
A Survey and Taxonomy of Core Concepts and Research
Challenges in Cross-Platform Mobile Development

ANDREASBIØRN-HANSEN,Department of Technology, Kristiania University College, Norway and Brunel
University, United Kingdom
TOR-MORTEN GRØNLI, Department of Technology, Kristiania University College, Norway
GHEORGHITA GHINEA, Brunel University, United Kingdom

Developing applications targeting mobile devices is a complex task involving numerous options, technologies
and trade-o�s, much so due to the proliferation and fragmentation of devices and platforms. As a result of
this, cross-platform app development has enjoyed the attention of practitioners and academia for the previous
decade. Throughout this review, we assess the academic body of knowledge and report on the state of research
on the �eld. We do so with a particular emphasis on core concepts, including those of user experience, device
features, performance, and security. Our �ndings illustrate that the state of research demand for empirical
veri�cation of an array of unbacked claims, and that a particular focus on qualitative user-oriented research
is essential. Through our outlined taxonomy and state of research overview, we identify research gaps and
challenges, and provide numerous suggestions for further research.

CCS Concepts: • General and reference→ Surveys and overviews; • Human-centered computing→
Mobile computing; Empirical studies in ubiquitous and mobile computing;

Additional Key Words and Phrases: Cross-platform mobile development, mobile computing, app development

ACM Reference Format:
Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. 2018. A Survey and Taxonomy of Core
Concepts and Research Challenges in Cross-PlatformMobile Development . ACM Comput. Surv. 1, 1 (July 2018),
35 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Applications for mobile platforms have over the last decade been the driving force for the smart-
phone revolution. The success has spread from smartphones to a variety of devices such as tablets,
wearables and sensors, all recognized today as part of the mobile devices platform. Despite the
huge success and substantial progress in relation to software platforms, hardware speci�cations,
development methods and use there is still a long way to go to be at a standardized level.
As of 2017, more than �ve million mobile apps were available throughout di�erent mobile app

stores, including Google Play (2.8m), Apple App Store (2.2m) and Windows Store (669k) [88].
Moreover, the two leading app stores have seen massive growth in the number of available apps.
Between June 2015 and June 2016, the Apple App Store increased its portfolio with 500 thousand

Authors’ addresses: Andreas Biørn-Hansen, Department of Technology, Kristiania University College, Christian Krohgs
gate 32, Oslo, 0186, Norway, Brunel University, Kingston Lane, Uxbridge, London, United Kingdom, bioand@westerdals.no;
Tor-Morten Grønli, Department of Technology, Kristiania University College, Christian Krohgs gate 32, Oslo, 0185, Norway,
tmg@westerdals.no; Gheorghita Ghinea, Brunel University, Kingston Lane, Uxbridge, London, United Kingdom, george.
ghinea@brunel.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0360-0300/2018/7-ART $15.00
https://doi.org/0000001.0000001

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

:2 A. Biørn-Hansen et al.

apps [89]. From February 2016 to March 2017, 800 thousand new apps were introduced into the
Google Play Store [91]. These massive software repositories are the results of arduous development
e�orts from hobbyists, freelancers and enterprise developers alike. The app stores’ popularity,
for both developers/publishers and consumers, is seemingly ever-increasing. The statistics portal
Statista forecasts an increase from 149.3 billion app downloads in 2016, to 352.9 billion downloads
in 2021 [87]. Revenue from such apps are projected to reach into the hundreds of billions USD
in year 2020 [90]. For businesses and individuals wanting to participate in this fast-expanding
and ever-growing economy, presence throughout the major app stores is required, in the form
of downloadable mobile apps. As we illustrate and discuss through the reminding sections of
this review, development of mobile apps is inherently complex due to factors such as vast device
and version fragmentation in the Android ecosystem [71], the wide array of technical solutions
available for conducting app development – as outlined in Table 1, the rapid proliferation of- and
advancements to technical frameworks and tools, and more of the like.
The majority of the apps throughout the app stores [5, 98] are developed using a development

technique, or approach, commonly referred to asNative [49, 85]. This development approach uses the
programming languages, tools and development environments speci�cally meant to produce apps
for a given operating system (henceforth referred to as platform) [5, 31, 85]. For example, developing
Native apps for the iOS platform requires knowledge of the development environment Xcode, as well
as the programming languages Swift and/or Objective-C [105]. On the other hand, Android apps
require knowledge of the development environment Android Studio, as well as Java [105] and/or
Kotlin, the latter a recent addition to the otherwise Java-dominant Android development ecosystem
[83]. Consequently, apps developed for the Android platform cannot deploy to- or execute on an
iOS device [3]. The same is true vice versa. This is due to inherent di�erences in development and
compiling techniques, and overall Application Programming Interface (API) support. Thus, an app
that should reach customers across di�erent platforms must be developed from scratch for each new
platform supported [52]. The result may be two or three inherently separate codebases for an app
that should be available for users across the Android, iOS and Windows Phone platforms. From a
maintainability point of view, separate codebases require access to specialized platform knowledge,
and e.g. bug �xing might take three times longer with three supported platform compared to only
one supported platform [52]. The same would be true for addition of new features, removal of old
features, and so on. Due to the popularity of app usage- and the complexity of app development,
various technical development techniques and tools have come to either supplement or in part
replace the Native development approach [62, 80]. The umbrella term for alternative development
approaches is usually referred to as either multi-platform or cross-platform development in industry
and academia alike [29, 81], whereas the latter term will be favoured throughout this article due to
its prevalence in literature. Cross-platform mobile development is a fast-paced and ever-changing
�eld of research and practice [62]. While the rationale behind adoption of cross-platform approaches
may di�er, budget, time and knowledge are listed as recurring reasons in literature for avoiding
traditional Native mobile development and rather opt for cross-platform development [8, 17, 55].
In a frequently cited study conducted by Xanthopoulos and Xinogalos, the authors state that

“The ultimate goal of cross-platform mobile app development is to achieve Native app
performance and run on as many platforms as possible” [105, p. 1]

Exactly how one may achieve Native-like performance when conducting cross-platform develop-
ment depends on the development approach employed [29]. Di�erent approaches render distinct
results and di�er in fundamental concepts and practice. The pool of common cross-platform ap-
proaches includes Hybrid, Interpreted, Cross-compiled and Model-Driven development [13, 101],

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :3

with a novel approach coined Progressive Web Apps also on the rise [13]. Within each of these ap-
proaches, a plethora of technical frameworks exists, facilitating the development of cross-platform
apps [19, 62, 67]. In Table 1, we present a condensed and exhaustive list of such technical frameworks,
although some of those, including Xamarin, Titanium Appcelerator and PhoneGap (Cordova) are
more prevalent in both academic and industry literature. In fact, when discussing the popularity of
these frameworks, PhoneGap won the People’s Choice award at the Web 2.0 expo in 2009 [25], due
to enabling web developers to develop and produce mobile apps using existing web development
knowledge [62].
Just as there are distinct di�erences between the overarching development approaches, each

associated framework will di�er in popularity, feature accessibility, interface rendering techniques,
add-ons, size of community, functionality and more [62]. Ultimately, deciding on a framework
depends on a variety of variables, e.g. app feature complexity and integrations, user interface- and
user interactivity complexity, availability of support, and licensing terms [49]. Nevertheless, the
fragmentation and plethora of available frameworks renders decision making processes complex
[58]. Previous research has indeed provided insights on cross-platform frameworks requirements
[24, 41] and criteria [50], trying to ease decision making. However, such overarching papers
seemingly tend to lack empirical evidence for their statements [49, p. 9], rather focusing on listing
important factors and mapping them loosely to technical frameworks.

The purpose and contribution of this survey paper is to provide a thorough overview of the state of
research, and through doing so introduce challenges and possibilities for further research, resulting
in a taxonomy of core concepts found in this �eld of research. The rest of this paper is structured as
follows. In Section 2, we discuss the �ve major cross-platform development approaches, and present
an exhaustive list of technical frameworks categorized according to their associated approach.
Sections 3 through 7 are assigned discussions and analyses of the overarching concepts traversed in
this review, speci�cally we start by outlining the research foundation, then proceed to discuss User
Experience, Software Platform Features, Performance and Hardware, and �nally Security. Following
these, in Section 8, we provide a taxonomy and overview of the state of research on cross-platform
development. In Section 9, we conclude the review by highlighting and discussing future directions
of cross-platform development research, along with suggestions for further research building on
our �ndings and the derived taxonomy.

2 DEVELOPMENT APPROACHES AND DOMAIN TERMINOLOGY
The introductory section brie�y mentioned a variety of overarching approaches for conducting
cross-platform mobile development. Most of these approaches are frequently mentioned in the
literature (e.g. [29, 49, 85]), and taxonomy should be deemed important for a consistent language
when discussing both with academics and practitioners. Each approach, as we further elaborate
on below, has their own set of characteristics [29]. This is visually represented in Figure 7, the
taxonomy model. Technical frameworks for app development can normally be placed into just one
approach, exactly which one depends on such characteristics. This will be further explored both in
Table 1, and throughout the remainder of this section.

The coming sub-sections introduce the most prevalent cross-platform approaches and associated
frameworks, discussing each to a degree where a fundamental understanding of the bene�ts
and challenges they pose should be conceivable. The naming of these approaches tend to vary
between authors and studies, but those used throughout the survey are those most frequently
encountered when compared to alternative names, e.g. "{Native|WebView|Web-to-native} wrapper"
which is sometimes seen in-place of Hybrid [77, 102]. This is also true for the categorization of
frameworks, i.e. to which approach a framework belong. An example of this is the NeoMAD
framework, which by Ettifouri et al. [33] is listed under the cross-compiled approach, while Willocx

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:4 A. Biørn-Hansen et al.

et al. [102] argue that it is a source-code translator, the latter an approach we have not covered
in this survey as it is not commonly encountered in the literature to the best of our knowledge.
We also �nd that one framework, speci�cally MoSync, can be placed into two approaches, which
before it was discontinued [69] provided both a C++ based Cross-compiled framework, in addition
to a JavaScript-based framework for Interpreted app development. Each approach pose bene�ts and
challenges, and no single approach is inherently “best suited for all situations”, similar to any tool
with a particular purpose. It is important to note that cross-platform is an umbrella term for a wide
variety of concepts, technologies, approaches, frameworks and libraries. The term is also somewhat
context-dependent, meaning that cross-platform development could refer to the development of
software across multiple device types, not only mobile, as discussed and conceptualized by Rieger
and Majchrzak [81]. Nevertheless, throughout this current literature review, we focus on mobile
smartphones, leaving other smart devices such as cars, smart homes and Internet of Things devices
out of the scope.
We acknowledge that there exist development approaches not included in this review, which

have been left out due to lack of prevalence in the literature, and have not been identi�ed as
mentioned in industry or practitioner outlets. Examples of such approaches include Component-
Based development (e.g. [32, 74]) and Integrated Cross-Platform Mobile Development [28], the
latter a proposed approach drawing from best practices inherited from other approaches. However,
regardless of their novelty or possible application, we have yet to identify studies and experiments
including these approaches, with the exception of those previously cited. Thus, not enough data
has been generated to su�ciently or with purpose provide an overview of their state of research.
In the context of the approaches included in this review, we have condensed an exhaustive list

of identi�ed technical frameworks, each categorized within an approach that best describe their
characteristics. This categorized list of frameworks can be found in Table 1 below. An important
note, in the table column Hybrid, we mark (∗) the frameworks using Cordova as their underlying
technology allowing Web-based code to be built for- and executed on device. As the table depicts,
the majority of Hybrid cross-platform frameworks do in fact rely on Cordova for these tasks,
although some outliers exist, namely Capacitor, Trigger.io, and possibly Kony although we were
unable to verify the latter. Cordova’s prevalent position is further examined as part of Section 2.1,
in which we discuss the Hybrid approach. Furthermore in the context of Table 1, we acknowledge
that it contains frameworks of all statuses, ranging from alpha-stage, through production-ready, to
having been discontinued for some time. The purpose of Table 1 is to exhaustively introduce the
frameworks we have identi�ed in existing research, in industry outlets, and through exploring the
�eld, i.e. regardless of whether a framework is in active development or not.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :5

Ta
bl
e
1.

A
n
O
ve
rv
ie
w
of

D
ev
el
op

m
en
t
A
pp

ro
ac
he

s
an

d
an

Ex
ha

us
ti
ve

Li
st
of

A
ss
oc
ia
te
d
Te
ch
ni
ca
lF

ra
m
ew

or
ks

D
ev
el
op

m
en
tA

pp
ro
ac
he
s

H
yb

rid
In
te
rp
re
te
d

Cr
os
s-
co
m
pi
le
d

M
od

el
-D

riv
en

Pr
og

re
ss
iv
e
W
eb

A
pp

s

D
es
cr
ib
ed

in
Se
ct
io
n
2.
1

Se
ct
io
n
2.
2

Se
ct
io
n
2.
3

Se
ct
io
n
2.
4

Se
ct
io
n
2.
5

Te
ch

ni
ca
lF

ra
m
ew

or
ks

Co
rd
ov
a
∗

Ca
pa
ci
to
r

Ph
on

eG
ap
∗

Io
ni
c
Fr
am

ew
or
k
∗

O
ns
en

U
I∗

Fr
am

ew
or
k7
∗

A
pp

G
yv

er
∗

Q
ua
sa
rF

ra
m
ew

or
k
∗

Se
nc
ha

To
uc
h
∗

In
te
lA

pp
Fr
am

ew
or
k
∗

In
te
lX

D
K
∗

Rh
oM

ob
ile

Ko
ny

?

Ev
oT

hi
ng

s∗

N
SB

/A
pp

St
ud

io
∗

Co
co
on
∗

Tr
ig
ge
r.i
o

Re
ac
tN

at
iv
e

N
at
iv
eS
cr
ip
t

Ta
br
is
.js

Fu
se
to
ol
s

M
oS
yn

c
Ti
ta
ni
um

A
pp

ce
le
ra
to
r

A
do

be
A
IR

Sm
ar
tfa

ce
Cl
ou

d
W
ee
x

Ko
ny

Ja
so
ne
tte

Lu
aV

ie
w

Xa
m
ar
in

Fl
ut
te
r

Co
de
na
m
e
O
ne

Xo
jo

M
ob
ile

M
on

oC
ro
ss

Co
ro
na

A
pp

or
ta
bl
e

Q
tM

ob
ile

M
oS
yn

c
RA

D
St
ud

io
(D
el
ph

i)
Cr

os
sl
ig
ht

Ro
bo
VM

M
ar
m
al
ad
e

Rh
od

es
D
ra
go

nR
A
D

M
D
2

M
ob
M
L

A
pp

la
us
e

M
ob
l

M
en
di
x

A
pp

ia
n

M
A
M
L

M
ob
ia
M
od

el
er

X
m
ob

A
X
IO
M

M
O
PP

ET
m
ds
l

A
ut
om

ob
ile

W
eb
Ra

tio
X
IS
-M

ob
ile

M
ob
D
SL

Io
ni
c
Fr
am

ew
or
k

Zu
ix

M
ith

ril
Po

ly
m
er

Sv
el
te

Pr
ea
ct

Vu
e.
js

A
ng

ul
ar

Re
ac
t.j
s

St
en
ci
l.j
s

G
lim

m
er
.js

Em
be
r.j
s

vi
pe
rH

TM
L

M
oo

n.
js

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:6 A. Biørn-Hansen et al.

