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Abstract

Persistent variations of the log price-to-dividend ratio (PD) and their economic

determinants have attracted a lively discussion in the literature. We suggest a grad-

ually time-varying state process to govern the persistence of the PD. The adopted

state space approach offers favourable model diagnostics and finds particular sup-

port in out-of-sample stock return prediction. We show that this slowly evolving

mean process is jointly shaped by the consumption risk, the demographic structure

and the proportion of firms with traditional dividend payout policy during the past

60 years. In particular, the volatility of consumption growth plays the dominant

role.
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The log price to dividend ratio (PD) in the US embarked an upward trend since the

1980s that deviates markedly from its historical average in the preceding century. Market

valuation reached unprecedented levels relative to any fundamental values in the new

millennium. There is cumulating evidence for structural break(s) or instability in the mean

of the PD (Lettau, Ludvigson, and Wachter 2008) and in the relation between the PD

and future stock returns (Paye and Timmermann 2006, Rapach and Wohar 2006, Welch

and Goyal 2008). Coping with the persistence of the PD, Lettau and Van Nieuwerburgh

(2008) suggest a regime-switching model that allows discrete mean shifts. In particular,

they show that deviations from shifting means of the PD carry predictive power for stock

returns in-sample, but fail to signal stock returns ex-ante compared with the historical

average return. Empirical evidence indicates that the increasing mean of the PD could

be due to a persistent deceleration of macroeconomic risks which can be measured by the

volatility of consumption growth rates (Bansal and Yaron 2004, Bansal, Khatchatrian, and

Yaron 2005, Lettau et al. 2008, Bansal, Kiku, and Yaron 2010), changes in demographic

structures of the population (Geanakoplos, Magill, and Quinzii 2004, Favero, Gozluklu,

and Tamoni 2011), and the dividend pay-out policy by firms (Fama and French 2001,

Robertson and Wright 2006, Boudoukh, Richardson, and Whitelaw 2008, Kim and Park

2013).

In this paper we consider a gradually time-varying mean of the PD that enables

simultaneous testing of distinct determinants of persistent patterns characterizing the

PD. In the framework of a nonlinear state space model we estimate a latent process

reflecting the slowly evolving mean of the PD within a generalized version of the present

value model introduced by Campbell and Shiller (1988). In explaining persistence, the

consideration of local PD means firstly allows for a comparison with the (succession of)

discrete mean shifts, particularly in terms of out-of-sample predictive power for stock

returns. Secondly, it offers an opportunity to look for common trends linking the local

PD mean, consumption risk, the demographic structure, and the dividend payout policy

of firms. Using a nonlinear sate space model can be linked to recent applications of linear

state-space models (with Kalman filtering) for modelling stock returns (e.g. Binsbergen
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and Koijen 2010, Rytchkov 2012). Binsbergen and Koijen (2010), for example, treat

the expected return and expected dividend growth as two latent processes. However,

these studies assume an exogenous fixed mean of the PD and, thus, are not necessarily

consistent with the observed persistence in the PD. Addressing the persistence of the PD

explicitly, the latent process considered in this work can be interpreted as a combination of

local means of expected returns and expected dividend growth. Owing to intrinsic non-

linearity, the Kalman filter doesn’t offer optimal solutions. We adopt particle filtering

(e.g. Cappé, Godsill, and Moulines 2007), a flexible Monte Carlo technique, for consistent

log-likelihood assessment, inferential and model selection issues.

We find that a gradually time-varying mean of the PD is strongly supported by log-

likelihood diagnostics. The estimated long-term state has some step-like patterns similar

to mean shifts with two structural breaks as suggested by Lettau and Van Nieuwerburgh

(2008). Importantly, the slowly evolving process allows a simple projection towards the

future, and straightforward implementation of standard predictive regressions for stock

returns conditional on this information. Local deviations of the PD from its gradually

time-varying mean carry out-of-sample predictive power. Using the out-of-sample degree

of explanation based on the root mean squared error (RMSE) (Goyal and Welch 2003),

we confirm the significance of the out-of-sample forecasting performance in comparison

with both historical average returns and PD adjustments using discrete mean shifts. As

economic underpinnings of both PD persistence and out-of-sample predictive content, we

find that consumption risk, the demographic structure and the dividend payout policy of

firms jointly shape the slowly evolving mean of the PD during the past 60 years. The

adopted error correction approach allows the data to determine the transmission channel

among the observed trends in financial markets and the underlying economy. All long run

determinants of the PD are diagnosed weakly exogenous. A low consumption volatility

risk drives down equity premia and pushes up the stock price (Bansal and Yaron 2004).

The decreasing volatility in the consumption growth rate has the highest contribution in

explaining the increasing mean of the PD. A high middle-aged to young ratio, leading to

excess demand for saving, drives up the equilibrium asset prices (Geanakoplos et al. 2004).
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The significant increases in the mean of the PD in the 1990s are consistent with increases in

the middle-aged to young ratio during this period. In addition to the macroeconomic and

demographic influences, lowered dividends can affect the long-run relationship between

stock prices and dividends (Kim and Park 2013). The fall in the proportion of firms that

payout a significant fraction of their earnings in the form of dividends since the 1980s is

consistent with the increasing mean of the PD. Nevertheless, among the three factors this

has the smallest contribution in explaining the variations in the mean of the PD.

The rest of the paper is organized as follows. Section 1 illustrates the persistence of

the PD, sketches its implications for the standard present value model, and introduces the

state space model of the PD incorporating a gradually time-varying mean. The forecast-

ing model, evaluation methods and forecasting performance are discussed in Section 2.

In Section 3 we investigate the linkage between the gradually time-varying mean of the

PD and its potential influences. Section 4 concludes. Appendices provide detailed de-

scriptions of the data (Appendix A), the particle filtering approach (Appendix B), and

approximation errors involved in the derivation of the present value model (Appendix C).

1 A STATE SPACE MODEL OF THE PD

In this section we first discuss the observed persistence of the PD and its implications

for respective present value formulations. Then a latent gradually time-varying mean

of the PD is formally derived and estimated, which is in line with the diagnosed trends

governing the PD. Log-likelihood statistics support the view that the present value model

of the PD incorporating a gradually time-varying mean outperforms the model with a

constant mean and models with discrete mean shifts. We consider annual data for the

period 1926 to 2013 from the Center for Research in Security Prices (CRSP) and S&P500

data from 1871 to 2013, see Appendix A for detailed information.

1.1 Persistence of the PD

The persistent increase of stock prices relative to dividends from 1980 to 2000 can be

seen from Figure 1. We find that the PD can be well described by a non-stationary
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process, which confirms findings in previous studies; see for example Campbell (1999),

Herwartz and Morales-Arias (2009) and Park (2010). Table 1 documents results from

numerous unit root tests. The hypothesis of a non-stationary PD cannot be rejected with

5% significance by means of the ADF test, tests proposed by Phillips and Perron (1988),

Elliott, Rothenberg, and Stock (1996) and Ng and Perron (2001).1

Figure 1 about here

The PD is unlikely to be a stationary process even taking into account the power

weakness of unit root tests under near integration. As can be seen from the last column

of Table 1, the null hypothesis of stationarity of the PD is rejected by means of the

KPSS statistic (Kwiatkowski et al. 1992). Moreover, testing the unit root hypothesis as

proposed by Perron and Vogelsang (1992) we find that the PD can be better described by

a non-stationary process than by a stationary process with a structural break at unknown

timing (see column 5 in Table 1, ‘PV’).

Table 1 about here

As noted by Campbell (2008), the persistence of the PD challenges the present value

model in Campbell and Shiller (1988) that rests on the assumption of a stationary PD.

Let Pt and Dt denote stock prices and the corresponding dividends in time t, respectively.

The total log-return, realized at the end of period t+ 1, rt+1 = ln(Pt+1 +Dt+1)− ln(Pt),

can be formulated as a nonlinear function of the PD, ηt = ln(Pt)− ln(Dt),

rt+1 = −ηt + ln (exp(ηt+1) + 1) + ∆dt+1, (1)

where dt = ln(Dt) and ∆ is shorthand for the first difference operator such that, e.g.,

∆dt = dt − dt−1. A first order Taylor expansion around a fixed steady state η provides

1 It is worthwhile to mention that opposite to pure random walks diagnosed by common unit root tests,
actual PD processes cannot grow to any level. Recently, bounded non-stationary processes have attracted
interest in the econometric literature (Cavaliere 2005). Cavaliere and Xu (2014) have proposed a novel
ADF based approach to test for unit roots in the presence of bounds. The critical values of such tests
are smaller (i.e., larger in absolute value) than those of unit root tests neglecting the bounded nature of
a variable of interest. Thus, if common unit root tests hint at non-stationarity, bounded non-stationarity
will be diagnosed once the bounds are taken into account.
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the linear approximation

rt+1 ≃ κ− ηt + ρηt+1 +∆dt+1, (2)

with ρ ≡ 1/(1+exp(−η)) and κ ≡ − ln(ρ)− (1−ρ) ln(1/ρ−1). In the empirical analysis,

the constant parameter η is assumed to be known and commonly approximated by the

sample mean (e.g. Campbell 1999). Under persistent behaviour of the PD, η is unlikely

to be constant and ρ becomes also time-varying. Figure 2 illustrates the time variation of

sample means of the PD from rolling time windows covering observations from the most

recent 20 years.

Figure 2 about here

1.2 A State-Space Approximation

Taking a gradually time-varying mean of the PD into account, we modify the traditional

present value model of the PD. Let η̃t denote the local mean employed to expand the

Taylor approximation of the one-step-ahead stock returns in (1). We obtain

rt+1 ≃ κt − ηt + ρtηt+1 +∆dt+1, (3)

with both parameters (κt and ρt) in (3) becoming time-specific, i.e.,

ρt ≡ 1/(1 + exp(−η̃t)) and κt ≡ − ln(ρt)− (1− ρt) ln(1/ρt − 1). (4)

To derive the present value formulation of the PD from (3), the following approximations

similar to those in Lettau and Van Nieuwerburgh (2008) are adopted: Et[ρt+i] ≈ ρt,

Et[κt+i] ≈ κt and Et[ρt+iηt+i+1] ≈ Et[ρt+i]Et[ηt+i+1]. Simulation studies documented in

Appendix C show that combined approximation errors are negligible for typical values of

η̃t. Taking the conditional expectation and iterating equation (3) forward, provides the
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log-linear present value formulation of the PD

ηt ≃ κt
1− ρt

+
∞∑
i=1

ρi−1
t Et[∆d

e
t+i − ret+i] + lim

i→∞
ρitEt[ηt+i], (5)

where superscripts e symbolize the excess of dividend growth rates (∆det+i = ∆dt+i−rft+i)

or of returns (ret+i = rt+i − rft+i) over the risk-free interest rate rft . Changes in the long-

term state of the PD affect the observed PD in a nonlinear fashion. A time-varying η̃t

leads to a time-varying rather than a constant intercept term κt/(1− ρt). Future return-

adjusted dividend growth rates are discounted at time-varying rates ρt rather than at a

constant one.

