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Barış Erbaş 1, Julius Kaplunov2, Evgeniya

Nolde3 and Melike Palsü1

1 Anadolu University, Department of Mathematics,

Yunus Emre Campus, 26470, Eskisehir, Turkey
2 School of Computing and Mathematics, Keele

University, Keele, Staffordshire, ST5 5BG, UK
3 Department of Mathematics, CEDPS, Brunel

University London, Uxbridge UB8 3PH, UK.

The long-term challenge of formulating an
asymptotically motivated wave theory for elastic
plates is addressed. Composite 2D models merging
the leading or higher-order parabolic equations for
plate bending and the hyperbolic equation for the
Rayleigh surface wave are constructed. Analysis
of numerical examples shows that the proposed
approach is robust not only at low and high-frequency
limits but also over the intermediate frequency range.

1. Introduction
A substantial fresh interest in mechanics of thin
elastic structures, inspired by demands of modern
advanced technologies, is strongly focused on modelling
of microscale phenomena, e.g. see recent publications
[1–5]. At the same time, the long standing problem,
concerned with derivation of a 2D hyperbolic plate
theory supporting an asymptotically consistent short-
wave behaviour, is not yet solved even in the context of
linear isotropic elasticity.

The classical Kirchhoff plate theory is governed by
a fourth-order equation, which may be classified as
parabolic [6]. As a consequence, it does not predict a
finite wave speed limit resulting in a formal violation
of the causality principle. However, as the leading long-
wave low-frequency approximation of 3D equations in
elasticity, e.g. see [7–9], the Kirchhoff equation is not
assumed to be valid near wave fronts dominated by
short-wave high-frequency patterns. Causality of long-
wave models was also discussed for periodic media,
including discrete chains [10–12]. In fact, as it was
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demonstrated in [13], the asymptotic methodologies underlying thin and periodic structures
appear to have a lot in common.

Refined ad-hoc plate formulations, including Timoshenko–Reissner–Mindlin type theories as
well as numerous later considerations, often start from hyperbolic equations, see general reference
works [14,15] and also papers [16,17]. Simultaneously, hyperbolicity of all of them is rather a type
of a side effect related to incorporating of certain long-wave corrections like shear deformation
and rotation inertia, but not the result of adapting a proper short-wavelength asymptotic limit.
The wave speeds within various versions of refined ad-hoc theories may either coincide with
bulk and surface wave speeds in a 3D elastic solid or take slightly different values, see [14]. A
heuristic nature of the arguments supporting existing hyperbolic formulations is appreciated in
[18] combining them with a long-wave variational-asymptotic approach.

The main challenge of constructing asymptotically consistent 2D hyperbolic theories is that
the equations of short-wave approximations in question generally have to retain derivatives with
respect to the third (thickness) variable. In particular, for a semi-infinite thin shell of revolution
subject to edge impact loading, these equations take the form of plane and anti-plane problems in
elasticity over the transverse cross-section of the shell, see [9] and also specialized monograph [19]
published in Russian. Obviously, plane and anti-plane problems preserve the correct values of 3D
bulk wave speeds. Their solutions may be matched with those of the Kirchhoff–Love theory of
shells, which is valid outside wavefront vicinities.

A new prospect for deriving 2D hyperbolic equations has recently arisen due to the
development of the asymptotic hyperbolic-elliptic model for the surface Rayleigh wave, see
[20,21] and references therein. It is very crucial for our purposes that it operates with an explicit
2D wave equation along the surface. In this case, 3D ‘static’ elliptic equations have to be solved
over the interior. The model is derived by perturbing the inhomogeneous equations in elasticity
around the Rayleigh wave eigen-solution orginally obtained in [22,23]. We also mention more
recent publications [24,25] dealing with free surface waves of an arbitrary profile. Although
the aforementioned model assumes near-resonant loading, it also allows one to determine the
Rayleigh wave contribution to the overall response in case of a more general excitation. It was
successfully implemented for a number of dynamic problems for point and moving surface
sources [26–28].

In this paper, we attempt to establish 2D composite hyperbolic equations for an elastic plate
using Kirchhoff or refined asymptotic plate equations along with the Rayleigh wave equation,
see [29,30] regarding the idea of composite equations incorporating both long and short-wave
limiting forms, for which a typical wavelength is much greater or smaller than the plate thickness.
We restrict ourselves to surface loading, when bending and Rayleigh waves are seemingly of the
most importance. In contrast to examples in [29], we do not expect from the very beginning to
arrive at uniformly valid composite equations. The point is that over the intermediate range, for
which a wavelength is of order of thickness, a plate demonstrates essentially 3D behaviour, which
does not allow any asymptotic dimension reduction.