2.1 The Hybrid Approach
This approach allows for the use of regular web technologies including HTML, CSS and JavaScript
to be leveraged in an app development context for implementation of user interfaces and business
logic. The approach works internally by initializing a new Native app project, which includes a
WebView component [59] as well as code for communication between the WebView and Native
code [7, 43]. As the WebView component is, simply put, an embeddable web browser [7], it allows
for the execution and rendering of HTML, CSS and JavaScript �les. These �les make up the app’s
logic and user interface, and are included as part of the app bundle together with the Native app
project and code. The developer can then point the WebView to render a speci�c HTML page,
programmatically controlling what the component displays to the user [43]. Accordingly, as an
Hybrid app developer, one will write the entirety of the front-end and business logic of the app using
web technologies, then have a regular Native app wrap and bundle the web code and displaying it
through the embedded WebView component. Due to this technique, the Hybrid approach is also
referred to as Native-wrapper [101], as it wraps web assets into a publishable, deployable Native
app, installable from any typical mobile app store.
As this requires a fair bit of code and setup, Apache Cordova has become a popular tool and

library for initializing new Hybrid apps [101]. Instead of leaving all the above work to the developer,
i.e. the initialization and setup of WebViews and communication protocols, Cordova will through
the use of a command-line tool generate a new Native app including a WebView and two-way
communication between the WebView and Native code [21]. Such communication, referred to as
bridging [1], allows developers to communicate with platform-speci�c Native code from within a
non-native environment, such as a JavaScript context. For reference, this technique of executing
code between distinct programming languages is also called Foreign Function Interface (FFI). One
would typically use bridging, or FFIs, to e.g. process or handle tasks deemed too expensive for
JavaScript, or to leverage functionality typically only accessible in Native environments [1, 80]. The
bridge is called from the app’s JavaScript code, executing a Native-code function and potentially
returning some value from the Native-side back to the JavaScript context, e.g. a GPS coordinate
requested from JavaScript that must be fetched from Native code. Thus, bridging functionality
should be deemed of high importance to ensure a Native app-like user experience.
In addition to providing easy Hybrid app initialization, Cordova also provides a plugin system

with thousands of available plugins, including such as camera access, GPS access and contact list
access, features requiring the aforementioned bridging system to function [23]. The plugin system
also provide a standardized method for the Hybrid app developer community to contribute with
additional plugins [11], at least for the Hybrid developer frameworks building on Cordova. Since the
Cordova library only provides the foundation for (most) of the Hybrid app development frameworks
(ref. Table 1), additional tools and libraries should be used to develop Native-like and Native-feeling
user interfaces and interactions [59]. A wide range of such libraries have been identi�ed through
previous research and search engine queries. Examples include Ionic Framework1, Framework72,
Onsen UI3 and Sencha Touch4. They all have in common the focus of facilitating development of
user interfaces for Hybrid apps (e.g. [59]). Because an Hybrid app is a website presented inside a
Native app through the use of aWebView component, the user interface may look as Native-app-like
or non-Native-app-like as one may wish [45]. However, developing Native-app-like user interfaces
which adhere to the interface guidelines of all supported platforms, e.g. Android Material Design

1http://ionicframework.com/
2https://framework7.io/
3https://onsen.io/
4https://www.sencha.com/products/touch/

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :7

and Apple Human Interface Guidelines, may be challenging and time-consuming to do from scratch
[43, p. 7]. This is the power of user interface libraries such as those mentioned above, as they
mimick the look of Native app user interface components using HTML, CSS and JavaScript [47].
Because the �les all contain standard web technology code, they work in every (embeddable)

browser [1] and allow for re-use of existing knowledge for web developers, this approach to app
development is highly popular amongst cross-platform developers [5, 67]. An Hybrid app, because
of having a Native app as its foundation, can be submitted into app stores in the same way as an
app developed using the Native development approach, and thus di�ers greatly from a regular
website or web app [49] which for now is constrained to the browser.

The illustration below provides an overview of how the Hybrid approachworks, where Cordova is
the controlling entity, managing the execution, rendering and packaging of the app’s user interface
(HTML, CSS) and the business logic (JavaScript). As we discuss in Section 9.2.1, an alternative to
Cordova, named Capacitor, is being developed by the Ionic Framework team. Thus, although the
below illustration accurately depict the state of the art in Hybrid app development at the time of
writing this review, certain frameworks, thereof Ionic, are likely to incorporate Capacitor at some
point in the future.

Fig. 1. Overview of the Hybrid approach build workflow

2.2 The Interpreted Approach
Similar to the Hybrid approach described above, it is common to �nd development frameworks of the
Interpreted approach enabling developers to build their apps using the JavaScript language (e.g. [36,
92]), although JavaScript is not an inherent language to the Interpreted approach. Apps developed
using the Interpreted approach are fundamentally di�erent from Hybrid apps, as Interpreted apps
do not rely on a WebView component to render a bundled website [29]. Instead, Interpreted apps
can render actual Native user interface components to the screen, not HTML- and CSS-based views
[27], although there are examples of Interpreted tools do not have this as a goal (e.g. the Unity
game engine). This is enabled through the use of on-device JavaScript interpreters [62], hence the
naming of the approach. In terms of code interpreters, JavaScriptCore is the default interpreter
on iOS devices [4, 35]. On Android devices, the interpreter in use di�ers between frameworks
belonging to the approach, but V8 is a frequently used engine (e.g. [4, 35]).

Certain frameworks of the Interpreted approach, such as Titanium Appcelerator, are occasionally
incorrectly associated with the Cross-compiled approach (e.g. [32]). While both approaches generate

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:8 A. Biørn-Hansen et al.

Native user interfaces, the Interpreted approach does not compile, convert or transpile the codebase
into Native byte code, which is how the Cross-compiled approach works. Indeed, as documented by
the Titanium framework, a JavaScript interpreter is required as a layer of abstraction [9], making
Titanium a framework of the Interpreted approach.

In order to communicate between the JavaScript layer and Native code layer which has access to
Native device features, the Interpreted approach also employs the technique of bridging (Foreign
Function Interfaces), similar to how the Hybrid approach facilitate such access [11]. An interesting
note is that a "Cordova for Interpreted apps" has yet to be identi�ed, meaning frameworks of
the Interpreted approach lacks the common foundation found in Hybrid apps. Thus, plugins or
modules for exposing certain features to JavaScript from the Native environments belonging to
one Interpreted framework would not work out of the box in another framework due to di�erences
in implementation and bridging APIs. Examples of such inoperability includes plugins in technical
frameworks such as Facebook’s React Native and Telerik’s NativeScript. While they both belong to
the same development approach, the underlying framework APIs are of such di�erent nature that
a plugin or module developed for one framework cannot currently work in the other. This in turn
fragments frameworks and developer communities of the Interpreted approach greatly, whereas
in Hybrid development, all frameworks building on top of Cordova could in theory use the same
Cordova plugins.

Fig. 2. Overview of the Interpreted approach build workflow

2.3 The Cross-compiled Approach
The core di�erence between the Cross-compiled approach and the aforementioned approaches, is
that due to being compilers, frameworks and development tools of the Cross-compiled approach
do not rely on WebView components or on-device (JavaScript) interpreters for rendering of user
interface or communication with platform and device features. Instead, a common language such
as C# (Xamarin) is compiled to Native byte code executable on targeted platforms [19]. Thus, the
bridging layer known from e.g. the Interpreted and Hybrid approaches does not exist in Cross-
compiled apps. Neither the use of- nor the access to Native device features is controlled by such a
layer, but is rather exposed to the app developer through the framework Software Development Kit
(SDK), which accordingly maps functionality to the underlying platforms’ SDKs. Another positive
consequence of compiling to Native byte code is that of the generated user interfaces, speci�cally
how they are rendered as Native interface components [101].

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :9

We identi�ed a lack of consensus regarding which frameworks belong in the Cross-compiled
approach. An example of disagreement include a study by El-Kassas et al. [29], claiming that
the Xamarin cross-platform tool belongs to the Interpreted approach, together with e.g. Titanium
Appcelerator. On the other hand, Willocx et al. [101] claim Xamarin belongs to the Cross-compiled
approach due to how it does in fact not rely on interpreters, as it rather compiles a common
language into Native byte code [103]. As such, we consider Xamarin a tool of the Cross-compiled
approach, due to Willocx et al. ’s reasoning.

Fig. 3. Overview of the Cross-compiled approach build workflow

2.4 The Model-Driven Approach
This approach draws from the common software development paradigmModel-Driven Development
(MDD), also referred to as Model-Driven Software Development (MDSD) [52]. Note, the �rst term
is favoured throughout this text due to its prevalence in the literature. While being a somewhat
commonplace approach in the relevant body of knowledge (e.g. [52, 56, 78, 79]), technical implemen-
tations building on the MDD approach are rare among practitioners and in developer communities,
also beyond the context of (cross-platform) mobile development [44]. This is further partially
con�rmed by Umuhoza and Brambilla [93] in their survey on MDD approaches for cross-platform
mobile development. They categorize technical tools and frameworks into Research Approaches
and Commercial Solutions, where the latter category only lists four tools, none of which have been
frequently cited in pervious literature to the best of our knowledge.
Frameworks of the MDD approach di�er in terms of integrated functionality, as discussed by

Heitkötter and Majchrzak [51]. The technical frameworkMD2, as presented in their study, does
not require any knowledge of platform-speci�c programming languages. According to Ribeiro and
Rodrigues da Silva [77] in their study on cross-platform approaches, these types of abstractions
are part of the underlying methodology of MDD development. Frameworks of the MDD approach
facilitate generation of user interfaces and business logic based on constructedmodels and templates,
suitable for mobile app development as they “[...] allow[s] platform independent modeling, which
can later on be transformed to multiple mobile platforms”, as described by Usman et al. [96, p. 2].
Common for MDD frameworks is a Domain-Speci�c Language (DSL) [105]. Developers and

non-developers alike are enabled by the framework-provided DSL to build their software. Thus,
developing apps across mobile platforms will require knowledge of the DSL rather than Objective-C
and Java. Generators will then convert the models/code into Native source code for the targeted
platforms [51]. From a developer perspective, most MDD frameworks develop and expose their
own distinct DSL [93], as illustrated in Le Goaer and Waltham’s study titled "Yet Another DSL for

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:10 A. Biørn-Hansen et al.

Cross-platforms Mobile Development" [60] in which the authors propose the Xmob DSL for mobile
development. The distinct nature of the DSLs may possibly render knowledge transferability from
one MDD-based framework to another low or non-existent. However, MDD framework super-users
with expert knowledge of the DSL may develop truly Native apps using shared codebases [51]. In
fact, one of the philosophies behind the Model-Driven approach is enabling non-developers and
non-technical users with domain expertise to model line-of-business apps based on a provided DSL
– being textual or graphical [79].

Fig. 4. Overview of the Model-Driven Development approach build workflow

2.5 The Progressive Web Apps Approach
While still lacking some inherent characteristics of other cross-platform approaches (e.g. access to
most if not all of platform and device features [13]), Progressive Web Apps - or PWAs for short -
have increasingly gained popularity amongst practitioners since 2016 [13]. At its core, a PWA is a
web app with enhanced capabilities. While being hosted on- and served by a webserver to users
accessing the website’s URL in a browser, one goal of this novel approach is to allow for web apps
to look and feel like a regular Native or cross-platform built app. Due to being web-based, the user
interface of PWAs can be designed to look and feel similar to Native apps using the same methods
as in the Hybrid approach, speci�cally through the use of HTML and CSS for structure and style.
When accessing a PWA-enabled website, a banner will prompt the user asking them to install

the website onto their phone. This will download all necessary assets, including JavaScript �les,
HTML and CSS, images and fonts, and allow for o�ine usage of the website. The now-o�ine PWA
has also been added to the user’s home screen similar to any app downloaded from app stores.
In Apple’s iOS version 11.3, the underlying technology enabling PWAs to function, i.e. Service
Workers, allowing also iOS users to take advantage of Progressive Web Apps, although with a
some technical limitations, e.g. lack of state management between sessions, and white screens in
the App Switcher, according to Firtman [38]. Upon launching the PWA from the home screen, an
artifact-less browser window will open the previously downloaded assets, and read a manifest �le
to con�gure a splash screen, icons and colour con�gurations. In this context, being artifact-less
means no address bar, settings icon or similar is displayed, only the website’s content – e�ectively
meaning that unless the user knows about the concepts of PWA, they will not know that the app is
running within a browser. This greatly increases the app-like feeling of using a PWA compared to
a regular website browsed in a traditional way.
Extending a regular web app into a Progressive Web App involves the integration of Service

Workers, a JSON-based manifest �le and a bundle of static user interface components not dependant

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :11

Fig. 5. Overview of the Progressive Web Apps approach build workflow

on dynamic content referred to as Application Shell [13]. The purpose of the Service Worker is
to control and manage the app’s lifecycle, business logic for data synchronization and handling
of push noti�cations, all through a script �le written in JavaScript that is able to execute in the
background [42].
The academic body of knowledge on Progressive Web Apps is limited to only a handful of

published works (e.g. [13, 63, 65]). These publications, along with practitioners’ outlets such as
Google Web Fundamentals and the Google I/O conference would indeed act as the foundation for
further scholarly research. Along with the advent of Progressive Web Apps, research involving
technical assessments, conceptual discussions and case studies would be a natural step towards
including PWAs in computing research, e.g. within the �eld of cross-platform (mobile) development.

3 THE RESEARCH FOUNDATION
While a solid theoretical foundation on cross-platform mobile development has been identi�ed,
new development frameworks and approaches seeking to e.g. bring Native user experiences to
cross-platform apps have emerged and rapidly gained popularity over the last few years [13]. When
Dalmasso et al. [24] concluded that cross-platform apps were “Not as good as Native apps” (p. 1)
in terms of user experience, and that the quality of such apps range between “Medium to low” (p.
1), these results, due to the age of the study and the dynamic nature of the �eld, might not re�ect
the current state of the art. In Section 4, we further explore and discuss studies related to the the
users’ perspective, as results from newer research has the potential to contradict Dalmasso et al. ’s
�ndings. This is a testament to the fast-paced innovation within this �eld of practice and research.

