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Abstract
Time of flight photocurrent transient studies on 5 ym thick solution processed films of novel
non-peripherally octa-octyl-substituted liquid crystalline gadolinium bis-1,4,8,11,15,18,22,25-
octakis(octyl) phthalocyanines (8GdPc,) provide a quantitative analysis of the intrinsic
ambipolar charge transport relative to mesomorphic structure of this lanthanide compound.
Characteristic liquid crystalline phases of these molecules have been identified from differential
scanning calorimetry supported by observation from the UV-visible absorption, showing
crystal-columnar mesophase and columnar mesophase-isotropic liquid transitions at 64.2 °C and
162 °C, respectively. The TOF carrier mobility is found to be structure dependent and highest
values of 4.73 x 107 °m*V~'s " and 1.6 x 10 *m? V' s~ have been estimated for hole and
electron mobilities for hexagonally packed, columnar structures of the spin-coated films. These

results are exploitable for development of single molecule based all organic complimentary
analogue and digital circuits with tunable field effect performance.

Keywords: discotic liquid crystalline, time of flight, drift mobility, field lowering coefficient,

discotic liquid crystal, Poole—Frenkel

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermally stable phthalocyanine macrocylic compounds are
known to exhibit electrical semiconductivity properties, sti-
mulating active fundamental research interest for a wide range
of applications in organic and flexible electronics [1]. Lan-
thanide bis-phthalocyanine sandwich compounds are
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characterised by their free radical character which facilitates
electron transfer from one macrocycle to another due to
overlap of m-orbitals [2]. Unsubstituted lutetium bis-phtha-
locyanine (LuPc,) is believed to be the first intrinsic mole-
cular semiconductor with room temperature (rt) steady state
conductivity of 6 x 1072Sm~! [3, 4]. Substituted liquid
crystalline LuPc, molecules with eight long alkyl chains
exhibit ordered liquid crystalline mesomorphic properties
over temperature range between 100 and 500 K and the car-
riers hopping between the columns are found to be respon-
sible for the frequency conductivity between 10> and
10° Hz [5]. A drift mobility of 2cm? V™' s~ is reported from
in-plane conduction through evaporated LuPc, thin films
between two gold electrodes [6]. The localisation of 7-elec-
trons on one of its two macrocycles produces The Heisenberg

© 2018 IOP Publishing Ltd  Printed in the UK
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8GdPc; R= C3H17

Figure 1. Chemical structure of non-peripherally octaoctyl-substi-
tuted bis-1,4,8,11,15,18,22,25-octakis(octyl) phthalocyaninato
gadolinium.

type paramagnetic behaviour of LuPc, molecules [7]. Fol-
lowing the initial research carried out on LuPc, compounds,
other rare-earth bisphthalocyaninate compounds such as
dysprosium (Dy), europium(Eu), gadolinium (Gd), praseo-
dymium (Pr), terbium (Tb), ytterbium(Yb) have since been
investigated for their uses in resistive, optical, electro-
chemical, impedance or mass sensors [8—10].

Recent applications of plastic electronics are based on
those derivatives bearing substituents that confer both solu-
bility in organic spreading solvents and columnar liquid
crystal behaviour typically at elevated temperatures. The
conductivity of spin-coated thin films of octa(13,17-dioxa-
nonacosane-15-sulfanyl)-substituted mesomorphic LuPc, is
found to decrease by four orders of magnitude on annealing to
140°C for 3h due to formation of a staggered slipped
stacking structure [11]. Anthracene doping of up to wt 5%
into spin-coated films of octakis(alkylthio) substituted Lu
bisphthalocyanine is reported in recent years to increase the
conductivity by two orders of magnitude with simultaneous
decreases in activation energy [12]. Spin-coated films,
~40nm thick, of alkyl-substituted dysprosium phthalocya-
nine molecules showed an increase in rt Ohmic conductivity
by two orders of magnitude from 6.57 x 10 %to
6.42 x 107 °Sm™" as the sample was annealed at the liquid
crystalline temperature of 350 K, implying the formation of
thermally induced ordered film [13]. Values of
212 x 10'm*V s, 672 x 10 'm*V's™!  and
21.58 x 107°m? V' s ! were estimated for hole mobility of
spin-coated tetrasubstituted Lu, Eu, Yb thin films, respec-
tively [14]. The Ohmic conductivity of 5 nm thick thermally
deposited TbPc, under high vacuum conditions is found to be
0.032Sm™ ' at 303K with the value of 0.158eV for the
temperature independent activation energy, implying the
thermal excitation of carriers from a continuous density of
deep trap states [15].

