current) value. This process is repeated until convergence is 

reached where the stationary distribution is an approximate of the target 

distribution. 

 

The burn in period, which is the time taken for the algorithm to converge, is 

unknown and thus could be substantial. Normally the first 2500 iterations are 

discarded but with regards to the work in this research, a 5000 iteration 

burn-in period is assumed. This is due to the high number of iterations 

needed to achieve convergence. The author relied on the graphical 

representation of the trace plot (time series) to indicate whether 

convergence has been achieved.  
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3.1.6 Logistic Quantile Regression (LQR) 

 

It is important to define the working knowledge of the LQR to see the full 

benefits of the technique. The following definition is taken from [80]. 

Suppose we have a continuous dependent variable 𝑌𝑌, with a set of 𝑝𝑝 

covariates, 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝, where the dependent variable is bounded by a 

particular interval, 𝑌𝑌𝑚𝑚𝑚𝑚𝑛𝑛 and 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚. Quantile regression is represented by the 

functions 𝑄𝑄𝑌𝑌, 

 

 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � = 𝜷𝜷𝟏𝟏(𝝉𝝉) + 𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏 + 𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+. … …𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫 3.16 
 

is the 𝜏𝜏𝑡𝑡ℎ (0 < 𝜏𝜏 < 1) quantile of 𝑌𝑌 given 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝, then 

𝑄𝑄𝑌𝑌� 𝜏𝜏 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � is defined as, 

 

 𝑭𝑭𝑿𝑿(𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � = 𝝉𝝉 3.17 
 

where 𝐹𝐹𝑌𝑌(𝑦𝑦 ∣∣ ⦁ ) is the conditional distribution of 𝑌𝑌. An example of the most 

popular quantile is the median where 𝜏𝜏 = 0.5, 𝑄𝑄𝑦𝑦� 0.5 ∣∣ 𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑝𝑝 � and 

divides the dependent variable’s distribution into two equal parts with the 

same probability.  

 

It is assumed that for any quantile 𝜏𝜏, there exist a set of variables 

𝛽𝛽0(𝜏𝜏),𝛽𝛽1(𝜏𝜏),𝛽𝛽2(𝜏𝜏). … …𝛽𝛽𝑝𝑝(𝜏𝜏) which is fixed and a known non decreasing 

function, ℎ (known as the link function) from the interval 𝑌𝑌𝑚𝑚𝑚𝑚𝑛𝑛 and 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 to the 
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real line (the reason for this transformation is to comply with the constraints). 

This is further defined as, 

 

 𝑳𝑳�𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 ��

= 𝜷𝜷𝟏𝟏(𝝉𝝉) + 𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏 + 𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+. … …𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫 

3.18 
 

 

Due to the nature of the dependent variable being constrained, it resembles 

a probability. This is more apparent with a dependent variable which has 

binary outcomes (values of 0 or 1). Due to the pre-specified range of the 

dependent variable, variables of interest such as the %IR and POPD fit this 

definition perfectly (the values are in percentages). The transformation of the 

dependent variable is thus, 

 

 𝑳𝑳(𝑿𝑿𝑺𝑺) = 𝐥𝐥𝐥𝐥𝐥𝐥 �
𝑿𝑿𝑺𝑺 − 𝑿𝑿𝒎𝒎𝑺𝑺𝒍𝒍
𝑿𝑿𝒎𝒎𝑻𝑻𝒙𝒙 − 𝑿𝑿𝑺𝑺

� = 𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑿𝑿𝑺𝑺) 3.19 
 

The inverse transform is, 

 

 
𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � =

𝑭𝑭(𝜷𝜷𝟏𝟏(𝝉𝝉)+𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏+𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+.……𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫)𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑌𝑌𝑚𝑚𝑚𝑚𝑛𝑛
𝟏𝟏 + 𝑭𝑭(𝜷𝜷𝟏𝟏(𝝉𝝉)+𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏+𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+.……𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫)  

3.20 
 

After the transformation of ℎ(𝑌𝑌𝑚𝑚), the regression coefficient can be estimated 

through the normal steps of a quantile regression, 

 𝑸𝑸𝑳𝑳(𝑿𝑿𝑺𝑺)� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � = 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑿𝑿𝑺𝑺)� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 �

= 𝜷𝜷𝟏𝟏(𝝉𝝉) + 𝜷𝜷𝟏𝟏(𝝉𝝉)𝑿𝑿𝟏𝟏 + 𝜷𝜷𝟐𝟐(𝝉𝝉)𝑿𝑿𝟐𝟐+. … …𝜷𝜷𝑫𝑫(𝝉𝝉)𝑿𝑿𝑫𝑫 

3.21 
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The inference of 𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � after the regression coefficients have 

been found can be made through the inverse of the transform stated above. 

Bottai et.al. [80] have found that quantiles are not affected by a monotone 

transformation which makes inference a possibility. 

 

 𝑸𝑸𝑳𝑳(𝑿𝑿)� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 � = 𝑳𝑳�𝑸𝑸𝑿𝑿� 𝝉𝝉 ∣∣ 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … .𝑿𝑿𝑫𝑫 �� 3.22 
 

It was shown that this is due to 𝑃𝑃(𝑌𝑌 ≤ 𝑦𝑦) = 𝑃𝑃{ℎ(𝑌𝑌) ≤ ℎ(𝑦𝑦)} for any random 

variable 𝑌𝑌 and any non-decreasing (link) function, ℎ. This special property of 

quantile regression was exploited by [80] and defined the LQR to 

accommodate dependent variables which has bounded outcomes.  

 

3.2 Summary 

 

This chapter highlighted the various statistical techniques used for the 

analyses of the MEOC data presented in this thesis. Initial assessments 

were made with the correlation technique to see if there is any linear 

correlation between the variables. The results from this assessment were 

used to determine the approach (linear or nonlinear) taken for the following 

model. A QR model was later constructed considering the results obtained 

from the correlation assessment. The interaction effects were also included 

within the quantile regression model. Due to the high number of variables 

present in the quantile regression model, a regularisation technique, i.e. 

LASSO, was used to shrink the models to make them more generalised and 

keep them simple and concise. The BQR was later opted for the modelling 
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technique to ensure continuity of the current model in becoming more 

accurate. Future inspection data is then possible to incorporate making the 

model more precise. Lastly, the LQR technique was chosen as the method 

of modelling to ensure that the predicted values are within its intended 

boundary while keeping the advantage of the QR method. As was 

mentioned earlier, the set of variables used for each modelling technique are 

not the same. Starting with the general QR, all of the available variables 

were used for the assessment. However, the number of variables used for 

the subsequent methods, i.e. BQR and the LQR, is fewer. This is to reduce 

the amount of subjectivity which is present within most of the categorical 

variables. Additionally, the variables used for the last two methods include 

the variables that are, according to the Author’s knowledge, the most suited 

for the estimation of the dependent variable in question.   

 

 

 



85 
 

 

 

Chapter 4 

 

Coating Defect Size Prediction with 

Quantile Regression 

 

4.0 Introduction 

 

The motivation for this Chapter is due to address the issues highlighted in 

Chapter 2 and the needs of the industry to find a meaningful solution in 

predicting the severity of coating defects to justify subsequent excavation for 

direct examination. With the availability of real life field data in the form of 

indirect and direct assessments which was provided by TWI, this has 

become possible by constructing a mathematical model in the pursuit of 

understanding the inner workings of the system and hence predicting the 

size of coating defects. The analyses conducted in this Chapter only 
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consider the results found in the DCVG method and the subsequent direct 

assessment done at excavation sites. This Chapter is also intended to 

identify and quantify the correlation between the various factors which affect 

DCVG indications. Research conducted here has shown some useful 

insights which might be of use for further research.  

 

Previous research by Anes-Arteche et.al [63] showed some interesting 

results through linear QR. However, it lacks the ability to cope with the non-

linear relationship which exists between variables. The approach taken in 

this Chapter is similar, but the relationship is assumed to be non-linear, 

based on the initial observation of the collected data. The number of 

variables considered in this Chapter is also greater which gives better depth 

of resolution in terms of the estimation of the dependent variable.  Finally, 

the effects of interaction between certain variables are taken into account 

when modelling the regression model.  

 

4.1 Middle Eastern Oil Company Pipelines Data 

 

TWI Ltd. was appointed as contractor by the Middle Eastern Oil Company 

(MEOC) to conduct integrity assessment on nine of its pipelines. The 

assessment work covers “External Corrosion Direct Assessment” (ECDA) 

based on the ANSI/NACE SP0502-2010: Standard Practice Pipeline 

External Corrosion Direct Assessment Methodology. The data used for 

analysis in this Chapter was taken from the MEOC project by analysing the 

indirect and direct assessment of the ECDA process. The pipelines were 
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unpiggable therefore the ECDA approach was chosen as the most 

appropriate method for the assessment. Description of the data is given in 

Chapter 2. 

 

The relationship of variables from indirect and direct assessment is 

presented through regression techniques. Variables considered for 

assessment are listed in Table 4-1 below. The variables TIS and PS are 

treated as continuous variables due to the interest of the research in trying to 

predict the effect of age and size on the size of coating defects. If these were 

treated in a categorical manner, prediction of defect size based on values 

within the range of the different age and size would not be possible. 

Objectives were formulated to better explain the relationship between 

variables and the prediction of TCDA based on the DCVG indication; 

1. Correlation between variables through the Pearson correlation test. 

This is to see whether there exists linear relationship between 

variables. Based on this result, the linearity approach towards 

modelling may be decided. 

2. Correlation of SR to corrosion dimensions. The reason for this is to 

find out whether SR has any role in corrosion (based on the MEOC 

data set). 

3. Special correlation between TCDA and POPD. In theory, large metal 

exposed area will likely initiate corrosion and increases its activity. 

Additionally, pitting corrosion is a threat to structural integrity which 

makes it an important variable to consider.  
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4. Prediction of the size of TCDA using QR. Through this, better 

prioritisation of coating defect is achieved and will be useful for the 

selection of excavation sites.  

 

Symbol Variables Considered Type of Variable / Summary 
Statistics 

α IR Drop (%IR) 

Quantitative 
Min. Value 0 
1st Quantile 17.87 % 
Median 37.8 % 
Mean 38.48 % 
3rd Quantile 56.7 % 
Max. Value 98.9 % 

 

β Soil Resistivity (SR) 

Quantitative 
Min. Value 75.36 Ω-cm 
1st Quantile 560.25 Ω-cm 
Median 1282 Ω-cm 
Mean 2722.11 Ω-cm 
3rd Quantile 2508.14 Ω-cm 
Max. Value 43332 Ω-cm 

 

γ Percentage of Pit Depth to 
Wall Thickness (POPD) 

Quantitative 
Min. Value 0 % 
1st Quantile 0 % 
Median 2.537 % 
Mean 10.451 % 
3rd Quantile 17.471 % 
Max. Value 100 % 

 

δ Deposits under Coatings 
(DUC) 

Quantitative 
Min. Value 0 % 
1st Quantile 3 % 
Median 30 % 
Mean 35.4 % 
3rd Quantile 60 % 
Max. Value 100 % 

 

ε Depth of Cover (DOC) 

Quantitative 
Min. Value 0 cm 
1st Quantile 100 cm 
Median 110 cm 
Mean 109.5 cm 
3rd Quantile 130 cm 
Max. Value 210 cm 

 



89 
 

ζ Time in Service (TIS) 

Quantitative 
Min. Value 19 years 
1st Quantile 20 years 
Median 36 years 
Mean 32.5 years 
3rd Quantile 39 years 
Max. Value 39 years 

 

η Pipe Size (PS) 

Quantitative 
Min. Value 26 inches 
1st Quantile 36 inches 
Median 36 inches 
Mean 35.3 inches 
3rd Quantile 36 inches 
Max. Value 42 inches 

 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Total Coating Defect Area 

Quantitative 
Min. Value 0 cm2 
1st Quantile 1200 cm2 
Median 9985 cm2 
Mean 44893 cm2 
3rd Quantile 77865 cm2 
Max. Value 269894 cm2 

 

Backfill Type 

θ Rock Qualitative 

κ Sand + Clay Qualitative 

λ Stones + Clay Qualitative 

Coating Type 

μ Coal Tar Qualitative 

ξ Polyethylene Qualitative 

CW Cold Wrap Qualitative 

Backfill Geometry 

ρ Angular Qualitative 

σ Round + Angular Qualitative 

R Rounded Qualitative 

pH Of Water in Soil 

φ Acidic Qualitative 
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χ Alkaline Qualitative 

ψ Neutral Qualitative 

pH Of Water Underneath Coating 

ω Acidic Qualitative 

ϋ Alkaline Qualitative 

ϊ Neutral Qualitative 

 

Table 4-1: Types of Variables Considered for Assessment 

 

4.2 Linear Correlation of Variables  

 

It is known that the DCVG technique and %IR is used to locate coating 

defects and quantify their severity. This is supported by [81] which states 

that the DCVG technique is used to locate and establish coating defect sizes 

(TCDA) on buried pipelines. Although this is the case, the %IR values 

obtained are not affected solely by TCDA but are also attributable to other 

factors [9]. To investigate this further, analyses of the correlation between 

the numeric variables listed in Table 4-1 were conducted. An additional 

correlation analysis was also carried out with the addition of the coefficient of 

determination using new variables (not listed in Table 4-1). This separate 

analysis was necessitated by the lack of data for calculating the new 

variables and hence the impossibility of pairing them up with other variables. 

The new calculated variables are the Total Corroded Area (TCA) and the 

Total Corroded Volume (TCV). The independent variables considered for 

this second analysis were the SR, TCDA, Coating Disbondment Area (CDA), 

Total Corroded Area (TCA) and the Total Corroded Volume (TCV).  
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SR was also correlated against the TCA and TCV. According to [82], “the 

resistivity of the soil is one of many factors that influence the service life of a 

buried structure”. Therefore, an investigation was conducted into the SR 

variable’s correlation with corrosion.  

 

4.3 Special Linear Correlation between TCDA and POPD  

 

The correlation between TCDA and POPD was also investigated. As the size 

of TCDA increases, corrosion activity is expected to increase due to the 

larger exposed area’s interaction with the environment. If the coating is 

properly applied (no coating defect present), then corrosion activity on the 

interface of the pipe is non-existent. Additionally, the level of CP protection is 

thought to play a key role in preventing the pipeline from corroding. 

However, as was pointed out by [83], the corrosion process at coating 

defects is latent even though there are adequate levels of protection coming 

from the CP current.  

 

After both systems are in place, the extent of external corrosion activity is 

controlled by the coating and the CP system [83]. This is echoed in [5] which 

states that one of the most important factors for corrosion prevention in oil 

and gas pipelines is that the coating needs barrier properties to prevent the 

ingress of corroding elements and sufficient mechanical strength to resist 

coating breakdown. This can be summarised as an important factor to 
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corrosion (POPD) is coating breakdown (TCDA). Hence, an analysis of their 

correlation is necessary to validate this claim. 

4.4 Size Prediction of TCDA  

 

Multivariate QR was chosen to estimate the size of the TCDA. Non-linear 

terms were also introduced to account for the non-linear relationship 

between variables observed in the MEOC data set. Some of the variables 

used in this model are of a qualitative (categorical) nature as compared to 

the previous correlation method where only numerical variables were chosen 

for assessment. To obtain a clearer understanding of the phenomenon of 

coating defects, the variables included in this research are greater than 

those proposed in [63]. A total of 12 variables were taken from the indirect 

and direct assessment phase of the ECDA and were identified as the 

contributors to coating defects. These variables are all the information that 

was collected during the indirect and the direct assessment phase of the 

ECDA. 

 

For ease, computation was done using the R software. With the developed 

model, investigating the effects of each independent variable (as listed in 

Table 4-1) over the range of TCDA sizes becomes possible. This is 

important since it enables characterization of coating defects more 

systematically (as opposed to categorisation) and will assist in prioritizing 

potential excavation sites for further assessment.  
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4.4.1 Non Interaction and Interaction model 

 

[84] highlights that an effect of interaction between variables is the effect of 

combinations of independent variables on the resulting dependent variable. 

According to [85], it is recommended to investigate the interaction effect of 

the independent variables within a regression model as opposed to studying 

its isolated effect which could otherwise lead to inaccurate conclusions.  

 

The relationship between %IR and TCDA is not straightforward [9] and relies 

on other factors to yield meaningful TCDA results. Thus, two models (Non-

Interaction and Interaction) were proposed with the intention of observing the 

interaction (or the lack of) between variables, particularly the %IR variable. 

All possible combinations of the variables are considered and later reduced 

for the final model. Only continuous independent variables and a two way 

interaction is considered for simplicity.  

 

4.4.2 Akaike Information Criterion (AIC) 

 

The Akaike Information Criterion or AIC is an index used to compare and 

choose between two competing models according to quality (in terms of 

model fit). Regression models almost always suffer from information loss in 

their attempt to represent the true regression. In model selection, it is ideal to 

choose the model which minimizes this loss as well as improving the fit. AIC 

provides an index as a relative measure of the loss generated by the model. 

It is defined as 
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  𝑨𝑨𝑰𝑰𝑨𝑨 = −𝟐𝟐𝑳𝑳𝒎𝒎 +  𝟐𝟐𝒎𝒎 4.1 
 

where: 

𝑳𝑳𝒎𝒎 = Maximized log likelihood (for QR – Asymmetric Laplace 

Distribution (ALD) is used for the likelihood function) 

𝒎𝒎 = Number of variables in the model 

 

As the number of variables increases for a certain model, its goodness of fit 

also increases. AIC considers the increase in the goodness of fit of the 

model by applying a penalty when the number of variable increases. The 

model that uses the fewest variables but still achieves a decent goodness of 

fit is preferred with a lower value of the index [86].  

 

In this Chapter, two regularised competing models were generated based on 

the Interaction and the Non-Interaction models. A simple and concise model 

is desired for the practical purpose of application during the actual DCVG 

survey (in the field) where quick and informed decisions are required. The 

AIC determines the better model and supports the context for the application 

of each model.  
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4.5 Data analyses  

4.5.1 Correlation of Variables 

 

A total of nine pipelines were considered for assessment. All the pipelines’ 

contents were crude oil, and all were subject to impressed current CP and 

coated with either polyethylene, cold wrap or coal Tar. The date of 

construction of these pipes ranges from as early as 1969 to the latest in 

1991. Initial correlation assessment was performed for all the numeric 

variables. The results are presented in Table 4-2 below. 

 PS TIS %IR SR TCDA DUC POPD DOC 

PS 1.0000 -0.0406 -0.1873 0.0001 0.0603 -0.0521 -0.1949 0.0872 

TIS -0.0406 1.0000 -0.1406 -0.0327 -0.3587 0.5561 0.3149 0.0032 

%IR -0.1873 -0.1406 1.0000 -0.0782 0.1310 -0.1442 0.0058 0.0617 

SR 0.0001 -0.0327 -0.0782 1.0000 -0.0500 -0.0229 -0.0229 0.1306 

TCDA 0.0603 -0.3587 0.1310 -0.0500 1.0000 -0.1760 -0.0736 -0.0519 

DUC -0.0521 0.5561 -0.1442 -0.0229 -0.1760 1.0000 0.3261 -0.0130 

POPD -0.1949 0.3149 0.0058 -0.0229 -0.0736 0.3261 1.0000 -0.1841 

DOC 0.0872 0.0032 0.0617 0.1306 -0.0519 -0.0130 -0.1841 1.0000 

 
Table 4-2: Pearson’s Correlation of Numeric Variables 

 
Table 4-2 shows the results of the Pearson’s correlation based on the 

numeric variables obtained from the MEOC data. Generally, the analysis 

highlights a weak linear relationship between the variables which suggests a 

non-linear approach may be better suited for modelling. The highest 
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correlation can be seen between the variables DUC and TIS with a value of 

0.56 with a positive relationship while the lowest is the correlation between 

PS and SR also with a positive relationship. In the negative direction, the 

TCDA and TIS variables showed some degree of correlation with a value of -

0.36. The pairing of TCDA and POPD illustrates a negative linear 

relationship with a value of -0.0736. This is somewhat surprising since it was 

previously thought this relationship is quite strong. The size of coating defect 

(TCDA) weakly corresponds to the %IR variable with a correlation value of 

only 0.1310. This further proves that the idea of relying solely on readings 

from a DCVG assessment can be misleading. Another important finding is 

the correlation between DUC and POPD which suggests some degree of 

relationship with a value of 0.3261. The correlation between POPD and TIS 

has similar magnitude with a value of 0.3149.   

 

 %IR SR TCDA TCA TCV 

%IR 1.0000 -0.2546 0.0631 0.2070 0.1846 

SR -0.2546 1.0000 -0.0100 -0.0651 0.1418 

TCDA 0.0631 -0.0100 1.0000 0.0270 0.1045 

TCA 0.2070 -0.0651 0.0270 1.0000 0.3030 

TCV 0.1846 0.1418 0.1045 0.3030 1.0000 

 
Table 4-3: Pearson’s Correlation of Newly Calculated Variables 

 

Table 4-3 highlights the values of the Pearson’s correlation coefficient of the 

newly calculated variables. The calculated variables are derived by 

analysing the POPD and relating it to the MEOC data. The data points 
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available for the assessment are very few compared to the MEOC data since 

corrosion is not present at every excavation site. Overall, the correlation 

values between the variables are not high. This is another example of the 

inadequacy of adopting a linear correlation approach for this kind of dataset. 

The highest correlation occurs between TCA and TCV with a value of 

0.3030. This is expected since the two calculations are related. An 

interesting relationship appears between %IR and TCA and also TCV with 

correlation values of 0.2070 and 0.1846 respectively. This is rather 

unexpected as the DCVG technique is not known for its corrosion detection 

ability. However, the interpretation of its capability based on correlation 

results alone must be treated with caution since the data gathered here are 

quite limited. Hence, the results should be recognised as relative rather than 

absolute. The variables %IR and TCDA yield a lower relationship value 

compared to the previous assessment. This is expected since the data has 

been “trimmed down” to facilitate the limited number of corrosion points.    

  

A further analysis was done for the new variables to derive the coefficient of 

determination, 𝑅𝑅2. The coefficient of determination quantifies the percentage 

of plots that are described by the regression line versus the plots that are 

not. Dependent variables identified for analysis are %IR, TCA and TCV. The 

independent variables identified are CDA, TCDA, TCA and TCV. TCA and 

TCV are both in the dependent and independent variable category because 

they are viewed both as factors of other variables and also as responses by 

themselves. 
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No Pipe 
Designation 

SR vs 
%IR 

TCDA vs 
%IR 

CDA vs 
%IR 

TCA vs 
%IR 

TCV vs 
%IR 

SR vs 
TCA 

SR vs 
TCV 

1 PR1 0.0005 0.4433 0.0148 0.1863 0.0870 0.0040 0.0121 

2 PR2 0.0007 0.0622 0.0622 0.3426 0.3338 0.0785 0.0878 

3 PR8-1 0.0395 0.0724 0.0122 0.0122 0.0001 0.1867 0.0926 

4 PR9-1 0.0454 0.0171 0.0171 0.1246 0.2374 0.0119 0.0074 

5 PR9-2 0.2301 0.0116 0.0116 0.0700 0.0002 0.0126 0.0779 

6 PR10 0.0328 0.0897 0.0897 0.3167 0.2458 0.0749 0.1234 

7 PR11 0.1992 0.0028 0.0028 0.0004 0.0711 0.0552 0.5697 

8 PR12-1 0.0803 0.0455 0.0455 0.2208 0.3836 0.0055 0.0522 

9 PR12-2 0.0424 0.0025 0.0025 0.2796 0.2796 0.8683 0.9999 

 
Table 4-4: R2 Values Corresponding to the Nine Assessed Pipelines 

 

Table 4-4 shows the coefficient of determination for each pipeline for each of 

the variables concerned. Generally, the coefficient values do not show strong 

correlation. This can be seen more clearly in Figure 4-1. For pipeline PR1, 

the coefficients got as high as 0.4 which means that only 40% of the 

variations in %IR are explained by the regression line. This is expected since 

%IR is used as an indication for coating defect sizing. The remaining 60% 

are due to other environmental factors. However, if one looks at the other 
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pipelines, the TCDA does not exhibit a good indicator of %IR. As far as SR is 

concerned, pipelines PR 9-2 and PR 11 showed some degree of correlation 

when aligned with %IR. All remaining pipelines showed poor correlation. For 

pipeline PR12-2, a good correlation between SR and corrosion dimensions is 

observed. It is known that as a structure is immersed in electrolyte which has 

resistivity of up to 10000 Ω-cm and above, then corrosion is halted [87]. This 

might be the case for PR12-2 but the low correlation value for other pipelines 

indicated otherwise. The high correlation is also due to the low number of 

data plots (which is 3 in this case). Pipeline PR11 also showed some 

correlation between SR and corrosion. As opposed to pipeline PR12-2, there 

are eight data plots available here. Due to this uncertainty, pipeline PR12-2 

can be considered as a one-off case and cannot be regarded as a 

benchmark, although it fits well to established theories. From all the results of 

the nine pipelines, pipeline PR12-2 has the best outcome with respect to 

correlation, except for the comparison of %IR and the TCDA where the 

correlation is almost non-existent. This again is a result of minimal data plots 

which resulted in good correlation. The apparent high correlation is mainly 

due to the sparsity of data points which does not represent the true 

underlying relationship.  
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Figure 4-1: Comparison of R² Values across the Variables

 

There is some evidence for a correlation between %IR and the corrosion 

dimension where Pipelines PR2, PR9-1, PR10, PR12-1 and PR12-2, all 

showing some degree of correlation. A DCVG survey is intended to identify 

any coating defect present on the pipeline and later to categorise its severity 

based on size. It is unknown for the technique to identify corrosion severity 

directly. However, the results show some degree of relationship between the 

two variables. Based on this, it is perhaps possible to use the technique to 

get an idea of the corrosion condition of the pipeline under investigation.  
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4.5.2 TCDA vs POPD  

 

The relationship between TCDA and POPD was investigated to establish any 

correlation between the two variables. POPD is an important variable since it 

represents a threat to structural integrity. Thus, with the ability to predict its 

presence with the use of TCDA through DCVG, operators could take 

proactive steps in managing the risk of corrosion. An initial correlation 

assessment was done using the Pearson’s correlation resulting in a value of 

-0.0736. Hence a negative trend exists between the two variables, but the 

magnitude of the coefficient tells us that the linear relationship is weak. The 

negative trend says that as TCDA increases, the depth of pits decreases. 

Furthermore, Figure 4-2 shows the linear regression of the variables and 

indicates poor linear correlation. Additionally, the data seem to be clustered 

to the left side in the region of 100,000 cm2 and below. There is also the 

presence of a punch through at 48,000 cm2 of TCDA. This suggests that 

most deeper pits occur at smaller TCDA.  At larger TCDA, the pit depth is 

40% or less. Since, in theory the severity of TCDA is inspected based on the 

%IR indication, the chances of smaller TCDA staying unnoticed are high 

which increases the risk of failure of the pipeline. However, looking at Table 

4-4, the relationship between %IR and TCDA is not straightforward, some 

pipelines indicate better readings than others. A lower reading of %IR 

represents only a relative indication of the size of TCDA and does not 

guarantee a smaller coating defect area. In the next section, a QR technique 

is used to investigate this further by quantifying the size of TCDA based on 

its contributing factors. Also, non-linear terms are added to the model to 
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compensate for the poor performance of the linear approach taken 

previously. 

 

 

 
Figure 4-2: Linear Regression of TCDA vs POPD
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4.5.3 Size Prediction of TCDA with QR  

 

A more in depth study of the effect of an individual dependent variable can 

be performed using QR. In this section, the variable TCDA was identified as 

the dependent variable since this is the variable that needs predicting for 

prioritization purposes and represents the key stone to which other variables 

are related to.  

 

The previous analyses showed that correlation between the variables is 

generally poor. This might be attributable to the linear approach taken in the 

analyses. Thus, the relationship approach taken here is non-linear. Quantile 

regression models were constructed based on the non-linear relationship 

between %IR and TCDA and is represented in Figure 4-3. The models were 

constructed using the quantreg package of the R software. Please note the 

functions in Figure 4-3 represent the relationship between %IR and TCDA 

only. No other variables were considered during the construction of these 

functions. The polynomial of these functions is at the 5th order.  It can be 

seen this relationship is better represented by non-linear functions. The 0.05 

quantile (smaller TCDA) is represented by a “flat” (black) line. This is 

because most of the measurements for TCDA indicate close to zero readings 

irrespective of the ascending %IR values. Furthermore, as the quantile 

increases, the relationship becomes more complex, confirming the indirect 

correlation between %IR readings and TCDA. 
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Figure 4-3: Quantile lines showing different quantiles for the TCDA. The 
black, red, green, blue and magenta each represent 0.05, 0.25, 0.5, 0.75 

and 0.95 quantiles respectively 
 

4.5.3.1 Non-Interaction and Interaction model 

 

Two models were constructed using the R software. The quantreg package 

was utilized for the construction of these models. Both the models assumed 

an initial 5th order polynomial for curve fitting.  

 

The first is the Non-Interaction model which assumes there is no interaction 

between the independent variables and the response variable. All the 

independent variables have no combination effect towards the value of the 

dependent variable (TCDA).  
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In the second (Interaction) model, all possible combinations of the 

independent variables are considered, applied only to those variables which 

are numeric in nature. The variable %IR, is of particular interest since a 

DCVG technique relies on this reading for categorising defect size. The 

interaction of %IR with other variables will give a better understanding of its 

effect on the value of TCDA. Theoretically, more than two variables can 

interact but for the purpose of simplicity, only pair-wise interaction of 

variables were considered.  

 

Both of these models considered the variables listed in Table 4-1. 

 

The intercept in both the Non-Interaction and Interaction models represents a 

pipe covered with Clay soil, with round geometry and with a Cold Wrap 

material coating. These variables were taken as reference variables when 

considering qualitative parameters. The coefficients generated for each 

model (Non-Interaction and Interaction model) were later selected if their 

value was beyond the range of -1 and 1. All other values that are within this 

range were discarded. This process is to simplify the model as otherwise too 

many variables are considered which may lead to overfitting.  

 

The following section shows the Non-Interaction equation generated based 

on the different variables which can be used to estimate the TCDA. This is 

followed by the Interaction model which highlights the QR model with the 

addition of the interaction variables.  
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4.5.3.1.1 Non-Interaction model 

 

The Non Interaction fitted model generated from the ECDA report is 

presented below. Five quantiles were chosen namely the 0.05, 0.25, 0.5, 

0.75 and 0.95 quantile to characterise the TCDA distribution. The model 

highlights the final outcome of the analysis after manual variable selection 

was done (lies outside the -1 and 1 range).  

