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BACKGROUND: In many places, daily mortality has been shown to increase after days with particularly high or low temperatures, but such daily time-
series studies cannot identify whether such increases reflect substantial life shortening or short-term displacement of deaths (harvesting).

OBJECTIVES: To clarify this issue, we estimated the association between annual mortality and annual summaries of heat and cold in 278 locations
from 12 countries.

METHODS: Indices of annual heat and cold were used as predictors in regressions of annual mortality in each location, allowing for trends over time
and clustering of annual count anomalies by country and pooling estimates using meta-regression. We used two indices of annual heat and cold based
on preliminary standard daily analyses: a) mean annual degrees above/below minimum mortality temperature (MMT), and b) estimated fractions of
deaths attributed to heat and cold. The first index was simpler and matched previous related research; the second was added because it allowed the
interpretation that coefficients equal to 0 and 1 are consistent with none (0) or all (1) of the deaths attributable in daily analyses being displaced by at
least 1 y.
RESULTS: On average, regression coefficients of annual mortality on heat and cold mean degrees were 1.7% [95% confidence interval (CI): 0.3, 3.1]
and 1.1% (95% CI: 0.6, 1.6) per degree, respectively, and daily attributable fractions were 0.8 (95% CI: 0.2, 1.3) and 1.1 (95% CI: 0.9, 1.4). The prox-
imity of the latter coefficients to 1.0 provides evidence that most deaths found attributable to heat and cold in daily analyses were brought forward by
at least 1 y. Estimates were broadly robust to alternative model assumptions.
CONCLUSIONS: These results provide strong evidence that most deaths associated in daily analyses with heat and cold are displaced by at least 1 y.
https://doi.org/10.1289/EHP1756

Introduction
In many locations worldwide, daily time-series analyses have
identified adverse associations between daily mortality and tem-
peratures that are toward the hot and cold ends of the tempera-
ture range for each location (Gasparrini et al. 2015; Guo et al.
2014). Many of these analyses employed distributed lag models
(Armstrong 2006; Schwartz 2000) that discount mortality

displacement or harvesting (Zanobetti et al. 2000) within the
lag interval, typically 2–3 wk in recent studies. However, they
cannot identify the extent of displacement of mortality beyond
this period. Such displacement may be quite short, for example,
just a few months. The uncertainty about this makes it hard to
estimate the actual life lost to weather and thereby judge the pri-
ority that should be given to public health policies to reduce
those excesses.

One way to clarify the extent of mortality displacement due to
the acute effects of heat and cold is to estimate associations
between annual mortality and annual summaries of heat and cold.
If such associations were null, it would indicate that excess
deaths due to acute effects were wholly compensated by deficits
later in the same year, as would be the case if all reflected mortal-
ity displacement. Positive associations of annual series would
indicate that all or some of the excess deaths were displaced at
least into the next period, suggesting that mortality was advanced
by at least 1 y.

Two published single-city studies have used this method. In
both London between 1947 and 2006 (Rehill et al. 2015) and
Hong Kong from 1976 to 2012 (Goggins et al. 2015), years with
cold winters and those with hot summers were associated with
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high mortality, though in temperate London, the association with
heat was not significant. Those studies were not linked to daily
studies, so it was not possible to directly estimate from them
whether a proportion of heat and cold deaths found in daily stud-
ies were nevertheless displaced by less than 1 y.

In this multicountry study, we estimated the association
between annual mortality and annual summaries of heat and cold
in 278 locations from 12 countries. We also develop the method
further to give insight, for positive associations, into whether the
magnitude of association indicates partial or total absence of
short-term displacement. This is easily the largest study to date
addressing this question, indeed the only study including more
than one location.

Methods
The data were assembled from daily counts of deaths and mean
temperatures from 278 locations from 12 countries of total dura-
tions of 10–40 y from years between 1972 and 2012. These data
are those that have been previously described (Gasparrini et al.
2015), with the addition of six locations from Ireland (all the
island of Ireland: two regions in Northern Ireland and four in the
Republic). We also used a longer series from some countries,
Japan in particular, and excluded locations with less than 10 y of
qualifying data (see below). Descriptive data on included loca-
tions are summarized in Table 1 and given in more detail in
Supplementary Material (Table S1).