The paper is organized as follows. The governing equations are written down in Section 2.
In this section, the Kirchhoff plate equation as well as its asymptotic refinement are rewritten
through surface displacements. Also, the 2D hyperbolic equation for the Rayleigh wave, initially
derived for the surface wave potentials, is presented in terms of displacements. It is worth
noting that the right-hand side of the hyperbolic equation for the vertical displacement contains a
pseudo-differential operator acting on prescribed normal surface stresses. In Section 3, we begin
with analysis of dispersion relations. Along with the simplest composite relation based on the
Kirchhoff equation, we also suggest a more sophisticated one corresponding to the refined plate
equation. The composite dispersion relations are tested by comparison with the results of the
numerical evaluation of the fundamental Rayleigh–Lamb antisymmetric mode. In Section 4, using
a preliminary insight from the previous section, we establish hyperbolic composite equations
starting, again, from both Kirchhoff and refined plate theories combined with the Rayleigh wave
model. Leading order composite equations are presented in terms of both vertical and horizontal
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displacements. In addition, a refined composite equation is obtained for vertical displacement.
In Section 5, the solutions of the composite equations are compared with those of the associated
plane strain problem given in the Appendix. Surface loading in the form of a plane time-harmonic
wave is considered.

2. Statement of the problem
Consider antisymmetric deformation of an elastic layer of thickness 2h (−∞6 x1, x2 6∞,

−h6 x3 6 h) subject to prescribed normal stresses ± 1
2P (x1, x2, t) at faces x3 =±h, see Figure 1,

starting from shortened forms of 3D dynamic equations in linear elasticity exposed, in particular,
in the paper [7], the book [9], and in the annual volume chapter [21]; in this section we use the
results of these publications without further reference to them.

P

2

−

P

2

x1

x3

x2

h

h

Figure 1. Antisymmetric deformation of an elastic layer under surface loading

Let us first write down the 2D equations governing the long-wave low-frequency
approximations, for which

L≫ h and T ≫
√

ρ

E
h, (2.1)

where L and T are typical wavelength and time scale, respectively, E is Young’s modulus, and ρ
is mass density.

It is well known that the leading order long-wave low-frequency approximation corresponds
to the classical Kirchhoff theory for plate bending resulting in the fourth-order parabolic equation

D∆2w + 2ρh
∂2w

∂t2
=P, (2.2)

where w(x1, x2, t) is vertical displacement of midplane x3 =0, t is time, ∆= ∂2/∂x21 + ∂2/∂x22 is
the 2D Laplacian in variables x1 and x2, and bending stiffness D is given by

D=
2Eh3

3(1− ν2)
,

with ν denoting Poisson’s ratio. At P =0 we have from equation (2.2)

T

h

√

E

ρ
∼ L2

h2
. (2.3)

We suppose that this condition also holds at P 6= 0, unless stated otherwise. Therefore, we may

operate with a single small geometric parameter η=
h

L
≪ 1.
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At next order, we have the refined equation

D∆2w + 2ρh

(

1 + h2
7ν − 17

15(1− ν)
∆

)

∂2w

∂t2
=

(

1− h2
8− 3ν

10(1− ν)
∆

)

P, (2.4)

where the extra terms in brackets are of order O(η2), cf. (2.2).
Simultaneouly, we rely here on the asymptotic formulation for the Rayleigh wave, which, in

contrast to (2.1), is valid at

L≪ h and T ≪
√

ρ

E
h. (2.5)

At leading order, this is given by a 2D hyperbolic equation along each of the faces x3 =±h; due to
symmetry of the problem, below we consider only the upper face x3 = h. In terms of the boundary
value of longitudinal wave potential Φ(x1, x2, x3, t), see e.g. [31], we have

∆Φh − 1

c2
R

∂2Φh

∂t2
=− (1 + k22)P

4µB
, (2.6)

where Φh =Φ(x1, x2, h, t), µ is Lamé elastic modulus, c
R

is Rayleigh wave speed and

B =
k1
k2

(

1− k21

)

+
k2
k1

(

1− k22

)

−
(

1− k42

)

.

In the above ki =

√

1− c2
R

c2i
, i= 1, 2, with ci denoting longitudinal and shear wave speeds. This

equation is initially oriented to near resonant loading implementing

∆P − 1

c2R

∂2P

∂t2
≪ P

L2
, (2.7)

but also handles the Rayleigh wave contribution to the general dynamic response. Condition (2.7),
for example, holds for a plane harmonic wave with wavelength L and phase velocity close to cR.