The survey at hand is not the �rst taxonomy or survey on mobile application development, nor
is it hopefully the last. A recent study by Rieger and Majchrzak [81] explore the vast landscape of
app-enabled devices, in which they generate a taxonomy based on dimensions related to media
input, output, and device mobility. The nature of their taxonomy is distinctly di�erent from that of
ours. While their taxonomy is based on a categorization of all app-enabled hardware based on the
aforementioned dimensions, our focus is investigating the state of research on cross-platform app
development and report of areas within our �eld in need of further studying. Nevertheless, there
most certainly is an overarching topical link between the taxonomies, being that of apps. Another
taxonomy for cross-platform mobile development was also identi�ed, being that by El-Kassas et al.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:12 A. Biørn-Hansen et al.

[29]. The authors describe and illustrate low-level di�erences between development approaches
in a technical matter, thus a study recommended for those interested in a taxonomy of a more
software engineering-oriented fashion compared to the study at hand. Thus, whereas [29] provides
e.g. code-supported pros and cons of an array of development approaches, as previously mentioned,
our aim is rather that of providing an overview of the state of the art and research.

Several comprehensive studies have been identi�ed as part of the literature search process. One
example thereof is Heitkötter et al. [50]’s seminal paper on cross-platform approach evaluation.
Published in 2012, the article is from the early days of cross-platform mobile development research.
They present 14 criteria for di�erent perspectives of the development process, and proceed to
map their results and �ndings to said criteria. They go into topics such as licensing, platform
support, user experience, maintainability and ease of development. The article is one of the most
well-cited (165) studies identi�ed. They presented possibilities for future work such as empirically
verifying their results and ensuring that academia stays up to date with the technological progress
in the �eld. The latter suggestion has been followed up by academia to a varying degree. While
cross-platform development is still actively researched, newer studies tend to perhaps draw too
much from previous research rather than including innovative technologies in new experiments.
This is especially true for studies of the software engineering type, where older, or even outdated
technical frameworks are still scrutinized (e.g. [3, 19, 41]) in favour of newer and less-researched
ones [13].
Due to the overarching and all-covering nature of the seminal Heitkötter et al. [50] paper, it

does not go in-depth into any of its presented topics or evaluation criteria. The authors merely
scratch the surface of what is presented, but they lay a foundation for what is important when
researching the �eld. The topics presented could all be of relevance for in-depth research, and the
value of the contribution increases accordingly. This paper is also cited in the majority of relevant
papers identi�ed. Due to its impact in the research �eld, a revised version was published by Rieger
and Majchrzak [80] seeking to extend the “cross-platform” term into other contexts such as smart
homes, smart cars and smart TVs. By doing so, they have established a foundation for research on
cutting-edge novel technologies and use-cases. Nevertheless, researching the suggested contexts is
a task for future research, as it extends beyond the scope and purpose of this thesis.
Furthermore, a variety of studies are from the earlier days of cross-platform research. Perhaps

one of the earliest works identi�ed was that of Charland and Leroux [17]. This is an interesting
contribution, as both authors were involved in the creation of the PhoneGap framework during
its early days. Their perspectives may thus di�er from practitioners and academia. In their paper,
Charland and Leroux discuss di�erences in how Native and web apps were developed in 2011.
An interesting observation is that very little has changed since the paper was published. While
development tooling and environments have inherently progressed and become more advanced,
web apps are still developed using the same languages (HTML, CSS and JavaScript), Native apps
are still developed the same way – and still account for most apps in the app stores [98], platform-
and device fragmentation (especially on Android) is still very much true [46, 101], and platform
conventions (design, user experience) is still a widely discussed subject when debating Native versus
cross-platform development [8, 68]. This, in turn, makes for possible future research contributions of
great impact. The fact that problem areas identi�ed in the beginning of cross-platform development
are still very much tangible and real today, shows that not enough research e�ort has gone towards
developing actual solutions. In the coming section, we discuss one such frequently discussed
problem area, speci�cally user experience and perception quality of cross-platform developed apps.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :13

4 USER EXPERIENCE
Are developers biased in their decisions on cross-platform versus Native development? Will their
decisions inherently be coloured by the fact that they work against a goal of well-optimized and
well-performing apps and user interfaces, regardless of actual user perception? Can end-users
notice the di�erence between cross-platform and Native apps, and if they do, does it matter? These
questions are interesting in our context, as it is commonplace in both academia and industry to
�nd critical and often unbacked claims regarding user experience in cross-platform apps, even
regardless of overarching research questions. An example of such is a statement from a well-cited
(91) study by Dalmasso et al. , reporting that when it comes to the development of user interfaces,
cross-platform frameworks and tools cannot provide interface elements comparable to those found
in Native apps [24, p. 324]. They also follow up with a statement on the importance of a rich user
interface, and that cross-platform frameworks should indeed implement such.
A newer (2015) study by Boushehrinejadmoradi et al. also claim that the Hybrid approach and

its associated frameworks will generate apps that are inherently subpar compared to Native apps
for certain types app categories, but they do not provide any empirical evidence to back their claim
[14, p. 441]. Similar claims are also found in cross-platform approach decision frameworks, thereof
studies by Latif et al. and Lachgar and Abdali [58], reporting that user interfaces generated by the
Hybrid approach are subpar to those in Native apps due to execution in the WebView [59, p. n/a] –
although no empirical evidence thereof is provided.
A reader with little experience assessing scienti�c material, or similarly an unexperienced

decision-maker may not question the truth of these statements due to being published as peer-
reviewed scienti�c papers. A holistic perspective, possibly breaking this circle of misconceptions
would require research e�orts toward testing and validating these claims. Alas, literature attempting
to con�rm or disprove such statements has been found to be – at best – sparse.

The few studies identi�ed focusing on end-user perception of cross-platform apps employ mostly
quantitative methods for data gathering. While one study relies on data from laboratory and
longitudinal research methods [8], others focus on mining and analyzing quantitative data in the
form of app store reviews [5, 66, 68], some through the use of Natural-Language Processing [68].
In fact, these cited studies make up the identi�ed body of knowledge on research on the user’s
perspective of cross-platform apps. Thus, it is evident that a topic this commonly discussed requires
additional research and perhaps a wider array of research methods, such as use of equipment
including eye trackers and brain-computer interfaces.
The studies incorporating mining and analyzing of app store reviews do display interesting

quantitative results, but alas such studies are far between. Nevertheless, a study of this kind
has been conducted by Ali and Mesbah [5], presenting a rating scale named Aggregated User-
perceived Rating (AUR) to attempt to rate user perception based on an app’s star rating and number
of reviews. They �nd that the much-criticised Hybrid approach, in this paper represented by
the PhoneGap framework, scores the highest on the AUR scale (higher is better), compared to
the Titanium Appcelerator and Adobe AIR frameworks, both of which are frameworks of the
Interpreted approach. The authors also found that within certain app categories such as comics,
business, entertainment and �nance, Hybrid apps received a greater AUR than Native apps in the
same categories. The authors conclude their study by stating that Hybrid apps can in fact be of
such quality that they can provide the same experience as Native apps [5, p. 54].
Their results concur with Malavolta et al. ’s study [66] on end-user perception of Google Play

Store (Android) apps, following much of the same research approach and method for measuring
perceived app performance. Indeed, cross-platform apps published to some categories constantly
score higher than Native apps in the same categories – e.g. in categories such as business, medical

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:14 A. Biørn-Hansen et al.

and lifestyle. These �ndings also match those presented in [5]. However, both the Entertainment
and Music & Video categories vary greatly between the studies. In [5], both categories are found to
contain better Hybrid apps than Native ones. This is in stark contrast with results published by
Malavolta et al. [66]. One explanation could be that there were great variations in the data sets. A
total of 3041315 reviews from 11917 apps were the basis of the [66] study, while 9948 Hybrid and
Native apps, totalling 19896 apps, were analyzed in [5]. Another explanation for the di�erences
between the studies could be the formula used to calculate rating.

Using Natural-Language Processing to analyze app reviews from Google Play Store and Apple’s
App Store, Mercado et al. ’s [68] study on development approach choice’s impact on end-user
experience �lls an important space in the knowledge body. It complements the previous studies
([5, 66]) with a language processing strategy and model rather than formulas for star reviews and
review counts. Their �ndings indicate that end-users perceive apps developed in di�erent cross-
platform approaches, di�erently, and that users leave reviews regarding their varying experiences
with such apps [68, p. 48]. It would be of interest to know if the apps receiving negative user reviews
belong in either of the outlier categories as discussed by Ali [5] and Malavolta [66]. From a technical
perspective, conducting code reviews of the mentioned Hybrid apps identi�ed by Mercado [68]
could help answer why the apps were rated so poorly. No academic literature has been identi�ed
on code-wise optimization of Hybrid apps, thus looking to industry literature makes ever more
sense. Books such as High Performance Mobile Web by Firtman [37] could help in creating a code
review baseline for both Progressive Web Apps and apps of the Hybrid approach. Nevertheless, the
�ndings quoted above are highly relevant for academia and relevant to industry, and �ll a gap in
which much of the previously published work discuss unbacked claims.

From the qualitative research space, only one study of scale directly involving end-users has
been identi�ed. A study by Angulo and Ferre [8] involves both laboratory and longitudinal studies
on end-user perception of cross-platform app quality. To rigorously evaluate and compare such
quality, the researchers developed four apps, including two Interpreted-approach (one for Android
and one for iOS) as well a Native app for each platform to understand the baseline quality expected.
Method-wise, they employed the System Usability Scale for their questionnaire, a tool considered
an industry standard [95]. Results indicated more scepticism amongst iOS users towards non-native
apps than what was found among Android users [8, p. 7]. In their tests, 91% of Android users and
79% of iOS users found the cross-platform app to behave as- or similar to the Native baseline app.
This is the only study found that leverage not only quantitative methods (e.g. app review analysis),
but focus more on user involvement. Their conclusion, as cited below, helps in discon�rming
previous studies’ unbacked claims regarding user experience in cross-platform apps, e.g. [24].

“a good level of UX can be obtained if the cross-platform development framework is
chosen carefully in terms of providing adapted interaction styles for each platform,
and the development team has UX expertise. But there are more possibilities of get-
ting a better UX by maintaining the control over interaction issues that provides the
development of an app with Native code.” [8, p. 8]

Alas, the study did not include any cross-platform apps of the Hybrid, Cross-compiled or Model-
Driven approaches, the former being more commonly criticized than the others due to depending
on the WebView component (e.g. [14, 59]). Nevertheless, this only con�rms the need for more
user-oriented research on cross-platform apps. A study that does assess the user experience of a
Hybrid PhoneGap app, although with a limited group of subjects, is the Heitkötter et al. [49] paper.
While they have not conducted any user experiments to objectively scrutinize their implementation,
the author team discuss their own experience using the Hybrid app, reporting that they found the
app to be as responsive as- and to provide comparable performance to a Native application [49, p.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :15

304]. Albeit the possibilities of bias in their reporting, further evaluating similar implementations –
though with a subjective group of test subjects – can help in clarifying how users actually perceive
cross-platform apps.

A particularly important yet infrequently encountered sub-topic within cross-platform apps and
user experience, is the use of apps for those with disabilities hindering regular interaction with a
device and its software. In the academic literature on cross-platform app development, discussions
on- and development of accessible user interfaces is rarely a subject of focus. The combination of
fragmented research e�orts along with the introduction of stricter laws and policies on accessibility
(non-discrimination laws) [99] leaves a massive gap in the body of knowledge. Universal access
to- and accessible design of mobile applications should be considered not only a necessity due
to policies and law, but also an important societal deed to avoid discrimination of those with
disabilities hindering normal use of mobile devices. The identi�ed lack of relevant literature, both
in academic and industry, could be an indication that accessibility, alas, is in general not a target of
focus in neither research or practice.
The W3C’s Web Content Accessibility Guidelines, or WCAG5 for short, is the overarching and

standard documentation and speci�cation for implementation of accessibility measures in the
context of both web and mobile [73] – W3C notes that "there are no separate guidelines for mobile
accessibility" [100]. The WCAG guidelines are commonly adopted by governments for regulations
such as the European Accessibility Act [34], and should thus be treated as the baseline and point of
departure for future accessibility research.
From the academic knowledge base, we identi�ed a study by Krainz et al. [56] to be one of

mere few papers covering cross-platform accessibility in any level of detail. The authors study
accessibility in the context of the Model-Driven Development approach, alas resulting in both
topics e�ectively competing for the paper’s main focus. Their �ndings lack empirical evidence
and assessment of proper accessibility as no actual user testing was conducted on their technical
implementation (app). Nevertheless, the implemented app do build on what they refer to as "best
practices and common standards" [56, p. 2]. User testing commonly includes equipment such as
screen readers and Braille readers [82], and voice recognition and eye-tracking [75] hardware and
software.
If one is to extend our context-depending de�nition of mobile cross-platform, being apps that

can be deployed to multiple platforms with little to no platform-speci�c changes, also additional
devices (platforms) may be subject to accessibility research. This extension of our de�nition is
proposed by Rieger and Majchrzak [81], and includes such as smart TVs, smart cars (e.g. Tesla)
and similar. The W3C WAI working group also include such devices in their work, in which they
explain that whether being "phones, tablets, TVs, and more" [100], the end-goal is to enable those
with disabilities to use apps and the Web.

4.1 Summary of section on User Experience
In this section, we have discussed a wide range of studies and methods related to research on User
Experience, and we �nd that no real conclusions can be drawn from the literature. From studies
stating no performance loss identi�ed [49], to laboratory and longitudinal user-oriented studies
reporting of mixed results [8], all the way to user review analysis stating that certain types of apps
could be seen as un�t for current cross-platform frameworks [68]. It is also evident that further
research on accessibility in the context of cross-platform apps should be of monumental importance
going forward.

5https://www.w3.org/WAI/intro/wcag

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:16 A. Biørn-Hansen et al.

Table 2. Summarizing research on User Experience

Approach Description Frameworks
encountered

Hybrid We �nd that the topic of User Experience in
Hybrid-based applications is much-debated in
the literature. Several quantitative experiments
report on the popularity and success of Hybrid
apps in the app stores, although they seem more
prone to complaints than Native apps. From
surveying the literature, we identify a gap of
qualitative studies involving the Hybrid
approach.

PhoneGap,
jQuery Mobile,
Sencha Touch,
Ionic

Interpreted The Interpreted approach was scrutinized in the
only qualitative User Experience experiment
identi�ed. Findings indicate that a penalty in
user experience should be expected, especially
noticed by iOS users. However, newer research is
much-needed to report on the current status-quo,
as no newer User Experience studies on the
Interpreted approach has been identi�ed.

