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Abstract Image analysis is a useful tool for visualising flow through laboratory-scale aquifers
but existing methods of converting image light intensity to concentration can be labour
intensive and time consuming. The new approach proposed in this study utilises the Random
Forest machine learning technique to build a calibration model to replace the requirement for
unique calibrations of each test aquifer. Calibration images from a previous experimental study
were used to train the Random Forest model and the output was compared to the results from a
high resolution pixel-wise methodology. The Random Forest model provided a trade-off in
accuracy with increased efficiency and reduced sensitivity to image desynchronisation when
compared to the pixel-wise method. The reduced accuracy was attributed in part to non-linear
lighting distribution across the sandbox, which could be corrected by orientating the backlights
effectively. Time savings of around 35% were achieved for this experimental study and this is
expected to increase for larger scale studies. The new calibration approach exhibits some
promising features in terms of its robustness to experimental error and its ability to process
efficiently large-scale experiments in a shorter time frame.
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1 Introduction

Seawater intrusion (SWI) poses a significant threat to the livelihood of populations in coastal
zones who are dependent on freshwater extracted from aquifers near to the sea. The sustainable
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management of coastal aquifers is crucial to prevent the degradation of freshwater resources by
the landward intrusion of seawater due to over-pumping and the detrimental effects of climate
change. Difficulties arise when modeling the extent of SWI given the inherent heterogeneity
present in most coastal aquifers, which can significantly affect the flow and transport proper-
ties of the system.

Nowadays, problems of SWI in coastal aquifers are commonly investigated using
sandbox-based laboratory experiments, which give insight into hydrodynamic processes
and provide benchmarks for numerical model calibrations. Image analysis, which uses a
calibration model to relate the captured image property (light intensity) to the desired
system property (concentration), has been widely used to track the migration of contam-
inants in groundwater flow using sandbox style experiments (Schincariol and Schwartz
1990; Goswami and Clement 2007; Chang and Clement 2013, Konz et al. 2009; Dose
et al. 2014. It provides several advantages over traditional sensor array setups, most
notably the lack of invasive sampling instrumentation affecting the flow path and the
increased information attained from higher spatial resolutions. However, most of the
experiments based on image analysis considered only homogeneous porous media cases
and assumed a sharp interface between the two interacting fluids (saltwater and fresh-
water). Furthermore, the image analysis carried out in these studies was largely qualita-
tive and consisted of tracing the saltwater-freshwater interface visually.

Recently, Robinson et al. (2015) proposed an automated image analysis approach based on
a pixel-wise regression method, which provided low errors in converting light intensity to
concentration, and allowed for the analysis of density variations across the saltwater-
freshwater interface. The main disadvantage of the pixel-wise regression method is that the
calibration is entirely specific to the test domain. A new calibration was required for each test
case, even for homogeneous cases of the same bead diameter. In the case of Robinson et al.
(2015) the calibration process took at least 4 h to complete, and contributed significantly to the
7–12 h required for preparing each domain for testing. For larger scale experiments the
calibration process could be considerably longer. Furthermore, Robinson et al. (2015) ob-
served significant air pockets accumulating within a saturated sandbox of porous media that
was left for an extended period of time. Air pockets appear as dark spots in the captured
images and introduce errors into the image light intensity to concentration conversion.
Therefore longer calibration procedures would increase the chance of air bubbles forming in
the domain and could detrimentally affect the observations. A calibration methodology that
could be universally applied to all domains, irrespective of heterogeneous structure, would
significantly reduce the time required for testing and decrease image distortion by trapped air
pockets. In heterogeneous aquifers the different bead sizes have different refraction indices and
thus appear darker or lighter in the camera images. In order to account for these variations in
light intensity more sophisticated regression methods are required.

Machine Learning Techniques (MLTs) have been widely used to detect patterns in data and
make predictions based on the discovered patterns (Murphy 2012). The Random Forest
method is an MLT which utilises numerous decision trees to construct a predictor ensemble
for regression analysis (Breiman 2001). This study investigated the application of MLTs, in
particular the Random Forest method, as an advanced calibration method for image analysis,
in order to improve the efficiency of conducting sandbox-style experiments. The method is
applied to a variety of experimental cases including homogeneous and heterogeneous config-
urations and the corresponding results were contrasted with those obtained using pixel-wise
regression method (Robinson et al. 2015). The Random Forest method proves to save
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significant preparation time by generating a calibration that is applicable to all heterogeneous
configurations, negating the need to run individual calibrations for each case. Furthermore, the
method showed promising results in terms of its robustness to measurement error and its
ability to efficiently process large-scale experiments without increasing the errors in the
estimation of saltwater intrusion parameters.

