Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance

Fuhaid Alshammari, Apostolos Pesyridis, Apostolos Karvountzis-Kontakiotis, Ben Franchetti, Yagos Pesmazoglou

Brunel University London, Department of Mechanical, Aerospace & Civil Engineering, CAPF – Centre of Advanced Powertrain and Fuels, Uxbridge UB8 3PH, United Kingdom
Metapulsion Engineering Ltd, Northwood, London, United Kingdom
Entropea Labs Ltd, London E8 1AB, United Kingdom

HIGHLIGHTS

- An advanced ORC system, tested on a 200 kW - class off-highway diesel engine.
- A radial ORC turbine expander with novel back-swept blading tested experimentally.
- A state-of-the-art molecularly-complex working fluid was tested.
- Integrated generator electrical system power and efficiency measured.
- Maximum 4.3% ORC system efficiency at 40% load on NRTC cycle at 1700 rpm (80 kW).

ABSTRACT

The purpose of this work is to experimentally evaluate the effect of fuel efficiency of a small scale organic Rankine cycle (ORC) as a waste heat recovery system (WHRS) in a heavy duty diesel engine that operates at steady state conditions. The WHRS consists of two operating loops, namely a thermal oil loop that extracts heat from the engine exhaust gases, and the working fluid loop which is the ORC system. The expansion machine of the ORC system is a radial inflow turbine with a novel back-swept blading that was designed from scratch and manufactured specifically for this WHR application. The engine test conditions include a partial engine load and speed operating point where various operating conditions of the ORC unit were tested and the maximum thermal efficiency of the ORC was defined close to 4.3%. Simultaneously, the maximum generated power was 6.3 kW at 20,000 rpm and pressure ratio of 5.9. The isentropic efficiency reached its peak of 35.2% at 20,000 rpm and 27% at 15,000 rpm. The experimental results were compared with the CFD results using the same off-design conditions, and the results were in good agreement with a maximum deviation of 1.15% in the total efficiency. Last but not least, the engine-WHRS energy balance is also discussed and presented.

1. Introduction

State of the art internal combustion engines (ICE) waste a substantial amount of fuel energy in the form of exhaust gases and engine coolant heat loss. Modern commercial road and off-road heavy-duty diesel engines present a maximum brake thermal efficiency value of approximately 45% at their optimum operating point [1], while gasoline engine maximum thermal efficiency is typically between 30% and 40% [2]. Engine wasted heat is not only a waste of fuel but also a matter of significant global warming and environmental pollution concerns. CO₂ emissions from the transportation sector have increased by 45% between 1990 and 2007, making this sector responsible for nearly one third of the world’s CO₂ emissions. Therefore, manufacturers of ICEs are increasingly forced to look at the feasibility of adopting...
technologies such as waste heat recovery systems in order to reduce fuel consumption and CO₂ emissions.

Waste heat recovery technologies depend upon tapping into main heat sources in ICEs such as exhaust gas, EGR and/or engine coolant to be recovered. One such technology in use is Turbo-Compounding (TC) either in its mechanical or electrical forms. Depending on the engine load, TC can reduce the average BSFC by 3–6% with the ability of further reduction of 6.5% with highly efficient TC configurations [3]. In addition, combination of TC and steam injection could result in reduction of BSFC by 6.0–11.2% over different speeds [4]. However, it is worth mentioning that the utilization of TC in ICEs is limited due to the high exhaust backpressure caused by such technology and eventually higher pumping losses [5]. Another significant waste heat recovery technology proposition is thermoelectric generation. Experimental studies have shown that fuel savings of 3.9 up to 4.7% could be achieved by using thermo-electric generation [6–8]. However, this technology is currently too expensive and faced with a longer development time [9]. In addition, it still presents very poor efficiency (typically less than 4%). Therefore, it is of essence to investigate a more efficient and cheaper technology.