 

0.05 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 12703100 + 861.7𝜶𝜶 + 4.8𝜷𝜷 + 84.3𝜸𝜸 + 522.4𝜹𝜹

− 1466.2𝜺𝜺 − 2116880𝜻𝜻 + 9015.3𝜼𝜼 + 12320.5𝜽𝜽

+ 1125.2𝜿𝜿 + 2130.9𝝀𝝀 − 78𝝁𝝁 − 21795.3𝝃𝝃 + 1834.2𝝆𝝆

− 274.5𝝈𝝈 + 26292𝝋𝝋 + 13558.3𝝌𝝌 + 3285.3𝝍𝝍 + 5747.2𝝎𝝎

+ 917.9ϋ + 8665.3ϊ − 37𝜶𝜶𝟐𝟐 + 7.9𝜸𝜸𝟐𝟐 − 15𝜹𝜹𝟐𝟐 + 16.3𝜺𝜺𝟐𝟐

+ 124401.9𝜻𝜻𝟐𝟐 + 123𝜼𝜼𝟐𝟐 + 2808.2𝜻𝜻𝟑𝟑 

4.2 
 

 

0.25 quantile 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 35572230 + 181.9𝜶𝜶 + 2.6𝜷𝜷 + 1142.1𝜸𝜸 + 1095.7𝜹𝜹

− 1398.3𝜺𝜺 − 6310216𝜻𝜻 + 10392.9𝜼𝜼 + 19929.1𝜽𝜽

− 3484.9𝜿𝜿 + 3192.5𝝀𝝀 + 441.3𝝁𝝁 − 20913.2𝝃𝝃 − 2067.8𝝆𝝆

+ 714.5𝝈𝝈 + 27141.3𝝋𝝋 + 21982.5𝝌𝝌 + 5552.8𝝍𝝍

− 5418.8𝝎𝝎 + 521.3ϋ + 1746.2ϊ − 20.6𝜶𝜶𝟐𝟐 − 120.2𝜸𝜸𝟐𝟐

− 45.4𝜹𝜹𝟐𝟐 + 15.7𝜺𝜺𝟐𝟐 + 395452.7𝜻𝜻𝟐𝟐 + 138.5𝜼𝜼𝟐𝟐 + 3.6𝜸𝜸𝟑𝟑

+ 9493.4𝜻𝜻𝟑𝟑 

4.3 
 

 

0.5 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −329032700 − 278.3𝜶𝜶 − 8.9𝜷𝜷 + 2404.3𝜸𝜸 + 1333.5𝜹𝜹

− 734.3𝜺𝜺 + 53838800𝜻𝜻 + 20891.2𝜼𝜼 + 6024.5𝜽𝜽

− 19521𝜿𝜿 − 5665.7𝝀𝝀 + 2365.7𝝁𝝁 − 21441.7𝝃𝝃 − 3.4𝝆𝝆

+ 1523.5𝝈𝝈 + 5497𝝋𝝋 + 20853.9𝝌𝝌 + 6827𝝍𝝍 − 62674.6𝝎𝝎

− 10720.7ϋ − 16424ϊ + 7.9𝜶𝜶𝟐𝟐 − 231.8𝜸𝜸𝟐𝟐 − 34.3𝜹𝜹𝟐𝟐

+ 9.2𝜺𝜺𝟐𝟐 − 3186093𝜻𝜻𝟐𝟐 + 289.4𝜼𝜼𝟐𝟐 + 6𝜸𝜸𝟑𝟑 + 73576.3𝜻𝜻𝟑𝟑 

4.4 
 

 

0.75 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −497471900 + 1580.2𝜶𝜶 + 2704𝜸𝜸 − 3282.9𝜹𝜹 − 915.3𝜺𝜺

+ 81806480𝜻𝜻 + 49842.8𝜼𝜼 − 18513.7𝜽𝜽 − 2895.8𝜿𝜿

+ 4099.9𝝀𝝀 − 6416.5𝝁𝝁 − 46743.9𝝃𝝃 − 6124.1𝝆𝝆 − 257.2𝝈𝝈

− 21310.5𝝋𝝋 + 27315.5𝝌𝝌 + 12453𝝍𝝍 − 6944.7𝝎𝝎

− 703.6ϋ + 1037.5ϊ − 92.2𝜶𝜶𝟐𝟐 − 291.8𝜸𝜸𝟐𝟐 + 156.1𝜹𝜹𝟐𝟐

+ 20.4𝜺𝜺𝟐𝟐 − 4867627𝜻𝜻𝟐𝟐 + 715.3𝜼𝜼𝟐𝟐 + 1.7𝜶𝜶𝟑𝟑 + 8.5𝜸𝜸𝟑𝟑

− 2.3𝜹𝜹𝟑𝟑 + 112994.9𝜻𝜻𝟑𝟑 

4.5 
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0.95 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −416595500 + 570.5𝜶𝜶 − 24.4𝜷𝜷 + 7009.8𝜸𝜸

− 11886.1𝜹𝜹 + 8040.9𝜺𝜺 + 68523450𝜻𝜻 + 72857.2𝜼𝜼

− 103939.6𝜽𝜽 − 10942.1𝜿𝜿 − 9451.7𝝀𝝀 + 32010.5𝝁𝝁

− 63691𝝃𝝃 + 5088.4𝝆𝝆 − 8454.4𝝈𝝈 − 59023.8𝝋𝝋

+ 20243.6𝝌𝝌 + 25815𝝍𝝍 − 79117.8𝝎𝝎 + 3213.6ϋ

− 51594.2ϊ − 49.6𝜶𝜶𝟐𝟐 − 878.7𝜸𝜸𝟐𝟐 + 681.6𝜹𝜹𝟐𝟐 − 180𝜺𝜺𝟐𝟐

− 4086668𝜻𝜻𝟐𝟐 + 1052.8𝜼𝜼𝟐𝟐 + 1.1𝜶𝜶𝟑𝟑 + 26.7𝜸𝜸𝟑𝟑 − 11.3𝜹𝜹𝟑𝟑

+ 1.2𝜺𝜺𝟑𝟑 + 95158.3𝜻𝜻𝟑𝟑 

4.6 
 

 

The %IR (without considering other %IR nonlinear terms) variable for the 

Non-Interaction model shows a trend which is inconsistent. Starting from the 

0.05 quantile, the coefficient values indicate a decreasing trend up to the 

median. It then peaks at the 0.75 quantile and drops again at the 0.95 

quantile. To elaborate further, %IR has a positive linear effect on all the 

quantiles of the TCDA except for the median quantile. However, %IR 

squared has a negative effect on all the quantiles except the median.  
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Examples of other variations across the quantiles include the variable SR 

which has no effect on TCDA at the 0.75 quantile, the DUC which has 

different directional values starting at the 0.75 quantile, and the TIS variable 

which starts having a positive effect at the median. With normal regression, 

one would look only at the mean. Based on equations 4.2 - 4.6, they would 

miss the lower and upper tails of the distribution which clearly demonstrate a 

different scenario. Selected variables such as POPD, PS and TIS are later 

derived to estimate the size of TCDA based on different quantiles.  

 

 

Figure 4-4: Changing Rate of TCDA, Computed as The Derivative of The 
Quantiles With Respect To POPD for the Non Interaction Model. The 

colored lines correspond to the different pit depths  
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Figure 4-4 shows the partially derived quantile plots with respect to the 

variable POPD from equation 4.2 to 4.6. Several limits of corrosion (pit) 

depths were used from no corrosion to pipeline failure (punch through) to 

identify effects of varying levels of corrosion on TCDA. The figure points to 

an increasing trend signalling an increase in coating defect correlated to an 

increasing pit depth. Lower quantiles (below 0.2) highlight a decreasing trend 

where deeper pits are paired with smaller TCDA. The results shown here 

seem to echo the trend n in Figure 4-2 where deeper pits are found in 

smaller areas of TCDA. This effect is more pronounced in pits that have 

made a hole in the pipeline wall.     

 

 

 
Figure 4-5: Changing Rate of TCDA, Computed as The Derivative of The 

Quantiles With Respect To PS for the Non Interaction Model. The 
colored lines correspond to pipeline sizes (in Inches) 
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Figure 4-5 illustrates the changing rate of TCDA based on the dimensions of 

the pipeline. Pipeline sizes ranging from 26 inches to 42 inches (based on 

the MEOC data) were treated as inputs to the partially derived models (with 

respect to PS) on the different quantiles (equation 4.2 to 4.6). The upward 

trend is seen across the range which translates to larger pipes having an 

increasing effect to larger TCDA. The 0.05 quantile up to the 0.2 quantile 

shows a flat trend which signals the non-effect of pipe sizes at smaller 

TCDA. It can also be said that, for smaller TCDA, an effect will continue to 

occur on pipelines irrespective of how big the pipeline is. At larger TCDA the 

apparent effect of pipe size on coating defects is more pronounced. This 

makes sense since larger pipelines have more surface for the coating to 

interact with the surrounding environment – and thus are more likely to 

degrade.  Overall it can be said -  the larger the pipe size, the more likely we 

are to find large coating defects.  
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Figure 4-6: Changing Rate of TCDA, Computed as The Derivative of The 

Quantiles With Respect To TIS for the Non Interaction Model. The 
colored lines correspond to the age of pipelines (in years) 

 

Figure 4-6 summarises the partially derived quantiles (equation 4.2 to 4.6) 

with respect to the variable TIS. Age as old as 50 years down to 10 years 

were treated as inputs to these equations.  Generally, it can be seen that as 

the pipe ages, its effect on the size of TCDA also increases. The maximum 

effect of the pipe age occurs at TCDA sizes corresponding to the 0.75 

quantile. After this, the effect of age on size on larger coating defects seems 

to taper off. This might be due to the evolution of the coating defects. Age 

has the biggest influence on defect sizes corresponding to the 0.75 quantile. 
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The overall trend highlighted in Figure 4-6 seems to fit well with current 

industry understanding that as the pipeline ages, coatings will deteriorate 

and that coating defects will increase in size. 

 

4.5.3.1.2 Interaction model 

 

The Interaction model generated from the ECDA report is given below. 

Interaction terms are added to the already complex non-linear models we 

see in the Non-Interaction models. Although a preliminary linear correlation 

assessment was done between the independent variables, interaction terms 

were added to see if there is any combined effect coming from the variables 

towards the TCDA and to investigate whether these variables have any 

significance (in terms of meaning and magnitude). Variables were paired with 

every possible combination and those having the most significant values 

(outside the -1 to 1 range) were chosen in the final model.   

 

 

 

0.05 quantile 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 28324.6 − 10756.3𝜶𝜶 + 59.5𝜷𝜷 + 280.7𝜸𝜸 − 2409.9𝜹𝜹

− 705.7𝜺𝜺 + 9733.6𝜻𝜻 − 7828.1𝜼𝜼 + 56389.9𝜽𝜽 − 13772𝜿𝜿

− 4967𝝀𝝀 + 13415.8𝝁𝝁 − 9051.5𝝃𝝃 − 17481.5𝝆𝝆 + 4041.7𝝈𝝈

+ 45549.1𝝋𝝋 + 29967.8𝝌𝝌 − 7415.6𝝍𝝍 − 22459.9𝝎𝝎

− 2835.1ϋ − 975.7ϊ − 41.5𝜶𝜶𝜸𝜸 + 9.8𝜶𝜶𝜹𝜹 − 37.5𝜶𝜶𝜺𝜺

+ 50.8𝜶𝜶𝜻𝜻 + 374.3𝜶𝜶𝜼𝜼 − 2.1𝜷𝜷𝜼𝜼 − 40.2𝜸𝜸𝜹𝜹 + 8.8𝜸𝜸𝜺𝜺

− 106.8𝜸𝜸𝜻𝜻 + 160.6𝜸𝜸𝜼𝜼 − 17.6𝜹𝜹𝜺𝜺 + 62𝜹𝜹𝜻𝜻 + 42.4𝜹𝜹𝜼𝜼

+ 52.1𝜺𝜺𝜻𝜻 − 1.4𝜺𝜺𝜼𝜼 + 218.5𝜻𝜻𝜼𝜼 + 182.6𝜶𝜶𝟐𝟐 − 188.7𝜸𝜸𝟐𝟐

+ 138.7𝜹𝜹𝟐𝟐 + 15.5𝜺𝜺𝟐𝟐 + 329.6𝜻𝜻𝟐𝟐 + 15.2𝜼𝜼𝟐𝟐 − 1.2𝜶𝜶𝟑𝟑 − 3.4𝜸𝜸𝟑𝟑

− 1.1𝜹𝜹𝟑𝟑 

4.7 
 

 

0.25 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −1208842 − 16507.1𝜶𝜶 + 3.8𝜷𝜷 − 1672.5𝜸𝜸 − 2019.9𝜹𝜹

− 1932.6𝜺𝜺 + 51844.4𝜻𝜻 + 27540.1𝜼𝜼 + 64969.3𝜽𝜽

+ 11738.2𝜿𝜿 − 23653.5𝝀𝝀 + 25203.2𝝁𝝁 − 18762.3𝝃𝝃

− 17806.3𝝆𝝆 − 4701.5𝝈𝝈 + 33625.2𝝋𝝋 + 34433.8𝝌𝝌

− 23579.8𝝍𝝍− 63664.4𝝎𝝎 − 12889.4ϋ − 15665.3ϊ

− 177.6𝜶𝜶𝜸𝜸 + 18.5𝜶𝜶𝜹𝜹 − 37.8𝜶𝜶𝜺𝜺 + 93.9𝜶𝜶𝜻𝜻 + 552.2𝜶𝜶𝜼𝜼

− 103.3𝜸𝜸𝜹𝜹 + 40.3𝜸𝜸𝜺𝜺 − 73.1𝜸𝜸𝜻𝜻 + 315𝜸𝜸𝜼𝜼 − 35.3𝜹𝜹𝜺𝜺

+ 86.8𝜹𝜹𝜻𝜻 + 46.6𝜹𝜹𝜼𝜼 + 111.8𝜺𝜺𝜻𝜻 − 2.2𝜺𝜺𝜼𝜼 − 38.4𝜻𝜻𝜼𝜼

+ 278.9𝜶𝜶𝟐𝟐 − 66.7𝜸𝜸𝟐𝟐 + 239.7𝜹𝜹𝟐𝟐 + 37.1𝜺𝜺𝟐𝟐 + 922.8𝜻𝜻𝟐𝟐

+ 393𝜼𝜼𝟐𝟐 − 1.6𝜶𝜶𝟑𝟑 − 2.0𝜹𝜹𝟑𝟑  

4.8 
 

 

 

0.5 quantile 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −3462643 + 7623.3𝜶𝜶 + 150.7𝜷𝜷 + 9079.6𝜸𝜸 − 1090.2𝜹𝜹

− 6000.2𝜺𝜺 + 104240.2𝜻𝜻 + 109884.1𝜼𝜼 − 6940.3𝜽𝜽

+ 66270.6𝜿𝜿 − 32648.2𝝀𝝀 + 33243.8𝝁𝝁 − 153616.4𝝃𝝃

− 35568.9𝝆𝝆 − 18159.6𝝈𝝈 + 13238.7𝝋𝝋 + 40849.5𝝌𝝌

− 12431.5𝝍𝝍− 98712.7𝝎𝝎 − 9688.1ϋ − 25110.6ϊ

− 240.9𝜶𝜶𝜸𝜸 + 74.1𝜶𝜶𝜹𝜹 − 47.8𝜶𝜶𝜺𝜺 + 183.6𝜶𝜶𝜻𝜻 − 351.5𝜶𝜶𝜼𝜼

− 4.4𝜷𝜷𝜻𝜻 − 132.8𝜸𝜸𝜹𝜹 + 74.1𝜸𝜸𝜺𝜺 − 136.6𝜸𝜸𝜻𝜻 + 69.8𝜸𝜸𝜼𝜼

− 30.1𝜹𝜹𝜺𝜺 + 203.7𝜹𝜹𝜻𝜻 − 135𝜹𝜹𝜼𝜼 + 197.4𝜺𝜺𝜻𝜻 + 15.6𝜺𝜺𝜼𝜼

− 1526.2𝜻𝜻𝜼𝜼 + 81.9𝜶𝜶𝟐𝟐 − 653.9𝜸𝜸𝟐𝟐 + 155.2𝜹𝜹𝟐𝟐 + 4.6𝜺𝜺𝟐𝟐

+ 1090.9𝜻𝜻𝟐𝟐 + 668.9𝜼𝜼𝟐𝟐 − 7.1𝜸𝜸𝟑𝟑 − 1.1𝜹𝜹𝟑𝟑 

4.9 
 

 

0.75 quantile 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −5770395 + 22187.7𝜶𝜶 + 315.6𝜷𝜷 + 36639.4𝜸𝜸

+ 2012.2𝜹𝜹 − 19.4𝜺𝜺 + 155239.9𝜻𝜻 + 180311.4𝜼𝜼

− 112808𝜽𝜽 + 74003.5𝜿𝜿 − 33904.9𝝀𝝀 + 36975.8𝝁𝝁

− 200185𝝃𝝃 − 33887.8𝝆𝝆 − 22720.4𝝈𝝈 − 15990.7𝝋𝝋

+ 43406.8𝝌𝝌 − 13422.8𝝍𝝍− 128644.4𝝎𝝎 + 5275.4ϋ

− 27187.8ϊ − 208.4𝜶𝜶𝜸𝜸 + 43.5𝜶𝜶𝜹𝜹 − 46.2𝜶𝜶𝜺𝜺 + 464.1𝜶𝜶𝜻𝜻

− 878.4𝜶𝜶𝜼𝜼 − 6.6𝜷𝜷𝜻𝜻 − 144.4𝜸𝜸𝜹𝜹 + 157.2𝜸𝜸𝜺𝜺 − 546.7𝜸𝜸𝜻𝜻

− 497.1𝜸𝜸𝜼𝜼 − 17.9𝜹𝜹𝜺𝜺 + 49.7𝜹𝜹𝜻𝜻 − 56.2𝜹𝜹𝜼𝜼 + 63.1𝜺𝜺𝜻𝜻

− 20.3𝜺𝜺𝜼𝜼 − 2466.2𝜻𝜻𝜼𝜼 + 262.2𝜶𝜶𝟐𝟐 − 1300.5𝜸𝜸𝟐𝟐 + 71𝜹𝜹𝟐𝟐

− 32.8𝜺𝜺𝟐𝟐 + 1416.9𝜻𝜻𝟐𝟐 + 1022.8𝜼𝜼𝟐𝟐 + 1.5𝜶𝜶𝟑𝟑 − 12.5𝜸𝜸𝟑𝟑 

4.10 
 

 

 

0.95 quantile 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −5569179 + 47167.4𝜶𝜶 + 383.5𝜷𝜷 + 39300.6𝜸𝜸

− 509.9𝜹𝜹 − 22718.4𝜺𝜺 + 126013.3𝜻𝜻 + 210415.6𝜼𝜼

− 28072𝜽𝜽 + 84032.7𝜿𝜿 − 32262.8𝝀𝝀 + 48593.6𝝁𝝁

− 257274.8𝝃𝝃 − 74521.5𝝆𝝆 − 34265.9𝝈𝝈 − 22767.6𝝋𝝋

+ 8982.2𝝌𝝌 − 19926.9𝝍𝝍− 124534.5𝝎𝝎− 1808.8ϋ

− 37898.6ϊ − 189𝜶𝜶𝜸𝜸 + 21.4𝜶𝜶𝜹𝜹 − 102.6𝜶𝜶𝜺𝜺 + 353.2𝜶𝜶𝜻𝜻

− 1224.2𝜶𝜶𝜼𝜼 − 7.1𝜷𝜷𝜻𝜻 − 3.3𝜷𝜷𝜼𝜼 − 160.9𝜸𝜸𝜹𝜹 + 308.9𝜸𝜸𝜺𝜺

− 736.2𝜸𝜸𝜻𝜻 − 908.7𝜸𝜸𝜼𝜼 − 60.2𝜹𝜹𝜺𝜺 + 97.3𝜹𝜹𝜻𝜻 + 126.5𝜹𝜹𝜼𝜼

+ 739.9𝜺𝜺𝜻𝜻 − 2678.4𝜻𝜻𝜼𝜼+ 668.8𝜶𝜶𝟐𝟐 − 1413.1𝜸𝜸𝟐𝟐 + 70.8𝜹𝜹𝟐𝟐

+ 88.9𝜺𝜺𝟐𝟐 + 1153.2𝜻𝜻𝟐𝟐 + 1335.3𝜼𝜼𝟐𝟐 + 3.9𝜶𝜶𝟑𝟑 − 17.1𝜸𝜸𝟑𝟑 

4.11 
 

 

From the Interaction models shown above, the %IR coefficients (at the linear 

part) indicate an uncertain trend as TCDA increases. The %IR values signify 

a negative downward trend up to the 0.25 quantile. Above the median, the 

coefficient trend is positive with an increase at every quantile considered. 

The interaction terms which includes the %IR is dominant across the 

quantiles which seems to suggest the interpretation of %IR is not a function 

of TCDA alone but of other factors as well.  

 

For the variable POPD, the linear part of the median quantile highlights a 

coefficient value of 9079.6. If we look at the 0.95 quantile, the coefficient 

value is 39300.6. The increase in value from the median to the 0.95 quantile 

supports the idea that for larger TCDAs, corrosion is more likely and hence 

deeper pits (similar to Figure 4-4). This finding does contradict the linear 

correlation (Figure 4-2) done earlier which only considers the variable POPD 



117 
 

and the TCDA. The combination of non-linear, interaction and other 

contributing terms has “influenced” the outcome which is different from the 

linear regression analysis.  

 

To investigate further on this apparent inconsistency, the derivatives with 

respect to POPD on the interaction models were examined. All the plots in 

Figure 4-7, Figure 4-8 and Figure 4-9 is a representation of the partially 

derived quantiles (based on equation 4.7 to 4.11) with respect to POPD, PS 

and TIS respectively. They use varying limits of corrosion depths, pipe sizes 

and pipeline age as inputs to investigate on the effect of varying limits on the 

size of coating defect (TCDA). Additionally, to make the equations more 

interpretable, the derived equation uses the values of 35.2%, 109.5 cm, 32.5 

years, 35.3 inches and 39.2% which correspond to DUC, DOC, TIS, PS and 

%IR respectively for the calculation of the derived quantiles. These are the 

mean values of each corresponding variable.  
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Figure 4-7: Changing Rate of TCDA, Computed as The Derivative of The 
Quantiles With Respect To POPD for the Interaction Model. The colored 

lines correspond to the depth of pits (in percentage) 
 

Figure 4-7 highlights the trend of POPD with respect to the differing quantiles 

of the TCDA. The general trend shows that with increasing POPD, the 

inverse effect of TCDA increases. This can be seen clearly at larger TCDA 

where larger POPD has a larger effect compared with other pit depths. At 

smaller TCDA the effect of POPD is not as strong when compared to larger 

defects. Nevertheless, the negative values show that the effect is inversely 

proportional to the size of TCDA. When there is no pitting present on the 

pipeline, the effect is virtually zero for the different sizes of TCDA.  There 

seems to be another area where the effect of POPD is zero which occurs at 

the 0.2 quantile region. This finding is interesting since we can assume that 

at smaller TCDA, the inverse effect of pit depth shows that deeper pits are 
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more likely and at larger TCDA a more general form of corrosion is highly 

probable. The transition point of these two opposing trends (with respect to 

size of TCDA) occurs at the 0.2 region. All of these findings are parallel to 

the result of the simple linear regression performed in Figure 4-2.   

 

 

 
Figure 4-8: Changing Rate of TCDA, Computed as The Derivative of The 

Quantiles With Respect To PS for the Interaction Model. The colored 
lines correspond to pipeline sizes (in inches) 

 
Figure 4-8 highlights that PS also plays a role in the determination of TCDA 

for the interaction model. The derivative of the quantiles with respect to PS 

shows an increase in effect with increasing coating size. The increase is 

similar to that of the Non-Interaction model. It can be generalised that the 

effect applies to all the pipe size considered. At lower quantiles of the coating 

defect, the estimated coating defect size for different size pipes shows 
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similar estimates. This trend is similar to the Non-Interaction model (Figure 

4-5). Smaller coating defects will occur irrespective of pipe size. However, for 

larger coating defects, the effect of pipe size is more apparent. This can be 

seen by the more dispersed estimates of TCDA for the various pipe sizes. 

Again, this parallels the results obtained in Figure 4-5. With larger pipes, the 

likelihood of finding larger coating defects is more likely and this is what we 

have come to observe with the MEOC data. The two models in Figure 4-5 

and Figure 4-8 support the validity of the models produced in this section 

where similar results are obtained by two different means. It also complies 

with industry experience that larger pipe dimensions will be more susceptible 

to coating failures (due to larger exposed area).  
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Figure 4-9: Changing Rate of TCDA, Computed as The Derivative of The 

Quantiles With Respect To TIS for the Interaction Model. The colored 
lines correspond to the age of pipelines (in years) 

 
Similar to the previous assessments, the models were derived with respect 

to the age of the pipes (TIS) to investigate on the changing rate of TCDA. It 

can be seen in Figure 4-9 that the increasing age of the pipelines contribute 

to an increasing effect towards the determination of TCDA. Below the 0.2 

quantile, the slope of the increment of the estimated TCDA is rather steep 

when compared to the estimated values beyond the 0.2 quantile. This 

demonstrates that at lower or smaller defect areas the effect of increasing 

age is quite obvious. Looking back at the Non-Interaction model where a 

similar assessment was done with respect to the pipeline’s age (Figure 4-6), 

the inflection point where the effect of TIS is greatest occurs at the 0.75 

quantile. In Figure 4-9, the greatest effect of increasing age occurs at the 
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0.95 quantile for the larger coating defects. This can be seen with the largest 

value coming from the oldest pipelines. The difference in quantile where the 

effect of age is greatest is probably due to the different factors and terms 

considered within the interaction. Nevertheless, the two assessments show 

that age has a positive effect to coating defect growth and the effect is felt 

most at higher quantiles. The results concur with past and current suspicions 

of industry, that age is one of the most important factors when considering 

the severity of coating defects on any given pipeline.  

 

The interaction variable between %IR and the DOC provides an idea of the 

interaction effects between the two variables. The trend shows increasingly 

negative values which maximizes at the 0.95 quantile. This outcome is 

expected since the effect of increasing depth will weaken the %IR signal and 

thus its contribution to the prediction of TCDA is also weakened. Interaction 

effects can also be seen between %IR and the TIS of the pipes. The upward 

trend continues until the 0.75 quantile and drops slightly at the 0.95 quantile. 

The interaction here is in parallel with the aforementioned assessment where 

the age of the pipe has a positive effect on the size of TCDA. The slight dip 

at the 0.95 quantile also indicates the inconsistencies of the DCVG technique 

where lower %IR values are paired with larger TCDA and vice versa. 
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4.6 Discussion 

4.6.1 Linear Correlation of Variables 

 

The results and trends from the correlation section showed low correlation of 

variables relating to %IR and TCDA. As was stated earlier, PR1 showed 

some degree of association between %IR and TCDA where the data is 40% 

explained by the model. There seems to be some degree of association 

between the %IR and corrosion in terms of area (TCA). However, when 

considering POPD, which accounts for the depth of the pit, the correlation is 

not as high. This can also be seen in the results of the correlation between 

%IR and corrosion in terms of volume (TCV) which also is not significant. 

These findings seem to suggest that the DCVG technique is able to detect 

corrosion from an area perspective but not its protruding dimension (depth). 

This suspicion is further investigated in Chapter 6. 

 

The low linear correlation between the variables can be explained by a few 

scenarios.  

• The relationships between variables are non-linear. 

• Not all the variables contribute to the %IR value per se. A collection of 

variables which interacts as one mechanism gives rise to the %IR 

reading. Taking the %IR as the dependent variable will be discussed 

in Chapters 5 and 6. 

• Pipelines in the area of inspection run in parallel and sometimes cross 

other pipelines in the vicinity of the complex. Currents coming from 

other adjacent CP systems which are protecting other pipes will affect 
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the outcome of the DCVG readings hence unreliable %IR indications 

arise.  

• Inappropriate isolation of the pipelines to be protected from other 

pipelines. If this should occur, the location where the current leaves 

the metal will accelerate corrosion. 

• Figure 4-10 below, it can be seen that prior to the installation of the 

ICCP, a sacrificial anode system was installed. The metal wire 

attached to the pipe was not removed completely and was joined by a 

tack weld. This is another cause of current leaving the pipe in 

unintended directions. The currents will cause inaccurate readings to 

the DCVG. 

• The presence of AC high voltage transmission above the pipelines 

under assessment gives off magnetic fields which interact with the 

pipeline buried beneath. The interaction induces voltages in the pipe 

thus affecting the DCVG readings. 

• The value of %IR is taken as the DCVG voltage which gets its current 

from the CP system.  DCVG and other ECDA assessment tools rely 

heavily on the full working capacity of this CP system. Interference in 

the form of telluric or stray currents can strongly influence the 

effectiveness of the CP and hence the DCVG measurement.  
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Figure 4-10: Part of the Metal Rod for the Sacrificial Anodes (no longer 

present) Attached to the Pipe via a Tack Weld 
       

4.6.2 Summary of Results from the QR Models 

4.6.2.1 Non-Interaction model 

 

The uncertain trend of the %IR highlights the model’s limitation in 

representing the size of the defect. A closer look at the relationship between 

%IR and the TCDA employing the Non-Interaction (for various quantiles) 

model is demonstrated in Figure 4-11 below. 
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Figure 4-11: %IR vs TCDA for the Non-Interaction Model 

 

Figure 4-11 shows the derivation of the Non-Interaction model with respect to 

its %IR. It can be observed that the models generated are acceptable but 

only at quantiles of 0.5 and above. Due to the quadratic nature of the Non-

Interaction models, the origin of estimates does not begin at the absolute 

zero and parts of the estimation transcend the zero line. The apparent 

violation is possibly attributable to the nature of the mathematical method or 

the traits of the TCDA data where the DCVG technique is unable to detect 

(0% %IR reading) coating defects (where in fact there is one).   

 

Negative predictions are seen at lower quantiles with increasing %IR 

readings translating into negative TCDAs. For lower quantiles (0.05 and 

0.25) of the Non-Interaction model, the estimated TCDA is unreliable and is 
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due to the presence of many small coating defects relating to higher %IR. 

For the upper quantiles, the estimation seems satisfactory. However, when 

one considers the MEOC data, the maximum range of the TCDA is 270,000 

cm2. The model’s estimation shown here indicates a much lower reading with 

a maximum predicted at approximately 35,000 cm2 which occurs at the 0.75 

quantile. The apparent underestimation is possibly due to the model’s 

simplicity which does not consider the interaction of variables.   

 

The variables, POPD, PS and TIS all showed positive effect with increasing 

TCDA. For the case of PS and TIS, this trend makes sense since the larger 

the diameter of a pipe or the longer the pipe is in operation the more likely it 

is that larger forms of coating defect will occur. As in the case of POPD, the 

general increase in trend illustrates the general understanding that more 

metal exposed to the environment will likely produce or enhance corrosion 

which could mean deeper pits. This goes against the results found earlier in 

Figure 4-2. However, the Interaction model highlights an opposite scenario 

(after further analysis) which seems to suggest that interaction terms are 

important for different variables. 

 

4.6.2.2 Interaction model 

 

The trend of %IR with respect to TCDA shows an increase with a maximum 

at the 0.95 quantile. This supports the underlying theory that larger %IR 

values correspond to larger TCDA. The estimated size of the TCDA is given 



128 
 

as the derivative of the TCDA with respect to %IR. The resulting estimates 

are given in Figure 4-12 below.  

 

 

 
Figure 4-12: %IR vs TCDA for the Interaction Model 

 

As demonstrated in Figure 4-12, there seems to be good predictive indication 

of the size of TCDA with respect to %IR. Models from the lowest to the 

highest quantiles cover the range of the TCDA sizes. The lower quantiles 

give an inverted parabola which illustrates the uncertainty of readings of 

lower TCDA associated with %IR. For the estimation of larger TCDAs, the 

models in Figure 4-12 seems to adequately represent the underlying 

philosophy of the DCVG technique. The inclusion of interaction variables and 

the non-linear approach (up to 5th order) taken to model TCDA sizes has 

influenced the outcome of this analysis. For the case of the MEOC data, 
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these inclusions suggest their importance and not considering them would 

possibly lead to inconclusive results. As a word of caution, these models are 

applicable only to the MEOC data since this is where the models were 

generated from. Since the ECDA is an iterative process, these models could 

be useful when conducting future assessments on the same pipes. A 

Bayesian method could be an alternative approach to repetitive assessments 

where the results in this thesis could act as the prior information for future 

inspection processes. This approach is further elaborated in Chapter 5.  

 

Results have shown that similar trend exists for the variable POPD when 

compared to the simple linear regression in Figure 4-2. This means that with 

smaller defect area, POPD has a much stronger presence. Larger defect 

areas will tend to have lower POPD values hinting that corrosion is much 

more generalised. Moreover, the results indicated that the growth rate of 

TCDA is not in parallel with the growth rate of pits. The growth of pits seems 

to be faster resulting in deeper pits occurring at smaller TCDA. This idea is 

further elaborated in Chapters 5 and 6.  

 

As highlighted in the Non-Interaction model, the PS plays a vital role in 

determining the TCDA. This is also true for the Interaction model. A larger 

diameter pipe has a lot more surface area and hence is likely to demonstrate 

a larger TCDA. As with the variable TIS, the older or the longer a pipe is in 

service, the higher is the probability of developing coating defects.  
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An interesting effect was found at the Interaction variable between the %IR 

and the DOC. A decreasing trend was found and was most negative at the 

0.95 quantile. This can be explained by the effect of the DOC (soil) on top of 

the pipe on the %IR reading. As an inspector walks the path of the pipeline 

conducting a DCVG survey, indications from defects will not be detected if 

out of range. The signal from the defect can only be picked up by the DCVG 

probes if the ground surface cuts through the equipotential lines of the DCVG 

voltage gradient spheres. For underground pipes, this signal will not be 

apparent, especially for small defects or in deeper soil cover. This finding is 

also confirmed by findings in Chapter 5 and 6 using Bayesian QR and 

logistic QR.  

 

The Interaction effects can also be seen from the %IR interacting with the 

TIS variable. Unlike the previous example, the trend demonstrated here 

indicates an upward trend across the quantiles. This perhaps is due to 

ageing pipelines which contributes to larger TCDA (stated earlier) 

corresponding to a higher %IR value. The effect of a pipeline’s age is greater 

for larger TCDA. 

 

4.7 Least Absolute Shrinkage Selection Operator (LASSO)  

 

In the models previously constructed, it has been noted that the number of 

variables in the interaction and the Non-Interaction models is relatively large 

when compared to the number of data points in the MEOC data. The large 

number of variables generated was due to the higher order polynomials used 
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for model construction which may lead to overfitting of the current data set. 

Therefore, the constructed models might be of little contribution for the 

assessment of other pipelines beyond the scope of those highlighted in this 

research. One can argue that the models are suited to pipelines that reside 

in similar environments with identical operating conditions to those in this 

thesis. While this is true to a certain extent, the ideal way is to generalise the 

functions through a process called regularisation. The LASSO technique was 

used to perform variable selection and regularisation on the Interaction and 

Non-Interaction models. By doing so, a much more general model is 

produced and hence a better fit for upcoming datasets. Figure 4-13 illustrates 

the extent of the relationship between selected independent variables and 

the fixed dependent variable, TCDA. Each independent variable is modelled 

using non-linear QR separately to show how each variable relates to TCDA. 
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Figure 4-13: The Red, Magenta, Green, Blue and Black functions 
represent the 0.95, 0.75, 0.5, 0.25 and 0.05 Quantiles Respectively 

 

As mentioned earlier, Figure 4-13 highlights the relationship of various 

variables with the dependent variable, TCDA. It is evident, from Figure 4-13, 

that the models are tightly knitted to the data set. The relationship of SR and 

TCDA further illustrates this with the models strictly obeying the polynomial 

order with which the models were constructed from.  

 

Polynomials up to 5th order were utilised in modelling the relationship of the 

dataset. For the interaction models, interaction terms were introduced to the 

polynomial structure. This further inflated the number of variables relative to 

the number of data points. The problem of overfitting may arise when there 

exists a non-unique solution to the relationship. When the number of 
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variables is quite large, as in the case of the polynomial solution proposed in 

this research, a number of models that fit the data equally well may exist. 

This potentially leads the model to overfit since the models have a large 

number of ways in making the error term zero (or close to zero) and may not 

represent the correct picture of the true underlying relationship.   