Broadly, statistical methods follow those of the previous
single-location annual studies (Goggins et al. 2015; Rehill et al.
2015). Mortality and temperature daily series were collapsed to
an annual series using two different year dividers: a) starting
years at the beginning of summer (the month before that includ-
ing the summer solstice, May, in the northern hemisphere) to
allow maximum time for shorter-term displacement of heat-
related deaths to be discounted; b) similarly, starting years at the
beginning of winter (November) for optimal cold analysis.
Location years with more than 1% of days missing key variables
were excluded.

In these annual series, (logged) annual mortality was regressed
on annual indices of heat and cold. We used two indices described
below; the first (“Basic Model”) is simpler and we hope easier to
follow, and the second (“Modified Model”) more informative at
the expense of some additional complexity.

Basic Model
In a preliminary step, conventional daily analysis was used to
identify minimum mortality temperature (MMT), the daily mean
temperature at which mortality was predicted to be minimum, at
each location. Specifically, we used exactly the same model spec-
ification as Gasparrini et al. (2015), a distributed lag nonlinear
model (lags to 21 d) with spline control for seasonality and trend
[8 degrees of freedom (df)/year] and day of week indicators.

Then, after collapsing daily to annual data as described above,
in each country, location i and year t, mean daily deaths Yit were
regressed on mean of degrees above (below) these MMTis in that
year and location:

logðYitÞ=ai + bheat heat degreesi,t +bcold cold degreesi,t

+ siðt,dfiÞ+xt + eit [1]

Where

• heat degreesi,t =
P

d=1,365fmax½ðtempi,t,d −MMTiÞ,0�g=365,
with tempi,t,d being mean temperature on day d, year t, loca-
tion i.

• cold degreesi,t =
P

d=1,365fmax½ðMMTi − tempi,t,dÞ,0�g=365.
• siðt,dfiÞ is a natural cubic spline of year t specific to location
i with two df per decade (rounded).

• xt and eit are Gaussian independent and identically distrib-
uted noise at year and location–year levels, respectively.
In model (1), a Gaussian distribution was adopted in prefer-

ence to the quasi-Poisson models used in daily analysis for mod-
eling simplicity and because the large size of annual death counts
made the Gaussian approximation very good (Goggins et al.
2015; Rehill et al. 2015). For presentation of results, we trans-
form the coefficients bheat and bcold to percent excess relative
risks (ERR%) per degree of annual high and low temperatures:
ERR%=100½expðbÞ− 1�.

In these models, R code and data for one country are given in
Supplemental Material, R code and data.

That model (1) is at country rather than location level is un-
usual, and indeed, we initially planned to fit a regression model
of annual mortality model separately for each location, as did the
previous single-location studies, and then combine results in a
second-stage meta-analysis of location coefficients. However, ex-
ploratory analyses showed appreciable correlations of mortality
and temperature anomalies across locations in the same country;
years with anomalous mortality residuals in one location tended
to be similarly anomalous in other locations also, even after
allowing for temperature effects. This falsified the assumption of
independence of estimates over locations necessary for conven-
tional two-stage analysis with location-specific analyses at first
level, leading to spurious precision in coefficients. We therefore
reformulated the model for our analysis to have first-level regres-
sions using all data from each country combined and a second-
level meta-analysis of country (heat and cold) coefficients. The
country-level regressions allowed separate intercepts and time
spline curves for each location and an additional random effect of
calendar year to allow for the shared year anomalies in mortality
noted above.

Modified Model to Relate Results to Those from
Daily Analyses
Model (1) allows concluding whether some deaths were dis-
placed by more than 1 y by heat or cold (if the coefficients of the
annual heat_degrees and cold_degrees are positive), but does not
easily provide evidence whether such longer-displaced deaths
comprised all or just a fraction of the deaths found attributable to
heat and cold in daily analyses. To provide this more quantitative
evidence, we replaced the heat degrees and cold degrees variables
in model (1) with annual fraction of deaths attributable to heat
and cold, heat AFdailyi,t and cold AFdailyi,t, where AF stands
for attributable fraction. These were estimated in the preliminary
daily analyses by aggregating to annual level daily fractions of
deaths attributable to heat and cold obtained as described in
Gasparrini (2015), using the forward method described in
Gasparrini and Leone (2014). The model was in other respects
the same as model (1):

logðYitÞ= ai + bheat heat AFdailyi,t + bcold cold AFdailyi,t

+ siðt,dfiÞ+xt + eit [2]

