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If a Hamiltonian of a quantum system is symmetric under space-time reflection,

then the associated eigenvalues can be real. A conjugation operation for quantum

states can then be defined in terms of space-time reflection, but the resulting Hilbert

space inner product is not positive definite and gives rise to an interpretational

difficulty. One way of resolving this difficulty is to introduce a superselection rule that

excludes quantum states having negative norms. It is shown here that a quantum

theory arising in this way gives an example of Kibble’s nonlinear quantum mechanics,

with the property that the state space has a constant negative curvature. It then

follows from the positive curvature theorem that the resulting quantum theory is not

physically viable. This conclusion also has implications to other quantum theories

obtained from the imposition of analogous superselection rules.

I. INTRODUCTION

Over the past decade there has been a revival of interests in discrete symmetries of
quantum mechanics arising in a variety of contexts [11, 14, 20, 24, 27]. One of the initia-
tives for the interests in discrete symmetries emerged out of the observation that complex
Hamiltonians that possess space-time reflection (parity-time reversal) symmetry may have
entirely real eigenvalues [3]. When the relation between the reality of the spectrum and PT
symmetry was first observed, it was not immediately apparent whether a non-Hermitian
Hamiltonian having such a symmetry describes a consistent quantum theory, because the
associated Hilbert space (the metric space defined in terms of the PT conjugation) possesses
indefinite inner product of the Pontryagin or the Krĕın type [18, 23]. In other words, the
probabilistic interpretation of the associated quantum theory was not apparent.

This issue was subsequently resolved by the introduction of a new symmetry [4, 21],
denoted C, that has an interpretation of a charge operator in the sense that the eigenvalues
of this operator is +1 or −1, depending on the parity type of the corresponding eigenstate.
Since C commutes with the Hamiltonian, one can define the Hilbert space inner product
in terms of the CPT conjugation. In the Hilbert space thus constructed, the Hamiltonian
operator enjoys self-adjointness. As a consequence, a consistent unitary theory of quantum
mechanics is restored.

All of the above is by now well known, however, what is less known is the answer to
the question “What would have happened had we used the indefinite PT-inner product and
tried to formulate a quantum theory that way?” In this paper we address the possibility
of formulating an alternative approach to define a quantum theory out of a PT-symmetric
Hamiltonian. Specifically, we consider what happens if we introduce a superselection rule
that truncates part of the state space associated with quantum states that do not have
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positive norm. We find that quantum theory obtained in this manner forms an example of
Kibble’s nonlinear quantum mechanics, that is, quantum mechanics defined on a nonlinear
state-space manifold. This manifold, however, possesses negative curvature, leading to what
one might call a hyperbolic quantum theory.

The paper is organised as follows. In Section II we consider an example of a PT-symmetric
two-state system and show how indefinite metric arises from conjugation operation defined
by space-time reflection. We work out this example explicitly because it suffices to consider
just the two-state system in order to illustrate the main result of the paper. In Section III
we review the idea of quantum state space geometry and explain how it can be generalised
into the nonlinear domain. In Section IV we derive the metric of the quantum state space
obtained by imposing the superselection rule, and show that the associated state-space
curvature is negative. In Section V we offer one possible characterisation of measurements
in hyperbolic quantum mechanics, which nonetheless leaves us with some interpretational
issues. We conclude in Section VI with the observation, by evoking the positive curvature
theorem of Brody and Hughston for the state-space manifold [8], that such an alternative
formulation, although interesting mathematically, must be ruled out.

II. PT-SYMMETRIC SPIN-12 PARTICLE

Consider a quantum system described by a two-dimensional complex Hamiltonian

H =

(
reiθ s
t re−iθ

)
. (1)

We have in mind here a Hamiltonian for a PT-symmetric spin-1
2
particle system. It is now

well understood that although the Hamiltonian (1) is not Hermitian in the conventional
sense, it is nevertheless symmetric under space-time reflection, if we define the unitary
parity reflection P by

P =

(
0 1
1 0

)
, (2)

and the antiunitary time reversal T by a Hermitian conjugation. Thus the energy eigenvalues

E± = r cos θ ±
√
st− r2 sin2 θ (3)

are real and nondegenerate, provided that the parameters in the Hamiltonian belong to the
region determined by st > r2 sin2 θ. We demand that this inequality be satisfied so that PT
symmetry is respected [4].