 

For the case of the MEOC data, λ (the regularisation parameter), symbolizes 

the general intention of the DCVG technique which is to correlate the %IR 

value to the area of the coating defect. The selection of the regularisation 

parameter is chosen by trial and error, producing models which are simple 

and yet illustrate the relationship of %IR vs TCDA. The relationship must 

reflect the general understanding of the DCVG technique where increasing 

%IR is a signal of an increase in the area of coating defect. Although it is 

quite obvious that this relationship is non-linear (based on the MEOC data), a 

general working guideline (model) is essential for engineers and operators in 

deciding on where to conduct further direct assessment and on which defect 

requires immediate attention. This guideline can also be a quick reference 

tool for engineers at inspection sites (in the field) to interpret the %IR signals 

obtained during the DCVG inspection. With this intention in mind, the 

regularisation parameter was tuned to yield linear relationships (models) 

between %IR and TCDA and also to produce the simplest form possible that 

the model can take. Additionally, coefficients with values within the -1 and 1 

range after they have gone through the LASSO process are discarded for 

further generalization.  
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The Non-Interaction and Interaction Models which have gone through the 

LASSO procedure are summarised below. 

 

4.7.1 Non-Interaction (R) Model  

 

0.05 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −24751.9 + 1.2𝜷𝜷 + 1.6𝜶𝜶𝟐𝟐 − 1.8𝜸𝜸𝟐𝟐 + 2.3𝜹𝜹𝟐𝟐 + 1.0𝜼𝜼𝟐𝟐

+ 6.0𝜻𝜻𝟑𝟑 

4.12 
 

 

0.25 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −1986887.0 − 135.4𝜹𝜹 + 6.5𝜶𝜶𝟐𝟐 − 35.9𝜸𝜸𝟐𝟐 + 14.1𝜹𝜹𝟐𝟐

− 3.3𝜺𝜺𝟐𝟐 + 16352.1𝜻𝜻𝟐𝟐 + 6.6𝜼𝜼𝟐𝟐 + 1.6𝜸𝜸𝟑𝟑 − 668.3𝜻𝜻𝟑𝟑 

4.13 
 

 

0.5 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −2891689.0 − 1.2𝜷𝜷 + 15.3𝜸𝜸 − 2288.6𝜺𝜺 + 2225.0𝜼𝜼

+ 11.9𝜶𝜶𝟐𝟐 − 75.2𝜸𝜸𝟐𝟐 − 5.1𝜹𝜹𝟐𝟐 + 43.9𝜺𝜺𝟐𝟐 + 21757.6𝜻𝜻𝟐𝟐

− 17.8𝜼𝜼𝟐𝟐 + 3.2𝜸𝜸𝟑𝟑 − 827.7𝜻𝜻𝟑𝟑 

4.14 
 

 

0.75 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −3041816.0 + 9.2𝜷𝜷 + 2045.7𝜸𝜸 − 852.7𝜹𝜹 − 2139.1𝜺𝜺

+ 7380.5𝜼𝜼 + 17.9𝜶𝜶𝟐𝟐 − 343.7𝜸𝜸𝟐𝟐 + 25.6𝜹𝜹𝟐𝟐 + 66.1𝜺𝜺𝟐𝟐

+ 13896.4𝜻𝜻𝟐𝟐 − 88.5𝜼𝜼𝟐𝟐 + 11.5𝜸𝜸𝟑𝟑 − 248.5𝜻𝜻𝟑𝟑 

4.15 
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0.95 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −1790099.0 − 6.0𝜷𝜷 − 4226.0𝜹𝜹 + 35.5𝜶𝜶𝟐𝟐 − 360.0𝜸𝜸𝟐𝟐

+ 278.4𝜹𝜹𝟐𝟐 + 56.4𝜺𝜺𝟐𝟐 + 28.0𝜼𝜼𝟐𝟐 + 15.9𝜸𝜸𝟑𝟑 − 4.4𝜹𝜹𝟑𝟑

+ 471.1𝜻𝜻𝟑𝟑 

4.16 
 

 

4.7.2 Interaction (R) Models  
 

0.05 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 14609.4 + 57.4𝜶𝜶𝜸𝜸 + 7.1𝜶𝜶𝜹𝜹 − 7.9𝜶𝜶𝜺𝜺 + 71.7𝜶𝜶𝜻𝜻

− 43.4𝜸𝜸𝜹𝜹 + 41.0𝜸𝜸𝜺𝜺 + 37.2𝜸𝜸𝜻𝜻 − 34.2𝜸𝜸𝜼𝜼 − 21.3𝜹𝜹𝜺𝜺

+ 67.6𝜹𝜹𝜻𝜻 − 11.2𝜹𝜹𝜼𝜼 − 10.0𝜺𝜺𝜻𝜻 + 1.4𝜺𝜺𝜼𝜼+ 124.0𝜻𝜻𝜼𝜼 + 3.4𝜶𝜶𝟐𝟐

+ 82.6𝜸𝜸𝟐𝟐 + 37.3𝜹𝜹𝟐𝟐 + 3.8𝜺𝜺𝟐𝟐 − 105.7𝜻𝜻𝟐𝟐 − 58.2𝜼𝜼𝟐𝟐 

4.17 
 

 

0.25 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 147153.6 − 4.0𝜷𝜷 − 6179.3𝜹𝜹 − 2964.8𝜺𝜺 − 17542.9𝝀𝝀

+ 5773.0𝝁𝝁 + 167.0𝝈𝝈 − 1120.2𝝍𝝍 − 12017.1𝝎𝝎 − 5336.9ϋ

− 2967.0ϊ + 77.5𝜶𝜶𝜸𝜸 − 14.5𝜶𝜶𝜹𝜹 − 2.6𝜶𝜶𝜺𝜺 + 10.5𝜶𝜶𝜻𝜻

+ 53.9𝜶𝜶𝜼𝜼 + 1.1𝜷𝜷𝜼𝜼 − 69.8𝜸𝜸𝜹𝜹 + 48.2𝜸𝜸𝜺𝜺 − 83.0𝜸𝜸𝜻𝜻

+ 99.3𝜸𝜸𝜼𝜼 − 14.9𝜹𝜹𝜺𝜺 + 140.2𝜹𝜹𝜻𝜻 + 78.7𝜹𝜹𝜼𝜼 + 87.1𝜺𝜺𝜻𝜻

− 5.1𝜺𝜺𝜼𝜼 + 486.3𝜻𝜻𝜼𝜼 + 4.2𝜶𝜶𝟐𝟐 − 156.2𝜸𝜸𝟐𝟐 + 199.4𝜹𝜹𝟐𝟐

+ 37.6𝜺𝜺𝟐𝟐 − 339.9𝜻𝜻𝟐𝟐 − 272.5𝜼𝜼𝟐𝟐 + 1.8𝜸𝜸𝟑𝟑 − 1.4𝜹𝜹𝟑𝟑 

4.18 
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0.5 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = −63592.1 + 129.7𝜷𝜷 + 3349.2𝜺𝜺 + 5805.5𝜻𝜻 + 8095.4𝜼𝜼

− 28247.7𝝀𝝀 − 18716.4𝝆𝝆 − 4403.2𝝈𝝈 − 3965.9𝝍𝝍

− 15360.1ϋ + 89.9𝜶𝜶𝜸𝜸 + 31.7𝜶𝜶𝜹𝜹 − 3.0𝜶𝜶𝜺𝜺 − 16.2𝜶𝜶𝜻𝜻

+ 73.9𝜶𝜶𝜼𝜼 − 5.2𝜷𝜷𝜻𝜻 + 2.3𝜷𝜷𝜼𝜼 − 107.1𝜸𝜸𝜹𝜹 + 73.9𝜸𝜸𝜺𝜺

+ 42.1𝜸𝜸𝜻𝜻 + 8.7𝜸𝜸𝜼𝜼 − 34.9𝜹𝜹𝜺𝜺 + 81.4𝜹𝜹𝜻𝜻 + 9.7𝜹𝜹𝜼𝜼 − 76.9𝜺𝜺𝜻𝜻

+ 16.9𝜺𝜺𝜼𝜼+ 886.8𝜻𝜻𝜼𝜼 + 15.3𝜶𝜶𝟐𝟐 − 343.1𝜸𝜸𝟐𝟐 + 76.7𝜹𝜹𝟐𝟐

− 29.7𝜺𝜺𝟐𝟐 − 614.0𝜻𝜻𝟐𝟐 − 653.7𝜼𝜼𝟐𝟐 + 4.3𝜸𝜸𝟑𝟑 

4.19 
 

 

0.75 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 278481.8 + 235.4𝜷𝜷 + 14150.3𝜸𝜸 − 1219.2𝜹𝜹 + 11452.5𝜺𝜺

− 30844.7𝝀𝝀 + 160.9𝜶𝜶𝜸𝜸 + 51.8𝜶𝜶𝜹𝜹 − 35.5𝜶𝜶𝜺𝜺 + 513.5𝜶𝜶𝜻𝜻

− 340.7𝜶𝜶𝜼𝜼 + 1.3𝜷𝜷𝜸𝜸 + 7.9𝜷𝜷𝜻𝜻 + 1.9𝜷𝜷𝜼𝜼 − 119.9𝜸𝜸𝜹𝜹

+ 147.2𝜸𝜸𝜺𝜺 − 799.4𝜸𝜸𝜻𝜻 + 355.7𝜸𝜸𝜼𝜼 − 40.0𝛿𝛿𝜺𝜺 + 40.3𝜹𝜹𝜻𝜻

+ 69.6𝜹𝜹𝜼𝜼 − 284.6𝜺𝜺𝜻𝜻 + 43.6𝜺𝜺𝜼𝜼 + 1031.5𝜻𝜻𝜼𝜼 + 45.3𝜶𝜶𝟐𝟐

− 817.2𝜸𝜸𝟐𝟐 + 233.1𝜹𝜹𝟐𝟐 − 110.2𝜺𝜺𝟐𝟐 − 764.6𝜻𝜻𝟐𝟐 − 580.6𝜼𝜼𝟐𝟐

+ 1.1𝛾𝛾𝜻𝜻𝟐𝟐 + 7.2𝜸𝜸𝟑𝟑 − 1.8𝜹𝜹𝟑𝟑 

4.20 
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0.95 Quantile (R) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2) = 596300.1 + 170.9𝜷𝜷 + 163.7𝜶𝜶𝜸𝜸 + 72.2𝜶𝜶𝜹𝜹 − 92.5𝜶𝜶𝜺𝜺

+ 326.4𝜶𝜶𝜻𝜻 + 42.1𝜶𝜶𝜼𝜼 + 1.4𝜷𝜷𝜸𝜸 − 8.0𝜷𝜷𝜻𝜻 + 2.8𝜷𝜷𝜼𝜼

− 44.3𝜸𝜸𝜹𝜹 + 201.3𝜸𝜸𝜺𝜺 − 770.6𝜸𝜸𝜻𝜻 + 295.8𝜸𝜸𝜼𝜼 − 72.8𝜹𝜹𝜺𝜺

+ 268.8𝜹𝜹𝜻𝜻 − 119.7𝜹𝜹𝜼𝜼 + 20.1𝜺𝜺𝜻𝜻 + 88.3𝜺𝜺𝜼𝜼 + 934.6𝜻𝜻𝜼𝜼

+ 61.6𝜶𝜶𝟐𝟐 − 501.0𝜸𝜸𝟐𝟐 + 260.9𝜹𝜹𝟐𝟐 − 71.4𝜺𝜺𝟐𝟐 − 939.7𝜻𝜻𝟐𝟐

− 604.2𝜼𝜼𝟐𝟐 + 1.2𝜸𝜸𝜻𝜻𝟐𝟐 + 8.8𝜸𝜸𝟑𝟑 − 2.2𝜹𝜹𝟑𝟑 

4.21 
 

 

The Non-Interaction (R) and Interaction (R) models were compared based on 

the Akaike Information Criterion (AIC) to identify the best model in terms of 

goodness of fit and number of parameters. Comparisons of the models were 

conducted based on their quantile. By doing so each model corresponding to 

a quantile will be analysed and the best ones elicited. The results of the 

comparison are tabled below in Table 4-5.  

 

Model/Quantile 0.05 0.25 0.5 0.75 0.95 

Non-Interaction (R) Model  5264.3 5297.4 5388.7 5430.2 5521.2 

Interaction (R) Model  5553.7 5610.7 5658.8 5696.8 5672.7 

 
Table 4-5: AIC Values for the Different Quantiles Corresponding to Each 

Non-Interaction (R) and Interaction (R) Model 
 

As can be seen from the values obtained, the Non-Interaction (R) model 

gives a lower index across the quantiles whereas the Interaction (R) model 

shows high AIC values. This indicates that the model gives a better balance 
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between goodness of fit and model complexity. The Interaction (R) model 

however, showed high AIC values which signals a model with relatively high 

variance.  

 

The derivative of equations 4.12 to 4.21 with respect to the %IR is 

summarised in the table below. 

 

Model / Quantile Regularization 
Parameter, λ 

𝝏𝝏𝑻𝑻𝑨𝑨𝑫𝑫𝑨𝑨
𝝏𝝏%𝑰𝑰𝑰𝑰

 

Non-Interaction 0.95 (R) 

11.346 

70.96𝛼𝛼 

Non-Interaction 0.75 (R) 35.82𝛼𝛼 

Non-Interaction 0.5 (R) 23.82𝛼𝛼 

Non-Interaction 0.25 (R) 12.96𝛼𝛼 

Non-Interaction 0.05 (R) 3.22𝛼𝛼 

Interaction 0.95 (R) 

2.209 

163.6𝛾𝛾 + 72.2𝛿𝛿 − 92.5𝜀𝜀 + 326.3𝜁𝜁 + 42.1𝜂𝜂
+ 123.2𝛼𝛼 

Interaction 0.75 (R) 160.9 𝛾𝛾 + 51.7𝛿𝛿 − 35.4𝜀𝜀 + 513.4𝜁𝜁 − 340.7𝜂𝜂
+ 90.6𝛼𝛼 

Interaction 0.5 (R) 89.8𝛾𝛾 + 31.6𝛿𝛿 − 3𝜀𝜀 − 16.2𝜁𝜁 + 73.9𝜂𝜂 + 30.6𝛼𝛼 

Interaction 0.25 (R) 77.4𝛾𝛾 − 14.5𝛿𝛿 − 2.6𝜀𝜀 + 10.5𝜁𝜁 + 53.8𝜂𝜂
+ 8.4 𝛼𝛼 

Interaction 0.05 (R) 57.3𝛾𝛾 + 7.1𝛿𝛿 − 7.8𝜀𝜀 + 71.7𝜁𝜁 + 6.8 𝛼𝛼 

 
Table 4-6: Derived Models for Various Quantiles and their Respective 

Regularisation Parameter Values 
 

The Non-Interaction model proves much simpler compared to the earlier 

original quantile regression models. With the tuning out of the %IR variable 

and after it has gone through the same steps as the interaction model stated 

above, what’s left of the models are coefficients of the linear function. It must 

be noted that the values of the coefficients in this thesis are subject to the 
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MEOC data. More comprehensive datasets in the future regarding ECDA 

and DCVG will further refine and generalise the models where they can be 

applied to different environments from what we have here.  

 

For the Interaction model, the phasing out of the %IR variable resulted in 

models containing only higher order terms. Since the outcome (after the 

LASSO process) are non-linear in nature, partial derivation of the models 

was done with respect to %IR to obtain the values of the estimated TCDA for 

each increasing %IR. The derivatives use values of 10.5%, 35.2%, 109.5 cm, 

32.5 years and 35.3 inch for the POPD, DUC, DOC, TIS and PS variables 

respectively for the TCDA estimation. These values are the mean of each 

variable.  
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Figure 4-14: Estimated TCDA based on %IR for the Non-Interaction 

Model after LASSO 
 

Figure 4-14 shows the estimated TCDA based on the %IR values for the 

Non-Interaction models. The figure provides a simple outlook on estimation 

of the size of coating defects by relating the slope of each model by a 

singular coefficient. For the 0.05 quantile, the estimated sizes do resemble 

those of Figure 4-3 where most of the estimated TCDA is zero or close to it. 

For the 0.95 quantile, the slope of the model seems to be disproportionate to 

other quantiles where it registers as having the biggest coefficient value. This 

can be explained by the way in which the TCDA data is spread with regards 

to %IR and also by referring to Figure 4-3 where the highest quantile 

highlights the largest coefficient values. The overall trend of the plot shows 

that increasing %IR is related to a bigger TCDA value which concurs with 

general understanding of the technique. 
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Figure 4-15: Estimated TCDA based on %IR for the Interaction Model 
after LASSO 

 

In Figure 4-15, it is observed that the estimated TCDA follows the general 

trend found in Figure 4-14. However, the origin of the TCDA estimation does 

not start at zero due to the contributing factors of the interaction variables. 

The effect of the interaction variables can also be seen by the larger 

estimated values as compared to the Non-Interaction model. Additionally, the 

range of predictive values is closer to Figure 4-3 than to Figure 4-14. 

Interestingly, the 0.05 and 0.25 quantiles illustrate the same trend as that in 

Figure 4-3 where the two lowest quantiles seem to overlap due to the large 

number of zero TCDAs occurring across the spectrum of %IR. Overall, both 

models in Figure 4-14 and Figure 4-15 look concise and compact (due to 

linearity) with a more general approach to the MEOC data. 
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The generalised models with LASSO indicate a shrinkage in the coefficient 

values as expected. But choosing the appropriate model to represent the 

true underlying mechanism of coating defects is a challenge. The lower 

quantiles (0.05 and the 0.25) of the Interaction model (R), Figure 4-15, 

showed some similarity in trend when compared to the nonlinear models 

highlighted in Figure 4-3. However, it is assumed that most data with zero or 

close to zero readings for TCDA found in the MEOC dataset is attributable to 

error, i.e. stray or foreign currents have contributed to the %IR readings 

giving erroneous %IR values. Although this may be true, these errors 

resemble the true nature of how the MEOC data is spread out. The Non-

Interaction models in Figure 4-14, however paint a picture of a more 

generalised model which is less affected by these “errors”. 

 

The estimated quantiles for the Non-Interaction models (R) is an appropriate 

representation of the general relationship between %IR and TCDA. The 

model’s higher quantiles are more spread out, illustrating a more generalised 

estimation. This can also be said about the lower quantiles where the 

increasing trend is roughly proportional (evenly spaced) between one 

quantile to the next. As for the Interaction model’s (R) estimates, the 

quantile’s prediction is higher. The trend shows similarity when compared to 

Figure 4-3 where lower quantiles are packed closely together while the upper 

quantiles are more dispersed.  

 

Both the models are subject to the same number of data points from the 

MEOC dataset. However, the Non-Interaction (R) and the Interaction (R) 
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models use different number of variables to predict TCDA. As the number of 

variables increases (in the case of the Interaction model (R)), the likelihood 

of the model achieving low errors by going through (fitting) all the data points 

are expected to increase. Such a model’s application to other datasets is 

severely compromised since the model overfits the dataset in hand. As 

mentioned earlier, this can be observed by looking at the similarities between 

the Interaction model and Figure 4-3. Additionally, the results in Table 4-5 

illustrate the AIC indices for the Non-Interaction (R) model are lower than the 

Interaction (R) model across the quantiles. This underpins the notion that the 

Non-Interaction (R) model is more general and balances the number of 

variables and the model fit. The AIC indices for the Interaction (R) model 

seems to suggest the model is overfitting the data where high variance is 

likely.  

 

Due to this, it is safe to suggest that if one were to apply these models to 

other pipelines (which are not part of MEOC dataset) then the Non-

Interaction (R) model is more suitable. As in the case of subsequent ECDA 

assessments on the MEOC pipelines, the Interaction (R) model is more 

suitable since it “follows” the structure of the MEOC dataset. However, 

application should be done with care since the estimated values of the TCDA 

is lower than the actual due to the shrinkage process of the coefficients.
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Chapter 5 

 

Analyses of DCVG Indications and 

Coating Defect Size Prediction with 

Bayesian Quantile Regression 

 

5.0 Introduction 

 

In the previous Chapter, the MEOC data were used to model the relationship 

between the variables by using classical quantile regression. The main 

objective of that Chapter is to produce a model to predict the size of TCDA 

with regard to its contributing factors. In this Chapter, however, a Bayesian 

approach is used. The Bayesian method provides an alternative to the 

classical method for parameter estimation.  
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Lately, Bayesian inferences combined with Markov Chain Monte Carlo 

(MCMC) algorithms have become increasingly popular. In the context of 

quantile regression, the Bayesian approach was first elaborated by Yu and 

Moyeed in [79]. The paper suggested that Bayesian inferences is more 

advantageous than the classical approach in mainly two instances; 1) 

Bayesian statistics does not rely on asymptotic variances of the estimators 

and 2) The estimated parameter includes the parameter uncertainty in the 

form of a posterior distribution.  

 

The distribution of the response variable from the MEOC data, the TCDA and 

the %IR variable demonstrates a distribution which is neither normal nor 

symmetric. Distributions which are not symmetrical need more complex 

solutions to describe the entirety of the response variable’s distribution [88]. 

The usage of quantile regression (QR) on distributions such as the TCDA 

and %IR are most effective due to these distributions being asymmetric 

(skewed) [89], [90]. 

 

The Bayesian approach to quantile regression is used to characterise the 

%IR and TCDA distributions. Benefits of using such an approach include 

easy interpretation of the outcome based on the posterior distribution. 

Additionally, the resulting posterior distribution has the potential to be used 

as the prior distribution for the next Bayesian assessment for the ECDA 

process. Implementing the Bayesian method for the ECDA process (through 

successive means) will ensure the parameter estimation becomes more 

accurate with each iteration step. This will provide operators with a better 
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understanding of the pipelines in terms of corrosion and coating defects and 

ultimately uphold its integrity.    

 

5.1 Middle Eastern Oil Company (MEOC) Data 

 

The data used for the BQR analysis are taken from the MEOC project. In 

brief, TWI Ltd., was appointed by the Middle Eastern Oil Company (MEOC) 

as the contractor for conducting integrity assessments on 9 of their pipelines. 

These pipelines are not piggable and hence the ECDA approach (as 

suggested by the NACE SP0502 [8]) was chosen as the best method for the 

assessment. The main idea of an ECDA is to assess and reduce the impact 

of external corrosion to the structural integrity of buried pipelines. The 

method consists of 4 phases/steps where each step should be completed in 

turn. The variables from the MEOC data used for the BQR analysis are given 

in Table 5-1 below. A more comprehensive description of the data and the 

ECDA process is given in Chapter 2 and Chapter 4 (Table 4-1). 
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Symbol Variables Considered Type of Variable 

α IR Drop (%IR) Continuous 

β Soil Resistivity (SR) Continuous 

γ Percentage of Pit Depth to Wall Thickness (POPD) Continuous 

δ Deposits under Coatings (DUC) Continuous 

ε Depth of Cover (DOC) Continuous 

ζ Time in Service (TIS) Continuous 

η Pipe Size (PS) Continuous 

C Backfill Type (Clay) Categorical 

θ Backfill Type (Rock) Categorical 

κ Backfill Type (Sand + Clay) Categorical 

λ Backfill Type (Stones + Clay) Categorical 

CW Coating Type (PVC Cold Wrap) Categorical 

μ Coating Type (Coal Tar) Categorical 

ξ Coating Type (Polyethylene) Categorical 

R Backfill Geometry (Round) Categorical 

ρ Backfill Geometry (Angular) Categorical 

σ Backfill geometry (Round + Angular) Categorical 

φ pH Of Water in Soil (Acidic) Categorical 

χ pH Of Water in Soil (Alkaline) Categorical 

ψ pH Of Water in Soil (Neutral) Categorical 

ω pH Of Water Underneath Coating (Acidic) Categorical 

ϋ pH Of Water Underneath Coating (Alkaline) Categorical 

ϊ pH Of Water Underneath Coating (Neutral) Categorical 

 
Table 5-1: Variables Considered for the Model 
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The objectives for this Chapter can be divided into two. The first is the 

construction of a model which summarizes the contributing factors towards 

the DCVG indication. A further refinement of the model is also constructed 

based on the general understanding on the system. Variables such as the 

Percentage of Pit Depth to Wall Thickness (POPD), Deposits under Coatings 

(DUC), Time in Service (TIS) and pH Of Water Underneath Coating were 

omitted from the original model. The purpose for this refinement is to have a 

model which is concise and simple. Therefore, application of the model in 

future ECDA projects will be straightforward and not computationally 

expensive. Additionally, the data of the omitted variables are obtained mainly 

through the excavation of the pipe (except for TIS) for further investigation. 

By not considering these data, one is able to make use of data collected 

before the excavation. Hence, the model can also be viewed as an input into 

consideration of where to excavate.  

 

The second objective is to present a model which predicts the TCDA based 

on environmental and DCVG factors. The data used for this objective were 

also taken from the MEOC project. Two version of the dataset exists. The 1st 

version is the dataset that includes all the measurements. We shall name 

this “Oriset”. This is the original dataset received by the author. The 2nd 

version of the data is called “Filtset” which is “filtered” by the author’s expert 

judgment on what to expect from a DCVG indication. A total of 4 data points 

considered as outliers were taken out of the assessment. Apart from that, 

everything remained the same. The model and factors considered in this 



151 
 

Chapter are given below in Table 5-2. For ease of referencing the models 

are named as follows. 

Description of Model Dataset Model Name 

Contribution to %IR Model - 
Full Oriset Model 1 

Contribution to %IR Model – 
Refined Oriset Model 1a 

Contribution to %IR Model - 
Full Filtset Model 2 

Contribution to %IR Model - 
Refined Filtset Model 2a 

TCDA Model Oriset Model 3 

TCDA Model Filtset Model 4 

 
Table 5-2: Names of the Various Models Corresponding to Each Dataset 
 

Two techniques were applied to the data. The first approach is by the usage 

of the BQR to obtain the model estimates. All discussion in the next section 

will refer to this approach. The second is the classical frequentist approach 

which employs classical quantile regression. The classical approach is used 

only to identify differences in the two techniques when compared to each 

other. 

 

5.2 Model Estimation and Result Analysis 

 

This section presents the results of the BQR technique applied to the MEOC 

data. The objective of this Chapter (as with other Chapters in this thesis) is to 

come up with an initial working model capable of incorporating (provision) 
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future inspection results for pipeline operators and regulators to make 

informed decisions on the prioritisation of coating defects as well as 

determining excavation locations. Before we can do that, it is important to 

understand the DCVG indications and what are the contributing factors that 

have given rise to such measurements. Based on common industry 

understanding, a DCVG indication arises from the equipotential lines as a 

result of the cathodic protection current flowing to a coating defect on the 

pipeline. It was previously thought that the equipotential lines are only 

subject to coating defect size with larger defects emitting larger potentials. 

Work by McKinney [64] shows factors such as the SR contribute positively to 

the generated %IR signal. However, the data used for that assessment uses 

simulated data and is anticipated to be different from the assessment 

conducted here. All the analyses were done in the statistical software R by 

using the BQR package. All of the analyses in this Chapter use the same 

95% value for their respective credible intervals. 

 

5.2.1 Contributing Factors to %IR (Model 1) 

 

The estimates of variables from Table 8-1 show interesting results 

particularly for the TCDA variable. Iterations up to 1 million were conducted 

to achieve convergence. This can be seen in Figure 5-1 where the trace plot 

and posterior histogram of various quantiles are presented. The BQR 

technique estimated very low values across the whole of the %IR 

distribution. The maximum estimated coefficient value occurs at the 0.5 

quantile which is a 1 cm2 increase in coating defect size reflected in an 
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increase of 0.0000687% IR indication. If we increase the percentage values 

to 100% (maximum reading of a DCVG indication), the maximum coating 

defect size that the DCVG technique is able to detect is 1,455,604 cm2. The 

lowest estimated value for the TCDA occurs at the 0.05 quantile. The 

estimated coefficient reveals a 1 cm2 increase in TCDA will increase the %IR 

value by 0.0000022%. This shows that medium size coating defects give the 

largest signal on the DCVG indication whereas small defects contribute the 

least. Also, at the 0.5 quantile, the credible interval is much narrower 

compared to those at the two opposite ends indicating lower uncertainty.  
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Figure 5-1: Trace Plots and Posterior Histogram of the 0.05 and 0.5 
Quantile for the Estimated Coefficient, TCDA for Model 1 

 

Equations of various quantiles are presented in the following. 

 

 %𝐼𝐼𝑅𝑅0.05 = 14.2 + 0.0000022𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.0000235𝛽𝛽 + 0.00611𝛾𝛾

+ 0.0079𝛿𝛿 + 0.0549𝜀𝜀 − 0.336𝜁𝜁 − 0.0818𝜂𝜂 + 5.2𝜃𝜃

− 1.03𝜅𝜅 + 1.72𝜆𝜆 − 3.26𝜇𝜇 − 6.28𝜉𝜉 + 0.754𝜌𝜌 − 2.64𝜎𝜎

+ 1.17𝜑𝜑 + 8.41𝜒𝜒 + 7.24𝜓𝜓 − 0.943𝜔𝜔 − 2ϋ + 2.56ϊ 

5.1 
 

 

 %𝐼𝐼𝑅𝑅0.5 = 86.1 + 0.0000687𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000567𝛽𝛽 + 0.0439𝛾𝛾 − 0.0372𝛿𝛿

+ 0.0933𝜀𝜀 − 0.374𝜁𝜁 − 1.31𝜂𝜂 + 50.8𝜃𝜃 + 16.3𝜅𝜅 + 0.562𝜆𝜆

− 0.215𝜇𝜇 + 0.368𝜉𝜉 − 19.9𝜌𝜌 − 0.835𝜎𝜎 − 8.1𝜑𝜑 + 0.753𝜒𝜒

+ 7.03𝜓𝜓 − 3.24𝜔𝜔 − 7.78ϋ − 0.125ϊ 

5.2 
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 %𝐼𝐼𝑅𝑅0.95 = 23.6 + 0.0000532𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000346𝛽𝛽 + 0.108𝛾𝛾 − 0.0704𝛿𝛿

+ 0.0364𝜀𝜀 + 1.19𝜁𝜁 + 0.285𝜂𝜂 + 10.7𝜃𝜃 − 11.6𝜅𝜅 + 0.411𝜆𝜆

+ 11𝜇𝜇 + 2.44𝜉𝜉 − 8.69𝜌𝜌 − 0.446𝜎𝜎 − 4.8𝜑𝜑 − 0.804𝜒𝜒

− 14𝜓𝜓 − 11𝜔𝜔 + 0.991ϋ − 1.99ϊ 

5.3 
 

 

SR also plays a role in the contribution to %IR. Across the quantiles the 

Bayesian estimates show low negative values. The maximum (lowest) 

estimated value for SR occurs at the 0.5 quantile with a value of -0.000567. 

This can be interpreted as a 1 unit increase of SR leading to a decrease of 

0.000567% with respect to %IR. However, the variable Backfill Type – Rock 

which is related to the resistant nature of the soil, shows an inverse effect. 

Across the quantiles, the estimated coefficients point to meaningful 

contributions to the %IR readings especially within the quantile range 0.25 to 

0.75.   

 

Another interesting variable is the DOC, i.e. the depth of the buried pipe. The 

estimated coefficient increases in value as one approaches the 0.5 quantile 

where it maximizes with an estimated value of 0.0933. This means that for 1 

unit increase in the depth of pipe, the value of the %IR will also increase by 

0.0933%. After this it decreases from the 0.75 quantile to the 0.95 quantile.   
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Figure 5-2: Quantile Plots of various Variables of Interest for Model 1 
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5.2.2 Refined %IR (Model 1a) 

 

The results of the estimated coefficients by BQR for Model 1a are presented 

in Table 8-3 below. In achieving convergence for all the variables, iterations 

of up to 300,000 were determined with the initial 5,000 steps regarded as 

burn-in. For the variable of interest, TCDA, the maximum estimated value 

occurs at the 0.5 quantile. This prediction is similar to that predicted by 

Model 1. The overall estimated trend also follows the same pattern as Model 

1 with Model 1 being more pronounced. The value of the coefficient at the 

maximum is 0.0000828. 1 cm2 of TCDA will have an effect on the %IR of 

0.0000828%. At the 0.05 quantile, the coefficient value is at its lowest of -

0.0000353. The negative value signifies that a 1 cm2 increase in TCDA will 

yield a 0.0000353% decrease in %IR. The trace plots and corresponding 

posterior histogram are shown below. 

 

The trend of the estimated coefficients for the variable SR is also similar to 

Model 1. From 0.25 quantile upwards, the trend is negative with its most 

negative at the 0.5 quantile. The reason for this can be considered consistent 

with the assessment for Model 1 when one looks at the Rock variable with 

most of the estimates showing high positive values. The peak is also found 

at the 0.5 quantile suggesting that the effect of having coarse-grained soil 

affects %IR values at its median quantile. There is also the factor of 

heterogeneity of the soil itself which also contributes to the non-linearity 

effect on certain quantiles of the %IR distribution. 
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Figure 5-3: Trace Plots and the Posterior Histogram of the 0.05 and 0.95 
Quantile for the Estimated Coefficient, TCDA for Model 1a 

 

Equations of various quantiles are presented below: 

 

 %𝐼𝐼𝑅𝑅0.05 = 4.74 − 0.0000353𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.000000565𝛽𝛽 + 0.0508𝜀𝜀

− 0.158𝜂𝜂 + 5.23𝜃𝜃 − 0.939𝜅𝜅 + 1.56𝜆𝜆 + 2𝜇𝜇 − 0.113𝜉𝜉

+ 0.434𝜌𝜌 − 3.65𝜎𝜎 + 1.2𝜑𝜑 + 8.11𝜒𝜒 + 5.06𝜓𝜓 

5.4 
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 %𝐼𝐼𝑅𝑅0.5 = 87.5 + 0.0000828𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000668𝛽𝛽 + 0.0722𝜀𝜀 − 1.77𝜂𝜂

+ 53.4𝜃𝜃 + 25.4𝜅𝜅 + 0.619𝜆𝜆 + 5.54𝜇𝜇 + 6.77𝜉𝜉 − 18.2𝜌𝜌

+ 0.251𝜎𝜎 − 6.07𝜑𝜑 + 1.76𝜒𝜒 + 1.14𝜓𝜓 

5.5 
 

 

 %𝐼𝐼𝑅𝑅0.95 = 64.9 + 0.000073𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000296𝛽𝛽 + 0.0228𝜀𝜀 + 0.432𝜂𝜂

+ 6.45𝜃𝜃 − 8.21𝜅𝜅 − 1.46𝜆𝜆 − 6.78𝜇𝜇 − 15.3𝜉𝜉 − 6.73𝜌𝜌

− 1.24𝜎𝜎 − 4.67𝜑𝜑 − 0.575𝜒𝜒 − 12.6 𝜓𝜓 

5.6 
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Figure 5-4: Quantile Plots of various Variables of Interest for Model 1a 

 

The DOC seems to show the same behaviour one would expect from a 

DCVG inspection. Starting from the 0.25 quantile, the decreasing trend 

indicates that by increasing the depth of the pipe, the amount of signal that 

would be picked up by the DCVG voltmeter would be less. At the 0.95 

quantile, a one unit increase in depth would have an effect of an increase to 

the %IR of 0.0228%. Compare this to the 0.25 quantile where registering a 

one unit increase in depth of the pipeline would increase the %IR by 

0.084797% (stronger effect at this quantile).  
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5.2.3 Contributing Factors to %IR (Model 2) 

 

The estimated coefficients for Model 2 are given in Table 8-2. However, the 

reference variable for the categorical variable is substituted to be Backfill 

Type – Rock, Coating Type – Polyethylene and Backfill Geometry – Angular. 