An intuitive way to link equation (5) to the traditional present value model in Campbell

and Shiller (1988) is to reconsider it from the perspective of an investor who can only

quantify the mean of the PD conditional on past information. In this case, as shown in

Lacerda and Santa-Clara (2010), the mean of the PD becomes time-varying and one can

introduce directly a time index t for the parameters ρ and κ in the traditional present

value model to derive equation (5) (see also Figure 2). The proposed model offers a

structural interpretation for this approach.

We employ a state space model to estimate the latent time-varying η̃t. Assume a ran-

dom disturbance term ϵt ∼ N(0, σ2
ϵ ) to capture eventual rational bubbles, approximation

errors, and other influences in lim
i→∞

ρitEt[ηt+i]. Further substituting Et in (5) by objective

expectations conditional on information available at the end of period t (Ẽt ), equation

(5) is transformed into the measurement equation,

ηt =
κt

1− ρt
+

∞∑
i=1

ρi−1
t Ẽt[∆d

e
t+i − ret+i] + ϵt, (6)

with κt and ρt being nonlinear functions of η̃t (see (4)). The state equation formalizes a dy-

namic pattern for the latent process η̃t, which is consistent with the diagnosed persistence

of the PD,

η̃t = η̃t−1 + ut, (7)
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where ut ∼ N(0, σ2
u), and the initialization η̃0 is treated as a model parameter. Henceforth,

we refer to this model as the randam walk (RW) state specification. As a particular

alternative state equation we consider a stationary first order autoregressive (AR(1))

state process, i.e.,

η̃t = δ + αη̃t−1 + ut, (8)

where |α| < 1, ut ∼ N(0, σ2
u) and η̃0 = δ/(1 − α).2 Coping with the nonlinear rela-

tion between the PD and its latent mean process, the state space model in (6) coupled

with (7) or (8) is estimated by means of particle filtering (Cappé et al. 2007). We sketch

this method in the context of the considered state space model below. A more detailed

discussion can be found in Appendix B.

Compared with a framework of structural breaks, a continuously evolving steady state

of the PD not only allows to test for its various determinants, but may, particularly, im-

prove out-of-sample forecasting of stock returns. In-sample forecasting of stock returns

with structural breaks takes advantage of the maximum of available information, since

subsample means can be easily determined conditional on full samples. For out-of-sample

forecasting, however, the performance of break adjusted schemes is weakened since tim-

ing and magnitude of the breaks are unknown and have to be estimated (Lettau and

Van Nieuwerburgh 2008). In contrast, the state space model with particle filtering uses

(mainly) past information to estimate the latent mean of the PD. Although this feature

might be informationally inferior for in-sample forecasting, it has an edge over the break

adjusted schemes in out-of-sample prediction. Estimates of the latent state (η̃t) continu-

ously adapt to new information, and can be easily extended into the future. It becomes

unnecessary to locate break dates and magnitudes.

Compared with recent applications of linear state-space models for forecasting stock

returns (e.g. Binsbergen and Koijen 2010, Rytchkov 2012) the above nonlinear state-space

2 We allow for many alternative specifications of the state process: a random walk with variance breaks, a
non-stationary AR(2) model, a random walk with leptokurtic innovations or a moving average structure
of the error term and an autoregressive process with parameter shifts. Irrespective of these alternatives
the estimated state processes come very close to the one extracted from the pure random walk model
in (7).
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model has two important characteristics.

First, the measurement equation in (6) formalizes the PD (ηt) as a nonlinear function

of the latent state (η̃t). Hence, the Kalman filter - the natural tool for estimation and

inference in linear state-space models - might, at best, provide an approximate repre-

sentation of the PD in the present context. In light of marked efficiency losses involved

with such linear approximations, Monte Carlo (MC) approaches such as particle filtering

are preferable to assess accuracy of nonlinear models (see e.g. Fernández-Villaverde and

Rubio-Ramı́rez (2005) and Fernández-Villaverde and Rubio-Ramı́rez (2007) for the case

of dynamic stochastic general equilibrium models).3 Particle filtering weights a set of sam-

ples (particles) in accordance with their time local log-likelihood contributions (see e.g.

Ristic, Arulampalam, and Gordon (2004) and Doucet, De Freitas, and Gordon (2001)).

Thus, it does not require the restrictive assumptions of the Kalman filter. With an increas-

ing number of samples, likelihood assessment by means of the particle filter is consistent

and, hence, as precise as warranted by the analyst. In this framework likelihood based

tests (Vuong 1989) may conveniently substitute common (quasi) ML test statistics based

on the Kalman filter for model selection and inferential issues.

Second, the present-value relationship among the PD, expected returns and dividend

growth serves as an estimation equation in this paper. Under the assumption of a constant

and known mean of the PD, the traditional present value relationship (Campbell and

Shiller 1988) serves as an identity restriction in state space models similar to the one in

Binsbergen and Koijen (2010). This enables identification of two latent state variables

- e.g., expected returns and expected dividend growth in Binsbergen and Koijen (2010).

However, the imposition of a constant mean of the PD could lead to biased estimates for

the latent expected return and dividend growth if the actual PD is persistent. Consistent

with the diagnosed trends governing the PD, we formalize a latent varying mean of the PD

to maximize the informational content of the present value model in (6). The variations

in the steady-state PD reflect a combination of variations in the steady-state expected

3 Similar caveats for Kalman filter based approximations are known from the literature on stochastic
volatility models (Kim, Shephard, and Chib 1998, Pitt and Shephard 1999). For our generalized present
value model we are not aware of a linear approximation that might be evaluated by means of Kalman
recursions.
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returns and expected dividend growth.4

1.3 Model Implementation

We use particle filtering based on 3000 trajectories for an approximation of the models’

log-likelihood, subsequent parameter and state estimation. Before applying the particle

filter, we need to determine objective expectations about future excess dividend growth

rates and excess returns in (6). We follow Campbell and Vuolteenaho (2004) and employ

low dimensional vector autoregressions (VARs) of order one comprised of the PD series,

excess dividends growth rates, excess returns and inflation ({ηi,∆dei , rei , πi}ti=1).
5 The

VAR based determination of objective expectations (Ẽt[∆d
e
t+i] and Ẽt[r

e
t+i]) goes back

to Campbell and Shiller (1988) and Campbell (1991).6 Including the PD in the VAR

provides unobservable market information about the future dividends and returns. The

reduced form VAR is also flexible by timely updating most relevant market information.

To evaluate η̃t, objective expectations - Ẽt[∆d
e
t+i] and Ẽt[r

e
t+i] with i > 0 - are determined

conditional on most recent information available in time t.7

We take an adaptive approach to the choice of the VAR sample size such that it not

only provides efficient parameter estimates under structural invariance of VAR dynamics,

but also responds to structural changes. Specifically, we evaluate in each forecast origin

VAR models conditioning on samples Ωt,ω = {ητ ,∆deτ , reτ , πτ , τ = t− ω + 1, . . . , t} with

alternative lengths (ω = 20, 21, . . . , 30). To determine ex-ante predictions ∆̂d
e

t+i and r̂
e
t+i,

we employ the VAR with the particular window size ω that minimizes the root mean

squared errors for the ten most recent in-sample observations {∆dem − rem}m=t
m=t−9.

8 The

4 It is noticeable that it is not straightforward in this framework to treat expected returns or/and expected
dividend growth as additional latent state variables simultaneously.

5 The inclusion of inflation accounts for the eventual effects of money illusion on equity prices.
6 In related contexts, VAR based predictions have also been used to approximate price expectations, for
instance by Sbordone (2002) and Rudd and Whelan (2006). By means of a theoretical model on the
generation of inflation expectations Branch (2004) shows that economic agents use more often VAR
forecasts for expectation formation in comparison with adaptive or naive prediction rules.

7 Note that we include a constant in the VAR model. One may argue that a VAR model with a deterministic
trend might be more suitable to model a persistent PD. Estimates for the latent process (η̃t) display similar
dynamics if a time trend is included. Using a trend in the VAR doesn’t change the essence of the results.

8 To assess the robustness of outcomes we consider a set of robustness tests (i) using fitted errors regarding
excess returns {rem}m=t

m=t−9 instead of {∆dem − rem}m=t
m=t−9; (ii) using the five most recent observations in

{∆dem−rem}m=t
m=t−4 to compute the RMSE; or (iii) using the mean absolute error criterion instead of RMSE.

The corresponding results with regard to the evaluation of the state space model are quantitatively almost
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initialization period for VAR forecasting comprises 30 observations. Following Lettau

and Van Nieuwerburgh (2008) we focus mainly on annual CRSP stock market data.9 To

evaluate the state space model from 1926 (a common starting period in the literature),

we joined the CRSP data starting in 1926 with the S&P500 data before this period. In

addition, we consider the S&P500 and estimate the state space model for the sample

period 1901 to 2013.

1.4 Estimates and Diagnostics

The estimated parameters and diagnostic statistics for numerous model specifications

including the time-varying mean model are documented in Table 2. For purposes of com-

parison we also estimate the constant mean model (Campbell and Shiller 1988) and the

model of discrete mean shifts proposed by Lettau and Van Nieuwerburgh (2008). The lat-

ter is a regime-switching model and employs the supremum F -test (Bai and Perron 1998,

2003) to determine the timing of the breaks as proposed by Lettau and Van Nieuwerburgh

(2008). In the case of one shift it is diagnosed to occur in 1992, and in the case of two

breaks the respective locations are 1955 and 1993.10

Table 2 about here

We adopt the BIC and the Vuong statistic for model comparison (the last two columns

of Table 2). A smaller BIC indicates the superiority of a model. The Vuong statistic is

particularly helpful in isolating idiosyncratic contributions to diagnostics of non-nested

models. It is calculated taking the time-varying state model with the RW state equation

as baseline specification. Negative statistics indicate a lead of the baseline model. We

refrain from using formal likelihood ratio (LR) tests for model comparison, since common

identical.
9 The 3-month Treasury Bill rate is employed to approximate the risk free rate and the CPI to measure
inflation.