Organic Rankine Cycles (ORCs) have become popular in re-using wasted heat since they operate efficiently and use relatively simple standard components. Moreover, ORCs can take indirect advantage of the heat rather than the direct exhaust gas supply thus allow a much higher degree of freedom in optimising the expander. Using ORCs in mobile applications is not a new idea. A first concept on a train had already been commercialized in the 1920s, taking advantage of the price difference between diesel and coal [10]. Unfortunately, this system quickly became uncompetitive because that difference stopped being profitable [11]. Later, several systems were developed, mostly for trucks or marine applications, and then this interest disappeared until the 2000s, when automotive manufacturers started being interested in that technology again [11] largely due to regulatory pressure. Patel and Doyle [12] built a prototype of an ORC that was used as a bottoming cycle in a Mack 676 diesel engine. The authors stated that at the peak power condition, 36 additional horsepower was produced resulting in a gain of 13% in power without additional fuel. Recently, wide theoretical investigations have been conducted on ORC applications in ICEs [13–21]. The results indicate that the BSFC improvements of up to 10% can be obtained. However, these theoretical studies usually neglect electro-mechanical losses along the turbo-generator power transmission route and heat transfer to the environment. Realistic expectations are limited to approximately 50% of the above BSFC figures [22].

Selection of the appropriate expansion machines is of great importance when utilizing ORC systems since these machines are responsible for power conversion and subsequent production usually by direct coupling to a generator [22–25]. In addition, the type of expansion machine has significant effects on the overall cycle performance, size and cost [26,27]. Expanders can be classified into two main groups, namely, positive displacement expanders (Screw, Scroll, Piston and Rotary Vane) and turbo-machines (Axial or Radial). The selection of the appropriate expander depends on the application. Moreover, other important factors should be considered when selecting expanders such as high isentropic efficiency, pressure ratio, power output, lubrication requirements, complexity, rotational speed, dynamic balance, reliability, cost, working temperatures and pressures, leakage, noise and safety [28,29]. Turbo-expanders are preferred when to convert the extracted power to electricity while reciprocating expanders, due to their flexibility of operation, are preferred when the extracted power is coupled directly to the crankshaft [30]. Moreover, displacement expanders can be used at low output powers due to the limitation of their rotational speed [31], whereas turbo-expanders operate at higher rotational speed and hence higher power. However, for waste heat recovery applications, scroll expanders and radial turbines are the most common solutions to be found in literature [32,33]. Since ORC efficiency increases at high pressure ratios, radial turbines appear more suitable for vehicular applications where mass flow rates are in the low-to-medium range and pressure ratios are in the medium-to-high range.

Nowadays, ORC systems as WHR technologies are gaining attention in both academic and industrial sectors. Several recent studies have investigated ORC technology and show promise in solar systems [34–38], biomass [39–44] and geothermal applications [45–48]. In recent years, studies concentrating on ICE applications have increased. Zhang et al. [49] evaluated the wasted heat in the engine exhaust, intake air, and coolant of a vehicular light-duty diesel engine. It is worth mentioning that the performance map of the light-duty diesel engine was created using an engine test bench while the study of the coupled system (engine + ORC) was conducted using a simulation study. The results of the simulation study showed that the ORC output power improved from 14% to 16% in the peak effective thermal efficiency region and from 38% to 43% in the small load region. Furukawa et al. [50] conducted an experimental test on the ORC that was used to recover the heat of the engine coolant with Hydro-fluoro-ether as the working fluid. The fuel consumption decreased by 7.5%. Recently, Wang et al. [51] conducted a recent study on recovering the wasted heat of the exhaust gas and coolant of a CNG machine using a supercritical-subcritical dual-loop organic Rankine cycle. R1233zd and R1234yf were used as the working fluids. The engine point with 600 N.m and 1600 rpm was selected as the case study since CNG engine usually operates at low to middle speed and torque for bus applications. Similar to Zhang et al. [51], the engine map was obtained experimentally while the results of the integrated system (engine + ORC) were obtained using the simulation study. The simulations showed that fuel efficiency could be improved by more than 8% in most of the engine’s efficiency could be improved by more than 8% in most of the engine’s...
operating regions. Other recent studies such as Shao et al. [52] and
Pang et al. [53] conducted experimental studies using radial turbine
and scroll expander, respectively, as the expansion machines. However,
both studies used oil heaters as the heat sources. The results of [52]
showed that a maximum thermal efficiency of 5.3% and turbine effi-
ciency of 75.2% were achieved. The results of the other study [53]
showed that a maximum net power 1.66 kW with an electrical effi-
ciency of about 4.4% were obtained. Guillaume et al. [17] used exhaust
gases of a truck diesel engine as the heat source for their ORC system.
They used a radial inflow turbine as the expansion machine and two
working fluids: R245fa and R1233zd. However, the employed turbine
was developed mainly using components modified from truck turbo-
charger designs. Also, the heat wasted by the truck through the exhaust
gases is simulated using an electric oil boiler coupled to the ORC loop.
The maximum electric power and turbine efficiency were 2.8 kW (using
R245fa) and 32% (using R1233zd), respectively. Yang et al. [54] pre-
selected a thermo-economic model of a dual-loop ORC system using
the performance map of a six-cylinder CNG engine. The thermal effi-
ciency of the dual loop ORC system was in the range of 8.97–10.19% over
the whole operating range. More recently, Sellers [55] evaluated the ben-
fits of ORC systems in harnessing the wasted heat in the jacket water of
a 12 cylinder ship engine. The paper was more about the difficulties
that the author faced during the installation of the system. The results
showed that the largest kilowatt hour value of 78,001 was produced
during the first voyage from Asia to the USA east coast. In the industry
sector, a recent study through cooperation between AVL, FPT and Iveco
[56] was published. The exhaust gas of a 4-stroke diesel engine was
used as the heat source for the ORC system, axial piston expander was
selected as the expansion machine. The tests were run on public roads.
The results showed that the fuel consumption could be reduced by
2.5–3.4%. Honda [57,58] installed an ORC system on a hybrid vehicle
with the vehicle running at constant speed and the thermal efficiency
increased by 13.2% compared to the base vehicle. MAN [59] installed a
Rankine cycle system on a marine 2-stroke diesel engine and claimed
that a 10% efficiency improvement was achieved.