Titanium, Adobe
AIR

Cross-compiled No studies identi�ed evaluating the user
experience in apps generated by frameworks of
the approach, although it is commonly included
in comparative studies.

-

Model-Driven One study on accessibility was identi�ed, but no
user-oriented experiments were conducted. In
terms of research on general user experience,
none were identi�ed.

JAXB toolchain

Progressive Web
Apps

While we did not identify any user
experience-related studies directly, further
research could build on the studies carried out by
UX/HCI researchers on both mobile web and
mobile apps, as PWAs are in their intersection.

-

5 SOFTWARE PLATFORM FEATURES
In their seminal work, Heitkötter et al. [50] state that device and platform feature access would
typically include camera, GPS, push noti�cations and similar functionality belonging either to
the platform itself (Android or iOS operating system) or the devices’ hardware, provided access
to through the platform SDKs. Having programmatic access to device and platform features is a

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :17

requirement typically listed as part of cross-platform framework evaluations, and it is common
to �nd comparative studies focusing on the di�erences between technical frameworks in terms
of the number of programmatically accessible features [49, 59]. The importance of such access
should be paramount to any app development approach, as a (cross-platform) app without access
to device and platform features would be greatly limited in functionality compared to Native apps
[61]. Access to these types of features is also commonly listed as a fundamental requirement in
decision frameworks targeting the choice of development approach and technical frameworks,
examples being that of Latif et al. ’s study, stating that cross-platform frameworks must provide
access to all of the features available [59, p. 4].

The bellow illustration shows of the connection between the cross-platform app, the intermediary
abstraction layer providing programmatic access to device features, and some examples of such
features available through the platform and device. What the intermediary layer is and how it works,
depends on the development approach. Whereas the Hybrid, Progressive Web App and Interpreted
approaches all will depend on such as an abstraction layer during runtime, the Cross-compiled and
Model-Driven approaches typically do not, as the apps compiled using these approaches will have
direct access to the underlying system and platform.

Fig. 6. Illustration of connection between app and device-platform features

In a newly published paper, we scrutinize the e�ciency and ease of device feature access in Hybrid
and Interpreted apps [11]. We found that both approaches do well at providing easy programmatic
access to Native features, and we were unable to identify any features that could not be integrated
and executed from within a cross-platform environment, wether the bridging technology was of the
Interpreted or Hybrid/WebView-based approach. This paper is potentially a point of departure for
proving or discon�rming previous claims on the subject, e.g. a study from Corral et al. discussing
advantages and constraints of cross-platform development. In their 2012 paper, they state that
cross-platform frameworks do not fully cater programmatic access to certain features [22, p. 1205],
without emphasizing which features that are commonly missing.

A study by Palmieri et al. [72], also from 2012, compares �ve major cross-platform development
frameworks of di�erent approaches on a variety of parameters, including feature access. Their
�ndings indicate that, while the statement from Corral [22] indeed to a degree reported correctly
on the then status-quo of feature access, the level of access provided by the frameworks varied
greatly. While the Hybrid approach, in the paper represented by PhoneGap, provided APIs to all
but one of the compared features, the DragonRad framework supported only close to half of the

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:18 A. Biørn-Hansen et al.

features listed. The same two frameworks are also scrutinized in a study by Ribeiro and da Silva
[77]. However, in this study, the list of features used for comparison is less exhaustive than in [72],
creating the illusion that DragonRAD can access the majority of such device features.
Drawing on the �ndings presented in newer research, thereof the previously mentioned study

assessing feature access in the Hybrid and Interpreted approaches [11], the progress of cross-
platform frameworks and technology can be noted with ease when reading papers of a certain age,
especially those discussing platform and device feature access.

Another paper exemplifying progress within our �eld is a study by Smutný from 2012, discussing
the bene�ts of "going Native" in the context of deciding on development approach. They claim
that developing an app using the Native approach will allow for the best user experience if the
app is to be used primarily o�ine [85, p. 654]. However, both cross-platform apps and Progressive
Web Apps, as previously discussed, are o�ine-capable and functional, and should to a great extent
not di�er from the o�ine experience found in Native apps. The Web approach does, according to
the authors of [85], not support o�ine mode, nevertheless this is no longer the case due to the
possibilities of Progressive Web Apps.

The progress within device- and platform feature accessibility can be drawn from studies such as
that by Esco�er and Lalanda [31], focusing on heterogeneity and dynamism in cross-platform apps.
In regards to the status of feature access in 2015, the authors state that Cross-compiled solutions
including Xamarin and Rhodes do not expose a feature-set vast enough to cater to the development
of complex apps [31, p. 75]. These �ndings somewhat contradict those presented in Palmieri et al.’s
[72] article, in which the authors state that Rhodes could in fact access the majority of the features
implemented in their study. Also, the Xamarin website does not, as of December 2017, seem to
agree with the claims presented by Esco�er and Lalanda [31]. In fact, this claim from 2015 might
not any longer represent the state of the art, as the o�cial statement from Xamarin fully contradicts
it, claiming that Xamarin does in fact provide access to all the platform and device functionality
available, and list features such as iBeacons and Android Fragments as examples of such [104].
Similar claims have also been identi�ed pointing in the direction of the Web approach – thus

indirectly Progressive Web Apps. Although regular Web apps and Progressive Web Apps both su�er
from limitations imposed by web browsers, browser vendors and device feature availability exposed
through JavaScript and HTML5 [13], we frequently encounter outdated claims related to which
device features these development approaches have access to. Examples include programmatic
access and control of device camera and GPS, which also in newer research (e.g. [58]) are reported
inaccessible for these approaches. These claims contradict the �ndings provided by browser feature
test platform Can I Use, stating that both these features can in fact be utilized in Web apps and
Progressive Web Apps [15, 16] – the same is also reported by Ciman and Gaggi in their large-
scale energy consumption experiment [19]. Nevertheless, other features are indeed not available
from within a browser environment, examples being those of device calendar and contact list.
In an attempt to better the situation for web apps, the WebAppBooster framework developed
and presented by Puder et al. [76], is an independent service running in the background on a
mobile device, listening to connections executed from localhost environments such as a browser.
This allows websites running in a regular browser to call upon the WebAppBooster through the
WebSockets protocol, which in turn executes some functionality only available through Native
SDKs, including such as access to contact lists and sending of SMS. Not only is this approach
novel and interesting, the article represent one of few scholarly research papers in which such a
framework is presented outside of the Model-Driven Development approach, where academic tools
seem more prevalent than those originating from practice.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :19

5.1 Summary of section on So�ware Platform Features
What becomes evident is how newer papers may draw from- or rely too heavily on considerably
older and thus potentially outdated research, and take the presented results for granted as to
represent what is state of the art. One could argue that when newer papers base their technical
claims on the �ndings presented in research of a certain age, it has the potential of creating a false
impression of state of the art. In a fast-paced �eld such as mobile development, verifying such
claims will be a continuous e�ort to stay relevant also for industry and practitioners.

Table 3. Summarizing research on So�ware Platform Features

Approach Description Frameworks
encountered

Hybrid An often-debated topic. Contrasted �ndings,
whereas some report on feature availability by
default in a set of frameworks, others extend the
availability through plugins. A recent study
report that Cordova-based frameworks do
seemingly not pose limitations in feature access.

PhoneGap, Ionic

Interpreted Di�cult to conclude due to di�erences between
frameworks. They vary in out-of-the-box feature
exposure, but provide non-standardized plugin
systems for bridging other features. Lack of
standard results in plugin fragmentation.

MoSync, React
Native

Cross-compiled Academia contradict with practice. Studies report
on major feature accessibility limitations, but e.g.
Xamarin o�cially claim to provide access to the
complete set of features. Fundamental di�erences
between frameworks, concluding rendered
di�cult.

Xamarin, Rhodes,
DragonRAD

Model-Driven Limited by availability of pre-made models and
Domain-Speci�c Language. Could in theory
access all features due to transformation steps
from models into Native code, but at least one
study report of certain constraints.

MD2, ADSML

Progressive Web
Apps

Access to features do not depend on the technical
framework. Rather, apps may only use of the
features exposed through JavaScript and HTML5
APIs. Browsers vendors decide on API support,
thus cross-browser compatibility is challenging.

-

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:20 A. Biørn-Hansen et al.

6 PERFORMANCE AND HARDWARE UTILIZATION
The general perception in academia regarding performance of apps developed using cross-platform
frameworks is that it is inherently subpar to Native apps due to abstraction layers such as in-
terpreters, WebView engines and code transpilation- and compilation steps. An example of this
perception is found in [53], a study by Huy and vanThanh on evaluation of development approaches
(or paradigms), claiming that Hybrid apps are performance-wise inferior to Native apps due to the
HTML rendering process that is required to take place in a WebView-based application, and that the
end-result of this is that Hybrid apps cannot replace Native ones [53, p. 25]. Based on this statement,
a discussion that could be had is whether or not Hybrid – or cross-platform approaches in general –
are supposed to replace the Native approach, or merely provide alternative development techniques
and possibilities in contexts bene�ting from such.

Traversing the performance-oriented literature, several studies have been identi�ed, most span-
ning a timeframe from 2012 through 2016. Of newer studies identi�ed, we �nd that of Willocx
et al. [102] from 2016, in which methods frequently found in performance studies are employed,
including measuring memory consumption, disk space use and CPU usage on apps developed using
a variety of cross-platform frameworks. They conducted a variety of tasks while recording device
performance, one of which proved to be more e�cient than its Native implementation baseline,
which was that of page navigation in Hybrid apps. One of their most important contributions
and �ndings indicate acceptable performance loss in cross-platform apps, although the penalty
introduced heavily depend on approach and framework [102, p. 45]. Additionally, they report on
di�erences between high-end and lower-end mobile devices, and that the penalty is speci�cally
acceptable on the higher-end ones.
However, while some experiments, such as the aforementioned performance study �nd that

cross-platform apps in general perform subpar to Native apps, one study identi�ed report of the
exact opposite. Ahti et al. [3] found that their Hybrid PhoneGap-based app had faster startup-time,
consumed less memory and demanded much less disk space on Android compared to their Native
app [3, p. 45]. This is in stark contrast to most literature, and the authors report of a PhoneGap-
based implementation which had its weaknesses related to mostly user experience, but nevertheless
provided a "technically feasible alternative" to Native development. Their reports of weaknesses
in user experience and app user interface appearance could be due to their use of a traditional
web interface library, Bootstrap, on top of PhoneGap. There are some Bootstrap alternatives they
could have employed which expose HTML-based interface components mimicking both look and
behaviour of those commonly found on each of the major platforms [47], two examples being Ionic
Framework and Onsen UI. Nevertheless, their performance �ndings are of utmost interest, and
contradict statements such as the aforementioned one by Huy and vanThanh [53, p. 25].

In addition to experiments such as those outlined above, we also identi�ed a comprehensive study
in the context of device energy consumption, by Ciman and Gaggi [19]. In their study, the authors
measure the impact on energy consumption in an experiment including a wide array of device
functionality and hardware sensors using four cross-platform frameworks – namely PhoneGap,
Titanium and MoSync, and a regular web app. They �nd that it is of utmost importance to base
the choice of development approach and framework on the software speci�cation at hand, but
that cross-platform apps developed will regardless introduce some form of an energy consumption
penalty. The Interpreted approach is found to be more performant than they assumed, although
an increase in device CPU usage was noted due to the need of runtime code interpretation. An
interesting result from their experiment is that of the previous statement also hold true for apps of
the Cross-compiled approach, which are in fact considered to be "real Native application[s]" [19, p.
16].

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :21

Drawing on these results, we �nd that the Cross-compiled based Xamarin framework, which
should thus generate real Native apps, do in fact introduce a performance overhead when compared
to the Native approach, according to Willocx et al. [101]. While their �ndings vary greatly between
di�erent devices and platforms, the Hybrid approach represented by PhoneGap tend to score
inferior to both Xamarin and the Native approach, although there are test cases in which PhoneGap
and Xamarin present close to identical results, being those of CPU usage and on-device installation
size. Similar �ndings are also reported by Dhillon andMahmoud [27] in their empirical investigation
of technical frameworks, in which they �nd that the Cross-compiled MoSync framework perform
with great di�erences on iOS and Android. While their iOS implementation performed well, the
Android app performed subpar to what they expected from a framework of this approach.

Moreover, the well-cited study by Dalmasso et al. [24] in which they scrutinize and perform a
comparison of cross-platform development frameworks, the authors reports on device performance
using metrics including memory usage, power consumption and CPU usage. Because these metrics
are frequently encountered in performance-oriented experiments, studying the progression of
cross-platform performance through surveying existing literature could draw on papers such as this.
The authors identify the Hybrid PhoneGap app to hardware-wise be more performant and e�cient
than the Interpreted Titanium app, although the trade-o� is that of user experience and interface
components which they found lacking in PhoneGap. While the experiment and the reported results
contribute to the body of knowledge, a potential weakness in their research design is the lack of a
Native app from which they could extract a performance baseline for the metrics measured. Such a
baseline is present in similar studies, thereof e.g. [19, 23, 101]. Without a Native baseline, it would
be inherently di�cult to validate whether the performance measurements of the cross-platform
apps rendered better or worse results than the performance goal – which should be native-like
performance, according to several highly-cited studies [59, 105].

Although the ProgressiveWeb Apps development approach is still in its infancy and thus have not
yet seen much academic research e�ort, two studies were identi�ed to scrutinize its performance.
In [65], Malavolta et al. assess the possibility of an impact in energy consumption due to Service
Workers executing and running background tasks. In brief, a Service Worker is a script that can run
in the background as part of installed PWAs, conducting tasks such as data synchronization, push
noti�cations and data caching [63]. While no signi�cant impact was identi�ed, the authors still
suggest that inclusion of a Service Worker is a trade-o� in terms of (minimal) energy consumption
impact and the additional features it can provide. The latter is at the core of a study by Biørn-
Hansen et al. [13], in which a feature comparison and performance measurement between the
Native, Interpreted, Hybrid and PWA approaches are presented. The results implicate app launch-
and interface render times on par with apps generated by the Hybrid and Interpreted approaches,
while requiring multiple orders of magnitude less disk space.