This is due for investigation amongst the factors concerning soft soils which 

include clay with rounded grain structure. A total of 400,000 iterations were 

made to get to the point of convergence with the initial 5,000 readings as 

burn-in. Table 8-2 shows the TCDA variable coefficient has an upward trend 

with a slight dip at the 0.25 quantile. The highest value is reached at the 0.95 

quantile with a value of 0.000229%. For a 1 cm2 increase in the coating 

defect area, a 0.000229% increase in %IR is expected. This is higher than 

the maximum obtained by the Model 1. Additionally, this happens at the 0.95 

quantile which fits well with common understanding of the technique, in 

contrast to Model 1 where the maximum occurred at the 0.5 quantile. This is 

mainly due to the contribution of the expert intervention of the author which 

obliterated 4 points from the original set.    

 

Estimated coefficients for the SR variable show an increasing trend from the 

0.25 quantile up to the maximum at the 0.95 quantile. The maximum Bayes 

estimate is 0.000373. Therefore, for a 1 unit increase in SR, an increase of 

0.000373% of %IR is expected. Moreover, large uncertainties were observed 

at the upper and lower ends of the quantiles as compared to the median 

region.  
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The variable clay shows an increasing trend across the %IR distribution with 

a dip at the 0.95 quantile. The maximum estimated coefficient was noted at 

the 0.75 quantile with a value of 60.8. This can be translated as the effect of 

clay on %IR will be greatest at the 0.75 quantile of the %IR distribution.  
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Figure 5-5: Quantile Plots of various Variables of Interest for Model 2 
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Figure 5-6: Trace Plots and the Posterior histogram of the 0.05 and 0.5 
quantile for the Estimated Coefficient, TCDA for Model 2 

 

The following are selected models (Model 2) for the contribution of %IR 

based on various quantiles. 
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 %𝐼𝐼𝑅𝑅0.05 = 14.7 + 0.0000741𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.0000293𝛽𝛽 + 0.0334𝛾𝛾

− 0.0209𝛿𝛿 + 0.0668𝜀𝜀 − 0.116𝜁𝜁 − 0.126𝜂𝜂 − 2.23𝑇𝑇

− 1.63𝜅𝜅 + 11.4𝜆𝜆 − 9.26𝑇𝑇𝐶𝐶 + 7.57𝜇𝜇 + 1.73𝑅𝑅 − 0.246𝜎𝜎

+ 3.98𝜑𝜑 − 1.84𝜒𝜒 − 11.4𝜓𝜓 + 2.8𝜔𝜔 − 1.62ϋ − 4.96ϊ 

5.7 
 

 

 %𝐼𝐼𝑅𝑅0.5 = 79.4 + 0.0000618𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.000206𝛽𝛽 + 0.161𝛾𝛾 − 0.0373𝛿𝛿

− 0.00696𝜀𝜀 − 0.234𝜁𝜁 − 0.3𝜂𝜂 + 3.35𝑇𝑇 − 16.7𝜅𝜅 − 3.29𝜆𝜆

− 31.4𝑇𝑇𝐶𝐶 − 1.45𝜇𝜇 + 1.02𝑅𝑅 − 0.156𝜎𝜎 + 7.4𝜑𝜑 − 21.2𝜒𝜒

− 11.2𝜓𝜓 + 1.02𝜔𝜔 − 8.36ϋ − 6.67ϊ 

5.8 
 

 

 %𝐼𝐼𝑅𝑅0.95 = 22 + 0.000229𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.000373𝛽𝛽 + 0.0558𝛾𝛾 − 0.05𝛿𝛿

+ 0.0682𝜀𝜀 + 0.179𝜁𝜁 + 0.186𝜂𝜂 + 16.3𝑇𝑇 + 4.9𝜅𝜅 + 25.4𝜆𝜆

− 5.69𝑇𝑇𝐶𝐶 + 29.7𝜇𝜇 − 1.58𝑅𝑅 + 1.58𝜎𝜎 + 9.2𝜑𝜑 + 2.62𝜒𝜒

− 16.8𝜓𝜓 − 4.98𝜔𝜔 − 3.43ϋ − 13.1ϊ 

5.9 
 

  

5.2.4 Refined %IR (Model 2a) 

 
Table 8-4 shows the estimated coefficients predicted by the BQR method 

with the Filtset data for Model 2a. 400,000 iterations were made with the 

initial 5,000 recordings regarded as burn-ins. Keeping with the theme of the 

thesis, the variable TCDA is the prime interest since it represents the 

bedrock on which the DCVG technique was built. At the 0.05 quantile, the 

predicted coefficient shows similar behaviour to that obtained for Model 2. 

The coefficient value drops at the 0.25 quantile and rises steadily after this 

up to the 0.95 quantile where it reaches its maximum. The maximum 
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predicted value stands at 0.000221 which means a 1 cm2 increase in TCDA 

will give an increase of 0.000221% in %IR. Similar characteristics were 

observed previously for Model 2, with only slight difference in the predicted 

values.  

 

 
Figure 5-7: TCDA Quantile Plot for Model 2a 

 

SR plays a role in Model 2a where an increasing trend is observed starting 

from the 0.25 quantile all the way to the 0.95 quantile. The highest predicted 

value is at the 0.95 quantile with a Bayes estimate of 0.000482. At the 0.95 

quantile, a one unit increase in the value of SR will mean a 0.000482% 

increase in %IR. 

 

The presence of clay as the backfill material will affect the %IR differently 

across the percentile of the %IR distribution when compared to the SR 
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variable. Clay affects the 0.75 quantile the most with the 0.05 quantile the 

least affected. The value of the maximum estimate coefficient is 57. This is 

not far off the estimated value at the same quantile for Model 2. The upward 

trend to the 0.75 quantile reflects the positive effect of clay on the 

contribution to the %IR reading.  

 

Models of various quantiles are presented in the following equations. 

 

 %𝐼𝐼𝑅𝑅0.05 = 30.3 + 0.0000956𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000132𝛽𝛽 + 0.0561𝜀𝜀 − 0.301𝜂𝜂

− 18.9𝑇𝑇 − 19.1𝜅𝜅 − 6.25𝜆𝜆 − 6.48𝑇𝑇𝐶𝐶 + 8.51𝜇𝜇 + 1.22𝑅𝑅

− 0.0602𝜎𝜎 + 4.13𝜑𝜑 − 1.26𝜒𝜒 − 11.3𝜓𝜓 

5.10 
 

 

 %𝐼𝐼𝑅𝑅0.5 = 86.2 + 0.0000768𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 0.000178𝛽𝛽 − 0.0665𝜀𝜀 − 0.452𝜂𝜂

+ 0.785𝑇𝑇 − 20.3𝜅𝜅 − 3.21𝜆𝜆 − 32.1𝑇𝑇𝐶𝐶 − 0.72𝜇𝜇 − 0.279𝑅𝑅

− 0.243𝜎𝜎 + 6.63𝜑𝜑 − 18.9𝜒𝜒 − 11.6𝜓𝜓 

5.11 
 

 

 %𝐼𝐼𝑅𝑅0.95 = 31.3 + 0.000221𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.000482𝛽𝛽 − 0.0939𝜀𝜀 − 0.00579𝜂𝜂

+ 18.6𝑇𝑇 + 10.9𝜅𝜅 + 25.9𝜆𝜆 − 8.59𝑇𝑇𝐶𝐶 + 29.7𝜇𝜇 − 0.829𝑅𝑅

+ 1.22𝜎𝜎 + 11.9𝜑𝜑 + 4𝜒𝜒 − 16.8𝜓𝜓   

5.12 
 

 

Trace plots and the posterior histograms for various quantiles are presented 

below. 
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Figure 5-8: Trace Plots and the Posterior histogram of the 0.05 and 0.95 

Quantile for the Estimated Coefficient, TCDA for Model 2a 
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5.2.5 Total Coating Defect Area (TCDA) Models  

 

With the establishment of the %IR model with both the Oriset and the Filtset 

data (Model 1, 1a, 2, and 2a), the construction of the TCDA model will further 

increase the capability (by incorporating future inspection results) of 

operators and decision makers in prioritising coating defects based on 

severity. To add to this enhancement, the TCDA models (Model 3 and 4) can 

predict the coating defect area based on predictor variables. The variables 

chosen in this model are limited to continuous values due to the large 

amount of subjective interpretation of the categorical variables. Another 

reason for this is to avoid higher computational cost as Bayesian inference 

with the Metropolis – Hastings Algorithm (MCMC – MH) is known to take 

large amounts of computational memory when dealing with large quantities 

of data. An alternative to this restriction is the usage of the Gibbs sampling 

method which takes less time and where all proposed samples are accepted 

without rejection. However, as the posterior form of our parameter of interest 

is unknown, a general MCMC – MH is required.  

 

As from the previous section, the variable %IR is of prime interest as this is 

one of the first measurements obtained when conducting a DCVG 

assessment. By correctly interpreting what the signal means, one is able to 

make a sound judgment on the state of the coating under inspection. The 

models developed in this Chapter are aimed at making those interpretations 

more accurate.  
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5.2.5.1 TCDA Model 3  

 

The coefficients estimated by the BQR for Model 3 are presented in Table 

8-5. The convergence process took 11 million iterations to achieve. Primary 

interest for the model is the %IR variable, which shows close to zero 

estimates for the 0.05 and 0.25 quantiles. Beginning at the 0.5 quantile, we 

can see the trend increasing up to the 0.75 quantile and down again at the 

0.95 quantile. The maximum estimated coefficient is at the 0.75 quantile with 

a value of 849. This means a 1 unit increase in %IR represents an increase 

of 849 cm2 in terms of TCDA. Therefore a 100% reading of the %IR 

translates into 84,900 cm2. Although this estimation is promising in 

determining the size of coating defects, the 0.95 quantile illustrates a 

different picture. The estimated coefficient for this quantile is -93.1. The 

negative values signify that a one unit increase in %IR equals to a decrease 

of 93.1 cm2 in TCDA. Credible intervals also show very narrow predictions 

indicating greater confidence. Equations below are selected models for the 

0.05, 0.5 and 0.95 quantile for Model 3.  

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.05

= −465 − 0.0178𝛼𝛼 − 0.0034𝛽𝛽 + 6.04𝛾𝛾 − 0.901𝛿𝛿

− 0.00321𝜀𝜀 + 4.92𝜁𝜁 + 10.4𝜂𝜂 

5.13 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.5

= 78687.177 + 84.428𝛼𝛼 − 0.524𝛽𝛽 + 232.204𝛾𝛾

+ 19.543𝛿𝛿 − 69.776𝜀𝜀 − 2351.485𝜁𝜁 + 707.098𝜂𝜂 

5.14 
 

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.95

= 189000 − 93.1𝛼𝛼 + 0.151𝛽𝛽 + 2740𝛾𝛾 − 257𝛿𝛿 − 111𝜀𝜀

− 8030𝜁𝜁 + 6040𝜂𝜂 

5.15 
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Figure 5-9: Quantile Plots of various Variables of Interest for Model 3 

 

The variable POPD shows useful insights into the correlation between TCDA 

and corrosion. Based on the trend shown, as the quantile increases, so do 
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the estimated coefficient values. However there appears to be a sudden dip 

at quantile 0.75 and a picking up again at quantile 0.95. The maximum value 

estimated by the BQR is 2,740 which equates to a 1 unit increase in depth of 

the corrosion pit corresponds to a 2,740 cm2 in TCDA. This occurs at the 

0.95 quantile. Also, the widths of the credible intervals across the quantiles 

are narrow as compared to previous predicted models.  

 

PS shows positive trends across the whole percentile of the TCDA. The 

increasing trend starts at the 0.05 quantile through to the 0.95 quantile. The 

maximum estimated coefficient occurs at the 0.95 quantile with a value of 

6,040. This means, for this quantile, a 1 unit increase in PS will translate into 

6,040 cm2 of TCDA.  

 

5.2.5.2 TCDA Model 4  

 

The data considered for this assessment included the removal of 4 data 

points. The data points removed were in the form of the outliers present in 

the distribution of TCDA where larger TCDA is associated with lower values 

of %IR. The selection was done with the judgment of the author. As 

expected, the %IR variable shows a positive consistent increasing trend 

across the percentile. This fits well with common understanding and 

resonates with the whole idea of categorizing defect size based on %IR 

values. Starting at the 0.05 and 0.25 quantiles, the increase of the estimated 

coefficients is subtle but for the 0.5 quantile the changes are much more 

abrupt with the values tapering at the 0.75 and 0.95 quantile. The maximum 
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value occurs at the 0.95 quantile with an estimated coefficient of 1,481.9. In 

other words, an increase in 1 unit of %IR will reflect an increase in the TCDA 

of 1,481.9 cm2. Therefore, for larger defects (0.95 quantile) a reading of 

100% in the %IR value corresponds to a 148,190 cm2 in TCDA which is the 

maximum size the model is able to predict. For the lowest percentile, the 

maximum predicted size is 2.21 cm2. The maximum predicted defect sizes 

for all the quantiles are shown in Figure 5-11. Looking at the estimated 

values at the lower quantiles (0.05 and 0.25), the estimated TCDA size is 

considered low. This is due to the large amounts of close to zero readings of 

TCDA for increasing %IR. At the 0.5 quantile and above the distinction is 

more apparent because close to zero readings of the TCDA are sparse.  

 

The POPD variable represents the amount of corrosion present on the 

pipelines under consideration. For corrosion to happen, favourable 

conditions are required to initiate the oxidation process. The pipelines 

considered in this thesis are all protected with an organic coating and an 

Impressed Current Cathodic Protection (ICCP) system as backup. Referring 

to Table 8-6, the estimated coefficients show an increasing trend. From 

quantile 0.25 up to 0.75 the predicted values show little difference. Abrupt 

changes can be seen only at the tails of the TCDA distribution, i.e. the 0.05 

and the 0.95 quantiles. 

 

The trend of the estimated regression coefficients for the SR variable 

illustrates the effects of SR on coating defect size. Please refer to Table 8-6 

for these estimates. The low values of the initial quantiles signal the 
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insignificance of the resistance effect of the electrolyte compared to coating 

defects. Smaller-sized coating defects are not affected by SR. However, at 

the 0.75 and especially at the 0.95 quantile, SR does play a role in the size 

of coating defects. The highest estimated value for this variable occurs at the 

0.95 quantile where a 1 unit increase in SR will increase the TCDA by 12.2 

cm2. 

 

Increasing trends can also be seen for the variable PS. The estimated values 

are not much different from the values in Model 3. The maximum predicted 

value is at the 0.95 quantile with a 1 unit increase in PS translating into 

4,610.6 cm2 of TCDA. At the lowest quantile, a 1 unit increase in PS will 

expect an increase of 10.3 cm2 of TCDA. For the median quantile, a 1 unit 

increase in PS will translate into 963.07 cm2 of TCDA. 

 

The following equations are the models for predicting TCDA based on 

various quantiles. 

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.05

= −464 + 0.0221𝛼𝛼 − 0.00336𝛽𝛽 + 6.06𝛾𝛾 − 0.916𝛿𝛿

− 0.00871𝜀𝜀 + 4.95𝜁𝜁 + 10.3𝜂𝜂 

5.16 
 

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.5

= 28978.772 + 475.876𝛼𝛼 − 0.453𝛽𝛽 + 219.149𝛾𝛾

+ 34.219𝛿𝛿 − 20.033𝜀𝜀 − 1681.945𝜁𝜁 + 963.069𝜂𝜂 

5.17 
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 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑐𝑐𝑐𝑐2)0.95

= 77655.6 + 1481.9𝛼𝛼 + 12.2𝛽𝛽 + 406𝛾𝛾 − 218.8𝛿𝛿 − 97.8𝜀𝜀

− 5066.9𝜁𝜁 + 4610.6𝜂𝜂 

 

5.18 
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Figure 5-10: Quantile Plots of various Variables of Interest for Model 4 
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Figure 5-11: Maximum Predicted TCDA Size Based on BQR for Different 

Quantiles of the TCDA Model 
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5.3 Discussion   

5.3.1 Contributing factors to %IR – (Model 1, 1a, 2 and 2a) 

5.3.1.1 TCDA variable 

 

The low coefficient values estimated for the TCDA variable (Model 1, 1a, 2 

and 2a) were unexpected since the DCVG technique relies primarily upon 

coating defects to generate voltage drops. The results show coating defects 

in general have a mild effect (in terms of coefficient values) on the %IR 

reading. Other known and unknown factors might also be in play for the 

contribution to %IR. One of these factors could be SR and the nature of the 

backfill geometry. This will be discussed further in the following sections. 

Other factors could include the presence of interference in the form of stray 

currents especially if the pipeline is situated adjacent to other pipelines or is 

located near overhanging power cables. Although an interruption technique 

is used to eliminate foreign currents contributing to %IR indication, large 

structures such as buried pipelines need longer periods for it to depolarise 

and be considered IR free [91]. To picture this more clearly, the following 

figures show the relationship between TCDA and %IR. As was previously 

mentioned, other factors giving rise to the %IR readings such as the POPD, 

DUC, DOC, TIS, PS and SR were used to generate the models. These 

variables take values of 10.5%, 35.2%, 109.5cm, 32.5 years, 35.3 inches 

and 2,722.1 Ω-cm respectively, representing the mean value of each 

variable. 

 



182 
 

 

 
Figure 5-12: TCDA vs %IR for Model 1 

 
Figure 5-12 shows the predictions made by Model 1 of the %IR with 

increasing TCDA. Generally, the models generated highlight an upward trend 

which parallels the current understanding of the system. However, the slope 

of the models indicates a small effect of TCDA on %IR. This can clearly be 

seen at the lower quantiles (0.05 and 0.25) where the line is almost flat. Also, 

the median quantile has the highest prediction value and the steepest slope 

which corresponds to the estimated coefficient values in Figure 5-2. A refined 

version of Model 1 is given by Model 1a presented below. Similarly, the 

models take on the mean values of each contributing variable. 
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Figure 5-13: TCDA vs %IR for Model 1a 

 

The prediction of the resulting %IR in Figure 5-13 shows an improvement in 

terms of the effect of TCDA on %IR with steeper slopes being observed. 

Similar to Model 1, the median of %IR shows the largest effect from the 

TCDA. The estimated %IR values based on the median are also higher with 

Model 1a as compared to Model 1. The removal of certain variables which do 

not contribute to the %IR has improved the %IR estimation for the top three 

quantiles. For the 0.25 quantile, small effects of the TCDA on %IR is seen 

which is similar to Model 1. However, the estimated values here are higher. 

The 0.05 quantile shows a decreasing trend where increasing TCDA relates 
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The inconsistency (higher TCDA does not reflect a higher %IR values) for 

Models 1 and 1a with respect to the 0.05 quantile could possibly be 

attributed to the outliers present at higher and lower quantiles of the TCDA 

distribution – large defect areas are paired with low readings (indication) of 

the %IR and vice versa. Additionally, credible intervals at higher and lower 

quantiles for Models 1 and 1a are much wider, indicating higher uncertainty 

compared to the median quantile where the maximum estimated value have 

occurred. Inconsistent results are also being summarised in the following 

bullet points. 

• Interference in the form of stray or telluric currents will interfere with 

the voltage drop picked up by the DCVG instrument. Some section of 

the pipes under assessment is located within a network of pipelines 

with each of these pipelines having its own cathodic protection 

system. Currents from an adjacent ICCP system, electrified railway 

tracks (DC traction system), overhead power cables etc. have the 

potential to compromise the %IR signal. A more severe effect of this 

interference is corrosion.   

• Power cables or transmission lines have the ability to compromise the 

DCVG signal in the form of AC currents. AC currents can also lead to 

accelerated corrosion of the pipelines running below [92]. In the case 

of MEOC pipelines, power cables can be seen running closely along 

and perpendicular to the direction of the buried pipelines which can be 

the cause of irregularities in the %IR readings.  

• The heterogeneous nature of soils compromise or alter the measured 

voltage signals. The calculation of the %IR value requires input in the 
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form of the pipeline-to-electrolyte interface resistance. The resistance 

value is related to the SR value measured at test posts. However, 

DCVG readings are conducted away from test posts where the 

magnitude of SR is different. The differences will contribute to the 

inconsistencies of the %IR measurements where the heterogeneity of 

the soil is not considered in the %IR formula. Although, SR 

measurements were taken for every excavated area, this was not 

included into the %IR calculation.  

• Defects occurring at the 6 o’ clock position will tend to attenuate the 

voltage signal which will not correspond to the true size of a defect 

[63]. 

• Based on the report provided by TWI Ltd., there is a possibility that 

some of the coating defects were caused by the excavator during 

excavation of bell holes for the direct examination process. These 

defects were not present during the indirect assessment (DCVG 

measurements). 

• Deposits of scale due to the cathodic protection current on the metal 

substrate will mask the true size of a coating defect. Measurements 

are perceived to be small based on the %IR reading. This is an 

erroneous representation of the true size of the defect.  

 

The assessment on Models 2 and 2a which utilises the Filtset data, 

considers rock as the backfill material with an angular geometry and 

polyethylene as the type of coating as the reference variable. Due to the 

inconsistencies found in the Oriset data, 4 outlier points were taken out 
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based on the author’s expert opinion, mainly in the region of low %IR 

readings. The estimated %IR readings based on Models 2 and 2a are given 

as follows. Similar to the previous Models 1 and 1a assessments, the mean 

values of POPD, DUC, DOC, TIS, PS and SR were used to generate these 

models.  

 

 

 
Figure 5-14: TCDA vs %IR for Model 2 
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estimated coefficients. Therefore, the removal of 4 excavation points by 

expert opinion improves the overall estimation of the role of TCDA on %IR. 

However, the 0.05 and 0.25 quantiles show an apparent effect of TCDA on 

%IR but the resulting estimates are below the zero line. For the 0.25 

quantile, all the predicted readings of %IR are negative and sit lower than in 

the 0.05 quantile. Although the apparent outliers were removed for this 

assessment, there are other factors such as non-contributing variables that 

might have an overall effect on the %IR predictions. Model 2a tries to answer 

this by further refining the model through the omission of variables which in 

theory should not contribute to the generation of %IR. Model 2a prediction of 

%IR is given as follows. 

 

 

 
Figure 5-15: TCDA vs %IR for Model 2a 
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From Figure 5-15 the omission of certain variables has improved the overall 

prediction of the %IR based on TCDA. Significant effects of the TCDA on 

%IR are seen across all the quantiles. The effect of higher TCDA on higher 

readings of %IR is seen with the highest predicted values of %IR occurring at 

the 0.95 quantile. This can also be said of other quantiles where lower values 

of TCDA affect the lowest part of the %IR readings. However, the 0.05 

quantile shows predicted values of %IR of less than zero. This small 

inconvenience can be stipulated as the cause of the linear approach taken 

by the author when modelling the relationship. To address this, Chapter 6 

models the relationship between TCDA and %IR (based on similar variables 

but with the exclusion of categorical variables) using Logistic Quantile 

Regression which should constrain the resulting output within a specified 

range. Overall, Model 2a is an acceptable model in the prediction of %IR 

(based on established literature on the DCVG technique) with the added 

bonus of simplicity and brevity due to its utilisation of fewer variables.    

 

5.3.1.2 SR and Backfill Type Variable 

 

The SR estimated coefficients for Models 1 and 1a show a decreasing trend 

with lowest value occurring at the 0.5 quantile. However, the estimated 

effects of the rock variable on the contribution of %IR indicate a reverse 

trend with the maximum estimated coefficients occurring also within the 

region of 0.25 to 0.5 quantiles. Since these two variables are somewhat 

related, the opposite predictions seem to complement each other and 

highlights the heterogeneous nature of soil. Highly resistive electrolyte which 



189 
 

contains materials such as rocks will produce large voltage drops as current 

passes through it. These voltage drops will likely be picked up by the DCVG 

instrument indicating a defect more severe than it actually is. This is 

confirmed by the work of J.P.Mckinney [64] in his thesis which states that 

prioritization of DCVG indication will be more accurate if SR is taken into 

account. The higher quantiles highlight a relatively weak effect of the rock 

variable to %IR. However, this can be understood by also observing the 

value estimated for the general SR variable which highlights a stronger 

effect. 

  

In Models 2 and 2a, the reference variable for the models was changed and 

the variable Backfill Type – Clay, shows an increasing trend until it reduces 

at the 0.95 quantile. Clay is considered as soil with a high degree of 

compaction thus possessing low resistance to current flow. The low 

resistance should not produce large voltage drops and hence one would not 

expect the rising trend in the estimated coefficients. However, if we were to 

look at the Backfill Geometry – Round variable, the estimates are much more 

aligned with common understanding. The presence of rounded soil grains 

creates an environment which is less resistant to electrical currents (similar 

to clay). Across the percentile, the estimated coefficient values show a 

downward trend with a slight increase at the highest quantile. This is the 

inverse of the clay variable’s trend. Similar to Models 1 and 1a, the two 

variables seem to complement each other and can only be understood when 

both are looked at together. The decrease in the estimated value at the 0.95 

quantile for the clay variable and the increase of the predicted value at the 
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0.95 quantile for the Backfill Geometry – Round variable is the cause of a 

possible mixture of fine to coarse grain soils in the backfill. Moreover, there is 

also the possibility of foreign currents interfering with the measured signal as 

mentioned above. Coupled with the heterogeneous nature of soils, 

unexpected outcomes like this are not unusual to find. 

 

5.3.1.3 Depth of Cover Variable 

 

A paper by Moghissi  and the work from J.P Mckinney [64], [65], have argued 

that depth of cover plays an important role in the detection of potential 

gradients generated by the cathodic current. Equipotential lines are 

generated from coating defects which depends on the SR and also the level 

of the protective current provided to the pipeline. The size of these potential 

lines is largely based on the size of defects and the level of current supplied. 

From this it is obvious that the depth of the buried pipeline is a factor to 

consider in the detection of potential gradient signal. If the pipe is buried too 

deep and small defects are generating voltage drops, chances are that only 

the outer part of the spherical gradients will be detected or will be missed 

entirely. Potential gradients on the outermost surface of a voltage sphere 

represents only a small part of the whole voltage spectrum. The trend of the 

estimated coefficients for the reduced version of the %IR model (Model 2a) 

resonates with this theory. Apart from the 0.05 quantile, the downward trend 

continues until the 0.95 quantile. What this means is that as the depth of the 

buried pipeline increases the amount of potential gradient signal being 

picked up will decrease. A statement posed by NACE in their standard, 
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TM0109-2009 [93] and by Ukiwe et.al. [94] states that “the standard’s 

guideline on the usage of indirect inspection tools may be less sensitive to 

pipes buried at excessive depths”, echoing the results obtained in this 

research. 

5.3.2 TCDA Model – (Model 3 and 4) 

5.3.2.1 %IR Variable  

 

The estimated coefficients for Model 3 have shown that the trend does not sit 

well with current industry understanding of DCVG. The trend can be 

attributed to a number of outlying data points present at higher quantiles of 

the TCDA distribution. A better way of visualising this is by plotting the 

predicted TCDA based on increasing %IR using Model 3 with respect to the 

different quantiles. Other variables in the model were kept constant where 

the mean of POPD, DUC, DOC, TIS, PS and SR similar to previous 

assessments in this Chapter were used as the contributing factors. Figure 

5-16 shows this plot. 
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Figure 5-16: %IR vs TCDA for Model 3 

 

Figure 5-16 shows the linear effect of %IR on the resulting TCDA estimation. 

The effect is small across the quantiles except at the 0.75 quantile. At the 

lowest quantiles (0.05 and 0.25) the effect is almost zero which is 

represented by the flat line. The trend of Figure 5-16 is not surprising if one 

looks at the Oriset data where many of the readings are inconsistent with 

common industry DCVG theories. Small indications in the form of %IR 

measurements have been paired with very large coating defects and large 

readings of %IR yielded very small coating defects. The same scenario is 

encountered during the construction of Models 1 and 1a. These irregularities 

can also be explained by the bullet points given in section 5.3.1.1 above.  
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Of the possible reasons given in the bullet points, the most probable 

explanation for this phenomenon is due to the disturbance coming from stray 

and telluric currents. Most of the pipes under assessment were situated 

within a network of pipelines which runs in parallel and perpendicular with the 

one under investigation. Currents from adjacent CP systems which are 

protecting other pipelines have the potential of leaving their intended path 

and being picked up by the DCVG instrument. This can produce incorrect 

readings for the DCVG assessment being based on the stray current and not 

the actual defect themselves. Kutz [91] has explained this problem in greater 

detail.   

 

Another interesting finding was that the pipes were originally protected by a 

sacrificial anode system. The anodes were attached to the pipe via tack 

welds. Based on the pre-assessments photographs, tack welds were still 

visible and not insulated. Since these tack welds and their connecting rods 

are exposed to the environment, they provide an exit point for currents to 

leave the surface of the pipeline. The exiting currents can also interfere with 

the voltage gradient generated by the coating defects which in turns 

produces misleading information for the interpretation of %IR. Apart from 

disturbing the potential gradient signal, the exposed tack welds and 

associated rods could also lead to accelerated corrosion. However, corrosion 

was not observed at these points.  

 



194 
 

The relationship of %IR and TCDA based on Model 4 is illustrated in Figure 

5-17. Similar to previous assessments, other contributing variables such as 

POPD, DUC, DOC, TIS, PS and SR were kept constant.  

 

 

 
Figure 5-17: %IR vs TCDA for Model 4 

 

The trend in Figure 5-17 illustrates the general industrial understanding of 

the relationship between %IR and TCDA. As the quantiles increases, so 

does the effect of %IR on TCDA which leads to the conclusion of higher %IR 

affecting larger coating defect areas in a positive way. It can also be said that 

the sensitivity of the DCVG technique relies on the size of the coating defect. 

Medium to large defects give a reasonable approximation of the defect size. 

However, the interpretation based on the %IR on smaller defects should be 

treated with caution due to multiple zero readings present at lower quantiles. 
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As mentioned earlier, outliers were omitted based on the author’s expert 

opinion. Due to this, Model 4 does not suffer from the problems faced by 

Model 3, Model 1 and Model 1a where outliers play a role in the estimation of 

coefficients. As such, the models are more general and are sufficient in the 

case of subsequent inspection of the MEOC pipelines. Applying these 

models to other pipelines is not advisable since the filtered data used are not 

free from other forms of “noise”, e.g. lower TCDAs appearing on larger 

readings of %IR (depicted by the 0.05 and the 0.25 quantile). More data is 

needed if the developed models are to be utilised for the general use by the 

pipeline industry. As in the case of subsequent iteration of the ECDA for the 

MEOC pipelines where prediction of TCDA with regards to the %IR readings 

is required, the estimated coefficients and their associated credible intervals 

found here can be used as the prior distribution for the estimation of 

coefficients for subsequent inspections. It is expected that this will produce 

better posterior densities with narrower credible intervals indicating less 

uncertainty in future estimated coefficients.  

 

5.3.2.2 POPD Variable 

 

Findings from Model 3 indicate that at large coating defect area the 

possibility of finding deeper corrosion pits is more likely. With larger TCDA, 

the amount of current provided by the cathodic protection system also should 

be large. When the level of protection current is inadequate or obstruction of 

the current’s path in the form of a shielding electrolyte is present, corrosion 

activity is to be expected. However, a dip at quantile 0.75 on pipelines with 
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medium to large TCDA corresponds to corrosion pits with shallower depths 

than corrosion pits at the largest and the smallest of TCDAs, which goes 

against the normal assumption that a pit’s depth is directly proportional to the 

size of TCDA. Model 4 does not exhibit such issues. At the same quantile, 

the coefficient predicted shows a smooth increase from the median quantile 

to the largest quantile. Moreover, for Model 4, a consistent upward trend can 

be seen across the TCDA quantiles. Between the 0.4 and the 0.6 quantile 

the estimates plateau suggesting that, for these defect sizes, the effect of an 

increasing POPD is minimal. The increase in values from the 0.05 quantile to 

the 0.25 quantile can be judged an initial step in the corrosion process which 

also contributes to coating defects. At this step, corrosion is initiated, and 

coating defects grow in tandem. The aforementioned plateau is an indication 

of the pit growth rate being faster than the growth of TCDA. This will produce 

deeper pits at smaller TCDA which solidifies the finding in Chapter 4. Deeper 

pits at smaller coating defect should be treated with caution as defects of 

such characteristics will normally go unnoticed with the consequences of 

failure being severe. The same effect can also be seen between the 0.75 

and 0.95 quantiles. However, here the credible interval increases in width 

indicating a less certain prediction. The OLS prediction is also located in the 

negative region which means that all the above observations would be 

missed with the averaging approach.  