The brief literature survey in the previous paragraph indicates that
these investigations were either performed using simulated engine data
(academic sector) or expanders types other than radial turbine (in-
dustry sector). Although Guillaume et al. [17] used a radial inflow
turbine in their study, the turbine was developed using components of
truck turbochargers. Also, they applied an electric oil boiler as the heat
source. The coupling of a custom-designed radial turbine (and gen-
erator) on-engine to explore ORC WHR system performance is an area
in which little available literature exists. To allow a realistic apprecia-
tion of the ORC system’s contribution to heavy-duty diesel engine, a
coupling of ORC system with real engine is essential. In the present
work, a test rig containing an ORC thermal oil loop was built around a
heavy-duty diesel engine and was tested. The radial turbine in the
current study was designed and manufactured specifically for this ap-
plication considering the cycle operating conditions and the working
fluid properties. From the engine point of view, part-load performance
is seldom investigated in depth and this is where the focus of this study
was. For this study, the engine was operated at 40% of its maximum
power targeting a representative, mean operating condition. The ex-
haustr gas of a heavy duty diesel engine was applied as the heat source
for the thermal oil loop. Then, the oil exchanged heat with the ORC
unit. Direct heat transfer from the exhaust gases to the organic fluid is
often preferred in transport applications as it increases the heat transfer
efficiency and reduces the weight of the WHR system. On contrast, the
thermal oil loop requires an extra heat exchanger and pump which
increases the cost and weight and reduces the system efficiency. One
main advantage of the oil loop is that it eases the control of the ther-
modynamic conditions in the ORC circuit. In addition, the combina-
tion of ORC-thermal oil loop is beneficial in order to keep the thermal oil
temperature in the evaporator stable. The measurements were all per-
formed in steady state conditions. The results of both the ORC cycle and
specific turbine are all presented in the following pages.

Fig. 1. Schematic representation of the test bench.
2. Working fluid selection

Selection of working fluid for an ORC system is of key importance for the cycle efficiency and network. It also represents the first step in the design of an ORC. In ORC systems, only working fluids with low Global Warming Potential (GWP) and Ozone Depletion Potential (ODP) should be utilized [60].