This paper reports for the first time bulk ambipolar
charge transport in 5 um thick solution processed films of a
novel liquid crystalline gadolinium bis-phthalocyanine com-
plex, 8GdPc, in figure 1, bearing a total of 16 octyl chains
(R = CgH,7) as substituents on its non-peripheral positions.
Thermally induced phase changes were investigated from
Differential Scanning Calorimetry (DSC) and UV-vis

absorption spectra for bulk materials and spin-coated films,
respectively. The time of flight (TOF) technique was
employed to determine values of electron and hole mobilities
e and py, at temperatures below and above the crystal to
mesophase transition. This method involved the measurement
of the time required for a sheet of charge carriers photo-
generated near one of the electrodes by pulsed light irradia-
tion to drift across the sample to the other electrode under an
applied electric field. In this way it is possible to study the
fastest charge transport and recombination in organic 8GdPc,
semiconductors involving the mechanisms within molecules,
between molecules, as well as between crystal planes and
grains [16]. Similarly substituted metal free phthalocyanine
molecules (8H,Pc) are found to exhibit the unipolar charge
transport  behaviour with the hole mobility of
~10"*m?>V~'s7!in the Col, and Col, phases. This value is
two orders magnitude higher than one obtained in the present
case [17].

2. Experimental methods

Synthetic routes to bis-complexes of tetrapyrrole based
macrocycles containing a lanthanide metal ion are well
established [18]. The metal free 1,4,8,11,15,18,22,25-octakis
(octyl)phthalocyanine was reacted with gadolinium acetate
under reflux in octanol with 1,8-Diazabicyclo[5.4.0Jundec-7-
ene (DBU) as a promoter. DSC curves were recorded for as-
prepared bulk material 8GdPc, over a temperature range
between —50 °C and 200 °C using a Linkham THM600 hot
stage, and with a TA Instruments DSC 10 instrument coupled
to a TA200 workstation. A polarised light optical microscope
(Olympus BH2 polarising microscope with a Linkam
THM600 hot stage was employed to observe corresponding
mesophase textures of the molecule. Using a Hitachi U-3000
ultraviolet—visible (UV-vis) spectrometer fitted with a Mettler
FP80 processor coupled to a Mettler FP82 hot stage, optical
absorption spectra for 8GdPc, spun thin films on ultra-
sonically cleaned quartz substrates were recorded in the
300-900 nm at different temperatures to investigate temper-
ature dependent molecular reorganisations. Spin coated films
of 8GdPc, were prepared by conventional methods using a
KW-4A spin coater from the Chemat Technology Inc., USA
operating at a rotation speed of 1500 rpm for 30s. The
spreading solution (10 mg ml~") of the 8GdPc, compound in
chloroform (99.9% anhydrous) was used.