10These break points are close to those diagnosed in Lettau and Van Nieuwerburgh (2008) who analyse
a slightly distinct sample period (1926 to 2004). The null hypothesis of no break is rejected with 1%
significance against one or two breaks (supF (1|0) = 18.12 and supF (2|0) = 23.90). The null hypothesis
of one break is rejected against the alternative of two breaks (supF (2|1) = 9.56) with 10% significance.
The applied test procedure is robust to serial correlation and heteroscedasticity, the trimming is 5% of the
sample. ML estimates of the break points differ only slightly from those detected by means of supremum
tests, and all subsequent results are qualitatively identical. Detailed results are not shown due to space
considerations and are provided by the authors upon request.
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χ2 critical values may lack applicability. For instance, the constant mean model is at the

bound of the variance parameter in the more flexible RW specification.

We find that estimating η̃t conditional on either a RW or a stationary AR(1) state

equation provides very similar results. Both implied state processes can only be differ-

entiated marginally in the early and later sample periods (see Figure 3). It turns out

that both estimates of η̃t lead to qualitatively identical results for the remaining empirical

analysis. We concentrate on the estimates from a RW state equation henceforth, since it is

in the lead over a stationary AR (1) process according to log likelihood based diagnostics.

Figure 3 about here

Moreover, the model with a gradually time-varying mean of the PD outperforms its

constant mean counterpart and models with discrete mean shifts. Considering the RW

state process (7), the log-likelihood value conditioned on CRSP data for a time-varying

state model is about 168.4 while the respective statistic for the constant state model is

23.9. The lead of the more flexible model approach over the static benchmark present

value model can be visualized by eyeballing the estimated patterns of η̃t provided in

Figure 3. Both BIC and Vuong statistics are supportive for the time-varing mean model

over both the constant mean model and models with discrete shifts. Results for S&P data

yield identical conclusions as those for CRSP data.

2 FORECASTING PERFORMANCE

Time variation in the mean of the PD is valuable for the ex-ante modeling of stock

returns. In this section, we analyse how η̃t exploits the informational content of the PD in

so-called predictive regressions. We discuss predictive regression models for stock returns

conditional on CRSP data. Results for S&P data are qualitatively identical. Adjusting the

PD by means of its slowly evolving mean provides better out-of-sample forecasts in terms

of the RMSE and the out-of-sample R2 compared with centering the PD with discrete

mean shifts or using the historical average of returns as the predictor. In the following

we describe in-sample (IS) and out-of-sample (OOS) forecasting designs, and discuss in
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detail the forecasting performance of competing approaches.

2.1 Predictive Regressions

The predictability of stock returns is evaluated by means of common predictive regressions

of the following type (see e.g. Lettau and Van Nieuwerburgh 2008),

rt+1 = β0 + β1(ηt − st) + vt+1, (9)

where rt+1 denotes the total log-returns and vt+1 is an error term. We also use the predic-

tive regressions to assess the predictability of dividend growth rates, substituting ∆dt+1

for rt+1 in (9). To implement predictive regressions, the PD (ηt) is adjusted by alternative

state processes (st) such that ‘centered’ observations (ηt − st) are considered to predict

stock returns. Under the null hypothesis of no predictability, β1 = 0. Predictability of

return adjustments towards an equilibrium among prices and dividends imply β1 < 0.

Imposing β1 = 0 serves as the benchmark model (see e.g. Welch and Goyal 2008). For

IS analysis, the corresponding naive predictor is the full sample mean return. For OOS

analysis the naive predictor is the historical average return obtained up to the forecast

origin.

In the IS analysis we compare forecasting specifications obtained from four alternative

long-run states st ∈ {η̄, η(1)t , η
(2)
t , η̃t}. In the first specification the PD is centered by its

(full sample) mean (η̄). We refer to this setting as the ‘unadjusted’ PD since this model

is equivalent to that of using the actual PD series in the predictive regressions. In the

second and third specification, the PD is adjusted for one and two structural breaks (η
(1)
t

and η
(2)
t , respectively). Lastly, we adjust the PD by means of the gradually time-varying

mean η̃t, which is filtered from the state space model outlined in Section 1.

Initializing the OOS analysis, the first forecasting regressions use 20 years of data.

Then the estimation windows are expanded recursively as in Lettau and Van Nieuwerburgh

(2008). We consider three corresponding adjustments for the PD - st ∈ {η, ηt, η̃t} – all of

which are recursively estimated from the respective estimation samples. In the benchmark

setting, the PD is centered with its mean η from the estimation period. The second
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adjustment st = ηt corresponds to the case of discrete mean shifts. We apply supremum

F -tests and rely on the 10% significance level to determine the mean shift processes ηt.

Lastly, the PD is adjusted by η̃t conditioning only on the information from the estimation

periods.

Figure 4 about here

The four alternative long run states of the PD entering the IS analysis, st ∈

{η̄, η(1)t , η
(2)
t , η̃t}, are displayed in Figure 4. The smoothly evolving mean η̃t seems to

be mostly close to the mean with two structural breaks η
(2)
t . However, the former lags be-

hind the latter after the diagnosed break dates (1955 and 1993). This reveals the nature of

the particle filtering applied to the non-linear state space model. Although the parameters

of the state space model are estimated conditioning on the full sample information for the

IS analysis, the estimated latent process is mainly based on past information. Using the

RW state equation (7) as an example, each particle is equal to η̃
(i)
t−1 plus a draw from the

error term with variance σ2
u. Thus, being a (weighted) average of particles, η̃t is mainly

determined from the past information. This contributes to the slowly evolving nature of

the estimated gradually time-varying mean, which does not show much advantage for the

IS analysis, but could be crucial for the predictive power of the PD in the OOS analysis.

The core obstacle in using discrete break adjustments in OOS forecasting is to determine

the timing and magnitude of the breaks. The gradually time-varying mean η̃t overcomes

these difficulties. When there are no marked structural changes, it evolves around a rel-

atively stable level. In response to persistent movements, it adapts and incorporates the

new information gradually. Specifically, to obtain an update for η̃t by means of weighted

averaging, particles η̃
(i)
t−1 are ranked according to the fit of the corresponding measurement

equation for period t − 1. Particle η̃
(j)
t−1 enters η̃t with higher weight than particle η̃

(k)
t−1

when the error term in the measurement equation for the former is smaller than the one

for the latter. Along the updating steps the fittest particles survive. Readers may consult

Appendix B for more details.
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2.2 Forecast Evaluation

Results for in-sample analysis of predictive performance are documented in Table 3. Pre-

dicting stock returns in-sample, the unadjusted PD provides a small R2 of about 0.0392.

Adjusting the PD for shifts improves the explanatory content of predictive regressions

markedly. The R2 statistics increase to 0.1027 and 0.1751 for means with one and two

shifts, respectively (column 3 and 4). The magnitude and the statistical significance of

the estimated predictive coefficient (β1) increase as well. This evidence confirms findings

in Lettau and Van Nieuwerburgh (2008). As expected, with an in-sample degree of expla-

nation of about 0.0641 (column 5), adjusting the PD by a slowly evolving mean does not

outperform adjustments for discrete shifts in the mean. As an adaptive filtering process,

η̃t mainly depends on past information even in the in-sample setting. In contrast, the

break adjustments take into account the full sample information and ex-post minimize

squared approximation errors for the actual PD.

Table 3 about here

It is worth mentioning that the adjustment of the predictor variable by means of

a (discretely/continuously) varying mean in the PD mitigates the persistence, thereby

supporting the convenience of (9) for testing stock return predictability. If the predictor

variable is persistent and its innovations are positively correlated with returns, coefficient

estimates β̂1 from (9) are downward biased under the null hypothesis of no predictability

(e.g. Stambaugh 1999). The AR(1) coefficient for the observed PD is about 0.94 for

CRSP data. This persistence measure reduces to 0.77, 0.67, and 0.82 for the PD adjusted

with means implied by one and two structural breaks and the smoothly evolving mean,

respectively. Also the correlations between the innovations in the predictive regression

and those in an AR(1) regression of the predictor variable are moderate for all considered

predictor variables (between 0.53 to 0.67). We consider the Q-statistics of Campbell and

Yogo (2006) for a bias robust test of the predictive power for returns. The estimates of

β1 in (9) remain significantly different from zero for the PD adjusted for a time-varying
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mean or discrete shifts, but becomes insignificant for the unadjusted PD.11

Forecasting dividend growth, the unadjusted PD lacks predictive content. The pre-

dictive coefficient is not statistically significant at the 5% level and the R2 is negligible

(column 2 of lower panel). Neither break adjustments nor gradually time-varying mean

adjustments improve the performance in a sizeable manner (column 3-5 of the lower

panel). This evidence is in line with results from Lettau and Van Nieuwerburgh (2008)

for a similar sample period (1927 to 2004).

Table 4 about here

Results for real time (OOS) forecasting performance are documented in Table 4. Ad-

justing the PD for discrete mean shifts fails to improve upon using historical average

returns as benchmark predictors. In contrast, centering the PD around the gradually

time-varying mean obtains the smallest RMSE statistic among all predictors (last col-

umn in Table 4). Considering the full sample period from 1946 to 2013 (first panel in

Table 4), the naive benchmark, the unadjusted PD, centering with discrete mean shifts

and centering around η̃t results in RMSE statistics of 0.1694, 0.1751, 0.1793 and 0.1683,

respectively. The same ranking of the RMSEs holds if the sample period ends at 2004, as

considered by Lettau and Van Nieuwerburgh (2008) (lower panel in Table 4).12

To evaluate the statistical significance of the forecasting performance of alternative

predictors compared with using historical average returns as naive forecasts, we consider

an OOS degree of explanation (Welch and Goyal 2008),

R2
oos = 1− MSEs

MSEr̄

, (10)

where MSEr̄ denotes the mean squared forecast error from naive forecasts and MSEs

is the corresponding statistic from alternative models (9) with st ∈ {η, ηt, η̃t}. Under

11The Q−statistic can be interpreted as robust confidence intervals for slope estimates β̂1. Following the
convention to consider the upper bound of confidence intervals with 90% coverage probability to provide
evidence with 5% significance against H0 : β1 ≥ 0, we find that upper bounds are 0.222, -0.088, -0.266 and

-0.056 when using η̄, η
(1)
t , η

(2)
t and η̃t to adjust ηt in (9), respectively. Further results on bias corrected

inference in predictive regressions are available from the authors upon request.
12Results from mean absolute errors (MAEs) are qualitatively identical (not shown).
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the hypothesis of less (more) accurate forecasts from alternative model specifications

compared with naive predictions, the MSE of the benchmark model is smaller (larger)

than that of the alternative model, which corresponds to R2
oos < 0 (R2

oos > 0). Following

Rapach, Strauss, and Zhou (2010) the significance of R2
oos is evaluated by means of the

MSE-adjusted statistic in Clark and West (2007).13

Adjusting the PD in real time by η̃t outperforms the historical average return in

forecasting stock returns significantly. As can be seen from the second and fourth row of

Table 4, only adjusting the PD for the gradually time-varying mean (η̃t) provides positive

and significant R2
oos statistics. We find the same evidence for S&P500 data (corresponding

results are available upon request).