Among the hundreds of fluids available, it is necessary to select either non-flammable fluids or flammable fluids whose auto-ignition temperature is higher than that of the exhaust gasses leaving the ICE. For example, only a small subset of the Alkanes can be considered. In particular, the Alkanes that have a flammability limit that is higher than the heat source of the ORC in question. In order to come up with the optimum fluid for the current applications, the authors [61] proposed novel method for the selection of the proper working fluid for ORC-WHR systems based on a radial expander in which thermodynamic properties and evaporator heat transfer surface are taken into account. The detailed results of the proposed method can be found in [61]. The final screening was based on the effect of the organic fluids on the required components of the ORC, namely,

- The evaporator heat transfer surface needs to be minimized due to the space constraints since this component has to be fitted into the immediate surroundings of the ICE exhaust manifold.
- The Radial turbine rotational speed is known to affect the turbine efficiency (furthermore, excessive rotational speeds lead to manufacturing and operational problems). The expander/turbine is directly coupled to the Power Conversion Unit (PCU), which performs the mechanical-electrical power conversion, and the alternator would become much more expensive.
- The Back work ratio (BWR), i.e., the ratio between pump and turbine power, must be minimized to maximize the cycle net power output.
- The Turbine external diameter should fall within the dimensional constraints of the retrofitting capability of the technology.

Two fluids (Fluid A and R1233zde) were selected for further screening because they have zero toxicity, low GWP, maximum power output compared to others, and both are inflammable. The results were further expanded as shown in another work by the authors [5]. Overall, Fluid A was shown to produce lower back pressure at the evaporator exit. On the other hand, R1233zde presented very high turbine rotational speed which in turns had a negative effect on the electric generator cost. Moreover, according to 3M [62] that produced Fluid A, this fluid is an effective heat transfer fluid that can be utilized in applications such as ORC where non-flammability or environmental factors are a consideration. Last but not least, Fluid A, which unfortunately cannot be mentioned here for reasons of strict confidentiality, is generally more available in the market.

3. ORC thermodynamic definitions used in the experiment

This section presents the experimental set-up tested and the principal theoretical expressions used in the definition of the ORC system and expander performance. Fig. 1 presents the schematic layout of the ORC test rig. Thermal oil extracts the heat of the exhaust gas via the gas-oil heat exchanger (main heat exchanger). Using the working fluid pump, the working fluid is pumped at high pressure to the evaporator to extract the heat from the hot thermal oil. The superheated fluid then enters the turbine to rotate the turbine blades generating power output. The turbine is directly coupled to a high speed synchronous electric generator to convert the turbine mechanical power to electricity. In the test bench, a load bank is installed for the purpose of electric power dissipation. Since the working fluid leaving the evaporator is still hot, the fluid enters the recuperator to absorb the remaining heat. The warm working fluid then enters the condenser where it is condensed into liquid before entering the working fluid receiver tank and restarting the cycle.

Table 1 presents the principal thermodynamic equations of each component. Performance of the ORC system is measured using the definition of the thermal efficiency \(\eta_{\text{ORC}} \) as shown in Eq. (1). Thermal efficiency is defined as the ratio between the cycle work net and the heat extraction in the evaporator. \(W_{\text{net}} \) is the cycle power and it is the difference between the electrical power generated by the generator and the power consumed by the pumps (working fluid pump and thermal oil pump), Eq. (2).

The performance of the turbine is measured using bulk properties for the total-to-total isentropic efficiency definition as shown in Eq. (3). \(\eta_{\text{turb}} \) is obtained using REPROP [63] at \([P_{\text{in}}, P_{\text{out}}]\) as shown in the h-s diagram, Fig. 2. Another indicator of turbine performance is the turbine expansion power and it is defined using Eq. (4). Eq. (4) is a well know expression that combines the energy conservation and Euler equation. Euler equation can be defined in another form as shown in Eq. (5). According to Moustapha et al. [64], Euler equation can be combined with the velocity triangle to obtain Eq. (6), where a and b denotes the rotor inlet and exit, respectively.

\[
\eta_{\text{turb}} = \frac{h_{\text{a}}-h_{\text{b}}}{h_{\text{a}}-h_{\text{in}}} \\
W_{\text{out}} = m(h_{\text{in}}-h_{\text{out}}) \\
W_{\text{out}} = m(U_{\text{a}}C_{\text{p}}-U_{\text{b}}C_{\text{p}}) \\
W_{\text{out}} = 0.5[(U_{\text{a}}^{2}-U_{\text{b}}^{2})-(W_{\text{b}}^{2}-W_{\text{a}}^{2}) + (C_{\text{a}}^{2}-C_{\text{b}}^{2})]
\]