 

5.3.2.3 SR Variable 
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Model 4’s predicted coefficient quantile trend can be interpreted as highly 

resistive soil having a large effect on the size of coating defects. Coarse 

grained soil is known to be highly resistant to electrical current flow hence 

soils such as sand, silt or even rock pose high units of SR. These types of 

soil with angular particle geometry have the possibility of damaging pipe 

coatings through the process of abrasion. Pipe or soil movement also has 

the possibility of creating abrasion between the coating interface and the 

electrolyte. Another factor to consider is the stresses created by the self-

weight of the backfill [38], [95]. The backfill weight applies stresses on the 

pipe’s coating creating a wrinkling effect normally found at the 8 and 4 

o’clock positions of the pipe. The wrinkling of the coating combined with the 

abrasion effects of the angular particle size (high SR) will sometimes result in 

coating defects. 

 

5.3.2.4 Pipe Size Variable 

 

Both Models 3 and 4 show similar upward increasing trends for the estimated 

coefficients across the quantiles. The larger pipes will likely to exhibit a larger 

TCDA. This is because as pipes increase in size, so does the surface area. 

Therefore, the possibility of having larger TCDA on larger pipes is high 

especially if the situation is not favourable (conducive environment for 

coating defects to occur). The estimated values of the two models are 

different but not substantial. Differing coefficient estimates are due to the 

previously mentioned effect (outliers were taken out). In Model 3, the 

predicted OLS would have missed the positive and negative effects of 
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increasing PS on TCDA while for Model 4, the OLS would have completely 

missed the estimates since it is calculated to be negative. The credible 

interval estimates for both models are very narrow with wider intervals 

occurring at the 0.95 quantile. However, this interpretation has to be treated 

with caution as the pipe sizes considered are within the range of 26 inch to 

42 inches only – which contributes to the narrow credible intervals. To 

extrapolate the interpretation to other pipe sizes, a larger, more 

comprehensive dataset is needed to accommodate more variation in pipe 

sizes. 

 

5.4 Bayesian Quantile Regression 

 

Assessments were done on the MEOC data to obtain the predicted 

coefficient value by means of both a Bayesian approach and the classical 

approach. The coefficient estimates illustrated by both the Bayesian and 

classical methods are somewhat similar. Both approaches consider 

parameter uncertainty with the Bayesian approach being more reliable as it 

does not rely on asymptotic approximation of the variances. Classical 

approaches such as bootstrapping in the construction of confidence intervals 

use estimation of the asymptotic variances and depend on the model error 

density which is difficult to estimate reliably. Hence, the coverage 

probabilities of the true parameter of these methods are at best sufficient but 

not necessarily 100% reliable. This is supported by a paper from the Plant 

Physiology field by Devore [96] which shows the classical approach 

estimated a lower probability of the confidence interval as compared to the 
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Bayesian approach. This seems to suggest that a Bayesian method is better 

in terms of coverage and thus includes all parameter uncertainty. Other 

advantages of the Bayesian method are that it provides a simple explanation 

based on the credible interval. For this Chapter, the credible intervals are set 

to be 95% and thus the true value of the coefficients can be explained as 

“having a probability of 0.95 of falling within the credible intervals”.  

 

The prior used for all the estimation of the regression coefficients is a non-

informative prior. Yu and Moyeed [79], have proved in their research that the 

use of an improper prior will lead to a proper posterior through the Bayesian 

Quantile process. This is especially useful in the case of the MEOC data. 

The research into estimating coating defect size by statistical means is new 

and therefore lacks expert judgment (belief) on what a prior distribution 

should be. In the case of choosing an incorrect prior, there is the possibility 

of having the resulting posterior heavily influenced by the prior (especially 

when data samples are small – as in the case of the MEOC data). This is 

often misleading and illustrates a different picture on the true parameter 

estimates. Freedom from this pitfall is advantageous in the context of this 

thesis. Additionally, the BQR method uses the ALD as the likelihood function. 

Since the likelihood function (ALD) disregards the original distribution of the 

data, specifying a specific distribution is not needed. The paper [79] goes on 

to say that the use of the ALD is a “very natural and effective way for 

modelling Bayesian quantile regression”. After the Bayesian process, the 

resulting posterior statistics such as the mean estimates of the quantiles and 

the calculated credible intervals can be used as the new prior distribution 
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when new data are made available (further iteration of the ECDA process). 

The construction of the prior distribution will have to be done by eliciting the 

estimated statistics obtained within this thesis. An appropriate distribution will 

have to be chosen which will incorporate the Bayesian estimates i.e. the 

coefficient values and it’s corresponding credible intervals. This process is 

often referred to as Bayesian updating. Bayesian updating will better predict 

the new regression coefficients with better reliability and reduction in 

uncertainty as more and more iterations of the Bayesian process are made. 

The Bayes estimates of the coefficients along with their corresponding 

credible interval are shown in the Appendix section, Table 8-7 to Table 8-12.  

 

One of the biggest hurdles of the Bayesian method is the problem of 

convergence. As was seen in the results of Model 4, up to 11 million 

iterations were needed to achieve convergence. This is due to the algorithm 

(Metropolis-Hastings) used for the acceptance and rejection of samples. This 

will make the method computationally expensive which can be a hindrance to 

future researchers employing the technique.     
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Chapter 6 

 

Logistic Regression and Logistic 

Quantile Regression for Analyses 

of DCVG Indications and Corrosion 

Depth 

 

6.0 Introduction 

 

The previous chapters have highlighted methods in approximating the size of 

the TCDA given its contributing factors. By doing so, the decision-making 

process of where to excavate for further assessments (direct assessments) 

can be made with greater accuracy. This will also be useful for pipeline 

operators managing the pipeline integrity while keeping costs low.  
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This Chapter however will shift its focus to the variable %IR (also looked at in 

Chapter 5) and POPD as the dependent variable. The two variables are 

important since examining both of them is crucial for the understanding of the 

DCVG technique and for maintaining the pipeline integrity. 

 

As was also stated in previous chapters, the United States [10] has imposed 

a regulation on operators and managers to produce criteria for the 

identification and documentation of indications from an indirect assessment 

technique which will be considered for further assessment (direct 

assessment through excavation). The criteria also serve to define the 

urgency of the subsequent inspection based on documented and identified 

indications. Responding to this regulation, pipeline operators have come up 

with simple rules (criteria) for managing the integrity of pipelines. These rules 

cover all of the pipelines under their watch, irrespective of the pipe’s 

specification and environment. The rule looks at the Close Interval Potential 

Survey (CIPS) data to identify defects. Moreover, the identification process is 

highly subjective since it requires the input of an expert to judge the location 

of defects and where to excavate. According to [65], this is necessary since 

the environment of each location constantly changes. However, the 

combination of this general rule with the input of expert opinion will yield a 

decision which is highly conservative [65].  

 

In the context of the MEOC ECDA data, TWI Ltd., also provided a method in 

classifying defects based on their DCVG assessments. In accordance with 

[97], the pipeline was segmented into areas where the risk of corrosion is 
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expected. The risk profile of each segment was identified subjectively by 

observing the CIPS data and the environment in which the pipe resides. This 

is similar in method to that highlighted above by [65]. The DCVG data were 

later combined with this risk profile to identify potential corrosion hotspots for 

decisions on where most effort should be directed for further assessment. 

Unfortunately, according to the MEOC data which follows the steps above, a 

significant amount of excavations resulted in no defects albeit the %IR 

readings were relatively high. The same can be said about the low readings 

of %IR which yields a larger coating defect area.  

 

Thus far, we have conducted regression analyses to determine the 

relationship of TCDA and %IR to their respective contributing factors. 

However, these analyses considered the dependent variable to be 

unbounded. The dependent variable is treated as having a non-constraining 

value where any value calculated from the regression process is possible. 

For bounded dependent variables, the values are restricted to some interval. 

The best-known outcome is binary where the intervals are 0 and 1. Other 

examples of bounded dependent variable are visual analogue scales 

between 0 and 10 cm, school grades of between 0 and a 100 and quality of 

life index between 1 and 100 [98].  Bounded dependent variables typically 

produce frequency distributions of shapes unimodal, J shaped and U shaped 

[80]. It has been shown that using traditional methods such as least squares 

regression on bounded dependent variable is inadequate [99].  
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Logistic Regression provides a solution for bounded dependent variables as 

it limits the interpretation of the dependent variable within a prespecified 

range. In our pursuit of predicting the size of coating defects through the 

interpretation of %IR and corrosion through modelling of variables, the 

logistic regression provides a useful tool for assessment since some of the 

variables under investigation possess a pre-specified range. This includes 

%IR, POPD and DUC, all ranging between 0 and 100%.  

 

Quantile regression (QR) is a technique in modelling conditional quantiles of 

the dependent variable. Its main advantage is that it gives a fuller picture of 

the dependent variable for every value of the independent variable (see 

comprehensive description is given in Chapter 3). This is especially useful 

when applied to skewed or long-tailed distributions. QR makes it possible to 

extract information from the extreme ends of the dependent variable’s 

distribution which is useful when studying the failure of pipelines (normally 

failure occur at the tail of a distribution).  Also, when compared to traditional 

least squares regression, QR makes no assumptions on the distribution of 

the error term, is robust to outliers and is not affected by monotone 

transformation of the outcome variable in terms of its inferences.  It is thus 

understood that the technique is becoming ever more popular in the field of 

economics, ecology, meteorology and biomedical sciences. Bottai et.al [80] 

has investigated on the use of quantile regression with bounded dependent 

variable by employing logistic transformation to the quantiles. With this 

combination, the analysis benefits from the effectiveness of the QR while 

limiting it to a certain range of the dependent variable. For this chapter, the 
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logistic and the logistic quantile regression are used for the analyses of 

variables found in the indirect and direct assessment of the MEOC data. 

 

6.1 Middle Eastern Oil Company (MEOC) Data 

 

Data are again taken from the MEOC ECDA project conducted by TWI Ltd. 

Extensive description on the data can be found in Chapter 2. In summary, 

the Middle Eastern Oil Company (MEOC) has appointed TWI Ltd., as their 

contractor to conduct integrity assessments on nine of their buried pipelines. 

Upon studying these pipes, it was concluded that the pipes are unpiggable. 

Therefore, an External Corrosion Direct Assessment or ECDA for short, 

based on the NACE SP0502-2010 [97] was identified as the best method to 

assess the integrity of the pipes. An ECDA comprises 4 major steps which 

include pre-assessment, indirect examination, direct examination and the 

post assessment. Details of all these steps and the data obtained from these 

assessments are discussed in detail in Chapter 2.  

 

For the purpose of formulating a tool for pipeline operators and integrity 

personnel to make sound and informed decision on where to excavate, data 

considered for analyses are taken only from the indirect and direct 

assessment steps of an ECDA. One can also include the pre-assessment 

step as part of the analyses. However, as was stated earlier, the data from 

such steps involves highly subjective inputs (which can also be erroneous) 

from the so-called experts in the field. This is also one of the reasons for not 

explicitly stating in Chapter 5 an informative prior as a wrongly specified prior 
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will lead to erroneous results (inference). Data collected from the indirect and 

direct assessment steps are tabulated below. 

 

Symbol Variables Considered Type of 
Variable 

Bounded / 
Binary 

α IR Drop (%IR) Continuous Bounded 

TCDA Total Coating Defect Area Continuous Unbounded 

β Soil Resistivity (SR) Continuous Unbounded 

γ Percentage of Pit Depth to Wall 
Thickness (POPD) Continuous Bounded 

δ Deposits under Coatings (DUC) Continuous Bounded 

ε Depth of Cover (DOC) Continuous Unbounded 

𝑻𝑻𝑻𝑻𝒙𝒙 Excavation (1=Yes, 0=No) Categorical Binary 

𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙 Excavation (1=Yes, 0=No) 
(Relaxed) Categorical Binary 

 
Table 6-1: Lists of the Variables obtained from the Indirect and Direct 

Assessment Used for the LQR Assessment 
 

In applying the logistic and the LQR to predict %IR and POPD, only the 

continuous variables are taken into consideration. This is done to keep 

subjectivity to a minimum within the assessment and to simplify the problem.   

 

One of the advantages of logistic regression is the ability to transform the 

dependent variable, which is bounded, by a specific interval and infer it as a 

probability statement. This property can be exploited in the case of the 

MEOC data where the probability of excavation can be calculated and be of 

use for future ECDA projects. A new categorical variable, Excavation (𝑇𝑇𝑇𝑇𝑇𝑇) 
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is introduced for the assessment of the probability of excavation. 𝑇𝑇𝑇𝑇𝑇𝑇 is 

derived from the analyses of the direct assessment stage. A value of 1 is 

given where excavation should have occurred based on large coating 

defects and deep corrosion pits and 0 otherwise. The excavation sites are 

divided into two. An analysis was done to determine excavation sites which 

are justified, and the ones which are not. This can be thought of as a hit and 

miss approach. The condition for justification of excavation comes from 

looking at the %IR readings, the size of coating defect and the depth of 

corrosion pits. By combining these factors, a comprehensive judgement is 

achieved by considering the most detrimental factors to a pipeline’s integrity. 

The limits of these factors as to render the excavation justifiable is set to 

values which consider engineering standards such as the NACE 

SP0502:2010 and API 579 [97], [100]. The factor TCDA is a problem since 

there are no definitive critical sizes for when the coating should be replaced 

(and hence excavate). Different companies and operators have different 

criteria for the critical size of TCDA before replacement. Hence, the author 

chose an arbitrary value as a limiting factor. Although this seems to be 

subjective, the determination of the value is necessary for the logistical 

analysis. This value is changeable in the future where more or less 

conservatism is needed for the assessment. 

 

6.2 Probability of Excavation 

 

The probability of excavation based on the 𝑇𝑇𝑇𝑇𝑇𝑇 variable against other 

variables are conducted using logistic regression. The 𝑇𝑇𝑇𝑇𝑇𝑇 variable’s limit is 



208 
 

set at 60% for the %IR since the standard NACE SP0502:2010 [97] specified 

that for every indication of 60% and above, also called category 4, should be 

treated with high priority. A detailed description of this definition is given in 

Chapter 2.  

 

For the POPD variable, the threshold for when repairs are required is 

determined to be 50%. The minimum required thickness, 𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛, represents the 

required thickness of the pipe for safe continual operation. Going beyond 

𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛 doesn’t mean the pipe will fail but additional integrity assessments are 

needed in ensuring continual safe operation. There is a variety of formulas 

used in calculating 𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛. However, we will not go into the detail here and as a 

rule of thumb, half of the thickness of the pipeline wall corresponds to 

pressure and structural  𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛. Of course, if one were to refer to the API 579-

1/ASME FFS-1- Fitness-for Service [100] standard, the value 50% for POPD 

is before the calculated minimum required thickness, the FFS 𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛. Due to 

the determination of the 𝑇𝑇𝑇𝑇𝑇𝑇 variable being based on three different factors 

(%IR, POPD and TCDA), choosing a higher threshold of say 70% of POPD 

will result in a lot of excavation in the MEOC project being unjustified. The 

determination of 50% as the POPD limit also has the added advantage of 

being a conservative estimate. As was previously mentioned, this value can 

be in the future, replaced with a higher threshold when more data come in.   

 

The TCDA variable presents a subjective approximation by the Author in 

terms of its limit for justified excavation. To the Author’s knowledge, there is 

so single value or percentage of TCDA for which excavation is required. The 
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closest guideline we have is the NACE SP0502:2010 [97]. In the standard, 

the indication that should be the main trigger for excavation is %IR. This is 

understandable since, during an ECDA, personnel inspecting the pipe using 

the DCVG technique are only provided with the inspection values of the 

voltage drop (%IR). Based on this, the inspector has a rough idea in terms of 

what to expect from the %IR reading. However, if one were to look at the 

readings obtained in the MEOC data, the idea that higher DCVG readings 

are proportional to larger TCDA is not entirely true. Thus, based on the 

author’s experience, a limit of 10,000 cm2 of TCDA and above was chosen 

for justified excavation.  

 

 

Figure 6-1: Probability of Excavation Based on %IR Considering the 
𝑻𝑻𝑻𝑻𝒙𝒙 Variable 
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Having made all the necessary considerations of the 𝑇𝑇𝑇𝑇𝑇𝑇 variable, the 

resulting variable adopts the form of a binary structure having a value of zero 

for no excavation and 1 for excavation. Analysis was done using the R 

software. The following is the resulting model from the analysis. 

 

 𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑻𝑻𝑻𝑻𝒙𝒙) = 𝐥𝐥𝐥𝐥 𝐥𝐥 �
𝑻𝑻𝑻𝑻𝒙𝒙 + 𝞓𝞓

𝟏𝟏 − 𝑻𝑻𝑻𝑻𝒙𝒙 + 𝞓𝞓
� 6.1 

 

 

The symbol 𝛥𝛥 represents 0.001, which is a small value so as to render the 

answer meaningful for all values of 𝑇𝑇𝑇𝑇𝑇𝑇. The model for the function is thus, 

 

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑻𝑻𝑻𝑻𝒙𝒙) = −𝟐𝟐.𝟑𝟑𝟑𝟑 + 𝟏𝟏.𝟏𝟏𝟎𝟎𝜶𝜶 6.2 
 

where 𝛼𝛼 represents the %IR. The coefficient value for 𝛼𝛼 has a p-value of 

1.43e-09 which is statistically significant (at significance level of 0.05). The 

result in Figure 6-1 shows an increasing trend with the greatest probability of 

excavation occurring at higher %IR. This is expected since the 𝑇𝑇𝑇𝑇𝑇𝑇 variable 

is considered to have taken into account the %IR factor. At the absolute 

lower end of the %IR readings, the probability of excavation is not zero. This 

is due to the way the data are spread, and to other factors such as the POPD 

and the TCDA which necessitate excavation even though the readings 

obtained during the DCVG assessment are zero. This can also be seen at 

the higher end of the %IR reading. Although the reading is 100% in terms of 

%IR, the probability of excavation is not 100% certain. This too is the result 
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of other factors which seems to say a 100% reading of DCVG does not mean 

a certain excavation. It can also be seen that the amount of missed judgment 

by the assessors of a project would be quite severe if it is based on the 

criteria set out in this research. The number of false calls for excavation 

highlights the inaccuracy of the input of expert judgment which can impact on 

the project cost (through excavation of unnecessary bell holes). A more 

“relaxed” approach to this analysis is to not consider the %IR reading to 

determine the potential excavation but rather to look at the hard evidence 

which is the data from the direct assessment stage. After all, the main goal of 

the ECDA is to manage the integrity of pipelines by assessing and reducing 

the impact of external corrosion activity. Thus, the main driver of maintaining 

integrity is through the assessment of TCDA and corrosion which is 

represented by the POPD variable. These two variables shall be our 

determining factor for the following assessment. The limits for these 

variables to justify excavation remain the same as before with a TCDA of 

area of more than 10,000 cm2 and the pits having 50% depth from the pipe 

wall thickness. This relaxed version of the 𝑇𝑇𝑇𝑇𝑇𝑇 variable shall be identified as 

the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The following, Figure 6-2 highlights the outcome of the analysis. 

The analysis was done using the R software. 
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Figure 6-2: The Probability of Excavation based on %IR with 
considering the 𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙 Variable 

 

Figure 6-2 shows the effect of the decision-making outcome by not 

considering the %IR variable as an indicator for excavation. The following 

model describes the logistic function for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

 

 𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙) = 𝐥𝐥𝐥𝐥 𝐥𝐥 �
𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙 + 𝞓𝞓

𝟏𝟏 − 𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙 + 𝞓𝞓
� 6.3 

 

 

The symbol 𝛥𝛥 is a small value that ensures all values of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are defined. 

The model for the probability of excavation is thus, 
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 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑻𝑻𝑻𝑻𝒙𝒙𝒙𝒙) = −𝟏𝟏.𝟑𝟑𝟕𝟕 + 𝟏𝟏.𝟏𝟏𝟐𝟐𝜶𝜶 6.4 
 

The term 𝜶𝜶 is the %IR. Significance is highlighted by a p-value of 0.004. In 

comparison with the previous analysis, by using 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, the gaps at the lower 

and higher end of the %IR extremes are larger. The findings here suggest 

that the contribution of POPD and TCDA to the probability of excavation is 

quite high regardless of the low values of %IR. The assessment in previous 

Chapters highlights this scenario where low values of %IR are related to high 

values of TCDA. This can be seen also at the higher end of the %IR values 

where a 100% reading of the DCVG assessment still does not implicate a 

definite need for excavation. The reason for this can be attributed to the error 

made by the assessor when specifying an excavation for a reading of 100% 

of the DCVG, but only to find that there are no coating defects present.  

 

The limiting value for POPD to justify for excavation is half the wall thickness. 

This is somewhat conservative when related to the FFS 𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛 (since the 𝜏𝜏𝑚𝑚𝑚𝑚𝑛𝑛 

for FFS is well below the half way point of the wall thickness – subject to 

pressure, loading, etc.). If this assessment were to consider a less 

conservative approach, many more excavations would be deemed unjustified 

since many fewer locations are needed for inspection. The lesser 

conservatism would likely “pull” the model downwards in Figure 6-2 which 

seems to suggest most of the excavations for this project are meaningless. 

The same can be said for the TCDA factor. A less conservative approach 

would have made the limiting value higher than 10,000 cm2 of TCDA for 

excavation. However, this would result in more unjustified excavations and 
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having more data points on the no excavation category. As mentioned in 

previous statements, the value for each limit of the TCDA and POPD variable 

can be moderated depending on the degree of conservatism that is needed 

for a particular assessment. 

 

Figure 6-2 also demonstrates the errors committed by the assessors of the 

project in deciding the location of excavation based on %IR and the input of 

subjective expert opinion. Although this is the reality, and since an ECDA is 

an iterative process whereby subsequent assessment are needed for 

continued safe operation, the findings here may be used as an indicator of 

the probability of excavation based on the obtained %IR values during a 

DCVG assessment for future inspection. However, the limitation is that it is 

only applicable to the MEOC pipelines since the assessments were done on 

them. More data are needed to make the model more general.    

 

6.3 Logistic Quantile Regression on %IR 

 

LQR has the benefit of accommodating bounded outcomes such as the %IR 

values where the range is bounded between 0 to a 100%. This ensures that 

the resulting model will not be outside these bounds (see Model 2a in 

Chapter 5) making them attractive in situations where a simple linear 

approach is insufficient to accommodate the non-linear nature of the 

relationship between an independent variable and its dependent variable. 

The LQR also has the ability seamlessly to handle data which are skewed in 

nature, have a non-linear relationship amongst variables and possess non-
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constant variances [80] which makes the MEOC data a perfect fit for LQR 

assessments.  

 

In the previous section, we observe the impact of %IR on the dependent 

variable 𝑇𝑇𝑇𝑇𝑇𝑇. In this section, %IR is determined to be the dependent variable 

where contributing factors in Table 6-1 are the independent variables. The 

variables were selected by investigating literature where only the variables 

that give rise to %IR are considered. Furthermore, only continuous variables 

are selected for simplicity (also based on results obtained in Chapter 5 on 

refined versions of the same model) and we filter out the subjectivity in the 

categorical variables. This is mostly aimed at the soil variable where 

interpretation of the soil grains and structure is highly subjective. Initial 

assessments by using LQR were done by experimenting with different 

continuous variables and observing each effect separately on the dependent 

variable %IR. Subsequently, the coefficients which show a good relationship 

(in terms of their coefficient magnitude) were chosen as the variables to be 

considered for the final combination model. The logit transform of the 

dependent variable, in this case is %IR, is given as follows, 

 

 𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰) = 𝐥𝐥𝐥𝐥 𝐥𝐥 �
%𝑰𝑰𝑰𝑰 + 𝞓𝞓

𝟏𝟏𝟏𝟏𝟏𝟏 − %𝑰𝑰𝑰𝑰 + 𝞓𝞓
� 6.5 

 

 

where 𝛥𝛥 is a value to define all possible values of %IR. Instead of 1 in the log 

transform for the previous analyses for 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, we have 100 to 

represent the 100% maximum value of the %IR range. 
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6.3.1 TCDA vs %IR 

 

An assessment was done to see how the TCDA would contribute to the %IR 

value by employing the LQR method. A common understanding within the 

industry states that the DCVG assessment is done solely to identify and 

assess the severity of pipeline coating defects. Therefore, it is expected that 

these two variables are highly correlated. However, after looking at the data 

from the MEOC project, the case turns out to be the opposite. The linear 

correlation value is poor (based on Chapter 4) which suggests little to no 

effect between the two. Therefore, it is only wise to assess the contribution of 

TCDA to %IR in this section to be nonlinear. Figure 6-3 below highlights the 

relationship between the TCDA and %IR. 

 

 
Figure 6-3: LQR on ln(TCDA) vs %IR 
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 Figure 6-3 shows the relationship between ln(TCDA) and its response %IR. 

Prior to the assessment, the TCDA variable was transformed by applying the 

natural log to obtain a much more meaningful relationship. If the 

transformation was not done, the effect of TCDA on %IR would not have 

been substantial. The resulting model is as follows. 

 

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.6 
 

 

𝛽𝛽1 is the intercept and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 all represent coefficients for 𝑋𝑋 where 𝑋𝑋 is 

ln(TCDA). 𝜏𝜏 is the quantile of the various models. The coefficient values for 

each quantile are given in the table below. The polynomial order used in this 

Chapter was determined based on the general structure of how the data is 

spread and also from trial and error. As a general rule, the lowest order is 

preferred for model’s brevity and simplicity. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -1.16389 -2.9779 -3.56713 -3.40549 -3.82327 

𝜷𝜷𝟐𝟐 -1.18056 0.07914 0.95152 1.23253 1.83168 

𝜷𝜷𝟑𝟑 0.16192 0.00726 -0.11755 -0.14431 -0.21987 

𝜷𝜷𝟒𝟒 -0.00629 -0.00022 0.00512 0.00575 0.00863 

 

Table 6-2: Estimated LQR Coefficient Values for ln(TCDA) vs %IR 
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From the LQR estimated coefficients, it can be seen that the value of 𝛽𝛽2, 

which is the ln(TCDA) is increasing from the lowest quantile to the highest 

quantile. The max value of 𝛽𝛽2 occurs at the 0.95 quantile with a coefficient 

value of 1.83. The increase is expected since a larger TCDA will have the 

biggest effect on %IR. Similarly, we can see for the lowest quantile, 0.05, the 

coefficient value is -1.18. For the non-linear terms, 𝛽𝛽3 and 𝛽𝛽4 the two 

coefficients show opposite trends across the quantiles. The coefficient values 

for 𝛽𝛽3 show positive coefficient for the first two quantiles while the rest are all 

negative. 𝛽𝛽4 illustrates a picture which is quite the opposite. Figure 6-4 shows 

the quantile plot for the LQR estimated coefficients, 𝛽𝛽2, along with its 70% 

confidence interval. All the confidence intervals (70%) referred to for the 

remaining analyses in this Chapter shall be according to this. It can be seen 

that most of the estimate’s confidence intervals do not include zero which 

seems significant.  
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Figure 6-4: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒 (TCDA) 
 

6.3.2 SR vs %IR 

 

Next, we assess the effect of SR on %IR by means of the LQR. The variable 

SR is transformed into the square root of SR (SQRT(SR)) to strengthen the 

relationship between the two variables. After transformation, the relationship 

of SR on %IR is more evident. The purpose of the assessment between the 

SR and %IR is to determine whether the variable is relevant in terms of the 

coefficient’s magnitude for the final combined model. SR serves as an 

important model since it has influence on the %IR reading from a DCVG 
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assessment [64]. Generally, it can be said that as SR increases so does the 

%IR value. The following is the model between SR and %IR and its 

corresponding equation from the analysis. 

 

 

Figure 6-5: LQR on SQRT(SR) vs %IR 
 
Figure 6-5 shows the outcome of the modelling process by using the LQR on 

the variable of interest. The relationship between SQRT(SR) and %IR does 

not seem to be straightforward and in general, seems to imply an increase in 

SQRT(SR) means a decrease in %IR. Note that for the lowest quantile, the 

model is limited by 0 which illustrates the advantage of using LQR.  The 

models corresponding to each quantile are further clarified in the equation 

below.  
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 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.7 
 

𝛽𝛽1 is the intercept and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 are the estimated coefficients for 𝑋𝑋 where 

𝑋𝑋 is the SQRT(SR). 𝜏𝜏 is the quantile of the various models. The coefficient 

values for each quantile are given in the table below. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -4.07163 -2.72031 -1.51144 -0.69876 -0.23727 

𝜷𝜷𝟐𝟐 0.09503 0.06745 0.05713 0.06057 0.0768 

𝜷𝜷𝟑𝟑 -0.00149 -0.00103 -0.00088 -0.00089 -0.00103 

𝜷𝜷𝟒𝟒 0.00001 0 0 0 0 

 
Table 6-3: Estimated LQR Coefficient Values for SQRT(SR) vs %IR 

 

Judging by the coefficient estimates in Table 6-3, 𝛽𝛽2 (SQRT(SR)) shows a 

decreasing trend from the 0.05 quantile up to the median quantile. After this 

the estimated coefficient value increases until the 0.95 quantile. The highest 

estimated value is at the 0.05 quantile which is 0.095. This can also be 

summarised as, lower values of %IR are most affected by the SQRT(SR) 

while the median value of %IR is least affected by SQRT(SR). Upper values 

of %IR seem to be affected by the higher SQRT(SR) values but not as much 

as the 0.05 quantile.  𝛽𝛽3 and 𝛽𝛽4 showed trends which are different to that of 

the 𝛽𝛽2 coefficient. All the 𝛽𝛽3 showed negative values while the 𝛽𝛽4 coefficient is 

virtually zero. The trends of each coefficient follow the trend we see in Figure 

6-5. The quantiles for the estimated coefficients are given below. 
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Figure 6-6: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒  (SQRT(SR)) 

 

From Figure 6-6, it can be clearly seen that the LQR estimated coefficients 

confidence intervals do not contain zero which is statistically significant. The 

result also seems to contradict the findings from [64] where higher SR 

translates into higher %IR readings. The initial part of the assessment in 

Figure 6-6, below the value of 50 of the SQRT(SR) does suggest this is the 

case but after the model peaks a decreasing trend is observed. From this set 

of data, it can be considered, generally that as SQRT(SR) increases, the 

contribution to %IR decreases. This is also echoed in Figure 6-6 where a 

general decreasing trend is observed. 
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6.3.3 POPD vs %IR 

 

To continue our objective of constructing a combined model which includes 

various variables that give rise to %IR, the independent variable POPD is 

assessed against %IR. POPD represents the extent of external corrosion 

experienced by the pipeline. The DCVG assessment is not known or built for 

the purpose of identifying corrosion on pipelines. The main purpose of the 

technique is to identify and quantify the severity of coating defects. Although 

this is the case, the slight R2 value for the Total Corrosion Area (TCA) and 

Total Corrosion Volume (TCV) in Chapter 4 gives an indication that the two 

variables might have a connection. No prior transformation was done on the 

variable POPD. The models for the various quantiles corresponding to the 

two variables are as follows. 
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Figure 6-7: LQR on POPD vs %IR 
 

Figure 6-7 shows the models of the corresponding quantiles by LQR 

between the POPD and %IR variable. The models show a trend which 

suggests the relationship to be considerable. Generally, it can be suggested 

that with increasing POPD there is a slight increase in %IR. To quantify this 

relationship further, equations of the corresponding models are given below. 

 

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.8 
 

𝛽𝛽1 is the intercept coefficient and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 are the estimated coefficients 

for 𝑋𝑋. 𝑋𝑋 is the represented variable for POPD.  𝜏𝜏 is the quantile of the various 

model. The coefficient values for each quantile are given in the table below. 
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 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -2.37372 -1.54716 -0.56016 0.28276 0.85231 

𝜷𝜷𝟐𝟐 -0.06517 -0.02905 -0.02994 -0.02253 0.00045 

𝜷𝜷𝟑𝟑 0.00192 0.00065 0.00096 0.0012 0.00063 

𝜷𝜷𝟒𝟒 -0.00001 0 -0.00001 -0.00001 -0.00001 

 
Table 6-4: Estimated LQR Coefficient Values for POPD vs %IR 

 
Table 6-4 illustrates the LQR estimated coefficient values for POPD vs %IR 

which shows a small but positive relationship between POPD and %IR. The 

maximum estimated positive coefficient value by LQR for the coefficient 𝛽𝛽2 

occurs at the 0.95 quantile with a value of 0.00045. The minimum, which is 

also the highest value in terms of magnitude, occurs at the 0.05 quantile with 

a coefficient value of 0.065 in the logit of %IR. Based on simply looking at the 

𝛽𝛽2 coefficient, the finding here does seem to suggest there exists a marginal 

effect on %IR by POPD. The effect of deeper pits is felt at the higher end of 

the %IR values. However, for shallower pits, the estimated values seem to 

suggest that %IR readings lose their detection ability due to the pitting effect. 

For the non-linear terms, 𝛽𝛽3 and 𝛽𝛽4 showed low values across the quantiles. 

The effect is also different between the two where 𝛽𝛽3 shows positive 

estimates while 𝛽𝛽4 illustrates negative values except for quantile 0.25 across 

the quantiles of the logit of %IR. The quantiles corresponding to the LQR 

estimated coefficients in Table 6-4 are given as follows. 
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Figure 6-8: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒 (POPD) 

 
Looking at Figure 6-8, it can be said that generally all the estimated 

coefficients for POPD are significant. For the 𝛽𝛽2 coefficient, the confidence 

band has captured the zero value at the 0.95 quantile thus rendering it 

insignificant. As for the 𝛽𝛽4 coefficient, the estimates at the 0.25 to the median 

quantile included zero in its confidence interval. Overall considering the 

finding here and referring to Figure 6-7, it can be said that the effect of POPD 

on %IR is rather small due to the modest peaks and valleys observed in the 

quantile models observed in Figure 6-7 .   
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6.3.4 DOC vs %IR 

 

The DOC of the pipeline represents the depth of the soil above the pipeline 

as to which is used to cover them (depth of the buried pipe). The depth of 

pipes has an effect on the %IR signal since the equipotential lines “emitted” 

by the pipe are affected by the vertical distance between the pipe and the 

inspector using the DCVG probe. The deeper the pipe, the larger this 

distance is and the smaller the %IR signal measured. This industry 

understanding is supported by works such as [64], [65].  