Over the interior (|x3|<h) longitudinal potential Φ(x1, x2, x3, t) satisfies the ‘static’ elliptic
equation

∂2Φ

∂x23
+ k21∆Φ= 0, (2.8)

whereas a pair of shear potentials Ψi(x1, x2, x3, t), i= 1, 2, may be found from the boundary
value problem

∂2Ψi
∂x23

+ k22∆Ψi = 0, (2.9)

with
∂Ψi
∂x3

∣

∣

∣

∣

x3=h

=
1 + k22

2

∂Φh

∂xi
. (2.10)

Hyperbolic equation (2.6) may be also rewritten through the displacements of the upper face
un(x1, x2, t), n= 1, 2, 3. To this end, we express the solutions of elliptic equations (2.8) and (2.9)
as

Φ=Φhe
√
−∆k1(x3−h) and Ψi = Ψihe

√
−∆k2(x3−h), (2.11)

where
√
−∆ is a 2D pseudo-differential operator and Ψih = Ψi(x1, x2, h, t). Then, taking into

account boundary condition (2.10) and also the relation

∂Φ

∂x3

∣

∣

∣

∣

x3=h

=−1 + k22
2

(

∂Ψ1h
∂x1

+
∂Ψ2h
∂x2

)

, (2.12)

we obtain

ui =
∂Ψi
∂x3

∣

∣

∣

∣

x3=h

− ∂Φh

∂xi
=−1− k22

2

∂Φh

∂xi
, i= 1, 2, (2.13)
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and

u3 =
∂Φ

∂x3

∣

∣

∣

∣

x3=h

+
∂Ψ1h
∂x1

+
∂Ψ2h
∂x2

=
k1(1− k22)

1 + k22

√
−∆Φh. (2.14)

Finally, with the help of these formulae, we transform (2.6) to the form

∆ui −
1

cR2

∂2ui
∂t2

=− (1− k42)

8µB

∂P

∂xi
, i= 1, 2 (2.15)

or

∆u3 − 1

c2
R

∂2u3
∂t2

=−k1(1− k22)

4µB

√
−∆P. (2.16)

It is remarkable that the last equation contains pseudo-differential operator
√
−∆ acting on the

prescribed stress. Such form of the equation of motion does not seem to be traditional in solid
mechanics.

Similar to the Rayleigh wave equations (2.15) and (2.16), plate bending equation (2.4) can also
be rewritten in terms of the displacements at the upper face x3 = h starting from the relations

ui =Li
∂w

∂xi
and u3 =L3w, i= 1, 2, (2.17)

where differential operators Li and L3 are defined as

Li =−h
{

1 + h2
(

ν + 4

6(1− ν)

∂2

∂xi2
− 5ν

6(1− ν)

∂2

∂xj2

)}

, i, j =1, 2, i 6= j,

and
L3 = 1 + h2

ν

2(1− ν)
∆. (2.18)

Acting with (2.18) on (2.4) and neglecting O(η4) terms, we get

D∆2ui+2ρh

(

1 + h2
7ν − 17

15(1− ν)
∆

)

∂2ui
∂t2

=

=−h
{

1 + h2
(

ν + 4

6(1− ν)

∂2

∂xi2
− 5ν

6(1− ν)

∂2

∂xj2
− 8− 3ν

10(1− ν)
∆

)}

∂P

∂xi
,

(2.19)

and

D∆2u3 + 2ρh

(

1 + h2
7ν − 17

15(1− ν)
∆

)

∂2u3
∂t2

=

(

1− h2
4

5
∆

)

P. (2.20)

It is obvious that within the Kirchhoff theory we just need to neglect O(η2) terms in all formulae
(2.17)–(2.20).

Our goal is to establish 2D composite wave models containing plate bending and Rayleigh
wave equations as their asymptotic long-wave low-frequency and short-wave high-frequency
limits corresponding to (2.1) and (2.5), respectively. At the same time, we cannot expect such
composite models to be able to pick up the asymptotic behaviour of the original 3D problem
within the intermediate range

L∼ h and T ∼
√

ρ

E
h. (2.21)

This assumption agrees with the general idea of composite equations originally formulated in
[29], see also more recent book [30], not excluding the possibility of asymptotically non-uniform
composite theories.