Under model (2), if in each year t, the excess fraction of
deaths due to heat (cold) found in annual regression analyses are
the same as the fraction found by aggregating the daily attribut-
able deaths, then the coefficients bheat and bcold would, to a close
approximation, be 1. The approximation is addressed with a com-
plexity cost in a sensitivity analysis, but we motivate the argu-
ment with a simplified example: Suppose in one location in just
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1 y, daily analyses indicated that 2% of deaths were due to heat
(none to cold), so heat AFdailyi,t =0:02. Then, if all of those
deaths were displaced by 1 y or more, mortality would be raised
by a factor (rate ratio) of close to 1.02, and log mortality be 0.02
higher. To fit this, the coefficient bheat = 1.

Thus, we can interpret the actual coefficients estimated from
model (2) as follows: A coefficient of 0 is consistent with all deaths
attributed to heat by daily analyses being displaced by less than 1 y.
A coefficient of 1 is consistent with all the daily attributable deaths
being displaced more than 1 y. Intermediate values are consistent
with some but not all the daily attributable deaths being displaced
by more than 1 y. Effects of heat and cold at longer lags than those
considered in daily analyses may also play a part. If all the daily at-
tributable deaths were displaced by more than 1 y, such additional
longer lags would lead to coefficients >1. If there was some short-
term displacement, this might be compensated by longer lag effects,
so, for example, a coefficient of 1 might reflect the two things bal-
ancing exactly. However, public health importance seems independ-
ent of whether a coefficient of 1, say, is due to absence of short-
term displacement or its compensation by longer lag effects.

Sensitivity Analyses
To identify sensitivity to specific features of the model (2) it was
modified as follows:

1. Time spline changed from 2 to 1 and 3 df/decade.
2. The benchmark for excluding years dues to missing values

changed from 1% to 0% (excluded 9 locations entirely) and
10% (added 18 locations).

3. Influenza data were available only for locations in Canada,
Ireland, Japan, Spain, and the United Kingdom (137 loca-
tions). For these countries, a term kðinfluenza%Þit was
added, where influenza% is the proportion of deaths coded
as due to influenza (International Classification of Diseases
Eighth Revision (ICD-8) 470-474, Ninth Revision (ICD-9)
code 487, and Tenth Revision (ICD-10) (WHO 1966, 1978,
2016)]. Unadjusted results restricted to the same five coun-
tries are also given for comparison.

4. Step changes in death rates at calendar-year changes
(1 January) were included wherever significant at a)
p<0:01, and b) p<0:001. These corresponded to false
discovery rates of included steps of about 50% and 20%,
respectively (estimated by Storey’s q-value). Steps were
selected first in calendar year analyses, modeled as indica-
tors stepðTÞit =1 if t>T, 0 otherwise. In the main models
with years starting in May and November, the indicators
were modified to stepðTÞit =1 if t>T, stepðTÞit =4=12
ðMayÞ or 10/12 (November), 0 otherwise.

5. Three alternative approaches to clustering by year were
undertaken: a) ignoring clustering by applying a conventional
two-stage analysis with each location analyzed separately; b)
using the country-level model as for the main model, but
without random year effect with standard error of heat and
cold index coefficients estimated by jackknife clustering on
year; and c) the main model with addition of allowance for
random variation in heat and cold coefficients (slopes) across
locations.

6. To allow interpretation of coefficients with respect to pro-
portion of deaths attributable to heat and cold in daily anal-
yses without approximation, the explanatory variables in
model (2) were modified to heat indexi,t = − logð1–heat
AFdailyi,tÞ, and equivalently for cold. This we deduced
from standard theory (Steenland and Armstrong 2006), by
which for an explanatory variable value x for 1 y, the AF
is: AFðxÞ=1− expð−bxÞ. Changing the subject of this
expression, the value x= − log½1−AFðxÞ� gives the x vari-
able that would give a coefficient of 1 if AFðxÞ were
known. Thus, if heat AFdailyi,t indeed were the same as
the AF from annual analysis, heat AFannuali,t, then the
coefficient of x= − logð1–heat AFdailyi,tÞ would be 1. We
did not anticipate replacing AF by −logð1−AFÞ would
make much difference to results, since at the low values
for AF in these data (maximum 0.08 for heat, 0.2 for cold),
AF � − logð1−AFÞ to a good approximation.