The TOF measurements were performed for determining
drift mobilities in a 5 um thick drop-cast film sandwiched
between two transparent indium tin oxide (ITO) coated glass
substrates. A DekTak profilometer was employed to measure
the film thickness. A liquid crystal cell was placed in a
modified Linkam LTS350 hot stage filled with 8GdPc, by
heating at 185 °C, i.e. above the mesophase to isotropic liquid
transition temperature. The sample was then cooled at a rate
of 2°Cmin~"' to help promote larger crystal formation.
Antiparallel Polyamide was used as the alignment agent
between the organic layer and the ITO electrodes. The pho-
tocurrents were produced using a 532 nm pulsed output of a
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Figure 2. Differential scanning calorimetric curves for 8GdPc, for
heating and cooling cycles.

double-frequency Nd:YAG laser. The top and bottom elec-
trodes were connected to an external circuit via a variable
resistor and a DC power supply which provided the bias. The
resulting photocurrent transient was recorded on a high-
resolution digitising oscilloscope. For the measurement of
electron transport, the polarity of the power supply was
reversed. Signal averaging and background subtraction were
carried out on all signals to improve data quality. Further
details on the instrumentation are available from our recent
publication [19].

3. Results and discussion

The DSC curve in figure 2 shows structural transitions that
occur on the second heating/cooling cycle at temperature T
with enthalpy changes shown in brackets: 64.2°C
(1947¢g™hH, 121.6°C (041Jg™", 1622°C (39Jg™"H
(Heating-2nd  cycle), 160.6°C (5.1 Jgfl), 121.6°C
(0.567g™"), 46.4°C (18.9Jg"). The sharp peak on the
heating cycle (lower line) of DSC curve at 64.2 °C is assigned
to the transition of the crystal (K) to rectangularly packed
columnar mesophase (Col,) transition. The small peak, low
enthalpy change, at 121.6 °C implies a mesophase to meso-
phase (Col, — Coly,) transition where h refers to hexagonal
packing and that at 162 °C corresponds to melting into the
isotropic liquid phase (I). Mesophase types were assigned on
the basis of well documented characteristic birefringence
textures [20]. It is observed from optical pictures in figure 3
that liquid crystal textures were formed sequentially as the
sample was heated. The transition from the columnar rec-
tangular mesophase (Col,) to the columnar hexagonal meso-
phase (Coly,) was observed. Peripherally octaoctyl-substituted
gadolinium phthalocyanine derivatives exhibited similar
phase transition from K to Col, at 61 °C while Col, — Col,
transition is associated with the temperature of 93 °C [21].
However, the thermal behaviour of non-peripherally

substituted Pcs is largely determined by the interaction
between substituent chains on neighbouring benzo-moieties.
The re-arrangement of molecular packing takes place within
the bulk structure of films of these compounds on thermal
annealing leading to enhanced electrical characteristics [22].

UV-vis spectra of the 8GdPc, film in figure 4 show Soret
and Q-bands in the range between 340 nm and 360 nm, and
640 nm and 730 nm, respectively due to long range face-to-
face stacking arrangements of the monomers. The absorption
at 490 nm is generally associated with the free radical struc-
ture of a typical bis-phthalocyanine sandwich compounds.
The broad band at 318 nm is assigned to the B band (7—7")
absorption and it is one of the characteristics absorption bands
for bis phthalocyanine. According to the extended Hiickel
molecular orbital model, doubly degenerate lowest unoccu-
pied molecular orbital (LUMO) is believed to have centred on
the pyrrole and isoindole nitrogen. The interactions between
the macrocyclic rings split the 7 highest occupied molecular
orbital (HOMO) levels in the lanthanide sandwich complexes
[23]. The relative energy distance between the bonding
HOMO and LUMO levels is estimated to be 1.73 eV. The
radical band at 473 nm (2.62 eV) is the charge transfer band
from the inner doubly degenerate orbital of e; to half-filled a,
orbital. These optical transitions are schematically described
in figure 4(b) in terms of energy levels corresponding to
singly degenerate orbitals and doubly degenerate orbitals. The
present spectral characteristics are broadly in keeping with
ones observed for quasi-Langmuir—Shafer films of periph-
erally substituted bis(phthalocyaninato) holmium complexes
[24]. The spectra at rt and 35 °C are identical, exhibiting the
Q-band absorptions at 726 nm and 642 nm. At 70 °C, i.e.
within the first mesophase (Col,) range, the band at 726 nm
has sharpened and exhibits an increase in intensity. The band
at 642 nm shifts to 640 nm, showing a smaller increase in
intensity. At 130 °C, corresponding to the second mesophase
range (Coly), the band at 726 nm has undergone a small
decrease in intensity with the 640nm band returning to
642 nm.