 

Moving on with our construction of the combination of variables for the %IR 

model, the effect of the depth of pipe is tested with the %IR indication using 

the LQR. Prior to the logit transformation of the %IR variable, the DOC was 

also transformed by applying a natural log to the variable. The resulting 

transformation results in a better relationship between the DOC and %IR. 

The produced models are given below. 
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Figure 6-9: LQR on ln(DOC) vs %IR 
 

Figure 6-9 has shown that the estimated models by the LQR resonate with 

the common understanding in the aforementioned statements that the 

ln(DOC) has a negative effect on the %IR signal. The assessment conducted 

here is much superior over traditional regression methods such as the OLS 

where it provides a solution that is within the %IR bounds and also has the 

added advantage of observing the effects of different quantiles across the 

changing DOC. Traditional mean response regression such as OLS would 

clearly miss this insight. To delve into this further, the corresponding 

equations for the generated models are given below. 
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 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.9 
 

The 𝛽𝛽1 coefficient is the intercept and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 are the LQR estimated 

coefficients for 𝑋𝑋. ln(DOC) is denoted by 𝑋𝑋. 𝜏𝜏 is the quantile for each of the 

corresponding model. The coefficient values for each quantile are given in 

the table below. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 1.33153 1.34467 1.31433 1.32882 1.33082 

𝜷𝜷𝟐𝟐 -2.16976 -0.39198 1.09343 2.24786 5.51194 

𝜷𝜷𝟑𝟑 0.21038 -0.35796 -0.80429 -1.16402 -2.58555 

𝜷𝜷𝟒𝟒 0.01253 0.06367 0.10195 0.13486 0.29621 

 

Table 6-5: Estimated LQR Coefficient Values for ln(DOC) vs %IR 
 

Table 6-5 shows the estimated values for the coefficients by using LQR. It is 

surprising to see that the 𝛽𝛽2 coefficient provides an upward trend of the %IR 

signal going across the quantiles. This maximum occurs at the 0.95 quantile 

where the coefficient value is 5.512. At the 0.95 quantile, the estimated 

coefficient value is 5.512. The minimum value occurs at the 0.05 quantile 

with an estimated value -2.170. Results based on these findings seem to 

contradict the previous statements that deeper pipes will give a much weaker 

%IR signal. The results for 𝛽𝛽2 describe the linear part of the model which is 

the initial portion of the model in Figure 6-9. The downward trend can be 

seen “generally” when including all the non-linear terms into consideration. It 
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comes as some surprise that 𝛽𝛽3 possesses this trend with a maximum 

magnitude occurring at the 0.95 quantile with a value of -2.586. Quantile 

plots relating to the LQR models are given below. 

  

 

Figure 6-10: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒 (ln(DOC)) 

 
The estimated quantiles in Figure 6-10 show that not all the estimated 

coefficient values are statistically significant (at the 0.3 level). At quantile 

0.95 for 𝛽𝛽3, the confidence band nearly escapes the zero value with the edge 

barely touching the zero line. Although this is the case, it does still include 

the zero value within its confidence interval which means the estimate is still 
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insignificant. Only at the 0.95 quantile of the  𝛽𝛽4 coefficient is the estimate 

statistically significant.  

 

However, the results from Figure 6-10 do correlate well with industry’s 

understanding on the matter. The confidence band represented here shows 

the level of confidence of the estimation. But it is not 100% certain that the 

true effect between ln(DOC) and %IR is non-existent. Therefore, the variable 

DOC is chosen (due to the industry understanding of the variable) to be 

included in the final combined model despite it being statistically insignificant.   

 

6.3.5 DUC vs %IR 

 

The variable DUC can be considered as the corrosion product of the pitting 

process on the pipe with or without the additional foreign material such as 

sand, stones, etc. occurring underneath the coating of the pipe. The DUC is 

thought to have no significant contribution to the signal generated for %IR. 

However, the presence of DUC can correlate with pitting and has the 

potential to affect the %IR signal (based on previous assessments on POPD 

where a small effect is observed). For the purpose of constructing the 

combined %IR, the DUC is examined to see whether it has anything to 

contribute in terms of signal strength. The following is a representation of the 

models corresponding to each quantile constructed based on the LQR for 

DUC vs %IR. The variable DUC was not transformed before the assessment. 
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Figure 6-11: LQR on DUC vs %IR 
 

The trend in Figure 6-11 indicates low correlation between the two variables 

across the quantile. Observing the 0.05 and 0.95 quantile, the apparent 

“flatness” is similar. However, regarding the quantiles within these two bands 

shows a pronounced relationship especially the 0.75 quantile. This would be 

overlooked if one were to do an OLS based regression on the same dataset 

where only the mean (similar to the median) response is generated. The 

median also shows similar trend to the two-outermost quantiles (0.05 and 

0.95). Equations relating to these models are given below.  

 

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.10 
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The 𝛽𝛽1 coefficient is termed the intercept. 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 represent the LQR 

estimated coefficients for 𝑋𝑋. 𝑋𝑋 is defined to be the DUC and 𝜏𝜏 is the quantile 

for each of the corresponding models. The coefficient values for each 

quantile are given in the table below. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -3.05626 -1.39934 -0.42485 0.36487 1.15589 

𝜷𝜷𝟐𝟐 -0.03509 -0.03937 -0.01184 0.00853 -0.00409 

𝜷𝜷𝟑𝟑 0.00065 0.00079 0.00003 -0.00056 -0.00012 

𝜷𝜷𝟒𝟒 0 0 0 0.00001 0 

 
Table 6-6: Estimated LQR Coefficient Values for DUC vs %IR 

 

The coefficient values estimated by using LQR are given in Table 6-6. 𝛽𝛽2 of 

the DUC variable represents the linear part of the model, where an uncertain 

trend can be seen. The coefficient values dips between the 0.05 quantile to 

the 0.25 quantile. After this it increases to the 0.75 quantile and drops again 

at the 0.95 quantile. The maximum estimated coefficient occurs at the 0.75 

quantile with an estimated value of 0.009. Non-linear terms showed small 

values which suggests little to no effect on the contribution to the logit of 

%IR. The following quantile plots are the derivation from the estimated 

quantile values in Table 6-6. 
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Figure 6-12: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒 (DUC) 

 

The quantile trend for 𝛽𝛽2 in Figure 6-12 shows generally an increasing trend 

with a dip occurring at the 0.95 quantile. The increasing trend is suggestive 

that there might exist an increasing effect of DUC on the higher quantiles of 

the %IR. However, the higher quantiles for 𝛽𝛽2 lie in a region where zero 

terms are included within the confidence interval. From a statistical 

standpoint, this means that the estimation is not significant and may be due 

to sampling error. For the lower quantiles, zero terms are not included in the 

confidence band which suggests significance. While in these quantiles, may 

look to increase, the estimated values are negative in character which can 
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only mean that higher amounts of deposits underneath the coating affect the 

%IR signal in a negative way (decreasing signal – similar to the one obtained 

for POPD). Coefficients for 𝛽𝛽3 and 𝛽𝛽4 generally show estimates which are 

statistically significant. However, the coefficient values for these non-linear 

terms are small which implies little effect. Taking this and Figure 6-11 into 

consideration, it can be summarised that the effect of DUC on the generation 

of the %IR signal is minute.  

 

6.3.6 Combined Model for %IR 

 

A combined model was constructed based on the previous assessments of 

each variable. Each of the variables were assessed separately to identify its 

relevance to %IR. Based on these separate assessments, all the variables 

were initially assumed (whether linear or nonlinear) to be part of the model. 

The outcomes of the relationship were later looked at and its relevance for 

%IR is considered (this stage is still within the separate assessments). After 

all the variables from these assessments are considered, a careful selection 

process was done to determine which of the assessed variables are required 

for the combined model. The criterion of such selection was firs based on the 

general engineering (industry) understanding of the variable and secondly on 

its statistical relevance by looking at its coefficient’s magnitude and statistical 

significance. An example would be where it is commonly understood within 

the engineering field that a variable is correlated to the dependent variable 

but its relevance in terms of statistical inference is insignificant – the variable 
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will still be selected regardless of its negative statistical outcome. The 

following is the combined model after the selection process. 

 

  𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(%𝑰𝑰𝑰𝑰)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑻𝑻𝑻𝑻𝑨𝑨 + 𝜷𝜷𝟑𝟑 𝑻𝑻𝑻𝑻𝑨𝑨𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑻𝑻𝑻𝑻𝑨𝑨𝟑𝟑 + 𝜷𝜷𝟎𝟎 𝑺𝑺𝑰𝑰𝑺𝑺𝑰𝑰 + 𝜷𝜷𝟔𝟔𝜸𝜸

+ 𝜷𝜷𝟑𝟑𝜺𝜺 + 𝜷𝜷𝟖𝟖𝜺𝜺𝟐𝟐 + 𝜷𝜷𝟕𝟕𝜺𝜺𝟑𝟑 + 𝜷𝜷𝟏𝟏𝟏𝟏 𝜹𝜹 

6.11 
 

where: 

𝑻𝑻𝑻𝑻𝑨𝑨 = ln(TCDA) 

𝑺𝑺𝑰𝑰𝑺𝑺𝑰𝑰 = Square Root SR 

𝜸𝜸 = POPD  

ε = ln DOC 

δ = DUC 

𝝉𝝉 = Representing the quantile in question 

 

It can be seen from the model above that all the variables that have gone 

through separate assessments regarding %IR have been selected. However, 

the linear and nonlinear terms for each variable were selected based on the 

magnitude of their coefficients. This, and the consideration of variables from 

an engineering viewpoint results in the chosen variables. A good example of 

this is the variable ln(TCDA). It is known as a fact that the DCVG instrument 

was built for the purpose of identifying coating defects and to quantify their 

severity in terms of size. As such, the variable ln(TCDA) is crucial in 

examining its effect on the %IR signal. On top of this, we can see that the 

magnitude of the ln(TCDA) variable, linear or nonlinear, is substantial and 

makes it suitable for the combined model. Another example of choosing 

variables based on engineering judgement is the square SQRT(SR) and the 
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POPD. These two variables are important in the eyes of a researcher where 

excluding one would lead to a less meaningful model. The variable ln(DOC) 

is another important variable in determining the %IR reading. The concept of 

depth of pipe and how it relates to %IR readings is already mentioned in the 

previous sections. Thus, all the linear as well as the nonlinear terms of the 

ln(DOC) variable are included. However, if one observes the separate 

assessment of the ln(DOC) and %IR, it is found that the estimated 

coefficients confidence interval included the zero term. Although this is the 

case, the author believes that leaving out such an important variable in the 

combined model would lead to a model which is incomprehensive. As 

previously mentioned, the variable DUC is chosen due to the linkages it has 

with variables such as the POPD which could lead to the %IR signal being 

different. The combined model’s estimated coefficients are given below. 
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 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 1.78796 -0.37094 -1.4325 -2.06227 -3.9055 

𝜷𝜷𝟐𝟐 -1.1501 0.36574 1.01971 1.32537 2.29261 

𝜷𝜷𝟑𝟑 0.20895 -0.02844 -0.12883 -0.16524 -0.32022 

𝜷𝜷𝟒𝟒 -0.00954 0.00123 0.00564 0.0069 0.01396 

𝜷𝜷𝟎𝟎 -0.00412 -0.00615 -0.00455 -0.00406 -0.00219 

𝜷𝜷𝟔𝟔 -0.00919 0.00197 0.00237 0.00717 0.01062 

𝜷𝜷𝟑𝟑 -0.23256 2.09442 2.53372 4.23192 5.05638 

𝜷𝜷𝟖𝟖 -0.76513 -1.47309 -1.47657 -2.10135 -2.22377 

𝜷𝜷𝟕𝟕 0.13855 0.18969 0.18002 0.24347 0.24172 

𝜷𝜷𝟏𝟏𝟏𝟏 0.00092 -0.00348 -0.00362 -0.00483 -0.00164 

 
Table 6-7: Estimated LQR Coefficient Values for the Combined Model 

 
Based on Table 6-7, the most important variable, ln(TCDA), shows the 

coefficient values 𝛽𝛽2 with an increasing trend peaking at the 0.95 quantile. 

The maximum estimated coefficient value for ln(TCDA) is 2.293. Conversely, 

the minimum value occurs at the 0.05 quantile with a coefficient value of 

1.150. A closer look at all the coefficient values related to ln(TCDA), 𝛽𝛽2, 𝛽𝛽3 

and 𝛽𝛽4  reveals they have different characteristics. The 𝛽𝛽2 coefficient starts 

with a positive estimate with negative predictions all the way until the 0.95 

quantile. The trend is quite the opposite for the  𝛽𝛽3 coefficient estimates. For 

the 𝛽𝛽4 estimates, the trend is similar to that of 𝛽𝛽2. The different trends seem 

to suggest that the model is fluctuating. This can only be clarified by 

conducting a derivative on the %IR combined model to make sense of what 
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this actually means. This is clarified in greater detail in the discussion 

section.      

For the variable SQRT(SR), the maximum estimated coefficient value, 𝛽𝛽5, 

occurs at the 0.05 quantile at a value of 0.00412. As one scans across the 

quantiles, 𝛽𝛽5 estimated values decrease in magnitude. This can be 

interpreted as the effect of the SQRT(SR) on larger %IR being less negative 

than the lower %IR readings. Based on the increasing trend of  𝛽𝛽5, it can also 

be stipulated to mean the effect of the SQRT(SR) is larger (less negative) on 

larger %IR readings and lower (more negative) on lower %IR readings, 

despite the estimated values being negative across all the quantiles. As 

suggested in these findings, the effect of SQRT(SR) on %IR is supported by 

previous studies such as [64] but only as a trend. Based on this MEOC data 

set, the values of the coefficient 𝛽𝛽5 potrays a different outlook on a common 

engineering understanding (%IR is affected positively by increasing SR 

values). 

 

The variable POPD which is represented by the coefficient 𝛽𝛽6, shows an 

increasing trend of estimates along the quantiles. This seems to say that 

deeper pits have increasing effect on larger %IR readings compared to 

shallower pits which have a negative effect on lower %IR indication. The 

maximum estimated 𝛽𝛽6 is found at the 0.95 quantile with a value of 0.011. 

The lowest value (magnitude) obtained from the LQR analysis for the POPD 

variable 𝛽𝛽6, occurrs at the 0.25 quantile with a value of 0.002. Based on the 

estimated coefficient values across the quantiles, the variable POPD shows 

an increasing trend to contribute to %IR where deep corrosion pits affect 
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mostly higher readings of the %IR. Previously, it was thought that corrosion 

does not contribute to the %IR reading from a DCVG indirect assessment. 

However, the results presented here, and the results obtained in Chapter 4, 

suggested quite the opposite perception. It also highlights that POPD affects 

the %IR in a more complex manner than previously thought. This is because, 

during the initial separate assessment, non-linear terms were also included 

in the modelling which resulted in a trend which is quite the opposite to what 

was found here. After several other variables were combined with the POPD 

variable and non-linear terms were not considered, only then the resulting 

estimates portray a different picture. Therefore, the variable POPD reacts 

with other variables to give a positive increasing effect to %IR. However, the 

resulting coefficient for the POPD in the %IR combined model points to an 

effect which is minor. Further research is needed to verify this claim where a 

physical experiment and simulation are needed to prove the findings 

obtained in this thesis. 

 

For the variable, ln(DOC), the results obtained in Table 6-7 are similar to the 

ones obtained in the separate assessment of ln(DOC) and %IR. The trend of 

the estimated coefficient 𝛽𝛽7, is seen to increase. The highest estimated value 

is at the 0.95 quantile with a value of 5.056. The lowest estimated value of 

 𝛽𝛽7 is at the 0.05 quantile with a coefficient value of 0.233. As for the 

nonlinear terms related to the ln(DOC), the trend is opposite to the linear 

terms. The maximum estimated coefficient in terms of magnitude for  𝛽𝛽8 

occurred at the 0.95 quantile with a value of -2.223. The smallest estimated 

 𝛽𝛽8 occurred at the 0.05 quantile. As stated earlier, based on research by 



241 
 

[65], the depth of the buried pipe plays a huge role in the amount of obtained 

%IR signal coming from the cathodic protection (CP) system. If we were to 

take this into consideration, both the variable 𝛽𝛽7 and 𝛽𝛽8 should be considered 

together to obtain a more rounded picture on the effect of DOC on %IR 

signals. Analysing each variable separately leads to different conclusions. 

 

It is not known either in the industry understanding or in literature that DUC 

has an effect on the %IR readings. DUC can be the result of the 

accumulation of corrosion products from the corroding pipe underneath the 

coating. It can also include other foreign material such as soil which can also 

be corrosive depending on type and composition. Therefore, leaning towards 

to the findings for the POPD variable, an increase in corrosion (deeper pits) 

will produce more corrosion products and therefore an effect on the %IR 

indication. The effect is not direct but is thought to have some relation to the 

POPD variable. Further analysis is needed to verify this. However, if this 

thinking is correct, there is a degree of relationship between DUC and %IR. 

The highest predicted coefficient was found at the 0.75 (magnitude) quantile 

with a value of 0.00483. The trend of 𝛽𝛽10 show increasing negativity from the 

0.05 quantile up to the 0.75 quantile where it peaks and drops again at the 

0.95 quantile. The low values of the estimated coefficients show an effect 

which is marginal with regards to the %IR signal. A positive effect is 

observed at the 0.05 quantile with a  𝛽𝛽10 value of 0.00092. On this basis, we 

can say the effect of small amounts of DUC has a positive effect on the lower 

readings of %IR. However, after this quantile all the other estimated 

coefficients are negative which suggests that the amount of DUC has an 
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inverse effect on the %IR value. If more DUCs are present on a given pipe, 

the more negative the effect will be (except for a slight dip at the 0.95 

quantile) on higher values of the %IR.     

The quantiles of the estimated coefficients in Table 6-7 above are given 

below. 
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Figure 6-13: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏 

to 𝜷𝜷𝟏𝟏𝟏𝟏 (Combined Model for %IR) 
 

 

From Figure 6-13, generally it can be said that the estimated coefficients are 

significant with each of them only occasionally crossing the zero line. This is 

an exception for coefficients 𝛽𝛽7 to 𝛽𝛽9 which represents the ln(DOC), where 

across the quantiles, the term zero is included within the confidence band. 

The coefficient 𝛽𝛽6 is slightly better where only the estimated coefficients at 

the 0.25 and 0.5 quantiles do include zero within its confidence interval. As 

was previously stated, although this is the case, the variable remains as one 

of the more important variable where the exclusion of such variables for 

determining %IR would be incomplete.   

 

6.4 Logistic Quantile Regression on POPD  

 

POPD is described as the percentage of the depth of the pit over the pipe 

wall thickness. It is a measure of corrosion on the pipe where higher 

percentages equate to higher corrosion activity. Corrosion is one of the 

factors that affects a pipeline’s integrity. By controlling this phenomenon, the 

safe continual operation of the pipe is achieved. Therefore, the 
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understanding of its contributors in the context of the MEOC data is key to 

promoting safety. Since the POPD is represented by percentages, it too is a 

form of outcome which has pre-specified bounds. This makes it possible and 

ideal to model corrosion in terms of pit depth by using the LQR method. 

Again, the variables chosen for the model have to be justified from an 

engineering and scientific perspective based on established literature. Only 

continuous variables are chosen for assessment and the best ones are 

included in the final model. The flow of the assessment is similar to the 

previous section where initially the variables under consideration are set 

against POPD separately and finally combined to form a model which has 

the ability to predict the extent of pitting in terms of its depth. Logistic 

transformation of the POPD variable is given as follows. 

 

 𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫) = 𝐥𝐥𝐥𝐥 𝐥𝐥 �
𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫 + 𝞓𝞓

𝟏𝟏𝟏𝟏𝟏𝟏 − 𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫 + 𝞓𝞓
� 6.12 

 

 

where 𝛥𝛥 represents a small value, in our case 0.001 to ensure that all 

possible values of POPD are defined. 

 

6.4.1 TCDA vs POPD 

 

In the previous assessment, both the POPD and the TCDA are assessed 

separately to see each contribution to %IR. This time, however, TCDA is also 

assessed separately but with the dependent variable POPD. It is thought that 

TCDA has a substantial contribution to POPD. When coating breakdown on 
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a pipe occurs, the metal substrate is exposed to the environment. Although 

the cathodic protection system is there to protect the pipe from corroding, in 

the presence of a coating defect, the current supplied by the CP can 

sometime “wander” off to adjacent pipes. Other factors such as the SR, CP 

level output and the efficiency of ground beds (the anode in a CP system) 

can affect the level of current supplied to the pipe. Over time, coating will 

break down and the possibility of corrosion happening is high if the supplied 

CP current is insufficient. If the level of current supplied is insufficient and the 

potential of the pipe becomes less negative, then the pipe is susceptible to 

corrosion. The level of the pipe’s potential can be inspected by a method call 

the Close Interval Potential Survey (CIPS) which is similar to a DCVG 

survey, but the objective of the assessment is different. The CIPS data is not 

available for the MEOC dataset and the data in the form of the DCVG 

assessment will have to suffice for this assessment.  

 

Prior to the LQR modelling, the variable TCDA is transformed to be 

ln(TCDA). This is done to facilitate modelling where transformation will yield 

better relationship between the two variables. The figure below illustrates this 

relationship by means of a LQR. 
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Figure 6-14: LQR on ln(TCDA) vs POPD 
The LQR models in Figure 6-14 shows that the relationship between 

ln(TCDA) and POPD is not linear. Generally, it can be seen that the models 

are increasing to a peak before dropping back down again. If one were to 

disregard the quantile lines, a 100% POPD (punch through of the pipe wall) 

can be seen at around 59,000 cm2 of TCDA which seems to illustrate the 

rising value of POPD with respect to increasing values of TCDA. However, 

more data points are observed beyond this TCDA size which helps prevent 

the quantile line increasing. The LQR also captures the whole distribution of 

the POPD by plotting quantiles where an OLS would only measure the mean 

response, that in this particular case is quite low since the majority of the 

observation is low. The following LQR models corresponding to Figure 6-14 

and its estimated coefficient values are given as follows.  
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 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 6.13 
 

where 𝝉𝝉 is representing each quantile and ln(TCDA) is termed 𝑋𝑋.  

𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐 𝑻𝑻𝒍𝒍𝑳𝑳 𝜷𝜷𝟑𝟑 the estimated coefficients of the model represent the 

𝐿𝐿𝑖𝑖𝜏𝜏𝑇𝑇𝑟𝑟𝑐𝑐𝑇𝑇𝑝𝑝𝜏𝜏, ln(TCDA) and (ln(TCDA))2 respectively.  Below, are the estimated 

coefficient values for the LQR models. 

 

 

 

 

 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -11.708 -16.127 -18.163 -9.374 -4.772 

𝜷𝜷𝟐𝟐 0.061 1.606 3.337 1.812 1.198 

𝜷𝜷𝟑𝟑 -0.004 -0.096 -0.202 -0.106 -0.072 

 
Table 6-8: Estimated LQR Coefficient Values for ln(TCDA) vs POPD 

 

The estimated coefficient values in Table 6-8 show interesting results for the 

𝛽𝛽2 estimation. Starting at the 0.05 quantile, the value steadily rises until the 

median. After this, the trend starts to decrease all the way to the 0.95 

quantile. The maximum value estimated is at the median with a value of 

3.337. The lowest estimated coefficient is observed at the 0.05 quantile with 
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a value of 0.061. For the 𝛽𝛽3 coefficient, the negative estimated values across 

the quantiles complement the 𝛽𝛽2 coefficient which represents the downward 

slope seen in Figure 6-14. The trend highlights that ln(TCDA) has a 

maximum positive effect at the median depth of the pits. Pits that are deeper 

than this will have a lesser effect coming from larger ln(TCDA) sizes. The 

results here show that pitting depth is affected by the size of ln(TCDA) the 

most when the depth of the pit is at its median and also when ln(TCDA) is 

also at its median. The following quantile plots show the estimated coefficient 

values in Table 6-8 with regards to respective quantiles. 

 

 

 

Figure 6-15: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐 and 𝜷𝜷𝟑𝟑 (ln(TCDA)) 
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The quantile plots in Figure 6-15 shows many of the quantile confidence 

bands do not include the zero term. This is especially true for the intercept. 

As one can see from the figure above, the trend of 𝛽𝛽2 shows a peak at the 

median which suggests the effect of the size of the median ln(TCDA) on the 

depth of corrosion pits is greatest when the pit depth is at its median. 

 

6.4.2 SR vs POPD 

 

The variable SR plays an important role in facilitating corrosion of buried 

pipes. This is supported by works from [57], [87], [101] which state that 

higher SR will slow the corrosion process. Higher SR has higher electrical 

resistivity. Since corrosion currents are needed for the corrosion process to 

happen, higher resistance to the flow of these current will slow the corrosion 

process. A table developed by [82] has classified the ranges of SR and 

related it to a range of aggressiveness for the corrosion process. Previous 

studies have also identified that SR is a major factor in determining corrosion 

[102]. A CP system’s performance can also be affected by the SR. If highly 

resistant soil surrounds the pipe, the intended CP current supplied to halt 

corrosion is blocked thus leaving the pipe vulnerable.  

 

The LQR for POPD with respect to SR was conducted to investigate the 

relationship between the two variables and to see whether it corroborates the 

statements made above. A transformation of SR into the square root for SR 

(SQRT(SR)) was done to facilitate modelling. The following models are 

illustrated below. 
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Figure 6-16: LQR on SQRT(SR) vs POPD 
  

The general trend of the models found in Figure 6-16 indicate a decreasing 

trend. For the median quantile and below, a straight line is observed due to 

the large amount of “no corrosion” present on the pipes at the selected 

excavation sites. These quantiles are also bounded by the logit transform of 

the POPD. Without any transform (e.g. logistic), these models, representing 

the median and below, would have portions below the zero percent line due 

to nonlinearity nature of the models. The 0.75 and especially the 0.95 

quantiles do seem to support the statements made above (decreasing trend). 

The logit transformation of the POPD and its corresponding model are given 

as follows.  
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 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.14 
 

𝑋𝑋 represents the variable in question SQRT(SR) while 𝛽𝛽1 is the model’s 

intercept and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 are the model’s estimated coefficients. The 

following table gives the estimated coefficients for the model. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -11.432 -8.982 -3.118 -1.058 1.021 

𝜷𝜷𝟐𝟐 -0.002 -0.059 -0.134 -0.070 -0.098 

𝜷𝜷𝟑𝟑 0.000 0.001 0.002 0.001 0.002 

𝜷𝜷𝟒𝟒 0.000 0.000 0.000 0.000 0.000 

 
Table 6-9: Estimated LQR Coefficient Values for Square Root SR vs 

POPD 
 

Estimated coefficient values given in Table 6-9 for 𝛽𝛽2 show gradual negativity 

with maximum (magnitude) occurring at the 0.5 quantile at an estimated 

value of -0.134. At the lowest quantile (0.05) of the 𝛽𝛽2 coefficient, the 

estimated coefficient value is -0.002. The remaining 𝛽𝛽3 and 𝛽𝛽4 are observed 

to be zero or close to zero which is represented clearly in Figure 6-16. The 

trend across the quantile illustrates that the SR’s effect on POPD is largest 

(in terms of magnitude) at the median pit depth compared to shallower pits. 

The effect is also negative in character which means that higher SQRT(SR) 

levels have the most negative effect on the median depth of pits. It is 
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therefore summarised that SQRT(SR) negatively affects the POPD most at 

its median. Higher SQRT(SR) values will lead to slower corrosion and this 

effect is greatest when the pit depth is at its median. The following are the 

quantile plots of the estimated coefficient values from Table 6-9. 

 

 

 

Figure 6-17: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏 

and 𝜷𝜷𝟐𝟐 (SQRT SR) 
 

In Figure 6-17 most of the estimated coefficient values for 𝛽𝛽2 are significant, 

with the exception of the estimated value at the 0.05 quantile where the zero 

term is captured within the confidence band. The trend of 𝛽𝛽2 echoes the 

statements made previously where the upper quantiles of a POPD (median 

to 0.95) shows the biggest negative effect coming from the SQRT(SR) factor. 

Figure 6-17 further clarifies this by illustrating the negative effect of 

SQRT(SR) on corrosion.  
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6.4.3 DUC vs POPD 

 

The DUC variable is thought of as the result of the corrosion process where 

the corrosion products are accumulated underneath the coating. If this is the 

case, then a positive relationship should occur between the two variables. 

DUC can also be made up of foreign materials coming from the surrounding 

environment such as sand and stones. For this assessment the variable 

DUC was not transformed as the data is sufficient (in terms of trend) for 

modelling. The DUC variable through its estimated coefficients will later be 

judged for its inclusion in the final POPD combined model, based on 

magnitude and engineering relevance. The constructed models for DUC and 

POPD are given below. 
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Figure 6-18: LQR on DUC vs POPD 
 

Figure 6-18 points to an increasing trend between DUC and POPD. It can be 

seen that as DUC increases, the variable POPD also increases. This 

somewhat supports the idea that the two variables are indeed connected. 

The relationship observed is nonlinear where the higher quantiles show a 

steeper slope compared to other quantiles. It can also be observed that for 

quantiles 0.05 and 0.25 the models look flat. This is mainly due to no 

corrosion activity occurring at the selected site of excavation. Interestingly, 

there are cases where no corrosion is found at higher values of DUC. This as 

earlier stated is due to foreign material getting stuck and accumulating 

underneath the coating (not corrosion products). The models in Figure 6-18 

also illustrate the superiority of the LQR method where it restricts the bounds 
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between 0 and 100 and also characterises the whole of the POPD 

distribution with respect to every increasing DUC value. The following is the 

logit-transformed POPD variable after which is presented a table that 

highlights the estimated coefficients for the LQR models in Figure 6-18. 

 

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫)(𝝉𝝉) = 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑿𝑿 + 𝜷𝜷𝟑𝟑 𝑿𝑿𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑿𝑿𝟑𝟑 6.15 
 

The 𝜏𝜏 term above represents the quantile in question and 𝑋𝑋 represents the 

variable DUC while 𝛽𝛽1 is the model’s intercept and 𝛽𝛽2,𝛽𝛽3 and 𝛽𝛽4 are the 

model’s estimated coefficients DUC, (DUC)2 and (DUC)3.  

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -11.503 -11.135 -8.917 -3.937 -1.505 

𝜷𝜷𝟐𝟐 0.001 0.036 0.169 0.101 0.019 

𝜷𝜷𝟑𝟑 0.000 0.000 -0.002 -0.002 0.000 

𝜷𝜷𝟒𝟒 0.000 0.000 0.000 0.000 0.000 

 
Table 6-10: Estimated LQR Coefficient Values for DUC vs POPD 

 

Table 6-10 shows the estimated coefficient 𝛽𝛽2 (DUC) with an increasing 

trend as one scans through the quantiles and decreasing down to 0.019 at 

the 0.95 quantile. The highest estimated value is at the 0.5 quantile whereas 

the lowest estimated value is at the 0.05 quantile. Based on Table 6-10, the 

DUC has the largest effect on the median pit depth where its effect is lowest 
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for shallower pits. The figure given below is the quantile plots illustrating the 

estimated coefficients found in Table 6-10. 

 

 

 

Figure 6-19: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏, 

𝜷𝜷𝟐𝟐, 𝜷𝜷𝟑𝟑 and 𝜷𝜷𝟒𝟒 and 𝜷𝜷𝟐𝟐 (DUC) 
 

Similar to the results obtained in the previous assessment, all the estimated 

values across the quantiles for 𝛽𝛽2 are significant except for the estimated 

value at the 0.05 quantile. The trend portrayed here says a lot in terms of the 

linear part of the LQR models where the effect of the DUC on POPD is 

strongest at its median depth. Based on this result, it seems that the DUC 
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does have an effect on POPD which parallels the theory that some of the 

DUCs are the result of corrosion products trapped underneath the pipeline 

coating.  

6.4.4 Combined Model for POPD 

 

A model which combines all the variables under consideration is developed 

for the purpose of predicting the extent of corrosion through the depth of 

pitting. The criteria for the selection of such variables remains the same as 

the previous combined model for %IR. Engineering and scientific 

justifications are needed for selection with the additional consideration of 

statistical outcomes. The magnitude of each variable is observed and the 

ones having an effect on POPD is chosen. All other variables which have no 

effect on the response variable are discarded. The following is the LQR 

model developed based on the selected variables. 

   

 𝑸𝑸𝑻𝑻𝑻𝑻𝒂𝒂𝑺𝑺𝑻𝑻(𝑷𝑷𝑶𝑶𝑷𝑷𝑫𝑫)(𝝉𝝉)

= 𝜷𝜷𝟏𝟏 + 𝜷𝜷𝟐𝟐 𝑻𝑻𝑻𝑻𝑨𝑨 + 𝜷𝜷𝟑𝟑 𝑻𝑻𝑻𝑻𝑨𝑨𝟐𝟐 + 𝜷𝜷𝟒𝟒 𝑺𝑺𝑰𝑰𝑺𝑺𝑰𝑰 + 𝜷𝜷𝟎𝟎𝑺𝑺𝑰𝑰𝑺𝑺𝑰𝑰𝟐𝟐 + 𝜷𝜷𝟔𝟔𝜹𝜹

+ 𝜷𝜷𝟑𝟑𝜹𝜹𝟐𝟐 

6.16 
 

 

where: 

𝑻𝑻𝑻𝑻𝑨𝑨 = ln(TCDA) 

𝑺𝑺𝑰𝑰𝑺𝑺𝑰𝑰 = Square Root SR 

𝜹𝜹 = DUC 

𝝉𝝉 = Representing the quantile in question 
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From an engineering standpoint, all the variables considered should be 

selected for the combined model since all of them influence the formation of 

corrosion either directly or indirectly. However, only certain nonlinear terms 

were considered for selection. No cubic terms from the separate 

assessments are included due to the majority of the estimated coefficients 

being zero or close to zero.  