When the energy eigenvalues are real, the eigenvectors |E±⟩ of the Hamiltonian H are
simultaneously eigenstates of the PT operator. We choose the overall phases of the eigen-
vectors so that their eigenvalues under PT are all unity. With respect to this choice of
phases the eigenvectors are given by

|E+⟩ =
1√

2
√
st cosα

( √
s eiα/2√
t e−iα/2

)
, |E−⟩ =

i√
2
√
st cosα

( √
s e−iα/2

−
√
t eiα/2

)
. (4)

Here we have set sinα = (r/
√
st) sin θ, and the inequality st > r2 sin2 θ for the reality of

E± ensures that α is real and that both st and cosα are positive.
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We now examine properties of the PT-inner product. To this end we recall that in
conventional Hermitian quantum mechanics the norm of a vector in a finite-dimensional
Hilbert space is defined in terms of a Hermitian inner product, which has the form ⟨u|v⟩ =
ū1v1 + ū2v2 in two dimensions. Thus, the norm ⟨v|v⟩ of a vector is positive definite. On the
other hand, the PT-inner product is determined by the PT conjugation operation so that we
have ⟨u∥v⟩ = ū2v1 + ū1v2 in two dimensions. Just as in the case of the Hermitian norm, the
PT norm ⟨v∥v⟩ is also independent of overall phase. However, with respect to the PT-inner
product we have an indefinite norm given by ⟨E+∥E+⟩ = +1 and ⟨E−∥E−⟩ = −1, as well
as the orthogonality conditions ⟨E−∥E+⟩ = ⟨E+∥E−⟩ = 0. These identities can easily be
verified by use of (4).

As in the case of a Hermitian norm, because the PT norm is invariant under a change of
overall complex phase of the vector, we can consider a space of rays through the origin of
the Hilbert space, having the inner product structure of (+,−). The result is the projective
Hilbert space—also known as a complex projective space. In the present case of a two-state
system the projective Hilbert space is just the complex projective line CP1, which in real
terms is the surface S2 of a sphere in three-dimensional space. We identify the north and
south poles of this sphere with the eigenstates |E+⟩ and |E−⟩, respectively. A generic state
in this quantum system is expressed as a linear superposition of |E±⟩. However, because the
Hilbert space has an indefinite metric some of these states have positive norm while others
have negative norm. With respect to our choice of poles, the states having positive unit
norm lie in the northern hemisphere and can be represented in the form

|n⟩ = cosh x|E+⟩+ eiϕ sinhx|E−⟩. (5)

Similarly, the states having negative norm lie in the southern hemisphere and are expressible
in the form

|s⟩ = sinh x|E+⟩+ eiϕ coshx|E−⟩. (6)

Here, 0 ≤ x < ∞ and 0 ≤ ϕ < 2π. The north and south poles correspond to x = 0 in (5)
and (6), respectively. In the northern hemisphere of the state space CP1 ∼ S2 the states
have positive unit norm:

⟨n∥n⟩ = cosh2 x− sinh2 x = 1. (7)

On the other hand, in the southern hemisphere the states have negative unit norm:

⟨s∥s⟩ = sinh2 x− cosh2 x = −1. (8)

The two hemispheres of S2 are joined at the equator, where the states are expressible in the
form 1√

2
(|E+⟩ + eiϕ |E−⟩) and have vanishing norm. These null states on the equator are

obtained by taking the limit x→ ∞ in |n⟩ or |s⟩.

III. STATE-SPACE GEOMETRY AND NONLINEAR QUANTUM MECHANICS

It is evident from the preceding discussion that if we endow the Hilbert space of states
spanned by the eigenvectors of a PT-symmetric Hamiltonian with an inner product de-
termined by a PT conjugation, then we obtain a metric with indefinite signature. As a
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consequence, this construction gives rise to a difficulty if we were to interpret the Hilbert
space metric as probabilities in quantum mechanics. One possible way of circumventing
this difficulty is to impose a superselection rule that in effect ‘truncates’ states that do not
possess positive norms. One of the purposes of this paper to show that a quantum theory
arising in this manner constitutes an example of Kibble’s nonlinear theory. For the benefit
of readers less acquainted with the ideas of nonlinear quantum mechanics we shall briefly
review in this section the idea of state space geometry of quantum mechanics and how it
may be extended into nonlinear domain.