Figure 5(a) shows hole photocurrents on double loga-
rithmic scales at 30 °C, 70 °C and 130 °C for the bias of
V, = +30V. The transit time #, of photo-generated carriers
corresponding to the respective inflection points determined
by the intersection of the tangents to the initial and post flight
parts of the curves and clear inflection points, 7y, can be
observed at 3.18, 5.33 and 1.76 us corresponding to the
transition temperature of 30°C, 70°C and 130°C, respectively.
The traps for two types of carriers can be distinguished by
changing the polarity of bias [25]. Therefore, electron trans-
port was also investigated in a single experiment for the same
sample for reverse bias of V, = —30V and values of 26.5,
17.80 and 5.21 us were obtained for ¢, at the corresponding
temperatures from figure 5(b). The primarily dispersive nature
of transport for both types of carriers is consistent with the
multidomain film structures which consist of many bound-
aries. The measurements at rt were repeated and values of ji.)
and pi, were estimated at temperature 7 from the knowledge



Semicond. Sci. Technol. 33 (2018) 095010

S Barard et al

Figure 3. Polarised optical microscopic texture at room temperature after annealing from the isotropic liquid.
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Figure 4. (a) UV-visible spectra and (b) room temperature optical
transitions between orbitals (a; — e;"), (b; — e3”) and (e; — a,)
correspoding to 730 nm band, 764 nm band and radical band of a
spin-coated 8GdPc, film.
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Figure 5. Hole and electron photocurrent transients, measured at
room temperature in a 5 ym thick cell of 8GdPc, for K, Col, and
Coly, mesophases corresponding to transition temperature of 30 °C,
70 °C and 130 °C.

that

d2
T,E)=—, 1
,U(e,h)( ) toV, (D
where the film thickness d = 5 um, electric field E = %
The measurements were repeated at room temperature
and the mean value of the results of the calculations have

been summarised in table 1. Both electron and hole mobilities
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are critically dependent of the mesophase of the 8GdPc, films.
The mobilities of both carriers in Col, mesophases are found
to be higher by factor of ~3 than those in Col, mesophases.
TOF measurements were performed on solution processed
liquid crystalline metal free phthalocyanine molecules with
octahexyl (CgH;3) substitution on similar non-peripheral
positions, showing similar mesophase behaviour. High drift
motilities of up to 1.4cm®*V ' s~ ' and 0.5cm? V's™! for
both hole and electrons in the crystalline solid phase of
(6PcH,) were obtained at rt from the TOF measurement [26].
The mobility values of 8GdPc, are at least one order of
magnitude higher than those reported for non-peripherally
octahexyl substituted ambipolar zinc (ZnPce) phthalocya-
nine [27].

Recently reported values of 4 x 10 °m? V™ and
8 x 107 'm?*V~'s™! for the field effect electron and hole
mobilities, respectively of ambipolar Gd-bisphthalocyanine
active layer vacuum sublimed on silicon substrates are sig-
nificantly smaller than those obtained from the present TOF
measurements [28]. Similarly the holes and electrons mobility
of 0.11cm®>V~'s™! for and 0.06cm>V~'s™!, respectively
were obtained for the solution processed quasi-Langmuir—
Shiafer film  of  homoleptic  sandwich-type  tris
[2,3,9,10,16,17,23,24-octa(naphthoxy)phthalocyaninato]
europium triple-decker complex as an active layer in the
organic field effect transistor (OFET) [29]. However, the
carriers are often injected from the contacts into the channels
of OFET transistors and values of OFET mobilities are likely
to be limited because of the injection of carries from the
contact into the channel [30]. Values of
0.15-0.35cm?>V~'s™' for one-dimensional intracolumnar
carrier mobility were reported for liquid crystalline thioalky-
lated Lu, Eu, Tb bisphthalocyanine using pulse-radiolysis
time-resolved microwave conductivity (PR-TRMC) technique
[31]. The PR-TRMC usually gives larger mobility than TOF
because the latter technique involves the transport of charge
carriers over relatively large distances in multidomain struc-
tures encountering the traps of long life [32]. In view of these
considerations, the present TOF mobilities represent the rea-
listic ambipolar behaviour of 8GdPc, films with potential
device applications.