Figure 5 about here

Following Welch and Goyal (2008) we provide further insights into OOS forecasting

performance over time and depict the difference of the cumulative squared forecasting

errors of naive forecasts minus those of the alternative models in Figure 5.14 We find

that using the gradually time-varying mean adjustment improves the forecasting strength

of the PD throughout the entire sample period compared with the unadjusted PD or

using break adjustments. The performance curve of adjusting the PD by its gradually

time-varying mean falls least during periods with structural changes, and has the longest

positive trend during the relatively tranquil periods. The two ex-post identified structural

changes occur in 1955 and 1993. In a real time forecasting situation, all three predictors

(st ∈ {η, ηt, η̃t}) start to underperform in comparison with the naive forecasts around

1957 and embark a negative trend. However, adjusting the PD by η̃t, the respective

performance curve falls least (black solid line). The performance curve of the unadjusted

PD (grey solid line) falls a bit more than the one from the break adjusted PD (black

dashed line). The former reaches its bottom around 1968 and starts to follow the positive

trend that is led by the performance lines of the two adjusted predictors. All three

13 It is worth to point out that the alternative state processes are re-estimated at each period given available
sample information. Thus, the varying mean processes of the PD change with each forecast origin.

14One can look at the performance for any OOS periods by redrawing a horizontal line at the start of OOS
periods. If the curve terminates at a higher (lower) point at the end of OOS periods, the alternative
model has a lower (higher) RMSE over the OOS periods of interest.
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predictors outperform the naive forecast in periods with oil price shocks in 1973/1974.

The good performance of the unadjusted PD during this period has also been noted by

Welch and Goyal (2008). Centering the PD around its slowly evolving mean, however,

obtains the only predictor that sustains this positive trend until 1994. The performance

curves of both the unadjusted PD and the break adjusted PD reach their peaks in the

early 1980s and start to fall since then. From 1994, the performance of all three predictors

drops dramatically, with adjusting the PD for its gradually time-varying mean dropping

the least. The strongest performance deterioration (and weakest recovery since 1999) is

observed when centering the PD around discrete shifts in mean. All in all, due to its

adaptive potential in both turmoil and tranquil periods, adjusting the PD by the slowly

evolving mean offers superior ex-ante signalling.

Table 5 about here

It is worth noting that it is rare to observe a predictor outperforming the historical

average return for forecasting returns out of sample for the entire period from 1946 to

2013. We have considered 13 other popular predictors as documented in Goyal and Welch

(2003).15 Only one of these predictors, the earnings to price ratio, has outperformed the

historical average return showing a significantly positive R2
oos statistic (see the column

under ‘e/p’ in Table 5). This result confirms the importance of a time-varying mean of

the PD in predicting returns in real time. Also, in-sample R2 statistics are quite small

for the considered period. Only six predictors obtain a R2 statistic in excess of 0.01 with

the highest R2 being 0.0621 for a predictive regression based on net equity expansion (see

the column under ‘ntis’ in Table 5).

3 LONG-RUN DETERMINANTS OF THE PD

The generalization of the present value model in Campbell and Shiller (1988) and its state

space representation in Section 1 allows to extract a gradually time-varying mean of the

PD from stock market data. Given the evidence in favour of trends to govern the PD

15Data are obtained from Amit Goyal’s website. We consider all predictors for which data are available
from 1926 to 2013.
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locally in terms of likelihood diagnostics and OOS forecasting performance, it is tempting

to address if this trend is shared by economic fundamentals. Diagnosing a cointegrating

relation among the local mean of the PD and economic fundamentals would establish a

powerful link among financial markets and the underlying economy. Moreover, comple-

menting a cointegration analysis with indications of weak exogeneity is informative to

address the transmission channel between the considered variables towards equilibrium.16

We investigate three important factors that have been individually documented to affect

the PD in a long-run manner – consumption risk, the demographic structure of the pop-

ulation, and the dividend payout policy of firms. We find that all three factors jointly

shape the slowly evolving mean of the PD, and diagnose consumption volatility to be

the most important influence. Violations of the long run equilibrium among the four

series are mostly channelled through adjustments of the PD. In the following we discuss

the considered factors and provide evidence from a cointegration analysis to assess their

explanatory content. A detailed description of the variables is given in Appendix A.

3.1 The Three Long-Term Determinants

Consumption risk The influence of macroeconomic uncertainty on asset prices and

equity premia has been long recognized in the asset pricing literature.17 More recent

studies such as Bansal and Yaron (2004) and Lettau et al. (2008) use recursive Epstein

and Zin (1989) preferences, and demonstrate that a rise in consumption volatility can

raise the expected return and lower asset prices. Empirically, Lettau et al. (2008) show

low frequency evidence while Bansal et al. (2005) provide higher frequency evidence on

the contribution of lower consumption volatilities to higher asset prices particularly since

the 1990s. Bansal et al. (2005) show that measures of consumption volatility have good

in-sample predictive power for the one-step ahead quarterly PD if historical volatilities

16As a conceptual alternative, one might consider to rewrite the right hand side of the state equation (7)
as a linear index of considered trending economic indicators, and estimate all model parameters in one
step. Following such lines, however, the considered economic processes would govern the PD in mean,
by assumption, leaving little room for the data to object against the model specification and implicit
transmission patterns. Moreover, it is not straightforward to contrast the varying mean model against
the static benchmark in Campbell and Shiller (1988) in such a one-step framework if economic indicators
are trending.

17See, among others, Gennotte and Marsh (1992), Giovannini (1989) and Kandel and Stambaugh (1990).
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are extracted from short time windows of one or two years of consumption data. Lettau

et al. (2008) argue in favour of a regime change in consumption risk to explain a regime

change in asset valuations. The estimated regime is very persistent. The lower volatility

regime reached in the early 1990s is expected to last for 30 years.

We adopt the consumption risk measure used by Bansal et al. (2005) in a low-frequency

manner, in order to explain the gradually time-varying mean (low-frequency movements)

of the PD. The consumption volatility is measured as crWt = ln
(∑W−1

i=0 |cot−i|
)
, where

cot denotes the centered annual growth rate of per capita consumption and W is the

size of rolling time windows.18 We employ data on the per capita personal consumption

expenditures on non-durable goods and services of the Bureau of Economic Analysis

starting in 1929. To initialize time series of consumption risk we combine this series with

the historical data on real per capita consumption recently collected by Barro and Ursua

(2008).

To measure macroeconomic risk at low frequency one has to selectW such that respec-

tive time windows carry informational content beyond short-run cycles. Figure 6 displays

the absolute consumption growth with its Hodrick Prescott trend (the smoothing param-

eter is λ = 100). This trend visualizes the cyclical pattern of the consumption volatility.

Counting from trough to trough, the length of the cycles are 30 (1840 to 1870), 18 (1870

to 1888), 22 (1888 to 1910), 44 (1910 to 1954), and 27 years (1954 to 1981). The 44 year

cycle seems to be the odd one out, and could be regarded as containing two adjacent

cycles – a 17 year cycle (1910 to 1927) around the WWI era and a 27 year cycle (1927

to 1954) around the WWII era. The durations of remaining cycles range from about 20

to 30 years. This forms our focus on alternative window lengths W = 20, 21, . . . , 30 to

calculate time local long-run consumption volatility crWt . A lower bound of 20 years is

consistent with the so-called Kuznets swings in economic growth (e.g. Solomou 2008). In

addition, as argued by Geanakoplos et al. (2004) it is reasonable to assume that agents

consider a 20 year horizon to incorporate demographic trends in long term asset price

18To calculate the volatility we use consumption growth directly instead of respective AR(1) regression
residuals as considered in Bansal et al. (2005), since we do not detect any significant pattern of serial
correlation in annual quotes of cot.
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expectations. An upper bound of 30 years coincides with the estimated average duration

of a regime of consumption volatility in Lettau et al. (2008).

Figure 6 about here

The upper right panel of Figure 7 depicts crWt with W = 20, 25, 30 as examples.

The shapes of all three consumption measures are similar, and become a bit smoother

as the window size W increases. It appears that macroeconomic uncertainty decreased

continuously from the 1940s until the 1960s. It remained relatively stable during the 1970s

and 1980s and then decreased further from the 1990s till present. Comparing crWt with η̃t

depicted in the upper left panel of Figure 7, it seems that consumption risk is negatively

related to movements in the gradually time-varying mean of the PD throughout the entire

sample for all considered window lengths W .

Figure 7 about here

Demographics By means of an overlapping generation model Geanakoplos et al. (2004)

provide the foundation for a long-run positive relationship between the PD and demo-

graphic trends. They argue that agents’ incentives for holding equity vary over the life

cycle. While the younger population intends to consume and willingly borrows for this

purpose, the middle aged population concentrates more on saving and consumes these

savings after retirement. The overall shape of the population pyramid is measured by

means of the so-called middle-aged to young ratio (myt). Geanakoplos et al. (2004) show

that when myt is large, there is excess demand for saving and equilibrium asset prices

should increase to encourage consumption and to clear the market. This is consistent with

price increases in the US stock market during the 1990s. Favero et al. (2011) demonstrate

empirically the joint significance of myt and the PD by means of long-horizon predictive

regressions for stock returns, and diagnose a cointegration relationship between log divi-

dends, log prices and myt. These findings support the view that a slowly evolving mean

of the PD could be driven by myt.