4. Experimental apparatus

The test rig consists of two main components: the heavy duty diesel engine (Fig. 3) and the ORC skid (Fig. 4).
4.1. Description of the heavy duty diesel engine

The heavy duty diesel engine utilized in the test is a 7.25ℓ Yuchai engine. It is a turbocharged, direct injection engine and fulfills the EURO III regulatory requirements. The detailed characteristics of the heavy duty diesel engine are presented in Table 2. The engine capacity is considered sufficient to apply a waste heat recovery system to, due to the high exhaust flow enthalpy available.

The engine exhaust heat map of this heavy duty diesel engine is illustrated at Fig. 5. It is observed that the maximum exhaust energy is wasted at maximum power conditions, which was also considered as the design point of this ORC unit, in order to maximize the ORC system power output. However in transient automotive applications the ORC system rarely operates at the design conditions. In this study, the presented off-design conditions of the ORC system are at 40% (81 kW) of the maximum engine power, as presented in Fig. 5. This operating point represents an average steady state operation between high and low engine load and speed of the non-road transient cycle (NRTC) test protocol. NRTC is a legislative driving cycle developed by US EPA in collaboration with EU and is utilized worldwide for type approval of non-road engines. The normalized engine speed and torque profile are also presented in Fig. 5.

4.2. ORC installation

This section presents a brief description of each component of the ORC system. Fig. 4 illustrates the installation which was tested in the powertrain test facility at Brunel University London.

4.2.1. Gas-oil heat exchanger (main heat exchanger)

In the gas-oil heat exchanger (Fig. 3), heat transfer takes place between the exhaust gases of the engine and the thermal oil. It is a single flow, shell and tube heat exchanger manufactured by Entropea Labs.

4.2.2. Evaporator, condenser and recuperator

The evaporator, condenser and recuperator units are all counter current flow, brazed plate heat exchangers. The counter current configuration in the condenser is beneficial to ensure that saturated liquid leaves the condenser, thereby, allowing the working fluid pump to
operate more efficiently. The brazing is made of copper and connections inside the heat exchangers are made of stainless steel to withstand the operating conditions of the cycle. Brazed plate heat exchangers consist of a pack of plates that are pressed together which eliminates the use of gaskets. The maximum temperature and test pressure of the heat exchangers are 225 °C and 46 bar for the evaporator, 225 °C and 40 bar for the condenser, and 225 °C and 72 bar for the recuperator. The condenser is cooled by a water loop that is controlled by a throttling valve.

4.2.3. Pumps

There are two pumps available in the test rig – one for the oil loop and the other for working fluid loop. Both pumps are of positive displacement type (gear pumps). The pumps are connected to an electrical motor with the same maximum speed. The characteristics of both pumps are listed in Table 3.

Table 3

<table>
<thead>
<tr>
<th>Pump</th>
<th>Speed (RPM)</th>
<th>Flow rate (lt/min)</th>
<th>Maximum power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil pump</td>
<td>1400</td>
<td>40</td>
<td>1.1</td>
</tr>
<tr>
<td>Working fluid pump</td>
<td>1400</td>
<td>60</td>
<td>5.5</td>
</tr>
</tbody>
</table>

4.2.4. Turbine

The turbine was designed according to the methodology presented in Fig. 6. Firstly, the basic geometry was constructed using a mean-line model. Then, the 3D parts of the turbine were constructed as shown in Fig. 7. The turbine then was optimized through dedicated CFD investigations. Finally, the turbine was manufactured as shown in Fig. 7. The detailed design methodology is presented in previous paper by the authors [65]. Table 4 presents the main geometrical parameters of the turbine. The turbine was designed with novel back-swept blading in order to increase the tangential velocity component and hence higher power output as expressed in Eq. (5).

The radial inflow turbine was designed mainly for this application considering the exhaust gas temperature of the engine at full load as the heat source for the thermal oil loop. After extensive ORC simulations by the industrial partner, the design point operating conditions of the turbine were specified as shown in Table 5. The turbine shown in Fig. 7 was designed based on the design point conditions shown in the table.