7. An approximate correction was made for estimation uncer-
tainty in the annual AFdaily used as explanatory variables in
our main analysis. Because of the complexity of the struc-
ture of this error in variables (highly correlated across
years within a location), we chose the SIMEX method
(Carroll et al. 2006) in which additional error is simulated
at various magnitudes and the pattern of mean ERRs and
their standard errors estimated from (100) simulations at
each magnitude extrapolated to estimate what would have
been observed at zero error if the pattern persisted.
Specifically, we took values of additional error variance
multiplier k=0:5, 1, 1.5, and 2, and used a quadratic poly-
nomial to extrapolate the association between mean of esti-
mated b values (bk) with k back to k= − 1 to predict a
value bSIMEX. To obtain SEðbSIMEXÞ, we similarly extrapo-
lated variance differences: mean½VarjðbkjÞ�−VarðbkjÞ to
k= − 1, where j is the simulation number.

Results
A summary of distributions of key variables in the 278 included
locations is shown by country in Table 1, and the values of those

Table 1. Summary descriptive statistics by country.

Country n Period MMT (percentile)
Mean (SD) AF% Mean (SD) °C

Heat Cold Heat Cold

Australia 3 1988–2008 22.8 (82%) 0.5 (0.2) 5.9 (0.5) 0.4 (0.1) 4.8 (0.3)
Brazil 15 1997–2010 25.1 (62%) 0.7 (0.3) 2.5 (0.5) 0.5 (0.1) 1.7 (0.2)
Canada 21 1986–2010 17.2 (82%) 0.5 (0.2) 5.1 (0.3) 0.5 (0.2) 11.1 (0.8)
Ireland 6 1984–2006 17.5 (97%) 0.0 (0.0) 11.3 (1.1) 0.0 (0.0) 7.8 (0.5)
Italy 2 1988–2009 21.8 (78%) 1.7 (1.4) 9.8 (0.9) 0.7 (0.3) 7.5 (0.5)
Japan 47 1972–2011 24.8 (84%) 0.4 (0.2) 10.5 (0.8) 0.4 (0.2) 10.1 (0.6)
South Korea 7 1992–2009 25.6 (90%) 0.3 (0.3) 6.6 (0.2) 0.2 (0.1) 12.0 (0.5)
Spain 50 1990–2009 21.4 (78%) 1.1 (0.5) 5.6 (0.7) 0.6 (0.2) 6.6 (0.5)
Taiwan 3 1994–2006 25.8 (55%) 0.9 (0.2) 3.8 (0.6) 1.1 (0.1) 2.9 (0.3)
United Kingdom 10 1993–2005 17.2 (90%) 0.3 (0.2) 8.4 (0.8) 0.2 (0.1) 6.9 (0.4)
United States 114 1985–2005 24.3 (83%) 0.3 (0.2) 5.4 (0.3) 0.4 (0.1) 9.8 (0.6)

Note: The table shows number n of locations, period of study (start years of first to last complete Nov–Oct year), and the mean over locations of MMT from daily analyses (in degrees
and as percentile), mean, and SD over included years of annual attributable fraction of deaths estimated due to heat and cold using methods identical those for a previously published
daily analysis (Gasparrini 2015), and mean (SD) of annual mean degrees above and below the MMT. AF, attributable fraction; MMT, minimum mortality temperature; SD, standard
deviation.
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variables for each location are in Table S1. The United States,
Japan, and Spain stand out as having the most locations, and
Japan had easily the longest series (40 y). In some countries, the
average location-specific variation over years of our two heat
indices (fraction of deaths attributable to heat and degrees above
MMT) is rather small, which limits study precision and power in
those places. Ireland in particular, with mean MMT at the 97th
percentile of temperature, showed an average heat-attributable
fraction of just 0.03%, with standard deviation of 0.05%.

The association of mortality with mean annual degrees of
heat and cold was positive on average and in most countries
(Figure 1), with overall estimates of ERR per degree of heat
above MMT 1.7% [(95% confidence interval (CI): 0.3, 3.1] and
of cold below MMT 1.1% (95% CI: 0.6, 1.6), though variation
between countries in ERRs was appreciable (I2 = 67% and 72%).
This indicates that some deaths associated with heat and cold
were indeed brought forward by at least 1 y.