Empirically myt is defined as the ratio of the population aged 40-49 to the 20-29 year

old, which is depicted in the lower left panel of Figure 7. Data is obtained from the US
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Census Bureau. The middle-aged to young ratio shows a marked U-turn since the 1960s.

This is mainly influenced by the baby boom after WWII. Beginning with the 1960s the

baby boom generation affected the statistics for the young population, thereby reducing

myt. For the same reason, the ratio has been increasing since the 1980s when the baby

boom generation became middle-aged. The twin peaks around 1960 and 2000 in myt are

related to the two major increases in the PD. The increases in myt in the 1950s and the

1980s correspond to the increases in η̃t in the 1960s and the 1990s, respectively.

Dividend payout policy Dynamics of the PD can also be influenced by changes in the

dividend payout policy by firms (see Fama and French 2001, Robertson and Wright 2006,

Boudoukh et al. 2007). The proportion of firms paying cash dividends fell from 66.5% in

1978 to 20.8% in 1999 (Allen and Michaely 2003).

Kim and Park (2013) show that the changing dividend payout policy affects the long-

run relationship between prices and dividends. Both the proportion of firms that pay

out a significant fraction of their earnings in the form of dividends and the cointegration

coefficient between stock prices and dividends have followed a decreasing trend since

the 1950s. A time-varying cointegration coefficient is an alternative interpretation of

persistence governing the PD, and, hence, it is consistent with a time-varying mean of

the PD in this paper. If the proportion of firms with traditional payout policy results

in the time-varying cointegration coefficient between prices and dividends, it should also

influence the gradually time-varying mean of the PD.

The proportion of firms with traditional payout policy among all firms in the (CRSP)

value-weighted market portfolio (tpt) decreases from 87% in 1946 to 35% in 2008, as can

be seen in the lower right panel of Figure 7.19 The downward trend in the proportion of

firms with traditional payout policy since 1980 is consistent with the acceleration of η̃t

particularly since the 1990s. Lowered dividends may result in persistent increases of the

PD.

19Data on tpt for the sample period from 1946 to 2008 has been kindly provided by C.J. Kim and C. Park.
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3.2 Cointegration Analysis

Unit Root Diagnosis First, we consider the individual characteristics of each variable

by means of unit root tests. Unit root diagnostics for levels and first differences of η̃t, cr
W
t ,

myt and tpt are documented in Table 6. Almost all tests indicate first order integration

of η̃t, cr
W
t and tpt at conventional significance levels. The unit root hypothesis is not

rejected for all crWt measures withW = 20, .., 30. Results for crWt withW = 25 are shown

in Table 6 as an example. Although unit root tests hint at stationarity of myt, these

results are to be taken with caution. Eyeballing myt hardly supports mean stationarity

of this process. The null hypothesis of stationarity is rejected with 10% significance by

means of the KPSS test. When longer ranges of data are considered, evidence on unit

roots governing myt can be found. We follow Favero et al. (2011) and treat myt as a first

order integrated process.

Table 6 about here

Error Correction Model To test for a cointegration relation among all four variables

and to estimate the cointegration coefficients, we employ the conditional single equation

error correction model (SECM).20 With given presample values the SECM reads as

∆η̃t = δ0 + α
(
η̃t−1 + β1cr

W
t−1 + β2myt−1 + β3tpt−1

)
+ δ1∆cr

W
t

+ δ2∆tpt + δ3∆myt +
2∑

i=1

ϕi∆η̃t−i + et, t = 1, 2, . . . , T. (11)

The SECM specifies error correction dynamics conditional on current adjustments of

weakly exogenous variables. It allows efficient inference by means of simple (non-linear)

least squares estimation (see also Kremers, Ericsson, and Dolado 1992). As a particular

merit it offers a parsimonious representation that does not suffer from weakened estimator

precision in comparison with full dimensional maximum likelihood estimation of a vector

20As a preliminary analysis of cointegration relations, we look at the possibility of bivariate cointegration
relations between the gradually time-varying mean of the PD η̃t and each of the three long run determi-
nants – consumption risk, demographics and the proportion of firms with traditional payout policy. We
do not find evidence in support of any of the three bivariate long run relations (not shown). This hints
at the importance of taking into account all three different influences on the PD jointly.

23



error correction model (Boswijk 1995, Johansen 1992). Model parsimony is beneficial

in the present case of limited sample information. The estimation period starts in 1946

and ends in 2008 due to the nonavailability of the dividend payout ratio for earlier and

later periods. To improve upon estimation uncertainty further, we apply a sequential

estimation procedure eliminating in each step the short term coefficients δi, i = 1, 2, 3,

and ψi, i = 1, 2, with the lowest t-statistic and lacking 30% significance.21 Adopting

a general-to-specific model composition, we start the model reduction from the SECM

including two lags of the dependent variable which are necessary to capture patterns of

serial correlations when testing for cointegration or weak exogeneity.

We find evidence for a cointegration relation between η̃t, cr
W
t , myt and tpt, where

W ∈ 23, ..., 29.22 For a significant cointegration relation, the absolute value of the t-

statistic of the adjustment coefficient α̂ has to be larger than a respective non-standard

critical value. For the specification in (11) with W = 25 as an example, the t-statistic of

the adjustment coefficient is -3.72 while the 10% critical value is -3.45. As can be seen

from Table 7, α̂ estimates for W ∈ 23, ..., 29 are smaller than zero with 10% significance.

Estimating consumption risk from time windows of lengths W = 20, 21, 22, 30, we obtain

similar degrees of explanation (see R2 and adjusted R2) and estimates for the cointegra-

tion coefficients, although a significant cointegration relation cannot be diagnosed within

the SECM. Using the SECM in (11) is supported by diagnosing weak exogeneity of con-

sumption risk (for W ∈ 21, 23, . . . , 30), of the demographic factor and of the proportion

of firms with traditional payout policy.23 Hence, violations of the long run equilibrium

among the PD and its persistent determinants are channelled through adjustments of the

PD.

Table 7 about here

Significant effects from all three factors – consumption risk, the demographic structure

21Using a liberal significance level for the removal of single variables from the model, joint insignificance of
the removed variables is likely for common (more conservative) significance levels, 5% say.

22Johansen trace tests confirm the diagnosis of a cointegration rank of unity with 5% significance.
23We test for weak exogeneity by means of autoregressive models of order two augmented by the long-run
relation between η̃t−1, cr

W
t−1, myt−1 and tpt−1 as specified in (11). All respective adjustment coefficients

are insignificant at the 10% level (not shown). Using, e.g., W = 25 to quantify consumption risk, the
respective p-values for testing responses of ∆crWt , ∆tpt and ∆myt are 0.315, 0.233 and 0.204.
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and the dividend payout ratio – on the mean of the PD can be confirmed. Focusing on

W ∈ 23, ..., 29, all estimated cointegration parameters are significant (an exception is β̂3

for W = 28, 29) and have the expected sign (see Table 7).24 Both consumption risk (crWt )

and the proportion of firms with traditional payout policy (tpt) have a negative influence

on η̃t and, thus, the signs of β̂1 and β̂3 in (11) shall be positive. For the demographic

factor (myt), it is the opposite case and the sign for β̂2 shall be negative.25 In addition,

the variations in the estimates for the coefficients attached to crWt and myt are small -

ranging from 0.53 to 0.68 and from -1.09 to -0.92 respectively. Estimates for the coefficient

of tpt exhibit some larger variation and range between 0.42 and 0.74.

Cross Validations To gauge the relative importance of each long run determinant in a

systematic way within the SECM approach, we employ cross-validation (CV) criteria (e.g.

Picard and Cook 1984). While augmenting (reducing) the set of explanatory variables

in regressions trivially goes along with gains (losses) in terms of in-sample model fit,

CV criteria exhibit a nontrivial relation between a model’s dimensionality and predictive

content. The CV statistic is calculated as the mean absolute forecast error for ∆η̃t, the

left-hand side variable in the SECM (11). Specifically,

CV =
1

T

T∑
t=1

∣∣∣∆η̃t − ∆̂η̃t

∣∣∣ , (12)

where the forecast ∆̂η̃t for period t is based on a model of ∆η̃t that is estimated leaving

out sample information (both dependent and explanatory variables) in period t. In this

sense, ∆̂η̃t is an out-of-sample forecast for ∆η̃t.

To unravel the relative importance of each determinant (crWt−1,myt−1, tpt−1), we con-

sider three different sets of models to obtain ∆̂η̃t. The first is the SECM (11), to which

we refer as the full model. The second set includes bivariate models of η̃t and one of the

24To explore the sensitivity of these results, we also apply the dynamic least squares (DOLS) approach
proposed by Stock and Watson (1993) to evaluate the sign and significance of the cointegration param-
eters. Test regressions include one lead and one lag of differentiated variables. DOLS estimates support
significant influences of crWt , myt and tpt of the right sign for W = 23, . . . , 29.

25 It is noteworthy that we obtain estimates with correct signs for all three cointegration parameters also
for W ∈ (3, 20) (not shown).
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three determinants. And the third type includes trivariate models of η̃t including two

of the three determinants. A particular determinant is regarded as more informative for

the mean of the PD if either its CV statistic from the bivariate model is close to that

of the full model, or the CV statistic from the trivariate model without this determinant

indicates a deterioration of the CV statistic.

Table 8 about here

Among the three factors consumption risk is most informative for changes in the mean

of the PD while changes in the payout policy of firms appear to be least informative.