3. Dispersion Analysis
It appears to be natural to begin with the analysis of dispersion relations. To this end, we study
the plane travelling wave solutions to the homogeneous equations (P = 0) in the previous section
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in the form exp [i(kx1 − ωt)] with angular frequency ω and wave number k. In this case, typical
wavelength and timescale are defined as L∼ k−1 and T ∼ ω−1. First, we substitute the travelling
wave solution into equations (2.2) and (2.6) at P = 0 having

K4 − 3(1− ν)

2
Ω2 = 0, (3.1)

and

K2 − Ω2

v2
R

= 0, (3.2)

where

K = kh and Ω =
ωh

c2
, (3.3)

with vR = cR/c2 denoting the dimensionless Rayleigh wave speed.
It is obvious that the problem of constructing composite relations does not have a unique

solution. Here, by inspecting (3.1) and (3.2) we may readily suggest a very simple composite
dispersion relation given by

K4 − 3(1− ν)

2
Ω2 − Ω4

v4R
= 0. (3.4)

At the long-wave low-frequency limit, in which Ω ∼K2, the last term on the right-hand side
of (3.4) is of order O(η2) and may be ignored at leading order, since η=K≪ 1. Therefore, we
arrive at dispersion relation (3.1). On the contrary, at the Rayleigh wave limit (Ω ∼K≫ 1) we
may neglect the middle term, which is of orderO(K−2), arriving at another shortened dispersion
relation (3.2).

Next, we obtain a refined composite dispersion relation combining (3.2) with

K4 − 3(1− ν)

2

(

1− δK2
)

Ω2 = 0, (3.5)

where

δ =
7ν − 17

15(1− ν)
. (3.6)

Approximate formula (3.5) arises from homogeneous refined plate equation (2.4). The sought for
composite relation may be written as

K4 − 3(1− ν)

2

(

1− δK2
)

Ω2 + γK2Ω2

(

K2 − Ω2

v2
R

)

=0, (3.7)

where γ is a constant parameter to be found. Expressing from this equation K2 we have

K2 =
1

2(1 + γΩ2)

{

−
(

3(1− ν)δ

2
− γ

Ω2

v2
R

)

Ω2+

+

√

√

√

√

(

3(1− ν)δ

2
− γ

Ω2

v2
R

)2

Ω4 + 6(1− ν)(1 + γΩ2)Ω2











.

(3.8)

The latter may be expanded at Ω≪ 1, leading to

K4 =
3(1− ν)

2
Ω2

{

1 +

√

3(1− ν)

2
δΩ +

(

3δ2(1− ν)

4
− γ

)

Ω2 + · · ·
}

. (3.9)

Now, we require the last formula to coincide with the asymptotic expansion of the Rayleigh–Lamb
dispersion equation for the bending mode

DRL(K,Ω) = 0, (3.10)
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with DRL given by (A.7) in the Appendix; see considerations in [9, Section 7.5]. As a result we
have

γ =
422− 424ν − 33ν2

1050(1 − ν)
. (3.11)

It might easily be verified that at Ω ∼K2 ≪ 1 formula (3.7) to within O(η4) coincides with
dispersion relation (3.5) corresponding to refined plate equation (2.4). As above, neglecting
O(K−2) terms, we arrive at (3.2) at the Rayleigh wave limit.

Numerical illustrations are presented in Figures 2–4 and Table 1 for Poisson’s ratio ν = 0.25 for
which the positive root of the Rayleigh equation is given, approximately, by vR = 0.9194. Figure
2 displays the dispersion curves for relations (3.1), (3.2), and (3.4) plotted by the dotted, dashed,
and dash-dotted lines, respectively. Graphic material in this figure is supported by the numerical
data in the first, third and fourth columns of the table. The dispersion curves, plotted in Figure 3
by the dotted and dash-dotted lines, correspond to refined plate and composite relations (3.5) and
(3.7), respectively, see also associated columns two and five in the table. As might be expected,
the deviation between the predictions of composite relation (3.4) and its refined form (3.7) is more
substantial at relatively low frequencies, while it is rather minor at the high-frequency limit. The
obvious reason is that both composite relations utilise the same Rayleigh wave asymptote.