An ERR% of 1.0% has no special significance in the results in
Figure 1 [model (1)], which cannot elucidate what proportion the
excesses found comprise of all deaths found attributable to heat
and cold in daily analyses. The results in Figure 2 from model (2)
do this; if all the deaths found attributable to heat and cold in
daily analyses were displaced by at least 1 y, then the regression

coefficient b would be 1. For both heat and cold, our pooled an-
nual analysis coefficients were indeed close to 1, at 0.8 (95% CI:
0.2, 1.3) and 1.1 (95% CI: 0.9, 1.4), respectively. This indicates
that about the same numbers of deaths were found associated
with these weather conditions in annual as in daily analyses, evi-
dence that most of the latter were brought forward (displaced) by
at least 1 y (not just harvested).

For cold, the country-specific associations in Figure 2 var-
ied no more than expected by chance. There was, however,
appreciable heterogeneity of heat coefficients across countries
(I-sq = 60%), despite these being less precise than for cold.
Most of the results that were not clearly positive were very
imprecise, but for the United States and Canada, the incremen-
tal risks, 0 (95% CI: −0:5, 0.5) and −0:6 (95% CI: −1:8, 0.6),
had CIs excluding 1.0, thus providing some evidence that in
these countries, some deaths shown in daily analyses to be
associated with heat were displaced by less than 1 y.

Few of the alternative models explored in sensitivity analyses
changed the overall estimates appreciably (Figures 3 and 4).
Models ignoring the year clustering across locations within coun-
tries (“Alt. app. to year clustering” first row) had much narrower
confidence intervals for country-specific coefficients, which is
reflected in the high heterogeneity I-sq values. Conversely, those

Figure 1. Association of annual mortality with mean annual degrees above and below minimum mortality temperature (MMT) by daily analysis (model 1): (A)
Heat, (B) Cold. Percent excess relative risks ERR% are increments in RRs (%) per 1°C increase in annual mean degrees above/below MMT.
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using a jackknife to allow for clustering (second row) had wider
country-level intervals leading to low I-sq values. Allowing for
error in the AFdaily values by SIMEX (“Correction for AF est.
error”) moved estimates away from the null and slightly wid-
ened CIs. Here, overall estimates increased by multiples of 1.24
and 1.13 for heat and cold, respectively, and patterns by country
remained the same (Figure S1). Investigation of sensitivity to
the choice of month marking the start of years for annual aggre-
gation (May and November in main analyses) showed little
such variation for cold and somewhat more for heat, with
November and February start months showing higher estimates,
though all CIs overlapped considerably (Figure S2; not on
Figures 3 and 4).

Discussion
This study found strong evidence that, on average, over all coun-
try studies, annual mortality was associated with deviations of
temperatures from normal, in particular rising in years that

experienced long or severe high or low temperatures. The
strength of the association was consistent with all of the deaths
found associated acutely with cold in daily analyses being
brought forward by at least 1 y. These deaths thus represent sig-
nificant life shortening rather than short-term mortality displace-
ment. The associations with heat in the United States and Canada
were exceptions, however. These suggested that in those coun-
tries, many of the deaths attributable in daily analyses to heat
(though not cold) were advanced by less than 1 y.

Our overall results are broadly in line with the two previ-
ously published studies using a broadly similar approach, each
with data from a single location but much longer periods (37
and 57 y) (Goggins et al. 2015; Rehill et al. 2015). Direct quan-
titative comparison is difficult. Many other studies have consid-
ered the mortality-displacement issue for heat-related deaths
using distributed lag models with daily data, some finding evi-
dence of significant proportions of heat-related deaths being
displaced by only a few weeks (Basu and Malig 2011; Hajat
et al. 2005; Kyselý 2004), but others found no such evidence

Figure 2. Association of annual mortality with mean annual deaths attributed to heat and cold by daily analysis (model 2). (A) Heat, (B) Cold. Betas are regres-
sion coefficients for log(mortality) on fraction of deaths attributable to heat and cold in daily analyses; a value of 1.0 indicates exactly the deaths expected
from daily analyses if all such deaths were displaced beyond the year end.
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(Kysely and Kim 2009; Le Tertre et al. 2006). In recent years,
many studies have considered distributed lag models with maxi-
mum lag of several weeks (Gasparrini et al. 2015), so that
temperature-related excesses of deaths with very short-term dis-
placement will be matched by deficits later on in the total lag inter-
val, so the overall cumulative risk for that interval will not include
the deaths displaced within it. However, it is difficult for such
studies to exclude displacement, which, though short, is more than
a month or two.