2 Experimental Set-up

The experimental investigation was conducted within a sandbox apparatus, whose schematic
diagram is depicted in Fig. 1. The tank comprised a central viewing chamber of dimensions
(Length × Height × Depth) 0.38 m × 0.15 m × 0.01 m with two large chambers at either side
providing the hydrostatic pressure boundary conditions for each test. The central viewing
chamber (test area) was filled with a clear porous media (glass beads) to allow visual
observations of salt-water movement within the aquifer. The media was retained in the viewing
chamber by fine mesh screens. The left side chamber was assigned to hold clear freshwater and
the right side chamber contained a dyed saltwater solution. Water levels were maintained in the
side chambers through adjustable overflow outlets. The 2D nature of this unit allowed for a
transmissive lighting configuration to be employed, permitting image capture and analysis of
the mixing zone dynamics. Two LED array light sources provided the backlighting, which was
passed through a diffuser before entering the rear of the tank. The extent of intrusion was
controlled by varying the hydraulic gradient across the porous media using the adjustable
overflow outlets. A range of head difference (dH) conditions were tested, ranging from 4 to

Fig. 1 Schematic diagram of the sandbox experiment tank, front (top) and plan (bottom) elevation
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6 mm. Such fine differences produced substantial saltwater wedge movement at this scale.
Ultrasonic sensors were used to accurately measure the water levels in the side chambers.
Further details regarding the experimental set-up can be found in Robinson et al. 2015.

3 Calibration Using Random Forest

Image analysis requires a calibration to relate the captured image property (light intensity) to
the desired system property (concentration). This relationship is non-linear and has been
represented by a range of equations in the published literature (Goswami and Clement 2007;
McNeil et al. 2006). In order to capture this complex relationship, this study investigates the
application of the Random Forest method, as a calibration model.

3.1 Random Forest Method

Random Forest is an MLT, for building a predictor ensemble with a set of decision trees
constructed by injecting randomly into the training. Decision Trees are a non-parametric
supervised learning method, which aims to predict the value of a target variable by learning
simple decision rules inferred from the data features. The corresponding models are obtained
through a recursive partitioning of the features space and then fitting a simple prediction model
within each partition. The most popular decision tree algorithms C4.5 Algorithm (Quinlan
1993) and CART (Classification and Regression Trees) Algorithm (Breiman et al. 1984).
Although decision trees are relatively simple to understand and interpret, and do require
distributional assumption on the predictive and response variables, their major deficiencies
include the over-fitting, i.e. the constructed tree can be pretty accurate on the training dataset
but very poor for prediction on unseen data; and the instability, i.e. a little variation in the data
might lead to a completely different tree being generated.

3.1.1 Random Forest: Basic Principle

The motivation behind the Random Forest approach is to mitigate some of the major
deficiencies of decision trees including prediction accuracy, over-fitting and instability, through
an ensemble of decision trees. The approach originated from a series of research works by
Breiman (1996, 2001), which highlighted the significant improvement in predictive accuracy
that could be achieved in regression and classification by using an ensemble of trees, where
each tree in the ensemble, also referred to as a weak learner, is constructed by introducing
some randomness into the learning process so that the ensemble consists of set of diverse trees
from the same dataset. Figure 2 shows a flow chart summarising the processes involved in the
Random Forest model.

3.1.2 Advantages and Limitations of Random Forest

In addition to its predictive accuracy, some of the main advantages of the Random Forest
model include its ability to capture nonlinear complex relationships between the predictive and
response variables, it is generally not prone to over fitting as well as its robustness with regard
to outliers and spurious data. Unlike other machine learning techniques (such as Artificial
Neural Networks or Support Vector Machines), Random Forest requires mainly two
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parameters, namely the number of trees and the number of features to be selected randomly at
each node for the splitting process. Furthermore, the Random Forest method is computation-
ally lighter than most of its competitors; thus it runs efficiently on datasets with large number
of predictive variables. On the other hand, one of the main deficiencies of Random Forest is
that for regression problems, it cannot predict a value of the response variable beyond the
range in the training data.