It will be useful first to state how the structures of metric geometry arise in standard
quantum theory. The simplest way to determine the metric structure of quantum state space
CPn of an (n+ 1)-level system is to note that the transition probability

cos2
(
1
2
θ
)
=

⟨ψ|η⟩⟨η|ψ⟩
⟨ψ|ψ⟩⟨η|η⟩

(9)

between a pair of states |ψ⟩ and |η⟩ gives rise to the notion of distance in projective
spaces [16]. This can be seen as follows. First we set |ψ⟩ = Zα, |η⟩ = Zα + dZα, and
θ = ds in (9), where {Zα}α=1,2,...,n+1 is viewed as the homogeneous coordinates for a point in
CPn. With these substitutions, Taylor expand each side of (9) and retain terms of quadratic
order, we recover the standard Fubini-Study metric on CPn:

ds2 = 4
Z̄αZ

αdZ̄βdZ
β − Z̄αZ

βdZ̄βdZ
α

(Z̄γZγ)2
. (10)

For further detail of the relevance of the metric (10) in quantum mechanics, see, for example,
Refs [1, 2, 7, 22].

In the case of a two-level system we have (Z1, Z2) for the homogeneous coordinate on
CP1. Since the coordinates cannot all vanish simultaneously, we assume without loss of
generality that Z1 ̸= 0 and introduce an inhomogeneous coordinate by setting z = Z2/Z1.
Then a short calculation shows that the Fubini-Study metric simplifies to

ds2 = 4
dz̄dz

(1 + z̄z)2
. (11)

In the usual stereographic representation this is just the metric on a sphere S2 of radius
one-half. This sphere, of course, is the Bloch sphere for a spin-1

2
particle system.

We now provide an alternative derivation for the metric structure of quantum state space
by use of the method of kernel functions, because this construction applies to the more
general context of nonlinear quantum theory. To put the matter differently, the derivation
of the metric from the transition probability (9) is a special feature of linear quantum
mechanics; in the nonlinear context, one defines what one means by a transition probability
from the metric geometry of the state space.

For the kernel function method we consider complex analytic functions f(z) defined in
a bounded domain of C, that is, a connected open set D in the complex plane. Since D is
bounded we have the Hilbert space L2(D) of square-integrable functions satisfying∫ ∫

D

dx dy |f(z)|2 <∞, (12)
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where z = x+ iy. Let {ϕn(z)} be a set of complex orthonormal functions on the domain D.
Then the kernel K of this set is defined by the expression

K(z, w̄) =
∞∑
n=1

ϕn(z)ϕn(w). (13)

Note that for a real orthonormal basis the kernel function generally diverges, whereas in
the complex case it always converges uniformly [5, 15]. The function K(z, w̄) is called the
kernel, or sometimes Bergman kernel, because of the identity

g(z) =

∫
D

dx dy K(z, w̄)g(w), (14)

where w = x+ iy, that holds for any smooth function g ∈ L2(D).
Given the kernel function K associated with a domain D in the complex plane, one

can determine a natural Riemannian metric, called the Bergman metric, on the domain
according to the prescription

ds2 = K(z, z̄)dz̄dz. (15)

Some of the key properties of this metric are that it is invariant under the conformal trans-
formations, and that it is monotonic in the sense that the associated line element satisfies
ds′ > ds if D′ ⊂ D. More generally, for a bounded domain in Cn the Bergman metric is
given by

ds2 = ∂a∂̄b logK(z, z̄)dzadz̄b, (16)

where the coordinates are {za}, ∂a = ∂/∂za = 1
2
(∂/∂x − i∂/∂y), and ∂̄b = ∂/∂z̄b. In

the complex plane this definition reduces to (15). For standard quantum mechanics we
define the kernel function by taking the product of unnormalised state vectors, that is, we
set K(z, z̄) = Z̄α(z̄)Z

α(z), where we regard z as the inhomogeneous coordinates. Then
a straightforward exercise shows that the Fubini-Study metric on CPn can be recovered
from the expression (16). Further details of the derivation of the metric in this manner for
conventional quantum mechanics are outlined in Ref. [9]. The expression (15) will be used
below to derive the metric of the PT-symmetric quantum theory along with a superselection
rule.