Fig. 5. (a) left: Exhaust heat diesel engine map, (b) right: The Nonroad Transient Cycle (NRTC) protocol.

Fig. 6. The design methodology employed in the design of the radial inflow turbine.

Table 4

<table>
<thead>
<tr>
<th>Design point</th>
<th>Geometry and Performance Optimization</th>
<th>Design of Experiment</th>
<th>Performance Prediction (Off-Design)</th>
<th>3D CAD Model</th>
<th>CFD + FEA</th>
<th>Turbine Manufacturing</th>
<th>Testing and Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proposed Methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

548
to static efficiency of 75.2%. The maximum theoretical thermal efficiency was 9.3%.

However, due to the limitation of the dynamometer, the engine was not running at full load. In fact, the engine could only provide a torque of 450 N.m which for the maximum speed tested (1700 rpm) equated to 81 kW. Therefore, the turbine was tested at highly off-design conditions as shown in Table 5. Indeed, this could be more beneficial since the exhaust gas temperature is unstable and uncontrollable, thereby obtaining more practical results. In addition, off-design point is the frequent engine operating point, as shown in Fig. 5.

4.3. Instrumentation

The test facility is instrumented with measuring devices at inlet and
Table 4
Basic geometrical data of the radial turbine.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Design point</th>
<th>Off-design (Testing)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine inlet total pressure</td>
<td>bar</td>
<td>13</td>
<td>1.8–9</td>
</tr>
<tr>
<td>Turbine inlet total temperature</td>
<td>K</td>
<td>471.5</td>
<td>423.15–437.5</td>
</tr>
<tr>
<td>Turbine exit static pressure</td>
<td>bar</td>
<td>1.3</td>
<td>1.1–1.4</td>
</tr>
<tr>
<td>Turbine inlet mass flow rate</td>
<td>kg/s</td>
<td>0.923</td>
<td>0.03–0.815</td>
</tr>
<tr>
<td>Rotational speed</td>
<td>rpm</td>
<td>40,000</td>
<td>15,000–20,000</td>
</tr>
</tbody>
</table>

Table 5
Design and off design conditions for the radial inflow turbine.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator inlet radius [mm]</td>
<td>44.4</td>
</tr>
<tr>
<td>Stator exit radius [mm]</td>
<td>35.5</td>
</tr>
<tr>
<td>Stator blade height [mm]</td>
<td>3.4</td>
</tr>
<tr>
<td>Rotor inlet radius [mm]</td>
<td>34.1</td>
</tr>
<tr>
<td>Radius exit radius (rms) [mm]</td>
<td>17.2</td>
</tr>
<tr>
<td>Rotor inlet blade height [mm]</td>
<td>3.4</td>
</tr>
<tr>
<td>Rotor exit blade height [mm]</td>
<td>15</td>
</tr>
<tr>
<td>Rotor inlet blade angle [deg]</td>
<td>54</td>
</tr>
<tr>
<td>Rotor exit blade angle [deg]</td>
<td>−45</td>
</tr>
<tr>
<td>Number of rotor blades [-]</td>
<td>15</td>
</tr>
<tr>
<td>Number of stator vanes [-]</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 6
Operating range and accuracy of the measuring devices.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total temperature</td>
<td>−40 to 1100°C</td>
<td>± 1.1 °C</td>
</tr>
<tr>
<td>Total pressure</td>
<td>1–50 bar</td>
<td>± 0.25 full scale</td>
</tr>
<tr>
<td>Working fluid flow rate</td>
<td>0.23–1.82 m³/h</td>
<td>± 3% of reading</td>
</tr>
</tbody>
</table>
exit of the components in order to measure total pressure, total temperature and/or mass flow rate. This is aimed at evaluating ORC efficiency, turbine power and efficiency, and the generated electrical power at different operating conditions. All the thermocouples are of K

Fig. 12. Energy balance through the main heat exchanger.

Fig. 13. Cycle efficiency evolution with time.

Fig. 14. Power generation with speed.

Fig. 15. Power generation with turbine pressure ratio at 20,000 rpm.

Fig. 16. Turbine isentropic efficiency at two different speeds.

Fig. 17. Mass flow parameter vs pressure ratio.

Fig. 18. Variation of power with working fluid mass flow rates.