The earliest performance study identi�ed, an experiment by Corral et al. [23] from 2012 reveals
that native app performance in cross-platform developed apps was not to be expected at the time
of publishing, and reports an overall performance penalty in time lapsed for measured tasks (e.g.
writing to and from disk �le, requesting data from the network or GPS module). However, being that
the penalty is only infrequently of any sizeable deviation from the Native baseline, the authors also
state that the penalty should be �ne for what they refer to as "general-purpose business applications"
[23, p. 742], or line-of-business apps. A refresh and validation of this study would be of immense
interest, although extended with more up-to-date frameworks and technologies for greater future
validity and industry relevance. Their study only included a Native app and a Hybrid approach
PhoneGap app, but the proliferation of Cross-compiled and Interpreted frameworks should in
a newer study be accounted for. Also, a better understanding of di�erences in user expectation
between business apps and regular apps could help in decision-making processes.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:22 A. Biørn-Hansen et al.

Within the Model-Driven (MDD) approach, studies targeting business contexts are frequently
encountered (e.g. [30, 51, 64, 79]), and thus performance testing and surveying business user
app expectations could be of importance to understand the target group. Alas, although there
are numerous frameworks of the Model-Driven (MDD) approach originating from academia (e.g.
[52, 54, 57]), we �nd that there is a general absence of performance discussion and empirical
experiments examining the generated apps. An hypothesis for why this topic is so infrequently
encountered in the literature could be that the models exposed by the frameworks translate to
Native platform code, and should thus in theory not di�er from Native apps [40]. However, in
a study by Jia and Jones [54] on designing Domain-Speci�c Languages, the authors claim that
also apps developed using MDD-based frameworks and tools su�er from performance penalties,
something their own DSL, ADSML, is aiming to improve. Alas, no empirical evidence is provided
to verify neither claim; that the average MDD tool su�er from performance constraints, nor that
ADSML is "[...] capable of generating high performance Native applications" [54, p. 2]. Nevertheless,
we �nd that suggestions for further research on frameworks within the MDD approach oftentimes
include empirical veri�cation of results (e.g. [94]). Reports of performance benchmarking of MDD
generated apps are yet to be encountered in the literature identi�ed, but could help to increase
adaptation of such frameworks, as suggested in [64] by the developers of the MD2 framework.

6.1 Summary of section on Performance and Hardware Utilization
Most performance-oriented papers seem to �nd cross-platform development a viable alternative to
Native development regardless of the performance penalty introduced, although such a penalty
di�er greatly between the approaches and technical frameworks.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :23

Table 4. Summarizing research on Performance and Hardware Utilization

Approach Description Frameworks
encountered

Hybrid Frequently debated, and in the literature reported
to introduce performance penalties, but the level
of severeness varies between studies. Acceptable
performance is typically reported by
experimental and empirical studies, while
conceptual papers are more harsh in their review
of the approach.

PhoneGap, Intel
App Framework,
Ionic, MGWT,
jQuery Mobile,
Sencha Touch,
Famo.us

Interpreted Reports of a performance penalty are frequently
encountered due to the overhead of runtime
interpretation of the code bases. For
cross-platform apps where Native user interfaces
are bene�cial or required, the performance
penalty can be perceived a trade-o�.

Titanium,
MoSync, Adobe
AIR, React Native

Cross-compiled Although apps generated using this approach are
considered to be real Native apps, results of
several performance experiments report of great
discrepancy between the approaches. While
some contexts might bene�t from this approach,
di�erences in performance between platforms
and devices were considered signi�cant.

Xamarin,
MoSync

Model-Driven No performance-oriented studies identi�ed.
Although the topic is frequently encountered in
the literature as suggestions for further work,
this has to the best of our knowledge not yet
been followed up.

-

Progressive Web
Apps

Energy consumption penalty caused by Service
Workers reported insigni�cant although not
necessarily negligible. Disk-space wise, orders of
magnitude smaller than other cross-platform
generated apps, with initial reporting of
comparable performance.

-

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:24 A. Biørn-Hansen et al.

7 SECURITY
Do cross-platform frameworks impose attack surfaces and security holes additional to those already
exposed by the platforms and their SDKs? Not much research answering security-related questions
has been identi�ed, other than for Native (outside the scope for this survey) and the Hybrid
development approach. Claims and statements without empirical grounding, as discussed in several
of the previous sections, are also encountered in studies involving security. An example is that
of a study by Lachgar et al. , reporting Hybrid apps’ security to be"not good" [58, p. 112]. While
lacking the empirical evidence or citations to back this claim, we �nd that questionnaires and
interview-based based studies targeting developers seem to report of a similar notion: security is
rarely a topic the participants touch upon (e.g. [2]).

The literature identi�ed is primarily focused on the Android WebView, and the potential attack
surfaces exposed by the component (e.g. [10, 48, 61, 106]). As previously discussed, the WebView
is core to any Android or iOS Hybrid app [49], as it executes the web code (HTML, CSS and
JavaScript) bundled together with a Native app wrapper. Most of the Hybrid approach security
research identi�ed is based on loading and executing malicious code, also known as Cross-Site
Scripting (XSS), into the embedded WebView, which then can manipulate and execute Native code
though the JavaScript bridges [10]. A 2017 study by Bao et al. [10] discusses an important point
regarding loading of third-party libraries into a WebView codebase without actively traversing the
codebases to check for malicious code and vulnerabilities. They display multiple ways to outright
extract and thus steal data from a device through the Cordova interface exposed to the JavaScript
environment, such as through vulnerable – yet work-as-intended – HTML and JavaScript snippets.
Additionally, they stress that XSS attacks performed on mobile devices through Hybrid apps with
deep platform integration can cause damage not typically found in website XSS attacks. In fact,
extraction of device contact list, �les and cookies are examples the authors list as what is possible
to steal [10, p. 60].
This is also supported by Yu and Yamauchi’s study [106] from 2013, proposing access control

measures to better avoid execution of Native code outside of speci�c environments. Rather than
working on securing the JavaScript codebase to any degree possible, the authors rather implement
security measures at a Java object level, testing for threats when the JavaScript-to-native bridge
(Foreign Function Interface) is registered. Thus, their proposed design allow users to be noti�ed of
possible threats, and enable them to manually accept or reject certain Java code from executing.
This aligns with �ndings by Mercado et al. [68], reporting that security is of importance also to
end-users, according to mining of app store reviews. The type of access control proposed by Yu and
Yamauchi could also help developers identify third-party frameworks and libraries accessing device
features in a malicious and harmful intent. For future research, a tool performing static analysis of
Hybrid app codebases analyzing such malicious Native feature access could be of utmost interest
for practitioners. Even though open source third-party libraries are indeed open source, reading
through what could be thousands or tens of thousands of lines of code could be considered a bizarre
activity for any commercial or hobbyist project.

Returning to the identi�ed literature, another set of proposed guidelines to further secure apps
running within WebView has been presented in a 2014 study by Hazarika et al. [48]. Emerging from
their study is a requirement for Hybrid apps to only accept certain connections and implement
policies for Native-device access,

“This [native bridge/Foreign Function Interface] enables malicious JavaScript
code to easily access critical information residing on the device. To handle such
scenarios, the applicationmust use secure connections with end to end encryption,
as well follow a strict policy for �le access.” [48, p. 1592]

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :25

The core focus of most Hybrid approach security research has been the vulnerabilities of
JavaScript and the possibilities of executing Native code through the WebView interfaces. This has
also been noted in Chen et al. ’s 2015 study [18] exploring HTML5-based injection attacks using
HTML input text �elds. While [10] also discuss HTML elements such as the image (< img >) tag,
they have not discussed possible attack surfaces including input �elds. The perceived novelty of
Chen et al. ’s experiment is grounded in the input �eld’s ubiquitousness in mobile apps, although
only four out of 8303 (0.048%) sampled apps proved to expose such a vulnerability. A comparison
to other development approaches would be of utmost interest to better understand if this expose
threats also found elsewhere, and proposed methods of alleviating the attack surface.
As becomes evident from the review, the majority of studies identi�ed are targeted towards

potential security gaps and newly introduced attack surfaces in Hybrid apps only. Alas, not much
research on security has been found covering the other development approaches. Numerous papers
discuss the importance of having a security perspective, but academia has to the best of our
knowledge not followed up. This leaves an approachable gap for researchers to explore. An Hybrid
app relies on the security measurements implemented by the Cordova framework for execution of
code using a web browser’s interpreter, however Interpreted apps execute on the device’s language
interpreter (V8 or JavaScriptCore) instead of inside the constraints of a browser [29]. Thus, apps
of the Interpreted approach might enable for di�erent attack surfaces than those found in Hybrid
apps, and the same goes for the generative approaches including Cross-compiled and Model-Driven
Development.

While studies on security outside the Hybrid approach is scarce, we do �nd mentions of it also in
non-security oriented papers. In [27], Dhillon and Mahmoud evaluate, among a variety of parame-
ters, the availability of two security measures in the Cross-compiled and Interpreted approaches,
speci�cally code obfuscation possibilities and the frameworks’ access to secure storage. Alas, their
results illustrate a lack of implemented security in PhoneGap, while Titanium Appcelerator and
Adobe Air varies in terms of obfuscation possibilities and secure storage access. The study does
not provide much detail on either measure, but it is nevertheless a point of departure for further
research to build on. The same is true for security studies on Model-Driven Development, where
two papers were identi�ed to merely brie�y discuss the topic. In [97], Vaupel et al. mention how
their MDD language map to platform-independent permission schemes, and how users are in
control of which device features an app can take use of. The implementation of these measures
were not discussed in any further depth. Security is also mentioned in a paper discussing one of
the frequently encountered MDD frameworks, MD2, in which the authors state that the framework
does not implement any "speci�c security features" [64, p. 9] directly, although the provided DSL will
inherently limit the possibilities for implementing malicious code. For future research, expanding
the scope to look at Model-Driven Development not limited to the (cross-platform) mobile context
might open for a broader perspective of what is available in terms of security, and possibly how
security measures can be implemented in models and DSLs accordingly.
An additional factor at play when discussing security is the abnormally vast array of di�erent

Android devices, resulting in unique challenges for both Native and cross-platform development
alike. In fact, one of the latest reports found focusing on the fragmented Android smartphonemarket
is one by OpenSignal from 2015, in which they identify more than 24000 distinct Android-based
devices [71] from a pool of 682000 devices having downloaded their app. Not only must developers
deal with device fragmentation, also the version fragmentation is challenging according to the
Android Developer platform [6]. The latest versions of the Android platform, Oreo (8.0 and 8.1)
account for only 1.2% of the market, while Nougat (7.0 and 7.1) is installed on 28.5% of the devices
surveyed. The older versions, including Marshmallow (6.0), Lollipop (5.0 and 5.1) and KitKat (4.4)
still amount to 64.7% of the market. In their large-scale investigation on security in the fragmented

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:26 A. Biørn-Hansen et al.

Android market, Mutchler et al. [70] uncover that version compatibility of apps, i.e. running apps
targeting older SDKs on a new device, can in fact compromise certain security features added in
later versions. Thus, future research on security in cross-platform Android apps should account for
the fragmentation of the platform to ensure broad validity and generalizability of �ndings.

7.1 Summary of section on Security
We �nd that research gaps in the context of cross-platform security are both plentiful and of
fundamental importance. Further research much-needed to better understand the potential attack
surfaces available in cross-platform approaches and the end-result apps.

Table 5. Summarizing research on Security

Approach Description Frameworks
encountered

Hybrid Numerous papers addressing security issues,
main focus on the Android WebView component
and possibilities of Cross-Site Scripting attacks,
injection of malicious code calling Native
features for unlawful extraction of device data.

Cordova

Interpreted We did not identify any studies assessing the
security of Interpreted apps or frameworks,
although inclusion of this approach in other
studies on cross-platform development is
common.

-

Cross-compiled We did not identify any studies assessing the
security of Cross-compiled apps or frameworks,
although inclusion of this approach in other
studies on cross-platform development is
common.

-

Model-Driven Only mentions of the importance of security,
albeit no studies focusing on di�erent aspects of
security or attack surfaces introduced by
frameworks or the approach itself were identi�ed.
Such studies could perhaps help the rate of
adoption of MDD frameworks in the industry.

-

Progressive Web
Apps

While there were no papers identi�ed, but great
research potential due to the approach’s novelty,
and possibilities of newly introduced attack
surfaces.

-

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :27

8 TAXONOMY AND STATE OF RESEARCH
For each of the overarching concepts discussed throughout this review, we �rstly comment on
their state of research in relation to each of the overarching development approaches, then brie�y
comment on �ndings from sub-topics within each concept.

Table 6. An overview of taxonomy and state of research on cross-platform development

Hybrid Interpreted Cross-
compiled

Model-
Driven

Progressive
Web Apps

User
Experience

Quantitative.
Lacking
qualitative.

Some
qualitative.
Insu�cient.

Insu�cient
research.

Insu�cient
research.

No identi�ed
research.

Accessibility No identi�ed
research.

No identi�ed
research.

No identi�ed
research.

Insu�cient
research.

No identi�ed
research.

Software
Platform
Features

Well-
researched.

Well-
researched.

Some
research.
Conclusion
lacking.

Some
research.
Conclusion
lacking.

Some
research.
Conclusion
known.

Feature
availability

Debated.
Likely not
limited.

Debated.
Likely not
limited.

Debated.
Likely not
limited.

Likely not
limited.

Browser
constrained.

Performance
and
Hardware

Well-
researched.
Dated.

Well-
researched.
Dated.

Well-
researched.
Dated.

Insu�cient
research.

Insu�cient
research.

Security Concerning.
Plentiful
research.

Insu�cient
research.

Insu�cient
research.

No identi�ed
research.

No identi�ed
research.

In addition to the condensed and tabularized �ndings above, we also provide an overview of
more technical nature, targeting the �ve development approaches discussed throughout this survey.
The �gure report on the current state of the art in terms of predominant programming languages,
app execution environments, how user interfaces are rendered, and which controlling entity is
managing access to device and platform features.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:28 A. Biørn-Hansen et al.

Fig. 7. Taxonomy of cross-platform development

9 CONCLUSION AND OUTLOOK
This section is divided in three, whereas we start by discussing a series of research challenges
identi�ed while analyzing the state of research. We then outline numerous suggestions for further
work based on what we deem important and missing from the current literature, and discuss the
evolution of cross-platform development while providing insight into a handful of interesting
and novel projects and concepts. Lastly, we go on to conclude the study and reiterate on our
contributions, as well as the problem areas identi�ed and the motivation for conducting this
research.