Random forest is widely used for in image analysis in computer science and some of
its successful applications in the literature, include (Stefanski et al. 2013) and (Lowe and
Kulkarni 2015).

3.2 Calibration Methodology

In order to correlate image light intensity to concentration a series of reference images at
different concentrations are required. For this study, 8 different known concentrations of
saltwater solution were flushed through each test case aquifer: 0%, 5%, 10%, 20%, 30%,
50%, 70% and 100%. To decrease the potential for trapping air in the pores of the porous
media the glass beads were introduced through a siphon, maintaining fully saturated conditions
during placement. An image was taken of the aquifer to represent the initial conditions or 0%
concentration in the calibration. The aquifer was then fully flushed with 5% concentration by
introducing the saltwater solution at the bottom of the side chambers and displacing the lighter,
less dense solution out through the overflow (Fig. 3). By this mechanism it was possible to
maintain fully saturated conditions throughout the calibration. This process was repeated until
the images for all 8 different concentrations were acquired. The test aquifer was then reset to

Fig. 2 Flow chart describing the process of the Random Forest algorithm
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the initial conditions by diluting the saltwater in the side chambers with large quantities of clear
freshwater. Residual saltwater was tapped off from the bottom of the side chambers. This part
of the procedure was arguably the most time consuming as it was imperative that all the
saltwater was flushed out of the system before initiating any test cases. Test cases were
conducted by introducing 100% saltwater solution to one of the side chambers to displace
the existing freshwater and imposing a hydraulic gradient across the aquifer by adjusting the
levels of the overflows. Both freshwater and saltwater were continually introduced into their
respective side chambers to maintain the imposed hydraulic gradient. Images were then

overflow overflow overflow overflow

Packing
Glass beads packed under 
saturated condi�ons.

Image Capture of ini�al condi�ons (C=0%)

Increase Concentra�on (C)
Add higher C to bo�om of 
side reservoir. Displace 
lighter solu�on
to waste via
overflow.

Image Capture
Full flush of higher C
solu�on. Take image.

Increase C

Repeat
Con�nue increasing
concentra�on, taking

images when
test aquifer is 
fully flushed. 

Reset
Dilute saltwater solu�on 
un�l C=0% is achieved in 
test aquifer. Residual 
saltwater tapped off at 
bo�om of side chamber. 

Test
Fill side chamber with 
C=100% saltwater solu�on.
Set up hydraulic gradient  
across the test aquifer with 
adjustable overflows.

All calibra�on images acquired

Fig. 3 Flow chart describing the methodology to acquire images from physical testing to be used in the
calibration of image light intensity to concentration
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captured of the saltwater wedge at regular intervals as it transitioned through the porous media
until reaching a steady-state condition. Steady-state was said to be achieved when no signif-
icant movement was observed at the toe of the saltwater wedge.

Many variants of the Random Forest model have been implemented in machine learning
toolboxes available in various software packages such as MATLAB (Matlab and Statistics
Toolbox (2014)), R (R Development Core Team (2017)) and Python (Scikit-learn developers
(2017)). For our numerical experiments, we use the Random Forest variant implemented in
MATLAB (Matlab and Statistics Toolbox (2014)).

In order for the Random Forest model to perform optimally, the model was trained on
calibration images captured using exactly the same camera settings (exposure, rate, gain etc.).
The model was trained on 3 homogeneous cases, where each case was constructed using a
different diameter of glass bead (780 μm, 1090 μm, 1325 μm) so that the model would be
representative of all bead sizes used in the heterogeneous cases. Including all 3 bead diameters in
the training allowed the model to account for the different refraction indices of the media and the
associated changes in light intensity produced in the captured images. The results of the trained
model were applied to 2 heterogeneous cases: 1) a domain consisting of different diameter beads in
layers (Layered-1); 2) a domain consisting of blocks of different diameter beads (Blocked-1).
Images of the fully flushed domains at 8 different known saltwater concentrations were analysed.
Within each homogeneous case, two thirds of the pixel data was used to train the model with the
remaining third used for verification (out of bag elements – see Fig. 2). The fully trainedmodel was
then used to derive saltwater concentration from the captured images during testing.