Measurements were repeated between 10V < V, < 35V
with a view to examining the effect of applied field on the
mobility. The mobilities of both types of carriers are shown in
figure 6 as function of JE. The linear relation indicates the
Poole-Frankel type field dependence of the mobility at
temperature 7 in the form;

1 -1
S

tieny (T2 E) = piepy (T, E = 0)exp (BVE). (2)

The errors in /4.y primarily arise from the dependence
of the electric field E on thickness d. The contributions of the
transit time to error bars are significantly small. The least
square fitting of equation (2) to experimental data is also
included in the error bars.

Values of the field lowering coefficients § are estimated
in the order of +107°m>?V73s! for holes and
+107°m®2 V357! for electrons. The physical interpretation

VE (V/em)!”2
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Figure 6. Poole—Frankel plots for hole and hole mobilities in 8GdPc,
for K (circle), Col, (rectangle) and Col,, (triangle) mesophases
corresponding to transition temperature of 30 °C, 70 °C and 130 °C,
respectively.

of these positive values of 3 may be obtained by examining
their dependence on the Gaussian density of energy states of
width o and the dimensionless parameter defining the posi-
tional disorder I' through the following form:

B8 =0.78 /% [(o/kT)3/? — T, 3)

where R is the intersite spacing parameter [33]. It is obvious
from equation (3) that the positional order I' is small in
comparison with energy states of width o implying the liquid
crystalline GdPc, films are well structured. Similar positive
field dependent mobility behaviour was observed for liquid
crystalline semiconducting polymers based on poly(2,5-bis(3-
alkylthiophen-2-yl)thieno[3,2-b]thiophene) [34]. The energy
state of width for holes in Col;, mesophases is estimated to be
70% narrower than those in Col, mesophases from the
intercept at E =0 of the Poole-Frankel plots using
equation (4) in the following form:

(T,E=0) = ex —(31)2 )
Heny U Hoce,h) €XP ser) |

where i n) 1S the carrier mobility in the energetically dis-
order-free system at £ = 0. Similar calculations have been
repeated for electrons and it is found that the energy states for
Col, mesophases are wider than Col,, mesophases by more
than 200%.



Semicond. Sci. Technol. 33 (2018) 095010

S Barard et al

Table 1. Summary of mobility calculations using equation (1).

Holes Electrons
lo Han to Hee)
Mesophase  Transition temperature (°C)  (us) 10 °m?v-tsh (us) 10 °m?v-tsh
K 30 3.18 0.262 2.65 0.0341
Col, 70 5.33 0.156 17.8 0.0468
Coly, 130 1.76 0.473 5.21 0.159

4. Concluding remarks

The synthesis of solution processed liquid crystalline non-
peripherally octaoctyl-substituted gadolinium bis-phthalo-
cyanine complex, 8GdPc, ambipolar organic semiconductors
is important for development of organic complementary metal
oxide semiconductor (CMOS) circuits and organic light-
emitting transistors. Transition temperatures for phase chan-
ges have been well defined by DSC curves and UV-visible
absorption spectra. The ambipolar charge transport in 8GdPc,
compounds is consistent with relative positions of HOMO
and LUMO levels derived from optical transitions. The TOF
mobilities of both types of carriers which can be selectively
tuned by the annealing temperature of the 8GdPc, films are
bulk characteristics and therefore these properties may be
suitably exploited for design and fabrication of all organic
complimentary printable circuits.
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