Returning to the discussion on standard quantum mechanics, we thus see from (9) and
(10) that the metric geometry is intimately related to the probabilistic interpretation of
quantum mechanics. As regards quantum observables, they are defined as functions on the
space of pure states. That is, if Hβ

α represents an observable acting on the Hilbert space,
then we have the homogeneous function H(Z̄, Z) = Z̄βH

β
αZ

α/Z̄γZ
γ on CPn. The unitary

time evolution of the state is then given by a Hamiltonian symplectic flow on the state
space manifold generated by the function H(Z̄, Z). In particular, the quadratic nature of
the function H(Z̄, Z) ensures that the Hamiltonian flow is an isometry, that is, transition
probabilities are preserved in time.

Based on these geometric properties of standard quantum mechanics (as well as earlier
work of Mielnik [19] on nonlinear observables), Kibble proposed two alternative nonlinear
generalisations of quantum mechanics [17]. The first generalisation is to retain the linear
structure of the quantum state space but to modify the dynamics to a class of nonlinear
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wave equations that nonetheless can be expressed as Hamiltonian flows. In other words,
the first alternative is to drop the assumption that the Hamiltonian be quadratic—this
implies that the time evolution is no longer an isometry so that transition probabilities
are not preserved. This particular nonlinear generalisation of quantum mechanics has been
investigated extensively by many authors (see, e.g., [12, 26]).

The second alternative proposed by Kibble, which is of interest to us here, is to consider
the possibility of taking a generic Kähler manifold having symmetries as the state space
of quantum mechanics. In this case, the dynamics are associated with isometries of the
manifold, generated by Hamiltonian symplectic flows. In other words, the second proposal
is to consider a nonlinear state space, while retaining in some sense the linearity of the
dynamics. We note here that a Kähler manifold is a complex manifold equipped with a
Riemannian structure compatible with the complex structure.

The state space of standard quantum mechanics, the complex projective space CPn, is
a special example of a Kähler manifold—special in that it admits the structure of Segré
embedding, which allows us to talk about such notions as linear superposition of states or
particle states [7, 13]. These linear features are a direct consequence of the corresponding
Hilbert space picture.

A generic Kähler manifold, on the other hand, does not admit such linear structures,
and this justifies the use of the term ‘nonlinear’ quantum mechanics, although this theory
must be distinguished from theories associated with nonlinear wave equations, for which the
nonlinearities emerge purely dynamically. Also in the general nonlinear state space context
there is no Hilbert space of states or linear observables acting on these states. Nevertheless,
many of the fundamental ideas required in quantum mechanics—if not all—survive; for
example, observables are given by a class of functions on the state space manifold, the
eigenstates of the observables are the fixed points of these functions, the eigenvalues are the
values of these functions at fixed points, and so on. Also, the time evolution is given by an
isometry so that relative separation of pairs of states are preserved (nonlinear analogue of
unitarity).

IV. SUPERSELECTION AND HYPERBOLIC QUANTUM MECHANICS

In the context of a PT-symmetric quantum theory with a Hilbert space inner product
defined by the space-time reflection (PT conjugation), if we insist that all physical states be
associated with positive norm and exclude from the state space those states having null or
negative norm, then the resulting state space turns out to have the structure of a Kähler
manifold, with dynamics governed by an isometry. Therefore, in this case the PT-symmetric
theory becomes an example of Kibble’s second alternative for nonlinear generalisation of
quantum mechanics. To see this, it suffices to consider the simplest two-level system con-
sidered in Section II.