9.1 Research Challenges
The rapid pace of development conducted by practitioners and the proliferation of technical
frameworks both impose core challenges for scholarly research, especially if it is to be of interest
and use also for the industry. Research on cross-platform mobile development �nds itself in a
state in which newer research draw too heavily from the "state of the art" presented in older
research, and present it in a fashion which makes it perceivable as still representing truth. A
consequence of this is that, with the constant development of tools and frameworks, newer research
may incorrectly present what the actual state of the art is. This is frequently encountered in the
literature traversed and discussed in this review, where technically outdated or unbacked claims
�ourish. While lacking the rigor that is scienti�c research, practitioners are actively communicating
everyday-�ndings through blogs, articles, newsletters, podcasts, conference articles and similar
outlets. Due to the nature of rigorous academic research, non-academic contributions within our
�eld should be considered of high importance and value for understanding the actual state of the
art. Indeed, the pace at which practitioners can publish non-peer reviewed material cannot be
beaten by peer-reviewed scienti�c work. Also, industry contributions are a great source researchers
can tap into to �nd problem areas reported by practitioners.

The lack of qualitative studies involving users in research on user experience makes for a wide
gap in the body of knowledge. In fact, only one qualitative study on user perception of cross-
platform apps was identi�ed [8], however this would need a technological refresh to represent the

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :29

current state of the art with regard to frameworks and approaches. This is also one of the most
pressing challenges, as to validate the array of claims regarding user perception and experience
using cross-platform apps. Interesting research challenges occur when basing experiments on
human involvement, as to which research methods can be applied to verify the common claims
identi�ed. The qualitative study identi�ed [8] conducted longitudinal and laboratory testing, but
further research might also involve the use of advanced hardware, e.g. eye tracking equipment.
To rigorously scrutinize and report on the possibilities and constraints introduced by cross-

platform development frameworks, the complexity of implementations and designs used for empiri-
cal evaluation should optimally be of that we commonly �nd in the app stores. Simple instantiations
can wrongfully report admirable results within the constrains of a research project, but once
the proposed guidelines/practices/concepts/technologies are applied to an industry or real-life
setting, the research results may no longer be of the same validity. When developing new and novel
instantiations for the sake of research, drawing from proposed requirements (e.g. [49, 58, 59]) and
feature baselines (e.g. [12]) can perhaps be of help to map out what to measure and implement in
order for the research to have maximum potential impact.

Keeping up with the fragmentation and ever-changing array of smartphone device types, screen
resolutions, hardware and more impose serious research challenges more-so in the coming years
with the advent of new smart devices (discussed in the next bullet point). Thus, a brief socio-
economic discussion follows: what we typically �nd in academic research are technical labs powered
by medium- to high-end devices, thus rendering the research inherently limited in validity and
generality to countries in which such high-end devices are the norm, rather than lower-end ones.

9.2 Suggestions for Further Work
Several aspects of cross-platform development require further attention, as a lack of concluding evi-
dence has been identi�ed within all of the overarching concepts traversed in this survey. Heitkötter
et al. ’s seminal paper stress the importance of keeping up with the development and advancements
of development frameworks and technologies along with the platforms they target [49, p. 309].
Based on their above suggestion, in an e�ort to provide a point of departure for those interested, we
below discuss what we believe to be the imminent evolution of cross-platform mobile development,
and thereafter suggest numerous ideas for future research to draw from.

9.2.1 Evolution of Cross-Platform Development. We have compiled a list of the most interesting
projects we believe researchers and the industry will deal with in near future. Due to the nature of
this �eld of practice and research, searching outside the academic sphere is an inherent requirement
for researchers wanting to stay updated on technologies and the introduction of novel concepts.
Kotlin/Native by JetBrains enable use of the Java-based Kotlin programming language to run

also on non-JVM (Java Virtual Machine) platforms, including e.g. the Apple iOS platform. Kotlin
was introduced as an o�cial programming language for the Android platform in 2017 [83], thus
the Kotlin/Native framework may soon be used as a novel technology for Android developers to
build cross-platform apps.

Flutter from Google provides a reactive framework for building cross-platform apps without the
need of an interpreter or WebView, aiming at generating high-performing apps. Developers using
Flutter will be writing in Dart, a Google-developed language with a syntax similar to Java/JavaScript.
It uses Ahead-of-Time compilation to compile the Dart code into platform-speci�c Native code.
Flutter implements their own set of interface widgets, allowing for the use of Google Material
Design widgets on older Android devices [39].
Capacitor is the Ionic Framework’s team novel alternative to Cordova [86]. The library will

assist in the development of applications across mobile (Hybrid), mobile web (PWAs) and desktop

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

:30 A. Biørn-Hansen et al.

(Electron) through a set of standardized cross-context APIs. Due to the popularity of Cordova and
the Hybrid approach, we hope research will scrutinize the possibilities and challenges introduced
with Capacitor, especially so in relation to Cordova.

9.2.2 Suggestions Based on Surveyed Literature. Our suggestions below are those which we �nd
typically recurring in the assessed literature, with emphasis on (i) those suggestions we have yet to
�nd to have been targeted for (signi�cant) research e�ort leading to any sorts of truth, and (ii) the
suggestions we believe should receive continuous e�ort due to the nature of the �eld.

Continue researching user experience, user satisfaction and other Human-Computer Interaction
aspects of cross-platform generated apps (e.g. [3, 14, 22, 23, 26, 41, 62]). Such studies could employ
both quantitative and qualitative methods for data gathering to get a thorough understanding of
user perception of cross-platform apps. This research could also help in answering hypotheses
regarding developer bias, e.g. whether an app is only performant enough when accepted by an
app developer, or if end-users have di�erent thoughts and acceptance criteria regarding what a
performant app is. While not explicitly listed by existing literature, we wish to encourage peers to
focus on designing and experimenting with accessible cross-platform user interfaces.
Security (e.g. [10, 84, 106]) is alas an infrequently discussed topic in the literature traversed.

Outside of security-oriented studies, only a few mentions of the issue have been recorded (e.g.
[41, 80]). The lack of research on a topic of such importance leaves a fundamental gap in the body
of knowledge, and should be targeted by researchers in future studies.
Performance and resource management (e.g. [20, 24, 26, 101, 105]) is an often-discussed topic

in the literature, and have previously seen substantial research e�orts. However, cross-platform
mobile development being a fast-paced �eld of practice, continuous e�ort must be put forth to
keep academia on track [49] with the industry, especially if novel concepts are to origin not only
from the industry itself, but also from academia. This is applicable to areas such as technical- and
evaluation frameworks, proposed standards, optimization patterns and more.
Compare free open-source software to closed and commercial solutions such as Xojo, Tabris.js.

This entails evaluating di�erences in licensing, user interface components, Native plugins, com-
munity involvement, support and similar parameters [49], and could potentially be of paramount
importance for the industry when deciding on cross-platform technology.

9.3 Conclusion
The landscape and ecosystem surrounding mobile application development involves a myriad of
technological and conceptual options, a fact the four overarching development approaches and 74
di�erent associated cross-platform frameworks listed in Table 1 are a testament to. Developers,
designers and engineers face an overwhelming number of options to choose from and decisions
to make, wherein there is no “one solution �ts all” or even a silver bullet. Being a young �eld,
cross-platform mobile development is likely to receive much more research e�ort going forward,
as its application – while frequently criticized – is commonly reported as cost- and time-saving.
While much of the current scienti�c body of knowledge is conceptual and descriptive of nature,
more design-oriented studies including technical scrutiny of performance is needed to address
the unbacked claims and statements all too common even in peer-reviewed published research.
Together with the wide array of solutions and tools to choose from, the vast fragmentation of the
mobile ecosystems [71] contributes to making the development of mobile apps particularly complex.
Our contributions are that of a taxonomy, an overview of core concepts and domain terminology
within the �eld of cross-platform app development, and a discussion on research challenges and
thoughts on further work derived from our review. Further to this, to advance the �eld, we have

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

A Survey and Taxonomy of Core Concepts and Research Challenges :31

through the extensive overview in our contribution highlighted the grounding for and identi�ed a
number of research perspectives, angles and themes all worthy further pursue.

REFERENCES
[1] Timothy Yudi Adinugroho, Reina, and Josef Bernadi Gautama. 2015. Review of Multi-platform Mobile Application

Development Using WebView: Learning Management System on Mobile Platform. In Procedia Computer Science, Vol. 59.
Elsevier, 291–297. http://dx.doi.org/10.1016/j.procs.2015.07.568

[2] Arshad Ahmad, Kan Li, Chong Feng, Syed Mohammad Asim, Abdallah Yousif, and Shi Ge. 2018. An Empirical
Study of Investigating Mobile Applications Development Challenges. IEEE Access 6 (2018), 17711–17728. http:
//dx.doi.org/10.1109/ACCESS.2018.2818724

[3] Ville Ahti, Sami Hyrynsalmi, and Olli Nevalainen. 2016. An Evaluation Framework for Cross-Platform Mobile
App Development Tools: A Case Analysis of Adobe PhoneGap Framework. In Proceedings of the 17th International
Conference on Computer Systems and Technologies 2016 (CompSysTech ’16). ACM, New York, NY, USA, 41–48. http:
//dx.doi.org/10.1145/2983468.2983484

[4] Ricardo Alcocer. 2013. But I Thought Titanium Was Cross Platform!? (23 July 2013). http://www.appcelerator.com/
blog/2013/07/but-i-thought-titanium-was-cross-platform/ Accessed: 2017-8-3.

[5] Mohamed Ali and Ali Mesbah. 2016. Mining and Characterizing Hybrid Apps. In Proceedings of the International
Workshop on App Market Analytics (WAMA 2016). ACM, New York, NY, USA, 50–56. http://dx.doi.org/10.1145/2993259.
2993263

[6] Android Developers. 2018. Dashboards. (Feb. 2018). https://developer.android.com/about/dashboards/index.html
Accessed: 2018-2-12.

[7] Android Developers. N/A. WebView. (N/A). https://developer.android.com/reference/android/webkit/WebView.html
Accessed: 2017-8-3.

[8] Esteban Angulo and Xavier Ferre. 2014. A Case Study on Cross-Platform Development Frameworks for Mobile
Applications and UX. In Proceedings of the XV International Conference on Human Computer Interaction. ACM, 27.
http://dl.acm.org/citation.cfm?id=2662253.2662280&coll=DL&dl=GUIDE

[9] Appcelerator. N/A. Appcelerator Platform. (N/A). http://docs.appcelerator.com/platform/latest/#!/guide/Titanium_
Platform_Overview Accessed: 2018-2-1.

[10] Wenying Bao, Wenbin Yao, Ming Zong, and Dongbin Wang. 2017. Cross-site Scripting Attacks on Android Hybrid
Applications. In Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. ACM, 56–61.
https://dl.acm.org/citation.cfm?id=3058076&CFID=819158537&CFTOKEN=38122944

[11] Andreas Biørn-Hansen and Gheorghita Ghinea. 2017. Bridging the Gap: Investigating Device-Feature Exposure in
Cross-PlatformDevelopment. In Proceedings of the 51st Hawaii International Conference on System Sciences. ScholarSpace,
5717–5724.

[12] Andreas Biørn-Hansen, Tor-Morten Grønli, and Gheorghita Ghinea. 2017. Baseline Requirements for Comparative
Research on Cross-Platform Mobile Development: A Literature Survey. In Proceedings of the 30th Norwegian Informatics
Conference. Bibsys. http://ojs.bibsys.no/index.php/NIK/article/view/427

[13] Andreas Biørn-Hansen, Tim A Majchrzak, and Tor-Morten Grønli. 2018. Progressive Web Apps for the Uni�ed
Development of Mobile Applications. In Web Information Systems and Technologies, Tim A Majchrzak, Paolo Traverso,
Karl-Heinz Krempels, and Valérie Monfort (Eds.). Lecture Notes in Business Information Processing, Vol. 322. Springer.
http://dx.doi.org/10.1007/978-3-319-93527-0 To appear in LNBIP.

[14] Nader Boushehrinejadmoradi, Vinod Ganapathy, Santosh Nagarakatte, and Liviu Iftode. 2015. Testing Cross-Platform
Mobile App Development Frameworks (T). In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 441–451. http://dx.doi.org/10.1109/ASE.2015.21

[15] Can I Use. N/Aa. Geolocation API. (N/A). https://caniuse.com/#feat=geolocation Accessed: 2018-2-16.
[16] Can I Use. N/Ab. getUserMedia/Stream API. (N/A). https://caniuse.com/#feat=stream Accessed: 2018-2-16.
[17] Andre Charland and Brian LeRoux. 2011. Mobile Application Development: Web vs. Native. Queueing Syst. 9, 4 (1 April

2011), 20. http://dx.doi.org/10.1145/1966989.1968203
[18] Yen-Lin Chen, Hahn-Ming Lee, Albert B Jeng, and Te-En Wei. 2015. DroidCIA: A Novel Detection Method of Code

Injection Attacks on HTML5-Based Mobile Apps. In 2015 IEEE Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 1014–1021.
http://dx.doi.org/10.1109/Trustcom.2015.477

[19] Matteo Ciman and Ombretta Gaggi. 2016. An empirical analysis of energy consumption of cross-platform frameworks
for mobile development. Pervasive and Mobile Computing (26 Oct. 2016).

[20] Matteo Ciman, Ombretta Gaggi, and Nicola Gonzo. 2014. Cross-platform mobile development: a study on apps
with animations. In Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, 757–759. http:
//dx.doi.org/10.1145/2554850.2555104

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

http://dx.doi.org/10.1016/j.procs.2015.07.568
http://dx.doi.org/10.1109/ACCESS.2018.2818724
http://dx.doi.org/10.1109/ACCESS.2018.2818724
http://dx.doi.org/10.1145/2983468.2983484
http://dx.doi.org/10.1145/2983468.2983484
http://www.appcelerator.com/blog/2013/07/but-i-thought-titanium-was-cross-platform/
http://www.appcelerator.com/blog/2013/07/but-i-thought-titanium-was-cross-platform/
http://dx.doi.org/10.1145/2993259.2993263
http://dx.doi.org/10.1145/2993259.2993263
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/reference/android/webkit/WebView.html
http://dl.acm.org/citation.cfm?id=2662253.2662280&coll=DL&dl=GUIDE
http://docs.appcelerator.com/platform/latest/#!/guide/Titanium_Platform_Overview
http://docs.appcelerator.com/platform/latest/#!/guide/Titanium_Platform_Overview
https://dl.acm.org/citation.cfm?id=3058076&CFID=819158537&CFTOKEN=38122944
http://ojs.bibsys.no/index.php/NIK/article/view/427
http://dx.doi.org/10.1007/978-3-319-93527-0
http://dx.doi.org/10.1109/ASE.2015.21
https://caniuse.com/#feat=geolocation
https://caniuse.com/#feat=stream
http://dx.doi.org/10.1145/1966989.1968203
http://dx.doi.org/10.1109/Trustcom.2015.477
http://dx.doi.org/10.1145/2554850.2555104
http://dx.doi.org/10.1145/2554850.2555104

:32 A. Biørn-Hansen et al.

[21] Cordova. N/A. Architectural overview of Cordova platform. (N/A). https://cordova.apache.org/docs/en/latest/guide/
overview/index.html Accessed: 2017-8-3.