The accuracy of composite relations (3.4) and (3.7) is tested in Figure 4 by comparison with
the numerical solution of the Rayleigh–Lamb equation, see (3.10) with (A.7). Computations for
the latter are also presented in the last column of the table. We plot the relative error expressed in
terms of percentages as

er =

∣

∣

∣

∣

KRL −K

KRL

∣

∣

∣

∣

× 100%, (3.12)

where KRL denotes the associated Rayleigh–Lamb root. It is depicted with dashed and solid
lines for K found from composite relations (3.4) and (3.7), respectively. The curves corresponding
to composite relations meet that for the Rayleigh–Lamb equation at Ω ≈ 3. This reduces the
approximation error over the intermediate frequency range, which is main concern from the very
beginning. To the left of this value, the refined relation has a clear advantage, while to the right of
it the difference between (3.4) and (3.7) is not that significant.

0

1

2

3

4

5

0 1 2 3 4 5

K

Ω

Kirchhoff Plate

Composite

Rayleigh

Figure 2. Dispersion curves for Kirchhoff equation (3.1), composite equation (3.4), and Rayleigh wave (3.2).
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Figure 3. Dispersion curves for refined plate equation (3.5), refined composite equation (3.7), and Rayleigh wave (3.2).

0

1

2

0 1 2 3 4 5 6 7

e
r

Ω

Composite

Refined Composite

Figure 4. Relative error for composite equation (3.4) and refined composite equation (3.7).

4. Composite Equations
Motivated by composite dispersion relation (3.4), we obtain for vertical displacement u3 along
the faces

D∆2u3 − D

c2R
∆
∂2u3
∂t2

+ 2ρh
∂2u3
∂t2

=



1− h3
k1

(

1− k22

)

3B(1− ν)

√
−∆∆



P, (4.1)

starting from inhomogeneous equations (2.2) (written in terms of u3) and (2.16). This simplest
composite equation can easily be reduced to the original shortened equations at the long-wave
low-frequency and Rayleigh wave limits. First, we scale the original variables in (4.1) setting

xi = ξiL, i=1, 2, and t= Tτ. (4.2)
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Kirchhoff plate Refined plate Rayleigh wave Composite Refined composite Rayleigh–Lamb
Ω dispersion relation dispersion relation asymptote dispersion relation dispersion relation dispersion relation

(3.1) (3.5) (3.2) (3.4) (3.7) (3.10) with (A.7)
0.1 0.3257 0.3376 0.3349 0.3373 0.3373
0.2 0.4606 0.4948 0.4869 0.4930 0.4931
0.3 0.5641 0.6278 0.6131 0.6229 0.6233
0.4 0.6514 0.7506 0.7276 0.7409 0.7418
0.5 0.7282 0.8684 0.8357 0.8520 0.8537
1. 1.030 1.438 1.344 1.364 1.373

1.5 1.261 2.014 1.845 1.858 1.874
2 1.456 2.601 2.355 2.360 2.375

2.5 2.719 2.872 2.872 2.880
3 3.263 3.395 3.393 3.391
4 4.351 4.454 4.449 4.429
5 5.438 5.522 5.517 5.483
6 6.526 6.597 6.592 6.550
8 8.701 8.755 8.751 8.707

10 10.88 10.92 10.92 10.88
11 11.96 12.00 12.00 11.97
12 13.05 13.09 13.08 13.05

Table 1. Indicative numerical solutions for exact and approximate dispersion relations.

Then, assuming that η=
h

L
≪ 1 and T =

L

ηc2
, see (2.1) and (2.3), we have

(

∆∗ − η2
1

v2R

∂2

∂τ2

)

∆∗u3 +
3(1− ν)

2

∂2u3
∂τ2

=

(

1 + η3
k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)

PL4

D
, (4.3)

where ∆∗ = ∂2/∂ξ21 + ∂2/∂ξ22 . It is obvious that, to within the error O(η2), the last equation
coincides with classical Kirchhoff equation (2.2) rewritten in a dimensionless form.

Let now η=
h

L
≫ 1 and T =

L

cR
, see (2.5), resulting in the following transformation of

composite equation (4.1)

∆∗

(

∆∗u3 − ∂2u3
∂τ2

)

+
3(1− ν)

2
v2
R
η−2 ∂

2u3
∂τ2

=

=

(

η−3 +
k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

)

PL4η3

D
.

(4.4)

Neglecting O(η−2) terms and then cancelling out operator ∆∗, we obtain a dimensionless
counterpart of equation (2.16). It also can be verified that the dispersion relation associated with
the derived composite equation coincides with dispersion relation (3.4).