Fig. 19. Variation of power with turbine speed.
type (Nickel Chromium/Nickel Aluminium). They are highly flexible and the sheath can be formed or bent to suit the applications required. The pressure transducers use piezo-resistive sensing technology with ASIC (Application Specific Integrated Circuit) signal conditioning in brass housing and Metri-Pack 150 or cable harness electrical connections. The mass flow rates of thermal oil and working fluid are measured using flow meters. The turbine is directly coupled to the generator and the speed can be controlled by the user. The operating range and accuracy of the measuring devices are described in Table 6.

5. Results and discussion

5.1. Overview of the results

The recording of the test data was initiated once thermal equilibrium (steady state) was achieved. Therefore, the time (x-axis) shown in latter figures in this section is the time after recording and not the time from the start of the test.

The exhaust gas temperature is the main external factor that affects cycle performance. Figs. 8 and 9 present the impact of the exhaust gas temperature on temperature and pressure of both the oil through the evaporator, and the working fluid through the turbine at constant...
working fluid mass flow rate (0.33 kg/s). It is clear from Fig. 8 that the oil temperature increases at a constant rate as the exhaust gas temperature increases. Consequently, the temperature of the working fluid at the turbine inlet increases proportionately. It is also noticed that the turbine exit temperature increases proportionately as the exhaust gas temperature increases. The temperature drop between inlet and exit of the turbine is a result of the expansion process within the turbine. The maximum temperature difference of the oil between evaporator inlet and exit is 14.4 °C while it is 12.3 °C of the organic fluid between turbine inlet and exit at the maximum exhaust gas temperature. Fig. 9 presents the influence of the exhaust gas temperature on the oil and working fluid pressure. The increase of the oil pressure at inlet and exit of the main heat exchanger is negligible which indicates a steady state condition. The turbine inlet pressure increases by 0.4 bar as the exhaust gas temperature increases. On the other hand, the turbine exit pressure is almost constant during the process since the exit pressure is not directly related to the evaporator exit. As mentioned earlier, this sample of results are taken at constant working fluid mass flow rate. Fig. 10 shows that the turbine inlet pressure increases with increasing the working fluid mass flow rate. As the mass flow rate increases from 0.05 kg/s to 0.83 kg/s, the turbine inlet pressure increases from 1.45 bar to 8.3 bar.

As stated before the tests were run at 81 kW of engine power (40% of the maximum engine power). Therefore, heating of the thermal oil could not be sustained which diminished the oil power with time. Hence, the power generation in the electric generator lasts for about 30 min with a maximum power of 6.3 kW before it fell sharply in the last five minutes. Fig. 11 presents the variation of the electrical and oil power with time.

The equations presented in Table 1 were applied in order to calculate the performance for the three heat exchangers involved (gas-oil heat exchanger, evaporator and condenser) at different heat source temperatures. It is worth mentioning that the points, where two-phase flow occurs, were excluded in the analysis due to the difficulty of measuring the thermodynamic properties (i.e. enthalpies) involved at those stations. As can be seen in Fig. 12, the maximum deviation in the main heat exchanger (gas-oil heat exchanger) is 1.9% at 239 °C. The same analysis was performed on the evaporator and the condenser. The maximum errors for the two components were 3.7% and 4.1%, respectively. The above errors are relatively low and could be explained due to inaccuracies in the temperature measurements and the heat loss in the connecting pipes as these pipes were not insulated during the test.

The thermal efficiency of the cycle was investigated with time as depicted in Fig. 13. It is worth pointing out that the cycle efficiency is far below the design point value (9.3%) as the cycle was operated well within off-design conditions. For instance, the turbo-generator operated at 20,000 rpm which is far below its rated rotational speed (40,000 rpm). The cycle efficiency was in the range of 1.4–4.3%. The efficiency reached its peak after about 12 min of testing and then decreased to 2.8% due to the reduction of the electrical power in the generator (Fig. 11).

The main purpose of the ORC as a waste heat recovery system is to improve the engine performance or conversely the reduction of fuel consumption. The results reveal that the BSFC was decreased by an average value of 3% after the implementation of the ORC at these conditions (40% of the maximum engine power).