4 Results and Discussion

Figure 4 shows the comparison between the output from the pixel-wise regression and
Random Forest methods for the 780 μm steady-state dH = 4 mm case. The general shape
and extent of the intruded saltwater wedge is captured by the Random Forest method (Fig. 4c)
However, where the pixel-wise method shows good uniformity of concentration distribution in
the fully freshwater and saltwater zones, the Random Forest method shows significant
variation. This is due to the non-uniform light distribution provided by the 2 LED lights used
to illuminate the domain. The middle of the test chamber appeared lighter than the edges,
resulting in the Random Forest method calculating higher concentrations at the edges than in
the middle. This is apparent in both the freshwater region (top right/left of Fig. 4c) and within
the saltwater wedge (bottom middle of Fig. 4c). The results from the Random Forest method
could be improved with a concerted effort to minimise non-uniform lighting across the
domain.

The results for the homogeneous 1090 μm and 1325 μm domains are presented in Figs. 5
and 6 respectively. The effects of the non-uniform lighting are also observed in these two
cases. These effects become problematic when quantifying the toe length (TL) and the width of
the mixing zone (WMZ). The TL is defined as the horizontal distance between the saltwater
boundary and the location of the 50% concentration isoline as it intersects the bottom
boundary. The WMZ is defined as the vertical distance between the 25% and 75% concentra-
tion isolines averaged along the horizontal length of the saltwater wedge. The brighter area
around the middle of the domain results in the Random Forest method assigning lower
concentrations of saltwater in this area compared to the pixel-wise method. This apparent
dilution of saltwater occurs at the toe of the intruding wedge, distorting the 50% concentration
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isoline used to calculate the TL. Furthermore, the diluted area produces an expanded mixing
region, artificially increasing theWMZ. The 1325 μm bead case shows the greatest variation in
light intensity distribution across the domain (Fig. 6). This is reflected in the concentration
fields calculated by both the pixel-wise and Random Forest methods, which show larger and
more frequent variations compared to the other homogeneous bead cases.

The results from the heterogeneous cases are shown in Figs. 7 and 8 for the Layered and
Blocked cases respectively. From visual inspection, the saltwater wedge is clearly identifiable.
However, Fig. 7b shows significantly high saltwater concentration in the upper layer
(1325 μm) of the Layered case. A particularly high saltwater concentration was observed in
the top right corner, which should only contain freshwater. Furthermore, the area of the
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Fig. 4 Saltwater concentration fields determined from the pixel-wise and random forest calibrations for the
steady-state dH = 4 mm 780 μm case
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concentration discrepancy extends into the upper portion of the saltwater wedge, artificially
increasing the thickness of the mixing zone in this region. The concentration prediction in the
lower layer (780 μm) is much more realistic, with peaks of 12% saltwater concentration in the
freshwater region. The saltwater concentration difference (ΔC) highlights the discrepancies
between the Random Forest and pixel-wise methods, determined by:

ΔC ¼ CPW−CRFj j ð1Þ
where CPW and CRF are the pixel-wise and Random Forest concentration predictions
respectively. The spatial distribution of ΔC is shown in Fig. 7c for the Layered case. It is
clear that the greatest variations occur along the saltwater-freshwater interface and within
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Fig. 5 Saltwater concentration fields determined from the pixel-wise and random forest calibrations for the
steady-state dH = 4 mm 1090 μm case
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the upper 1325 μm layer. The Blocked case shows much less variation across the domain
compared to the Layered case, as shown in Fig. 8b. The individual blocks of different
bead diameters are still identifiable from the concentration field plot. However, the
magnitude of the variations in the 1325 μm zones show significant reduction in ΔC
compared to the Layered case (Fig. 8c). Similar to the Layered case, the variation is
largest along the saltwater-freshwater interface. This becomes problematic when quanti-
fying both the TL and WMZ. The mean and standard deviation ΔC for each test case is
summarised in Table 1. On average, the Layered case showed the most variation,
followed by the 1325 μm case. For this bead size, the formation of trapped air pockets
occurred much faster compared to the smaller bead sizes. The air bubbles act to reduce

X(m)

Z(
m

)
a. 1325 m cropped camera image

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.04

0.08

0.12

Li
gh

t I
nt

en
si

ty

0

100

200

X(m)

Z(
m

)

b. 1325 m calibration - Pixel-wise

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.04

0.08

0.12

S
W

 c
on

c.
 (%

)

0

50

100

X(m)

Z(
m

)

c. 1325 m calibration - Random Forest

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.04

0.08

0.12

S
W

 c
on

c.
 (%

)

0

50

100

Fig. 6 Saltwater concentration fields determined from the pixel-wise and random forest calibrations for the
steady-state dH = 4 mm 1325 μm case
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the light intensity of affected pixels, and the calibration methods would artificially
increase the concentration in these locations. Hence, the underperformance of the
Random Forest method may be attributed to these air bubbles.