Similarly, starting from the leading order form of (2.19), for which h2 terms in both brackets
are neglected, and (2.15), we have composite equations written through tangential displacements
ui at the upper face. They are

D

(

∆− 1

c2R

∂2

∂t2

)

∆ui + 2ρh
∂2ui
∂t2

=−h
(

1 + h2
1− k42

6B(1− ν)
∆

)

∂P

∂xi
, i= 1, 2. (4.5)

Next, we implement refined plate equation (2.20) and proceed in the same manner as above.
Then, a more sophisticated composite equation for vertical displacement may be presented as

D

(

1− h2
γ

c22

∂2

∂t2

)

∆2u3 + 2ρh

(

1 + h2δ∆+ h4
2γ

3(1− ν)c2R
∆
∂2

∂t2

)

∂2u3
∂t2

=

=

(

1− h2
4

5
∆+

h5

c22

γk1(1− k22)

3B(1− ν)c22

√
−∆∆ ∂2

∂t2

)

P.

(4.6)

Again, using proper scalings, it may be shown that equation (4.6) is reduced to its original
shortened forms at the long-wave low-frequency and Rayleigh wave limits. In particular, at
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low-frequency limit, it takes the form

(

1− η4γ
∂2

∂τ2

)

∆2
∗u3 +

3(1− ν)

2

(

1 + η2δ∆∗ + η6
2γc22

3(1− ν)c2
R

∆∗
∂2

∂τ2

)

∂2u3
∂τ2

=

=

(

1− η2
4

5
∆∗ + η7

γk1(1− k22)

3B(1− ν)

√
−∆∗∆∗

∂2

∂τ2

)

PL4

D
.

(4.7)

This time let us keepO(η2) terms, neglecting all the smaller ones, to obtain

∆2
∗u3 +

3(1− ν)

2

(

1 + η2δ∆∗
) ∂2u3
∂τ2

=

(

1− η2
4

5
∆∗

)

PL4

D
. (4.8)

This equation is identical to refined plate equation (2.20) rewritten in dimensionless variables.
Now, we get from (4.7) at the Rayleigh wave limit
(

η−2 − γ
c2R
c22

∂2

∂τ2

)

∆2
∗u3 +

c2R
c22

3(1− ν)

2

(

η−4 + η−2δ∆∗ +
2γ

3(1− ν)
∆∗

∂2

∂τ2

)

∂2u3
∂τ2

=

=

(

η−5 − η−3 4

5
∆∗ +

γk1(1− k22)

3B(1− ν)
v2
R

√
−∆∗∆∗

∂2

∂τ2

)

PL4η3

D
.

(4.9)

At leading order, the latter becomes

∆∗
∂2

∂τ2

(

∆∗ − ∂2

∂τ2

)

u3 =−L
4η3

D

k1(1− k22)

3B(1− ν)

√
−∆∗∆∗

∂2P

∂τ2
. (4.10)

Finally, cancelling out operator ∆∗
∂2

∂τ2
, we have Rayleigh wave equation (2.16) presented in a

dimensionless form.
As it might be expected, the dispersion relation corresponding to refined composite equation

(4.6) is the same as (3.7).

5. Example
As an example, we consider the effect of the surface loads, see Figure 1, in the form of plane time-
harmonic travelling waves, for which P =P0e

i(k0x1−ωt), where k0 = k0(ω) is a given function of
angular frequency ω, corresponding to near-resonant excitation, see (2.7). Let us search for the
solution to the differential equations in Sections 2 and 4 also in the form of a plane travelling

wave, i.e. take u3 =A
hP0

µ
ei(k0x1−ωt), where A is normalized amplitude.

First, insert u3 and P into composite equation (4.1) and its shortened limiting forms (2.2) and
(2.16). Then, we have, respectively,

A=
3(1− ν)B + k1(1− k22)K

3
0

4B
(

K4
0 − 1

v2

R

K2
0Ω

2 − 3(1−ν)
2 Ω2

) , (5.1)

A=
3(1− ν)

4

1

K4
0 − 3(1− ν)

2
Ω2

, (5.2)

and

A=
k1(1− k22)

4B

K0

K2
0 −Ω2/v2

R

, (5.3)

where K0 = k0h and, as before, Ω =ωh/c2.
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Next, insert u3 and P into refined composite and plate equations (4.6) and (2.20) to obtain

A=
1

20B

3(1− ν)(5 + 4K2
0 )B + 5k1(1− k22)γK

3
0Ω

2

(1 + γΩ2)K4
0 −

(

3(1−ν)
2 − 7ν−17

10 K2
0 + γ

v2

R

K2
0Ω

2
)

Ω2
, (5.4)

and

A=
3(1− ν)

20

5 + 4K2
0

K4
0 − 3(1−ν)