5.2. Turbo-generator characteristics

5.2.1. Electrical power

The electrical power generated by the generator is investigated at different conditions. Fig. 14 reveals the relationship between the generated power and the turbo-generator speed. It is clear that the electrical power increases linearly as the speed increases. As the speed increases from 5000 to 7000 rpm, the power increase is insignificant. The power then increases gradually from 8000 to 20,000 rpm with a maximum power of 6.3 kW at 20,000 rpm. In addition, the generated power is investigated at different turbine pressure ratios as can be seen in Fig. 15. The generated power linearly increases as the expansion ratio between turbine inlet and exit increases. It is worth mentioning that the expansion is increased by controlling the mass flow rate using the working fluid gear pump. As the mass flow rate increases, the turbine inlet pressure increases as demonstrated in Fig. 10. It is also worth noting that the results in Fig. 15 are demonstrated at constant turbo-expander speed (20,000 rpm). The maximum obtained electrical power is 6.3 kW at 5.9 pressure ratio. For the 15,000 rpm speed, the maximum electrical power achieved is 5.1 kW at 3.8 pressure ratio.
topology (ATM Optimised) was selected so that ANSYS TurboGrid could select the suitable topology for the blade passage. If the mesh quality at a certain region, such as the rotor leading edge, is poor, then the control points can be adjusted by the user to solve the problem. Fig. 21 presents the sensitivity analysis of the element number of the passage to the turbine isentropic efficiency at the design point. The passages with one million elements were selected for the current study.

Two models of boundary conditions can be applied in ANSYS CFX. The first model applies total pressure and temperature at the turbine inlet, whereas the second model is defined with the combination of mass flow rate at the inlet and static pressure at the outlet. In this study, the first model was applied because it provides the best numerical stability and convergence rates [66]. To include the effect of heat transfer, the total energy model was included in the simulation because it depicts the transport of enthalpy and considers the flow kinetic energy [67]. All solid surfaces were modelled as smooth walls using a no-slip boundary condition. The parameters of the off-design conditions shown in Table 5 were applied with the rotational speed kept 20,000 rpm. In order to define the working fluid, look-up table were built and discretised in 500 × 500 arrays with pressure (50–13,500 kPa) and temperature (350–500 K) as independent variables.

The results of the parametric CFD study were in good agreement with the experimental results as shown Fig. 22. The maximum deviation was 1.15% at PR = 5.9. For the rest of the range, the deviations were less than 1%. These insignificant deviations indicate that the CFD study is properly set, and the experimental results are reliable.

6. Conclusion
A compact ORC system was built, coupled to a heavy duty diesel engine and tested. A thermal oil loop was constructed to absorb the wasted heat in the exhaust and deliver it to the organic fluid. This helped to control the operating conditions in and out of the different ORC components; hence steady state was reached prior to testing. The intermediate oil loop was necessary to preserve the integrity of the working fluid selected but increased the system complexity and cost and resulted in lower system efficiency. Therefore, its choice is dependent on working fluid selection and ultimate application.

In addition, a radial inflow turbine was designed specifically for the current application considering the cycle conditions and the thermodynamic properties of the organic fluid. The overall cycle and the turbo-generator performance were investigated.

The results revealed that the maximum generated power was 6.3 kW at 20,000 rpm at 40% engine power. The operating conditions were a substantially off-design condition, at which the peak efficiency of the radial turbine was 35.2% at 20,000 rpm. In addition, the maximum thermal efficiency of the cycle was 4.3%. The results also revealed that the coupled engine-ORC system improved the engine power and the BSFC by 3% at the tested engine point. For more assurance, the experimental results of the turbine were compared with the CFD results due to the highly off-design conditions. The numerical and experimental results were in good agreement with a maximum deviation of 1.15%.

The results of the current study were encouraging for further investigation including design conditions as well as transient driving cycles.

Acknowledgements
The authors would like to acknowledge the financial support of Innovate UK to this project (ref. TS/M012220/1). The authors would like also to thank Dr. Konstantinos Tsamos and Dr. Giuseppe Bianchi from Brunel University London for their fruitful ideas on the experimental part of this work.

References

[34] Qiu K, Thorsteinsson E. An organic Rankine cycle system for solar thermal power applications. International conference on renewable energy research and application (ICRERA), Milwaukee, USA. 2014.