[22] Luis Corral, Andrea Janes, and Tadas Remencius. 2012a. Potential Advantages and Disadvantages of Multiplat-
form Development Frameworks–A Vision on Mobile Environments. In Procedia Computer Science, Vol. 10. SciVerse
ScienceDirect, 1202–1207. http://www.sciencedirect.com/science/article/pii/S1877050912005303

[23] Luis Corral, Alberto Sillitti, and Giancarlo Succi. 2012b. Mobile Multiplatform Development: An Experiment for
Performance Analysis. Procedia Comput. Sci. 10 (Jan. 2012), 736–743. http://www.sciencedirect.com/science/article/pii/
S1877050912004516

[24] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, and Navid Nikaein. 2013. Survey, comparison and evaluation
of cross platform mobile application development tools. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2013 9th International. IEEE, 323–328. http://dx.doi.org/10.1109/IWCMC.2013.6583580

[25] Lidija Davis. 2009. PhoneGap: People’s Choice Winner at Web 2.0 Expo Launch Pad - ReadWrite. (2 April 2009).
https://readwrite.com/2009/04/02/phone_gap_todays_peoples_choice_winner_at_launch_p/ Accessed: 2017-7-19.

[26] Lisandro Delia, Nicolas Galdamez, Pablo Thomas, Leonardo Corbalan, and Patricia Pesado. 2015. Multi-platform mobile
application development analysis. In 2015 IEEE 9th International Conference on Research Challenges in Information
Science (RCIS). 181–186. http://dx.doi.org/10.1109/RCIS.2015.7128878

[27] Sunny Dhillon and Qusay H Mahmoud. 2015. An evaluation framework for cross-platform mobile application
development tools. Softw. Pract. Exp. 45, 10 (1 Oct. 2015), 1331–1357. http://dx.doi.org/10.1002/spe.2286

[28] W S El-Kassas, B A Abdullah, A H Yousef, and A Wahba. 2014. ICPMD: Integrated cross-platform mobile development
solution. In 2014 9th International Conference on Computer Engineering Systems (ICCES). IEEE, 307–317. http://dx.doi.
org/10.1109/ICCES.2014.7030977

[29] Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman M Wahba. 2017. Taxonomy of Cross-Platform
Mobile Applications Development Approaches. Ain Shams Engineering Journal 8, 2 (2017), 163–190. http://www.
sciencedirect.com/science/article/pii/S2090447915001276

[30] Jan Ernsting, Christoph Rieger, Fabian Wrede, and Tim A Majchrzak. 2016. Re�ning a Reference Architecture for
Model-Driven Business Apps. In 12th International Conference on Web Information Systems and Technologies. Scitepress,
307–316. http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005862103070316

[31] Clément Esco�er and Philippe Lalanda. 2015. Managing the Heterogeneity and Dynamism in Hybrid Mobile Applica-
tions. In 2015 IEEE International Conference on Services Computing. IEEE, 74–81. http://dx.doi.org/10.1109/SCC.2015.20

[32] Clément Esco�er, Philippe Lalanda, and Ozan Gunalp. 2015. A Component Model to Manage the Heterogeneity and
Dynamism in Mobile Applications. In Proceedings of the 18th International ACM SIGSOFT Symposium on Component-
Based Software Engineering (CBSE ’15). ACM, New York, NY, USA, 85–90. http://dx.doi.org/10.1145/2737166.2737178

[33] El Hassane Ettifouri, Abdelkader Rhouati, Jamal Berrich, and Toumi Bouchentouf. 2017. Toward a Merged Approach
for Cross-platform Applications (Web, Mobile and Desktop). In Proceedings of the 2017 International Conference on
Smart Digital Environment (ICSDE ’17). ACM, New York, NY, USA, 207–213. http://dx.doi.org/10.1145/3128128.3128160

[34] European Commission. 2017. Web Accessibility. (9 May 2017). https://ec.europa.eu/digital-single-market/en/
web-accessibility Accessed: 2017-8-15.

[35] Facebook. 2017. JavaScript Environment. (7 June 2017). https://facebook.github.io/react-native/docs/
javascript-environment.html Accessed: 2017-8-3.

[36] Facebook. 2018. React Native. (2018). https://facebook.github.io/react-native/ Accessed: 2018-NA-NA.
[37] Maximiliano Firtman. 2016. High Performance Mobile Web. O’Reilly Media. http://shop.oreilly.com/product/

0636920035060.do
[38] Maximiliano Firtman. 2018. Progressive Web Apps on iOS are here. https://medium.com/@�rt/progressive-

web-apps-on-ios-are-here-d00430dee3a7. (March 2018). https://medium.com/@�rt/
progressive-web-apps-on-ios-are-here-d00430dee3a7 Accessed: 2018-6-21.

[39] Flutter Team. 2017. FAQ - Flutter. (Dec. 2017). https://�utter.io/faq/ Accessed: 2017-12-14.
[40] Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad. 2015. Model Driven Approaches to Cross Platform

Mobile Development. In Proceedings of the International Conference on Intelligent Information Processing, Security and
Advanced Communication (IPAC ’15). ACM, New York, NY, USA, 19:1–19:5. http://dx.doi.org/10.1145/2816839.2816882

[41] Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad. 2016. Desirable Requirements of Cross Platform
Mobile Development Tools. Electronic Devices 5 (March 2016), 14–22. http://www.dline.info/ed/fulltext/v5n1/edv5n1_3.
pdf

[42] Matt Gaunt. 2018. Service Workers: an Introduction. (Jan. 2018). https://developers.google.com/web/fundamentals/
primers/service-workers/ Accessed: 2018-1-22.

[43] Nizamettin Gok and Nitin Khanna. 2013. Building Hybrid Android Apps with Java and JavaScript. O’Reilly Media,
Incorporated. http://shop.oreilly.com/product/0636920028994.do

[44] Tony Gorschek, Ewan Tempero, and Lefteris Angelis. 2014. On the use of software design models in software

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
http://www.sciencedirect.com/science/article/pii/S1877050912005303
http://www.sciencedirect.com/science/article/pii/S1877050912004516
http://www.sciencedirect.com/science/article/pii/S1877050912004516
http://dx.doi.org/10.1109/IWCMC.2013.6583580
https://readwrite.com/2009/04/02/phone_gap_todays_peoples_choice_winner_at_launch_p/
http://dx.doi.org/10.1109/RCIS.2015.7128878
http://dx.doi.org/10.1002/spe.2286
http://dx.doi.org/10.1109/ICCES.2014.7030977
http://dx.doi.org/10.1109/ICCES.2014.7030977
http://www.sciencedirect.com/science/article/pii/S2090447915001276
http://www.sciencedirect.com/science/article/pii/S2090447915001276
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005862103070316
http://dx.doi.org/10.1109/SCC.2015.20
http://dx.doi.org/10.1145/2737166.2737178
http://dx.doi.org/10.1145/3128128.3128160
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://ec.europa.eu/digital-single-market/en/web-accessibility
https://facebook.github.io/react-native/docs/javascript-environment.html
https://facebook.github.io/react-native/docs/javascript-environment.html
https://facebook.github.io/react-native/
http://shop.oreilly.com/product/0636920035060.do
http://shop.oreilly.com/product/0636920035060.do
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://medium.com/@firt/progressive-web-apps-on-ios-are-here-d00430dee3a7
https://flutter.io/faq/
http://dx.doi.org/10.1145/2816839.2816882
http://www.dline.info/ed/fulltext/v5n1/edv5n1_3.pdf
http://www.dline.info/ed/fulltext/v5n1/edv5n1_3.pdf
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
http://shop.oreilly.com/product/0636920028994.do

A Survey and Taxonomy of Core Concepts and Research Challenges :33

development practice: An empirical investigation. J. Syst. Softw. 95 (Sept. 2014), 176–193. http://dx.doi.org/10.1016/j.
jss.2014.03.082

[45] Chris Gri�th. 2017. Mobile App Development with Ionic2: Cross-Platform Apps with Ionic 2, Angular 2, and Cordova.
O’Reilly Media. http://shop.oreilly.com/product/0636920044710.do

[46] Tor-Morten Grønli and Gheorghita Ghinea. 2016. Meeting Quality Standards for Mobile Application Development in
Businesses: A Framework for Cross-Platform Testing. In 2016 49th Hawaii International Conference on System Sciences
(HICSS). 5711–5720. http://dx.doi.org/10.1109/HICSS.2016.706

[47] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muhammad Younas. 2014. Mobile Application Platform
Heterogeneity: Android vs Windows Phone vs iOS vs Firefox OS. In 2014 IEEE 28th International Conference on
Advanced Information Networking and Applications. IEEE, 635–641. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6838724

[48] Pinku Hazarika, Rahul Raj CP, and Seshubabu Tolety. 2014. Recommendations for Webview Based Mobile Applications
on Android. In 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies.
IEEE, 1589–1592. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7019375

[49] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. 2012a. Comparing Cross-platform Development
Approaches for Mobile Applications. In Proceedings 8th WEBIST. SciTePress, 299–311.

[50] Henning Heitkötter, Sebastian Hanschke, and Tim A Majchrzak. 2012b. Evaluating Cross-Platform Development
Approaches for Mobile Applications. InWeb Information Systems and Technologies. Springer Berlin Heidelberg, 120–138.
http://link.springer.com/chapter/10.1007/978-3-642-36608-6_8

[51] Henning Heitkötter and Tim A Majchrzak. 2013. Cross-Platform Development of Business Apps with MD2. In Design
Science at the Intersection of Physical and Virtual Design (Lecture Notes in Computer Science). Springer, Berlin, Heidelberg,
405–411. http://dx.doi.org/10.1007/978-3-642-38827-9_29

[52] Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. 2013. Cross-platform Model-driven Development of
Mobile Applications with Md2. In Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC ’13).
ACM, New York, NY, USA, 526–533. http://dl.acm.org/citation.cfm?id=2480464

[53] Ngu Phuc Huy and Do vanThanh. 2012. Evaluation of mobile app paradigms. In Proceedings of the 10th International
Conference on Advances in Mobile Computing & Multimedia. ACM, 25–30. http://dx.doi.org/10.1145/2428955.2428968

[54] Xiaoping Jia and Christopher Jones. 2015. Design of adaptive domain-speci�c modeling languages for model-driven
mobile application development. In 2015 10th International Joint Conference on Software Technologies (ICSOFT), Vol. 1.
IEEE, 1–6. http://ieeexplore.ieee.org/abstract/document/7521157/

[55] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges in Mobile App Development. In
2013 ACM / IEEE International Symposium on Empirical Software Engineering and Measurement. CPS, 15–24. http:
//dx.doi.org/10.1109/ESEM.2013.9

[56] Elmar Krainz, Johannes Feiner, and Martin Fruhmann. 2016. Accelerated Development for Accessible Apps – Model
Driven Development of Transportation Apps for Visually Impaired People. In Human-Centered and Error-Resilient
Systems Development. Springer, Cham, 374–381. http://dx.doi.org/10.1007/978-3-319-44902-9

[57] Dean Kramer, Tony Clark, and Samia Oussena. 2010. MobDSL: A Domain Speci�c Language for multiple mobile
platform deployment. In 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications.
IEEE, 1–7. http://dx.doi.org/10.1109/NESEA.2010.5678062

[58] Mohamed Lachgar and Abdelmounaïm Abdali. 2017. Decision Framework for Mobile Development Methods. Inter-
national Journal of Advanced Computer Science and Applications 8, 2 (2017), 110–118. http://thesai.org/Publications/
ViewPaper?Volume=8&Issue=2&Code=ijacsa&SerialNo=15

[59] Mounaim Latif, Younes Lakhrissi, El Habib Nfaoui, and Najia Es-Sbai. 2016. Cross platform approach for mobile
application development: A survey. In 2016 International Conference on Information Technology for Organizations
Development (IT4OD). IEEE, 1–5. http://dx.doi.org/10.1109/IT4OD.2016.7479278

[60] Olivier Le Goaer and Sacha Waltham. 2013. Yet Another DSL for Cross-platforms Mobile Development. In Proceedings
of the First Workshop on the Globalization of Domain Speci�c Languages (GlobalDSL ’13). ACM, New York, NY, USA,
28–33. http://doi.acm.org/10.1145/2489812.2489819

[61] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks on WebView in the Android system. In
Proceedings of the 27th Annual Computer Security Applications Conference. ACM, 343–352. http://dx.doi.org/10.1145/
2076732.2076781

[62] Tim Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. 2017. Comprehensive Analysis of Innovative Cross-
Platform App Development Frameworks. In Proceedings of the 50th Hawaii International Conference on System Sciences.
scholarspace.manoa.hawaii.edu, 6162–6171. http://hdl.handle.net/10125/41909

[63] Tim A Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. 2018. Progressive Web Apps: the De�nite Ap-
proach to Cross-Platform Development?. In Proceedings of the 51st Hawaii International Conference on System Sciences.
ScholarSpace, 5735–5745. http://hdl.handle.net/10125/50607

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

http://dx.doi.org/10.1016/j.jss.2014.03.082
http://dx.doi.org/10.1016/j.jss.2014.03.082
http://shop.oreilly.com/product/0636920044710.do
http://dx.doi.org/10.1109/HICSS.2016.706
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6838724
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6838724
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7019375
http://link.springer.com/chapter/10.1007/978-3-642-36608-6_8
http://dx.doi.org/10.1007/978-3-642-38827-9_29
http://dl.acm.org/citation.cfm?id=2480464
http://dx.doi.org/10.1145/2428955.2428968
http://ieeexplore.ieee.org/abstract/document/7521157/
http://dx.doi.org/10.1109/ESEM.2013.9
http://dx.doi.org/10.1109/ESEM.2013.9
http://dx.doi.org/10.1007/978-3-319-44902-9
http://dx.doi.org/10.1109/NESEA.2010.5678062
http://thesai.org/Publications/ViewPaper?Volume=8&Issue=2&Code=ijacsa&SerialNo=15
http://thesai.org/Publications/ViewPaper?Volume=8&Issue=2&Code=ijacsa&SerialNo=15
http://dx.doi.org/10.1109/IT4OD.2016.7479278
http://doi.acm.org/10.1145/2489812.2489819
http://dx.doi.org/10.1145/2076732.2076781
http://dx.doi.org/10.1145/2076732.2076781
http://hdl.handle.net/10125/41909
http://hdl.handle.net/10125/50607

:34 A. Biørn-Hansen et al.