Table 8 documents CV statistics from the full model (Panel A) along with the ratio of

the CV statistics from the bivariate (Panel B) and trivariate model (Panel C) to those

from the corresponding full model. Focusing on Panel B, we can see that using crWt−1

in a bivariate model leads to markedly smaller loss than using myt−1 or tpt−1 for all

window sizes W . Using W = 25 as an example, the bivariate models with crWt−1, myt−1

or tpt−1 have higher CV statistics than those of the full model by 5.2%, 9.7% and 13.7%,

respectively. Conditional on the statistics documented in Panel C, crWt−1 andmyt−1 appear

to be comparably informative for the changes of the mean of the PD. By removing crWt−1 or

myt−1 from the full model, the corresponding CV statistics increase by similar proportions

(around 10% for most window sizes). In contrast, the removal of tpt−1 shows little effect

on the CV outcome.26

4 CONCLUSIONS

In this paper, we consider a slowly evolving mean of the price-to-dividend ratio in the

US, which is inspired by persistent dynamics of this series. We relax the assumption

of a constant mean in the present value model (Campbell and Shiller 1988) towards a

26 In an in-sample framework likelihood ratio (LR) statistics can assess the significance of distinct model fits
based on residual variances. We apply the 95% quantile of a χ2-distribution with one degree of freedom
as approximate critical values to adopt this framework to mean squared cross validation errors. All CV
statistics from bivariate models are significantly different from the respective statistics of full models. In
contrast, LR-type statistics for the trivariate models without crWt or myt are significant while those of
models excluding tpt are insignificant. Hence, this is further evidence that tpt is less important than crWt
and myt to shape η̃t.
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gradually time-varying mean of the PD, and formalize a state space model to estimate its

latent path. Log-likelihood statistics support the model. Adjusting the PD by its slowly

evolving mean is fruitful in out-of-sample forecasting of stock returns. It outperforms

both adjusting the PD for structural mean shifts, and the historical average return as

a common benchmark predictor. A cointegration analysis underpins that trends in the

PD are shared with persistent patterns governing consumption risk, the demographic

structure of the population and firm’s dividend payout policy. While these determinants

play significant roles in jointly shaping the slowly evolving mean of the PD, consumption

risk turns out to be the dominant force.

As future research it would be interesting to compare the gradually time-varying mean

of the PD from different markets and to uncover potential common components in their

variations. International risk sharing could be one potential (global) determinant. As

Artis and Hoffmann (2008) have pointed out, international risk sharing has increased

since financial markets became more integrated in the 1980s. This might have played an

important role in determining variations in the long-run PD of different markets in this

period.

APPENDICES

In the following we provide further details on the analyzed data (Appendix A), the particle

filtering approach to the estimation of the state space model (Appendix B), and discuss

the approximation errors involved when deriving the observation equation of the state

space model by means of a Taylor expansion (Appendix C).

APPENDIX A: DATA DESCRIPTION

S&P500 Stock Market Indices and Dividends. Annual series are provided by Amit

Goyal and available on the internet.27 They contain the S&P500 index based on end-

of-year closing prices and corresponding dividends for the period from 1871 to 2013.

27http://www.hec.unil.ch/agoyal/
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Annual dividends correspond to the sum of the four quarterly paid dividends within the

corresponding year. For more details see Welch and Goyal (2008).

CRSP Stock Market Indices and Dividends. From 1926 to 2013 we apply annual

end-of-year returns based on the weighted market portfolio (NASDAQ, NYSE, AMEX)

of the Center for Research in Security Prices. We follow Lettau and Van Nieuwerburgh

(2008) and calculate the prices from the return excluding dividend payments and the

dividends from the dividend yield Dt/Pt−1. From 1871 to 1925 we apply the end-of-year

S&P500 index and corresponding dividends employed in Welch and Goyal (2008) and

described above. Annual dividends correspond to the sum of the four quarterly paid

dividends within the corresponding year.

Interest Rates and Inflation. Similar to Campbell and Vuolteenaho (2004), we use

a short term rate based on 3-month US Treasury Bills of the Federal Reserve System

to approximate the risk-free rate. We employ the series provided by Amit Goyal for the

period from 1871 to 2013 which is available from the internet.28 More details can be found

in Welch and Goyal (2008).

The annual inflation series from 1871 to 2013 is extracted from the consumer price

index for all urban consumers as provided by Robert J. Shiller.29 For more details see

Shiller (1992, 2005).

Other Macroeconomic Variables. The ratio of the 40-49 over the 20-29 year aged

population is determined by Census annual population data collected from Datastream

(period since 1950, ‘USPOP24Y’ for the 20-24 year old agents, ‘USPOP29Y’ for the 25-29,

‘USPOP44Y’ for the 40-44 and ‘USPOP49Y’ for the 45-49). Data for the period before

1950 are directly from the US Census Bureau.30

Annual quotes of real per capita consumption (1929 to 2013) are derived from the sum

of the personal consumption expenditures on nondurables and services of the Bureau of

28http://www.hec.unil.ch/agoyal/
29http://www.econ.yale.edu/~shiller/data.htm
30http://www.census.gov/popest/archives/pre-1980/PE-11.html
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Economic Analysis which are two subgroups of the US total personal consumption expen-

ditures (Tables 2.3.5. ‘personal consumption expenditures by major type of product’ and

‘2.3.4. price indexes for personal consumption expenditures by major type of product’).31

The total US population is drawn from the sources described above (the corresponding

datastream code is ‘USPOPTO.’). For periods before 1929 we use the series of real per

capita total consumption collected by Barro and Ursua (2008). This series ranges from

1834 to 2009 and is available from the net.32 To join the sum of non-durables and services

specific consumption measures with the data of Barro and Ursua (2008), we regress the

sum of both BAE series (coBEA
t ) on a constant and the series of Barro and Ursua (coBU

t )

in the overlapping sample (1929-2009) and estimate the pre-1929 data from the latter

source. The estimated regression is coBEA
t = 2.932 + 1.012coBU

t + ν̂t with a R2 of 0.998.

For information regarding the measurement of the share of firms paying traditional

dividends the reader may consider Kim and Park (2013).

APPENDIX B: PARTICLE FILTERING

The state space model of the price-to-dividend ratio in (6) and (7) is highly nonlinear

in the latent state, and the maximization of the corresponding log-likelihood function is

not tractable analytically. Using particle filtering (a Monte Carlo technique) it becomes

possible to derive an approximative log-likelihood value by means of particle filtering.

We apply the standard particle filter described in Cappé et al. (2007) (Algorithm 3,

bootstrap filter) and an optimization technique based on the simplex search method of

Lagarias et al. (1998) for parameter estimation that does not depend on the gradient of

the log-likelihood function. The applied particle filtering algorithm involves the following

steps:

Step (1): Initialization (t=1). Sample N particles η̃(i)
1

∼ N(η̃0, σ
2
u), i=1,...,N, and

31http://www.bea.gov/itable/index.cfm
32http://scholar.harvard.edu/barro/publications/macroeconomic-crises-1870-bpea
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determine importance weights and normalized weights, respectively, as

w
(i)
1 =

1√
2πσ2

ϵ

exp

(
−1

2

(
ϵ
(i)
1 /σϵ

)2
)

and w
(i)
1 =

w
(i)
1∑N

i=1w
(i)
1

.

Step (2): Iteration (t=2,...,T).

1. Select N particles according to weights w
(i)
t−1. Set accordingly η̃

(i)
t−1 = η̃(i)

t−1
(resam-

pling)

2. For all particles draw

η̃(i)
t

∼ N(η̃
(i)
t−1, σ

2
u), i = 1, ..., N,

and determine raw and normalized weights, respectively, as

w
(i)
t =

1√
2πσ2

ϵ

exp

(
−1

2

(
ϵ
(i)
t /σϵ

)2
)

and w
(i)
t =

w
(i)
t∑N

i=1w
(i)
t

.

3. go back to step ‘1’.

Averaging over non-normalized weights w
(i)
t yields estimates of the contribution of ϵt

to the Gaussian likelihood function, while averaging over draws η̃
(i)
t , i.e., ˆ̃ηt =

1
N

∑N
i=1 η̃

(i)
t ,

results in estimates of η̃t, for t = 1, ..., T .

The so-called systematic resampling is used to compute uniformly distributed random

numbers to implement the resampling step. This technique is described in Robert and

Casella (2005). Doucet and Johansen (2009) argue that such a technique reduces the

noise introduced by resampling, and it is commonly employed in the related literature.

APPENDIX C: APPROXIMATION ERRORS

As outlined in the main text, the following approximations have been made to derive the

present value representation of the PD (see also Lettau and Van Nieuwerburgh 2008): (i)

Et[ρt+i] ≈ ρt, (ii) Et[κt+i] ≈ κt and (iii) Et[ρt+iηt+i+1] ≈ Et[ρt+i]Et[ηt+i+1]. While these

approximations facilitate present value determination, eventual approximation errors are
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rather small for the variation ranges of involved variables. Given the observed range of η̃t ∈

[2.8, 4.1], the respective parameter supports for both ρ and κ are implicit. In the following,

we show that the local linear approximations of the underlying nonlinear functions leading

to (i) and (ii) result in small approximation errors due to the very small local degree of

concavity of the functions. A simulation exercise with data driven parameter settings

further confirms that the average approximation error for (iii) is negligible. Finally, we

evaluate the total approximation errors from all three approximations by comparing the

right-hand side of the present value equation of the PD in (6) with its exact counterpart

(without the approximations). Simulation results confirm that the total approximation

error is small.

C.1 Approximation Et[ρt+i]≈ρt

Based on the empirical observations in Section 1, it becomes reasonable to assume ηt,

and also η̃t, to follow a random walk. In principle, this martingale characteristic im-

plies constant expectations of the gradually time-varying mean of the PD η̃t. To derive

in (3) a function of returns rt+1 which is linear in ηt we apply a first order Taylor ap-

proximation based on ρt ≡ 1/(1 + exp(−η̃t)). In consequence, ρt is concave in η̃t and

therefore Et(ρt+i) ≤ ρt by Jensen’s inequality. However, as displayed in the upper panel

of Figure C1 the function ρt ≡ 1/(1 + exp(−η̃t)) is approximately linear in the domain of

η̃t ∈ [2.8, 4.1].

Figure C1 about here

To evaluate the degree of concaveness of ρt ≡ 1/(1 + exp(−η̃t)) and the impact of

the approximation error we compute the difference between bρ(η̃1t ) + (1 − b)ρ(η̃2t ) and

ρ(bη̃1t + (1− b)η̃2t ) for any b ∈ [0, 1] and η̃1t , η̃
2
t ∈ [2.8, 4.1]. The maximal error is 0.0061 in

absolute terms and, thus, relatively small.
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C.2 Approximation Et[κt+i]≈κt

In the first order Taylor expansion κt is determined as

κt ≡ − ln(ρt)− (1− ρt) ln(1/ρt − 1). Thus, κt is also concave in ρt and Et[κt+i] ≤ κt

by Jensen’s inequality. In the relevant domain of ρt ∈ [0.943, 0.984] implied directly by

η̃t ∈ [2.8, 4.1], κt = − ln(ρ) − (1 − ρ) ln(1/ρ − 1) is approximately linear as displayed in

the middle panel of Figure C1. The maximal difference between bκ(ρ1t ) + (1 − b)κ(ρ2t )

and κ(bρ1t + (1 − b)ρ2t ) for any b ∈ [0, 1] and ρ1t , ρ
2
t ∈ [0.943, 0.984] is 0.0064 in abso-

lute terms and relatively small. Thus, the approximation error in Et[κt+i]≈κt is negligible.