For this system we have states on the Bloch sphere S2 that is expressible in the form
|ψ⟩ = ρ|E+⟩ + z|E−⟩, where without loss of generality we assume ρ ∈ R and z ∈ C. It is
convenient for the moment not to set the normalisation. However, for physical states we
require the norm ⟨ψ∥ψ⟩ to be positive. This is the superselection rule that we impose here.
It then follows from ⟨E+∥E+⟩ = +1 and ⟨E−∥E−⟩ = −1 that physical states must lie on the
northern hemisphere of S2 correspond to the domain D that is determined by the relation

x2 + y2 < ρ2, (17)
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FIG. 1: (colour online) Upper-half state space and the Poincaré disc. In the case of PT-symmetric

two-state quantum mechanics equipped with a PT-norm, the physical states possessing positive norm

lie on the northern hemisphere of CP1 ∼ S2. Such states are identified with points on the Poincaré

unit disk D. Thus, the resulting state space is characterised by hyperbolic geometry. The evolution

of the state then corresponds to the rotation of the disk, having a single fixed point at the centre

of the disk D corresponding to the energy eigenstate |E+⟩. Geodesics on D are half-circles, as

illustrated in the figure.

where we set z = x + iy. This is just a region inside a circle of radius ρ, that is, zz̄ < ρ2.
Now the standard set of orthonormal functions ϕn(z) in this region is given by

ϕn(z) =
(n
π

) 1
2 zn−1

ρn
. (18)

It then follows from the identity

∞∑
n=1

n

π

zn−1w̄n−1

ρ2n
=

ρ2

π(ρ2 − zw̄)2
(19)

for the Bergman kernel K(z, w̄) that the metric for the state space D = S2
+ is given by

ds2 =
dz̄dz

π(1− z̄z)2
, (20)

where at this point we set the normalisation ρ = 1. This is just the classical metric of
Poincaré on the unit disk, having constant negative curvature R = −4π. In Figure 1 we
illustrate this correspondence.

The result led by the foregoing discussion can be stated more formally as follows: If
we impose a superselection rule that demands that physical states must have positive PT
norm, then the resulting state space for a two-state system is given by the Poincaré disk.
Therefore, we recover a hyperbolic geometry in the ambient state space, as opposed to
the spherical geometry associated with the state space of standard quantum mechanics. A
quantum theory defined on such a state space thus might appropriately be called ‘hyperbolic
quantum mechanics’. To our knowledge this is the first example of an explicit construction
of Kibble’s second alternative for nonlinear quantum mechanics, and it is interesting to see
how such a theory emerges from imposing a superselection rule in PT-symmetric quantum
theory, equipped with an indefinite PT-norm.
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We remark in passing that the Poincaré disk can be obtained from the upper-half complex
plane through a Möbius transformation. Indeed, any connected bounded domain in complex
plane is analytically equivalent to the Poincaré disk, and these domains possess negative
curvatures. Consequently, all quantum theories obtained by restricting the state space CP1

to any connected domain are analytically equivalent—all these theories possess hyperbolic
state spaces. From this point of view it might be of interest to consider the possibility of
formulating a quantum theory on nonconnected domain, such as a ring domain defined by
r < |z| < 1 where z denotes the inhomogeneous coordinate of CP1. For such a domain the
orthonormal system is given by

ϕ2n−1(z) = zn−1[n/π(1− r2n)]1/2 (21)

for the odd elements and

ϕ2n(z) = z−n[(1− n)/π(1− r2(n−1))]1/2 (22)

for the even elements. A short calculation then shows (see Ref. [5]) that the Bergman kernel
can be expressed as

K(z, z̄) =
1

πz̄z

[
℘(log z̄z) +

η

2πi
− 1

2 log r

]
(23)

in terms of the Weierstrassian ℘-function, where η is the increment of the Weierstrassian
ζ-function related to the period πi. Although unrelated to PT symmetry or hyperbolic quan-
tum theory, a formulation of quantum mechanics on such a domain would be of considerable
mathematical interest.

Returning to the PT-symmetric quantum theory, the situation in higher dimensions is
somewhat more elaborate: there are natural generalisations of the upper-half plane in higher
dimensions, and these are known as the Siegel domains [25]. In higher dimensions these
domains become relevant to PT-symmetric theories if we once again demand the positivity
condition on the PT norm. For example, if the Hamiltonian is a four-dimensional matrix and
thus the state space is CP3

+, the corresponding positive-norm domain is given by zz̄ + vv̄ −
ww̄ < ρ2 instead of the condition zz̄ < ρ2 in two dimensions. In general if the Hamiltonian
is a 2n × 2n matrix, then the associated state space M = CP2n−1

+ is determined by the
bounded domain

n∑
α=1

z̄αzα −
n−1∑
β=1

w̄βwβ < ρ2 (24)

of C2n, where {zα}, {wβ} ∈ C. It follows that the hyperbolic nature of the state space
persists in higher dimensions.