2

(

1− δK2
0

)

Ω2
, (5.5)

or, multiplying the numerator and denominator of the latter by 5− 4K2
0 ,

A=
3(1− ν)

20

25− 16K4
0

5K4
0 − 15(1−ν)

2 Ω2 − 5
2 (1 + ν)K2

0Ω
2 − 4K6

0 − 6(1− ν)δK4
0Ω

2
. (5.6)

This formula, to within higher-order terms, coincides with the long-wave low-frequency
expansion of exact solution (A.5) at K =K0, see the Appendix. Also, expression (5.3) is the same
as Rayleigh wave limit (A.9) in the Appendix at K =K0 due to the identity 4B = vRR

′(vR).

Formulae (5.1)–(5.5) are tested at K0(Ω) =
1− ε

vR
Ω, ε≪ 1, in order to satisfy condition (2.7)

underlying the adapted Rayleigh wave model. In this case O(K6
0 ) terms in the denominator of

(5.6) may be ignored; these are essential under assumption Ω∼K2
0 , see also (2.3), characteristic

of free bending vibration.
Numerical data are given in Figures 5–7 and Table 2 for ν = 0.25 and ε= 0.02. In Figures 5 and

6 the solutions of composite equations (5.1) and (5.4) are plotted by the dash-dotted line, along
with those of plate equations (5.2) and (5.5) by the dotted line, and Rayleigh wave model (5.3) by
the dashed line. It is worth noting that behaviours of the solutions of the Kirchhoff and refined
plate equations appear to be quite different over the intermediate frequency range.

In the last Figure, the solution of the composite equations are compared with the exact solution
of the associated problem in plane elasticity (A.5), see also the last column of the table. The graphs
for (5.1), (5.4), and (A.5) are drawn with dotted, dashed, and solid lines, respectively. Figure 7 and
the table indicate a reasonable accuracy of the composite equations also over the intermediate
frequency range. As for the dispersion curves in Section 3, the main improvement brought by the
refined composite equation is observed at relatively low frequencies.

Ω Kirchhoff equation Refined Plate Rayleigh wave Composite equation Refined Composite Plane elasticity
(5.2) equation (5.5) equation (5.3) (5.1) equation (5.4) equations (A.5)

0.1 -50.58 -50.26 -50.00 -50.26 -50.20
0.2 -13.10 -12.75 -12.52 -12.75 -12.70
0.3 -6.195 -5.805 -5.591 -5.806 -5.759
0.4 -3.828 -3.368 -3.180 -3.371 -3.330
0.5 -2.804 -2.235 -2.074 -2.242 -2.206
1 3.391 -0.6853 -0.6660 -0.7320 -0.7159

1.5 0.1405 -0.3593 -0.4686 -0.4762 -0.4549
2 0.0348 -0.2254 -0.4373 -0.4210 -0.3811

2.5 -1.670 -0.4429 -0.4211 -0.3657
3 -1.392 -0.4546 -0.4348 -0.3759
4 -1.044 -0.4675 -0.4562 -0.4260
5 -0.8350 -0.4616 -0.4564 -0.4741
6 -0.6958 -0.4435 -0.4415 -0.4925
8 -0.5219 -0.3942 -0.3944 -0.4502

10 -0.4175 -0.3455 -0.3460 -0.3794
11 -0.3795 -0.3237 -0.3242 -0.3478
12 -0.3479 -0.3038 -0.3043 -0.3201

Table 2. Numerical values of displacement amplitude A.
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Figure 5. Displacement amplitude A for Kirchhoff equation (5.2), composite equation (5.1), and Rayleigh wave equation

(5.3).
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Refined Composite
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Figure 6. Displacement amplitude A for refined plate equation (5.5), refined composite equation (5.4), and Rayleigh

wave equation (5.3).

6. Conclusion
Composite wave models for thin elastic plates are established, benefiting from the hyperbolic
equation for the Rayleigh wave as their short-wave limiting form. The numerical results for free
and forced vibrations, presented in the paper, demonstrate a reasonable accuracy of the proposed
2D equations also over the intermediate frequency range, where they are not asymptotic. As it
might be expected, refined composite equation (4.6) corresponding to higher-order long-wave
approximation (2.4) is more accurate than simple composite equation (4.1) at low frequencies.
The composite theories might also be refined over high-frequency range by using a high-order
approximation for the Rayleigh wave, which is however not yet available. We also remark that
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Figure 7. Displacement amplitude A for composite equation (5.1), refined composite equation (5.4), and plane elasticity

(A.5).

conditions (2.3) and (2.7) on surface loading can generally be relaxed as it has been done in the
example in Section 5 for assumption (2.3).