C.3 Approximation Et[ρt+iηt+i+1] ≈ Et[ρt+i]Et[ηt+i+1]

To evaluate the magnitude of the error implied by this approximation we perform a

simulation study. The parameter estimations η̃0 = 2.892 and σu = 0.059 from Table 2

are applied to simulate the process η̃t = η̃t−1 + ut as a random walk, for t = 1, . . . , T .

To reflect the range of the empirical PD we bound the random walk by the minimum of

the empirical PD (2.288) and the maximum of the empirical PD (4.495). The process

of ρt = 1/(1 + exp(−η̃t)) is simulated subsequently. The innovations ut are generated as

N(0, σu). Further, we separate the dataset into t = 1, . . . , T1, T1+1, . . . , T and neglect the

first T1 observations as initialization period. To simulate ηt we add a first order moving

average process, obtaining

ηt = η̃t + αωt−1 + ωt. (C1)

The moving average specification for ωt accounts for correlation of leads and lags. The

parameter α and the standard deviation of ωt are estimated based on our empirical data

(α = 0.726 and σω = 0.188). We draw innovations ωt from N(0, σω).

To approximate Et[ρt+iηt+i+1] we define ψt = ρtηt+1 and forecast at each point in

time t ψ̂t+i by means of estimated AR(10) processes, for i = 1, . . . , H. With regard to

Et[ρt+i]Et[ηt+i+1] we estimate AR(10) processes for each series separately and determine

at each point in time t the corresponding forecasts ρ̂t+i and η̂t+i+1, for i = 1, . . . H. To

estimate all AR(10) models we separate the data set as t = T1+1, . . . , T2, T2+1, . . . , T and
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apply a recursive window starting with the first T2 − T1 observations. Thus, in total we

are left with T −T1−T2 periods for which we compute H forecasts. If the approximation

error implied by setting Et[ρt+iηt+i+1] ≈ Et[ρt+i]Et[ηt+i+1] is small the product of the two

separate forecasts ρ̂t+i and η̂t+i+1 should come close to the forecast ψ̂t+i.

This procedure is repeated R times and calculations are stored at each point in time

as ψ̂r,t+i, ρ̂r,t+i and η̂r,t+i+1, for r = 1, . . . , R and i = 1, . . . , H. To determine the approxi-

mation error of interest we use the following statistic

Ω̄i =
1

R(T − T1 − T2)

R∑
r=1

T∑
t=T2+1

Ωr,t+i, for i = 1, 2, . . . , H, (C2)

where

Ωr,t+i =
|dfr,t+i|
ψ̂r,t+i

and |dfr,t+i| = |ψ̂r,t+i − ρ̂r,t+iη̂r,t+i+1|. (C3)

We set R = 1000, T = 2000, T1 = 500, T2 = 500 and H = 100. The lower panel

of Figure C1 displays Ω̄i, for i = 1, . . . , 100. With increasing forecast horizons the av-

erage approximation error converges. It reaches not more than 1% for 100-step ahead

forecasting. As a result, the magnitude of this error is rather small.

C.4 Overall Assessment

Although the approximation errors from C.1-C.3 are small individually, one can argue that

they might accumulate when iterating equation (3) with these approximations forward.

To check for this possibility, we compare the present value of the PD in (5) based on

approximations C.1-C.3,

η
(1)
t = κt(1 + ρt + ρ2t + · · ·+ ρT−1

t ) + Et[∆dt+1 − rt+1] + ρtEt[∆dt+2 − rt+2]

+ ρ2tEt[∆dt+3 − rt+3] + · · ·+ ρT−1
t Et[∆dt+T − rt+T ] + ρTt Et[ηt+T ],
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with its exact counterpart,

η
(2)
t = κt + ρtEt[κt+1] + ρtEt[ρt+1κt+2] + · · ·+ ρtEt[ρt+1ρt+2 · · · ρt+T−2κt+T−1]

+ Et[∆dt+1 − rt+1] + ρtEt[∆dt+2 − rt+2] + ρtEt[ρt+1(∆dt+3 − rt+3)] + · · ·

+ ρtEt[ρt+1ρt+2 · · · ρt+T−2(∆dt+T − rt+T )] + ρtEt[ρt+1ρt+2 · · · ρt+T−1ηt+T ].

For this MC experiment, we simulate η̃t as a random walk (see C.3), and ηt according to

(C1). The processes ρt and κt are determined subsequently according to (4). We build

objective expectations of the varying mean of the PD by forecasting {η̃t+i}T−1
i=1 with the

estimated AR(1) processes. Forecasts of η̃t are bounded by the empirical minimum and

maximum. Objective expectations of {ρt+i, κt+i}T−1
i=1 are then calculated accordingly. The

expected return-adjusted dividend growth rate is simulated as an AR(2) process based on

estimates from observed data, i.e.,

(∆dt − rt) = −0.051− 0.3(∆dt−2 − rt−2) + et, with et ∼ N(0, 0.164).

The expected PD at period t + T is taken from the simulated process. We generate

1000 replications with t = 1000 to take advantage of the consistency of AR parameter

estimates and T = 1000 to capture high horizons of future cash flows. As documented in

Table C1, the total approximation errors (absolute difference between η
(1)
t and η

(2)
t ) are

very small, with a mean of 0.0448. In relative terms this is about 1% of the mean of the

exact formulation (η
(2)
t ).

Table C1 about here
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Cappé, Olivier, Simon Godsill, and Eric Moulines. (2007) “An Overview of Existing Methods
and Recent Advances in Sequential Monte Carlo.” Proceedings of the IEEE, 95(5).

Cavaliere, Giuseppe. (2005) “Limited Time Series with A Unit Root.” Econometric Theory,
21(05), 907–945.

Cavaliere, Giuseppe, and Fang Xu. (2014) “Testing for Unit Roots in Bounded Time Series.”
Journal of Econometrics, 178(Part 2), 259–272.

Clark, Todd E., and Kenneth D. West. (2007) “Approximately Normal Tests for Equal Predictive
Accuracy in Nested Models.” Journal of Econometrics, 138, 291–311.

Doucet, Arnaud, and Adam M. Johansen (2009) “A Tutorial on Particle Filtering and Smooth-
ing: Fifteen years Later.” In Handbook of Nonlinear Filtering, edited by Dan Crisan and
Boris Rozovsky. Oxford University Press.

Doucet, Arnaud, Nando De Freitas, and Neil Gordon. (2001) Sequential Monte Carlo Methods
in Practice. New York: Springer-Verlag.

Elliott, Graham, Thomas J Rothenberg, and James H. Stock. (1996) “Efficient Tests for an
Autoregressive Unit Root.” Econometrica, 64(4), 813–36.

Epstein, Larry G, and Stanley E. Zin. (1989) “Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework.” Econometrica,
57(4), 937–69.

Ericsson, Neil R., and James G. MacKinnon. (2002) “Distributions of Error Correction Tests
for Cointegration.” Econometrics Journal, 5(2), 285–318.

Fama, Eugene F., and Kenneth R. French. (2001) “Disappearing Dividends: Changing Firm
Characteristics or Lower Propensity to Pay.” Journal of Financial Economics Letters, 60,
3–43.

Favero, Carlo A., Arie E. Gozluklu, and Andrea Tamoni. (2011) “Demographic Trends, the
Dividend-Price Ratio, and the Predictability of Long-Run Stock Market Returns.” Journal
of Financial and Quantitative Analysis, 46(05), 1493–1520.
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Tables

Table 1: UNIT-ROOT TESTS FOR THE PD

ADF PP DFGLS MZt PV KPSS

CRSP 1926-2013

Test Statistics −1.595 −1.604 −1.171 −1.204 −3.553 0.801
Crit. val. at 5% −2.895 −2.895 −1.945 −1.980 −4.580 0.463
Crit. val. at 10% −2.585 −2.585 −1.614 −1.620 −4.240 0.347

S&P500 1871-2013

Test Statistics −1.783 −1.841 −1.139 −1.078 −3.737 0.906
Crit. val. at 5% −2.882 −2.882 −1.943 −1.980 −4.580 0.463
Crit. val. at 10% −2.578 −2.578 −1.615 −1.620 −4.270 0.347

Notes: The upper panel covers test results for CRSP data ranging from 1926 to 2013 and the lower panel those for
S&P500 data ranging from 1871 to 2013. Test regressions include a constant. ADF refers to the Augmented Dickey-Fuller
test where the lag selection criterion is the BIC. For PP , the test statistic considered in Phillips and Perron (1988), the
spectral OLS AR estimator is used to calculate the long-run variance. DFGLS refers to the test proposed by Elliott et al.

(1996) where the BIC is applied to determine the lag length. MZt refers to the modified Pillips-Perron Zt statistic
introduced in Ng and Perron (2001) which is implemented by means of a spectral OLS AR estimator and BIC based order
selection. For the PV -test proposed by Perron and Vogelsang (1992) the innovation outlier model is applied and the lag
length is determined by means of a t-test procedure. A Bartlett Kernel is applied in the KPSS-test of Kwiatkowski et al.

(1992).