V. REDUCED HERMITIAN ENERGY MEASUREMENT

On a hyperbolic state space, various questions naturally arise, including that on mea-
surement theory of physical observables. Here we describe one possible procedure for de-
scribing energy measurements. To begin we note the interpretational issue we encounter
in PT-symmetric theory endowed with the superselection rule, when we consider only the
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upper-half of the state space M = CP2n−1
+ : namely, a generic quantum state cannot be

expressed as a superposition of the eigenstates contained in M. Therefore, instead of the
full PT-symmetric Hamiltonian H, let us consider here a degenerate Hermitian Hamiltonian
H+ defined by

H+ =
n∑

i=1

Ei
+|Ei

+⟩⟨Ei
+|. (25)

In the state space M there is a hyperplane spanned by the positive eigenstates |Ei
+⟩ of the

original Hamiltonian H. As a consequence, the operator H+ represents, in this hyperplane,
a standard quantum mechanical Hermitian Hamiltonian having n eigenstates. However,
when we view the whole of M as our quantum state space, H+ represents a degenerate
operator. That is, while each point |Ei

+⟩ ∈ M is a distinct eigenstate of H+, the entire span
of each such point with the negative states |Ei

−⟩ also represents the eigenstates of H+. This
is because any state |Ei

−⟩ is annihilated by H+ and hence is automatically an eigenstate of
H+ with vanishing eigenvalue. Therefore, there is a continuum of degenerate eigenstates of
H+ in M associated with each nondegenerate eigenvalue Ei

+ of H. An example of this for
n = 2 is illustrated in Fig. 2.

A direct consequence of having such a degenerate Hamiltonian is that any state |ψ⟩ ∈
M can now be represented as various superpositions of the eigenstates of H+. For n =
1, the situation trivialises because any state in the state space M = D is automatically
an eigenstate of H+. Therefore, if the Hermitian energy H+ is measured, the resulting
expectation value is given by cosh2(x)E+. The first nontrivial case is when n = 2, for which
there is a pair of nonintersecting planes in M representing degenerate eigenstates of H+.
Recall that, in standard quantum mechanics, when the outcome of an energy measurement is
associated with degenerate eigenvalues, the resulting state of the system, after measurement,
is given by the Lüders state. This is the state obtained by the minimum projection of the
initial state into the subspace of the Hilbert space spanned by the degenerate eigenstates.

For a PT-symmetric theory with a PT norm and superselection rule, given a generic
state |ψ⟩ there are hyperplanes of complex dimension n − 1 through that point that are
entirely contained in M = CP2n−1

+ , and these hyperplanes intersect the hyperplanes of
degenerate eigenstates of H+, having complex dimension 2n − 2, at distinct points. In
this way, we see that a generic state can now be expressed as a linear superposition of the
eigenstates of the Hermitian energy H+. As a consequence, it may be possible that one of
the planes through |ψ⟩ determines a minimum projection of the state |ψ⟩ onto the planes
of degenerate eigenstates. If so, then the intersection points determine generalised Lüders
states in the hyperbolic theory that we consider here. In particular, if this is the case,
then we recover the standard quantum mechanical transition probabilities associated with
measurement outcomes. However, corresponding expectation values will be different from
the standard theory, as we have indicated above for the state space D.

Let us consider the simplest nontrivial case for which n = 2. In this dimensionality there
are lines through a generic point |ψ⟩ that are contained entirely in CP3

+, and these lines meet
the pair of planes associated with the eigenstates of H+. If one of these lines corresponds
to a minimum projection of |ψ⟩ onto these planes, then the associated intersection points
determine generalised Lüders states, indicated by |α⟩ and |β⟩ in Fig. 2. In this case the
transition probabilities from the initial state |ψ⟩ to |α⟩ and |β⟩ are given by the cosine
squares of the spherical angles between these states.
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FIG. 2: (colour online) Generalised Lüders states. For a generic nondegenerate PT-symmetric