[64] Tim A Majchrzak and Jan Ernsting. 2015. Achieving business practicability of model-driven cross-platform apps. Open
Journal of Information Systems 2, 2 (2015), 3–14. http://hdl.handle.net/11250/2392249

[65] Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland, and Petar Vukmirović. 2017. Assessing the Impact of Service
Workers on the Energy E�ciency of Progressive Web Apps. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft ’17). IEEE Press, Piscataway, NJ, USA, 35–45. http://dl.acm.org/citation.
cfm?id=3104093

[66] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. 2015a. End Users’ Perception of Hybrid
Mobile Apps in the Google Play Store. In 2015 IEEE International Conference on Mobile Services. IEEE, 25–32. http:
//ieeexplore.ieee.org/document/7226668/?reload=true&arnumber=7226668

[67] Ivano Malavolta, Stefano Ruberto, Tommaso Soru, and Valerio Terragni. 2015b. Hybrid Mobile Apps in the Google
Play Store: An Exploratory Investigation. In Proceedings of the Second ACM International Conference on Mobile Software
Engineering and Systems (MOBILESoft ’15). IEEE Press, Piscataway, NJ, USA, 56–59. http://dl.acm.org/citation.cfm?id=
2825051

[68] Iván Tactuk Mercado, Nuthan Munaiah, and Andrew Meneely. 2016. The Impact of Cross-platform Development
Approaches for Mobile Applications from the User’s Perspective. In Proceedings of the International Workshop on App
Market Analytics (WAMA 2016). ACM, New York, NY, USA, 43–49. http://dl.acm.org/citation.cfm?id=2825041.2825051

[69] MoSync AB. 2015. MoSync. (2015). https://github.com/MoSync/MoSync
[70] Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John Mitchell. 2016. Target Fragmentation in Android Apps. In

2016 IEEE Security and Privacy Workshops (SPW). IEEE, 204–213. http://dx.doi.org/10.1109/SPW.2016.31
[71] OpenSignal. 2015. Android Fragmentation Visualized. Technical Report. https://opensignal.com/legacy-assets/pdf/

reports/2015_08_fragmentation_report.pdf
[72] Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti. 2012. Comparison of cross-platform mobile development

tools. In 2012 16th International Conference on Intelligence in Next Generation Networks. IEEE, 179–186. http://dx.doi.
org/10.1109/ICIN.2012.6376023

[73] Kim Patch, Jeanne Spellman, and Kathy Wahlbin. 2015. Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI
Guidelines Apply to Mobile. (26 Feb. 2015). https://www.w3.org/TR/mobile-accessibility-mapping/ Accessed: 2017-8-15.

[74] Joachim Perchat, Mikael Desertot, and Sylvain Lecomte. 2013. Component based Framework to Create Mobile Cross-
platform Applications. In Procedia Computer Science, Vol. 19. ScienceDirect, 1004–1011. http://www.sciencedirect.com/
science/article/pii/S1877050913007485

[75] Marc Pous, Circe Serra-Vallmitjana, Rafael Giménez, Marc Torrent-Moreno, and David Boix. 2012. Enhancing accessi-
bility: Mobile to ATM case study. In Consumer Communications and Networking Conference (CCNC), 2012 IEEE. IEEE,
404–408. http://dx.doi.org/10.1109/CCNC.2012.6181024

[76] Arno Puder, Nikolai Tillmann, and Michał Moskal. 2014. Exposing native device APIs to web apps. In Proceedings of
the 1st International Conference on Mobile Software Engineering and Systems. ACM, 18–26. http://dx.doi.org/10.1145/
2593902.2593908

[77] André Ribeiro and Alberto Rodrigues da Silva. 2012. Survey on Cross-Platforms and Languages for Mobile Apps. In
2012 Eighth International Conference on the Quality of Information and Communications Technology. IEEE, 255–260.
http://dx.doi.org/10.1109/QUATIC.2012.56

[78] António Nestor Ribeiro and Costa Rogério Araújo. 2016. An Automated Model Based Approach to Mobile UI
Speci�cation and Development. In Human-Computer Interaction. Theory, Design, Development and Practice (Lecture
Notes in Computer Science). Springer, Cham, 523–534. http://dx.doi.org/10.1007/978-3-319-39510-4

[79] Christoph Rieger. 2018. Evaluating a Graphical Model-Driven Approach to Codeless Business App Development. In
Proceedings of the 51st Hawaii International Conference on System Sciences. ScholarSpace, 5725–5735. http://hdl.handle.
net/10125/50606

[80] Christoph Rieger and Tim A Majchrzak. 2016. Weighted Evaluation Framework for Cross-Platform App Development
Approaches. In Information Systems: Development, Research, Applications, Education (Lecture Notes in Business Informa-
tion Processing), Stanislaw Wrycza (Ed.). Springer International Publishing, 18–39. http://link.springer.com/chapter/10.
1007/978-3-319-46642-2_2

[81] Christoph Rieger and Tim A Majchrzak. 2018. A Taxonomy for App-Enabled Devices: Mastering the Mobile Device
Jungle. In Lecture Notes in Business Information Processing: Web Information Systems and Technologies. Vol. 322. Springer
International Publishing, 202–220. http://dx.doi.org/10.1007/978-3-319-93527-0_10

[82] Dag�nn Rømen and Dag Svanæs. 2012. Validating WCAG versions 1.0 and 2.0 through usability testing with disabled
users. Univ Access Inf Soc 11, 4 (1 Nov. 2012), 375–385. http://dx.doi.org/10.1007/s10209-011-0259-3

[83] Maxim Sha�rov. 2017. Kotlin on Android. Now o�cial. (17 May 2017). https://blog.jetbrains.com/kotlin/2017/05/
kotlin-on-android-now-o�cial/ Accessed: 2017-6-9.

[84] Mohamed Shehab and Abeer AlJarrah. 2014. Reducing Attack Surface on Cordova-based Hybrid Mobile Apps. In
Proceedings of the 2Nd International Workshop on Mobile Development Lifecycle. ACM, New York, NY, USA, 1–8.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

http://hdl.handle.net/11250/2392249
http://dl.acm.org/citation.cfm?id=3104093
http://dl.acm.org/citation.cfm?id=3104093
http://ieeexplore.ieee.org/document/7226668/?reload=true&arnumber=7226668
http://ieeexplore.ieee.org/document/7226668/?reload=true&arnumber=7226668
http://dl.acm.org/citation.cfm?id=2825051
http://dl.acm.org/citation.cfm?id=2825051
http://dl.acm.org/citation.cfm?id=2825041.2825051
https://github.com/MoSync/MoSync
http://dx.doi.org/10.1109/SPW.2016.31
https://opensignal.com/legacy-assets/pdf/reports/2015_08_fragmentation_report.pdf
https://opensignal.com/legacy-assets/pdf/reports/2015_08_fragmentation_report.pdf
http://dx.doi.org/10.1109/ICIN.2012.6376023
http://dx.doi.org/10.1109/ICIN.2012.6376023
https://www.w3.org/TR/mobile-accessibility-mapping/
http://www.sciencedirect.com/science/article/pii/S1877050913007485
http://www.sciencedirect.com/science/article/pii/S1877050913007485
http://dx.doi.org/10.1109/CCNC.2012.6181024
http://dx.doi.org/10.1145/2593902.2593908
http://dx.doi.org/10.1145/2593902.2593908
http://dx.doi.org/10.1109/QUATIC.2012.56
http://dx.doi.org/10.1007/978-3-319-39510-4
http://hdl.handle.net/10125/50606
http://hdl.handle.net/10125/50606
http://link.springer.com/chapter/10.1007/978-3-319-46642-2_2
http://link.springer.com/chapter/10.1007/978-3-319-46642-2_2
http://dx.doi.org/10.1007/978-3-319-93527-0_10
http://dx.doi.org/10.1007/s10209-011-0259-3
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/

A Survey and Taxonomy of Core Concepts and Research Challenges :35

http://dx.doi.org/10.1145/2688412.2688417
[85] Pavel Smutný. 2012. Mobile development tools and cross-platform solutions. In Proceedings of the 13th International

Carpathian Control Conference (ICCC). IEEE, 653–656. http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
[86] Ben Sperry, Max Lynch, Adam Bradley, and Justin Willis. 2017. Ionic Show. (Dec. 2017). https://www.youtube.com/

watch?v=YhlRbFQotT4
[87] Statista. 2017a. Annual number of mobile app downloads worldwide 2021 | Statistic. (2017). https://www.statista.com/

statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/ Accessed: 2017-7-18.
[88] Statista. 2017b. App stores: number of apps in leading app stores 2017 | Statista. (2017). https://www.statista.com/

statistics/276623/number-of-apps-available-in-leading-app-stores/ Accessed: 2017-7-18.
[89] Statista. 2017c. Apple App Store: number of available apps 2017 | Statistic. (2017). https://www.statista.com/statistics/

263795/number-of-available-apps-in-the-apple-app-store/ Accessed: 2017-7-18.
[90] Statista. 2017d. Mobile app revenues 2015-2020 | Statistic. (2017). https://www.statista.com/statistics/269025/

worldwide-mobile-app-revenue-forecast/ Accessed: 2017-7-18.
[91] Statista. 2017e. Number of Google Play Store apps 2017 | Statistic. (2017). https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store/ Accessed: 2017-7-18.
[92] Telerik. N/A. NativeScript. https://www.nativescript.org/. (N/A). https://www.nativescript.org/ Accessed: 2015-10-21.
[93] Eric Umuhoza and Marco Brambilla. 2016. Model Driven Development Approaches for Mobile Applications: A

Survey. In Mobile Web and Intelligent Information Systems (Lecture Notes in Computer Science). Springer, Cham, 93–107.
https://link.springer.com/chapter/10.1007/978-3-319-44215-0_8

[94] Eric Umuhoza, Hamza Ed-douibi, Marco Brambilla, Jordi Cabot, and Aldo Bongio. 2015. Automatic Code Generation
for Cross-platform, Multi-device Mobile Apps: Some Re�ections from an Industrial Experience. In Proceedings of
the 3rd International Workshop on Mobile Development Lifecycle (MobileDeLi 2015). ACM, New York, NY, USA, 37–44.
http://dx.doi.org/10.1145/2846661.2846666

[95] Usability.gov. 2013. System Usability Scale (SUS). (6 Sept. 2013). https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html Accessed: 2017-8-17.

[96] Muhammad Usman, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan. 2017. A product-line model-driven
engineering approach for generating feature-based mobile applications. Journal of Systems and Software 123 (Jan.
2017), 1–32. http://dx.doi.org/10.1016/j.jss.2016.09.049

[97] Ste�en Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, René Gerlach, and Michael Guckert. 2014. Model-
Driven Development of Mobile Applications Allowing Role-Driven Variants. In Model-Driven Engineering Languages
and Systems (Lecture Notes in Computer Science). Springer, Cham, 1–17. http://dx.doi.org/10.1007/978-3-319-11653-2_1

[98] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study of Google Play. In The 2014 ACM
international conference on Measurement and modeling of computer systems, Vol. 42. ACM, New York, NY, USA, 221–233.
http://dx.doi.org/10.1145/2637364.2592003

[99] W3C. 2017. Web Accessibility Laws and Policies. (19 July 2017). https://www.w3.org/WAI/Policy/ Accessed: 2017-8-15.
[100] Web Accessibility Initiative. 2016. Mobile Accessibility. (Aug. 2016). https://www.w3.org/WAI/mobile/ Accessed:

2017-10-20.
[101] Michiel Willocx, Jan Vossaert, and Vincent Naessens. 2015. A Quantitative Assessment of Performance in Mobile

App Development Tools. In Mobile Services (MS), 2015 IEEE International Conference on. IEEE, 454–461. http://dx.doi.
org/10.1109/MobServ.2015.68

[102] Michiel Willocx, Jan Vossaert, and Vincent Naessens. 2016. Comparing Performance Parameters of Mobile App
Development Strategies. In 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 38–47. http://dx.doi.org/10.1109/MobileSoft.2016.028

[103] Xamarin. 2017. How Does Xamarin Work? (March 2017). https://developer.xamarin.com/guides/cross-platform/
getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work Accessed: 2018-2-13.

[104] Xamarin. N/A. Mobile Application Development to Build Apps in C#. (N/A). https://www.xamarin.com/platform
Accessed: 2017-10-20.

[105] Spyros Xanthopoulos and Stelios Xinogalos. 2013. A Comparative Analysis of Cross-platform Development Ap-
proaches for Mobile Applications. In Proceedings of the 6th Balkan Conference in Informatics (BCI ’13). ACM, 213–220.
http://doi.acm.org/10.1145/2490257.2490292

[106] Jing Yu and Toshihiro Yamauchi. 2013. Access Control to Prevent Attacks Exploiting Vulnerabilities of WebView in
Android OS. In 2013 IEEE 10th International Conference on High Performance Computing and Communications 2013 IEEE
International Conference on Embedded and Ubiquitous Computing. 1628–1633. http://dx.doi.org/10.1109/HPCC.and.EUC.
2013.229

June 2018Month Year

Received February 2018; revised July 2018; accepted August 0000; revised February 2018

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: July 2018.

http://dx.doi.org/10.1145/2688412.2688417
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
https://www.youtube.com/watch?v=YhlRbFQotT4
https://www.youtube.com/watch?v=YhlRbFQotT4
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/
https://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.nativescript.org/
https://link.springer.com/chapter/10.1007/978-3-319-44215-0_8
http://dx.doi.org/10.1145/2846661.2846666
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://dx.doi.org/10.1016/j.jss.2016.09.049
http://dx.doi.org/10.1007/978-3-319-11653-2_1
http://dx.doi.org/10.1145/2637364.2592003
https://www.w3.org/WAI/Policy/
https://www.w3.org/WAI/mobile/
http://dx.doi.org/10.1109/MobServ.2015.68
http://dx.doi.org/10.1109/MobServ.2015.68
http://dx.doi.org/10.1109/MobileSoft.2016.028
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/#How_Does_Xamarin_Work
https://www.xamarin.com/platform
http://doi.acm.org/10.1145/2490257.2490292
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.229
http://dx.doi.org/10.1109/HPCC.and.EUC.2013.229

	Abstract
	1 Introduction
	2 Development Approaches and Domain Terminology
	2.1 The Hybrid Approach
	2.2 The Interpreted Approach
	2.3 The Cross-compiled Approach
	2.4 The Model-Driven Approach
	2.5 The Progressive Web Apps Approach

	3 The Research Foundation
	4 User Experience
	4.1 Summary of section on User Experience

	5 Software Platform Features
	5.1 Summary of section on Software Platform Features

	6 Performance and Hardware Utilization
	6.1 Summary of section on Performance and Hardware Utilization

	7 Security
	7.1 Summary of section on Security

	8 Taxonomy and State of Research
	9 Conclusion and Outlook
	9.1 Research Challenges
	9.2 Suggestions for Further Work
	9.3 Conclusion

	References