The quantification of SWI parameters is an integral part of the automated image analysis
procedure developed in (Robinson et al. 2015). Therefore, the output from the procedure is a
key factor in assessing the accuracy of the Random Forest method compared with the pixel-
wise method. The routines to calculate the TL and WMZ were run on the concentration fields
calculated by the Random Forest method and compared to the pixel-wise method. The results
are summarised in Table 2, where:
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Fig. 7 Results from the Layered steady-state dH = 6 mm case, including: (a.) processed camera image for
analysis, (b.) Random Forest concentration field, and (c.) concentration field difference between Random Forest
and pixel-wise methods
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dTL ¼ TLPW−TLRF ð2Þ

dWMZ ¼ WMZPW−WMZRF ð3Þ

As expected, the largest variations occur in the cases where 1325 μm beads constituted a
significant proportion of the aquifer, most notably, in the homogeneous 1325 μm and Layered
cases (Table 2). The TL appears to be captured reasonably well by the Random Forest model,
with the largest variation of 11 mm (7% difference compared to pixel-wise method) occurring
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in the 1325 μm case. The difference can be attributed to the apparent dilution of saltwater
concentration at the toe due to the non-uniform light distribution. The heterogeneous cases use
the dH = 6 mm steady-state images, where the wedge has not intruded far enough into the
aquifer for the TL to be affected by the non-uniform light distribution, and therefore show a
small variation of 2-3 mm (3% difference). Conversely, the Random Forest WMZ shows
significant deviation from those obtained using the pixel-wise method. Increases inWMZ of up
to 100% were observed for the 1325 μm case. In general, the WMZs for the Random Forest
method were larger than those given by the pixel-wise method, which can be attributed to the
concentration variation observed along the saltwater-freshwater interface (e.g. Fig. 7c and 8c).
Furthermore, the increased variation in the concentration field makes it more difficult for the
automated routines to identify the most representative concentration isolines (Robinson et al.
2015). The Blocked Random Forest WMZ compared reasonably well with results obtained
using the pixel-wise method, with a variation of only 0.3 mm, which is around the same size as
a single pixel.

To more clearly observe the differences between the pixel-wise and Random Forest
methods, vertical concentration sampling lines were taken at various locations along the
1325 μm case (Fig. 9a). Sampling lines were selected within 3 key regions of the aquifer:
(1) the fully freshwater zone (Fig. 9b), (2) the location of the intrusion toe (Fig. 9c) and (3)
within the boundaries for WMZ calculation (Fig. 9d). A moving average filter (5 pixels) was
applied to the concentration values along the sample lines to reduce noise and more clearly
show the differences. At all 3 sample locations, the effect of the non-uniform backlighting can
be observed by the apparent increase in concentration at the top of the image for the Random
Forest results when compared to pixel-wise method (Fig. 9d). For sample line 2, at the
intrusion toe Fig. 9c), the Random Forest saltwater concentration at the bottom fluctuates
around 55%, while the pixel-wise concentration varies around 95%. As discussed previously,

Table 2 Summary of the toe length and width of mixing zone differences between the Random Forest and pixel-
wise calibration methods

Test Case Parameter Difference

dTL (mm) dWMZ (mm)

780 μm ( dH = 4 mm) −0.5 −1.6
1090 μm ( dH = 4 mm) 7 −2.4
1325 μm ( dH = 4 mm) 11 −4
Layered ( dH = 6 mm) −2.3 −2.7
Blocked ( dH = 6 mm) −2.7 0.3

Table 1 Summary of the concentration difference ΔC statistics between the Random Forest and pixel-wise
calibration methods

Test Case ΔC statistics

Mean (%) Stdev. (%)