 

The variables ln(TCDA) and SQRT(SR) are considered important factors in 

facilitating corrosion. In the presence of a good coating system where the 

coating isolates the metal substrate from the environment, corrosion is 

expected to be zero. Modern coating such as the 3-layered system which 

includes fusion bonded epoxy (FBE) will maintain the pipe from corroding if 

the application of the coating is done correctly. This newer coating system is 

not found in the MEOC data. However, if the coating does break down and 

the level of CP current applied to the pipe is insufficient, then corrosion is 

expected. The size of these coating failures does have an effect on the depth 

of the pitting. This is observed in Chapter 5 (although the analysis conducted 

there is the effect of POPD on TCDA) where the disparity between the rate of 

pitting and coating defect growth occurs at the median region. No effect of 

POPD (towards TCDA) is seen within this area. SR has the effect of 

influencing corrosion by restricting or allowing the flow of corrosion currents. 

This combined with the TCDA variable will yield different results based on 

the different mix of the two variables. For example, a situation where a large 
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coating defect is present does not guarantee corrosion if the pipe is 

surrounded by resistant soil (other factors will also contribute to this equation 

e.g.  the CP current being applied to the pipe – this data is not provided in 

the MEOC data set). The DUC however, is thought to be the by-product of 

corrosion and other foreign material which does not contribute to corrosion 

directly. The estimated coefficients for the model above are given in the 

following table. 

 

 Quantiles 

 0.05 0.25 0.5 0.75 0.95 

𝜷𝜷𝟏𝟏 -11.757 -16.247 -18.961 -10.587 -3.032 

𝜷𝜷𝟐𝟐 0.074 1.487 2.731 1.627 0.264 

𝜷𝜷𝟑𝟑 -0.004 -0.084 -0.159 -0.093 -0.013 

𝜷𝜷𝟒𝟒 -0.002 -0.027 -0.004 0.015 0.012 

𝜷𝜷𝟎𝟎 0.000 0.000 0.000 0.000 0.000 

𝜷𝜷𝟔𝟔 0.001 0.025 0.095 0.041 0.013 

𝜷𝜷𝟑𝟑 0.000 0.000 0.000 0.000 0.000 

 
Table 6-11: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏 

to 𝜷𝜷𝟑𝟑 (Combined Model for POPD) 

 

In Table 6-11, most of the estimated coefficients for the nonlinear terms in 

the model are found to be zero with the exception of the (ln(TCDA))2 

variable. The estimated coefficients for ln(TCDA) across the quantile are 

found to peak at the median where its effect is greatest. The estimated 

coefficient value at this quantile is 2.731. The lowest estimated value for 

ln(TCDA) occurs at the 0.05 quantile with a value of 0.074. The nonlinear 
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term of the ln(TCDA) variable, 𝛽𝛽3 also shows similar trend albeit with a 

negative effect. 

For the variable SQRT(SR), the trend of the estimated coefficient for the 

linear part of the model is not straightforward. The maximum estimated 

coefficient value in terms of its magnitude is at the 0.25 quantile with an 

estimated value of 0.027.  

 

Across the quantiles for the variable DUC, it is observed that the trend is 

similar to the ln(TCDA) variable where the highest estimated coefficient value 

occurs at the median. The value is recorded to be 0.095. The minimum 

captured value is at the 0.05 quantile with a coefficient value of 0.001. Below 

are the quantile plots for the estimated coefficient value based on the 

findings in Table 6-11. 
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Figure 6-20: Estimated Coefficients across the Quantiles by LQR for 𝜷𝜷𝟏𝟏 

to 𝜷𝜷𝟔𝟔 (Combined Model for POPD) 
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The confidence band of each estimated coefficient value for the combined 

model for POPD is highlighted in Figure 6-20. Most of the estimated 

coefficient values and the associated confidence interval do not contain the 

zero term. However, for the variable SQRT(SR) almost all the estimated 

values for each of the quantiles do contain the zero term within its confidence 

interval. As for the variable ln(TCDA) and DUC only the estimated 

coefficients predicted at the 0.05 and 0.95 quantiles are insignificant. 

Furthermore, these two variables exhibit a similar trend of the estimated 

coefficients. Both of the estimations peak at the median which can mean the 

greatest effect by the ln(TCDA) variable and the DUC variable occurs at the 

median pit depth. Before and after this peak, the effect is not as strong. This 

can be explained by the fact that the median pit depth is where the corrosion 

is most critical. At the start of the corrosion process, the size of the ln(TCDA) 

is not a major factor for corrosion to initiate. Corrosion does not rely on the 

size of the defect for it to happen but rather the chemistry that reacts within a 

corrosion cell. This can be seen in the lower estimated coefficient values for 

ln(TCDA) at the shallower pits (lower quantiles). For larger ln(TCDA) where 

more metal substrate is exposed to the environment, its effect is not strong 

for deeper pits. Once a corrosion pit reaches this stage, the influence of large 

sized coating defects is small due to the pit growth being independent from it. 

This can also be seen at the higher quantiles of the POPD where estimated 

coefficients for ln(TCDA) are relatively low. The coating defect has most 

influence at the median depth suggesting that beyond this point, the 

influence of coating defect size towards pit depth diminishes. Additionally, in 

Chapter 4, Figure 4-2, it can be seen that clusters of data points are 



263 
 

observed to be below the mid-way point (the median of TCDA is lower than 

this value) of TCDA. A through-wall pit is also observed within the proximity 

of the median sized TCDA. What this means is that most of the deeper pits 

occur at smaller to medium sized TCDA. This finding leads the Author to 

speculate that at some point in time, the growth of TCDA has slowed down 

(when compared to POPD) or stopped completely whereas pitting continues 

to grow at a much faster rate leading to the existence of deeper pits 

occurring at smaller to medium sized TCDA.  

 

6.5 Discussion 

 

The analysis started with the usage of a logistic regression for the 

determination of the probability of excavation based on the %IR readings. 

The reason for this exercise is to obtain a guideline for pipeline operators 

which can be used as an additional indicator for the decision-making process 

of where to excavate. It is discussed thoroughly in previous chapters that 

determining the location of excavation sites is a challenge since the 

indications available to the assessor are not totally reliable. For the analysis, 

two new variables were generated based on the Author’s categorisation of 

justified and unjustified excavations where it takes a binary form. These 

variables are not fixed and can later be varied depending on the level of 

conservatism that a particular project requires. The analysis shows that the 

number of unjustified excavations for the MEOC project according to the 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 variable is quite substantial. This illustrates the unreliability of the 

current method as practised by the pipeline industry. The major part of the 
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method requires expert engineering judgment which can be erroneous if not 

properly applied. The application of this model should be treated with care. 

Since the models were constructed with the MEOC dataset, the Author is 

inclined to suggest the models are only to be applied to the MEOC pipelines. 

To make it applicable to other pipelines, new ECDA data from other 

assessment projects is needed to combine it with the data we have here to 

make the model more generalised.  

 

Following the logistic regression, the LQR was conducted by taking the %IR 

as the dependent variable. The %IR is a suitable candidate for LQR since 

the boundary is fixed at 0 to 100%. Additionally, %IR serves as the first 

indicator that an inspector would obtain from the DCVG assessment. By 

having a practical model, within the specified range, an inspector could use 

the model as a supplementary guideline to interpret what the measurements 

of a DCVG indication are signalling. Thus, a more reliable decision-making 

process for further assessments is enabled.  

 

In Chapter 5, attempts were made to model the relationship of various 

variables with %IR by using Bayesian quantile regression to estimate the 

coefficient values of each variable. Four models were generated based on 

the Oriset and the Filtset data where the latter had 4 outliers removed from 

the dataset. The approach also considered the relationship between the 

TCDA and the %IR to be linear. The resulting models after the refinement 

and the omission of the outliers produce good predictions of %IR based on 

the TCDA values. Model 2a highlighted models which are acceptable based 
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on industry common understanding regarding the DCVG technique. 

However, due to the linear approach taken in that model, predictions outside 

of the %IR boundaries were observed. The work in this Chapter aims at 

resolving this by the usage of the LQR to ensure the predicted values are 

within the specified bounds. The determination of the variables for the 

combined model of the %IR is selected differently from Chapter 5. Each 

variable is scrutinized and was set against the %IR separately to see each 

underlying relationship. Based on the coefficient’s magnitude and the 

variable’s relevance to the dependent variable, independent variables are 

chosen for the inclusion within the final combined model. Additionally, 

categorical variables which are subjective in nature are not included in the 

final model to avoid any subjectivity.   

 

The ln(TCDA) variable shows an increasing effect across the quantiles with 

respect to %IR. This echoes well with current industry understanding of the 

DCVG principle. To gain access to the full extent of TCDA’s effect on %IR, a 

plot of TCDA vs %IR based on the combined %IR model is given as follows. 

The resulting models in Figure 6-21 are the derivation of %IR with respect to 

TCDA and treating all other variables in the model as constants. 
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Figure 6-21: TCDA vs %IR for the %IR Combined Model 

 

It can be seen in Figure 6-21 that the predicted %IR values based on the 

TCDA are well within the %IR bounds. Since Figure 6-21 uses the original 

dataset, TCDA sizes of below 17,800 cm2 see an unusual trend which can 

be stipulated as the effect of the inconsistencies highlighted in Chapter 5 

(presence of higher TCDAs at lower readings of %IR). This portion of the 

dataset was removed in the Filtset data for the analyses of Models 2 and 2a 

in Chapter 5. Above this size, a stable trend emerges where the highest 

predicted %IR value occurs at the 0.95 quantile. From an engineering 

perspective, this is satisfactory. The median quantile shows a somewhat 

surprising trend where the predicted values of %IR are higher than the 0.75 

quantile. However, when considering Models 1 and 1a (using original 

dataset) in Chapter 5, a similar trend emerges where the median %IR is 
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shown to have the most effect from the TCDA. Due to the non-linear 

approach (through modelling and the logistic transform) taken in this 

Chapter, the resulting estimation of %IR in Figure 6-21 shows small 

differences between the quantiles (compared to Models 1 and 1a in Chapter 

5) where the 0.95 quantile of the %IR received the greatest effect from the 

TCDA. The 0.25 quantile in Figure 6-21 also shows a flat response indicating 

marginal effects are taking place between the TCDA and %IR. This is similar 

to the flat response we observed in Models 1 and 1a in Chapter 5. At the 

0.05 quantile, there seems to be a downward trend where increasing TCDA 

results in a decreasing %IR reading. This is also similar to the downward 

trend of the 0.05 quantile for Model 1a of Chapter 5. This might be due to the 

“inconsistencies” found in Chapter 5 where higher TCDAs are related to 

lower %IR readings and vice versa. Overall, the trend predictions made here 

are similar to the ones obtained in Chapter 5 (for Models 1 and 1a) due to 

the same dataset being used for the analyses. Based on these models, the 

general application to other pipelines are rather limited due to the 

observations of the models being too dependent on the “noise” within the 

original data set. As was stated earlier Model 2a (Chapter 5) appeals to a 

more general application where the “noise” was removed for more general 

prediction applicability. It is advisable to keep in mind that this “noise” can be 

the result of a unique situation of the environment which is not encountered 

elsewhere. Unique situations can include the presence of stray currents 

constantly provided by adjacent CP systems or the nature of the surrounding 

soils which yields the %IR reading in a certain way. Thus, if one were to 

conduct assessments based on the same MEOC pipelines in future 
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iterations, the models generated in this Chapter would be sufficient for the 

prediction of %IR based on the TCDA. The 0.95 quantile seems to be the 

best candidate for %IR prediction while quantiles 0.25 and below indicates a 

less confident approximation (based on downward trend). This may be due 

to external environmental forces at play where it influences the outcome of 

the model.  As was stated before, application to other pipelines is not 

recommended due to the “uniqueness” of the MEOC pipelines and its 

environment (dataset).   

 

Recent literature, notably [64], stated that other factors such as the SR, has 

a positive influence on %IR signal. However, the results shown in the work 

presented here seems to suggest otherwise. The trend of the estimated 

SQRT(SR) coefficient does show an increase as one scans across the 

quantiles with all the estimated values being negative. This can generally be 

viewed as the effect of SQRT(SR) on %IR being negative. The apparent 

contradiction is probably due to the different approach taken for each study. 

In Chapter 5, similar trends can be seen where highly resistant soil gives a 

negative effect on the %IR. However, the negative trend observed in that 

model is complemented by another soil variable (also highly resistant) which 

shows an opposite trend. Since the model constructed here does not 

consider categorical variables, it is assumed that if there were a variable of 

that sort, the same scenario would also apply for this model. Furthermore, 

the work done here uses datasets that comes from real life projects and 

employs the LQR method for the construction of the models whereas the 
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work conducted by McKinney relies on simulations of data and is based on 

the Finite Element Method.     

 

An interesting finding was the effect of variable POPD on %IR. The results 

obtained seem to suggest that corrosion has a positive effect on the %IR 

signal. This idea was initially suspected in Chapter 4 where corrosion 

variables such as the total corrosion area and volume demonstrated a 

marginal correlation with %IR. In the LQR analysis, the trend across the 

quantiles for the combined %IR model, shows increments of the estimated 

coefficients which points to a positive effect. However, if one looks at the 

quantile plot for the POPD coefficient, only the median and higher quantiles 

illustrate statistical significance. Nevertheless, the remaining significant 

estimates show increasing trends which supports our initial assumption that 

corrosion has a positive effect on the %IR signal.  

 

The variable DOC generally shows a negative effect on %IR. The linear part 

of the constructed combined %IR model shows a positive trend in terms of 

the estimated coefficients. From this, it is suggested that the pipe depth has 

an increasing effect on %IR. However, after observing the LQR models, the 

non-linear quadratic terms show negative effects on %IR. For clarification of 

the variable’s opposing trend, a derivation of %IR with respect to the DOC 

was carried out. This is illustrated in Figure 6-22 below. 
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Figure 6-22: DOC vs %IR for the %IR Combined Model 

 

Taking both observations together, it can be summarised that generally, the 

relationship between DOC and %IR is negative which suggests that 

increasing pipe depth will result in a weaker %IR signal only up to a depth of 

approximately 20 cm.  The finding before this point is corroborated by papers 

such as [65] and also the industry’s understanding of the system. It can be 

said that the models are only applicable up to this depth. If one were to go 

beyond this point, the effect of the DOC is reversed where deeper depths will 

give higher readings of %IR. As discussed earlier this trend is unexpected. 

One possible explanation can be directed towards the interference of stray 

currents. At deeper depths, the interference is more pronounced since the 

soils are much more compacted making it less resistant to current flow. As 

such, the deeper a pipe is, the more vulnerable it is to interference. Another 
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possible reason for this is the attachment of steel rods (for previous sacrificial 

anodes) which give off current from the CP system. The currents that leave 

through the steel rod(s) can interfere with the equipotential lines generated 

by the defect. At shallower depths, the influence of the rod is less apparent 

due to the lower exposed area of the metal with the surrounding soil. 

 

Corrosion in the form of the POPD variable was also considered as the 

dependent variable for the LQR method. This is due to its values which are 

bounded by 0 to 100%. The models generated from this analysis can be of 

use when an assessor is trying to predict the amount of corrosion based on 

data available such as the coating defect area, SR and the amount of 

deposits found underneath the coating. The predicted corrosion based on the 

coating defect size is given in Figure 6-23 below by deriving the POPD 

combined model with respect to ln(TCDA). The ln(TCDA) was converted 

back to its original form prior to the derivation. 
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Figure 6-23: TCDA vs POPD for the POPD Combined Model 

 

It is shown that the size of TCDA has the strongest effect on corrosion when 

the pits depths are at their median. (This is illustrated in Figure 6-23). The 

median quantile of the POPD shows that it is affected more by TCDA than 

any other quantiles. Other extreme quantiles such as the 0.05 and the 0.95 

quantiles show little effect coming from the TCDA on the shallowest or the 

deepest of corrosion pits. The start and end (close to punch through) of the 

pitting process require lesser effect from the size of TCDA to grow. The most 

important phase of the life of pits is when the depth is at its median as this is 

the start of when the rate of corrosion is higher than the rate of growth for the 

TCDA. It is therefore suggested that repairs on coating defects should be 

made before it reaches this stage where the corrosion process is most 

critical. Therefore, by repairing coating defects before it reaches its median 
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size will have the benefit of promoting the pipe’s integrity. However, this 

recommendation is only applicable to the MEOC data since the median 

coating defect size is already known. To generalise the model further, more 

data from other ECDA projects are needed. It is tempting to say that the 

median depth is synonymous to the pipe wall’s half-thickness, but this is not 

always the case.  

 

It can be seen that the SR factor does contribute to corrosion (POPD) but in 

a negative way. The extent of the truth of this statement can be 

demonstrated by the derivation of the POPD combined model with respect to 

SR. The resulting models are given as follows. 

 

 

 
Figure 6-24: SR vs POPD for the POPD Combined Model 
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It was long thought that SR is an indicator of corrosion (see [57], [87], [101], 

[102]). Based on the models generated in Figure 6-24, this is only partly true. 

The upper quantiles of the POPD (0.5 and above) show a decreasing trend 

which is supported by the literature. However, for shallower depths of the 

POPD, low SR levels effects corrosion in a reversed manner where 

increasing SR results in corrosion. The reason for this reverse phenomenon 

can be explained by the shielding effect of the soil itself. From the trend 

above, it can be said that increased SR affects the corrosion of shallower pits 

by preventing the CP current from reaching the metal substrate. Therefore, 

corrosion activity is promoted. At greater pit depths (after the initial phase of 

shielding) the corrosion is most active (based on the previous assessment on 

TCDA) and will need the soil to facilitate the process of corrosion by 

transferring currents in and out of the corrosion cell. At shallower depths 

(initial corrosion) the transfers of such corrosion currents are less thus 

negating the strong SR effect. The parallel in the findings from literature with 

regard to the upper quantiles of the POPD suggest that the constructed 

model is sufficient for use in future corrosion assessments of the MEOC 

pipelines.  

 

The results of the analysis on DUC however, illustrate that its amount 

depends on the corrosion activity. To see this more clearly, the derivation of 

the POPD combined model was based on the DUC. The following Figure 

6-25 illustrates this relationship. 
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Figure 6-25: DUC vs POPD for the POPD Combined Model 
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material. The relationship between the two variables is thus not proportional. 

Since this is the case, higher DUC does not translate into a direct amount of 

POPD hence the lesser effect being observed. At lower POPD represented 

by the lower quantiles (0.05 and 0.25) it is suggested that the composition of 

the DUC is mostly the product of the resulting corrosion. Since the POPD is 

shallower and the amount of DUC is also less, the effect of the DUC on the 

POPD is also less. Another possible explanation is in the initial phase of a 

corrosion pit where the corrosion products tend to accumulate within the pits 

themselves and not spread out underneath the coating. If this is the case, 

very little DUC is present and will have very small effect on the POPD. The 

almost flat line for the 0.05 quantile in Figure 6-25 illustrates this by 

highlighting very small effect of DUC on POPD.     

 

LQR has provided a meaningful method in the inference of the bounded 

dependent variable’s distribution with respect to each independent variable. 

In the case of the MEOC data, bounded outcomes such as %IR and POPD 

were inferred practically as the method ensures the interpretation is within a 

specified boundary. On top of the logistical transformation of the dependent 

variable, LQR employs the quantile regression method where it characterizes 

the dependent variable’s distribution much more thoroughly than the 

traditional central tendency methods where typically the mean or median are 

used for inference.  
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Chapter 7 

 

Conclusion and Future Work 

 

 

Based on the MEOC ECDA project, the reliance on the DCVG technique 

alone to identify coating defects and quantify severity seems to be 

insufficient. The significant level of subjectivity that is applied to the 

determination of excavation sites is rather misleading. This is illustrated by 

the number of unjustified excavations resulting in finding no coating defects 

within the bell hole. To add to this uncertainty, the so called “undiscovered” 

defects which might or might not be present elsewhere on the pipe are also a 

prime concern since the current method for interpreting DCVG data lacks 

accuracy. The work presented in this thesis sets out to improve these 

deficiencies by developing statistical models which improve interpretation of 
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the ECDA process. Two properties of a pipeline which require attention in 

terms of repairs and ensuring the safe continual operation of the pipe are the 

coating defect size, TCDA, and the corrosion that the pipe is currently 

undergoing, represented by the variable POPD. These two variables are the 

prime indicator as to which this thesis focuses on.  

 

The relationship established between %IR and the coating defect size 

(TCDA) showed low linear correlation values signalling a relationship which 

is complex. A nonlinearity approach was taken to address this, and a novel 

technique was used to investigate the range of defects across the coating 

size spectrum. Two models were constructed in the form of the Non-

Interaction model and an Interaction model which included interaction 

variables as part of the model structure. The results found that the interaction 

variables play an important role in the prediction of the size of coating 

defects. The interaction model produces predictions which mimic the 

boundary of the range of the size of coating defects within the MEOC data, 

whereas the Non-Interaction model predicts lower values. The lower 

quantiles in both models indicate a relationship which is less apparent due to 

the large number of zero or close to zero TCDA sizes appearing across the 

range of %IR. Relying on these quantiles for TCDA approximation should be 

conducted with caution. The inverse parabola, and the negative estimates of 

TCDAs found, further supports the idea that smaller defect area gives a poor 

representation of %IR. For the larger defect areas, the approach taken in this 

thesis seems to be sufficient. This can be summarised as the interaction 

model seems to “follow” more from the MEOC data which can lead to 



279 
 

overfitting as opposed to the Non-Interaction variable which seems more 

generalised.  

 

To account for the possible overfitting of the interaction model, the LASSO 

regression technique was applied to each quantile of the Non-Interaction and 

Interaction models. Some of the coefficients were shrunk to zero with the aim 

of generalising the models which makes variable selection faster and easier. 

The results suggest a more interpretable model with accuracy being 

maintained. Based on the findings, it is safe to suggest that if one were to 

apply these models to other pipelines (which is not part of MEOC) then the 

Non-Interaction model (R) is more suited. As in the case of subsequent 

ECDA assessments on the MEOC pipelines, the Interaction model (R) is 

more suitable since it “follows” the structure of the MEOC dataset. 

 

A Bayesian approach to QR was used to predict the size of TCDA and also 

investigate the factors that may contribute to the %IR readings. Bayesian 

techniques allow an assessor to quantify the full spectrum of uncertainty in 

the prediction of parameters. In certain countries, the law dictates that an 

ECDA should be performed on a periodic schedule to ensure the safe 

continual operation of the pipeline. The NACE SP0502-2010 [97] highlights 

the importance of periodic assessments where “through successive 

applications of the ECDA method, an operator will be able to identify and 

address locations of corrosion activity which has occurred, is occurring and 

at locations where there is a potential to occur”. This makes the ECDA a 

continuous updating process. The Bayesian principle fits this very well since 
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initial assessments from this thesis can be used for future iterations of the 

ECDA. The main objective from this initial assessment is thus to produce 

data in the form of a prior distribution which can be used for future ECDA 

assessments of the buried pipelines. Models were constructed based on the 

linear approach and refinements made in the form of reducing variables 

within the models. To compensate the low linear correlation value obtained 

between %IR and TCDA, 4 outliers were taken out to facilitate the 

relationship. Additionally, an uninformative prior was used to reduce the level 

of subjectivity applied to the model. According to the results, Model 4 

produces the best estimates of TCDA based on increasing %IR. Model 4 

uses both the “filtset” data and also the refinement method mentioned earlier. 

As before, the interpretation based on the %IR of smaller defects should be 

treated with care due to large numbers of zero readings present at lower 

quantiles. For the prediction of %IR based on the TCDA (and other 

variables), Model 2a showed the best prediction aligned with current industry 

understanding. Model 2a also uses the “filtset” data and the refinement 

technique. In summary, it can be said that for a linear approach to the 

modelling of the MEOC data to be successful, careful judgement of outliers is 

critical and that also the refinement method where only meaningful variables 

are included in the model is needed. Since the models were built by the 

filtset data, it is recommended that these models are applicable for future 

assessments of the MEOC pipelines. For the comparisons between QR and 

BQR, the estimated coefficients by both approaches were quite similar. This 

is due to the uninformative prior used in the construction of the model, and 
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since the main objective of the research was done to produce a prior 

knowledge for subsequent inspection, this is not of a concern.  

The investigation of the contributing variables to %IR continued with the LQR 

method. The LQR method is attractive for the investigation of %IR since it 

limits the interpretation of the dependent variable to within a defined range. 

Unlike Model 2a from the Bayesian approach, the interpretation of %IR is 

between 0 to 100. To keep the level of subjectivity low, only continuous 

variable were used and based on the results obtained from the Bayesian 

method, only relevant variables were chosen for the construction of the 

models. The resulting model reveals a pattern similar to those produced 

using the Bayesian method (Models 1 and 1a) because the same dataset 

was used (not “filtset” data). Model 1a (Figure 5-13) in the BQR method 

showed trends similar to those found in the LQR method with differences in 

the linearity and the range of %IR predicted. The differences can be 

attributed to the different linearity approach, the variables used within each 

model and the constraining effect of the LQR method. Nevertheless, the 

consistency in the trends between this approach and the BQR, shows that 

the model is applicable for the assessment of %IR in future ECDA projects. 

However, the model’s applicability is recommended only for the MEOC 

pipelines since it is heavily influenced by the data’s structure (similar to 

Model 1a). The general application of these models to other pipelines is 

possible but should be treated with care.   

 

After considering all the models produced to predict TCDA, it is concluded 

that the Bayesian approach of prediction is the more attractive method for 
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future assessments of coating defects. This is due to Model 4 being concise 

with the added benefit of generating useful information (in the form of a prior 

distribution) for the next subsequent assessment of MEOC pipelines. Other 

methods lack this advantage. Moreover, the credible intervals produced are 

much narrower giving the assessor more confidence in the predicted values. 

For the prediction of %IR, it is concluded that the Bayesian approach (Model 

2a) is the more practical for the next subsequent ECDA on the MEOC 

pipelines. The reason for this echo the previous conclusion, i.e. the model’s 

simplicity and the incorporation of the current model for future assessments. 

However, the 0.05 quantile of Model 2a showed negative estimates which 

are better approximated with the LQR method. Both Models 4 and 2a have 

the added advantage of using the “filtset” data and hence the resulting 

models are more general in that they do not incorporate some of the “noises” 

present in the dataset. Undoubtedly, the “filtset” data still maintains the trait 

of the MEOC pipelines where other “noises” are still present. The 

generalisation does not mean the absolute application to every existing 

buried pipeline but as was stated earlier the application of the models to 

other pipelines beyond the MEOC scope should be done with care. One can 

argue that the usage of such a dataset is somewhat biased based on the 

Author’s interpretation. While this is true to a certain extent, only four points 

were removed from the dataset and since the results we have here have the 

possibility to be incorporated into future iterations of the ECDA process using 

the Bayesian approach, this so-called bias will diminish with each iteration of 

assessment.   
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Corrosion is represented by the variable POPD. The POPD variable is one of 

the most important variables determining a pipeline’s structural integrity. 

Similar to TCDA and %IR different modelling methods were used to 

determine its effect on other variables and vice versa. An initial linear 

assessment was done between TCDA and POPD. The result suggested that 

with every increasing TCDA, the depth of POPD decreases. Similar results 

were obtained with the interaction model where the derivation of the model 

with respect to POPD yields a decreasing trend. The results from Model 4 of 

the Bayesian approach is also in line with the earlier findings. Moreover, the 

results of Model 4 see a consistent upward trend across the TCDA quantiles. 

Between the 0.4 and the 0.6 quantiles emerged a plateau of estimates 

suggesting that for these defect sizes, the effect of an increasing POPD is 

minimal. The apparent flatness is an indication of the pit growth rate being 

faster than the growth of TCDA. This will produce deeper pits at smaller 

TCDA which solidifies the findings from the initial linear assessment in 

Chapter 4. The trait can also be seen in the LQR model where the POPD 

was modelled as the dependent variable. The results suggest that it is at the 

median pit depth that corrosion is most critical and that at some point in time, 

the growth of TCDA slows down or stops completely while the growth of pits 

carries on. Therefore, repair of such defects should be made before this. The 

consistencies in the findings from different approaches and different datasets 

(Model 4 uses filtset data) suggests that both models based on different 

variables are acceptable for predicting corrosion. This finding is also in 

parallel with findings from [42] which concluded that at coating defects, 

potential differences will occur due to the cathodic current applied to the 
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pipeline. If the current density provided to that particular coating defect is 

insufficient, then corrosion is highly probable. The potential at the bare metal 

tends to be anodic and the potential of metal underneath the coating 

surrounding the defect will be cathodic. Cathodic currents will protect the 

cathodic site (under coating) even further while leaving the exposed metal to 

undergo accelerated corrosion. This, according to the author’s opinion, is 

what we are seeing with the MEOC dataset. In conclusion, for the sole 

purpose of determining the amount of corrosion in terms of POPD, the LQR 

POPD combined model seems to be the more appropriate since it is 

dedicated to predicting corrosion and is bounded within a particular interval. 

However, if iteration of subsequent assessments where the Bayesian 

method is required, then Model 4 is more suitable.  

 

Another interesting finding in Chapter 4 was that there are indications where 

corrosion have some degree of correlation with the %IR reading. The 

suspicion is supported by the findings from Chapter 6 where the %IR 

combined model suggested that corrosion has a positive effect on the %IR 

signal across the quantiles. The results of the relationship between TCDA 

and POPD highlights a negative trend that suggests corrosion is not directly 

proportional to coating defect severity. Since the %IR is thought to be a 

relative measure of coating defect size, this further exemplifies the notion 

that %IR has some relation to corrosion (meaning that the signal being 

picked up by the DCVG assessment is not entirely from coating defects but 

also from corrosion). 
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7.0 Future Work 

 

There are a few suggestions for future work that could improve the work 

presented here namely: 

• The main limitation of this research is the usage of the MEOC 

pipelines data. Models were generated based on the assessments 

made from the indirect and direct analysis of an ECDA. Due to this, 

the models generated are attached to the data’s structure. Further 

research is required when new data is made available in the pursuit of 

developing a generic equation applicable to a wider variety of 

situations. Although the statistical analysis of determining the p-values 

and the confidence intervals is designed to acquire confidence on the 

predicted coefficients, more datasets (samples) are needed to obtain 

an estimate which is ever closer to the true parameter value. 

Moreover, with new datasets, further refinement is a possibility which 

will make the models much more appealing in terms of application. 

The TCDA and %IR is contributed to by many more factors than 

highlighted in this thesis, e.g. weather, defect orientation, CP current 

capacity, etc. but that were not included due to the unavailability of 

data. 
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• It can be seen that some of the models suffer from quantile crossing. 

This might be due to the method of estimating the quantile which is 

done separately (one after the other). A suggestion for future work 

could be to employ methods which estimate the quantiles 

simultaneously and applying a penalty term which acts as constraints 

thus ensuring the quantiles do not cross paths.  

• With the availability of more ECDA data, there is the possibility of 

dividing the data into 2 sets. One set could be the training set where 

the data is used to construct the models. Another set could be the test 

set where the previously constructed model from the training set is 

tested in terms of its performance and how it fits the test set. After 

going through this process, the determination of whether the models 

are underfitting (bias) or overfitting (high variance) is a possibility. 

Underfitted models tend to have higher error with both the training and 

the test set whereas for overfitted models, the errors are higher with 

the test set but lower in the training set. The testing of the models will 

add to the confidence of the general usability of the models. This 

approach was not done in this thesis due to the limited data.   

• The incorporation of the CIPS data with the DCVG data of an ECDA 

report could lead to better estimation of coating defects and corrosion. 

CIPS data looks at the pipeline’s potential and identifies defects based 

on location where the pipeline is under protected. When both the 

DCVG and the CIPS data are combined in a model, more accurate 

predictions of location and severity of defects is expected.  
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• Further research can go into looking at the usage of a nonlinear 

approach to the Bayesian analysis of ECDA data which could account 

for the apparent outliers (without the need to manually remove them 

as in the case of the “filtset” data). It is also suggested that a faster 

approach to the sampling method of the posterior distribution than the 

current sampling method of the Metropolis-Hastings algorithm. One 

such algorithm could be the Gibbs sampling method which is 

considered faster and uses less computational power. 

• When new data is made available, the prior distribution obtained from 

this thesis could be used for better prediction of the TCDA and %IR. 

• An experimental approach could be a possible future research where 

the main goal of the experiment is to replicate the results obtained 

here. The experiment could start in the lab with investigation on how 

currents travel in soil and react with corrosion and coating defects 

found in pipelines. From the results, it is expected that the modelling 

of the CP current will be made easier. A scaled-up experiment from 

the lab to the field application is also suggested.  

• An experimental method to verify the claim that the %IR readings can 

detect corrosion on pipelines should be attempted. Based on the data 

and the analysis conducted here, this seems to be the case. 

• New methods have been developed in the field of Bayesian Statistics. 

In particular the Bayesian Belief Network (BBN) is thought to be 

appropriate for considering all the variables. As stated earlier, the 

limitation of the MEOC data where it does not account for other 

variables which could contribute to TCDA and %IR, e.g. weather, 
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defect orientation etc., could have a significant effect on the final 

result. In the event of the availability of such data, a BBN could be a 

suitable way (catering for the large numbers of variables) of mapping 

out these variables and see how they interact. The network maps out 

the underlying independent variables (child nodes) that contribute to 

the dependent variable (parent nodes). The result will be in the form of 

a posterior distribution where the uncertainties of each parameter are 

also demonstrated. More on this can be found in papers such as 

[103–105]. 

• Another approach that is suggested is the use of machine learning 

algorithms such as the artificial neural network (ANN) for the ECDA 

data. The inputs of the network can be the contributing variables, e.g. 