Some studies have considered patterns of deaths after heat
waves to elucidate displacement. From considering mortality
for the 50 d following the 1995 Chicago heat wave, it was esti-
mated that 26% of excess deaths during the heat wave were dis-
placed by less than 50 d (Kaiser et al. 2007). From the
experience in the year following the 2003 heat wave in Paris, it
was concluded that deficits of mortality in next year could
explain no more than 5,000 of the 15,000 excess due to heat in

2003 (Toulemon and Barbieri 2008). It would be interesting to
explore whether duration of displacement differed for such
extreme temperatures and the more moderate heat and cold
dominating the temperature-related excesses found by
Gasparrini (Gasparrini et al. 2015).

The patterns of reduced vulnerability to heat following win-
ters of high mortality found in several studies (Ha et al. 2011;
Qiao et al. 2015; Rocklöv et al. 2009; Stafoggia et al. 2009) pro-
vide some indirect evidence that some cold-related deaths are
among those who would otherwise be vulnerable to heat, so they
would likely have died within the next several months if they had
survived the cold. However, it seems impossible from these stud-
ies to quantify the proportion of cold-related deaths that this
would affect. Our results indicated that it is small.

The robustness of our results to quite extensive sensitivity
analyses adds credibility to our conclusions. A further strength of
this study is the wide geographic coverage and large number of

Figure 3. Sensitivity of overall heat–mortality association (baseline model 2) to changing model features. Alt. time spline: Degrees of freedom (df)/decade
changed from 2 df/decade (baseline) to 1 or 3 df/decade. Alt. max. prop. missing: criterion for excluding years with missing values changed from 1% (baseline)
to 0% (9 locations excluded) or 10% (18 locations added.) Flu adjustment: adjusted for the proportion of deaths with influenza as the cause of death; data avail-
able only for locations in Canada, Ireland, Japan, Spain, and the United Kingdom (137 locations); unadjusted estimate restricted to the same countries for com-
parison. Allow for steps: Steps (breaks) were allowed for by including any single-step indicator variables significant at each of the two stated levels, which
were estimated to result in false discovery rates of 0.5 (p<0:01; 109 steps) and 0.2 (p<0:001; 24 steps). Alt. app. to year clustering: The estimate ignoring
clustering (“ignore”) was a conventional analysis with each location analyzed separately; the jackknife estimate was from the country-level model without
random year effect, but standard error estimated by jackknife clustering on year; the “randslopes” estimate (baseline model) allowed for random variation in
coefficients for heat and cold across locations. Alt. AFdaily x–var: Explanatory variables modified to heat indexi,t = − logð1− heat AFdailyi,tÞ and
cold indexi,t = − logð1− cold AFdailyi,tÞ, respectively, to allow interpretation of coefficients with respect to proportion of deaths attributable to heat and cold
in daily analyses without approximation. Correction for AF estimation error: SIMEX correction made for error in AFdailyi,t values.
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locations. However, the gain in precision we hoped to achieve by
multiple replication was somewhat reduced by the correlation of
annual anomalies of mortality (year clustering) across cities in
the same country. This meant that most country-specific results
lack the precision for detailed comparison. A notable exception is
Japan, where precise estimates illustrate the value of long (40 y)
series for analyses of annual data.

There were some other limitations. Because we did not have
annual population data for many locations, we could not allow
for population changes, as did Goggins et al. (2015), relying
rather on the spline curve to allow for this and other gradual
temporal changes. We also did not consistently have cause- or
age-specific death counts, precluding an investigation of these
potential modifiers of the associations. Although our geo-
graphic coverage was wide, it is not globally representative, in
particular overwhelmingly being comprised of more developed
countries.

Conclusion
This study provides new evidence that over a wide range of loca-
tions, for the deaths associated acutely with extremes of heat and
cold, most lives were shortened by at least 1 y. Adverse health
effects of high and low temperatures are thus confirmed as signif-
icant public health concerns and not merely short-term displace-
ment of times of death. Future research could usefully use similar
methods, preferably with longer series, to clarify how much lon-
ger than 1 y temperature-attributable deaths are displaced, and
whether extent of displacement varies by factors such as age,
poverty, and preexisting conditions, and how extreme were the
heat and cold.
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