Table 2: MODEL ESTIMATES AND DIAGNOSTICS

Model δ α η̃0 η̃1 η̃2 σu σϵ log-lik BIC V-stat

CRSP 1926-2013

η - - 3.409 - - - 0.184 23.9 -38.94 -7.669

η
(1)
t - - 3.129 3.668 - - 0.100 77.9 -142.46 -5.874

η
(2)
t - - 2.921 3.199 3.670 - 0.096 81.6 -145.24 -5.530

η̃RW,t - - 2.892 - - 0.059 0.026 168.4 -323.84 -

η̃AR,t 0.042 0.986 - - - 0.063 0.025 166.5 -314.99 -6.889

S&P500 1901-2013

η - - 3.298 - - - 0.215 13.3 -17.08 -8.396

η
(1)
t - - 3.028 3.650 - - 0.117 81.8 -149.50 -7.753

η
(2)
t - - 2.878 3.234 3.673 - 0.098 101.9 -184.84 -5.912

η̃RW,t - - 3.074 - - 0.076 0.033 196.1 -378.01 -

η̃AR,t 0.046 0.985 - - - 0.075 0.031 195.8 -372.72 -2.776

Notes: This table documents estimation and diagnostic results for the static present value model (η), specifications

presuming one (η
(1)
t ) and two (η

(2)
t ) mean shifts of the PD, the benchmark model with time varying mean and RW state

equation (η̃RW,t), and a corresponding model with AR state process (η̃AR,t). Estimates η̃0, are either initial means or the
unconditional mean of the PD. Similarly, η̃1 and η̃2 are mean levels in models with discrete shifts. Diagnostic statistics

comprise the log-likelihood, the BIC and Vuong tests (V-stat). Results for the benchmark model are displayed in bold face.
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Table 3: IN-SAMPLE PREDICTIVE REGRESSIONS

η η
(1)
t η

(2)
t η̃t

Stock Returns

β0 0.0928 0.0937 0.0939 0.1142
(4.6562) (4.5205) (6.0840) (5.3922)

β1 −0.0923 −0.2516 −0.4120 −0.2089
(−2.5610) (−4.8718) (−6.0994) (−2.7885)

R2 0.0392 0.1027 0.1751 0.0641
adj R2 0.0279 0.0922 0.1654 0.0531

Dividend Growth

β0 0.0456 0.0457 0.0458 0.0539
(3.3098) (3.5017) (3.3140) (4.0314)

β1 −0.0013 −0.0431 −0.1157 −0.0832
(−0.0426) (−0.9694) (−1.7106) (−1.8706)

R2 0.0000 0.0057 0.0260 0.0192
adj R2 −0.0117 −0.0060 0.0146 0.0076

Notes: This table documents statistics from regressions (9) with four alternative mean processes of the PD using CRSP
data from 1926 to 2013. In the second column forecasts for returns (dividend growth) are conditioned on the unadjusted
PD (using the overall sample mean η). The third and fourth column contain the estimates based on the adjusted PD

using one (η
(1)
t ) or two (η

(2)
t ) mean shifts, respectively. In the last column forecasts are conditioned on the PD adjusted

by means of the smooth state process η̃t. Newey and West (1987) robust t-statistics for coefficient estimates are presented
in parantheses. The bandwidth is selected by means of the procedure proposed by Newey and West (1994).

Table 4: OUT-OF-SAMPLE PREDICTIVE REGRESSIONS FOR STOCK RETURNS

rt η ηt η̃t

1946-2013

RMSE 0.1694 0.1751 0.1793 0.1683
R2

oos −0.0691 −0.1202 0.0121***

1946-2004

RMSE 0.1607 0.1681 0.1714 0.1589
R2

oos −0.0934 −0.1367 0.0232***

Notes: This table documents the OOS forecasting performance of the naive prediction by means of historical average
returns (r̄t) and alternative predictive regressions with the unadjusted PD (st = η), the PD adjusted by mean shifts

(st = ηt), and the PD adjusted by the smooth state (st = η̃t). Root mean squared errors (RMSE) and OOS R2

statistics (R2
oos) are shown. R2

oos is constructed against the naive forecasting scheme (rt). Statistical significance levels of
R2

oos at the 1%, 5%, 10% level denoted by ∗∗∗, ∗∗, ∗ are based on the MSE-adjusted statistic proposed by Clark and West
(2007). CRSP data are considered.
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Table 5: FORECASTING PERFORMANCE OF POPULAR PREDICTORS

dfr dfy infl d/e lty svar e/p

R2 0.0027 0.0001 0.0073 0.0015 0.0025 0.0000 0.0463

R2
oos −0.0446 −0.0112 −0.0422 −0.0367 −0.0665 −0.0065 0.0409**

d/y tms tbl ltr b/m ntis η̃t

R2 0.0356 0.0170 0.0000 0.0190 0.0538 0.0621 0.0641

R2
oos −0.1222 −0.0751 −0.0643 −0.0713 −0.0172 −0.0793 0.0121***

Notes: This table documents the forecasting performance of popular predictors for stock returns with S&P500 annual data from 1926 to
2013. While the first line documents the R2 from the in-sample exercise, the second line provides the R2

oos from the out-of-sample

forecasting. Statistical significance levels of R2
oos at the 1%, 5%, 10% level denoted by ∗∗∗, ∗∗, ∗ are based on the MSE-adjusted statistic

proposed by Clark and West (2007). The predictors are the default return spread (dfr), the default yield spread (dfy), inflation (infl), the
dividend payout ratio(d/e), the long term yield (lty), stock variance (svar), the earning price ratio (e/p), the dividend yield (d/y), the term

spread (tms), the T-Bill rate (tbl), the long term return (ltr), the book to market ratio(b/m), and net equity expansion (ntis). For
benchmarking purposes results for η̃t are also documented in the Table.

Table 6: UNIT-ROOT TESTS

ADFt PPt DFGLS MZt KPSS

η̃t −1.817 −1.837 −1.602 −1.543 0.168∗∗

∆η̃t −5.023∗∗∗ −5.023∗∗∗ −4.842∗∗∗ −3.779∗∗∗ 0.178

crWt −2.458 −2.448 −1.542 −1.888 0.127∗

∆crWt −5.720∗∗∗ −5.725∗∗∗ −2.691∗∗∗ −3.862∗∗∗ 0.153

myt −5.007∗∗∗ −40.829∗∗∗ −5.011∗∗∗ −40.353∗∗∗ 0.122∗

∆myt −1.547 −1.690 −1.425 −1.449 0.08

∆2myt −13.062∗∗∗ −13.042∗∗∗ −12.928∗∗∗ −4.240∗∗∗ 0.097

tpt −2.184 −2.986 −1.438 −1.278 0.262∗∗∗

∆tpt −13.966∗∗∗ −13.966∗∗∗ −12.236∗∗∗ −3.179∗∗ 0.500∗∗

Notes: This table displays results of unit root tests for gradually time-varying mean of the PD and its potential triggers.
Test regressions for variables in levels include a constant and deterministic trend. Test regressions for variables in

differences include a constant. The sample ranges from 1926 to 2013 and 1946 to 2008 in case of tpt. Significance at
1%, 5%, 10% level is denoted by ∗∗∗, ∗∗, ∗, respectively. Test results are qualitatively identical if only a constant is

included for variables in levels or the sample is reduced to the period from 1946 to 2008 for all variables. For further notes
see Table 1.

Table 7: COINTEGRATION ANALYSIS

W from crWt 20 21 22 23 24 25 26 27 28 29 30

α -0.07 -0.09 -0.09 -0.12 -0.11 -0.11 -0.12 -0.12 -0.12 -0.11 -0.11
(-2.57) ( -3.28) (-3.10) (-3.91) (-3.55 ) (-3.72) (-3.64) (-3.70) (-3.62) (-3.49) (-3.33)

β1 0.50 0.42 0.58 0.53 0.62 0.64 0.64 0.65 0.66 0.68 0.67
(2.35) (2.50) (3.29) (4.03) (4.20) (4.56) (4.51) (4.64) (4.49) (4.30) (3.96)

β2 -0.92 -1.09 -0.90 -1.01 -0.92 -0.93 -0.98 -1.02 -1.09 -1.02 -1.07
(-1.95) (-2.70) (-2.47) (-3.49) (-3.12) (-3.42) (-3.51) (-3.69) (-3.74) (-3.33) (-3.26)

β3 0.86 0.85 0.75 0.74 0.67 0.61 0.56 0.49 0.42 0.46 0.43
(2.37) (2.99) (2.51) (3.26) (2.61) (2.49) (2.20) (1.90) (1.53) (1.52) (1.30)

R2 0.45 0.51 0.48 0.53 0.51 0.52 0.51 0.51 0.51 0.51 0.50
adj R2 0.39 0.45 0.43 0.47 0.45 0.46 0.46 0.46 0.45 0.45 0.44

Notes: This table documents the estimates for the error correction model in (11) including consumption risk measures for
distinct window sizes W . t-statistics appear in brackets below the corresponding estimates. Based on critical values from
surface regressions provided by Ericsson and MacKinnon (2002), adjustment coefficients (α) that are significant at 10%

level are highlighted. Also significant cointegration coefficients (β1, β2, β3) at the 10% level are highlighted.
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Table 8: CROSS VALIDATION

W from crWt 23 24 25 26 27 28 29

Panel A: CV from the full model

0.0220 0.0216 0.0216 0.0215 0.0217 0.0221 0.0226

Panel B: Relative CV for the bivariate models

With crWt 1.0429 1.0458 1.0524 1.0675 1.0638 1.0557 0.9994
With myt 1.0958 1.0946 1.0971 1.1022 1.0902 1.0717 1.0672
With tpt 1.1346 1.1348 1.1374 1.1427 1.1303 1.1111 1.0434

Panel C: Relative CV for the trivariate models

Without crWt 1.0928 1.1018 1.1043 1.1094 1.0974 1.0788 1.0749
Without myt 1.0801 1.0932 1.1022 1.1155 1.1128 1.1028 1.0270
Without tpt 0.9867 0.9967 0.9956 1.0011 0.9973 0.9866 0.9832

Notes: This table documents the cross validation (CV) statistics with distinct window sizes W for consumption risk
measures. Panel A displays the CVs using the full model of η̃t with all three determinants (crWt , myt, tpt). Panel B shows

the ratio of CVs from bivariate models of η̃t with one determinant and the CVs from the corresponding full model in
Panel A. These quotients are referred as relative CV. Similarly, Panel C shows the relative CV from trivariate models of η̃t

with two determinants using the CV from the corresponding full model in Panel A as the benchmark.

Table C1: EVALUATION OF APPROXIMATION ERRORS

Statistic η
(2)
t η

(1)
t η

(2)
t − η

(1)
t

Mean 3.0271 2.9823 0.0448
Standard deviation 0.5933 0.6345 0.1084

Notes: This table documents MC simulation results based on 1000 replications. Column-η
(2)
t is based on the exact

formulation of the right-hand side of the present value model of the PD. Column-η
(1)
t provides its approximation based on

the three approximations C.1-C.3.
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Figure 1: The Price-to-Dividend Ratio
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Figure 2: Rolling Mean of the PD
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Figure 3: Estimated Means of the PD
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Figure 4: The PD and Distinct Mean Evaluations
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Figure 5: Out-of-Sample Forecasting Performance
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Figure 6: Absolute Growth Rate of per Capita Consumption
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Figure 7: Economic Influences and the Gradually Time-Varying Mean of the PD
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Figure C1: Evaluation of Approximations
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