The developed models, as any 2D theory, do not reproduce all the features of the original
3D problem. In particular, they only pretend to approximate the fundamental antisymmetric
Rayleigh–Lamb mode, which is nevertheless of the most interest for modelling of surface loading,
exciting both bending and Rayleigh waves over low and high-frequency bands, respectively.
Preserving both low and high-frequency components of surface loading in the right hand sides
of composite equations (4.1), (4.5), and (4.6) appears to be a nontrivial feature of the presented
framework.

It is obvious that the problem of constructing a composite equation does not have a unique
solution. At the same time, it is intuitively clear that equations (4.1), (4.5), and (4.6), involving,
respectively, just the fourth and sixth order derivatives, are optimal in a sense. Of course, we
cannot expect them to lead immediately to composite expansions not only along the faces but
also over the interior of the plate. In this case, polynomial approximations across the thickness
typical for asymptotic plate theories have to be matched with exponentially decaying surface
wave fields.

Another challenge is concerned with the formulation of initial and boundary conditions. In
particular, the long-wave procedure in [32] should be adapted for incorporating of short-wave
behaviour. The derivation of the boundary conditions apparently has to refer to the results of [33],
in which the reflection of the Rayleigh wave from a corner was studied.

For the sake of simplicity, we analysed a specific loading along both plate faces as it is shown
in Figure 1 in order to deal with antisymmetric deformation only. Within a more general setup,
the symmetric fundamental mode is excited as well. For the latter, similar composite equations
may also be established. Moreover, there is a potential for a composite wave theory for thin elastic
shells due to a non-significant curvature effect on short-wave motions.
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Appendix A. Exact solution of plane time-harmonic problem
The governing equations in plane elasticity are given by, e.g. see [31],

∆ϕ− 1

c21

∂2ϕ

∂t2
=0, ∆ψ − 1

c22

∂2ψ

∂t2
= 0, (A.1)

where ϕ(x1, x3, t) and ψ(x1, x3, t) are wave potentials, and c1 and c2 are longitudinal and shear
wave speeds given, respectively, by

c1 =

√

E(1− ν)

(1 + ν)(1− 2ν)ρ
, c2 =

√

E

2(1 + ν)ρ
.

Consider a layer (−∞≤ x1 ≤∞, −h≤ x3 ≤ h) with the boundary conditions on its faces
x3 =±h given in terms of wave potentials by

µ

(

∂2ψ

∂x21
− ∂2ψ

∂x23
+ 2

∂2ϕ

∂x1∂x3

)∣

∣

∣

∣

x3=±h

=0, (A.2)

µ

χ2

(

ν

1− ν

∂2ϕ

∂x21
+
∂2ϕ

∂x23
+ 2χ2

∂2ψ

∂x1∂x3

)
∣

∣

∣

∣

x3=±h

=±P0

2
ei(kx1−ωt), (A.3)

where χ= c2/c1.
The solution to the formulated problem for the vertical displacement at the faces,

u3 =

(

∂ϕ

∂x3
+

∂ψ

∂x1

)∣

∣

∣

∣

x3=±h

, (A.4)

takes the form u3 =A
hP0

µ
ei(kx1−ωt) with

A=− αΩ2

DRL
, (A.5)

where

α=
√

K2 − χ2Ω2, β =
√

K2 −Ω2, (A.6)

and the Rayleigh–Lamb denominator is written as

DRL(K,Ω) = (K2 + β2)2 tanhα− 4K2αβ tanhβ, (A.7)

with Ω and K defined by (3.3).
The long-wave low-frequency expansion of formula (A.5) at Ω≪ 1 and K≪ 1 reads as

A=
3(1− ν)

4

1

K4 − 4

5
K6 − 3(1− ν)

2
Ω2 − 1 + ν

2
K2Ω2 + · · ·

. (A.8)

At leading order, we have for the Rayleigh wave contribution at K ∼Ω≫ 1, and
|Ω/K − vR| ≪ 1, see (2.7),

A=
1

4K

v2R

√

1− χ2v2
R

R′(vR)(c2 − v2R)
, (A.9)

where c=Ω/K, and the Rayleigh denominator is given by

R(c) = (2− c2)2 − 4
√

1− χ2c2
√

1− c2, (A.10)
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with prime denoting a differentiation with respect to the argument of the Rayleigh denominator.
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