Hamiltonian in four dimensions there are four distinct eigenvalues {E1,2
± }. If we construct a de-

generate Hamiltonian H+ from the positive-norm eigenstates |E1,2
+ ⟩, then the associated eigenstates

of H+ are represented in CP3
+ by a pair of nonintersecting planes. These are given by the plane

spanned by three points {|E1
+⟩, |E1

−⟩, |E2
−⟩} and the plane spanned by three points {|E2

+⟩, |E1
−⟩, |E2

−⟩},
respectively. These two planes intersect in CP3

− at a line that joins two points |E1
−⟩ and |E2

−⟩, not
shown in the figure. Through a generic point |ψ⟩ of CP3

+ there are complex lines that do not meet

the boundary N of null states, and hence contained entirely in CP3
+. If generalised Lüders states

|α⟩ and |β⟩ exist, these are given by minimum projection of |ψ⟩ onto the planes of degenerate

eigenstates of H+, to which the measurement of H+ results in.

VI. DISCUSSION

The hyperbolic quantum theory emerging in this way from PT symmetry along with the
selection rule is intriguing, but it leaves us with the question of whether such a quantum
theory is physically viable. A candidate measurement theory proposed in Sec. V is interest-
ing, but at the same time it is intricate, and furthermore, the expectation values resulting
from the proposal differs from the conventional theory.

To this end we draw attention to the positive curvature theorem concerning the admissible
nonlinear extension of quantum state space [8]. In short, this theorem states, in the context
of Kibble’s second alternative for the nonlinear extension, that for the resulting quantum
theory to embody a fully consistent probabilistic interpretation, the holomorphic sectional
curvature of the state space manifold has to be positive. Conversely, if the curvature is not
positive, then measurement of an observable, for example, need not yield a definite outcome.
Indeed, in the hyperbolic situation, one can envisage a situation whereby measurement of
the energy takes the initial state further and further away from the eigenstates, towards the
boundary, so that energy uncertainty increases as a result of an energy measurement.

In the case of standard quantum mechanics the state space manifold is just the complex
projective space with constant positive curvature so that a probabilistically consistent mea-
surement theory can be formulated. On the other hand, in the case of hyperbolic quantum
theory we have formulated here, the state space possesses constant negative curvature. We
thus conclude that, while mathematical properties of such a quantum theory is interesting,
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it has to be ruled out from physical point of view as a viable nonlinear extension. This
conclusion also justifies the introduction by Bender et al. [4] and by Mostafazadeh [21] of an
alternative symmetry to construct a positive definite inner product in order to circumvent
the issues arising from indefinite metric. Then one can prove [6] that the resulting theory
is in fact indistinguishable from a conventional quantum theory described by Hermitian
Hamiltonians. We conclude by remarking that other quantum theories obtained by supers-
election rules analogous to the one considered here (for example, to eliminate ‘ghost’ states)
evidently suffer from the problem of curvature negativity, and thus have to be rules out as
an admissible physical theory.

The author thanks C. M. Bender and L. P. Hughston for discussion, and the Russian
Science Foundation for support (project 16-11-10218).
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[18] Krĕın, M. G. 1965 “An introduction to the geometry of indefinite J-spaces and the theory

of operators in these spaces” in Proc. Second Math. Summer School, Part I, 15–92 (Kiev:

Naukova Dumka).

[19] Mielnik, B. 1974 “Generalized quantum mechanics” Commun. Math. Phys. 37, 221–256.

[20] Moffat, J. W. (2006) “Positive and negative energy symmetry and the cosmological constant

problem” Preprint: hep-th/0610162.

[21] Mostafazadeh, A. 2002 J. Math. Phys. “Pseudo-Hermiticity versus PT-symmetry III” 43,

3944–3951.

[22] Page, D. N. 1987 Phys. Rev. A “Geometrical description of Berry’s phase” 36, 3479–3481.

[23] Pontryagin, L. S. 1944 “Hermitian operators in spaces with indefinite metrics” Bull. Acad.

Sci. URSS. Ser. Math. [Izvestiya Akad. Nauk SSSR], 8, 243–280.

[24] ’t Hooft, G. and Nobbenhuis, S. 2006 “Invariance under complex transformations, and its

relevance to the cosmological constant problem” Class. Quantum Grav. 23, 3819–3832.
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