780 μm ( dH = 4 mm) 7.37 7.19
1090 μm ( dH = 4 mm) 5.82 6.82
1325 μm ( dH = 4 mm) 8.82 10.34
Layered ( dH = 6 mm) 12.79 13.35
Blocked ( dH = 6 mm) 6.72 4.91
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the TL is quantified by finding the intersection of the 50% saltwater concentration isoline with
the bottom boundary of the aquifer. The apparent dilution of saltwater concentration observed
in the Random Forest results would make it difficult for the automated analysis routine to
determine the most representative 50% concentration isoline, resulting in an artificial reduction
in TL. On the other hand, this apparent dilution has the added effect of artificially increasing
the WMZ. Fig. 9d shows the saltwater concentration along a sample line taken within the
boundaries used for quantification ofWMZ. While the location of the 25% concentration value
is similar for both pixel-wise and Random Forest methods (Z25 = 0.024 m), the location of the
75% concentration value is quite different. The pixel-wise regression method shows Z75 =
0.020 m, resulting in WMZ = 4 mm, while the Random Forest method gives Z75 = 0.004 m,
equating to WMZ = 20 mm. At face value, this increase seems substantial, but the apparent
dilution caused by the non-uniform light distribution is restricted to primarily around the toe
location and at the saltwater boundary. In fact, the large discrepancy was partly averaged out
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by the sampling along the rest of saltwater-freshwater interface, a shown in Table 2 (dWMZ =
4 mm). Although this difference is still significant for experiments at this scale, it may not be
as important in larger scale tests.

Although generally considered as a deficiency of the Random Forest method, the
inability of the method to predict a value of concentration beyond the range of the
training data is advantageous in that at no stage was a pixel assigned a saltwater
concentration higher than 100% or lower than 0%. On a number of occasions, the
pixel-wise method predicted concentrations marginally higher than 100%, especially
along the bottom boundary of the aquifer (Fig. 9c and d). The Random Forest method
is also advantageous in that the images do not have to be perfectly synchronised in
space. For the pixel-wise method, extreme care was required to not disturb the camera
during testing to reduce the risk of introducing errors from desynchronised images. The
improved efficiency of the Random Forest model provided time savings of around 35%
for this experimental setup. It is expected that the time savings would increase as the
scale of the experiment increases.

5 Summary and Conclusions

This study introduced a calibration approach that could relate light intensity to concen-
tration for image analysis of laboratory-scale sandbox experiments using the Random
Forest method (Breiman 2001). The goal of the study was to develop a unified calibra-
tion methodology that could be applied to a wide range of experiments using different
grain diameters and heterogeneous configurations, without the need to acquire specific
calibration images for individual cases, thus increasing testing efficiency. The model was
trained using calibration images from previous experiments, where no special measures
were undertaken in the image acquisition to facilitate the model. The model was then
applied to images from steady-state test cases and the results compared to those from the
high resolution pixel-wise calibration method introduced in (Robinson et al. 2015). The
main conclusions from the study are:

1. The Random Forest-based calibration model captured the general shape of the saltwater
wedge and the extent of intrusion. The model was sensitive to back light distribution,
where strong variations in lighting were conserved through the calibration and appeared as
either artificially high or low concentration regions in the output saltwater concentration
fields;

2. The models performance varies according to the bead diameters. The 1090 μm case
showed the least variation out of the homogeneous cases, with the 1325 μm case showing
significant variations at the edges of the sandbox. This was partly due to trapped air
forming in the 1325 μm test case, coupled with the non-linear back light distribution;

3. In the heterogeneous cases, the Random Forest model performance was poor in areas
constructed of 1325 μm beads, such as the upper layer in the Layered case. The greatest
deviations between the Random Forest model and the pixel-wise method were observed
around the edges of the sandbox and along the saltwater-freshwater interface.

4. The Random Forest model predicted TL well, where most cases were within a few
millimetres of the pixel-wise method. The WMZ was generally larger for the Random
Forest model compared with the pixel-wise method, particularly for the 1325 μm case.
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The Random Forest calibration method provided promising results, especially considering
the calibration images were not acquired with the process in mind. With a concerted effort to
minimise non-linear light distribution, through rigorous setup of the back lights and orientation
of the sandbox, the Random Forest method could provide much more accurate results than
those presented in this study. The discrepancies observed in the TL and WMZ, although
significant for these tests, are not expected to scale with increasing the size of the sandbox.
Therefore the Random Forest method shows potential, especially considering the significant
time savings, where unique calibrations for each aquifer configuration are not required. This
time saving is expected to increase exponentially with increasing scale of the sandbox
experiment, providing a much more efficient method of calibration for image analysis.
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