SR, DOC etc., which go to neurons which process them and return an 

output that is the dependent variable of interest, e.g. TCDA. The 

connecting synapses and contributing weights adapt (through training) 

and the network learns to make useful computations. By training the 

model iteratively, and with the addition of more data, the estimates of 

the final output are expected to improve.   
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Table 8-1: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 1 

 
 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) 14.2 -13.13761 54.6 48.22268 86.1 98.85388 109 141.0879 23.6 102.7219 

Total Coating Defect Area (TCDA) 0.0000022 0 0.00000631 -0.00001 0.0000687 0.00006 0.0000408 0.00003 0.0000532 0.00008 

Soil Resistivity (SR) -0.0000235 -0.00006 -0.000331 -0.00031 -0.000567 -0.00048 -0.00028 -0.00028 -0.000346 -0.00029 

Percentage of Pit Depth to Wall Thickness (POPD) 0.00611 -0.01271 -0.0775 -0.09468 0.0439 0.06549 0.0892 -0.00068 0.108 -0.05744 

Deposits under Coatings (DUC) 0.0079 0.04509 0.0234 0.0409 -0.0372 -0.06428 -0.135 -0.10804 -0.0704 -0.12529 

Depth of Cover (DOC) 0.0549 0.03285 0.0887 0.09387 0.0933 0.10389 0.0454 -0.02672 0.0364 -0.00084 

Time in Service (TIS) -0.336 0.35863 -0.414 -0.25667 -0.374 -0.676 -0.778 -0.94074 1.19 -0.14359 

Pipe Size (PS) -0.0818 -0.00155 -0.865 -0.84935 -1.31 -1.35012 -0.697 -1.21011 0.285 -0.27746 

Backfill Type (Rock) 5.2 61.03542 49.3 56.27788 50.8 53.49289 24.2 33.46651 10.7 53.12368 

Backfill Type (Sand + Clay) -1.03 5.42229 0.719 36.12577 16.3 13.42679 6.14 11.37001 -11.6 -23.56192 

Backfill Type (Stones + Clay) 1.72 7.40428 3.1 4.89392 0.562 1.77951 -4.34 -6.88938 0.411 8.13043 

Coating Type (Coal Tar) -3.26 9.44636 2.11 4.64846 -0.215 -6.38968 -15.2 -15.07863 11 -23.40123 

Coating Type (Polyethylene) -6.28 3.99895 -12.1 -18.27787 0.368 -5.41162 -24.1 -32.55006 2.44 -40.23342 

Backfill Geometry (Angular) 0.754 3.8084 -6.03 -7.5326 -19.9 -22.37914 -12 -26.75601 -8.69 -49.57319 

Backfill geometry (Round + Angular) -2.64 -4.59182 -9.22 -12.47078 -0.835 -3.92166 0.933 4.01135 -0.446 4.32595 

pH Of Water in Soil (Acidic) 1.17 18.95119 1.98 6.01878 -8.1 -10.0818 -21.8 -26.26496 -4.8 -55.72907 

pH Of Water in Soil (Alkaline) 8.41 12.88766 12.8 13.65743 0.753 0.8598 1.74 2.45899 -0.804 -13.1597 

pH Of Water in Soil (Neutral) 7.24 12.1713 7.12 6.43559 7.03 7.31162 -0.415 0.17448 -14 -22.25217 

pH Of Water underneath Coating (Acidic) -0.943 -2.93952 -16.5 -20.01174 -3.24 -2.013 -24.6 -25.07575 -11 -37.14624 

pH Of Water underneath Coating (Alkaline) -2 -4.64393 -1.27 -2.37229 -7.78 -7.36889 -3.81 -4.85221 0.991 3.65309 

pH Of Water underneath Coating (Neutral) 2.56 8.21353 0.381 -1.62633 -0.125 5.92506 10.3 20.15952 -1.99 -7.91314 
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 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) 14.700000 83.132320 77.900000 90.972630 79.400000 92.566150 30.900000 115.156400 22.000000 45.068440 

Total Coating Defect Area (TCDA) 0.000074 0.000080 0.000048 0.000040 0.000062 0.000060 0.000142 0.000150 0.000229 0.000230 

Soil Resistivity (SR) 0.000029 0.000260 -0.000107 -0.000060 0.000206 0.000220 0.000229 0.000300 0.000373 0.000140 

Percentage of Pit Depth to Wall Thickness (POPD) 0.033400 0.045270 0.099400 0.129900 0.161000 0.196310 0.070000 0.052760 0.055800 0.007720 

Deposits under Coatings (DUC) -0.020900 -0.052210 -0.073600 -0.048550 -0.037300 -0.025340 -0.040400 -0.011620 -0.050000 -0.052110 

Depth of Cover (DOC) 0.066800 0.086000 0.001990 -0.010590 -0.006960 -0.001840 -0.027100 -0.012090 0.068200 0.068940 

Time in Service (TIS) -0.116000 -0.130830 -0.088400 -0.187420 -0.234000 -0.326080 -0.199000 -0.314640 0.179000 0.104190 

Pipe Size (PS) -0.126000 -0.075030 -0.508000 -0.525720 -0.300000 -0.293320 -0.368000 -0.626540 0.186000 -0.551590 

Backfill Type (Clay) -2.230000 -38.348380 -0.338000 -6.882280 3.350000 -2.249960 60.800000 -1.579160 16.300000 22.248100 

Backfill Type (Sand + Clay) -1.630000 -32.617690 -10.100000 -17.796240 -16.700000 -21.625990 41.500000 -25.560030 4.900000 5.476250 

Backfill Type (Stones + Clay) 11.400000 -22.535500 -2.180000 -10.973440 -3.290000 -10.132730 58.400000 -5.529310 25.400000 30.989040 

Coating Type (PVC Cold Wrap) -9.260000 -42.734530 -33.500000 -31.966310 -31.400000 -37.941470 -27.200000 -31.282620 -5.690000 -7.163900 

Coating Type (Coal Tar) 7.570000 -26.436400 1.070000 5.887830 -1.450000 -8.369240 1.040000 -3.492240 29.700000 31.739610 

Backfill Geometry (Round) 1.730000 2.402760 -0.364000 -5.000980 1.020000 2.231530 -2.950000 -10.478380 -1.580000 -4.825460 

Backfill Geometry (Round + Angular) -0.246000 -2.080580 -0.366000 -5.197000 -0.156000 0.672240 1.470000 -6.144310 1.580000 -0.068520 

pH Of Water in Soil (Acidic) 3.980000 46.796290 15.200000 22.264600 7.400000 8.883040 2.440000 3.499160 9.200000 8.782310 

pH Of Water in Soil (Alkaline) -1.840000 -6.497280 -13.400000 -14.384740 -21.200000 -23.020260 -17.600000 -23.007100 2.620000 7.110790 

pH Of Water in Soil (Neutral) -11.400000 -13.758600 -13.000000 -12.392160 -11.200000 -12.078250 -11.200000 -14.119210 -16.800000 -19.397650 

pH Of Water underneath Coating (Acidic) 2.800000 15.763990 0.825000 2.241060 1.020000 14.598710 1.130000 10.054170 -4.980000 -25.521390 

pH Of Water underneath Coating (Alkaline) -1.620000 -1.712290 -5.570000 -4.546200 -8.360000 -8.726300 -1.440000 -2.883960 -3.430000 -2.738770 

pH Of Water underneath Coating (Neutral) -4.960000 -5.807580 -29.400000 -36.952270 -6.670000 -8.779000 -12.400000 -14.218990 -13.100000 -29.966860 

 
Table 8-2: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 2 
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 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) 4.74 5.5141 42.156909 37.91505 87.5 84.82694 87.1 112.9995 64.9 79.98014 

TCDA -0.0000353 0 0.000012 0.00002 0.0000828 0.00009 0.0000678 0.00006 0.000073 0.00002 

Soil Resistivity (SR) 0.000000565 0.00018 -0.000401 -0.00036 -0.000668 -0.00076 -0.0000789 -0.00015 -0.000296 -0.0006 

Depth of Cover (DOC) 0.0508 0.04424 0.084797 0.09058 0.0722 0.07501 0.0433 0.03004 0.0228 0.03386 

Pipe Size (PS) -0.158 -0.15242 -0.960746 -0.85812 -1.77 -1.73404 -1.12 -1.79002 0.432 -0.04051 

Backfill Type (Rock) 5.23 62.024 49.131534 55.3512 53.4 54.15413 39.7 57.59096 6.45 20.88416 

Backfill Type (Sand + Clay) -0.939 2.40057 0.40573 35.38389 25.4 15.96705 18.8 17.56455 -8.21 -21.09323 

Backfill Type (Stones + Clay) 1.56 3.19906 0.816277 4.95639 0.619 1.6121 -0.0571 1.58495 -1.46 -3.57373 

Coating Type (Coal Tar) 2 1.83555 8.088755 8.13012 5.54 5.11152 -0.604 -0.52326 -6.78 -4.55448 

Coating Type (Polyethylene) -0.113 -0.91281 -4.374617 -14.44378 6.77 8.63253 -0.561 -1.9322 -15.3 -31.76233 

Backfill Geometry (Angular) 0.434 2.82207 -5.116034 -6.01787 -18.2 -16.65991 -18.1 -38.3265 -6.73 -26.70664 

Backfill geometry (Round + Angular) -3.65 -5.71419 -6.09831 -11.24719 0.251 1.66144 0.168 0.01712 -1.24 -0.83484 

pH Of Water in Soil (Acidic) 1.2 20.13217 1.953859 7.31045 -6.07 -7.82088 -20.6 -27.82607 -4.67 -56.69553 

pH Of Water in Soil (Alkaline) 8.11 10.85544 12.469238 15.72156 1.76 3.61206 4.57 -3.16313 -0.575 -6.19104 

pH Of Water in Soil (Neutral) 5.06 9.08957 4.689159 7.40692 1.14 4.0128 -8 -8.64504 -12.6 -17.33608 

 
Table 8-3: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 1a 
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 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) 30.300000 86.797670 96.400000 97.640580 86.200000 96.027370 29.900000 103.189300 31.300000 44.699490 

TCDA 0.000096 0.000100 0.000049 0.000060 0.000077 0.000090 0.000139 0.000160 0.000221 0.000220 

Soil Resistivity (SR) -0.000132 0.000040 -0.000025 0.000050 -0.000178 -0.000230 0.000330 0.000280 0.000482 0.000120 

Depth of Cover (DOC) 0.056100 0.090840 -0.002670 0.001760 -0.066500 -0.060630 -0.043000 -0.034910 -0.093900 0.064510 

Pipe Size (PS) -0.301000 -0.239980 -0.702000 -0.831970 -0.452000 -0.427980 -0.405000 -0.631050 -0.005790 -0.435420 

Backfill Type (Clay) -18.900000 -41.563750 -16.700000 -12.980020 0.785000 -2.195680 57.000000 -0.185940 18.600000 20.723690 

Backfill Type (Sand + Clay) -19.100000 -38.162340 -26.400000 -24.253120 -20.300000 -22.137160 38.600000 -14.822950 10.900000 7.021800 

Backfill Type (Stones + Clay) -6.250000 -27.517880 -15.800000 -10.366370 -3.210000 -7.575040 54.600000 -4.387000 25.900000 27.062110 

Coating Type (PVC Cold Wrap) -6.480000 -47.243800 -37.800000 -38.470090 -32.100000 -36.438630 -28.100000 -33.995890 -8.590000 -8.357880 

Coating Type (Coal Tar) 8.510000 -30.701130 -0.147000 -1.225670 -0.720000 -5.916940 0.433000 -4.990850 29.700000 31.984050 

Backfill Geometry (Round) 1.220000 4.263210 0.296000 -0.496600 -0.279000 -3.654250 -2.510000 -6.354480 -0.829000 -4.983210 

Backfill geometry (Round + Angular) -0.060200 1.018380 -1.790000 -4.468820 -0.243000 -2.953660 1.070000 -1.757900 1.220000 0.802880 

pH Of Water in Soil (Acidic) 4.130000 52.491990 23.000000 31.026370 6.630000 9.004480 5.160000 7.025120 11.900000 9.864600 

pH Of Water in Soil (Alkaline) -1.260000 -4.982980 -9.870000 -9.126160 -18.900000 -20.692270 -18.800000 -24.134410 4.000000 10.924820 

pH Of Water in Soil (Neutral) -11.300000 -14.624370 -6.340000 -4.029990 -11.600000 -13.155980 -11.600000 -14.112290 -16.800000 -19.629660 

 
Table 8-4: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 2a 
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 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) -465 -457.17702 -4180 -4174.93367 78687.177 79808.12772 216000 217908.3647 189000 224992.2512 

%IR -0.0178 -0.00289 2.3 2.39424 84.428 81.74019 849 850.32554 -93.1 -185.38455 

Soil Resistivity (SR) -0.0034 -0.00343 0.0456 0.04597 -0.524 -0.52755 -0.00013 -0.02681 0.151 0.91576 

Percentage of Pit Depth to Wall Thickness (POPD) 6.04 5.95071 169 169.30994 232.204 227.41219 20.1 23.50078 2740 2655.77653 

Deposits under Coatings (DUC) -0.901 -0.91188 -6.48 -6.57018 19.543 20.98267 250 258.12499 -257 -180.88631 

Depth of Cover (DOC) -0.00321 -0.0049 -1.31 -1.4892 -69.776 -71.17661 -317 -314.25913 -111 -116.58299 

Time in Service (TIS) 4.92 4.94473 33.4 33.47407 -2351.485 -2366.39447 -6610 -6654.21784 -8030 -8229.21972 

Pipe Size (PS) 10.4 10.12846 102 102.4972 707.098 696.70204 2130 2107.66508 6040 5226.80883 

 
Table 8-5: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 3 
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 0.05 0.25 0.5 0.75 0.95 

 BQR QR BQR QR BQR QR BQR QR BQR QR 

(Intercept) -464 -451.2233 -5710 -5964.69088 28978.772 29852.26172 100000 124534.4809 77655.6 82909.55 

%IR 0.0221 0.01055 20.2 19.78903 475.876 467.86167 1320 1275.76375 1481.9 1486.526 

Soil Resistivity (SR) -0.00336 -0.00347 0.0576 0.0576 -0.453 -0.45064 0.679 0.5088 12.2 12.51588 

Percentage of Pit Depth to Wall Thickness (POPD) 6.06 5.81388 177 178.06266 219.149 219.97055 237 242.43918 406 375.3882 

Deposits under Coatings (DUC) -0.916 -0.92355 -6.19 -6.19977 34.219 35.45087 152 192.12718 -218.8 -203.1032 

Depth of Cover (DOC) -0.00871 0.00592 -5.19 -4.93221 -20.033 -21.78868 -221 -210.58953 -97.8 -115.9905 

Time in Service (TIS) 4.95 4.92626 18.9 25.61559 -1681.945 -1695.79043 -4820 -5333.01823 -5066.9 -5108.585 

Pipe Size (PS) 10.3 9.95343 155 154.41867 963.069 960.79513 2750 2579.36638 4610.6 4529.043 

 
Table 8-6: Bayesian Quantile Regression (BQR) Estimates along with Quantile Regression (QR) Estimates for Quantiles 0.05, 0.25, 0.5, 

0.75 and 0.95 for Model 4 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 

(Intercept) 14.2 -2.95 38.4 86.1 77 95.5 23.6 -28 73.5 

IR Drop (%IR) 0.0000022 -0.000012 0.0000384 0.0000687 0.0000517 0.0000837 0.0000532 0.00000513 0.0000788 

Soil Resistivity (SR) -0.0000235 -0.00045 0.000325 -0.000567 -0.000881 -0.000293 -0.000346 -0.00064 0.0000823 

Percentage of Pit Depth to Wall Thickness (POPD) 0.00611 -0.102 0.118 0.0439 -0.0321 0.12 0.108 -0.0198 0.264 

Deposits under Coatings (DUC) 0.0079 -0.0358 0.0511 -0.0372 -0.0764 0.00186 -0.0704 -0.139 -0.00845 

Depth of Cover (DOC) 0.0549 0.0111 0.108 0.0933 0.0675 0.122 0.0364 -0.0251 0.109 

Time in Service (TIS) -0.336 -0.779 0.207 -0.374 -0.561 -0.189 1.19 0.137 2.65 

Pipe Size (PS) -0.0818 -0.329 0.104 -1.31 -1.53 -1.11 0.285 -0.159 0.739 

Backfill Type (Rock) 5.2 -9.36 47.8 50.8 42.7 57.6 10.7 -2.52 47.9 

Backfill Type (Sand + Clay) -1.03 -12.7 3.38 16.3 5.88 30.6 -11.6 -27.8 1.94 

Backfill Type (Stones + Clay) 1.72 -1.43 6.36 0.562 -1.46 3.69 0.411 -3.95 6.33 

Coating Type (Coal Tar) -3.26 -8.38 8.85 -0.215 -2.8 1.82 11 -5.26 35 

Coating Type (Polyethylene) -6.28 -20.7 5.22 0.368 -2.97 4.66 2.44 -25.9 21.6 

Backfill Geometry (Angular) 0.754 -3.01 5.65 -19.9 -23.2 -16.4 -8.69 -36.8 2.98 

Backfill geometry (Round + Angular) -2.64 -7.12 0.369 -0.835 -4.32 1.22 -0.446 -6.5 5.37 

pH Of Water in Soil (Acidic) 1.17 -10.3 16.5 -8.1 -14.8 0.286 -4.8 -44 9.5 

pH Of Water in Soil (Alkaline) 8.41 -0.222 15.3 0.753 -1.25 4.34 -0.804 -7.01 4.32 

pH Of Water in Soil (Neutral) 7.24 -0.67 15.8 7.03 1.03 11.1 -14 -20.3 -0.277 

pH Of Water underneath Coating (Acidic) -0.943 -10.3 3.26 -3.24 -20.6 1.32 -11 -42.4 4.92 

pH Of Water underneath Coating (Alkaline) -2 -5.33 0.492 -7.78 -10.1 -5.28 0.991 -1.36 5.77 

pH Of Water underneath Coating (Neutral) 2.56 -4.74 13 -0.125 -3.71 3.08 -1.99 -11.9 4.81 

 
Table 8-7: Bayesian Quantile Regression (BQR) Estimates With 95 % Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 1 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 

(Intercept) 14.7 -1.76 40.681215 79.4 43.7 92.1 22 -415 69.1 

Total Coating Defect Area (TCDA) 0.0000741 0.0000676 0.000128 0.0000618 0.0000493 0.0000769 0.000229 0.000168 0.000232 

Soil Resistivity (SR) 0.0000293 -0.000316 0.000383 0.000206 0.0000175 0.000329 0.000373 -0.0000612 0.000848 

Percentage of Pit Depth to Wall Thickness (POPD) 0.0334 -0.085 0.144788 0.161 0.088 0.232 0.0558 -0.0308 0.238 

Deposits under Coatings (DUC) -0.0209 -0.0789 0.029226 -0.0373 -0.0655 -0.0111 -0.05 -0.115 0.00565 

Depth of Cover (DOC) 0.0668 0.0269 0.108152 -0.00696 -0.0324 0.0161 0.0682 0.012 0.119 

Time in Service (TIS) -0.116 -0.328 0.085368 -0.234 -0.338 -0.128 0.179 -0.22 0.788 

Pipe Size (PS) -0.126 -0.31 0.079494 -0.3 -0.472 -0.153 0.186 -0.575 1.93 

Backfill Type (Clay) -2.23 -13.6 3.720633 3.35 -2.41 23.9 16.3 -7.2 260 

Backfill Type (Sand + Clay) -1.63 -12.8 5.18233 -16.7 -23.9 3.6 4.9 -26.6 246 

Backfill Type (Stones + Clay) 11.4 -0.0934 18.838816 -3.29 -9.69 18.8 25.4 0.026 262 

Coating Type (PVC Cold Wrap) -9.26 -29.1 2.434434 -31.4 -38.2 -22 -5.69 -17.9 0.765 

Coating Type (Coal Tar) 7.57 -11 20.359542 -1.45 -8.49 7.7 29.7 16.4 38.7 

Backfill Geometry (Round) 1.73 -0.761 6.591509 1.02 -0.55 3.55 -1.58 -7.62 16.5 

Backfill Geometry (Round + Angular) -0.246 -4.13 3.671415 -0.156 -2.4 2.01 1.58 -2.14 10.4 

pH Of Water in Soil (Acidic) 3.98 -10.1 38.354927 7.4 -0.427 14.5 9.2 -0.768 30.3 

pH Of Water in Soil (Alkaline) -1.84 -7.75 0.907865 -21.2 -24.3 -17.7 2.62 -1.7 12.2 

pH Of Water in Soil (Neutral) -11.4 -19.6 -0.207547 -11.2 -14.5 -8.07 -16.8 -26.6 -0.241 

pH Of Water underneath Coating (Acidic) 2.8 -6.1 18.678275 1.02 -2.44 9.92 -4.98 -27.4 5.78 

pH Of Water underneath Coating (Alkaline) -1.62 -4.69 0.344062 -8.36 -10.1 -6.7 -3.43 -7.89 0.356 

pH Of Water underneath Coating (Neutral) -4.96 -16.5 0.619875 -6.67 -14.2 0.543 -13.1 -33.1 2.77 

 
Table 8-8: Bayesian Quantile Regression (BQR) Estimates With 95% Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 2 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 

(Intercept) 4.74 -1.53 14.4 87.5 78.2 97 64.9 56 84.8 

TCDA -0.0000353 -0.00004 0.0000375 0.0000828 0.0000661 0.0000989 0.000073 0.0000008 0.0000833 

Soil Resistivity (SR) 0.000000565 -0.000344 0.000364 -0.000668 -0.000863 -0.000416 -0.000296 -0.000641 0.0000428 

Depth of Cover (DOC) 0.0508 0.0148 0.0888 0.0722 0.0447 0.099 0.0228 -0.0243 0.0562 

Pipe Size (PS) -0.158 -0.388 0.0759 -1.77 -2.01 -1.53 0.432 -0.199 0.64 

Backfill Type (Rock) 5.23 -9.26 47.9 53.4 45.1 60.9 6.45 -4.09 36.7 

Backfill Type (Sand + Clay) -0.939 -7.93 3.08 25.4 16.1 36.8 -8.21 -22.3 2.47 

Backfill Type (Stones + Clay) 1.56 -0.754 5.66 0.619 -0.927 3.38 -1.46 -8.41 2.96 

Coating Type (Coal Tar) 2 -0.739 6.36 5.54 3 8.17 -6.78 -11.9 0.445 

Coating Type (Polyethylene) -0.113 -8.54 6.18 6.77 -0.593 14.7 -15.3 -34.4 2.78 

Backfill Geometry (Angular) 0.434 -3.6 4.73 -18.2 -22.7 -14.4 -6.73 -30.5 2.56 

Backfill geometry (Round + Angular) -3.65 -7.75 -0.335 0.251 -1.89 2.89 -1.24 -10.2 5.22 

pH Of Water in Soil (Acidic) 1.2 -10.2 16.7 -6.07 -12.7 0.598 -4.67 -42.2 9.47 

pH Of Water in Soil (Alkaline) 8.11 -0.303 13.7 1.76 -1.08 5.82 -0.575 -6.11 3.91 

pH Of Water in Soil (Neutral) 5.06 -1.05 12.4 1.14 -1.34 4.89 -12.6 -19.3 0.294 

 
Table 8-9: Bayesian Quantile Regression (BQR) Estimates With 95% Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 1a 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 Posterior Mean 0.025 0.975 

(Intercept) 30.3 -2.29 501 86.2 77.7 94.1 31.3 -308 79.5 

TCDA 0.0000956 0.0000936 0.000138 0.0000768 0.0000547 0.0000989 0.000221 0.000186 0.000222 

Soil Resistivity (SR) -0.000132 -0.000408 0.000202 -0.000178 -0.000395 0.0000902 0.000482 0.0000361 0.00108 

Depth of Cover (DOC) 0.0561 0.0195 0.0981 -0.0665 -0.0907 -0.0337 0.0639 0.0178 0.0949 

Pipe Size (PS) -0.301 -0.333 0.00686 -0.452 -0.622 -0.309 -0.00579 -0.571 0.214 

Backfill Type (Clay) -18.9 -393 4 0.785 -2.71 5.56 18.6 -6.5 323 

Backfill Type (Sand + Clay) -19.1 -392 3.51 -20.3 -26.2 -13.6 10.9 -24.2 300 

Backfill Type (Stones + Clay) -6.25 -381 17.7 -3.21 -7.47 0.767 25.9 -0.151 324 

Coating Type (PVC Cold Wrap) -6.48 -51 2.72 -32.1 -36.8 -28.5 -8.59 -29.3 0.1 

Coating Type (Coal Tar) 8.51 -37.8 18.5 -0.72 -5.65 2.67 29.7 9.06 38.9 

Backfill Geometry (Round) 1.22 -5.87 5.43 -0.279 -2.77 1.51 -0.829 -6.18 2.5 

Backfill geometry (Round + Angular) -0.0602 -5.43 3.04 -0.243 -3.27 2.1 1.22 -1.56 7.78 

pH Of Water in Soil (Acidic) 4.13 -9.69 39.6 6.63 -0.543 14 11.9 0.0936 31.7 

pH Of Water in Soil (Alkaline) -1.26 -6.84 1.42 -18.9 -21.5 -15.8 4 -1.39 12.3 

pH Of Water in Soil (Neutral) -11.3 -18.2 -0.912 -11.6 -15.9 -6.64 -16.8 -24.1 -0.0591 

 
Table 8-10: Bayesian Quantile Regression (BQR) Estimates With 95% Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 2a 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

 Posterior Mean 0.25 0.975 Posterior Mean 0.25 0.975 Posterior Mean 0.25 0.975 

(Intercept) -465 -496.4146 -445 78687.177 74052.516 79414.664 189000 128000 207000 

%IR -0.0178 -0.1091 0.0559 84.428 82.292 100.219 -93.1 -162 28.6 

Soil Resistivity (SR) -0.0034 -0.0037 -0.00304 -0.524 -0.529 -0.476 0.151 -0.0154 0.482 

Percentage of Pit Depth to Wall Thickness (POPD) 6.04 5.4327 6.79 232.204 228.826 264.055 2740 2640 2790 

Deposits under Coatings (DUC) -0.901 -0.9835 -0.821 19.543 10.358 20.721 -257 -387 -212 

Depth of Cover (DOC) -0.00321 -0.0523 0.0392 -69.776 -71.118 -53.681 -111 -122 -70.9 

Time in Service (TIS) 4.92 4.6761 5.16 -2351.485 -2362.104 -2319.907 -8030 -8200 -7690 

Pipe Size (PS) 10.4 9.8316 11.3 707.098 702.75 728.063 6040 5670 7410 

 
Table 8-11: Bayesian Quantile Regression (BQR) Estimates with 95% Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 3 
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Variables 

Quantiles 

0.05 0.5 0.95 

 Credible Intervals  Credible Intervals  Credible Intervals 

Posterior Mean 0.025 0.975 Posterior Mean 0.25 0.975 Posterior Mean 0.25 0.975 

(Intercept) -4.64E+02 -4.95E+02 -4.45E+02 2.90E+04 2.91E+04 29374.475 7.77E+04 6.65E+04 78394.4 

%IR 2.21E-02 -5.19E-02 1.07E-01 4.76E+02 4.72E+02 476.451 1.48E+03 1.46E+03 1828.3 

Soil Resistivity (SR) -3.36E-03 -3.65E-03 -2.98E-03 -4.53E-01 -4.54E-01 -0.452 1.22E+01 1.17E+01 12.3 

Percentage of Pit Depth to Wall Thickness (POPD) 6.06E+00 5.46E+00 6.79E+00 2.19E+02 2.19E+02 219.652 4.06E+02 -1.72E+02 455.7 

Deposits under Coatings (DUC) -9.16E-01 -9.99E-01 -8.31E-01 3.42E+01 3.40E+01 34.787 -2.19E+02 -2.24E+02 -155.8 

Depth of Cover (DOC) -8.71E-03 -6.00E-02 2.84E-02 -2.00E+01 -2.07E+01 -19.534 -9.78E+01 -1.14E+02 -91.7 

Time in Service (TIS) 4.95E+00 4.71E+00 5.19E+00 -1.68E+03 -1.69E+03 -1684.384 -5.07E+03 -5.17E+03 -3763.1 

Pipe Size (PS) 1.03E+01 9.81E+00 1.12E+01 9.63E+02 9.60E+02 961.977 4.61E+03 3.54E+03 4720.8 

 
Table 8-12: Bayesian Quantile Regression (BQR) Estimates With 95% Credible Intervals for Quantiles 0.05, 0.5 and 0.95 for Model 4 

 

 


	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	List of Abbreviations
	Chapter 1
	Introduction
	1.0 Motivation
	1.1 Aims and Objectives
	1.2 Summary of Methodology
	1.3 Thesis Outline
	1.4 Contributions to Knowledge
	1.5 List of Publication
	1.6 Hosts for Research (Industrial): TWI Ltd.

	Chapter 2
	Literature Review on Integrity Management Techniques for Buried Pipelines
	2.0 Introduction
	2.1 Cathodic Protection (CP)
	2.1.1 Background
	2.1.2 The Inner Workings of CP
	2.1.2.1 Sacrificial Anode System (SAS)
	2.1.2.2 Impressed Current Cathodic Protection (ICCP)

	2.1.3 Coatings as Means of CP Current Distribution

	2.2 External Corrosion Direct Assessment (ECDA)
	2.2.1 Pre- Assessment
	2.2.2 Indirect Assessment
	2.2.3 Direct Assessment
	2.2.4 Post Assessment

	2.3 Indirect Assessment Techniques
	2.3.1 Current Mapper (Attenuation)
	2.3.2 Close Interval Potential Survey (CIPS)
	2.3.3 Direct Current Voltage Gradient (DCVG)
	2.3.4 Alternate Current Voltage Gradient (ACVG)

	2.4 Research on External Corrosion of Buried Pipelines under Cathodic Protection
	2.5 Previous Research on Prediction of Coating Defect Area
	2.6 Gap in Literature
	2.7 Middle Eastern Pipelines Data
	2.7.1 Pre-Assessment
	2.7.2 Indirect Assessment
	2.7.3 Direct Assessment


	Chapter 3
	Statistical Methods Used for Analyses of the MEOC ECDA Data
	3.0 Introduction
	3.1 Statistical Methods used in This Research
	3.1.1 Correlation
	3.1.2 Quantile Regression (QR)
	3.1.3 Least Absolute Shrinkage Selection Operator (LASSO)
	3.1.4 Bayesian Quantile Regression (BQR)
	3.1.5 Markov Chain Monte Carlo with Metropolis-Hastings Algorithm (MCMC)
	3.1.6 Logistic Quantile Regression (LQR)

	3.2 Summary

	Chapter 4
	Coating Defect Size Prediction with Quantile Regression
	4.0 Introduction
	4.1 Middle Eastern Oil Company Pipelines Data
	4.2 Linear Correlation of Variables
	4.3 Special Linear Correlation between TCDA and POPD
	4.4 Size Prediction of TCDA
	4.4.1 Non Interaction and Interaction model
	4.4.2 Akaike Information Criterion (AIC)

	4.5 Data analyses
	4.5.1 Correlation of Variables
	4.5.2 TCDA vs POPD
	4.5.3 Size Prediction of TCDA with QR
	4.5.3.1 Non-Interaction and Interaction model
	4.5.3.1.1 Non-Interaction model
	4.5.3.1.2 Interaction model



	4.6 Discussion
	4.6.1 Linear Correlation of Variables
	4.6.2 Summary of Results from the QR Models
	4.6.2.1 Non-Interaction model
	4.6.2.2 Interaction model


	4.7 Least Absolute Shrinkage Selection Operator (LASSO)
	4.7.1 Non-Interaction (R) Model
	4.7.2 Interaction (R) Models


	Chapter 5
	Analyses of DCVG Indications and Coating Defect Size Prediction with Bayesian Quantile Regression
	5.0 Introduction
	5.1 Middle Eastern Oil Company (MEOC) Data
	5.2 Model Estimation and Result Analysis
	5.2.1 Contributing Factors to %IR (Model 1)
	5.2.2 Refined %IR (Model 1a)
	5.2.3 Contributing Factors to %IR (Model 2)
	5.2.4 Refined %IR (Model 2a)
	5.2.5 Total Coating Defect Area (TCDA) Models
	5.2.5.1 TCDA Model 3
	5.2.5.2 TCDA Model 4


	5.3 Discussion
	5.3.1 Contributing factors to %IR – (Model 1, 1a, 2 and 2a)
	5.3.1.1 TCDA variable
	5.3.1.2 SR and Backfill Type Variable
	5.3.1.3 Depth of Cover Variable

	5.3.2 TCDA Model – (Model 3 and 4)
	5.3.2.1 %IR Variable
	5.3.2.2 POPD Variable
	5.3.2.3 SR Variable
	5.3.2.4 Pipe Size Variable


	5.4 Bayesian Quantile Regression

	Chapter 6
	Logistic Regression and Logistic Quantile Regression for Analyses of DCVG Indications and Corrosion Depth
	6.0 Introduction
	6.1 Middle Eastern Oil Company (MEOC) Data
	6.2 Probability of Excavation
	6.3 Logistic Quantile Regression on %IR
	6.3.1 TCDA vs %IR
	6.3.2 SR vs %IR
	6.3.3 POPD vs %IR
	6.3.4 DOC vs %IR
	6.3.5 DUC vs %IR
	6.3.6 Combined Model for %IR

	6.4 Logistic Quantile Regression on POPD
	6.4.1 TCDA vs POPD
	6.4.2 SR vs POPD
	6.4.3 DUC vs POPD
	6.4.4 Combined Model for POPD

	6.5 Discussion

	Chapter 7
	Conclusion and Future Work
	7.0 Future Work
	References
	8.0 Appendix

